1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/bufferingOopClosure.hpp"
  31 #include "gc/g1/concurrentG1Refine.hpp"
  32 #include "gc/g1/concurrentG1RefineThread.hpp"
  33 #include "gc/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1Allocator.inline.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ErgoVerbose.hpp"
  39 #include "gc/g1/g1EvacFailure.hpp"
  40 #include "gc/g1/g1GCPhaseTimes.hpp"
  41 #include "gc/g1/g1Log.hpp"
  42 #include "gc/g1/g1MarkSweep.hpp"
  43 #include "gc/g1/g1OopClosures.inline.hpp"
  44 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  45 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  46 #include "gc/g1/g1RemSet.inline.hpp"
  47 #include "gc/g1/g1RootClosures.hpp"
  48 #include "gc/g1/g1RootProcessor.hpp"
  49 #include "gc/g1/g1StringDedup.hpp"
  50 #include "gc/g1/g1YCTypes.hpp"
  51 #include "gc/g1/heapRegion.inline.hpp"
  52 #include "gc/g1/heapRegionRemSet.hpp"
  53 #include "gc/g1/heapRegionSet.inline.hpp"
  54 #include "gc/g1/suspendibleThreadSet.hpp"
  55 #include "gc/g1/vm_operations_g1.hpp"
  56 #include "gc/shared/gcHeapSummary.hpp"
  57 #include "gc/shared/gcId.hpp"
  58 #include "gc/shared/gcLocker.inline.hpp"
  59 #include "gc/shared/gcTimer.hpp"
  60 #include "gc/shared/gcTrace.hpp"
  61 #include "gc/shared/gcTraceTime.hpp"
  62 #include "gc/shared/generationSpec.hpp"
  63 #include "gc/shared/isGCActiveMark.hpp"
  64 #include "gc/shared/referenceProcessor.hpp"
  65 #include "gc/shared/taskqueue.inline.hpp"
  66 #include "memory/allocation.hpp"
  67 #include "memory/iterator.hpp"
  68 #include "oops/oop.inline.hpp"
  69 #include "runtime/atomic.inline.hpp"
  70 #include "runtime/init.hpp"
  71 #include "runtime/orderAccess.inline.hpp"
  72 #include "runtime/vmThread.hpp"
  73 #include "utilities/globalDefinitions.hpp"
  74 #include "utilities/stack.inline.hpp"
  75 
  76 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  77 
  78 // INVARIANTS/NOTES
  79 //
  80 // All allocation activity covered by the G1CollectedHeap interface is
  81 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  82 // and allocate_new_tlab, which are the "entry" points to the
  83 // allocation code from the rest of the JVM.  (Note that this does not
  84 // apply to TLAB allocation, which is not part of this interface: it
  85 // is done by clients of this interface.)
  86 
  87 // Local to this file.
  88 
  89 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  90   bool _concurrent;
  91 public:
  92   RefineCardTableEntryClosure() : _concurrent(true) { }
  93 
  94   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  95     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
  96     // This path is executed by the concurrent refine or mutator threads,
  97     // concurrently, and so we do not care if card_ptr contains references
  98     // that point into the collection set.
  99     assert(!oops_into_cset, "should be");
 100 
 101     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 102       // Caller will actually yield.
 103       return false;
 104     }
 105     // Otherwise, we finished successfully; return true.
 106     return true;
 107   }
 108 
 109   void set_concurrent(bool b) { _concurrent = b; }
 110 };
 111 
 112 
 113 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 114  private:
 115   size_t _num_processed;
 116 
 117  public:
 118   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 119 
 120   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 121     *card_ptr = CardTableModRefBS::dirty_card_val();
 122     _num_processed++;
 123     return true;
 124   }
 125 
 126   size_t num_processed() const { return _num_processed; }
 127 };
 128 
 129 
 130 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 131   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 132 }
 133 
 134 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 135   // The from card cache is not the memory that is actually committed. So we cannot
 136   // take advantage of the zero_filled parameter.
 137   reset_from_card_cache(start_idx, num_regions);
 138 }
 139 
 140 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 141 {
 142   // Claim the right to put the region on the dirty cards region list
 143   // by installing a self pointer.
 144   HeapRegion* next = hr->get_next_dirty_cards_region();
 145   if (next == NULL) {
 146     HeapRegion* res = (HeapRegion*)
 147       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 148                           NULL);
 149     if (res == NULL) {
 150       HeapRegion* head;
 151       do {
 152         // Put the region to the dirty cards region list.
 153         head = _dirty_cards_region_list;
 154         next = (HeapRegion*)
 155           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 156         if (next == head) {
 157           assert(hr->get_next_dirty_cards_region() == hr,
 158                  "hr->get_next_dirty_cards_region() != hr");
 159           if (next == NULL) {
 160             // The last region in the list points to itself.
 161             hr->set_next_dirty_cards_region(hr);
 162           } else {
 163             hr->set_next_dirty_cards_region(next);
 164           }
 165         }
 166       } while (next != head);
 167     }
 168   }
 169 }
 170 
 171 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 172 {
 173   HeapRegion* head;
 174   HeapRegion* hr;
 175   do {
 176     head = _dirty_cards_region_list;
 177     if (head == NULL) {
 178       return NULL;
 179     }
 180     HeapRegion* new_head = head->get_next_dirty_cards_region();
 181     if (head == new_head) {
 182       // The last region.
 183       new_head = NULL;
 184     }
 185     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 186                                           head);
 187   } while (hr != head);
 188   assert(hr != NULL, "invariant");
 189   hr->set_next_dirty_cards_region(NULL);
 190   return hr;
 191 }
 192 
 193 // Returns true if the reference points to an object that
 194 // can move in an incremental collection.
 195 bool G1CollectedHeap::is_scavengable(const void* p) {
 196   HeapRegion* hr = heap_region_containing(p);
 197   return !hr->is_pinned();
 198 }
 199 
 200 // Private methods.
 201 
 202 HeapRegion*
 203 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 204   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 205   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 206     if (!_secondary_free_list.is_empty()) {
 207       if (G1ConcRegionFreeingVerbose) {
 208         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 209                                "secondary_free_list has %u entries",
 210                                _secondary_free_list.length());
 211       }
 212       // It looks as if there are free regions available on the
 213       // secondary_free_list. Let's move them to the free_list and try
 214       // again to allocate from it.
 215       append_secondary_free_list();
 216 
 217       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 218              "empty we should have moved at least one entry to the free_list");
 219       HeapRegion* res = _hrm.allocate_free_region(is_old);
 220       if (G1ConcRegionFreeingVerbose) {
 221         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 222                                "allocated " HR_FORMAT " from secondary_free_list",
 223                                HR_FORMAT_PARAMS(res));
 224       }
 225       return res;
 226     }
 227 
 228     // Wait here until we get notified either when (a) there are no
 229     // more free regions coming or (b) some regions have been moved on
 230     // the secondary_free_list.
 231     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 232   }
 233 
 234   if (G1ConcRegionFreeingVerbose) {
 235     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 236                            "could not allocate from secondary_free_list");
 237   }
 238   return NULL;
 239 }
 240 
 241 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 242   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 243          "the only time we use this to allocate a humongous region is "
 244          "when we are allocating a single humongous region");
 245 
 246   HeapRegion* res;
 247   if (G1StressConcRegionFreeing) {
 248     if (!_secondary_free_list.is_empty()) {
 249       if (G1ConcRegionFreeingVerbose) {
 250         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 251                                "forced to look at the secondary_free_list");
 252       }
 253       res = new_region_try_secondary_free_list(is_old);
 254       if (res != NULL) {
 255         return res;
 256       }
 257     }
 258   }
 259 
 260   res = _hrm.allocate_free_region(is_old);
 261 
 262   if (res == NULL) {
 263     if (G1ConcRegionFreeingVerbose) {
 264       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 265                              "res == NULL, trying the secondary_free_list");
 266     }
 267     res = new_region_try_secondary_free_list(is_old);
 268   }
 269   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 270     // Currently, only attempts to allocate GC alloc regions set
 271     // do_expand to true. So, we should only reach here during a
 272     // safepoint. If this assumption changes we might have to
 273     // reconsider the use of _expand_heap_after_alloc_failure.
 274     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 275 
 276     ergo_verbose1(ErgoHeapSizing,
 277                   "attempt heap expansion",
 278                   ergo_format_reason("region allocation request failed")
 279                   ergo_format_byte("allocation request"),
 280                   word_size * HeapWordSize);
 281     if (expand(word_size * HeapWordSize)) {
 282       // Given that expand() succeeded in expanding the heap, and we
 283       // always expand the heap by an amount aligned to the heap
 284       // region size, the free list should in theory not be empty.
 285       // In either case allocate_free_region() will check for NULL.
 286       res = _hrm.allocate_free_region(is_old);
 287     } else {
 288       _expand_heap_after_alloc_failure = false;
 289     }
 290   }
 291   return res;
 292 }
 293 
 294 HeapWord*
 295 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 296                                                            uint num_regions,
 297                                                            size_t word_size,
 298                                                            AllocationContext_t context) {
 299   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 300   assert(is_humongous(word_size), "word_size should be humongous");
 301   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 302 
 303   // Index of last region in the series + 1.
 304   uint last = first + num_regions;
 305 
 306   // We need to initialize the region(s) we just discovered. This is
 307   // a bit tricky given that it can happen concurrently with
 308   // refinement threads refining cards on these regions and
 309   // potentially wanting to refine the BOT as they are scanning
 310   // those cards (this can happen shortly after a cleanup; see CR
 311   // 6991377). So we have to set up the region(s) carefully and in
 312   // a specific order.
 313 
 314   // The word size sum of all the regions we will allocate.
 315   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 316   assert(word_size <= word_size_sum, "sanity");
 317 
 318   // This will be the "starts humongous" region.
 319   HeapRegion* first_hr = region_at(first);
 320   // The header of the new object will be placed at the bottom of
 321   // the first region.
 322   HeapWord* new_obj = first_hr->bottom();
 323   // This will be the new top of the new object.
 324   HeapWord* obj_top = new_obj + word_size;
 325 
 326   // First, we need to zero the header of the space that we will be
 327   // allocating. When we update top further down, some refinement
 328   // threads might try to scan the region. By zeroing the header we
 329   // ensure that any thread that will try to scan the region will
 330   // come across the zero klass word and bail out.
 331   //
 332   // NOTE: It would not have been correct to have used
 333   // CollectedHeap::fill_with_object() and make the space look like
 334   // an int array. The thread that is doing the allocation will
 335   // later update the object header to a potentially different array
 336   // type and, for a very short period of time, the klass and length
 337   // fields will be inconsistent. This could cause a refinement
 338   // thread to calculate the object size incorrectly.
 339   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 340 
 341   // We will set up the first region as "starts humongous". This
 342   // will also update the BOT covering all the regions to reflect
 343   // that there is a single object that starts at the bottom of the
 344   // first region.
 345   first_hr->set_starts_humongous(obj_top);
 346   first_hr->set_allocation_context(context);
 347   // Then, if there are any, we will set up the "continues
 348   // humongous" regions.
 349   HeapRegion* hr = NULL;
 350   for (uint i = first + 1; i < last; ++i) {
 351     hr = region_at(i);
 352     hr->set_continues_humongous(first_hr);
 353     hr->set_allocation_context(context);
 354   }
 355 
 356   // Up to this point no concurrent thread would have been able to
 357   // do any scanning on any region in this series. All the top
 358   // fields still point to bottom, so the intersection between
 359   // [bottom,top] and [card_start,card_end] will be empty. Before we
 360   // update the top fields, we'll do a storestore to make sure that
 361   // no thread sees the update to top before the zeroing of the
 362   // object header and the BOT initialization.
 363   OrderAccess::storestore();
 364 
 365   // Now that the BOT and the object header have been initialized,
 366   // we can update top of the "starts humongous" region.
 367   first_hr->set_top(MIN2(first_hr->end(), obj_top));
 368   if (_hr_printer.is_active()) {
 369     _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, first_hr->top());
 370   }
 371 
 372   // Now, we will update the top fields of the "continues humongous"
 373   // regions.
 374   hr = NULL;
 375   for (uint i = first + 1; i < last; ++i) {
 376     hr = region_at(i);
 377     if ((i + 1) == last) {
 378       // last continues humongous region
 379       assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 380              "new_top should fall on this region");
 381       hr->set_top(obj_top);
 382       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, obj_top);
 383     } else {
 384       // not last one
 385       assert(obj_top > hr->end(), "obj_top should be above this region");
 386       hr->set_top(hr->end());
 387       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 388     }
 389   }
 390   // If we have continues humongous regions (hr != NULL), its top should
 391   // match obj_top.
 392   assert(hr == NULL || (hr->top() == obj_top), "sanity");
 393   check_bitmaps("Humongous Region Allocation", first_hr);
 394 
 395   increase_used(word_size * HeapWordSize);
 396 
 397   for (uint i = first; i < last; ++i) {
 398     _humongous_set.add(region_at(i));
 399   }
 400 
 401   return new_obj;
 402 }
 403 
 404 // If could fit into free regions w/o expansion, try.
 405 // Otherwise, if can expand, do so.
 406 // Otherwise, if using ex regions might help, try with ex given back.
 407 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 408   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 409 
 410   verify_region_sets_optional();
 411 
 412   uint first = G1_NO_HRM_INDEX;
 413   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 414 
 415   if (obj_regions == 1) {
 416     // Only one region to allocate, try to use a fast path by directly allocating
 417     // from the free lists. Do not try to expand here, we will potentially do that
 418     // later.
 419     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 420     if (hr != NULL) {
 421       first = hr->hrm_index();
 422     }
 423   } else {
 424     // We can't allocate humongous regions spanning more than one region while
 425     // cleanupComplete() is running, since some of the regions we find to be
 426     // empty might not yet be added to the free list. It is not straightforward
 427     // to know in which list they are on so that we can remove them. We only
 428     // need to do this if we need to allocate more than one region to satisfy the
 429     // current humongous allocation request. If we are only allocating one region
 430     // we use the one-region region allocation code (see above), that already
 431     // potentially waits for regions from the secondary free list.
 432     wait_while_free_regions_coming();
 433     append_secondary_free_list_if_not_empty_with_lock();
 434 
 435     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 436     // are lucky enough to find some.
 437     first = _hrm.find_contiguous_only_empty(obj_regions);
 438     if (first != G1_NO_HRM_INDEX) {
 439       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 440     }
 441   }
 442 
 443   if (first == G1_NO_HRM_INDEX) {
 444     // Policy: We could not find enough regions for the humongous object in the
 445     // free list. Look through the heap to find a mix of free and uncommitted regions.
 446     // If so, try expansion.
 447     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 448     if (first != G1_NO_HRM_INDEX) {
 449       // We found something. Make sure these regions are committed, i.e. expand
 450       // the heap. Alternatively we could do a defragmentation GC.
