/* * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_OPTO_CALLNODE_HPP #define SHARE_VM_OPTO_CALLNODE_HPP #include "opto/connode.hpp" #include "opto/mulnode.hpp" #include "opto/multnode.hpp" #include "opto/opcodes.hpp" #include "opto/phaseX.hpp" #include "opto/replacednodes.hpp" #include "opto/type.hpp" // Portions of code courtesy of Clifford Click // Optimization - Graph Style class Chaitin; class NamedCounter; class MultiNode; class SafePointNode; class CallNode; class CallJavaNode; class CallStaticJavaNode; class CallDynamicJavaNode; class CallRuntimeNode; class CallLeafNode; class CallLeafNoFPNode; class AllocateNode; class AllocateArrayNode; class BoxLockNode; class LockNode; class UnlockNode; class JVMState; class OopMap; class State; class StartNode; class MachCallNode; class FastLockNode; //------------------------------StartNode-------------------------------------- // The method start node class StartNode : public MultiNode { virtual uint cmp( const Node &n ) const; virtual uint size_of() const; // Size is bigger public: const TypeTuple *_domain; StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) { init_class_id(Class_Start); init_req(0,this); init_req(1,root); } virtual int Opcode() const; virtual bool pinned() const { return true; }; virtual const Type *bottom_type() const; virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; } virtual const Type *Value( PhaseTransform *phase ) const; virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const; virtual const RegMask &in_RegMask(uint) const; virtual Node *match( const ProjNode *proj, const Matcher *m ); virtual uint ideal_reg() const { return 0; } #ifndef PRODUCT virtual void dump_spec(outputStream *st) const; #endif }; //------------------------------StartOSRNode----------------------------------- // The method start node for on stack replacement code class StartOSRNode : public StartNode { public: StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {} virtual int Opcode() const; static const TypeTuple *osr_domain(); }; //------------------------------ParmNode--------------------------------------- // Incoming parameters class ParmNode : public ProjNode { static const char * const names[TypeFunc::Parms+1]; public: ParmNode( StartNode *src, uint con ) : ProjNode(src,con) { init_class_id(Class_Parm); } virtual int Opcode() const; virtual bool is_CFG() const { return (_con == TypeFunc::Control); } virtual uint ideal_reg() const; #ifndef PRODUCT virtual void dump_spec(outputStream *st) const; #endif }; //------------------------------ReturnNode------------------------------------- // Return from subroutine node class ReturnNode : public Node { public: ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr ); virtual int Opcode() const; virtual bool is_CFG() const { return true; } virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash virtual bool depends_only_on_test() const { return false; } virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual const Type *Value( PhaseTransform *phase ) const; virtual uint ideal_reg() const { return NotAMachineReg; } virtual uint match_edge(uint idx) const; #ifndef PRODUCT virtual void dump_req(outputStream *st = tty) const; #endif }; //------------------------------RethrowNode------------------------------------ // Rethrow of exception at call site. Ends a procedure before rethrowing; // ends the current basic block like a ReturnNode. Restores registers and // unwinds stack. Rethrow happens in the caller's method. class RethrowNode : public Node { public: RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception ); virtual int Opcode() const; virtual bool is_CFG() const { return true; } virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash virtual bool depends_only_on_test() const { return false; } virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual const Type *Value( PhaseTransform *phase ) const; virtual uint match_edge(uint idx) const; virtual uint ideal_reg() const { return NotAMachineReg; } #ifndef PRODUCT virtual void dump_req(outputStream *st = tty) const; #endif }; //------------------------------TailCallNode----------------------------------- // Pop stack frame and jump indirect class TailCallNode : public ReturnNode { public: TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop ) : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) { init_req(TypeFunc::Parms, target); init_req(TypeFunc::Parms+1, moop); } virtual int Opcode() const; virtual uint match_edge(uint idx) const; }; //------------------------------TailJumpNode----------------------------------- // Pop stack frame and jump indirect class TailJumpNode : public ReturnNode { public: TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop) : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) { init_req(TypeFunc::Parms, target); init_req(TypeFunc::Parms+1, ex_oop); } virtual int Opcode() const; virtual uint match_edge(uint idx) const; }; //-------------------------------JVMState------------------------------------- // A linked list of JVMState nodes