1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "ci/bcEscapeAnalyzer.hpp"
  28 #include "compiler/oopMap.hpp"
  29 #include "opto/callGenerator.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/castnode.hpp"
  32 #include "opto/convertnode.hpp"
  33 #include "opto/escape.hpp"
  34 #include "opto/locknode.hpp"
  35 #include "opto/machnode.hpp"
  36 #include "opto/matcher.hpp"
  37 #include "opto/parse.hpp"
  38 #include "opto/regalloc.hpp"
  39 #include "opto/regmask.hpp"
  40 #include "opto/rootnode.hpp"
  41 #include "opto/runtime.hpp"
  42 
  43 // Portions of code courtesy of Clifford Click
  44 
  45 // Optimization - Graph Style
  46 
  47 //=============================================================================
  48 uint StartNode::size_of() const { return sizeof(*this); }
  49 uint StartNode::cmp( const Node &n ) const
  50 { return _domain == ((StartNode&)n)._domain; }
  51 const Type *StartNode::bottom_type() const { return _domain; }
  52 const Type *StartNode::Value(PhaseTransform *phase) const { return _domain; }
  53 #ifndef PRODUCT
  54 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
  55 #endif
  56 
  57 //------------------------------Ideal------------------------------------------
  58 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
  59   return remove_dead_region(phase, can_reshape) ? this : NULL;
  60 }
  61 
  62 //------------------------------calling_convention-----------------------------
  63 void StartNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
  64   Matcher::calling_convention( sig_bt, parm_regs, argcnt, false );
  65 }
  66 
  67 //------------------------------Registers--------------------------------------
  68 const RegMask &StartNode::in_RegMask(uint) const {
  69   return RegMask::Empty;
  70 }
  71 
  72 //------------------------------match------------------------------------------
  73 // Construct projections for incoming parameters, and their RegMask info
  74 Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
  75   switch (proj->_con) {
  76   case TypeFunc::Control:
  77   case TypeFunc::I_O:
  78   case TypeFunc::Memory:
  79     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  80   case TypeFunc::FramePtr:
  81     return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
  82   case TypeFunc::ReturnAdr:
  83     return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
  84   case TypeFunc::Parms:
  85   default: {
  86       uint parm_num = proj->_con - TypeFunc::Parms;
  87       const Type *t = _domain->field_at(proj->_con);
  88       if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
  89         return new ConNode(Type::TOP);
  90       uint ideal_reg = t->ideal_reg();
  91       RegMask &rm = match->_calling_convention_mask[parm_num];
  92       return new MachProjNode(this,proj->_con,rm,ideal_reg);
  93     }
  94   }
  95   return NULL;
  96 }
  97 
  98 //------------------------------StartOSRNode----------------------------------
  99 // The method start node for an on stack replacement adapter
 100 
 101 //------------------------------osr_domain-----------------------------
 102 const TypeTuple *StartOSRNode::osr_domain() {
 103   const Type **fields = TypeTuple::fields(2);
 104   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
 105 
 106   return TypeTuple::make(TypeFunc::Parms+1, fields);
 107 }
 108 
 109 //=============================================================================
 110 const char * const ParmNode::names[TypeFunc::Parms+1] = {
 111   "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
 112 };
 113 
 114 #ifndef PRODUCT
 115 void ParmNode::dump_spec(outputStream *st) const {
 116   if( _con < TypeFunc::Parms ) {
 117     st->print("%s", names[_con]);
 118   } else {
 119     st->print("Parm%d: ",_con-TypeFunc::Parms);
 120     // Verbose and WizardMode dump bottom_type for all nodes
 121     if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
 122   }
 123 }
 124 #endif
 125 
 126 uint ParmNode::ideal_reg() const {
 127   switch( _con ) {
 128   case TypeFunc::Control  : // fall through
 129   case TypeFunc::I_O      : // fall through
 130   case TypeFunc::Memory   : return 0;
 131   case TypeFunc::FramePtr : // fall through
 132   case TypeFunc::ReturnAdr: return Op_RegP;
 133   default                 : assert( _con > TypeFunc::Parms, "" );
 134     // fall through
 135   case TypeFunc::Parms    : {
 136     // Type of argument being passed
 137     const Type *t = in(0)->as_Start()->_domain->field_at(_con);
 138     return t->ideal_reg();
 139   }
 140   }
 141   ShouldNotReachHere();
 142   return 0;
 143 }
 144 
 145 //=============================================================================
 146 ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
 147   init_req(TypeFunc::Control,cntrl);
 148   init_req(TypeFunc::I_O,i_o);
 149   init_req(TypeFunc::Memory,memory);
 150   init_req(TypeFunc::FramePtr,frameptr);
 151   init_req(TypeFunc::ReturnAdr,retadr);
 152 }
 153 
 154 Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
 155   return remove_dead_region(phase, can_reshape) ? this : NULL;
 156 }
 157 
 158 const Type *ReturnNode::Value( PhaseTransform *phase ) const {
 159   return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
 160     ? Type::TOP
 161     : Type::BOTTOM;
 162 }
 163 
 164 // Do we Match on this edge index or not?  No edges on return nodes
 165 uint ReturnNode::match_edge(uint idx) const {
 166   return 0;
 167 }
 168 
 169 
 170 #ifndef PRODUCT
 171 void ReturnNode::dump_req(outputStream *st) const {
 172   // Dump the required inputs, enclosed in '(' and ')'
 173   uint i;                       // Exit value of loop
 174   for (i = 0; i < req(); i++) {    // For all required inputs
 175     if (i == TypeFunc::Parms) st->print("returns");
 176     if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
 177     else st->print("_ ");
 178   }
 179 }
 180 #endif
 181 
 182 //=============================================================================
 183 RethrowNode::RethrowNode(
 184   Node* cntrl,
 185   Node* i_o,
 186   Node* memory,
 187   Node* frameptr,
 188   Node* ret_adr,
 189   Node* exception
 190 ) : Node(TypeFunc::Parms + 1) {
 191   init_req(TypeFunc::Control  , cntrl    );
 192   init_req(TypeFunc::I_O      , i_o      );
 193   init_req(TypeFunc::Memory   , memory   );
 194   init_req(TypeFunc::FramePtr , frameptr );
 195   init_req(TypeFunc::ReturnAdr, ret_adr);
 196   init_req(TypeFunc::Parms    , exception);
 197 }
 198 
 199 Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
 200   return remove_dead_region(phase, can_reshape) ? this : NULL;
 201 }
 202 
 203 const Type *RethrowNode::Value( PhaseTransform *phase ) const {
 204   return (phase->type(in(TypeFunc::Control)) == Type::TOP)
 205     ? Type::TOP
 206     : Type::BOTTOM;
 207 }
 208 
 209 uint RethrowNode::match_edge(uint idx) const {
 210   return 0;
 211 }
 212 
 213 #ifndef PRODUCT
 214 void RethrowNode::dump_req(outputStream *st) const {
 215   // Dump the required inputs, enclosed in '(' and ')'
 216   uint i;                       // Exit value of loop
 217   for (i = 0; i < req(); i++) {    // For all required inputs
 218     if (i == TypeFunc::Parms) st->print("exception");
 219     if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
 220     else st->print("_ ");
 221   }
 222 }
 223 #endif
 224 
 225 //=============================================================================
 226 // Do we Match on this edge index or not?  Match only target address & method
 227 uint TailCallNode::match_edge(uint idx) const {
 228   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
 229 }
 230 
 231 //=============================================================================
 232 // Do we Match on this edge index or not?  Match only target address & oop
 233 uint TailJumpNode::match_edge(uint idx) const {
 234   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
 235 }
 236 
 237 //=============================================================================
 238 JVMState::JVMState(ciMethod* method, JVMState* caller) :
 239   _method(method) {
 240   assert(method != NULL, "must be valid call site");
 241   _reexecute = Reexecute_Undefined;
 242   debug_only(_bci = -99);  // random garbage value
 243   debug_only(_map = (SafePointNode*)-1);
 244   _caller = caller;
 245   _depth  = 1 + (caller == NULL ? 0 : caller->depth());
 246   _locoff = TypeFunc::Parms;
 247   _stkoff = _locoff + _method->max_locals();
 248   _monoff = _stkoff + _method->max_stack();
 249   _scloff = _monoff;
 250   _endoff = _monoff;
 251   _sp = 0;
 252 }
 253 JVMState::JVMState(int stack_size) :
 254   _method(NULL) {
 255   _bci = InvocationEntryBci;
 256   _reexecute = Reexecute_Undefined;
 257   debug_only(_map = (SafePointNode*)-1);
 258   _caller = NULL;
 259   _depth  = 1;
 260   _locoff = TypeFunc::Parms;
 261   _stkoff = _locoff;
 262   _monoff = _stkoff + stack_size;
 263   _scloff = _monoff;
 264   _endoff = _monoff;
 265   _sp = 0;
 266 }
 267 
 268 //--------------------------------of_depth-------------------------------------
 269 JVMState* JVMState::of_depth(int d) const {
 270   const JVMState* jvmp = this;
 271   assert(0 < d && (uint)d <= depth(), "oob");
 272   for (int skip = depth() - d; skip > 0; skip--) {
 273     jvmp = jvmp->caller();
 274   }
 275   assert(jvmp->depth() == (uint)d, "found the right one");
 276   return (JVMState*)jvmp;
 277 }
 278 
 279 //-----------------------------same_calls_as-----------------------------------
 280 bool JVMState::same_calls_as(const JVMState* that) const {
 281   if (this == that)                    return true;
 282   if (this->depth() != that->depth())  return false;
 283   const JVMState* p = this;
 284   const JVMState* q = that;
 285   for (;;) {
 286     if (p->_method != q->_method)    return false;
 287     if (p->_method == NULL)          return true;   // bci is irrelevant
 288     if (p->_bci    != q->_bci)       return false;
 289     if (p->_reexecute != q->_reexecute)  return false;
 290     p = p->caller();
 291     q = q->caller();
 292     if (p == q)                      return true;
 293     assert(p != NULL && q != NULL, "depth check ensures we don't run off end");
 294   }
 295 }
 296 
 297 //------------------------------debug_start------------------------------------
 298 uint JVMState::debug_start()  const {
 299   debug_only(JVMState* jvmroot = of_depth(1));
 300   assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
 301   return of_depth(1)->locoff();
 302 }
 303 
 304 //-------------------------------debug_end-------------------------------------
 305 uint JVMState::debug_end() const {
 306   debug_only(JVMState* jvmroot = of_depth(1));
 307   assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
 308   return endoff();
 309 }
 310 
 311 //------------------------------debug_depth------------------------------------
 312 uint JVMState::debug_depth() const {
 313   uint total = 0;
 314   for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) {
 315     total += jvmp->debug_size();
 316   }
 317   return total;
 318 }
 319 
 320 #ifndef PRODUCT
 321 
 322 //------------------------------format_helper----------------------------------
 323 // Given an allocation (a Chaitin object) and a Node decide if the Node carries
 324 // any defined value or not.  If it does, print out the register or constant.