 451       ergo_verbose1(ErgoHeapSizing,
 452                     "attempt heap expansion",
 453                     ergo_format_reason("humongous allocation request failed")
 454                     ergo_format_byte("allocation request"),
 455                     word_size * HeapWordSize);
 456 
 457       _hrm.expand_at(first, obj_regions);
 458       g1_policy()->record_new_heap_size(num_regions());
 459 
 460 #ifdef ASSERT
 461       for (uint i = first; i < first + obj_regions; ++i) {
 462         HeapRegion* hr = region_at(i);
 463         assert(hr->is_free(), "sanity");
 464         assert(hr->is_empty(), "sanity");
 465         assert(is_on_master_free_list(hr), "sanity");
 466       }
 467 #endif
 468       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 469     } else {
 470       // Policy: Potentially trigger a defragmentation GC.
 471     }
 472   }
 473 
 474   HeapWord* result = NULL;
 475   if (first != G1_NO_HRM_INDEX) {
 476     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 477                                                        word_size, context);
 478     assert(result != NULL, "it should always return a valid result");
 479 
 480     // A successful humongous object allocation changes the used space
 481     // information of the old generation so we need to recalculate the
 482     // sizes and update the jstat counters here.
 483     g1mm()->update_sizes();
 484   }
 485 
 486   verify_region_sets_optional();
 487 
 488   return result;
 489 }
 490 
 491 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 492   assert_heap_not_locked_and_not_at_safepoint();
 493   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 494 
 495   uint dummy_gc_count_before;
 496   uint dummy_gclocker_retry_count = 0;
 497   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 498 }
 499 
 500 HeapWord*
 501 G1CollectedHeap::mem_allocate(size_t word_size,
 502                               bool*  gc_overhead_limit_was_exceeded) {
 503   assert_heap_not_locked_and_not_at_safepoint();
 504 
 505   // Loop until the allocation is satisfied, or unsatisfied after GC.
 506   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 507     uint gc_count_before;
 508 
 509     HeapWord* result = NULL;
 510     if (!is_humongous(word_size)) {
 511       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 512     } else {
 513       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 514     }
 515     if (result != NULL) {
 516       return result;
 517     }
 518 
 519     // Create the garbage collection operation...
 520     VM_G1CollectForAllocation op(gc_count_before, word_size);
 521     op.set_allocation_context(AllocationContext::current());
 522 
 523     // ...and get the VM thread to execute it.
 524     VMThread::execute(&op);
 525 
 526     if (op.prologue_succeeded() && op.pause_succeeded()) {
 527       // If the operation was successful we'll return the result even
 528       // if it is NULL. If the allocation attempt failed immediately
 529       // after a Full GC, it's unlikely we'll be able to allocate now.
 530       HeapWord* result = op.result();
 531       if (result != NULL && !is_humongous(word_size)) {
 532         // Allocations that take place on VM operations do not do any
 533         // card dirtying and we have to do it here. We only have to do
 534         // this for non-humongous allocations, though.
 535         dirty_young_block(result, word_size);
 536       }
 537       return result;
 538     } else {
 539       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 540         return NULL;
 541       }
 542       assert(op.result() == NULL,
 543              "the result should be NULL if the VM op did not succeed");
 544     }
 545 
 546     // Give a warning if we seem to be looping forever.
 547     if ((QueuedAllocationWarningCount > 0) &&
 548         (try_count % QueuedAllocationWarningCount == 0)) {
 549       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 550     }
 551   }
 552 
 553   ShouldNotReachHere();
 554   return NULL;
 555 }
 556 
 557 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 558                                                    AllocationContext_t context,
 559                                                    uint* gc_count_before_ret,
 560                                                    uint* gclocker_retry_count_ret) {
 561   // Make sure you read the note in attempt_allocation_humongous().
 562 
 563   assert_heap_not_locked_and_not_at_safepoint();
 564   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 565          "be called for humongous allocation requests");
 566 
 567   // We should only get here after the first-level allocation attempt
 568   // (attempt_allocation()) failed to allocate.
 569 
 570   // We will loop until a) we manage to successfully perform the
 571   // allocation or b) we successfully schedule a collection which
 572   // fails to perform the allocation. b) is the only case when we'll
 573   // return NULL.
 574   HeapWord* result = NULL;
 575   for (int try_count = 1; /* we'll return */; try_count += 1) {
 576     bool should_try_gc;
 577     uint gc_count_before;
 578 
 579     {
 580       MutexLockerEx x(Heap_lock);
 581       result = _allocator->attempt_allocation_locked(word_size, context);
 582       if (result != NULL) {
 583         return result;
 584       }
 585 
 586       if (GC_locker::is_active_and_needs_gc()) {
 587         if (g1_policy()->can_expand_young_list()) {
 588           // No need for an ergo verbose message here,
 589           // can_expand_young_list() does this when it returns true.
 590           result = _allocator->attempt_allocation_force(word_size, context);
 591           if (result != NULL) {
 592             return result;
 593           }
 594         }
 595         should_try_gc = false;
 596       } else {
 597         // The GCLocker may not be active but the GCLocker initiated
 598         // GC may not yet have been performed (GCLocker::needs_gc()
 599         // returns true). In this case we do not try this GC and
 600         // wait until the GCLocker initiated GC is performed, and
 601         // then retry the allocation.
 602         if (GC_locker::needs_gc()) {
 603           should_try_gc = false;
 604         } else {
 605           // Read the GC count while still holding the Heap_lock.
 606           gc_count_before = total_collections();
 607           should_try_gc = true;
 608         }
 609       }
 610     }
 611 
 612     if (should_try_gc) {
 613       bool succeeded;
 614       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 615                                    GCCause::_g1_inc_collection_pause);
 616       if (result != NULL) {
 617         assert(succeeded, "only way to get back a non-NULL result");
 618         return result;
 619       }
 620 
 621       if (succeeded) {
 622         // If we get here we successfully scheduled a collection which
 623         // failed to allocate. No point in trying to allocate
 624         // further. We'll just return NULL.
 625         MutexLockerEx x(Heap_lock);
 626         *gc_count_before_ret = total_collections();
 627         return NULL;
 628       }
 629     } else {
 630       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 631         MutexLockerEx x(Heap_lock);
 632         *gc_count_before_ret = total_collections();
 633         return NULL;
 634       }
 635       // The GCLocker is either active or the GCLocker initiated
 636       // GC has not yet been performed. Stall until it is and
 637       // then retry the allocation.
 638       GC_locker::stall_until_clear();
 639       (*gclocker_retry_count_ret) += 1;
 640     }
 641 
 642     // We can reach here if we were unsuccessful in scheduling a
 643     // collection (because another thread beat us to it) or if we were
 644     // stalled due to the GC locker. In either can we should retry the
 645     // allocation attempt in case another thread successfully
 646     // performed a collection and reclaimed enough space. We do the
 647     // first attempt (without holding the Heap_lock) here and the
 648     // follow-on attempt will be at the start of the next loop
 649     // iteration (after taking the Heap_lock).
 650     result = _allocator->attempt_allocation(word_size, context);
 651     if (result != NULL) {
 652       return result;
 653     }
 654 
 655     // Give a warning if we seem to be looping forever.
 656     if ((QueuedAllocationWarningCount > 0) &&
 657         (try_count % QueuedAllocationWarningCount == 0)) {
 658       warning("G1CollectedHeap::attempt_allocation_slow() "
 659               "retries %d times", try_count);
 660     }
 661   }
 662 
 663   ShouldNotReachHere();
 664   return NULL;
 665 }
 666 
 667 void G1CollectedHeap::begin_archive_alloc_range() {
 668   assert_at_safepoint(true /* should_be_vm_thread */);
 669   if (_archive_allocator == NULL) {
 670     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 671   }
 672 }
 673 
 674 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 675   // Allocations in archive regions cannot be of a size that would be considered
 676   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 677   // may be different at archive-restore time.
 678   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 679 }
 680 
 681 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 682   assert_at_safepoint(true /* should_be_vm_thread */);
 683   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 684   if (is_archive_alloc_too_large(word_size)) {
 685     return NULL;
 686   }
 687   return _archive_allocator->archive_mem_allocate(word_size);
 688 }
 689 
 690 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 691                                               size_t end_alignment_in_bytes) {
 692   assert_at_safepoint(true /* should_be_vm_thread */);
 693   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 694 
 695   // Call complete_archive to do the real work, filling in the MemRegion
 696   // array with the archive regions.
 697   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 698   delete _archive_allocator;
 699   _archive_allocator = NULL;
 700 }
 701 
 702 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 703   assert(ranges != NULL, "MemRegion array NULL");
 704   assert(count != 0, "No MemRegions provided");
 705   MemRegion reserved = _hrm.reserved();
 706   for (size_t i = 0; i < count; i++) {
 707     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 708       return false;
 709     }
 710   }
 711   return true;
 712 }
 713 
 714 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 715   assert(!is_init_completed(), "Expect to be called at JVM init time");
 716   assert(ranges != NULL, "MemRegion array NULL");
 717   assert(count != 0, "No MemRegions provided");
 718   MutexLockerEx x(Heap_lock);
 719 
 720   MemRegion reserved = _hrm.reserved();
 721   HeapWord* prev_last_addr = NULL;
 722   HeapRegion* prev_last_region = NULL;
 723 
 724   // Temporarily disable pretouching of heap pages. This interface is used
 725   // when mmap'ing archived heap data in, so pre-touching is wasted.
 726   FlagSetting fs(AlwaysPreTouch, false);
 727 
 728   // Enable archive object checking in G1MarkSweep. We have to let it know
 729   // about each archive range, so that objects in those ranges aren't marked.
 730   G1MarkSweep::enable_archive_object_check();
 731 
 732   // For each specified MemRegion range, allocate the corresponding G1
 733   // regions and mark them as archive regions. We expect the ranges in
 734   // ascending starting address order, without overlap.
 735   for (size_t i = 0; i < count; i++) {
 736     MemRegion curr_range = ranges[i];
 737     HeapWord* start_address = curr_range.start();
 738     size_t word_size = curr_range.word_size();
 739     HeapWord* last_address = curr_range.last();
 740     size_t commits = 0;
 741 
 742     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 743               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 744               p2i(start_address), p2i(last_address));
 745     guarantee(start_address > prev_last_addr,
 746               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 747               p2i(start_address), p2i(prev_last_addr));
 748     prev_last_addr = last_address;
 749 
 750     // Check for ranges that start in the same G1 region in which the previous
 751     // range ended, and adjust the start address so we don't try to allocate
 752     // the same region again. If the current range is entirely within that
 753     // region, skip it, just adjusting the recorded top.
 754     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 755     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 756       start_address = start_region->end();
 757       if (start_address > last_address) {
 758         increase_used(word_size * HeapWordSize);
 759         start_region->set_top(last_address + 1);
 760         continue;
 761       }
 762       start_region->set_top(start_address);
 763       curr_range = MemRegion(start_address, last_address + 1);
 764       start_region = _hrm.addr_to_region(start_address);
 765     }
 766 
 767     // Perform the actual region allocation, exiting if it fails.
 768     // Then note how much new space we have allocated.
 769     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
 770       return false;
 771     }
 772     increase_used(word_size * HeapWordSize);
 773     if (commits != 0) {
 774       ergo_verbose1(ErgoHeapSizing,
 775                     "attempt heap expansion",
 776                     ergo_format_reason("allocate archive regions")
 777                     ergo_format_byte("total size"),
 778                     HeapRegion::GrainWords * HeapWordSize * commits);
 779     }
 780 
 781     // Mark each G1 region touched by the range as archive, add it to the old set,
 782     // and set the allocation context and top.
 783     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 784     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 785     prev_last_region = last_region;
 786 
 787     while (curr_region != NULL) {
 788       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 789              "Region already in use (index %u)", curr_region->hrm_index());
 790       _hr_printer.alloc(curr_region, G1HRPrinter::Archive);
 791       curr_region->set_allocation_context(AllocationContext::system());
 792       curr_region->set_archive();
 793       _old_set.add(curr_region);
 794       if (curr_region != last_region) {
 795         curr_region->set_top(curr_region->end());
 796         curr_region = _hrm.next_region_in_heap(curr_region);
 797       } else {
 798         curr_region->set_top(last_address + 1);
 799         curr_region = NULL;
 800       }
 801     }
 802 
 803     // Notify mark-sweep of the archive range.
 804     G1MarkSweep::set_range_archive(curr_range, true);
 805   }
 806   return true;
 807 }
 808 
 809 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 810   assert(!is_init_completed(), "Expect to be called at JVM init time");
 811   assert(ranges != NULL, "MemRegion array NULL");
 812   assert(count != 0, "No MemRegions provided");
 813   MemRegion reserved = _hrm.reserved();
 814   HeapWord *prev_last_addr = NULL;
 815   HeapRegion* prev_last_region = NULL;
 816 
 817   // For each MemRegion, create filler objects, if needed, in the G1 regions
 818   // that contain the address range. The address range actually within the
 819   // MemRegion will not be modified. That is assumed to have been initialized
 820   // elsewhere, probably via an mmap of archived heap data.
 821   MutexLockerEx x(Heap_lock);
 822   for (size_t i = 0; i < count; i++) {
 823     HeapWord* start_address = ranges[i].start();
 824     HeapWord* last_address = ranges[i].last();
 825 
 826     assert(reserved.contains(start_address) && reserved.contains(last_address),
 827            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 828            p2i(start_address), p2i(last_address));
 829     assert(start_address > prev_last_addr,
 830            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 831            p2i(start_address), p2i(prev_last_addr));
 832 
 833     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 834     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 835     HeapWord* bottom_address = start_region->bottom();
 836 
 837     // Check for a range beginning in the same region in which the
 838     // previous one ended.
 839     if (start_region == prev_last_region) {
 840       bottom_address = prev_last_addr + 1;
 841     }
 842 
 843     // Verify that the regions were all marked as archive regions by
 844     // alloc_archive_regions.
 845     HeapRegion* curr_region = start_region;
 846     while (curr_region != NULL) {
 847       guarantee(curr_region->is_archive(),
 848                 "Expected archive region at index %u", curr_region->hrm_index());
 849       if (curr_region != last_region) {
 850         curr_region = _hrm.next_region_in_heap(curr_region);
 851       } else {
 852         curr_region = NULL;
 853       }
 854     }
 855 
 856     prev_last_addr = last_address;
 857     prev_last_region = last_region;
 858 
 859     // Fill the memory below the allocated range with dummy object(s),
 860     // if the region bottom does not match the range start, or if the previous
 861     // range ended within the same G1 region, and there is a gap.