captures the whole interpreter state, // plus GC roots, for all active calls at some call site in this compilation // unit. (If there is no inlining, then the list has exactly one link.) // This provides a way to map the optimized program back into the interpreter, // or to let the GC mark the stack. class JVMState : public ResourceObj { friend class VMStructs; public: typedef enum { Reexecute_Undefined = -1, // not defined -- will be translated into false later Reexecute_False = 0, // false -- do not reexecute Reexecute_True = 1 // true -- reexecute the bytecode } ReexecuteState; //Reexecute State private: JVMState* _caller; // List pointer for forming scope chains uint _depth; // One more than caller depth, or one. uint _locoff; // Offset to locals in input edge mapping uint _stkoff; // Offset to stack in input edge mapping uint _monoff; // Offset to monitors in input edge mapping uint _scloff; // Offset to fields of scalar objs in input edge mapping uint _endoff; // Offset to end of input edge mapping uint _sp; // Jave Expression Stack Pointer for this state int _bci; // Byte Code Index of this JVM point ReexecuteState _reexecute; // Whether this bytecode need to be re-executed ciMethod* _method; // Method Pointer SafePointNode* _map; // Map node associated with this scope public: friend class Compile; friend class PreserveReexecuteState; // Because JVMState objects live over the entire lifetime of the // Compile object, they are allocated into the comp_arena, which // does not get resource marked or reset during the compile process void *operator new( size_t x, Compile* C ) throw() { return C->comp_arena()->Amalloc(x); } void operator delete( void * ) { } // fast deallocation // Create a new JVMState, ready for abstract interpretation. JVMState(ciMethod* method, JVMState* caller); JVMState(int stack_size); // root state; has a null method // Access functions for the JVM // ... --|--- loc ---|--- stk ---|--- arg ---|--- mon ---|--- scl ---| // \ locoff \ stkoff \ argoff \ monoff \ scloff \ endoff uint locoff() const { return _locoff; } uint stkoff() const { return _stkoff; } uint argoff() const { return _stkoff + _sp; } uint monoff() const { return _monoff; } uint scloff() const { return _scloff; } uint endoff() const { return _endoff; } uint oopoff() const { return debug_end(); } int loc_size() const { return stkoff() - locoff(); } int stk_size() const { return monoff() - stkoff(); } int mon_size() const { return scloff() - monoff(); } int scl_size() const { return endoff() - scloff(); } bool is_loc(uint i) const { return locoff() <= i && i < stkoff(); } bool is_stk(uint i) const { return stkoff() <= i && i < monoff(); } bool is_mon(uint i) const { return monoff() <= i && i < scloff(); } bool is_scl(uint i) const { return scloff() <= i && i < endoff(); } uint sp() const { return _sp; } int bci() const { return _bci; } bool should_reexecute() const { return _reexecute==Reexecute_True; } bool is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; } bool has_method() const { return _method != NULL; } ciMethod* method() const { assert(has_method(), ""); return _method; } JVMState* caller() const { return _caller; } SafePointNode* map() const { return _map; } uint depth() const { return _depth; } uint debug_start() const; // returns locoff of root caller uint debug_end() const; // returns endoff of self uint debug_size() const { return loc_size() + sp() + mon_size() + scl_size(); } uint debug_depth() const; // returns sum of debug_size values at all depths // Returns the JVM state at the desired depth (1 == root). JVMState* of_depth(int d) const; // Tells if two JVM states have the same call chain (depth, methods, & bcis). bool same_calls_as(const JVMState* that) const; // Monitors (monitors are stored as (boxNode, objNode) pairs enum { logMonitorEdges = 1 }; int nof_monitors() const { return mon_size() >> logMonitorEdges; } int monitor_depth() const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); } int monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; } int monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; } bool is_monitor_box(uint off) const { assert(is_mon(off), "should be called only for monitor edge"); return (0 == bitfield(off - monoff(), 0, logMonitorEdges)); } bool is_monitor_use(uint off) const { return (is_mon(off) && is_monitor_box(off)) || (caller() && caller()->is_monitor_use(off)); } // Initialization functions for the JVM void set_locoff(uint off) { _locoff = off; } void set_stkoff(uint off) { _stkoff = off; } void set_monoff(uint off) { _monoff = off; } void set_scloff(uint off) { _scloff = off; } void set_endoff(uint off) { _endoff = off; } void set_offsets(uint off) { _locoff = _stkoff = _monoff = _scloff = _endoff = off; } void set_map(SafePointNode *map) { _map = map; } void set_sp(uint sp) { _sp = sp; } // _reexecute is initialized to "undefined" for a new bci void set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; } void set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;} // Miscellaneous utility functions