 325 static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) {
 326   if (n == NULL) { st->print(" NULL"); return; }
 327   if (n->is_SafePointScalarObject()) {
 328     // Scalar replacement.
 329     SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject();
 330     scobjs->append_if_missing(spobj);
 331     int sco_n = scobjs->find(spobj);
 332     assert(sco_n >= 0, "");
 333     st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n);
 334     return;
 335   }
 336   if (regalloc->node_regs_max_index() > 0 &&
 337       OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
 338     char buf[50];
 339     regalloc->dump_register(n,buf);
 340     st->print(" %s%d]=%s",msg,i,buf);
 341   } else {                      // No register, but might be constant
 342     const Type *t = n->bottom_type();
 343     switch (t->base()) {
 344     case Type::Int:
 345       st->print(" %s%d]=#"INT32_FORMAT,msg,i,t->is_int()->get_con());
 346       break;
 347     case Type::AnyPtr:
 348       assert( t == TypePtr::NULL_PTR || n->in_dump(), "" );
 349       st->print(" %s%d]=#NULL",msg,i);
 350       break;
 351     case Type::AryPtr:
 352     case Type::InstPtr:
 353       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->isa_oopptr()->const_oop()));
 354       break;
 355     case Type::KlassPtr:
 356       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_klassptr()->klass()));
 357       break;
 358     case Type::MetadataPtr:
 359       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_metadataptr()->metadata()));
 360       break;
 361     case Type::NarrowOop:
 362       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_oopptr()->const_oop()));
 363       break;
 364     case Type::RawPtr:
 365       st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,p2i(t->is_rawptr()));
 366       break;
 367     case Type::DoubleCon:
 368       st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
 369       break;
 370     case Type::FloatCon:
 371       st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
 372       break;
 373     case Type::Long:
 374       st->print(" %s%d]=#"INT64_FORMAT,msg,i,(int64_t)(t->is_long()->get_con()));
 375       break;
 376     case Type::Half:
 377     case Type::Top:
 378       st->print(" %s%d]=_",msg,i);
 379       break;
 380     default: ShouldNotReachHere();
 381     }
 382   }
 383 }
 384 
 385 //------------------------------format-----------------------------------------
 386 void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
 387   st->print("        #");
 388   if (_method) {
 389     _method->print_short_name(st);
 390     st->print(" @ bci:%d ",_bci);
 391   } else {
 392     st->print_cr(" runtime stub ");
 393     return;
 394   }
 395   if (n->is_MachSafePoint()) {
 396     GrowableArray<SafePointScalarObjectNode*> scobjs;
 397     MachSafePointNode *mcall = n->as_MachSafePoint();
 398     uint i;
 399     // Print locals
 400     for (i = 0; i < (uint)loc_size(); i++)
 401       format_helper(regalloc, st, mcall->local(this, i), "L[", i, &scobjs);
 402     // Print stack
 403     for (i = 0; i < (uint)stk_size(); i++) {
 404       if ((uint)(_stkoff + i) >= mcall->len())
 405         st->print(" oob ");
 406       else
 407        format_helper(regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs);
 408     }
 409     for (i = 0; (int)i < nof_monitors(); i++) {
 410       Node *box = mcall->monitor_box(this, i);
 411       Node *obj = mcall->monitor_obj(this, i);
 412       if (regalloc->node_regs_max_index() > 0 &&
 413           OptoReg::is_valid(regalloc->get_reg_first(box))) {
 414         box = BoxLockNode::box_node(box);
 415         format_helper(regalloc, st, box, "MON-BOX[", i, &scobjs);
 416       } else {
 417         OptoReg::Name box_reg = BoxLockNode::reg(box);
 418         st->print(" MON-BOX%d=%s+%d",
 419                    i,
 420                    OptoReg::regname(OptoReg::c_frame_pointer),
 421                    regalloc->reg2offset(box_reg));
 422       }
 423       const char* obj_msg = "MON-OBJ[";
 424       if (EliminateLocks) {
 425         if (BoxLockNode::box_node(box)->is_eliminated())
 426           obj_msg = "MON-OBJ(LOCK ELIMINATED)[";
 427       }
 428       format_helper(regalloc, st, obj, obj_msg, i, &scobjs);
 429     }
 430 
 431     for (i = 0; i < (uint)scobjs.length(); i++) {
 432       // Scalar replaced objects.
 433       st->cr();
 434       st->print("        # ScObj" INT32_FORMAT " ", i);
 435       SafePointScalarObjectNode* spobj = scobjs.at(i);
 436       ciKlass* cik = spobj->bottom_type()->is_oopptr()->klass();
 437       assert(cik->is_instance_klass() ||
 438              cik->is_array_klass(), "Not supported allocation.");
 439       ciInstanceKlass *iklass = NULL;
 440       if (cik->is_instance_klass()) {
 441         cik->print_name_on(st);
 442         iklass = cik->as_instance_klass();
 443       } else if (cik->is_type_array_klass()) {
 444         cik->as_array_klass()->base_element_type()->print_name_on(st);
 445         st->print("[%d]", spobj->n_fields());
 446       } else if (cik->is_obj_array_klass()) {
 447         ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
 448         if (cie->is_instance_klass()) {
 449           cie->print_name_on(st);
 450         } else if (cie->is_type_array_klass()) {
 451           cie->as_array_klass()->base_element_type()->print_name_on(st);
 452         } else {
 453           ShouldNotReachHere();
 454         }
 455         st->print("[%d]", spobj->n_fields());
 456         int ndim = cik->as_array_klass()->dimension() - 1;
 457         while (ndim-- > 0) {
 458           st->print("[]");
 459         }
 460       }
 461       st->print("={");
 462       uint nf = spobj->n_fields();
 463       if (nf > 0) {
 464         uint first_ind = spobj->first_index(mcall->jvms());
 465         Node* fld_node = mcall->in(first_ind);
 466         ciField* cifield;
 467         if (iklass != NULL) {
 468           st->print(" [");
 469           cifield = iklass->nonstatic_field_at(0);
 470           cifield->print_name_on(st);
 471           format_helper(regalloc, st, fld_node, ":", 0, &scobjs);
 472         } else {
 473           format_helper(regalloc, st, fld_node, "[", 0, &scobjs);
 474         }
 475         for (uint j = 1; j < nf; j++) {
 476           fld_node = mcall->in(first_ind+j);
 477           if (iklass != NULL) {
 478             st->print(", [");
 479             cifield = iklass->nonstatic_field_at(j);
 480             cifield->print_name_on(st);
 481             format_helper(regalloc, st, fld_node, ":", j, &scobjs);
 482           } else {
 483             format_helper(regalloc, st, fld_node, ", [", j, &scobjs);
 484           }
 485         }
 486       }
 487       st->print(" }");
 488     }
 489   }
 490   st->cr();
 491   if (caller() != NULL) caller()->format(regalloc, n, st);
 492 }
 493 
 494 
 495 void JVMState::dump_spec(outputStream *st) const {
 496   if (_method != NULL) {
 497     bool printed = false;
 498     if (!Verbose) {
 499       // The JVMS dumps make really, really long lines.
 500       // Take out the most boring parts, which are the package prefixes.
 501       char buf[500];
 502       stringStream namest(buf, sizeof(buf));
 503       _method->print_short_name(&namest);
 504       if (namest.count() < sizeof(buf)) {
 505         const char* name = namest.base();
 506         if (name[0] == ' ')  ++name;
 507         const char* endcn = strchr(name, ':');  // end of class name
 508         if (endcn == NULL)  endcn = strchr(name, '(');
 509         if (endcn == NULL)  endcn = name + strlen(name);
 510         while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
 511           --endcn;
 512         st->print(" %s", endcn);
 513         printed = true;
 514       }
 515     }
 516     if (!printed)
 517       _method->print_short_name(st);
 518     st->print(" @ bci:%d",_bci);
 519     if(_reexecute == Reexecute_True)
 520       st->print(" reexecute");
 521   } else {
 522     st->print(" runtime stub");
 523   }
 524   if (caller() != NULL)  caller()->dump_spec(st);
 525 }
 526 
 527 
 528 void JVMState::dump_on(outputStream* st) const {
 529   bool print_map = _map && !((uintptr_t)_map & 1) &&
 530                   ((caller() == NULL) || (caller()->map() != _map));
 531   if (print_map) {
 532     if (_map->len() > _map->req()) {  // _map->has_exceptions()
 533       Node* ex = _map->in(_map->req());  // _map->next_exception()
 534       // skip the first one; it's already being printed
 535       while (ex != NULL && ex->len() > ex->req()) {
 536         ex = ex->in(ex->req());  // ex->next_exception()
 537         ex->dump(1);
 538       }
 539     }
 540     _map->dump(Verbose ? 2 : 1);
 541   }
 542   if (caller() != NULL) {
 543     caller()->dump_on(st);
 544   }
 545   st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=",
 546              depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false");
 547   if (_method == NULL) {
 548     st->print_cr("(none)");
 549   } else {
 550     _method->print_name(st);
 551     st->cr();
 552     if (bci() >= 0 && bci() < _method->code_size()) {
 553       st->print("    bc: ");
 554       _method->print_codes_on(bci(), bci()+1, st);
 555     }
 556   }
 557 }
 558 
 559 // Extra way to dump a jvms from the debugger,
 560 // to avoid a bug with C++ member function calls.