 862     if (start_address != bottom_address) {
 863       size_t fill_size = pointer_delta(start_address, bottom_address);
 864       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 865       increase_used(fill_size * HeapWordSize);
 866     }
 867   }
 868 }
 869 
 870 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 871                                                      uint* gc_count_before_ret,
 872                                                      uint* gclocker_retry_count_ret) {
 873   assert_heap_not_locked_and_not_at_safepoint();
 874   assert(!is_humongous(word_size), "attempt_allocation() should not "
 875          "be called for humongous allocation requests");
 876 
 877   AllocationContext_t context = AllocationContext::current();
 878   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 879 
 880   if (result == NULL) {
 881     result = attempt_allocation_slow(word_size,
 882                                      context,
 883                                      gc_count_before_ret,
 884                                      gclocker_retry_count_ret);
 885   }
 886   assert_heap_not_locked();
 887   if (result != NULL) {
 888     dirty_young_block(result, word_size);
 889   }
 890   return result;
 891 }
 892 
 893 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 894   assert(!is_init_completed(), "Expect to be called at JVM init time");
 895   assert(ranges != NULL, "MemRegion array NULL");
 896   assert(count != 0, "No MemRegions provided");
 897   MemRegion reserved = _hrm.reserved();
 898   HeapWord* prev_last_addr = NULL;
 899   HeapRegion* prev_last_region = NULL;
 900   size_t size_used = 0;
 901   size_t uncommitted_regions = 0;
 902 
 903   // For each Memregion, free the G1 regions that constitute it, and
 904   // notify mark-sweep that the range is no longer to be considered 'archive.'
 905   MutexLockerEx x(Heap_lock);
 906   for (size_t i = 0; i < count; i++) {
 907     HeapWord* start_address = ranges[i].start();
 908     HeapWord* last_address = ranges[i].last();
 909 
 910     assert(reserved.contains(start_address) && reserved.contains(last_address),
 911            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 912            p2i(start_address), p2i(last_address));
 913     assert(start_address > prev_last_addr,
 914            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 915            p2i(start_address), p2i(prev_last_addr));
 916     size_used += ranges[i].byte_size();
 917     prev_last_addr = last_address;
 918 
 919     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 920     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 921 
 922     // Check for ranges that start in the same G1 region in which the previous
 923     // range ended, and adjust the start address so we don't try to free
 924     // the same region again. If the current range is entirely within that
 925     // region, skip it.
 926     if (start_region == prev_last_region) {
 927       start_address = start_region->end();
 928       if (start_address > last_address) {
 929         continue;
 930       }
 931       start_region = _hrm.addr_to_region(start_address);
 932     }
 933     prev_last_region = last_region;
 934 
 935     // After verifying that each region was marked as an archive region by
 936     // alloc_archive_regions, set it free and empty and uncommit it.
 937     HeapRegion* curr_region = start_region;
 938     while (curr_region != NULL) {
 939       guarantee(curr_region->is_archive(),
 940                 "Expected archive region at index %u", curr_region->hrm_index());
 941       uint curr_index = curr_region->hrm_index();
 942       _old_set.remove(curr_region);
 943       curr_region->set_free();
 944       curr_region->set_top(curr_region->bottom());
 945       if (curr_region != last_region) {
 946         curr_region = _hrm.next_region_in_heap(curr_region);
 947       } else {
 948         curr_region = NULL;
 949       }
 950       _hrm.shrink_at(curr_index, 1);
 951       uncommitted_regions++;
 952     }
 953 
 954     // Notify mark-sweep that this is no longer an archive range.
 955     G1MarkSweep::set_range_archive(ranges[i], false);
 956   }
 957 
 958   if (uncommitted_regions != 0) {
 959     ergo_verbose1(ErgoHeapSizing,
 960                   "attempt heap shrinking",
 961                   ergo_format_reason("uncommitted archive regions")
 962                   ergo_format_byte("total size"),
 963                   HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 964   }
 965   decrease_used(size_used);
 966 }
 967 
 968 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 969                                                         uint* gc_count_before_ret,
 970                                                         uint* gclocker_retry_count_ret) {
 971   // The structure of this method has a lot of similarities to
 972   // attempt_allocation_slow(). The reason these two were not merged
 973   // into a single one is that such a method would require several "if
 974   // allocation is not humongous do this, otherwise do that"
 975   // conditional paths which would obscure its flow. In fact, an early
 976   // version of this code did use a unified method which was harder to
 977   // follow and, as a result, it had subtle bugs that were hard to
 978   // track down. So keeping these two methods separate allows each to
 979   // be more readable. It will be good to keep these two in sync as
 980   // much as possible.
 981 
 982   assert_heap_not_locked_and_not_at_safepoint();
 983   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 984          "should only be called for humongous allocations");
 985 
 986   // Humongous objects can exhaust the heap quickly, so we should check if we
 987   // need to start a marking cycle at each humongous object allocation. We do
 988   // the check before we do the actual allocation. The reason for doing it
 989   // before the allocation is that we avoid having to keep track of the newly
 990   // allocated memory while we do a GC.
 991   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 992                                            word_size)) {
 993     collect(GCCause::_g1_humongous_allocation);
 994   }
 995 
 996   // We will loop until a) we manage to successfully perform the
 997   // allocation or b) we successfully schedule a collection which
 998   // fails to perform the allocation. b) is the only case when we'll
 999   // return NULL.
1000   HeapWord* result = NULL;
1001   for (int try_count = 1; /* we'll return */; try_count += 1) {
1002     bool should_try_gc;
1003     uint gc_count_before;
1004 
1005     {
1006       MutexLockerEx x(Heap_lock);
1007 
1008       // Given that humongous objects are not allocated in young
1009       // regions, we'll first try to do the allocation without doing a
1010       // collection hoping that there's enough space in the heap.
1011       result = humongous_obj_allocate(word_size, AllocationContext::current());
1012       if (result != NULL) {
1013         return result;
1014       }
1015 
1016       if (GC_locker::is_active_and_needs_gc()) {
1017         should_try_gc = false;
1018       } else {
1019          // The GCLocker may not be active but the GCLocker initiated
1020         // GC may not yet have been performed (GCLocker::needs_gc()
1021         // returns true). In this case we do not try this GC and
1022         // wait until the GCLocker initiated GC is performed, and
1023         // then retry the allocation.
1024         if (GC_locker::needs_gc()) {
1025           should_try_gc = false;
1026         } else {
1027           // Read the GC count while still holding the Heap_lock.
1028           gc_count_before = total_collections();
1029           should_try_gc = true;
1030         }
1031       }
1032     }
1033 
1034     if (should_try_gc) {
1035       // If we failed to allocate the humongous object, we should try to
1036       // do a collection pause (if we're allowed) in case it reclaims
1037       // enough space for the allocation to succeed after the pause.
1038 
1039       bool succeeded;
1040       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1041                                    GCCause::_g1_humongous_allocation);
1042       if (result != NULL) {
1043         assert(succeeded, "only way to get back a non-NULL result");
1044         return result;
1045       }
1046 
1047       if (succeeded) {
1048         // If we get here we successfully scheduled a collection which
1049         // failed to allocate. No point in trying to allocate
1050         // further. We'll just return NULL.
1051         MutexLockerEx x(Heap_lock);
1052         *gc_count_before_ret = total_collections();
1053         return NULL;
1054       }
1055     } else {
1056       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1057         MutexLockerEx x(Heap_lock);
1058         *gc_count_before_ret = total_collections();
1059         return NULL;
1060       }
1061       // The GCLocker is either active or the GCLocker initiated
1062       // GC has not yet been performed. Stall until it is and
1063       // then retry the allocation.
1064       GC_locker::stall_until_clear();
1065       (*gclocker_retry_count_ret) += 1;
1066     }
1067 
1068     // We can reach here if we were unsuccessful in scheduling a
1069     // collection (because another thread beat us to it) or if we were
1070     // stalled due to the GC locker. In either can we should retry the
1071     // allocation attempt in case another thread successfully
1072     // performed a collection and reclaimed enough space.  Give a
1073     // warning if we seem to be looping forever.
1074 
1075     if ((QueuedAllocationWarningCount > 0) &&
1076         (try_count % QueuedAllocationWarningCount == 0)) {
1077       warning("G1CollectedHeap::attempt_allocation_humongous() "
1078               "retries %d times", try_count);
1079     }
1080   }
1081 
1082   ShouldNotReachHere();
1083   return NULL;
1084 }
1085 
1086 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1087                                                            AllocationContext_t context,
1088                                                            bool expect_null_mutator_alloc_region) {
1089   assert_at_safepoint(true /* should_be_vm_thread */);
1090   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1091          "the current alloc region was unexpectedly found to be non-NULL");
1092 
1093   if (!is_humongous(word_size)) {
1094     return _allocator->attempt_allocation_locked(word_size, context);
1095   } else {
1096     HeapWord* result = humongous_obj_allocate(word_size, context);
1097     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1098       collector_state()->set_initiate_conc_mark_if_possible(true);
1099     }
1100     return result;
1101   }
1102 
1103   ShouldNotReachHere();
1104 }
1105 
1106 class PostMCRemSetClearClosure: public HeapRegionClosure {
1107   G1CollectedHeap* _g1h;
1108   ModRefBarrierSet* _mr_bs;
1109 public:
1110   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1111     _g1h(g1h), _mr_bs(mr_bs) {}
1112 
1113   bool doHeapRegion(HeapRegion* r) {
1114     HeapRegionRemSet* hrrs = r->rem_set();
1115 
1116     _g1h->reset_gc_time_stamps(r);
1117 
1118     if (r->is_continues_humongous()) {
1119       // We'll assert that the strong code root list and RSet is empty
1120       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1121       assert(hrrs->occupied() == 0, "RSet should be empty");
1122     } else {
1123       hrrs->clear();
1124     }
1125     // You might think here that we could clear just the cards
1126     // corresponding to the used region.  But no: if we leave a dirty card
1127     // in a region we might allocate into, then it would prevent that card
1128     // from being enqueued, and cause it to be missed.
1129     // Re: the performance cost: we shouldn't be doing full GC anyway!
1130     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1131 
1132     return false;
1133   }
1134 };
1135 
1136 void G1CollectedHeap::clear_rsets_post_compaction() {
1137   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1138   heap_region_iterate(&rs_clear);
1139 }
1140 
1141 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1142   G1CollectedHeap*   _g1h;
1143   UpdateRSOopClosure _cl;
1144 public:
1145   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1146     _cl(g1->g1_rem_set(), worker_i),
1147     _g1h(g1)
1148   { }
1149 
1150   bool doHeapRegion(HeapRegion* r) {
1151     if (!r->is_continues_humongous()) {
1152       _cl.set_from(r);
1153       r->oop_iterate(&_cl);
1154     }
1155     return false;
1156   }
1157 };
1158 
1159 class ParRebuildRSTask: public AbstractGangTask {
1160   G1CollectedHeap* _g1;
1161   HeapRegionClaimer _hrclaimer;
1162 
1163 public:
1164   ParRebuildRSTask(G1CollectedHeap* g1) :
1165       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1166 
1167   void work(uint worker_id) {
1168     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1169     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1170   }
1171 };
1172 
1173 class PostCompactionPrinterClosure: public HeapRegionClosure {
1174 private:
1175   G1HRPrinter* _hr_printer;
1176 public:
1177   bool doHeapRegion(HeapRegion* hr) {
1178     assert(!hr->is_young(), "not expecting to find young regions");
1179     if (hr->is_free()) {
1180       // We only generate output for non-empty regions.
1181     } else if (hr->is_starts_humongous()) {
1182       _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1183     } else if (hr->is_continues_humongous()) {
1184       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1185     } else if (hr->is_archive()) {
1186       _hr_printer->post_compaction(hr, G1HRPrinter::Archive);
1187     } else if (hr->is_old()) {
1188       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1189     } else {
1190       ShouldNotReachHere();
1191     }
1192     return false;
1193   }
1194 
1195   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1196     : _hr_printer(hr_printer) { }
1197 };
1198 
1199 void G1CollectedHeap::print_hrm_post_compaction() {
1200   PostCompactionPrinterClosure cl(hr_printer());
1201   heap_region_iterate(&cl);
1202 }
1203 
1204 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1205                                          bool clear_all_soft_refs) {
1206   assert_at_safepoint(true /* should_be_vm_thread */);
1207 
1208   if (GC_locker::check_active_before_gc()) {
1209     return false;
1210   }
1211 
1212   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1213   gc_timer->register_gc_start();
1214 
1215   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1216   GCIdMark gc_id_mark;
1217   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1218 
1219   SvcGCMarker sgcm(SvcGCMarker::FULL);
1220   ResourceMark rm;
1221 
1222   G1Log::update_level();
1223   print_heap_before_gc();
1224   trace_heap_before_gc(gc_tracer);
1225 
1226   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1227 
1228   verify_region_sets_optional();
1229 
1230   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1231                            collector_policy()->should_clear_all_soft_refs();
1232 
1233   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1234 
1235   {
1236     IsGCActiveMark x;
1237 
1238     // Timing
1239     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1240     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1241 
1242     {
1243       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
1244       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1245       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1246 
1247       g1_policy()->record_full_collection_start();
1248 
1249       // Note: When we have a more flexible GC logging framework that
1250       // allows us to add optional attributes to a GC log record we
1251       // could consider timing and reporting how long we wait in the
1252       // following two methods.
1253       wait_while_free_regions_coming();
1254       // If we start the compaction before the CM threads finish
1255       // scanning the root regions we might trip them over as we'll
1256       // be moving objects / updating references. So let's wait until
1257       // they are done. By telling them to abort, they should complete
1258       // early.
1259       _cm->root_regions()->abort();
1260       _cm->root_regions()->wait_until_scan_finished();
1261       append_secondary_free_list_if_not_empty_with_lock();
1262 
1263       gc_prologue(true);
1264       increment_total_collections(true /* full gc */);
1265       increment_old_marking_cycles_started();
1266 
1267       assert(used() == recalculate_used(), "Should be equal");
1268 
1269       verify_before_gc();
1270 
1271       check_bitmaps("Full GC Start");
1272       pre_full_gc_dump(gc_timer);
1273 
1274 #if defined(COMPILER2) || INCLUDE_JVMCI
1275       DerivedPointerTable::clear();
1276 #endif
1277 
1278       // Disable discovery and empty the discovered lists
1279       // for the CM ref processor.
1280       ref_processor_cm()->disable_discovery();
1281       ref_processor_cm()->abandon_partial_discovery();
1282       ref_processor_cm()->verify_no_references_recorded();
1283 
1284       // Abandon current iterations of concurrent marking and concurrent
1285       // refinement, if any are in progress. We have to do this before
1286       // wait_until_scan_finished() below.
1287       concurrent_mark()->abort();
1288 
1289       // Make sure we'll choose a new allocation region afterwards.
1290       _allocator->release_mutator_alloc_region();
1291       _allocator->abandon_gc_alloc_regions();
1292       g1_rem_set()->cleanupHRRS();
1293 
1294       // We should call this after we retire any currently active alloc
1295       // regions so that all the ALLOC / RETIRE events are generated
1296       // before the start GC event.
1297       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1298 
1299       // We may have added regions to the current incremental collection
1300       // set between the last GC or pause and now. We need to clear the
1301       // incremental collection set and then start rebuilding it afresh
1302       // after this full GC.
1303       abandon_collection_set(g1_policy()->inc_cset_head());
1304       g1_policy()->clear_incremental_cset();
1305       g1_policy()->stop_incremental_cset_building();
1306 
1307       tear_down_region_sets(false /* free_list_only */);
1308       collector_state()->set_gcs_are_young(true);
1309 
1310       // See the comments in g1CollectedHeap.hpp and
1311       // G1CollectedHeap::ref_processing_init() about
1312       // how reference processing currently works in G1.