JVMState* clone_deep(Compile* C) const; // recursively clones caller chain JVMState* clone_shallow(Compile* C) const; // retains uncloned caller void set_map_deep(SafePointNode *map);// reset map for all callers void adapt_position(int delta); // Adapt offsets in in-array after adding an edge. int interpreter_frame_size() const; #ifndef PRODUCT void format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const; void dump_spec(outputStream *st) const; void dump_on(outputStream* st) const; void dump() const { dump_on(tty); } #endif }; //------------------------------SafePointNode---------------------------------- // A SafePointNode is a subclass of a MultiNode for convenience (and // potential code sharing) only - conceptually it is independent of // the Node semantics. class SafePointNode : public MultiNode { virtual uint cmp( const Node &n ) const; virtual uint size_of() const; // Size is bigger public: SafePointNode(uint edges, JVMState* jvms, // A plain safepoint advertises no memory effects (NULL): const TypePtr* adr_type = NULL) : MultiNode( edges ), _jvms(jvms), _oop_map(NULL), _adr_type(adr_type) { init_class_id(Class_SafePoint); } OopMap* _oop_map; // Array of OopMap info (8-bit char) for GC JVMState* const _jvms; // Pointer to list of JVM State objects const TypePtr* _adr_type; // What type of memory does this node produce? ReplacedNodes _replaced_nodes; // During parsing: list of pair of nodes from calls to GraphKit::replace_in_map() // Many calls take *all* of memory as input, // but some produce a limited subset of that memory as output. // The adr_type reports the call's behavior as a store, not a load. virtual JVMState* jvms() const { return _jvms; } void set_jvms(JVMState* s) { *(JVMState**)&_jvms = s; // override const attribute in the accessor } OopMap *oop_map() const { return _oop_map; } void set_oop_map(OopMap *om) { _oop_map = om; } private: void verify_input(JVMState* jvms, uint idx) const { assert(verify_jvms(jvms), "jvms must match"); Node* n = in(idx); assert((!n->bottom_type()->isa_long() && !n->bottom_type()->isa_double()) || in(idx + 1)->is_top(), "2nd half of long/double"); } public: // Functionality from old debug nodes which has changed Node *local(JVMState* jvms, uint idx) const { verify_input(jvms, jvms->locoff() + idx); return in(jvms->locoff() + idx); } Node *stack(JVMState* jvms, uint idx) const { verify_input(jvms, jvms->stkoff() + idx); return in(jvms->stkoff() + idx); } Node *argument(JVMState* jvms, uint idx) const { verify_input(jvms, jvms->argoff() + idx); return in(jvms->argoff() + idx); } Node *monitor_box(JVMState* jvms, uint idx) const { assert(verify_jvms(jvms), "jvms must match"); return in(jvms->monitor_box_offset(idx)); } Node *monitor_obj(JVMState* jvms, uint idx) const { assert(verify_jvms(jvms), "jvms must match"); return in(jvms->monitor_obj_offset(idx)); } void set_local(JVMState* jvms, uint idx, Node *c); void set_stack(JVMState* jvms, uint idx, Node *c) { assert(verify_jvms(jvms), "jvms must match"); set_req(jvms->stkoff() + idx, c); } void set_argument(JVMState* jvms, uint idx, Node *c) { assert(verify_jvms(jvms), "jvms must match"); set_req(jvms->argoff() + idx, c); } void ensure_stack(JVMState* jvms, uint stk_size) { assert(verify_jvms(jvms), "jvms must match"); int grow_by = (int)stk_size - (int)jvms->stk_size(); if (grow_by > 0) grow_stack(jvms, grow_by); } void grow_stack(JVMState* jvms, uint grow_by); // Handle monitor stack void push_monitor( const FastLockNode *lock ); void pop_monitor (); Node *peek_monitor_box() const; Node *peek_monitor_obj() const; // Access functions for the JVM Node *control () const { return in(TypeFunc::Control ); } Node *i_o () const { return in(TypeFunc::I_O ); } Node *memory () const { return in(TypeFunc::Memory ); } Node *returnadr() const { return in(TypeFunc::ReturnAdr); } Node *frameptr () const { return in(TypeFunc::FramePtr ); } void set_control ( Node *c ) { set_req(TypeFunc::Control,c); } void set_i_o ( Node *c ) { set_req(TypeFunc::I_O ,c); } void set_memory ( Node *c ) { set_req(TypeFunc::Memory ,c); } MergeMemNode* merged_memory() const { return in(TypeFunc::Memory)->as_MergeMem(); } // The parser marks useless maps as dead when it's done with them: bool is_killed() { return in(TypeFunc::Control) == NULL; } // Exception states bubbling out of subgraphs such as inlined calls // are recorded here. (There might be more than one, hence the "next".) // This feature is used only for safepoints which serve as "maps" // for JVM states during parsing, intrinsic expansion, etc. SafePointNode* next_exception() const; void set_next_exception(SafePointNode* n); bool has_exceptions() const { return next_exception() != NULL; } // Helper methods to operate on replaced nodes ReplacedNodes replaced_nodes() const { return _replaced_nodes; } void set_replaced_nodes(ReplacedNodes replaced_nodes) { _replaced_nodes = replaced_nodes; } void clone_replaced_nodes() { _replaced_nodes.clone(); } void record_replaced_node(Node* initial, Node* improved) { _replaced_nodes.record(initial, improved); } void transfer_replaced_nodes_from(SafePointNode* sfpt, uint idx = 0) { _replaced_nodes.transfer_from(sfpt->_replaced_nodes, idx); } void delete_replaced_nodes() { _replaced_nodes.reset(); } void apply_replaced_nodes() { _replaced_nodes.apply(this); } void merge_replaced_nodes_with(SafePointNode* sfpt) { _replaced_nodes.merge_with(sfpt->_replaced_nodes); } bool has_replaced_nodes() const { return !