 561 void dump_jvms(JVMState* jvms) {
 562   jvms->dump();
 563 }
 564 #endif
 565 
 566 //--------------------------clone_shallow--------------------------------------
 567 JVMState* JVMState::clone_shallow(Compile* C) const {
 568   JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
 569   n->set_bci(_bci);
 570   n->_reexecute = _reexecute;
 571   n->set_locoff(_locoff);
 572   n->set_stkoff(_stkoff);
 573   n->set_monoff(_monoff);
 574   n->set_scloff(_scloff);
 575   n->set_endoff(_endoff);
 576   n->set_sp(_sp);
 577   n->set_map(_map);
 578   return n;
 579 }
 580 
 581 //---------------------------clone_deep----------------------------------------
 582 JVMState* JVMState::clone_deep(Compile* C) const {
 583   JVMState* n = clone_shallow(C);
 584   for (JVMState* p = n; p->_caller != NULL; p = p->_caller) {
 585     p->_caller = p->_caller->clone_shallow(C);
 586   }
 587   assert(n->depth() == depth(), "sanity");
 588   assert(n->debug_depth() == debug_depth(), "sanity");
 589   return n;
 590 }
 591 
 592 /**
 593  * Reset map for all callers
 594  */
 595 void JVMState::set_map_deep(SafePointNode* map) {
 596   for (JVMState* p = this; p->_caller != NULL; p = p->_caller) {
 597     p->set_map(map);
 598   }
 599 }
 600 
 601 // Adapt offsets in in-array after adding or removing an edge.
 602 // Prerequisite is that the JVMState is used by only one node.
 603 void JVMState::adapt_position(int delta) {
 604   for (JVMState* jvms = this; jvms != NULL; jvms = jvms->caller()) {
 605     jvms->set_locoff(jvms->locoff() + delta);
 606     jvms->set_stkoff(jvms->stkoff() + delta);
 607     jvms->set_monoff(jvms->monoff() + delta);
 608     jvms->set_scloff(jvms->scloff() + delta);
 609     jvms->set_endoff(jvms->endoff() + delta);
 610   }
 611 }
 612 
 613 // Mirror the stack size calculation in the deopt code
 614 // How much stack space would we need at this point in the program in
 615 // case of deoptimization?
 616 int JVMState::interpreter_frame_size() const {
 617   const JVMState* jvms = this;
 618   int size = 0;
 619   int callee_parameters = 0;
 620   int callee_locals = 0;
 621   int extra_args = method()->max_stack() - stk_size();
 622 
 623   while (jvms != NULL) {
 624     int locks = jvms->nof_monitors();
 625     int temps = jvms->stk_size();
 626     bool is_top_frame = (jvms == this);
 627     ciMethod* method = jvms->method();
 628 
 629     int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(),
 630                                                                  temps + callee_parameters,
 631                                                                  extra_args,
 632                                                                  locks,
 633                                                                  callee_parameters,
 634                                                                  callee_locals,
 635                                                                  is_top_frame);
 636     size += frame_size;
 637 
 638     callee_parameters = method->size_of_parameters();
 639     callee_locals = method->max_locals();
 640     extra_args = 0;
 641     jvms = jvms->caller();
 642   }
 643   return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord;
 644 }
 645 
 646 //=============================================================================
 647 uint CallNode::cmp( const Node &n ) const
 648 { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
 649 #ifndef PRODUCT
 650 void CallNode::dump_req(outputStream *st) const {
 651   // Dump the required inputs, enclosed in '(' and ')'
 652   uint i;                       // Exit value of loop
 653   for (i = 0; i < req(); i++) {    // For all required inputs
 654     if (i == TypeFunc::Parms) st->print("(");
 655     if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
 656     else st->print("_ ");
 657   }
 658   st->print(")");
 659 }
 660 
 661 void CallNode::dump_spec(outputStream *st) const {
 662   st->print(" ");
 663   if (tf() != NULL)  tf()->dump_on(st);
 664   if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
 665   if (jvms() != NULL)  jvms()->dump_spec(st);
 666 }
 667 #endif
 668 
 669 const Type *CallNode::bottom_type() const { return tf()->range(); }
 670 const Type *CallNode::Value(PhaseTransform *phase) const {
 671   if (phase->type(in(0)) == Type::TOP)  return Type::TOP;
 672   return tf()->range();
 673 }
 674 
 675 //------------------------------calling_convention-----------------------------
 676 void CallNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
 677   // Use the standard compiler calling convention
 678   Matcher::calling_convention( sig_bt, parm_regs, argcnt, true );
 679 }
 680 
 681 
 682 //------------------------------match------------------------------------------
 683 // Construct projections for control, I/O, memory-fields, ..., and
 684 // return result(s) along with their RegMask info
 685 Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
 686   switch (proj->_con) {
 687   case TypeFunc::Control:
 688   case TypeFunc::I_O:
 689   case TypeFunc::Memory:
 690     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
 691 
 692   case TypeFunc::Parms+1:       // For LONG & DOUBLE returns
 693     assert(tf()->range()->field_at(TypeFunc::Parms+1) == Type::HALF, "");
 694     // 2nd half of doubles and longs
 695     return new MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad);
 696 
 697   case TypeFunc::Parms: {       // Normal returns
 698     uint ideal_reg = tf()->range()->field_at(TypeFunc::Parms)->ideal_reg();
 699     OptoRegPair regs = is_CallRuntime()
 700       ? match->c_return_value(ideal_reg,true)  // Calls into C runtime
 701       : match->  return_value(ideal_reg,true); // Calls into compiled Java code
 702     RegMask rm = RegMask(regs.first());
 703     if( OptoReg::is_valid(regs.second()) )
 704       rm.Insert( regs.second() );
 705     return new MachProjNode(this,proj->_con,rm,ideal_reg);
 706   }
 707 
 708   case TypeFunc::ReturnAdr:
 709   case TypeFunc::FramePtr:
 710   default:
 711     ShouldNotReachHere();
 712   }
 713   return NULL;
 714 }
 715 
 716 // Do we Match on this edge index or not?  Match no edges
 717 uint CallNode::match_edge(uint idx) const {
 718   return 0;
 719 }
 720 
 721 //
 722 // Determine whether the call could modify the field of the specified
 723 // instance at the specified offset.
 724 //
 725 bool CallNode::may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) {
 726   assert((t_oop != NULL), "sanity");
 727   if (t_oop->is_known_instance()) {
 728     // The instance_id is set only for scalar-replaceable allocations which
 729     // are not passed as arguments according to Escape Analysis.
 730     return false;
 731   }
 732   if (t_oop->is_ptr_to_boxed_value()) {
 733     ciKlass* boxing_klass = t_oop->klass();
 734     if (is_CallStaticJava() && as_CallStaticJava()->is_boxing_method()) {
 735       // Skip unrelated boxing methods.
 736       Node* proj = proj_out(TypeFunc::Parms);
 737       if ((proj == NULL) || (phase->type(proj)->is_instptr()->klass() != boxing_klass)) {
 738         return false;
 739       }
 740     }
 741     if (is_CallJava() && as_CallJava()->method() != NULL) {
 742       ciMethod* meth = as_CallJava()->method();
 743       if (meth->is_accessor()) {
 744         return false;
 745       }
 746       // May modify (by reflection) if an boxing object is passed
 747       // as argument or returned.
 748       if (returns_pointer() && (proj_out(TypeFunc::Parms) != NULL)) {
 749         Node* proj = proj_out(TypeFunc::Parms);
 750         const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr();
 751         if ((inst_t != NULL) && (!inst_t->klass_is_exact() ||
 752                                  (inst_t->klass() == boxing_klass))) {
 753           return true;
 754         }
 755       }
 756       const TypeTuple* d = tf()->domain();
 757       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 758         const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr();
 759         if ((inst_t != NULL) && (!inst_t->klass_is_exact() ||
 760                                  (inst_t->klass() == boxing_klass))) {
 761           return true;
 762         }
 763       }
 764       return false;
 765     }
 766   }
 767   return true;
 768 }
 769 
 770 // Does this call have a direct reference to n other than debug information?
 771 bool CallNode::has_non_debug_use(Node *n) {
 772   const TypeTuple * d = tf()->domain();
 773   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 774     Node *arg = in(i);
 775     if (arg == n) {
 776       return true;
 777     }
 778   }
 779   return false;
 780 }
 781 
 782 // Returns the unique CheckCastPP of a call
 783 // or 'this' if there are several CheckCastPP or unexpected uses
 784 // or returns NULL if there is no one.