1313 
1314       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1315       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1316 
1317       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1318       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1319 
1320       ref_processor_stw()->enable_discovery();
1321       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1322 
1323       // Do collection work
1324       {
1325         HandleMark hm;  // Discard invalid handles created during gc
1326         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1327       }
1328 
1329       assert(num_free_regions() == 0, "we should not have added any free regions");
1330       rebuild_region_sets(false /* free_list_only */);
1331 
1332       // Enqueue any discovered reference objects that have
1333       // not been removed from the discovered lists.
1334       ref_processor_stw()->enqueue_discovered_references();
1335 
1336 #if defined(COMPILER2) || INCLUDE_JVMCI
1337       DerivedPointerTable::update_pointers();
1338 #endif
1339 
1340       MemoryService::track_memory_usage();
1341 
1342       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1343       ref_processor_stw()->verify_no_references_recorded();
1344 
1345       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1346       ClassLoaderDataGraph::purge();
1347       MetaspaceAux::verify_metrics();
1348 
1349       // Note: since we've just done a full GC, concurrent
1350       // marking is no longer active. Therefore we need not
1351       // re-enable reference discovery for the CM ref processor.
1352       // That will be done at the start of the next marking cycle.
1353       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1354       ref_processor_cm()->verify_no_references_recorded();
1355 
1356       reset_gc_time_stamp();
1357       // Since everything potentially moved, we will clear all remembered
1358       // sets, and clear all cards.  Later we will rebuild remembered
1359       // sets. We will also reset the GC time stamps of the regions.
1360       clear_rsets_post_compaction();
1361       check_gc_time_stamps();
1362 
1363       resize_if_necessary_after_full_collection();
1364 
1365       if (_hr_printer.is_active()) {
1366         // We should do this after we potentially resize the heap so
1367         // that all the COMMIT / UNCOMMIT events are generated before
1368         // the end GC event.
1369 
1370         print_hrm_post_compaction();
1371         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1372       }
1373 
1374       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1375       if (hot_card_cache->use_cache()) {
1376         hot_card_cache->reset_card_counts();
1377         hot_card_cache->reset_hot_cache();
1378       }
1379 
1380       // Rebuild remembered sets of all regions.
1381       uint n_workers =
1382         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1383                                                 workers()->active_workers(),
1384                                                 Threads::number_of_non_daemon_threads());
1385       workers()->set_active_workers(n_workers);
1386 
1387       ParRebuildRSTask rebuild_rs_task(this);
1388       workers()->run_task(&rebuild_rs_task);
1389 
1390       // Rebuild the strong code root lists for each region
1391       rebuild_strong_code_roots();
1392 
1393       if (true) { // FIXME
1394         MetaspaceGC::compute_new_size();
1395       }
1396 
1397 #ifdef TRACESPINNING
1398       ParallelTaskTerminator::print_termination_counts();
1399 #endif
1400 
1401       // Discard all rset updates
1402       JavaThread::dirty_card_queue_set().abandon_logs();
1403       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1404 
1405       _young_list->reset_sampled_info();
1406       // At this point there should be no regions in the
1407       // entire heap tagged as young.
1408       assert(check_young_list_empty(true /* check_heap */),
1409              "young list should be empty at this point");
1410 
1411       // Update the number of full collections that have been completed.
1412       increment_old_marking_cycles_completed(false /* concurrent */);
1413 
1414       _hrm.verify_optional();
1415       verify_region_sets_optional();
1416 
1417       verify_after_gc();
1418 
1419       // Clear the previous marking bitmap, if needed for bitmap verification.
1420       // Note we cannot do this when we clear the next marking bitmap in
1421       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1422       // objects marked during a full GC against the previous bitmap.
1423       // But we need to clear it before calling check_bitmaps below since
1424       // the full GC has compacted objects and updated TAMS but not updated
1425       // the prev bitmap.
1426       if (G1VerifyBitmaps) {
1427         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1428       }
1429       check_bitmaps("Full GC End");
1430 
1431       // Start a new incremental collection set for the next pause
1432       assert(g1_policy()->collection_set() == NULL, "must be");
1433       g1_policy()->start_incremental_cset_building();
1434 
1435       clear_cset_fast_test();
1436 
1437       _allocator->init_mutator_alloc_region();
1438 
1439       g1_policy()->record_full_collection_end();
1440 
1441       if (G1Log::fine()) {
1442         g1_policy()->print_heap_transition();
1443       }
1444 
1445       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1446       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1447       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1448       // before any GC notifications are raised.
1449       g1mm()->update_sizes();
1450 
1451       gc_epilogue(true);
1452     }
1453 
1454     if (G1Log::finer()) {
1455       g1_policy()->print_detailed_heap_transition(true /* full */);
1456     }
1457 
1458     print_heap_after_gc();
1459     trace_heap_after_gc(gc_tracer);
1460 
1461     post_full_gc_dump(gc_timer);
1462 
1463     gc_timer->register_gc_end();
1464     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1465   }
1466 
1467   return true;
1468 }
1469 
1470 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1471   // Currently, there is no facility in the do_full_collection(bool) API to notify
1472   // the caller that the collection did not succeed (e.g., because it was locked
1473   // out by the GC locker). So, right now, we'll ignore the return value.
1474   bool dummy = do_full_collection(true,                /* explicit_gc */
1475                                   clear_all_soft_refs);
1476 }
1477 
1478 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1479   // Include bytes that will be pre-allocated to support collections, as "used".
1480   const size_t used_after_gc = used();
1481   const size_t capacity_after_gc = capacity();
1482   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1483 
1484   // This is enforced in arguments.cpp.
1485   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1486          "otherwise the code below doesn't make sense");
1487 
1488   // We don't have floating point command-line arguments
1489   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1490   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1491   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1492   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1493 
1494   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1495   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1496 
1497   // We have to be careful here as these two calculations can overflow
1498   // 32-bit size_t's.
1499   double used_after_gc_d = (double) used_after_gc;
1500   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1501   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1502 
1503   // Let's make sure that they are both under the max heap size, which
1504   // by default will make them fit into a size_t.
1505   double desired_capacity_upper_bound = (double) max_heap_size;
1506   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1507                                     desired_capacity_upper_bound);
1508   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1509                                     desired_capacity_upper_bound);
1510 
1511   // We can now safely turn them into size_t's.
1512   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1513   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1514 
1515   // This assert only makes sense here, before we adjust them
1516   // with respect to the min and max heap size.
1517   assert(minimum_desired_capacity <= maximum_desired_capacity,
1518          "minimum_desired_capacity = " SIZE_FORMAT ", "
1519          "maximum_desired_capacity = " SIZE_FORMAT,
1520          minimum_desired_capacity, maximum_desired_capacity);
1521 
1522   // Should not be greater than the heap max size. No need to adjust
1523   // it with respect to the heap min size as it's a lower bound (i.e.,
1524   // we'll try to make the capacity larger than it, not smaller).
1525   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1526   // Should not be less than the heap min size. No need to adjust it
1527   // with respect to the heap max size as it's an upper bound (i.e.,
1528   // we'll try to make the capacity smaller than it, not greater).
1529   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1530 
1531   if (capacity_after_gc < minimum_desired_capacity) {
1532     // Don't expand unless it's significant
1533     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1534     ergo_verbose4(ErgoHeapSizing,
1535                   "attempt heap expansion",
1536                   ergo_format_reason("capacity lower than "
1537                                      "min desired capacity after Full GC")
1538                   ergo_format_byte("capacity")
1539                   ergo_format_byte("occupancy")
1540                   ergo_format_byte_perc("min desired capacity"),
1541                   capacity_after_gc, used_after_gc,
1542                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1543     expand(expand_bytes);
1544 
1545     // No expansion, now see if we want to shrink
1546   } else if (capacity_after_gc > maximum_desired_capacity) {
1547     // Capacity too large, compute shrinking size
1548     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1549     ergo_verbose4(ErgoHeapSizing,
1550                   "attempt heap shrinking",
1551                   ergo_format_reason("capacity higher than "
1552                                      "max desired capacity after Full GC")
1553                   ergo_format_byte("capacity")
1554                   ergo_format_byte("occupancy")
1555                   ergo_format_byte_perc("max desired capacity"),
1556                   capacity_after_gc, used_after_gc,
1557                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1558     shrink(shrink_bytes);
1559   }
1560 }
1561 
1562 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1563                                                             AllocationContext_t context,
1564                                                             bool do_gc,
1565                                                             bool clear_all_soft_refs,
1566                                                             bool expect_null_mutator_alloc_region,
1567                                                             bool* gc_succeeded) {
1568   *gc_succeeded = true;
1569   // Let's attempt the allocation first.
1570   HeapWord* result =
1571     attempt_allocation_at_safepoint(word_size,
1572                                     context,
1573                                     expect_null_mutator_alloc_region);
1574   if (result != NULL) {
1575     assert(*gc_succeeded, "sanity");
1576     return result;
1577   }
1578 
1579   // In a G1 heap, we're supposed to keep allocation from failing by
1580   // incremental pauses.  Therefore, at least for now, we'll favor
1581   // expansion over collection.  (This might change in the future if we can
1582   // do something smarter than full collection to satisfy a failed alloc.)
1583   result = expand_and_allocate(word_size, context);
1584   if (result != NULL) {
1585     assert(*gc_succeeded, "sanity");
1586     return result;
1587   }
1588 
1589   if (do_gc) {
1590     // Expansion didn't work, we'll try to do a Full GC.
1591     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1592                                        clear_all_soft_refs);
1593   }
1594 
1595   return NULL;
1596 }
1597 
1598 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1599                                                      AllocationContext_t context,
1600                                                      bool* succeeded) {
1601   assert_at_safepoint(true /* should_be_vm_thread */);
1602 
1603   // Attempts to allocate followed by Full GC.
1604   HeapWord* result =
1605     satisfy_failed_allocation_helper(word_size,
1606                                      context,
1607                                      true,  /* do_gc */
1608                                      false, /* clear_all_soft_refs */
1609                                      false, /* expect_null_mutator_alloc_region */
1610                                      succeeded);
1611 
1612   if (result != NULL || !*succeeded) {
1613     return result;
1614   }
1615 
1616   // Attempts to allocate followed by Full GC that will collect all soft references.
1617   result = satisfy_failed_allocation_helper(word_size,
1618                                             context,
1619                                             true, /* do_gc */
1620                                             true, /* clear_all_soft_refs */
1621                                             true, /* expect_null_mutator_alloc_region */
1622                                             succeeded);
1623 
1624   if (result != NULL || !*succeeded) {
1625     return result;
1626   }
1627 
1628   // Attempts to allocate, no GC
1629   result = satisfy_failed_allocation_helper(word_size,
1630                                             context,
1631                                             false, /* do_gc */
1632                                             false, /* clear_all_soft_refs */
1633                                             true,  /* expect_null_mutator_alloc_region */
1634                                             succeeded);
1635 
1636   if (result != NULL) {
1637     assert(*succeeded, "sanity");
1638     return result;
1639   }
1640 
1641   assert(!collector_policy()->should_clear_all_soft_refs(),
1642          "Flag should have been handled and cleared prior to this point");
1643 
1644   // What else?  We might try synchronous finalization later.  If the total
1645   // space available is large enough for the allocation, then a more
1646   // complete compaction phase than we've tried so far might be
1647   // appropriate.
1648   assert(*succeeded, "sanity");
1649   return NULL;
1650 }
1651 
1652 // Attempting to expand the heap sufficiently
1653 // to support an allocation of the given "word_size".  If
1654 // successful, perform the allocation and return the address of the
1655 // allocated block, or else "NULL".
1656 
1657 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1658   assert_at_safepoint(true /* should_be_vm_thread */);
1659 
1660   verify_region_sets_optional();
1661 
1662   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1663   ergo_verbose1(ErgoHeapSizing,
1664                 "attempt heap expansion",
1665                 ergo_format_reason("allocation request failed")
1666                 ergo_format_byte("allocation request"),
1667                 word_size * HeapWordSize);
1668   if (expand(expand_bytes)) {
1669     _hrm.verify_optional();
1670     verify_region_sets_optional();
1671     return attempt_allocation_at_safepoint(word_size,
1672                                            context,
1673                                            false /* expect_null_mutator_alloc_region */);
1674   }
1675   return NULL;
1676 }
1677 
1678 bool G1CollectedHeap::expand(size_t expand_bytes, double* expand_time_ms) {
1679   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1680   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1681                                        HeapRegion::GrainBytes);
1682   ergo_verbose2(ErgoHeapSizing,
1683                 "expand the heap",
1684                 ergo_format_byte("requested expansion amount")
1685                 ergo_format_byte("attempted expansion amount"),
1686                 expand_bytes, aligned_expand_bytes);
1687 
1688   if (is_maximal_no_gc()) {
1689     ergo_verbose0(ErgoHeapSizing,
1690                       "did not expand the heap",
1691                       ergo_format_reason("heap already fully expanded"));
1692     return false;
1693   }
1694 
1695   double expand_heap_start_time_sec = os::elapsedTime();
1696   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1697   assert(regions_to_expand > 0, "Must expand by at least one region");
1698 
1699   uint expanded_by = _hrm.expand_by(regions_to_expand);
1700   if (expand_time_ms != NULL) {
1701     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1702   }
1703 
1704   if (expanded_by > 0) {
1705     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1706     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1707     g1_policy()->record_new_heap_size(num_regions());
1708   } else {
1709     ergo_verbose0(ErgoHeapSizing,
1710                   "did not expand the heap",
1711                   ergo_format_reason("heap expansion operation failed"));
1712     // The expansion of the virtual storage space was unsuccessful.
1713     // Let's see if it was because we ran out of swap.
1714     if (G1ExitOnExpansionFailure &&
1715         _hrm.available() >= regions_to_expand) {
1716       // We had head room...
1717       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1718     }
1719   }
1720   return regions_to_expand > 0;
1721 }
1722 
1723 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1724   size_t aligned_shrink_bytes =
1725     ReservedSpace::page_align_size_down(shrink_bytes);
1726   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1727                                          HeapRegion::GrainBytes);
1728   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1729 
1730   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1731   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1732 
1733   ergo_verbose3(ErgoHeapSizing,
1734                 "shrink the heap",
1735                 ergo_format_byte("requested shrinking amount")
1736                 ergo_format_byte("aligned shrinking amount")
1737                 ergo_format_byte("attempted shrinking amount"),
1738                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1739   if (num_regions_removed > 0) {
1740     g1_policy()->record_new_heap_size(num_regions());
1741   } else {
1742     ergo_verbose0(ErgoHeapSizing,
1743                   "did not shrink the heap",
1744                   ergo_format_reason("heap shrinking operation failed"));
1745   }
1746 }
1747 
1748 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1749   verify_region_sets_optional();
1750 
1751   // We should only reach here at the end of a Full GC which means we
1752   // should not not be holding to any GC alloc regions. The method
1753   // below will make sure of that and do any remaining clean up.