_replaced_nodes.is_empty(); } // Standard Node stuff virtual int Opcode() const; virtual bool pinned() const { return true; } virtual const Type *Value( PhaseTransform *phase ) const; virtual const Type *bottom_type() const { return Type::CONTROL; } virtual const TypePtr *adr_type() const { return _adr_type; } virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual Node *Identity( PhaseTransform *phase ); virtual uint ideal_reg() const { return 0; } virtual const RegMask &in_RegMask(uint) const; virtual const RegMask &out_RegMask() const; virtual uint match_edge(uint idx) const; static bool needs_polling_address_input(); #ifndef PRODUCT virtual void dump_spec(outputStream *st) const; #endif }; //------------------------------SafePointScalarObjectNode---------------------- // A SafePointScalarObjectNode represents the state of a scalarized object // at a safepoint. class SafePointScalarObjectNode: public TypeNode { uint _first_index; // First input edge relative index of a SafePoint node where // states of the scalarized object fields are collected. // It is relative to the last (youngest) jvms->_scloff. uint _n_fields; // Number of non-static fields of the scalarized object. DEBUG_ONLY(AllocateNode* _alloc;) virtual uint hash() const ; // { return NO_HASH; } virtual uint cmp( const Node &n ) const; uint first_index() const { return _first_index; } public: SafePointScalarObjectNode(const TypeOopPtr* tp, #ifdef ASSERT AllocateNode* alloc, #endif uint first_index, uint n_fields); virtual int Opcode() const; virtual uint ideal_reg() const; virtual const RegMask &in_RegMask(uint) const; virtual const RegMask &out_RegMask() const; virtual uint match_edge(uint idx) const; uint first_index(JVMState* jvms) const { assert(jvms != NULL, "missed JVMS"); return jvms->scloff() + _first_index; } uint n_fields() const { return _n_fields; } #ifdef ASSERT AllocateNode* alloc() const { return _alloc; } #endif virtual uint size_of() const { return sizeof(*this); } // Assumes that "this" is an argument to a safepoint node "s", and that // "new_call" is being created to correspond to "s". But the difference // between the start index of the jvmstates of "new_call" and "s" is // "jvms_adj". Produce and return a SafePointScalarObjectNode that // corresponds appropriately to "this" in "new_call". Assumes that // "sosn_map" is a map, specific to the translation of "s" to "new_call", // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies. SafePointScalarObjectNode* clone(Dict* sosn_map) const; #ifndef PRODUCT virtual void dump_spec(outputStream *st) const; #endif }; // Simple container for the outgoing projections of a call. Useful // for serious surgery on calls. class CallProjections : public StackObj { public: Node* fallthrough_proj; Node* fallthrough_catchproj; Node* fallthrough_memproj; Node* fallthrough_ioproj; Node* catchall_catchproj; Node* catchall_memproj; Node* catchall_ioproj; Node* resproj; Node* exobj; }; class CallGenerator; //------------------------------CallNode--------------------------------------- // Call nodes now subsume the function of debug nodes at callsites, so they // contain the functionality of a full scope chain of debug nodes. class CallNode : public SafePointNode { friend class VMStructs; public: const TypeFunc *_tf; // Function type address _entry_point; // Address of method being called float _cnt; // Estimate of number of times called CallGenerator* _generator; // corresponding CallGenerator for some late inline calls CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type) : SafePointNode(tf->domain()->cnt(), NULL, adr_type), _tf(tf), _entry_point(addr), _cnt(COUNT_UNKNOWN), _generator(NULL) { init_class_id(Class_Call); } const TypeFunc* tf() const { return _tf; } const address entry_point() const { return _entry_point; } const float cnt() const { return _cnt; } CallGenerator* generator() const { return _generator; } void set_tf(const TypeFunc* tf) { _tf = tf; } void set_entry_point(address p) { _entry_point = p; } void set_cnt(float c) { _cnt = c; } void set_generator(CallGenerator* cg) { _generator = cg; } virtual const Type *bottom_type() const; virtual const Type *Value( PhaseTransform *phase ) const; virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual Node *Identity( PhaseTransform *phase ) { return this; } virtual uint cmp( const Node &n ) const; virtual uint size_of() const = 0; virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const; virtual Node *match( const ProjNode *proj, const Matcher *m ); virtual uint ideal_reg() const { return NotAMachineReg; } // Are we guaranteed that this node is a safepoint? Not true for leaf calls and // for some macro nodes whose expansion does not have a safepoint on the fast path. virtual bool guaranteed_safepoint() { return true; } // For macro nodes, the JVMState gets modified during expansion. If calls // use MachConstantBase, it gets modified during matching. So when cloning // the node the JVMState must be cloned. Default is not to clone. virtual void clone_jvms(Compile* C) { if (C->needs_clone_jvms() && jvms() != NULL) { set_jvms(jvms()->clone_deep(C)); jvms()->set_map_deep(this); } } // Returns true if the call may modify n virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase); // Does this node have a use of n other than in debug information? bool has_non_debug_use(Node *n); // Returns the unique CheckCastPP of a call // or result projection is there are several CheckCastPP // or returns NULL if there is no one. Node *result_cast(); // Does this node returns pointer? bool returns_pointer() const { const TypeTuple *r = tf()->range(); return (r->cnt() > TypeFunc::Parms && r->field_at(TypeFunc::Parms)->isa_ptr()); } // Collect all the interesting edges from a call for use in // replacing the call by something else. Used by macro expansion // and the late inlining support. void extract_projections(CallProjections* projs, bool separate_io_proj); virtual uint match_edge(uint idx) const; #ifndef PRODUCT virtual void dump_req(outputStream *st = tty) const; virtual void dump_spec(outputStream *st) const; #endif }; //------------------------------CallJavaNode----------------------------------- // Make a static or dynamic subroutine call node using Java calling // convention. (The "Java" calling convention is the compiler's calling // convention, as opposed to the interpreter's or that of native C.) class CallJavaNode : public CallNode { friend class VMStructs; protected: virtual uint cmp( const Node &n ) const; virtual uint size_of() const; // Size is bigger bool _optimized_virtual; bool _method_handle_invoke; ciMethod* _method; // Method being direct called public: const int _bci; // Byte Code Index of call byte code CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci) : CallNode(tf, addr, TypePtr::BOTTOM), _method(method), _bci(bci), _optimized_virtual(false), _method_handle_invoke(false) { init_class_id(Class_CallJava); } virtual int Opcode() const; ciMethod* method() const { return _method; } void set_method(ciMethod *m) { _method = m; } void set_optimized_virtual(bool f) { _optimized_virtual = f; } bool is_optimized_virtual() const { return _optimized_virtual; } void set_method_handle_invoke(bool f) { _method_handle_invoke = f; } bool is_method_handle_invoke() const { return _method_handle_invoke; } #ifndef PRODUCT virtual void dump_spec(outputStream *st) const; #endif }; //------------------------------CallStaticJavaNode----------------------------- // Make a direct subroutine call using Java calling convention (for static // calls and optimized virtual calls, plus calls to wrappers for run-time // routines); generates static stub. class CallStaticJavaNode : public CallJavaNode { virtual uint cmp( const Node &n ) const; virtual uint size_of() const; // Size is bigger public: CallStaticJavaNode(Compile* C, const TypeFunc* tf, address addr, ciMethod* method, int bci) : CallJavaNode(tf, addr, method, bci), _name(NULL) { init_class_id(Class_CallStaticJava); if (C->eliminate_boxing() && (method != NULL) && method->is_boxing_method()) { init_flags(Flag_is_macro); C->add_macro_node(this); } _is_scalar_replaceable = false; _is_non_escaping = false; } CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci, const TypePtr* adr_type) : CallJavaNode(tf, addr, NULL, bci), _name(name) { init_class_id(Class_CallStaticJava); // This node calls a runtime stub, which often has narrow memory effects. _adr_type = adr_type; _is_scalar_replaceable = false; _is_non_escaping = false; } const char *_name; // Runtime wrapper name // Result of Escape Analysis bool _is_scalar_replaceable; bool _is_non_escaping; // If this is an uncommon trap, return the request code, else zero. int uncommon_trap_request() const; static int extract_uncommon_trap_request(const Node* call); bool is_boxing_method() const { return is_macro() && (method() != NULL) && method()->is_boxing_method(); } // Later inlining modifies the JVMState, so we need to clone it // when the call node is cloned (because it is macro node). virtual void clone_jvms(Compile* C) { if ((jvms() != NULL) && is_boxing_method()) { set_jvms(jvms()->clone_deep(C)); jvms()->set_map_deep(this); } } virtual int Opcode() const; #ifndef PRODUCT virtual void dump_spec(outputStream *st) const; #endif }; //------------------------------CallDynamicJavaNode---------------------------- // Make a dispatched call using Java calling convention. class CallDynamicJavaNode : public CallJavaNode { virtual uint cmp( const Node &n ) const; virtual uint size_of() const; // Size is bigger public: CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) { init_class_id(Class_CallDynamicJava); } int _vtable_index; virtual int Opcode() const; #ifndef