 785 Node *CallNode::result_cast() {
 786   Node *cast = NULL;
 787 
 788   Node *p = proj_out(TypeFunc::Parms);
 789   if (p == NULL)
 790     return NULL;
 791 
 792   for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
 793     Node *use = p->fast_out(i);
 794     if (use->is_CheckCastPP()) {
 795       if (cast != NULL) {
 796         return this;  // more than 1 CheckCastPP
 797       }
 798       cast = use;
 799     } else if (!use->is_Initialize() &&
 800                !use->is_AddP()) {
 801       // Expected uses are restricted to a CheckCastPP, an Initialize
 802       // node, and AddP nodes. If we encounter any other use (a Phi
 803       // node can be seen in rare cases) return this to prevent
 804       // incorrect optimizations.
 805       return this;
 806     }
 807   }
 808   return cast;
 809 }
 810 
 811 
 812 void CallNode::extract_projections(CallProjections* projs, bool separate_io_proj) {
 813   projs->fallthrough_proj      = NULL;
 814   projs->fallthrough_catchproj = NULL;
 815   projs->fallthrough_ioproj    = NULL;
 816   projs->catchall_ioproj       = NULL;
 817   projs->catchall_catchproj    = NULL;
 818   projs->fallthrough_memproj   = NULL;
 819   projs->catchall_memproj      = NULL;
 820   projs->resproj               = NULL;
 821   projs->exobj                 = NULL;
 822 
 823   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 824     ProjNode *pn = fast_out(i)->as_Proj();
 825     if (pn->outcnt() == 0) continue;
 826     switch (pn->_con) {
 827     case TypeFunc::Control:
 828       {
 829         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
 830         projs->fallthrough_proj = pn;
 831         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
 832         const Node *cn = pn->fast_out(j);
 833         if (cn->is_Catch()) {
 834           ProjNode *cpn = NULL;
 835           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
 836             cpn = cn->fast_out(k)->as_Proj();
 837             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
 838             if (cpn->_con == CatchProjNode::fall_through_index)
 839               projs->fallthrough_catchproj = cpn;
 840             else {
 841               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
 842               projs->catchall_catchproj = cpn;
 843             }
 844           }
 845         }
 846         break;
 847       }
 848     case TypeFunc::I_O:
 849       if (pn->_is_io_use)
 850         projs->catchall_ioproj = pn;
 851       else
 852         projs->fallthrough_ioproj = pn;
 853       for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
 854         Node* e = pn->out(j);
 855         if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
 856           assert(projs->exobj == NULL, "only one");
 857           projs->exobj = e;
 858         }
 859       }
 860       break;
 861     case TypeFunc::Memory:
 862       if (pn->_is_io_use)
 863         projs->catchall_memproj = pn;
 864       else
 865         projs->fallthrough_memproj = pn;
 866       break;
 867     case TypeFunc::Parms:
 868       projs->resproj = pn;
 869       break;
 870     default:
 871       assert(false, "unexpected projection from allocation node.");
 872     }
 873   }
 874 
 875   // The resproj may not exist because the result couuld be ignored
 876   // and the exception object may not exist if an exception handler
 877   // swallows the exception but all the other must exist and be found.
 878   assert(projs->fallthrough_proj      != NULL, "must be found");
 879   assert(Compile::current()->inlining_incrementally() || projs->fallthrough_catchproj != NULL, "must be found");
 880   assert(Compile::current()->inlining_incrementally() || projs->fallthrough_memproj   != NULL, "must be found");
 881   assert(Compile::current()->inlining_incrementally() || projs->fallthrough_ioproj    != NULL, "must be found");
 882   assert(Compile::current()->inlining_incrementally() || projs->catchall_catchproj    != NULL, "must be found");
 883   if (separate_io_proj) {
 884     assert(Compile::current()->inlining_incrementally() || projs->catchall_memproj    != NULL, "must be found");
 885     assert(Compile::current()->inlining_incrementally() || projs->catchall_ioproj     != NULL, "must be found");
 886   }
 887 }
 888 
 889 Node *CallNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 890   CallGenerator* cg = generator();
 891   if (can_reshape && cg != NULL && cg->is_mh_late_inline() && !cg->already_attempted()) {
 892     // Check whether this MH handle call becomes a candidate for inlining
 893     ciMethod* callee = cg->method();
 894     vmIntrinsics::ID iid = callee->intrinsic_id();
 895     if (iid == vmIntrinsics::_invokeBasic) {
 896       if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
 897         phase->C->prepend_late_inline(cg);
 898         set_generator(NULL);
 899       }
 900     } else {
 901       assert(callee->has_member_arg(), "wrong type of call?");
 902       if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
 903         phase->C->prepend_late_inline(cg);
 904         set_generator(NULL);
 905       }
 906     }
 907   }
 908   return SafePointNode::Ideal(phase, can_reshape);
 909 }
 910 
 911 
 912 //=============================================================================
 913 uint CallJavaNode::size_of() const { return sizeof(*this); }
 914 uint CallJavaNode::cmp( const Node &n ) const {
 915   CallJavaNode &call = (CallJavaNode&)n;
 916   return CallNode::cmp(call) && _method == call._method;
 917 }
 918 #ifndef PRODUCT
 919 void CallJavaNode::dump_spec(outputStream *st) const {
 920   if( _method ) _method->print_short_name(st);
 921   CallNode::dump_spec(st);
 922 }
 923 #endif
 924 
 925 //=============================================================================
 926 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
 927 uint CallStaticJavaNode::cmp( const Node &n ) const {
 928   CallStaticJavaNode &call = (CallStaticJavaNode&)n;
 929   return CallJavaNode::cmp(call);
 930 }
 931 
 932 //----------------------------uncommon_trap_request----------------------------
 933 // If this is an uncommon trap, return the request code, else zero.
 934 int CallStaticJavaNode::uncommon_trap_request() const {
 935   if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
 936     return extract_uncommon_trap_request(this);
 937   }
 938   return 0;
 939 }
 940 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
 941 #ifndef PRODUCT
 942   if (!(call->req() > TypeFunc::Parms &&
 943         call->in(TypeFunc::Parms) != NULL &&
 944         call->in(TypeFunc::Parms)->is_Con() &&
 945         call->in(TypeFunc::Parms)->bottom_type()->isa_int())) {
 946     assert(in_dump() != 0, "OK if dumping");
 947     tty->print("[bad uncommon trap]");
 948     return 0;
 949   }
 950 #endif
 951   return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
 952 }
 953 
 954 #ifndef PRODUCT
 955 void CallStaticJavaNode::dump_spec(outputStream *st) const {
 956   st->print("# Static ");
 957   if (_name != NULL) {
 958     st->print("%s", _name);
 959     int trap_req = uncommon_trap_request();
 960     if (trap_req != 0) {
 961       char buf[100];
 962       st->print("(%s)",
 963                  Deoptimization::format_trap_request(buf, sizeof(buf),
 964                                                      trap_req));
 965     }
 966     st->print(" ");
 967   }
 968   CallJavaNode::dump_spec(st);
 969 }
 970 #endif
 971 
 972 //=============================================================================
 973 uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
 974 uint CallDynamicJavaNode::cmp( const Node &n ) const {
 975   CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
 976   return CallJavaNode::cmp(call);
 977 }
 978 #ifndef PRODUCT
 979 void CallDynamicJavaNode::dump_spec(outputStream *st) const {
 980   st->print("# Dynamic ");
 981   CallJavaNode::dump_spec(st);
 982 }
 983 #endif
 984 
 985 //=============================================================================
 986 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
 987 uint CallRuntimeNode::cmp( const Node &n ) const {
 988   CallRuntimeNode &call = (CallRuntimeNode&)n;
 989   return CallNode::cmp(call) && !strcmp(_name,call._name);
 990 }
 991 #ifndef PRODUCT
 992 void CallRuntimeNode::dump_spec(outputStream *st) const {
 993   st->print("# ");
 994   st->print("%s", _name);
 995   CallNode::dump_spec(st);
 996 }
 997 #endif
 998 
 999 //------------------------------calling_convention-----------------------------
1000 void CallRuntimeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
1001   Matcher::c_calling_convention( sig_bt, parm_regs, argcnt );
1002 }
1003 
1004 //=============================================================================
1005 //------------------------------calling_convention-----------------------------
1006 
1007 
1008 //=============================================================================
1009 #ifndef PRODUCT
1010 void CallLeafNode::dump_spec(outputStream *st) const {
1011   st->print("# ");
1012   st->print("%s", _name);
1013   CallNode::dump_spec(st);
1014 }
1015 #endif
1016 
1017 //=============================================================================
1018 
1019 void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
1020   assert(verify_jvms(jvms), "jvms must match");
1021   int loc = jvms->locoff() + idx;
1022   if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
1023     // If current local idx is top then local idx - 1 could
1024     // be a long/double that needs to be killed since top could
1025     // represent the 2nd half ofthe long/double.