1754   _allocator->abandon_gc_alloc_regions();
1755 
1756   // Instead of tearing down / rebuilding the free lists here, we
1757   // could instead use the remove_all_pending() method on free_list to
1758   // remove only the ones that we need to remove.
1759   tear_down_region_sets(true /* free_list_only */);
1760   shrink_helper(shrink_bytes);
1761   rebuild_region_sets(true /* free_list_only */);
1762 
1763   _hrm.verify_optional();
1764   verify_region_sets_optional();
1765 }
1766 
1767 // Public methods.
1768 
1769 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1770   CollectedHeap(),
1771   _g1_policy(policy_),
1772   _dirty_card_queue_set(false),
1773   _is_alive_closure_cm(this),
1774   _is_alive_closure_stw(this),
1775   _ref_processor_cm(NULL),
1776   _ref_processor_stw(NULL),
1777   _bot_shared(NULL),
1778   _cg1r(NULL),
1779   _g1mm(NULL),
1780   _refine_cte_cl(NULL),
1781   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1782   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1783   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1784   _humongous_reclaim_candidates(),
1785   _has_humongous_reclaim_candidates(false),
1786   _archive_allocator(NULL),
1787   _free_regions_coming(false),
1788   _young_list(new YoungList(this)),
1789   _gc_time_stamp(0),
1790   _summary_bytes_used(0),
1791   _survivor_evac_stats(YoungPLABSize, PLABWeight),
1792   _old_evac_stats(OldPLABSize, PLABWeight),
1793   _expand_heap_after_alloc_failure(true),
1794   _old_marking_cycles_started(0),
1795   _old_marking_cycles_completed(0),
1796   _heap_summary_sent(false),
1797   _in_cset_fast_test(),
1798   _dirty_cards_region_list(NULL),
1799   _worker_cset_start_region(NULL),
1800   _worker_cset_start_region_time_stamp(NULL),
1801   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1802   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1803   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1804   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1805 
1806   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1807                           /* are_GC_task_threads */true,
1808                           /* are_ConcurrentGC_threads */false);
1809   _workers->initialize_workers();
1810 
1811   _allocator = G1Allocator::create_allocator(this);
1812   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1813 
1814   // Override the default _filler_array_max_size so that no humongous filler
1815   // objects are created.
1816   _filler_array_max_size = _humongous_object_threshold_in_words;
1817 
1818   uint n_queues = ParallelGCThreads;
1819   _task_queues = new RefToScanQueueSet(n_queues);
1820 
1821   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1822   assert(n_rem_sets > 0, "Invariant.");
1823 
1824   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1825   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1826   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1827 
1828   for (uint i = 0; i < n_queues; i++) {
1829     RefToScanQueue* q = new RefToScanQueue();
1830     q->initialize();
1831     _task_queues->register_queue(i, q);
1832     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1833   }
1834   clear_cset_start_regions();
1835 
1836   // Initialize the G1EvacuationFailureALot counters and flags.
1837   NOT_PRODUCT(reset_evacuation_should_fail();)
1838 
1839   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1840 }
1841 
1842 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1843                                                                  size_t size,
1844                                                                  size_t translation_factor) {
1845   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1846   // Allocate a new reserved space, preferring to use large pages.
1847   ReservedSpace rs(size, preferred_page_size);
1848   G1RegionToSpaceMapper* result  =
1849     G1RegionToSpaceMapper::create_mapper(rs,
1850                                          size,
1851                                          rs.alignment(),
1852                                          HeapRegion::GrainBytes,
1853                                          translation_factor,
1854                                          mtGC);
1855   if (TracePageSizes) {
1856     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1857                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1858   }
1859   return result;
1860 }
1861 
1862 jint G1CollectedHeap::initialize() {
1863   CollectedHeap::pre_initialize();
1864   os::enable_vtime();
1865 
1866   G1Log::init();
1867 
1868   // Necessary to satisfy locking discipline assertions.
1869 
1870   MutexLocker x(Heap_lock);
1871 
1872   // We have to initialize the printer before committing the heap, as
1873   // it will be used then.
1874   _hr_printer.set_active(G1PrintHeapRegions);
1875 
1876   // While there are no constraints in the GC code that HeapWordSize
1877   // be any particular value, there are multiple other areas in the
1878   // system which believe this to be true (e.g. oop->object_size in some
1879   // cases incorrectly returns the size in wordSize units rather than
1880   // HeapWordSize).
1881   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1882 
1883   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1884   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1885   size_t heap_alignment = collector_policy()->heap_alignment();
1886 
1887   // Ensure that the sizes are properly aligned.
1888   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1889   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1890   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1891 
1892   _refine_cte_cl = new RefineCardTableEntryClosure();
1893 
1894   jint ecode = JNI_OK;
1895   _cg1r = ConcurrentG1Refine::create(this, _refine_cte_cl, &ecode);
1896   if (_cg1r == NULL) {
1897     return ecode;
1898   }
1899 
1900   // Reserve the maximum.
1901 
1902   // When compressed oops are enabled, the preferred heap base
1903   // is calculated by subtracting the requested size from the
1904   // 32Gb boundary and using the result as the base address for
1905   // heap reservation. If the requested size is not aligned to
1906   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1907   // into the ReservedHeapSpace constructor) then the actual
1908   // base of the reserved heap may end up differing from the
1909   // address that was requested (i.e. the preferred heap base).
1910   // If this happens then we could end up using a non-optimal
1911   // compressed oops mode.
1912 
1913   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1914                                                  heap_alignment);
1915 
1916   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1917 
1918   // Create the barrier set for the entire reserved region.
1919   G1SATBCardTableLoggingModRefBS* bs
1920     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1921   bs->initialize();
1922   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1923   set_barrier_set(bs);
1924 
1925   // Also create a G1 rem set.
1926   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1927 
1928   // Carve out the G1 part of the heap.
1929 
1930   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1931   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1932   G1RegionToSpaceMapper* heap_storage =
1933     G1RegionToSpaceMapper::create_mapper(g1_rs,
1934                                          g1_rs.size(),
1935                                          page_size,
1936                                          HeapRegion::GrainBytes,
1937                                          1,
1938                                          mtJavaHeap);
1939   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
1940                        max_byte_size, page_size,
1941                        heap_rs.base(),
1942                        heap_rs.size());
1943   heap_storage->set_mapping_changed_listener(&_listener);
1944 
1945   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1946   G1RegionToSpaceMapper* bot_storage =
1947     create_aux_memory_mapper("Block offset table",
1948                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
1949                              G1BlockOffsetSharedArray::heap_map_factor());
1950 
1951   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1952   G1RegionToSpaceMapper* cardtable_storage =
1953     create_aux_memory_mapper("Card table",
1954                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1955                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1956 
1957   G1RegionToSpaceMapper* card_counts_storage =
1958     create_aux_memory_mapper("Card counts table",
1959                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1960                              G1CardCounts::heap_map_factor());
1961 
1962   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
1963   G1RegionToSpaceMapper* prev_bitmap_storage =
1964     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1965   G1RegionToSpaceMapper* next_bitmap_storage =
1966     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1967 
1968   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1969   g1_barrier_set()->initialize(cardtable_storage);
1970    // Do later initialization work for concurrent refinement.
1971   _cg1r->init(card_counts_storage);
1972 
1973   // 6843694 - ensure that the maximum region index can fit
1974   // in the remembered set structures.
1975   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1976   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1977 
1978   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1979   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1980   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1981             "too many cards per region");
1982 
1983   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1984 
1985   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
1986 
1987   {
1988     HeapWord* start = _hrm.reserved().start();
1989     HeapWord* end = _hrm.reserved().end();
1990     size_t granularity = HeapRegion::GrainBytes;
1991 
1992     _in_cset_fast_test.initialize(start, end, granularity);
1993     _humongous_reclaim_candidates.initialize(start, end, granularity);
1994   }
1995 
1996   // Create the ConcurrentMark data structure and thread.
1997   // (Must do this late, so that "max_regions" is defined.)
1998   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1999   if (_cm == NULL || !_cm->completed_initialization()) {
2000     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2001     return JNI_ENOMEM;
2002   }
2003   _cmThread = _cm->cmThread();
2004 
2005   // Initialize the from_card cache structure of HeapRegionRemSet.
2006   HeapRegionRemSet::init_heap(max_regions());
2007 
2008   // Now expand into the initial heap size.
2009   if (!expand(init_byte_size)) {
2010     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2011     return JNI_ENOMEM;
2012   }
2013 
2014   // Perform any initialization actions delegated to the policy.
2015   g1_policy()->init();
2016 
2017   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2018                                                SATB_Q_FL_lock,
2019                                                G1SATBProcessCompletedThreshold,
2020                                                Shared_SATB_Q_lock);
2021 
2022   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2023                                                 DirtyCardQ_CBL_mon,
2024                                                 DirtyCardQ_FL_lock,
2025                                                 concurrent_g1_refine()->yellow_zone(),
2026                                                 concurrent_g1_refine()->red_zone(),
2027                                                 Shared_DirtyCardQ_lock);
2028 
2029   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2030                                     DirtyCardQ_CBL_mon,
2031                                     DirtyCardQ_FL_lock,
2032                                     -1, // never trigger processing
2033                                     -1, // no limit on length
2034                                     Shared_DirtyCardQ_lock,
2035                                     &JavaThread::dirty_card_queue_set());
2036 
2037   // Here we allocate the dummy HeapRegion that is required by the
2038   // G1AllocRegion class.
2039   HeapRegion* dummy_region = _hrm.get_dummy_region();
2040 
2041   // We'll re-use the same region whether the alloc region will
2042   // require BOT updates or not and, if it doesn't, then a non-young
2043   // region will complain that it cannot support allocations without
2044   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2045   dummy_region->set_eden();
2046   // Make sure it's full.
2047   dummy_region->set_top(dummy_region->end());
2048   G1AllocRegion::setup(this, dummy_region);
2049 
2050   _allocator->init_mutator_alloc_region();
2051 
2052   // Do create of the monitoring and management support so that
2053   // values in the heap have been properly initialized.
2054   _g1mm = new G1MonitoringSupport(this);
2055 
2056   G1StringDedup::initialize();
2057 
2058   _preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC);
2059   for (uint i = 0; i < ParallelGCThreads; i++) {
2060     new (&_preserved_objs[i]) OopAndMarkOopStack();
2061   }
2062 
2063   return JNI_OK;
2064 }
2065 
2066 void G1CollectedHeap::stop() {
2067   // Stop all concurrent threads. We do this to make sure these threads
2068   // do not continue to execute and access resources (e.g. gclog_or_tty)
2069   // that are destroyed during shutdown.
2070   _cg1r->stop();
2071   _cmThread->stop();
2072   if (G1StringDedup::is_enabled()) {
2073     G1StringDedup::stop();
2074   }
2075 }
2076 
2077 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2078   return HeapRegion::max_region_size();
2079 }
2080 
2081 void G1CollectedHeap::post_initialize() {
2082   CollectedHeap::post_initialize();
2083   ref_processing_init();
2084 }
2085 
2086 void G1CollectedHeap::ref_processing_init() {
2087   // Reference processing in G1 currently works as follows:
2088   //
2089   // * There are two reference processor instances. One is
2090   //   used to record and process discovered references
2091   //   during concurrent marking; the other is used to
2092   //   record and process references during STW pauses
2093   //   (both full and incremental).
2094   // * Both ref processors need to 'span' the entire heap as
2095   //   the regions in the collection set may be dotted around.
2096   //
2097   // * For the concurrent marking ref processor:
2098   //   * Reference discovery is enabled at initial marking.
2099   //   * Reference discovery is disabled and the discovered
2100   //     references processed etc during remarking.
2101   //   * Reference discovery is MT (see below).
2102   //   * Reference discovery requires a barrier (see below).
2103   //   * Reference processing may or may not be MT
2104   //     (depending on the value of ParallelRefProcEnabled
2105   //     and ParallelGCThreads).
2106   //   * A full GC disables reference discovery by the CM
2107   //     ref processor and abandons any entries on it's
2108   //     discovered lists.
2109   //
2110   // * For the STW processor:
2111   //   * Non MT discovery is enabled at the start of a full GC.
2112   //   * Processing and enqueueing during a full GC is non-MT.
2113   //   * During a full GC, references are processed after marking.
2114   //
2115   //   * Discovery (may or may not be MT) is enabled at the start
2116   //     of an incremental evacuation pause.
2117   //   * References are processed near the end of a STW evacuation pause.
2118   //   * For both types of GC:
2119   //     * Discovery is atomic - i.e. not concurrent.
2120   //     * Reference discovery will not need a barrier.
2121 
2122   MemRegion mr = reserved_region();
2123 
2124   // Concurrent Mark ref processor
2125   _ref_processor_cm =
2126     new ReferenceProcessor(mr,    // span
2127                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2128                                 // mt processing
2129                            ParallelGCThreads,
2130                                 // degree of mt processing
2131                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2132                                 // mt discovery
2133                            MAX2(ParallelGCThreads, ConcGCThreads),
2134                                 // degree of mt discovery
2135                            false,
2136                                 // Reference discovery is not atomic
2137                            &_is_alive_closure_cm);
2138                                 // is alive closure
2139                                 // (for efficiency/performance)
2140 
2141   // STW ref processor
2142   _ref_processor_stw =
2143     new ReferenceProcessor(mr,    // span
2144                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2145                                 // mt processing
2146                            ParallelGCThreads,
2147                                 // degree of mt processing
2148                            (ParallelGCThreads > 1),
2149                                 // mt discovery
2150                            ParallelGCThreads,
2151                                 // degree of mt discovery
2152                            true,
2153                                 // Reference discovery is atomic
2154                            &_is_alive_closure_stw);
2155                                 // is alive closure
2156                                 // (for efficiency/performance)
2157 }
2158 
2159 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2160   return g1_policy();
2161 }
2162 
2163 size_t G1CollectedHeap::capacity() const {
2164   return _hrm.length() * HeapRegion::GrainBytes;
2165 }
2166 
2167 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2168   hr->reset_gc_time_stamp();
2169 }
2170 
2171 #ifndef PRODUCT
2172 
2173 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2174 private:
2175   unsigned _gc_time_stamp;
2176   bool _failures;
2177 
2178 public:
2179   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2180     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2181 
2182   virtual bool doHeapRegion(HeapRegion* hr) {
2183     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2184     if (_gc_time_stamp != region_gc_time_stamp) {
2185       gclog_or_tty->print_cr("Region " HR_FORMAT " has GC time stamp = %d, "
2186                              "expected %d", HR_FORMAT_PARAMS(hr),
2187                              region_gc_time_stamp, _gc_time_stamp);
2188       _failures = true;
2189     }
2190     return false;
2191   }
2192 
2193   bool failures() { return _failures; }
2194 };
2195 
2196 void G1CollectedHeap::check_gc_time_stamps() {
2197   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2198   heap_region_iterate(&cl);
2199   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2200 }
2201 #endif // PRODUCT
2202 
2203 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2204   _cg1r->hot_card_cache()->drain(cl, worker_i);
2205 }
2206 
2207 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2208   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2209   size_t n_completed_buffers = 0;
2210   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2211     n_completed_buffers++;
2212   }
2213   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2214   dcqs.clear_n_completed_buffers();
2215   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2216 }
2217 
2218 // Computes the sum of the storage used by the various regions.