PRODUCT virtual void dump_spec(outputStream *st) const; #endif }; //------------------------------CallRuntimeNode-------------------------------- // Make a direct subroutine call node into compiled C++ code. class CallRuntimeNode : public CallNode { virtual uint cmp( const Node &n ) const; virtual uint size_of() const; // Size is bigger public: CallRuntimeNode(const TypeFunc* tf, address addr, const char* name, const TypePtr* adr_type) : CallNode(tf, addr, adr_type), _name(name) { init_class_id(Class_CallRuntime); } const char *_name; // Printable name, if _method is NULL virtual int Opcode() const; virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const; #ifndef PRODUCT virtual void dump_spec(outputStream *st) const; #endif }; //------------------------------CallLeafNode----------------------------------- // Make a direct subroutine call node into compiled C++ code, without // safepoints class CallLeafNode : public CallRuntimeNode { public: CallLeafNode(const TypeFunc* tf, address addr, const char* name, const TypePtr* adr_type) : CallRuntimeNode(tf, addr, name, adr_type) { init_class_id(Class_CallLeaf); } virtual int Opcode() const; virtual bool guaranteed_safepoint() { return false; } #ifndef PRODUCT virtual void dump_spec(outputStream *st) const; #endif }; //------------------------------CallLeafNoFPNode------------------------------- // CallLeafNode, not using floating point or using it in the same manner as // the generated code class CallLeafNoFPNode : public CallLeafNode { public: CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name, const TypePtr* adr_type) : CallLeafNode(tf, addr, name, adr_type) { } virtual int Opcode() const; }; //------------------------------Allocate--------------------------------------- // High-level memory allocation // // AllocateNode and AllocateArrayNode are subclasses of CallNode because they will // get expanded into a code sequence containing a call. Unlike other CallNodes, // they have 2 memory projections and 2 i_o projections (which are distinguished by // the _is_io_use flag in the projection.) This is needed when expanding the node in // order to differentiate the uses of the projection on the normal control path from // those on the exception return path. // class AllocateNode : public CallNode { public: enum { // Output: RawAddress = TypeFunc::Parms, // the newly-allocated raw address // Inputs: AllocSize = TypeFunc::Parms, // size (in bytes) of the new object KlassNode, // type (maybe dynamic) of the obj. InitialTest, // slow-path test (may be constant) ALength, // array length (or TOP if none) ParmLimit }; static const TypeFunc* alloc_type(const Type* t) { const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms); fields[AllocSize] = TypeInt::POS; fields[KlassNode] = TypeInstPtr::NOTNULL; fields[InitialTest] = TypeInt::BOOL; fields[ALength] = t; // length (can be a bad length) const TypeTuple *domain = TypeTuple::make(ParmLimit, fields); // create result type (range) fields = TypeTuple::fields(1); fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); return TypeFunc::make(domain, range); } // Result of Escape Analysis bool _is_scalar_replaceable; bool _is_non_escaping; virtual uint size_of() const; // Size is bigger AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio, Node *size, Node *klass_node, Node *initial_test); // Expansion modifies the JVMState, so we need to clone it virtual void clone_jvms(Compile* C) { if (jvms() != NULL) { set_jvms(jvms()->clone_deep(C)); jvms()->set_map_deep(this); } } virtual int Opcode() const; virtual uint ideal_reg() const { return Op_RegP; } virtual bool guaranteed_safepoint() { return false; } // allocations do not modify their arguments virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) { return false;} // Pattern-match a possible usage of AllocateNode. // Return null if no allocation is recognized. // The operand is the pointer produced by the (possible) allocation. // It must be a projection of the Allocate or its subsequent CastPP. // (Note: This function is defined in file graphKit.cpp, near // GraphKit::new_instance/new_array, whose output it recognizes.) // The 'ptr' may not have an offset unless the 'offset' argument is given. static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase); // Fancy version which uses AddPNode::Ideal_base_and_offset to strip // an offset, which is reported back to the caller. // (Note: AllocateNode::Ideal_allocation is defined in graphKit.cpp.) static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase, intptr_t& offset); // Dig the klass operand out of a (possible) allocation site. static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) { AllocateNode* allo = Ideal_allocation(ptr, phase); return (allo == NULL) ? NULL : allo->in(KlassNode); } // Conservatively small estimate of offset of first non-header byte. int minimum_header_size() { return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : instanceOopDesc::base_offset_in_bytes(); } // Return the corresponding initialization barrier (or null if