1026     uint ideal = in(loc -1)->ideal_reg();
1027     if (ideal == Op_RegD || ideal == Op_RegL) {
1028       // set other (low index) half to top
1029       set_req(loc - 1, in(loc));
1030     }
1031   }
1032   set_req(loc, c);
1033 }
1034 
1035 uint SafePointNode::size_of() const { return sizeof(*this); }
1036 uint SafePointNode::cmp( const Node &n ) const {
1037   return (&n == this);          // Always fail except on self
1038 }
1039 
1040 //-------------------------set_next_exception----------------------------------
1041 void SafePointNode::set_next_exception(SafePointNode* n) {
1042   assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception");
1043   if (len() == req()) {
1044     if (n != NULL)  add_prec(n);
1045   } else {
1046     set_prec(req(), n);
1047   }
1048 }
1049 
1050 
1051 //----------------------------next_exception-----------------------------------
1052 SafePointNode* SafePointNode::next_exception() const {
1053   if (len() == req()) {
1054     return NULL;
1055   } else {
1056     Node* n = in(req());
1057     assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
1058     return (SafePointNode*) n;
1059   }
1060 }
1061 
1062 
1063 //------------------------------Ideal------------------------------------------
1064 // Skip over any collapsed Regions
1065 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1066   return remove_dead_region(phase, can_reshape) ? this : NULL;
1067 }
1068 
1069 //------------------------------Identity---------------------------------------
1070 // Remove obviously duplicate safepoints
1071 Node *SafePointNode::Identity( PhaseTransform *phase ) {
1072 
1073   // If you have back to back safepoints, remove one
1074   if( in(TypeFunc::Control)->is_SafePoint() )
1075     return in(TypeFunc::Control);
1076 
1077   if( in(0)->is_Proj() ) {
1078     Node *n0 = in(0)->in(0);
1079     // Check if he is a call projection (except Leaf Call)
1080     if( n0->is_Catch() ) {
1081       n0 = n0->in(0)->in(0);
1082       assert( n0->is_Call(), "expect a call here" );
1083     }
1084     if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
1085       // Useless Safepoint, so remove it
1086       return in(TypeFunc::Control);
1087     }
1088   }
1089 
1090   return this;
1091 }
1092 
1093 //------------------------------Value------------------------------------------
1094 const Type *SafePointNode::Value( PhaseTransform *phase ) const {
1095   if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
1096   if( phase->eqv( in(0), this ) ) return Type::TOP; // Dead infinite loop
1097   return Type::CONTROL;
1098 }
1099 
1100 #ifndef PRODUCT
1101 void SafePointNode::dump_spec(outputStream *st) const {
1102   st->print(" SafePoint ");
1103   _replaced_nodes.dump(st);
1104 }
1105 #endif
1106 
1107 const RegMask &SafePointNode::in_RegMask(uint idx) const {
1108   if( idx < TypeFunc::Parms ) return RegMask::Empty;
1109   // Values outside the domain represent debug info
1110   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1111 }
1112 const RegMask &SafePointNode::out_RegMask() const {
1113   return RegMask::Empty;
1114 }
1115 
1116 
1117 void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
1118   assert((int)grow_by > 0, "sanity");
1119   int monoff = jvms->monoff();
1120   int scloff = jvms->scloff();
1121   int endoff = jvms->endoff();
1122   assert(endoff == (int)req(), "no other states or debug info after me");
1123   Node* top = Compile::current()->top();
1124   for (uint i = 0; i < grow_by; i++) {
1125     ins_req(monoff, top);
1126   }
1127   jvms->set_monoff(monoff + grow_by);
1128   jvms->set_scloff(scloff + grow_by);
1129   jvms->set_endoff(endoff + grow_by);
1130 }
1131 
1132 void SafePointNode::push_monitor(const FastLockNode *lock) {
1133   // Add a LockNode, which points to both the original BoxLockNode (the
1134   // stack space for the monitor) and the Object being locked.
1135   const int MonitorEdges = 2;
1136   assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1137   assert(req() == jvms()->endoff(), "correct sizing");
1138   int nextmon = jvms()->scloff();
1139   if (GenerateSynchronizationCode) {
1140     ins_req(nextmon,   lock->box_node());
1141     ins_req(nextmon+1, lock->obj_node());
1142   } else {
1143     Node* top = Compile::current()->top();
1144     ins_req(nextmon, top);
1145     ins_req(nextmon, top);
1146   }
1147   jvms()->set_scloff(nextmon + MonitorEdges);
1148   jvms()->set_endoff(req());
1149 }
1150 
1151 void SafePointNode::pop_monitor() {
1152   // Delete last monitor from debug info
1153   debug_only(int num_before_pop = jvms()->nof_monitors());
1154   const int MonitorEdges = 2;
1155   assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1156   int scloff = jvms()->scloff();
1157   int endoff = jvms()->endoff();
1158   int new_scloff = scloff - MonitorEdges;
1159   int new_endoff = endoff - MonitorEdges;
1160   jvms()->set_scloff(new_scloff);
1161   jvms()->set_endoff(new_endoff);
1162   while (scloff > new_scloff)  del_req_ordered(--scloff);
1163   assert(jvms()->nof_monitors() == num_before_pop-1, "");
1164 }
1165 
1166 Node *SafePointNode::peek_monitor_box() const {
1167   int mon = jvms()->nof_monitors() - 1;
1168   assert(mon >= 0, "most have a monitor");
1169   return monitor_box(jvms(), mon);
1170 }
1171 
1172 Node *SafePointNode::peek_monitor_obj() const {
1173   int mon = jvms()->nof_monitors() - 1;
1174   assert(mon >= 0, "most have a monitor");
1175   return monitor_obj(jvms(), mon);
1176 }
1177 
1178 // Do we Match on this edge index or not?  Match no edges
1179 uint SafePointNode::match_edge(uint idx) const {
1180   if( !needs_polling_address_input() )
1181     return 0;
1182 
1183   return (TypeFunc::Parms == idx);
1184 }
1185 
1186 //==============  SafePointScalarObjectNode  ==============
1187 
1188 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp,
1189 #ifdef ASSERT
1190                                                      AllocateNode* alloc,
1191 #endif
1192                                                      uint first_index,
1193                                                      uint n_fields) :
1194   TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
1195 #ifdef ASSERT
1196   _alloc(alloc),
1197 #endif
1198   _first_index(first_index),
1199   _n_fields(n_fields)
1200 {
1201   init_class_id(Class_SafePointScalarObject);
1202 }
1203 
1204 // Do not allow value-numbering for SafePointScalarObject node.
1205 uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
1206 uint SafePointScalarObjectNode::cmp( const Node &n ) const {
1207   return (&n == this); // Always fail except on self
1208 }
1209 
1210 uint SafePointScalarObjectNode::ideal_reg() const {
1211   return 0; // No matching to machine instruction
1212 }
1213 
1214 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1215   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1216 }
1217 
1218 const RegMask &SafePointScalarObjectNode::out_RegMask() const {
1219   return RegMask::Empty;
1220 }
1221 
1222 uint SafePointScalarObjectNode::match_edge(uint idx) const {
1223   return 0;
1224 }
1225 
1226 SafePointScalarObjectNode*
1227 SafePointScalarObjectNode::clone(Dict* sosn_map) const {
1228   void* cached = (*sosn_map)[(void*)this];
1229   if (cached != NULL) {
1230     return (SafePointScalarObjectNode*)cached;
1231   }
1232   SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
1233   sosn_map->Insert((void*)this, (void*)res);
1234   return res;
1235 }
1236 
1237 
1238 #ifndef PRODUCT
1239 void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
1240   st->print(" # fields@[%d..%d]", first_index(),
1241              first_index() + n_fields() - 1);
1242 }
1243 
1244 #endif
1245 
1246 //=============================================================================
1247 uint AllocateNode::size_of() const { return sizeof(*this); }
1248 
1249 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1250                            Node *ctrl, Node *mem, Node *abio,
1251                            Node *size, Node *klass_node, Node *initial_test)
1252   : CallNode(atype, NULL, TypeRawPtr::BOTTOM)
1253 {
1254   init_class_id(Class_Allocate);
1255   init_flags(Flag_is_macro);
1256   _is_scalar_replaceable = false;
1257   _is_non_escaping = false;
1258   Node *topnode = C->top();
1259 
1260   init_req( TypeFunc::Control  , ctrl );
1261   init_req( TypeFunc::I_O      , abio );
1262   init_req( TypeFunc::Memory   , mem );
1263   init_req( TypeFunc::ReturnAdr, topnode );
1264   init_req( TypeFunc::FramePtr , topnode );
1265   init_req( AllocSize          , size);
1266   init_req( KlassNode          , klass_node);
1267   init_req( InitialTest        , initial_test);
1268   init_req( ALength            , topnode);
1269   C->add_macro_node(this);
1270 }
1271 
1272 //=============================================================================
1273 Node* AllocateArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1274   if (remove_dead_region(phase, can_reshape))  return this;
1275   // Don't bother trying to transform a dead node
1276   if (in(0) && in(0)->is_top())  return NULL;
1277 
1278   const Type* type = phase->type(Ideal_length());
1279   if (type->isa_int() && type->is_int()->_hi < 0) {
1280     if (can_reshape) {
1281       PhaseIterGVN *igvn = phase->is_IterGVN();
1282       // Unreachable fall through path (negative array length),
1283       // the allocation can only throw so disconnect it.
1284       Node* proj = proj_out(TypeFunc::Control);
1285       Node* catchproj = NULL;
1286       if (proj != NULL) {
1287         for (DUIterator_Fast imax, i = proj->fast_outs(imax); i < imax; i++) {
1288           Node *cn = proj->fast_out(i);
1289           if (cn->is_Catch()) {
1290             catchproj = cn->as_Multi()->proj_out(CatchProjNode::fall_through_index);
1291             break;
1292           }
1293         }
1294       }
1295       if (catchproj != NULL && catchproj->outcnt() > 0 &&
1296           (catchproj->outcnt() > 1 ||
1297            catchproj->unique_out()->Opcode() != Op_Halt)) {
1298         assert(catchproj->is_CatchProj(), "must be a CatchProjNode");
1299         Node* nproj = catchproj->clone();
1300         igvn->register_new_node_with_optimizer(nproj);
1301 
1302         Node *frame = new ParmNode( phase->C->start(), TypeFunc::FramePtr );
1303         frame = phase->transform(frame);
1304         // Halt & Catch Fire
1305         Node *halt = new HaltNode( nproj, frame );
1306         phase->C->root()->add_req(halt);
1307         phase->transform(halt);
1308 
1309         igvn->replace_node(catchproj, phase->C->top());
1310         return this;
1311       }
1312     } else {
1313       // Can't correct it during regular GVN so register for IGVN
1314       phase->C->record_for_igvn(this);
1315     }
1316   }
1317   return NULL;
1318 }
1319 
1320 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
1321 // CastII, if appropriate.  If we are not allowed to create new nodes, and
1322 // a CastII is appropriate, return NULL.