2219 size_t G1CollectedHeap::used() const {
2220   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2221   if (_archive_allocator != NULL) {
2222     result += _archive_allocator->used();
2223   }
2224   return result;
2225 }
2226 
2227 size_t G1CollectedHeap::used_unlocked() const {
2228   return _summary_bytes_used;
2229 }
2230 
2231 class SumUsedClosure: public HeapRegionClosure {
2232   size_t _used;
2233 public:
2234   SumUsedClosure() : _used(0) {}
2235   bool doHeapRegion(HeapRegion* r) {
2236     _used += r->used();
2237     return false;
2238   }
2239   size_t result() { return _used; }
2240 };
2241 
2242 size_t G1CollectedHeap::recalculate_used() const {
2243   double recalculate_used_start = os::elapsedTime();
2244 
2245   SumUsedClosure blk;
2246   heap_region_iterate(&blk);
2247 
2248   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2249   return blk.result();
2250 }
2251 
2252 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2253   switch (cause) {
2254     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2255     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2256     case GCCause::_dcmd_gc_run:             return ExplicitGCInvokesConcurrent;
2257     case GCCause::_g1_humongous_allocation: return true;
2258     case GCCause::_update_allocation_context_stats_inc: return true;
2259     case GCCause::_wb_conc_mark:            return true;
2260     default:                                return false;
2261   }
2262 }
2263 
2264 #ifndef PRODUCT
2265 void G1CollectedHeap::allocate_dummy_regions() {
2266   // Let's fill up most of the region
2267   size_t word_size = HeapRegion::GrainWords - 1024;
2268   // And as a result the region we'll allocate will be humongous.
2269   guarantee(is_humongous(word_size), "sanity");
2270 
2271   // _filler_array_max_size is set to humongous object threshold
2272   // but temporarily change it to use CollectedHeap::fill_with_object().
2273   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2274 
2275   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2276     // Let's use the existing mechanism for the allocation
2277     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2278                                                  AllocationContext::system());
2279     if (dummy_obj != NULL) {
2280       MemRegion mr(dummy_obj, word_size);
2281       CollectedHeap::fill_with_object(mr);
2282     } else {
2283       // If we can't allocate once, we probably cannot allocate
2284       // again. Let's get out of the loop.
2285       break;
2286     }
2287   }
2288 }
2289 #endif // !PRODUCT
2290 
2291 void G1CollectedHeap::increment_old_marking_cycles_started() {
2292   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2293          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2294          "Wrong marking cycle count (started: %d, completed: %d)",
2295          _old_marking_cycles_started, _old_marking_cycles_completed);
2296 
2297   _old_marking_cycles_started++;
2298 }
2299 
2300 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2301   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2302 
2303   // We assume that if concurrent == true, then the caller is a
2304   // concurrent thread that was joined the Suspendible Thread
2305   // Set. If there's ever a cheap way to check this, we should add an
2306   // assert here.
2307 
2308   // Given that this method is called at the end of a Full GC or of a
2309   // concurrent cycle, and those can be nested (i.e., a Full GC can
2310   // interrupt a concurrent cycle), the number of full collections
2311   // completed should be either one (in the case where there was no
2312   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2313   // behind the number of full collections started.
2314 
2315   // This is the case for the inner caller, i.e. a Full GC.
2316   assert(concurrent ||
2317          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2318          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2319          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2320          "is inconsistent with _old_marking_cycles_completed = %u",
2321          _old_marking_cycles_started, _old_marking_cycles_completed);
2322 
2323   // This is the case for the outer caller, i.e. the concurrent cycle.
2324   assert(!concurrent ||
2325          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2326          "for outer caller (concurrent cycle): "
2327          "_old_marking_cycles_started = %u "
2328          "is inconsistent with _old_marking_cycles_completed = %u",
2329          _old_marking_cycles_started, _old_marking_cycles_completed);
2330 
2331   _old_marking_cycles_completed += 1;
2332 
2333   // We need to clear the "in_progress" flag in the CM thread before
2334   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2335   // is set) so that if a waiter requests another System.gc() it doesn't
2336   // incorrectly see that a marking cycle is still in progress.
2337   if (concurrent) {
2338     _cmThread->set_idle();
2339   }
2340 
2341   // This notify_all() will ensure that a thread that called
2342   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2343   // and it's waiting for a full GC to finish will be woken up. It is
2344   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2345   FullGCCount_lock->notify_all();
2346 }
2347 
2348 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2349   GCIdMarkAndRestore conc_gc_id_mark;
2350   collector_state()->set_concurrent_cycle_started(true);
2351   _gc_timer_cm->register_gc_start(start_time);
2352 
2353   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2354   trace_heap_before_gc(_gc_tracer_cm);
2355   _cmThread->set_gc_id(GCId::current());
2356 }
2357 
2358 void G1CollectedHeap::register_concurrent_cycle_end() {
2359   if (collector_state()->concurrent_cycle_started()) {
2360     GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2361     if (_cm->has_aborted()) {
2362       _gc_tracer_cm->report_concurrent_mode_failure();
2363     }
2364 
2365     _gc_timer_cm->register_gc_end();
2366     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2367 
2368     // Clear state variables to prepare for the next concurrent cycle.
2369      collector_state()->set_concurrent_cycle_started(false);
2370     _heap_summary_sent = false;
2371   }
2372 }
2373 
2374 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2375   if (collector_state()->concurrent_cycle_started()) {
2376     // This function can be called when:
2377     //  the cleanup pause is run
2378     //  the concurrent cycle is aborted before the cleanup pause.
2379     //  the concurrent cycle is aborted after the cleanup pause,
2380     //   but before the concurrent cycle end has been registered.
2381     // Make sure that we only send the heap information once.
2382     if (!_heap_summary_sent) {
2383       GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2384       trace_heap_after_gc(_gc_tracer_cm);
2385       _heap_summary_sent = true;
2386     }
2387   }
2388 }
2389 
2390 void G1CollectedHeap::collect(GCCause::Cause cause) {
2391   assert_heap_not_locked();
2392 
2393   uint gc_count_before;
2394   uint old_marking_count_before;
2395   uint full_gc_count_before;
2396   bool retry_gc;
2397 
2398   do {
2399     retry_gc = false;
2400 
2401     {
2402       MutexLocker ml(Heap_lock);
2403 
2404       // Read the GC count while holding the Heap_lock
2405       gc_count_before = total_collections();
2406       full_gc_count_before = total_full_collections();
2407       old_marking_count_before = _old_marking_cycles_started;
2408     }
2409 
2410     if (should_do_concurrent_full_gc(cause)) {
2411       // Schedule an initial-mark evacuation pause that will start a
2412       // concurrent cycle. We're setting word_size to 0 which means that
2413       // we are not requesting a post-GC allocation.
2414       VM_G1IncCollectionPause op(gc_count_before,
2415                                  0,     /* word_size */
2416                                  true,  /* should_initiate_conc_mark */
2417                                  g1_policy()->max_pause_time_ms(),
2418                                  cause);
2419       op.set_allocation_context(AllocationContext::current());
2420 
2421       VMThread::execute(&op);
2422       if (!op.pause_succeeded()) {
2423         if (old_marking_count_before == _old_marking_cycles_started) {
2424           retry_gc = op.should_retry_gc();
2425         } else {
2426           // A Full GC happened while we were trying to schedule the
2427           // initial-mark GC. No point in starting a new cycle given
2428           // that the whole heap was collected anyway.
2429         }
2430 
2431         if (retry_gc) {
2432           if (GC_locker::is_active_and_needs_gc()) {
2433             GC_locker::stall_until_clear();
2434           }
2435         }
2436       }
2437     } else {
2438       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2439           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2440 
2441         // Schedule a standard evacuation pause. We're setting word_size
2442         // to 0 which means that we are not requesting a post-GC allocation.
2443         VM_G1IncCollectionPause op(gc_count_before,
2444                                    0,     /* word_size */
2445                                    false, /* should_initiate_conc_mark */
2446                                    g1_policy()->max_pause_time_ms(),
2447                                    cause);
2448         VMThread::execute(&op);
2449       } else {
2450         // Schedule a Full GC.
2451         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2452         VMThread::execute(&op);
2453       }
2454     }
2455   } while (retry_gc);
2456 }
2457 
2458 bool G1CollectedHeap::is_in(const void* p) const {
2459   if (_hrm.reserved().contains(p)) {
2460     // Given that we know that p is in the reserved space,
2461     // heap_region_containing() should successfully
2462     // return the containing region.
2463     HeapRegion* hr = heap_region_containing(p);
2464     return hr->is_in(p);
2465   } else {
2466     return false;
2467   }
2468 }
2469 
2470 #ifdef ASSERT
2471 bool G1CollectedHeap::is_in_exact(const void* p) const {
2472   bool contains = reserved_region().contains(p);
2473   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2474   if (contains && available) {
2475     return true;
2476   } else {
2477     return false;
2478   }
2479 }
2480 #endif
2481 
2482 bool G1CollectedHeap::obj_in_cs(oop obj) {
2483   HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);
2484   return r != NULL && r->in_collection_set();
2485 }
2486 
2487 // Iteration functions.
2488 
2489 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2490 
2491 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2492   ExtendedOopClosure* _cl;
2493 public:
2494   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2495   bool doHeapRegion(HeapRegion* r) {
2496     if (!r->is_continues_humongous()) {
2497       r->oop_iterate(_cl);
2498     }
2499     return false;
2500   }
2501 };
2502 
2503 // Iterates an ObjectClosure over all objects within a HeapRegion.
2504 
2505 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2506   ObjectClosure* _cl;
2507 public:
2508   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2509   bool doHeapRegion(HeapRegion* r) {
2510     if (!r->is_continues_humongous()) {
2511       r->object_iterate(_cl);
2512     }
2513     return false;
2514   }
2515 };
2516 
2517 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2518   IterateObjectClosureRegionClosure blk(cl);
2519   heap_region_iterate(&blk);
2520 }
2521 
2522 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2523   _hrm.iterate(cl);
2524 }
2525 
2526 void
2527 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2528                                          uint worker_id,
2529                                          HeapRegionClaimer *hrclaimer,
2530                                          bool concurrent) const {
2531   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2532 }
2533 
2534 // Clear the cached CSet starting regions and (more importantly)
2535 // the time stamps. Called when we reset the GC time stamp.
2536 void G1CollectedHeap::clear_cset_start_regions() {
2537   assert(_worker_cset_start_region != NULL, "sanity");
2538   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2539 
2540   for (uint i = 0; i < ParallelGCThreads; i++) {
2541     _worker_cset_start_region[i] = NULL;
2542     _worker_cset_start_region_time_stamp[i] = 0;
2543   }
2544 }
2545 
2546 // Given the id of a worker, obtain or calculate a suitable
2547 // starting region for iterating over the current collection set.
2548 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2549   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2550 
2551   HeapRegion* result = NULL;
2552   unsigned gc_time_stamp = get_gc_time_stamp();
2553 
2554   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2555     // Cached starting region for current worker was set
2556     // during the current pause - so it's valid.
2557     // Note: the cached starting heap region may be NULL
2558     // (when the collection set is empty).
2559     result = _worker_cset_start_region[worker_i];
2560     assert(result == NULL || result->in_collection_set(), "sanity");
2561     return result;
2562   }
2563 
2564   // The cached entry was not valid so let's calculate
2565   // a suitable starting heap region for this worker.
2566 
2567   // We want the parallel threads to start their collection
2568   // set iteration at different collection set regions to
2569   // avoid contention.
2570   // If we have:
2571   //          n collection set regions
2572   //          p threads
2573   // Then thread t will start at region floor ((t * n) / p)
2574 
2575   result = g1_policy()->collection_set();
2576   uint cs_size = g1_policy()->cset_region_length();
2577   uint active_workers = workers()->active_workers();
2578 
2579   uint end_ind   = (cs_size * worker_i) / active_workers;
2580   uint start_ind = 0;
2581 
2582   if (worker_i > 0 &&
2583       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2584     // Previous workers starting region is valid
2585     // so let's iterate from there
2586     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2587     result = _worker_cset_start_region[worker_i - 1];
2588   }
2589 
2590   for (uint i = start_ind; i < end_ind; i++) {
2591     result = result->next_in_collection_set();
2592   }
2593 
2594   // Note: the calculated starting heap region may be NULL
2595   // (when the collection set is empty).
2596   assert(result == NULL || result->in_collection_set(), "sanity");
2597   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2598          "should be updated only once per pause");
2599   _worker_cset_start_region[worker_i] = result;
2600   OrderAccess::storestore();
2601   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2602   return result;
2603 }
2604 
2605 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2606   HeapRegion* r = g1_policy()->collection_set();
2607   while (r != NULL) {
2608     HeapRegion* next = r->next_in_collection_set();
2609     if (cl->doHeapRegion(r)) {
2610       cl->incomplete();
2611       return;
2612     }
2613     r = next;
2614   }
2615 }
2616 
2617 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2618                                                   HeapRegionClosure *cl) {
2619   if (r == NULL) {
2620     // The CSet is empty so there's nothing to do.
2621     return;
2622   }
2623 
2624   assert(r->in_collection_set(),
2625          "Start region must be a member of the collection set.");
2626   HeapRegion* cur = r;
2627   while (cur != NULL) {
2628     HeapRegion* next = cur->next_in_collection_set();
2629     if (cl->doHeapRegion(cur) && false) {
2630       cl->incomplete();
2631       return;
2632     }
2633     cur = next;
2634   }
2635   cur = g1_policy()->collection_set();
2636   while (cur != r) {
2637     HeapRegion* next = cur->next_in_collection_set();
2638     if (cl->doHeapRegion(cur) && false) {
2639       cl->incomplete();
2640       return;
2641     }
2642     cur = next;
2643   }
2644 }
2645 
2646 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2647   HeapRegion* result = _hrm.next_region_in_heap(from);
2648   while (result != NULL && result->is_pinned()) {
2649     result = _hrm.next_region_in_heap(result);
2650   }
2651   return result;
2652 }
2653 
2654 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2655   HeapRegion* hr = heap_region_containing(addr);
2656   return hr->block_start(addr);
2657 }
2658 
2659 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2660   HeapRegion* hr = heap_region_containing(addr);
2661   return hr->block_size(addr);
2662 }
2663 
2664 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2665   HeapRegion* hr = heap_region_containing(addr);
2666   return hr->block_is_obj(addr);
2667 }
2668 
2669 bool G1CollectedHeap::supports_tlab_allocation() const {
2670   return true;
2671 }
2672 
2673 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2674   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2675 }
2676 
2677 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2678   return young_list()->eden_used_bytes();
2679 }
2680 
2681 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2682 // must be equal to the humongous object limit.