none). // Walks out edges to find it... // (Note: Both InitializeNode::allocation and AllocateNode::initialization // are defined in graphKit.cpp, which sets up the bidirectional relation.) InitializeNode* initialization(); // Convenience for initialization->maybe_set_complete(phase) bool maybe_set_complete(PhaseGVN* phase); }; //------------------------------AllocateArray--------------------------------- // // High-level array allocation // class AllocateArrayNode : public AllocateNode { public: AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio, Node* size, Node* klass_node, Node* initial_test, Node* count_val ) : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node, initial_test) { init_class_id(Class_AllocateArray); set_req(AllocateNode::ALength, count_val); } virtual int Opcode() const; virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); // Dig the length operand out of a array allocation site. Node* Ideal_length() { return in(AllocateNode::ALength); } // Dig the length operand out of a array allocation site and narrow the // type with a CastII, if necesssary Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true); // Pattern-match a possible usage of AllocateArrayNode. // Return null if no allocation is recognized. static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) { AllocateNode* allo = Ideal_allocation(ptr, phase); return (allo == NULL || !allo->is_AllocateArray()) ? NULL : allo->as_AllocateArray(); } }; //------------------------------AbstractLockNode----------------------------------- class AbstractLockNode: public CallNode { private: enum { Regular = 0, // Normal lock NonEscObj, // Lock is used for non escaping object Coarsened, // Lock was coarsened Nested // Nested lock } _kind; #ifndef PRODUCT NamedCounter* _counter; #endif protected: // helper functions for lock elimination // bool find_matching_unlock(const Node* ctrl, LockNode* lock, GrowableArray &lock_ops); bool find_lock_and_unlock_through_if(Node* node, LockNode* lock, GrowableArray &lock_ops); bool find_unlocks_for_region(const RegionNode* region, LockNode* lock, GrowableArray &lock_ops); LockNode *find_matching_lock(UnlockNode* unlock); // Update the counter to indicate that this lock was eliminated. void set_eliminated_lock_counter() PRODUCT_RETURN; public: AbstractLockNode(const TypeFunc *tf) : CallNode(tf, NULL, TypeRawPtr::BOTTOM), _kind(Regular) { #ifndef PRODUCT _counter = NULL; #endif } virtual int Opcode() const = 0; Node * obj_node() const {return in(TypeFunc::Parms + 0); } Node * box_node() const {return in(TypeFunc::Parms + 1); } Node * fastlock_node() const {return in(TypeFunc::Parms + 2); } void set_box_node(Node* box) { set_req(TypeFunc::Parms + 1, box); } const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;} virtual uint size_of() const { return sizeof(*this); } bool is_eliminated() const { return (_kind != Regular); } bool is_non_esc_obj() const { return (_kind == NonEscObj); } bool is_coarsened() const { return (_kind == Coarsened); } bool is_nested() const { return (_kind == Nested); } const char * kind_as_string() const; void log_lock_optimization(Phase* phase, const char * tag) const; void set_non_esc_obj() { _kind = NonEscObj; set_eliminated_lock_counter(); } void set_coarsened() { _kind = Coarsened; set_eliminated_lock_counter(); } void set_nested() { _kind = Nested; set_eliminated_lock_counter(); } // locking does not modify its arguments virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase){ return false;} #ifndef PRODUCT void create_lock_counter(JVMState* s); NamedCounter* counter() const { return _counter; } #endif }; //------------------------------Lock--------------------------------------- // High-level lock operation // // This is a subclass of CallNode because it is a macro node which gets expanded // into a code sequence containing a call. This node takes 3 "parameters": // 0 - object to lock // 1 - a BoxLockNode // 2 - a FastLockNode // class LockNode : public AbstractLockNode { public: static const TypeFunc *lock_type() { // create input type (domain) const Type **fields = TypeTuple::fields(3); fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock fields[TypeFunc::Parms+2] = TypeInt::BOOL; // FastLock const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields); // create result type (range) fields = TypeTuple::fields(0); const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); return TypeFunc::make(domain,range); } virtual int Opcode() const; virtual uint size_of() const; // Size is bigger LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) { init_class_id(Class_Lock); init_flags(Flag_is_macro); C->add_macro_node(this); } virtual bool guaranteed_safepoint() { return false; } virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); // Expansion modifies the JVMState, so we need to clone it virtual void clone_jvms(Compile* C) { if (jvms() != NULL) { set_jvms(jvms()->clone_deep(C)); jvms()->set_map_deep(this); } } bool is_nested_lock_region(); // Is this Lock nested? #ifdef ASSERT bool is_nested_lock_region_debug(Phase * p); // Why isn't this Lock nested? #endif }; //------------------------------Unlock--------------------------------------- // High-level unlock operation class UnlockNode : public AbstractLockNode { private: #ifdef ASSERT JVMState* const _dbg_jvms; // Pointer to list of JVM State objects #endif public: virtual int Opcode() const; virtual uint size_of() const; // Size is bigger UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) #ifdef ASSERT , _dbg_jvms(NULL) #endif { init_class_id(Class_Unlock); init_flags(Flag_is_macro); C->add_macro_node(this); } virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); // unlock is never a safepoint virtual bool guaranteed_safepoint() { return false; } #ifdef ASSERT void set_dbg_jvms(JVMState* s) { *(JVMState**)&_dbg_jvms = s; // override const attribute in the accessor } JVMState* dbg_jvms() const { return _dbg_jvms; } #else JVMState* dbg_jvms() const { return NULL; } #endif }; class GraphKit; class ArrayCopyNode : public CallNode { private: // What kind of arraycopy variant is this? enum { None, // not set yet ArrayCopy, // System.arraycopy() CloneBasic, // A clone that can be copied by 64 bit chunks CloneOop, // An oop array clone CopyOf, // Arrays.copyOf() CopyOfRange // Arrays.copyOfRange() } _kind; #ifndef PRODUCT static const char* _kind_names[CopyOfRange+1]; #endif // Is the alloc obtained with // AllocateArrayNode::Ideal_array_allocation() tighly coupled // (arraycopy follows immediately the allocation)? // We cache the result of LibraryCallKit::tightly_coupled_allocation // here because it's much easier to find whether there's a tightly // couple allocation at parse time than at macro expansion time. At // macro expansion time, for every use of the allocation node we // would need to figure out whether it happens after the arraycopy (and // can be ignored) or between the allocation and the arraycopy. At // parse time, it's straightforward because whatever happens after // the arraycopy is not parsed yet so doesn't exist when // LibraryCallKit::tightly_coupled_allocation() is called. bool _alloc_tightly_coupled; bool _arguments_validated; static const TypeFunc* arraycopy_type() { const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms); fields[Src] = TypeInstPtr::BOTTOM; fields[SrcPos] = TypeInt::INT; fields[Dest] = TypeInstPtr::BOTTOM; fields[DestPos] = TypeInt::INT; fields[Length] = TypeInt::INT; fields[SrcLen] = TypeInt::INT; fields[DestLen] = TypeInt::INT; fields[SrcKlass] = TypeKlassPtr::BOTTOM; fields[DestKlass] = TypeKlassPtr::BOTTOM; const TypeTuple *domain = TypeTuple::make(ParmLimit, fields); // create result type (range) fields = TypeTuple::fields(0); const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); return TypeFunc::make(domain, range); } ArrayCopyNode(Compile* C, bool alloc_tightly_coupled); int get_count(PhaseGVN *phase) const; static const TypePtr* get_address_type(PhaseGVN *phase, Node* n); Node* try_clone_instance(PhaseGVN *phase, bool can_reshape, int count); bool finish_transform(PhaseGVN *phase, bool can_reshape, Node* ctl, Node *mem); public: enum { Src = TypeFunc::Parms, SrcPos, Dest, DestPos, Length, SrcLen, DestLen, SrcKlass, DestKlass, ParmLimit }; static ArrayCopyNode* make(GraphKit* kit, bool may_throw, Node* src, Node* src_offset, Node* dest, Node* dest_offset, Node* length, bool alloc_tightly_coupled, Node* src_klass = NULL, Node* dest_klass = NULL, Node* src_length = NULL, Node* dest_length = NULL); void connect_outputs(GraphKit* kit); bool is_arraycopy() const { assert(_kind != None, "should bet set"); return _kind == ArrayCopy; } bool is_arraycopy_validated() const { assert(_kind != None, "should bet set"); return _kind == ArrayCopy && _arguments_validated; } bool is_clonebasic() const { assert(_kind != None, "should bet set"); return _kind == CloneBasic; } bool is_cloneoop() const { assert(_kind != None, "should bet set"); return _kind == CloneOop; } bool is_copyof() const { assert(_kind != None, "should bet set"); return _kind == CopyOf; } bool is_copyofrange() const { assert(_kind != None, "should bet set"); return _kind == CopyOfRange; } void set_arraycopy(bool validated) { assert(_kind == None, "shouldn't bet set yet"); _kind = ArrayCopy; _arguments_validated = validated; } void set_clonebasic() { assert(_kind == None, "shouldn't bet set yet"); _kind = CloneBasic; } void set_cloneoop() { assert(_kind == None, "shouldn't bet set yet"); _kind = CloneOop; } void set_copyof() { assert(_kind == None, "shouldn't bet set yet"); _kind = CopyOf; _arguments_validated = false; } void set_copyofrange() { assert(_kind == None, "shouldn't bet set yet"); _kind = CopyOfRange; _arguments_validated = false; } virtual int Opcode() const; virtual uint size_of() const; // Size is bigger virtual bool guaranteed_safepoint() { return false; } virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); bool is_alloc_tightly_coupled() const { return _alloc_tightly_coupled; } #ifndef PRODUCT virtual void dump_spec(outputStream *st) const; #endif }; #endif // SHARE_VM_OPTO_CALLNODE_HPP