1323 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseTransform *phase, bool allow_new_nodes) {
1324   Node *length = in(AllocateNode::ALength);
1325   assert(length != NULL, "length is not null");
1326 
1327   const TypeInt* length_type = phase->find_int_type(length);
1328   const TypeAryPtr* ary_type = oop_type->isa_aryptr();
1329 
1330   if (ary_type != NULL && length_type != NULL) {
1331     const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
1332     if (narrow_length_type != length_type) {
1333       // Assert one of:
1334       //   - the narrow_length is 0
1335       //   - the narrow_length is not wider than length
1336       assert(narrow_length_type == TypeInt::ZERO ||
1337              length_type->is_con() && narrow_length_type->is_con() &&
1338                 (narrow_length_type->_hi <= length_type->_lo) ||
1339              (narrow_length_type->_hi <= length_type->_hi &&
1340               narrow_length_type->_lo >= length_type->_lo),
1341              "narrow type must be narrower than length type");
1342 
1343       // Return NULL if new nodes are not allowed
1344       if (!allow_new_nodes) return NULL;
1345       // Create a cast which is control dependent on the initialization to
1346       // propagate the fact that the array length must be positive.
1347       length = new CastIINode(length, narrow_length_type);
1348       length->set_req(0, initialization()->proj_out(0));
1349     }
1350   }
1351 
1352   return length;
1353 }
1354 
1355 //=============================================================================
1356 uint LockNode::size_of() const { return sizeof(*this); }
1357 
1358 // Redundant lock elimination
1359 //
1360 // There are various patterns of locking where we release and
1361 // immediately reacquire a lock in a piece of code where no operations
1362 // occur in between that would be observable.  In those cases we can
1363 // skip releasing and reacquiring the lock without violating any
1364 // fairness requirements.  Doing this around a loop could cause a lock
1365 // to be held for a very long time so we concentrate on non-looping
1366 // control flow.  We also require that the operations are fully
1367 // redundant meaning that we don't introduce new lock operations on
1368 // some paths so to be able to eliminate it on others ala PRE.  This
1369 // would probably require some more extensive graph manipulation to
1370 // guarantee that the memory edges were all handled correctly.
1371 //
1372 // Assuming p is a simple predicate which can't trap in any way and s
1373 // is a synchronized method consider this code:
1374 //
1375 //   s();
1376 //   if (p)
1377 //     s();
1378 //   else
1379 //     s();
1380 //   s();
1381 //
1382 // 1. The unlocks of the first call to s can be eliminated if the
1383 // locks inside the then and else branches are eliminated.
1384 //
1385 // 2. The unlocks of the then and else branches can be eliminated if
1386 // the lock of the final call to s is eliminated.
1387 //
1388 // Either of these cases subsumes the simple case of sequential control flow
1389 //
1390 // Addtionally we can eliminate versions without the else case:
1391 //
1392 //   s();
1393 //   if (p)
1394 //     s();
1395 //   s();
1396 //
1397 // 3. In this case we eliminate the unlock of the first s, the lock
1398 // and unlock in the then case and the lock in the final s.
1399 //
1400 // Note also that in all these cases the then/else pieces don't have
1401 // to be trivial as long as they begin and end with synchronization
1402 // operations.
1403 //
1404 //   s();
1405 //   if (p)
1406 //     s();
1407 //     f();
1408 //     s();
1409 //   s();
1410 //
1411 // The code will work properly for this case, leaving in the unlock
1412 // before the call to f and the relock after it.
1413 //
1414 // A potentially interesting case which isn't handled here is when the
1415 // locking is partially redundant.
1416 //
1417 //   s();
1418 //   if (p)
1419 //     s();
1420 //
1421 // This could be eliminated putting unlocking on the else case and
1422 // eliminating the first unlock and the lock in the then side.
1423 // Alternatively the unlock could be moved out of the then side so it
1424 // was after the merge and the first unlock and second lock
1425 // eliminated.  This might require less manipulation of the memory
1426 // state to get correct.
1427 //
1428 // Additionally we might allow work between a unlock and lock before
1429 // giving up eliminating the locks.  The current code disallows any
1430 // conditional control flow between these operations.  A formulation
1431 // similar to partial redundancy elimination computing the
1432 // availability of unlocking and the anticipatability of locking at a
1433 // program point would allow detection of fully redundant locking with
1434 // some amount of work in between.  I'm not sure how often I really
1435 // think that would occur though.  Most of the cases I've seen
1436 // indicate it's likely non-trivial work would occur in between.
1437 // There may be other more complicated constructs where we could
1438 // eliminate locking but I haven't seen any others appear as hot or
1439 // interesting.
1440 //
1441 // Locking and unlocking have a canonical form in ideal that looks
1442 // roughly like this:
1443 //
1444 //              <obj>
1445 //                | \\------+
1446 //                |  \       \
1447 //                | BoxLock   \
1448 //                |  |   |     \
1449 //                |  |    \     \
1450 //                |  |   FastLock
1451 //                |  |   /
1452 //                |  |  /
1453 //                |  |  |
1454 //
1455 //               Lock
1456 //                |
1457 //            Proj #0
1458 //                |
1459 //            MembarAcquire
1460 //                |
1461 //            Proj #0
1462 //
1463 //            MembarRelease
1464 //                |
1465 //            Proj #0
1466 //                |
1467 //              Unlock
1468 //                |
1469 //            Proj #0
1470 //
1471 //
1472 // This code proceeds by processing Lock nodes during PhaseIterGVN
1473 // and searching back through its control for the proper code
1474 // patterns.  Once it finds a set of lock and unlock operations to
1475 // eliminate they are marked as eliminatable which causes the
1476 // expansion of the Lock and Unlock macro nodes to make the operation a NOP
1477 //
1478 //=============================================================================
1479 
1480 //
1481 // Utility function to skip over uninteresting control nodes.  Nodes skipped are:
1482 //   - copy regions.  (These may not have been optimized away yet.)
1483 //   - eliminated locking nodes
1484 //
1485 static Node *next_control(Node *ctrl) {
1486   if (ctrl == NULL)
1487     return NULL;
1488   while (1) {
1489     if (ctrl->is_Region()) {
1490       RegionNode *r = ctrl->as_Region();
1491       Node *n = r->is_copy();
1492       if (n == NULL)
1493         break;  // hit a region, return it
1494       else
1495         ctrl = n;
1496     } else if (ctrl->is_Proj()) {
1497       Node *in0 = ctrl->in(0);
1498       if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
1499         ctrl = in0->in(0);
1500       } else {
1501         break;
1502       }
1503     } else {
1504       break; // found an interesting control
1505     }
1506   }
1507   return ctrl;
1508 }
1509 //
1510 // Given a control, see if it's the control projection of an Unlock which
1511 // operating on the same object as lock.
1512 //
1513 bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
1514                                             GrowableArray<AbstractLockNode*> &lock_ops) {
1515   ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL;
1516   if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) {
1517     Node *n = ctrl_proj->in(0);
1518     if (n != NULL && n->is_Unlock()) {
1519       UnlockNode *unlock = n->as_Unlock();
1520       if (lock->obj_node()->eqv_uncast(unlock->obj_node()) &&
1521           BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) &&
1522           !unlock->is_eliminated()) {
1523         lock_ops.append(unlock);
1524         return true;
1525       }
1526     }
1527   }
1528   return false;
1529 }
1530 
1531 //
1532 // Find the lock matching an unlock.  Returns null if a safepoint
1533 // or complicated control is encountered first.
1534 LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
1535   LockNode *lock_result = NULL;
1536   // find the matching lock, or an intervening safepoint
1537   Node *ctrl = next_control(unlock->in(0));
1538   while (1) {
1539     assert(ctrl != NULL, "invalid control graph");
1540     assert(!ctrl->is_Start(), "missing lock for unlock");
1541     if (ctrl->is_top()) break;  // dead control path
1542     if (ctrl->is_Proj()) ctrl = ctrl->in(0);
1543     if (ctrl->is_SafePoint()) {
1544         break;  // found a safepoint (may be the lock we are searching for)
1545     } else if (ctrl->is_Region()) {
1546       // Check for a simple diamond pattern.  Punt on anything more complicated
1547       if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) {
1548         Node *in1 = next_control(ctrl->in(1));
1549         Node *in2 = next_control(ctrl->in(2));
1550         if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
1551              (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
1552           ctrl = next_control(in1->in(0)->in(0));
1553         } else {
1554           break;
1555         }
1556       } else {
1557         break;
1558       }
1559     } else {
1560       ctrl = next_control(ctrl->in(0));  // keep searching
1561     }
1562   }
1563   if (ctrl->is_Lock()) {
1564     LockNode *lock = ctrl->as_Lock();
1565     if (lock->obj_node()->eqv_uncast(unlock->obj_node()) &&
1566         BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) {
1567       lock_result = lock;
1568     }
1569   }
1570   return lock_result;
1571 }
1572 
1573 // This code corresponds to case 3 above.