2683 size_t G1CollectedHeap::max_tlab_size() const {
2684   return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment);
2685 }
2686 
2687 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2688   AllocationContext_t context = AllocationContext::current();
2689   return _allocator->unsafe_max_tlab_alloc(context);
2690 }
2691 
2692 size_t G1CollectedHeap::max_capacity() const {
2693   return _hrm.reserved().byte_size();
2694 }
2695 
2696 jlong G1CollectedHeap::millis_since_last_gc() {
2697   // assert(false, "NYI");
2698   return 0;
2699 }
2700 
2701 void G1CollectedHeap::prepare_for_verify() {
2702   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2703     ensure_parsability(false);
2704   }
2705   g1_rem_set()->prepare_for_verify();
2706 }
2707 
2708 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2709                                               VerifyOption vo) {
2710   switch (vo) {
2711   case VerifyOption_G1UsePrevMarking:
2712     return hr->obj_allocated_since_prev_marking(obj);
2713   case VerifyOption_G1UseNextMarking:
2714     return hr->obj_allocated_since_next_marking(obj);
2715   case VerifyOption_G1UseMarkWord:
2716     return false;
2717   default:
2718     ShouldNotReachHere();
2719   }
2720   return false; // keep some compilers happy
2721 }
2722 
2723 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2724   switch (vo) {
2725   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2726   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2727   case VerifyOption_G1UseMarkWord:    return NULL;
2728   default:                            ShouldNotReachHere();
2729   }
2730   return NULL; // keep some compilers happy
2731 }
2732 
2733 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2734   switch (vo) {
2735   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2736   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2737   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2738   default:                            ShouldNotReachHere();
2739   }
2740   return false; // keep some compilers happy
2741 }
2742 
2743 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2744   switch (vo) {
2745   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2746   case VerifyOption_G1UseNextMarking: return "NTAMS";
2747   case VerifyOption_G1UseMarkWord:    return "NONE";
2748   default:                            ShouldNotReachHere();
2749   }
2750   return NULL; // keep some compilers happy
2751 }
2752 
2753 class VerifyRootsClosure: public OopClosure {
2754 private:
2755   G1CollectedHeap* _g1h;
2756   VerifyOption     _vo;
2757   bool             _failures;
2758 public:
2759   // _vo == UsePrevMarking -> use "prev" marking information,
2760   // _vo == UseNextMarking -> use "next" marking information,
2761   // _vo == UseMarkWord    -> use mark word from object header.
2762   VerifyRootsClosure(VerifyOption vo) :
2763     _g1h(G1CollectedHeap::heap()),
2764     _vo(vo),
2765     _failures(false) { }
2766 
2767   bool failures() { return _failures; }
2768 
2769   template <class T> void do_oop_nv(T* p) {
2770     T heap_oop = oopDesc::load_heap_oop(p);
2771     if (!oopDesc::is_null(heap_oop)) {
2772       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2773       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2774         gclog_or_tty->print_cr("Root location " PTR_FORMAT " "
2775                                "points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
2776         if (_vo == VerifyOption_G1UseMarkWord) {
2777           gclog_or_tty->print_cr("  Mark word: " INTPTR_FORMAT, (intptr_t)obj->mark());
2778         }
2779         obj->print_on(gclog_or_tty);
2780         _failures = true;
2781       }
2782     }
2783   }
2784 
2785   void do_oop(oop* p)       { do_oop_nv(p); }
2786   void do_oop(narrowOop* p) { do_oop_nv(p); }
2787 };
2788 
2789 class G1VerifyCodeRootOopClosure: public OopClosure {
2790   G1CollectedHeap* _g1h;
2791   OopClosure* _root_cl;
2792   nmethod* _nm;
2793   VerifyOption _vo;
2794   bool _failures;
2795 
2796   template <class T> void do_oop_work(T* p) {
2797     // First verify that this root is live
2798     _root_cl->do_oop(p);
2799 
2800     if (!G1VerifyHeapRegionCodeRoots) {
2801       // We're not verifying the code roots attached to heap region.
2802       return;
2803     }
2804 
2805     // Don't check the code roots during marking verification in a full GC
2806     if (_vo == VerifyOption_G1UseMarkWord) {
2807       return;
2808     }
2809 
2810     // Now verify that the current nmethod (which contains p) is
2811     // in the code root list of the heap region containing the
2812     // object referenced by p.
2813 
2814     T heap_oop = oopDesc::load_heap_oop(p);
2815     if (!oopDesc::is_null(heap_oop)) {
2816       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2817 
2818       // Now fetch the region containing the object
2819       HeapRegion* hr = _g1h->heap_region_containing(obj);
2820       HeapRegionRemSet* hrrs = hr->rem_set();
2821       // Verify that the strong code root list for this region
2822       // contains the nmethod
2823       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2824         gclog_or_tty->print_cr("Code root location " PTR_FORMAT " "
2825                                "from nmethod " PTR_FORMAT " not in strong "
2826                                "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
2827                                p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
2828         _failures = true;
2829       }
2830     }
2831   }
2832 
2833 public:
2834   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2835     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2836 
2837   void do_oop(oop* p) { do_oop_work(p); }
2838   void do_oop(narrowOop* p) { do_oop_work(p); }
2839 
2840   void set_nmethod(nmethod* nm) { _nm = nm; }
2841   bool failures() { return _failures; }
2842 };
2843 
2844 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2845   G1VerifyCodeRootOopClosure* _oop_cl;
2846 
2847 public:
2848   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2849     _oop_cl(oop_cl) {}
2850 
2851   void do_code_blob(CodeBlob* cb) {
2852     nmethod* nm = cb->as_nmethod_or_null();
2853     if (nm != NULL) {
2854       _oop_cl->set_nmethod(nm);
2855       nm->oops_do(_oop_cl);
2856     }
2857   }
2858 };
2859 
2860 class YoungRefCounterClosure : public OopClosure {
2861   G1CollectedHeap* _g1h;
2862   int              _count;
2863  public:
2864   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2865   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2866   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2867 
2868   int count() { return _count; }
2869   void reset_count() { _count = 0; };
2870 };
2871 
2872 class VerifyKlassClosure: public KlassClosure {
2873   YoungRefCounterClosure _young_ref_counter_closure;
2874   OopClosure *_oop_closure;
2875  public:
2876   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2877   void do_klass(Klass* k) {
2878     k->oops_do(_oop_closure);
2879 
2880     _young_ref_counter_closure.reset_count();
2881     k->oops_do(&_young_ref_counter_closure);
2882     if (_young_ref_counter_closure.count() > 0) {
2883       guarantee(k->has_modified_oops(), "Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k));
2884     }
2885   }
2886 };
2887 
2888 class VerifyLivenessOopClosure: public OopClosure {
2889   G1CollectedHeap* _g1h;
2890   VerifyOption _vo;
2891 public:
2892   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2893     _g1h(g1h), _vo(vo)
2894   { }
2895   void do_oop(narrowOop *p) { do_oop_work(p); }
2896   void do_oop(      oop *p) { do_oop_work(p); }
2897 
2898   template <class T> void do_oop_work(T *p) {
2899     oop obj = oopDesc::load_decode_heap_oop(p);
2900     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2901               "Dead object referenced by a not dead object");
2902   }
2903 };
2904 
2905 class VerifyObjsInRegionClosure: public ObjectClosure {
2906 private:
2907   G1CollectedHeap* _g1h;
2908   size_t _live_bytes;
2909   HeapRegion *_hr;
2910   VerifyOption _vo;
2911 public:
2912   // _vo == UsePrevMarking -> use "prev" marking information,
2913   // _vo == UseNextMarking -> use "next" marking information,
2914   // _vo == UseMarkWord    -> use mark word from object header.
2915   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2916     : _live_bytes(0), _hr(hr), _vo(vo) {
2917     _g1h = G1CollectedHeap::heap();
2918   }
2919   void do_object(oop o) {
2920     VerifyLivenessOopClosure isLive(_g1h, _vo);
2921     assert(o != NULL, "Huh?");
2922     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2923       // If the object is alive according to the mark word,
2924       // then verify that the marking information agrees.
2925       // Note we can't verify the contra-positive of the
2926       // above: if the object is dead (according to the mark
2927       // word), it may not be marked, or may have been marked
2928       // but has since became dead, or may have been allocated
2929       // since the last marking.
2930       if (_vo == VerifyOption_G1UseMarkWord) {
2931         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2932       }
2933 
2934       o->oop_iterate_no_header(&isLive);
2935       if (!_hr->obj_allocated_since_prev_marking(o)) {
2936         size_t obj_size = o->size();    // Make sure we don't overflow
2937         _live_bytes += (obj_size * HeapWordSize);
2938       }
2939     }
2940   }
2941   size_t live_bytes() { return _live_bytes; }
2942 };
2943 
2944 class VerifyArchiveOopClosure: public OopClosure {
2945 public:
2946   VerifyArchiveOopClosure(HeapRegion *hr) { }
2947   void do_oop(narrowOop *p) { do_oop_work(p); }
2948   void do_oop(      oop *p) { do_oop_work(p); }
2949 
2950   template <class T> void do_oop_work(T *p) {
2951     oop obj = oopDesc::load_decode_heap_oop(p);
2952     guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj),
2953               "Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
2954               p2i(p), p2i(obj));
2955   }
2956 };
2957 
2958 class VerifyArchiveRegionClosure: public ObjectClosure {
2959 public:
2960   VerifyArchiveRegionClosure(HeapRegion *hr) { }
2961   // Verify that all object pointers are to archive regions.
2962   void do_object(oop o) {
2963     VerifyArchiveOopClosure checkOop(NULL);
2964     assert(o != NULL, "Should not be here for NULL oops");
2965     o->oop_iterate_no_header(&checkOop);
2966   }
2967 };
2968 
2969 class VerifyRegionClosure: public HeapRegionClosure {
2970 private:
2971   bool             _par;
2972   VerifyOption     _vo;
2973   bool             _failures;
2974 public:
2975   // _vo == UsePrevMarking -> use "prev" marking information,
2976   // _vo == UseNextMarking -> use "next" marking information,
2977   // _vo == UseMarkWord    -> use mark word from object header.
2978   VerifyRegionClosure(bool par, VerifyOption vo)
2979     : _par(par),
2980       _vo(vo),
2981       _failures(false) {}
2982 
2983   bool failures() {
2984     return _failures;
2985   }
2986 
2987   bool doHeapRegion(HeapRegion* r) {
2988     // For archive regions, verify there are no heap pointers to
2989     // non-pinned regions. For all others, verify liveness info.
2990     if (r->is_archive()) {
2991       VerifyArchiveRegionClosure verify_oop_pointers(r);
2992       r->object_iterate(&verify_oop_pointers);
2993       return true;
2994     }
2995     if (!r->is_continues_humongous()) {
2996       bool failures = false;
2997       r->verify(_vo, &failures);
2998       if (failures) {
2999         _failures = true;
3000       } else if (!r->is_starts_humongous()) {
3001         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3002         r->object_iterate(&not_dead_yet_cl);
3003         if (_vo != VerifyOption_G1UseNextMarking) {
3004           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3005             gclog_or_tty->print_cr("[" PTR_FORMAT "," PTR_FORMAT "] "
3006                                    "max_live_bytes " SIZE_FORMAT " "
3007                                    "< calculated " SIZE_FORMAT,
3008                                    p2i(r->bottom()), p2i(r->end()),
3009                                    r->max_live_bytes(),
3010                                  not_dead_yet_cl.live_bytes());
3011             _failures = true;
3012           }
3013         } else {
3014           // When vo == UseNextMarking we cannot currently do a sanity
3015           // check on the live bytes as the calculation has not been
3016           // finalized yet.
3017         }
3018       }
3019     }
3020     return false; // stop the region iteration if we hit a failure
3021   }
3022 };
3023 
3024 // This is the task used for parallel verification of the heap regions
3025 
3026 class G1ParVerifyTask: public AbstractGangTask {
3027 private:
3028   G1CollectedHeap*  _g1h;
3029   VerifyOption      _vo;
3030   bool              _failures;
3031   HeapRegionClaimer _hrclaimer;
3032 
3033 public:
3034   // _vo == UsePrevMarking -> use "prev" marking information,
3035   // _vo == UseNextMarking -> use "next" marking information,
3036   // _vo == UseMarkWord    -> use mark word from object header.
3037   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3038       AbstractGangTask("Parallel verify task"),
3039       _g1h(g1h),
3040       _vo(vo),
3041       _failures(false),
3042       _hrclaimer(g1h->workers()->active_workers()) {}
3043 
3044   bool failures() {
3045     return _failures;
3046   }
3047 
3048   void work(uint worker_id) {
3049     HandleMark hm;
3050     VerifyRegionClosure blk(true, _vo);
3051     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3052     if (blk.failures()) {
3053       _failures = true;
3054     }
3055   }
3056 };
3057 
3058 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3059   if (SafepointSynchronize::is_at_safepoint()) {
3060     assert(Thread::current()->is_VM_thread(),
3061            "Expected to be executed serially by the VM thread at this point");
3062 
3063     if (!silent) { gclog_or_tty->print("Roots "); }
3064     VerifyRootsClosure rootsCl(vo);
3065     VerifyKlassClosure klassCl(this, &rootsCl);
3066     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3067 
3068     // We apply the relevant closures to all the oops in the
3069     // system dictionary, class loader data graph, the string table
3070     // and the nmethods in the code cache.
3071     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3072     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3073 
3074     {
3075       G1RootProcessor root_processor(this, 1);
3076       root_processor.process_all_roots(&rootsCl,
3077                                        &cldCl,
3078                                        &blobsCl);
3079     }
3080 
3081     bool failures = rootsCl.failures() || codeRootsCl.failures();
3082 
3083     if (vo != VerifyOption_G1UseMarkWord) {
3084       // If we're verifying during a full GC then the region sets
3085       // will have been torn down at the start of the GC. Therefore
3086       // verifying the region sets will fail. So we only verify
3087       // the region sets when not in a full GC.
3088       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3089       verify_region_sets();
3090     }
3091 
3092     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3093     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3094 
3095       G1ParVerifyTask task(this, vo);
3096       workers()->run_task(&task);
3097       if (task.failures()) {
3098         failures = true;
3099       }
3100 
3101     } else {
3102       VerifyRegionClosure blk(false, vo);
3103       heap_region_iterate(&blk);
3104       if (blk.failures()) {
3105         failures = true;
3106       }
3107     }
3108 
3109     if (G1StringDedup::is_enabled()) {
3110       if (!silent) gclog_or_tty->print("StrDedup ");
3111       G1StringDedup::verify();
3112     }
3113 
3114     if (failures) {
3115       gclog_or_tty->print_cr("Heap:");
3116       // It helps to have the per-region information in the output to
3117       // help us track down what went wrong. This is why we call
3118       // print_extended_on() instead of print_on().