1574 
1575 bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
1576                                                        GrowableArray<AbstractLockNode*> &lock_ops) {
1577   Node* if_node = node->in(0);
1578   bool  if_true = node->is_IfTrue();
1579 
1580   if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
1581     Node *lock_ctrl = next_control(if_node->in(0));
1582     if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
1583       Node* lock1_node = NULL;
1584       ProjNode* proj = if_node->as_If()->proj_out(!if_true);
1585       if (if_true) {
1586         if (proj->is_IfFalse() && proj->outcnt() == 1) {
1587           lock1_node = proj->unique_out();
1588         }
1589       } else {
1590         if (proj->is_IfTrue() && proj->outcnt() == 1) {
1591           lock1_node = proj->unique_out();
1592         }
1593       }
1594       if (lock1_node != NULL && lock1_node->is_Lock()) {
1595         LockNode *lock1 = lock1_node->as_Lock();
1596         if (lock->obj_node()->eqv_uncast(lock1->obj_node()) &&
1597             BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) &&
1598             !lock1->is_eliminated()) {
1599           lock_ops.append(lock1);
1600           return true;
1601         }
1602       }
1603     }
1604   }
1605 
1606   lock_ops.trunc_to(0);
1607   return false;
1608 }
1609 
1610 bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
1611                                GrowableArray<AbstractLockNode*> &lock_ops) {
1612   // check each control merging at this point for a matching unlock.
1613   // in(0) should be self edge so skip it.
1614   for (int i = 1; i < (int)region->req(); i++) {
1615     Node *in_node = next_control(region->in(i));
1616     if (in_node != NULL) {
1617       if (find_matching_unlock(in_node, lock, lock_ops)) {
1618         // found a match so keep on checking.
1619         continue;
1620       } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
1621         continue;
1622       }
1623 
1624       // If we fall through to here then it was some kind of node we
1625       // don't understand or there wasn't a matching unlock, so give
1626       // up trying to merge locks.
1627       lock_ops.trunc_to(0);
1628       return false;
1629     }
1630   }
1631   return true;
1632 
1633 }
1634 
1635 #ifndef PRODUCT
1636 //
1637 // Create a counter which counts the number of times this lock is acquired
1638 //
1639 void AbstractLockNode::create_lock_counter(JVMState* state) {
1640   _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
1641 }
1642 
1643 void AbstractLockNode::set_eliminated_lock_counter() {
1644   if (_counter) {
1645     // Update the counter to indicate that this lock was eliminated.
1646     // The counter update code will stay around even though the
1647     // optimizer will eliminate the lock operation itself.
1648     _counter->set_tag(NamedCounter::EliminatedLockCounter);
1649   }
1650 }
1651 #endif
1652 
1653 //=============================================================================
1654 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1655 
1656   // perform any generic optimizations first (returns 'this' or NULL)
1657   Node *result = SafePointNode::Ideal(phase, can_reshape);
1658   if (result != NULL)  return result;
1659   // Don't bother trying to transform a dead node
1660   if (in(0) && in(0)->is_top())  return NULL;
1661 
1662   // Now see if we can optimize away this lock.  We don't actually
1663   // remove the locking here, we simply set the _eliminate flag which
1664   // prevents macro expansion from expanding the lock.  Since we don't
1665   // modify the graph, the value returned from this function is the
1666   // one computed above.
1667   if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
1668     //
1669     // If we are locking an unescaped object, the lock/unlock is unnecessary
1670     //
1671     ConnectionGraph *cgr = phase->C->congraph();
1672     if (cgr != NULL && cgr->not_global_escape(obj_node())) {
1673       assert(!is_eliminated() || is_coarsened(), "sanity");
1674       // The lock could be marked eliminated by lock coarsening
1675       // code during first IGVN before EA. Replace coarsened flag
1676       // to eliminate all associated locks/unlocks.
1677 #ifdef ASSERT
1678       this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1");
1679 #endif
1680       this->set_non_esc_obj();
1681       return result;
1682     }
1683 
1684     //
1685     // Try lock coarsening
1686     //
1687     PhaseIterGVN* iter = phase->is_IterGVN();
1688     if (iter != NULL && !is_eliminated()) {
1689 
1690       GrowableArray<AbstractLockNode*>   lock_ops;
1691 
1692       Node *ctrl = next_control(in(0));
1693 
1694       // now search back for a matching Unlock
1695       if (find_matching_unlock(ctrl, this, lock_ops)) {
1696         // found an unlock directly preceding this lock.  This is the
1697         // case of single unlock directly control dependent on a
1698         // single lock which is the trivial version of case 1 or 2.
1699       } else if (ctrl->is_Region() ) {
1700         if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
1701         // found lock preceded by multiple unlocks along all paths
1702         // joining at this point which is case 3 in description above.
1703         }
1704       } else {
1705         // see if this lock comes from either half of an if and the
1706         // predecessors merges unlocks and the other half of the if
1707         // performs a lock.
1708         if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
1709           // found unlock splitting to an if with locks on both branches.
1710         }
1711       }
1712 
1713       if (lock_ops.length() > 0) {
1714         // add ourselves to the list of locks to be eliminated.
1715         lock_ops.append(this);
1716 
1717   #ifndef PRODUCT
1718         if (PrintEliminateLocks) {
1719           int locks = 0;
1720           int unlocks = 0;
1721           for (int i = 0; i < lock_ops.length(); i++) {
1722             AbstractLockNode* lock = lock_ops.at(i);
1723             if (lock->Opcode() == Op_Lock)
1724               locks++;
1725             else
1726               unlocks++;
1727             if (Verbose) {
1728               lock->dump(1);
1729             }
1730           }
1731           tty->print_cr("***Eliminated %d unlocks and %d locks", unlocks, locks);
1732         }
1733   #endif
1734 
1735         // for each of the identified locks, mark them
1736         // as eliminatable
1737         for (int i = 0; i < lock_ops.length(); i++) {
1738           AbstractLockNode* lock = lock_ops.at(i);
1739 
1740           // Mark it eliminated by coarsening and update any counters
1741 #ifdef ASSERT
1742           lock->log_lock_optimization(phase->C, "eliminate_lock_set_coarsened");
1743 #endif
1744           lock->set_coarsened();
1745         }
1746       } else if (ctrl->is_Region() &&
1747                  iter->_worklist.member(ctrl)) {
1748         // We weren't able to find any opportunities but the region this
1749         // lock is control dependent on hasn't been processed yet so put
1750         // this lock back on the worklist so we can check again once any
1751         // region simplification has occurred.
1752         iter->_worklist.push(this);
1753       }
1754     }
1755   }
1756 
1757   return result;
1758 }
1759 
1760 //=============================================================================
1761 bool LockNode::is_nested_lock_region() {
1762   return is_nested_lock_region(NULL);
1763 }
1764 
1765 // p is used for access to compilation log; no logging if NULL
1766 bool LockNode::is_nested_lock_region(Compile * c) {
1767   BoxLockNode* box = box_node()->as_BoxLock();
1768   int stk_slot = box->stack_slot();
1769   if (stk_slot <= 0) {
1770 #ifdef ASSERT
1771     this->log_lock_optimization(c, "eliminate_lock_INLR_1");
1772 #endif
1773     return false; // External lock or it is not Box (Phi node).
1774   }
1775 
1776   // Ignore complex cases: merged locks or multiple locks.
1777   Node* obj = obj_node();
1778   LockNode* unique_lock = NULL;
1779   if (!box->is_simple_lock_region(&unique_lock, obj)) {
1780 #ifdef ASSERT
1781     this->log_lock_optimization(c, "eliminate_lock_INLR_2a");
1782 #endif
1783     return false;
1784   }
1785   if (unique_lock != this) {
1786 #ifdef ASSERT
1787     this->log_lock_optimization(c, "eliminate_lock_INLR_2b");
1788 #endif
1789     return false;
1790   }
1791 
1792   // Look for external lock for the same object.
1793   SafePointNode* sfn = this->as_SafePoint();
1794   JVMState* youngest_jvms = sfn->jvms();
1795   int max_depth = youngest_jvms->depth();
1796   for (int depth = 1; depth <= max_depth; depth++) {
1797     JVMState* jvms = youngest_jvms->of_depth(depth);
1798     int num_mon  = jvms->nof_monitors();
1799     // Loop over monitors
1800     for (int idx = 0; idx < num_mon; idx++) {
1801       Node* obj_node = sfn->monitor_obj(jvms, idx);
1802       BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock();
1803       if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) {
1804         return true;
1805       }
1806     }
1807   }
1808 #ifdef ASSERT
1809   this->log_lock_optimization(c, "eliminate_lock_INLR_3");
1810 #endif
1811   return false;
1812 }
1813 
1814 //=============================================================================
1815 uint UnlockNode::size_of() const { return sizeof(*this); }
1816 
1817 //=============================================================================
1818 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1819 
1820   // perform any generic optimizations first (returns 'this' or NULL)
1821   Node *result = SafePointNode::Ideal(phase, can_reshape);
1822   if (result != NULL)  return result;
1823   // Don't bother trying to transform a dead node
1824   if (in(0) && in(0)->is_top())  return NULL;
1825 
1826   // Now see if we can optimize away this unlock.  We don't actually
1827   // remove the unlocking here, we simply set the _eliminate flag which
1828   // prevents macro expansion from expanding the unlock.  Since we don't
1829   // modify the graph, the value returned from this function is the
1830   // one computed above.
1831   // Escape state is defined after Parse phase.
1832   if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
1833     //
1834     // If we are unlocking an unescaped object, the lock/unlock is unnecessary.
1835     //
1836     ConnectionGraph *cgr = phase->C->congraph();
1837     if (cgr != NULL && cgr->not_global_escape(obj_node())) {
1838       assert(!is_eliminated() || is_coarsened(), "sanity");
1839       // The lock could be marked eliminated by lock coarsening
1840       // code during first IGVN before EA. Replace coarsened flag
1841       // to eliminate all associated locks/unlocks.
1842 #ifdef ASSERT
1843       this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2");
1844 #endif
1845       this->set_non_esc_obj();
1846     }
1847   }
1848   return result;
1849 }
1850 
1851 const char * AbstractLockNode::kind_as_string() const {
1852   return is_coarsened()   ? "coarsened" :
1853          is_nested()      ? "nested" :
1854          is_non_esc_obj() ? "non_escaping" :
1855          "?";
1856 }
1857 
1858 void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag)  const {
1859   if (C == NULL) {
1860     return;
1861   }
1862   CompileLog* log = C->log();
1863   if (log != NULL) {
1864     log->begin_head("%s lock='%d' compile_id='%d' class_id='%s' kind='%s'",
1865           tag, is_Lock(), C->compile_id(),
1866           is_Unlock() ? "unlock" : is_Lock() ? "lock" : "?",
1867           kind_as_string());
1868     log->stamp();
1869     log->end_head();
1870     JVMState* p = is_Unlock() ? (as_Unlock()->dbg_jvms()) : jvms();
1871     while (p != NULL) {
1872       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1873       p = p->caller();
1874     }
1875     log->tail(tag);
1876   }
1877 }
1878 
1879 ArrayCopyNode::ArrayCopyNode(Compile* C, bool alloc_tightly_coupled)
1880   : CallNode(arraycopy_type(), NULL, TypeRawPtr::BOTTOM),
1881     _alloc_tightly_coupled(alloc_tightly_coupled),
1882     _kind(None),
1883     _arguments_validated(false) {
1884   init_class_id(Class_ArrayCopy);
1885   init_flags(Flag_is_macro);
1886   C->add_macro_node(this);
1887 }
1888 
1889 uint ArrayCopyNode::size_of() const { return sizeof(*this); }
1890 
1891 ArrayCopyNode* ArrayCopyNode::make(GraphKit* kit, bool may_throw,
1892                                    Node* src, Node* src_offset,
1893                                    Node* dest, Node* dest_offset,
1894                                    Node* length,
1895                                    bool alloc_tightly_coupled,
1896                                    Node* src_klass, Node* dest_klass,
1897                                    Node* src_length, Node* dest_length) {
1898 
1899   ArrayCopyNode* ac = new ArrayCopyNode(kit->C, alloc_tightly_coupled);
1900   Node* prev_mem = kit->set_predefined_input_for_runtime_call(ac);
1901 
1902   ac->init_req(ArrayCopyNode::Src, src);
1903   ac->init_req(ArrayCopyNode::SrcPos, src_offset);
1904   ac->init_req(ArrayCopyNode::Dest, dest);
1905   ac->init_req(ArrayCopyNode::DestPos, dest_offset);
1906   ac->init_req(ArrayCopyNode::Length, length);
1907   ac->init_req(ArrayCopyNode::SrcLen, src_length);
1908   ac->init_req(ArrayCopyNode::DestLen, dest_length);
1909   ac->init_req(ArrayCopyNode::SrcKlass, src_klass);
1910   ac->init_req(ArrayCopyNode::DestKlass, dest_klass);
1911 
1912   if (may_throw) {
1913     ac->set_req(TypeFunc::I_O , kit->i_o());
1914     kit->add_safepoint_edges(ac, false);
1915   }
1916 
1917   return ac;
1918 }
1919 
1920 void ArrayCopyNode::connect_outputs(GraphKit* kit) {
1921   kit->set_all_memory_call(this, true);
1922   kit->set_control(kit->gvn().transform(new ProjNode(this,TypeFunc::Control)));
1923   kit->set_i_o(kit->gvn().transform(new ProjNode(this, TypeFunc::I_O)));
1924   kit->make_slow_call_ex(this, kit->env()->Throwable_klass(), true);
1925   kit->set_all_memory_call(this);
1926 }
1927 
1928 #ifndef PRODUCT
1929 const char* ArrayCopyNode::_kind_names[] = {"arraycopy", "arraycopy, validated arguments", "clone", "oop array clone", "CopyOf", "CopyOfRange"};
1930 void ArrayCopyNode::dump_spec(outputStream *st) const {
1931   CallNode::dump_spec(st);
1932   st->print(" (%s%s)", _kind_names[_kind], _alloc_tightly_coupled ? ", tightly coupled allocation" : "");
1933 }
1934 #endif
1935 
1936 int ArrayCopyNode::get_count(PhaseGVN *phase) const {
1937   Node* src = in(ArrayCopyNode::Src);
1938   const Type* src_type = phase->type(src);
1939 
1940   assert(is_clonebasic(), "unexpected arraycopy type");
1941   if (src_type->isa_instptr()) {
1942     const TypeInstPtr* inst_src = src_type->is_instptr();
1943     ciInstanceKlass* ik = inst_src->klass()->as_instance_klass();
1944     // ciInstanceKlass::nof_nonstatic_fields() doesn't take injected
1945     // fields into account. They are rare anyway so easier to simply
1946     // skip instances with injected fields.
1947     if ((!inst_src->klass_is_exact() && (ik->is_interface() || ik->has_subklass())) || ik->has_injected_fields()) {
1948       return -1;
1949     }
1950     int nb_fields = ik->nof_nonstatic_fields();
1951     return nb_fields;
1952   }
1953   return -1;
1954 }
1955 
1956 Node* ArrayCopyNode::try_clone_instance(PhaseGVN *phase, bool can_reshape, int count) {
1957   assert(is_clonebasic(), "unexpected arraycopy type");
1958 
1959   Node* src = in(ArrayCopyNode::Src);
1960   Node* dest = in(ArrayCopyNode::Dest);
1961   Node* ctl = in(TypeFunc::Control);
1962   Node* in_mem = in(TypeFunc::Memory);
1963 
1964   const Type* src_type = phase->type(src);
1965   const Type* dest_type = phase->type(dest);
1966 
1967   assert(src->is_AddP(), "should be base + off");
1968   assert(dest->is_AddP(), "should be base + off");
1969   Node* base_src = src->in(AddPNode::Base);
1970   Node* base_dest = dest->in(AddPNode::Base);
1971 
1972   MergeMemNode* mem = MergeMemNode::make(in_mem);
1973 
1974   const TypeInstPtr* inst_src = src_type->is_instptr();
1975 
1976   if (!inst_src->klass_is_exact()) {
1977     ciInstanceKlass* ik = inst_src->klass()->as_instance_klass();
1978     assert(!ik->is_interface() && !ik->has_subklass(), "inconsistent klass hierarchy");
1979     phase->C->dependencies()->assert_leaf_type(ik);
1980   }
1981 
1982   ciInstanceKlass* ik = inst_src->klass()->as_instance_klass();
1983   assert(ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem, "too many fields");
1984 
1985   for (int i = 0; i < count; i++) {
1986     ciField* field = ik->nonstatic_field_at(i);
1987     int fieldidx = phase->C->alias_type(field)->index();
1988     const TypePtr* adr_type = phase->C->alias_type(field)->adr_type();
1989     Node* off = phase->MakeConX(field->offset());
1990     Node* next_src = phase->transform(new AddPNode(base_src,base_src,off));
1991     Node* next_dest = phase->transform(new AddPNode(base_dest,base_dest,off));
1992     BasicType bt = field->layout_type();
1993 
1994     const Type *type;
1995     if (bt == T_OBJECT) {
1996       if (!field->type()->is_loaded()) {
1997         type = TypeInstPtr::BOTTOM;
1998       } else {
1999         ciType* field_klass = field->type();
2000         type = TypeOopPtr::make_from_klass(field_klass->as_klass());
2001       }
2002     } else {
2003       type = Type::get_const_basic_type(bt);
2004     }
2005 
2006     Node* v = LoadNode::make(*phase, ctl, mem->memory_at(fieldidx), next_src, adr_type, type, bt, MemNode::unordered);
2007     v = phase->transform(v);
2008     Node* s = StoreNode::make(*phase, ctl, mem->memory_at(fieldidx), next_dest, adr_type, v, bt, MemNode::unordered);
2009     s = phase->transform(s);
2010     mem->set_memory_at(fieldidx, s);
2011   }
2012 
2013   if (!finish_transform(phase, can_reshape, ctl, mem)) {
2014     return NULL;
2015   }
2016 
2017   return mem;
2018 }
2019 
2020 bool ArrayCopyNode::finish_transform(PhaseGVN *phase, bool can_reshape,
2021                                      Node* ctl, Node *mem) {
2022   if (can_reshape) {
2023     PhaseIterGVN* igvn = phase->is_IterGVN();
2024     assert(is_clonebasic(), "unexpected arraycopy type");
2025     Node* out_mem = proj_out(TypeFunc::Memory);
2026 
2027     if (out_mem->outcnt() != 1 || !out_mem->raw_out(0)->is_MergeMem() ||
2028         out_mem->raw_out(0)->outcnt() != 1 || !out_mem->raw_out(0)->raw_out(0)->is_MemBar()) {
2029       assert(!GraphKit::use_ReduceInitialCardMarks(), "can only happen with card marking");
2030       return false;
2031     }
2032 
2033     igvn->replace_node(out_mem->raw_out(0), mem);
2034 
2035     Node* out_ctl = proj_out(TypeFunc::Control);
2036     igvn->replace_node(out_ctl, ctl);
2037   }
2038   return true;
2039 }
2040 
2041 
2042 Node *ArrayCopyNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2043   if (remove_dead_region(phase, can_reshape))  return this;
2044 
2045   if (StressArrayCopyMacroNode && !can_reshape) return NULL;
2046 
2047   // See if it's a small array copy and we can inline it as
2048   // loads/stores
2049   // Here we can only do:
2050   // - clone for which we don't need to do card marking
2051 
2052   if (!is_clonebasic()) {
2053     return NULL;
2054   }
2055 
2056   if (in(TypeFunc::Control)->is_top() || in(TypeFunc::Memory)->is_top()) {
2057     return NULL;
2058   }
2059 
2060   int count = get_count(phase);
2061 
2062   if (count < 0 || count > ArrayCopyLoadStoreMaxElem) {
2063     return NULL;
2064   }
2065 
2066   Node* mem = try_clone_instance(phase, can_reshape, count);
2067   return mem;
2068 }