3119       print_extended_on(gclog_or_tty);
3120       gclog_or_tty->cr();
3121       gclog_or_tty->flush();
3122     }
3123     guarantee(!failures, "there should not have been any failures");
3124   } else {
3125     if (!silent) {
3126       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3127       if (G1StringDedup::is_enabled()) {
3128         gclog_or_tty->print(", StrDedup");
3129       }
3130       gclog_or_tty->print(") ");
3131     }
3132   }
3133 }
3134 
3135 void G1CollectedHeap::verify(bool silent) {
3136   verify(silent, VerifyOption_G1UsePrevMarking);
3137 }
3138 
3139 double G1CollectedHeap::verify(bool guard, const char* msg) {
3140   double verify_time_ms = 0.0;
3141 
3142   if (guard && total_collections() >= VerifyGCStartAt) {
3143     double verify_start = os::elapsedTime();
3144     HandleMark hm;  // Discard invalid handles created during verification
3145     prepare_for_verify();
3146     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3147     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3148   }
3149 
3150   return verify_time_ms;
3151 }
3152 
3153 void G1CollectedHeap::verify_before_gc() {
3154   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3155   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3156 }
3157 
3158 void G1CollectedHeap::verify_after_gc() {
3159   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3160   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3161 }
3162 
3163 class PrintRegionClosure: public HeapRegionClosure {
3164   outputStream* _st;
3165 public:
3166   PrintRegionClosure(outputStream* st) : _st(st) {}
3167   bool doHeapRegion(HeapRegion* r) {
3168     r->print_on(_st);
3169     return false;
3170   }
3171 };
3172 
3173 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3174                                        const HeapRegion* hr,
3175                                        const VerifyOption vo) const {
3176   switch (vo) {
3177   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3178   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3179   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
3180   default:                            ShouldNotReachHere();
3181   }
3182   return false; // keep some compilers happy
3183 }
3184 
3185 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3186                                        const VerifyOption vo) const {
3187   switch (vo) {
3188   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3189   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3190   case VerifyOption_G1UseMarkWord: {
3191     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
3192     return !obj->is_gc_marked() && !hr->is_archive();
3193   }
3194   default:                            ShouldNotReachHere();
3195   }
3196   return false; // keep some compilers happy
3197 }
3198 
3199 void G1CollectedHeap::print_on(outputStream* st) const {
3200   st->print(" %-20s", "garbage-first heap");
3201   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3202             capacity()/K, used_unlocked()/K);
3203   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3204             p2i(_hrm.reserved().start()),
3205             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3206             p2i(_hrm.reserved().end()));
3207   st->cr();
3208   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3209   uint young_regions = _young_list->length();
3210   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3211             (size_t) young_regions * HeapRegion::GrainBytes / K);
3212   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3213   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3214             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3215   st->cr();
3216   MetaspaceAux::print_on(st);
3217 }
3218 
3219 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3220   print_on(st);
3221 
3222   // Print the per-region information.
3223   st->cr();
3224   st->print_cr("Heap Regions: (E=young(eden), S=young(survivor), O=old, "
3225                "HS=humongous(starts), HC=humongous(continues), "
3226                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
3227                "PTAMS=previous top-at-mark-start, "
3228                "NTAMS=next top-at-mark-start)");
3229   PrintRegionClosure blk(st);
3230   heap_region_iterate(&blk);
3231 }
3232 
3233 void G1CollectedHeap::print_on_error(outputStream* st) const {
3234   this->CollectedHeap::print_on_error(st);
3235 
3236   if (_cm != NULL) {
3237     st->cr();
3238     _cm->print_on_error(st);
3239   }
3240 }
3241 
3242 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3243   workers()->print_worker_threads_on(st);
3244   _cmThread->print_on(st);
3245   st->cr();
3246   _cm->print_worker_threads_on(st);
3247   _cg1r->print_worker_threads_on(st);
3248   if (G1StringDedup::is_enabled()) {
3249     G1StringDedup::print_worker_threads_on(st);
3250   }
3251 }
3252 
3253 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3254   workers()->threads_do(tc);
3255   tc->do_thread(_cmThread);
3256   _cg1r->threads_do(tc);
3257   if (G1StringDedup::is_enabled()) {
3258     G1StringDedup::threads_do(tc);
3259   }
3260 }
3261 
3262 void G1CollectedHeap::print_tracing_info() const {
3263   // We'll overload this to mean "trace GC pause statistics."
3264   if (TraceYoungGenTime || TraceOldGenTime) {
3265     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3266     // to that.
3267     g1_policy()->print_tracing_info();
3268   }
3269   if (G1SummarizeRSetStats) {
3270     g1_rem_set()->print_summary_info();
3271   }
3272   if (G1SummarizeConcMark) {
3273     concurrent_mark()->print_summary_info();
3274   }
3275   g1_policy()->print_yg_surv_rate_info();
3276 }
3277 
3278 #ifndef PRODUCT
3279 // Helpful for debugging RSet issues.
3280 
3281 class PrintRSetsClosure : public HeapRegionClosure {
3282 private:
3283   const char* _msg;
3284   size_t _occupied_sum;
3285 
3286 public:
3287   bool doHeapRegion(HeapRegion* r) {
3288     HeapRegionRemSet* hrrs = r->rem_set();
3289     size_t occupied = hrrs->occupied();
3290     _occupied_sum += occupied;
3291 
3292     gclog_or_tty->print_cr("Printing RSet for region " HR_FORMAT,
3293                            HR_FORMAT_PARAMS(r));
3294     if (occupied == 0) {
3295       gclog_or_tty->print_cr("  RSet is empty");
3296     } else {
3297       hrrs->print();
3298     }
3299     gclog_or_tty->print_cr("----------");
3300     return false;
3301   }
3302 
3303   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3304     gclog_or_tty->cr();
3305     gclog_or_tty->print_cr("========================================");
3306     gclog_or_tty->print_cr("%s", msg);
3307     gclog_or_tty->cr();
3308   }
3309 
3310   ~PrintRSetsClosure() {
3311     gclog_or_tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
3312     gclog_or_tty->print_cr("========================================");
3313     gclog_or_tty->cr();
3314   }
3315 };
3316 
3317 void G1CollectedHeap::print_cset_rsets() {
3318   PrintRSetsClosure cl("Printing CSet RSets");
3319   collection_set_iterate(&cl);
3320 }
3321 
3322 void G1CollectedHeap::print_all_rsets() {
3323   PrintRSetsClosure cl("Printing All RSets");;
3324   heap_region_iterate(&cl);
3325 }
3326 #endif // PRODUCT
3327 
3328 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
3329   YoungList* young_list = heap()->young_list();
3330 
3331   size_t eden_used_bytes = young_list->eden_used_bytes();
3332   size_t survivor_used_bytes = young_list->survivor_used_bytes();
3333 
3334   size_t eden_capacity_bytes =
3335     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
3336 
3337   VirtualSpaceSummary heap_summary = create_heap_space_summary();
3338   return G1HeapSummary(heap_summary, used(), eden_used_bytes, eden_capacity_bytes, survivor_used_bytes);
3339 }
3340 
3341 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
3342   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
3343                        stats->unused(), stats->used(), stats->region_end_waste(),
3344                        stats->regions_filled(), stats->direct_allocated(),
3345                        stats->failure_used(), stats->failure_waste());
3346 }
3347 
3348 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
3349   const G1HeapSummary& heap_summary = create_g1_heap_summary();
3350   gc_tracer->report_gc_heap_summary(when, heap_summary);
3351 
3352   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
3353   gc_tracer->report_metaspace_summary(when, metaspace_summary);
3354 }
3355 
3356 
3357 G1CollectedHeap* G1CollectedHeap::heap() {
3358   CollectedHeap* heap = Universe::heap();
3359   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3360   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3361   return (G1CollectedHeap*)heap;
3362 }
3363 
3364 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3365   // always_do_update_barrier = false;
3366   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3367   // Fill TLAB's and such
3368   accumulate_statistics_all_tlabs();
3369   ensure_parsability(true);
3370 
3371   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3372       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3373     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3374   }
3375 }
3376 
3377 void G1CollectedHeap::gc_epilogue(bool full) {
3378 
3379   if (G1SummarizeRSetStats &&
3380       (G1SummarizeRSetStatsPeriod > 0) &&
3381       // we are at the end of the GC. Total collections has already been increased.
3382       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3383     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3384   }
3385 
3386   // FIXME: what is this about?
3387   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3388   // is set.
3389 #if defined(COMPILER2) || INCLUDE_JVMCI
3390   assert(DerivedPointerTable::is_empty(), "derived pointer present");
3391 #endif
3392   // always_do_update_barrier = true;
3393 
3394   resize_all_tlabs();
3395   allocation_context_stats().update(full);
3396 
3397   // We have just completed a GC. Update the soft reference
3398   // policy with the new heap occupancy
3399   Universe::update_heap_info_at_gc();
3400 }
3401 
3402 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3403                                                uint gc_count_before,
3404                                                bool* succeeded,
3405                                                GCCause::Cause gc_cause) {
3406   assert_heap_not_locked_and_not_at_safepoint();
3407   g1_policy()->record_stop_world_start();
3408   VM_G1IncCollectionPause op(gc_count_before,
3409                              word_size,
3410                              false, /* should_initiate_conc_mark */
3411                              g1_policy()->max_pause_time_ms(),
3412                              gc_cause);
3413 
3414   op.set_allocation_context(AllocationContext::current());
3415   VMThread::execute(&op);
3416 
3417   HeapWord* result = op.result();
3418   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3419   assert(result == NULL || ret_succeeded,
3420          "the result should be NULL if the VM did not succeed");
3421   *succeeded = ret_succeeded;
3422 
3423   assert_heap_not_locked();
3424   return result;
3425 }
3426 
3427 void
3428 G1CollectedHeap::doConcurrentMark() {
3429   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3430   if (!_cmThread->in_progress()) {
3431     _cmThread->set_started();
3432     CGC_lock->notify();
3433   }
3434 }
3435 
3436 size_t G1CollectedHeap::pending_card_num() {
3437   size_t extra_cards = 0;
3438   JavaThread *curr = Threads::first();
3439   while (curr != NULL) {
3440     DirtyCardQueue& dcq = curr->dirty_card_queue();
3441     extra_cards += dcq.size();
3442     curr = curr->next();
3443   }
3444   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3445   size_t buffer_size = dcqs.buffer_size();
3446   size_t buffer_num = dcqs.completed_buffers_num();
3447 
3448   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3449   // in bytes - not the number of 'entries'. We need to convert
3450   // into a number of cards.
3451   return (buffer_size * buffer_num + extra_cards) / oopSize;
3452 }
3453 
3454 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3455  private:
3456   size_t _total_humongous;
3457   size_t _candidate_humongous;
3458 
3459   DirtyCardQueue _dcq;
3460 
3461   // We don't nominate objects with many remembered set entries, on
3462   // the assumption that such objects are likely still live.
3463   bool is_remset_small(HeapRegion* region) const {
3464     HeapRegionRemSet* const rset = region->rem_set();
3465     return G1EagerReclaimHumongousObjectsWithStaleRefs
3466       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3467       : rset->is_empty();
3468   }
3469 
3470   bool is_typeArray_region(HeapRegion* region) const {
3471     return oop(region->bottom())->is_typeArray();
3472   }
3473 
3474   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3475     assert(region->is_starts_humongous(), "Must start a humongous object");
3476 
3477     // Candidate selection must satisfy the following constraints
3478     // while concurrent marking is in progress:
3479     //
3480     // * In order to maintain SATB invariants, an object must not be
3481     // reclaimed if it was allocated before the start of marking and
3482     // has not had its references scanned.  Such an object must have
3483     // its references (including type metadata) scanned to ensure no
3484     // live objects are missed by the marking process.  Objects
3485     // allocated after the start of concurrent marking don't need to
3486     // be scanned.
3487     //
3488     // * An object must not be reclaimed if it is on the concurrent
3489     // mark stack.  Objects allocated after the start of concurrent
3490     // marking are never pushed on the mark stack.
3491     //
3492     // Nominating only objects allocated after the start of concurrent
3493     // marking is sufficient to meet both constraints.  This may miss
3494     // some objects that satisfy the constraints, but the marking data
3495     // structures don't support efficiently performing the needed
3496     // additional tests or scrubbing of the mark stack.
3497     //
3498     // However, we presently only nominate is_typeArray() objects.
3499     // A humongous object containing references induces remembered
3500     // set entries on other regions.  In order to reclaim such an
3501     // object, those remembered sets would need to be cleaned up.
3502     //
3503     // We also treat is_typeArray() objects specially, allowing them
3504     // to be reclaimed even if allocated before the start of
3505     // concurrent mark.  For this we rely on mark stack insertion to
3506     // exclude is_typeArray() objects, preventing reclaiming an object
3507     // that is in the mark stack.  We also rely on the metadata for
3508     // such objects to be built-in and so ensured to be kept live.
3509     // Frequent allocation and drop of large binary blobs is an
3510     // important use case for eager reclaim, and this special handling
3511     // may reduce needed headroom.
3512 
3513     return is_typeArray_region(region) && is_remset_small(region);
3514   }
3515 
3516  public:
3517   RegisterHumongousWithInCSetFastTestClosure()
3518   : _total_humongous(0),
3519     _candidate_humongous(0),
3520     _dcq(&JavaThread::dirty_card_queue_set()) {
3521   }
3522 
3523   virtual bool doHeapRegion(HeapRegion* r) {
3524     if (!r->is_starts_humongous()) {
3525       return false;
3526     }
3527     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3528 
3529     bool is_candidate = humongous_region_is_candidate(g1h, r);
3530     uint rindex = r->hrm_index();
3531     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3532     if (is_candidate) {
3533       _candidate_humongous++;
3534       g1h->register_humongous_region_with_cset(rindex);
3535       // Is_candidate already filters out humongous object with large remembered sets.
3536       // If we have a humongous object with a few remembered sets, we simply flush these
3537       // remembered set entries into the DCQS. That will result in automatic
3538       // re-evaluation of their remembered set entries during the following evacuation
3539       // phase.
3540       if (!r->rem_set()->is_empty()) {
3541         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3542                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3543         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3544         HeapRegionRemSetIterator hrrs(r->rem_set());
3545         size_t card_index;
3546         while (hrrs.has_next(card_index)) {
3547           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3548           // The remembered set might contain references to already freed
3549           // regions. Filter out such entries to avoid failing card table
3550           // verification.
3551           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
3552             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3553               *card_ptr = CardTableModRefBS::dirty_card_val();
3554               _dcq.enqueue(card_ptr);
3555             }
3556           }
3557         }
3558         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
3559                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
3560                hrrs.n_yielded(), r->rem_set()->occupied());
3561         r->rem_set()->clear_locked();
3562       }
3563       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3564     }
3565     _total_humongous++;
3566 
3567     return false;
3568   }
3569 
3570   size_t total_humongous() const { return _total_humongous; }
3571   size_t candidate_humongous() const { return _candidate_humongous; }
3572 
3573   void flush_rem_set_entries() { _dcq.flush(); }
3574 };
3575 
3576 void G1CollectedHeap::register_humongous_regions_with_cset() {
3577   if (!G1EagerReclaimHumongousObjects) {
3578     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3579     return;
3580   }
3581   double time = os::elapsed_counter();
3582 
3583   // Collect reclaim candidate information and register candidates with cset.
3584   RegisterHumongousWithInCSetFastTestClosure cl;
3585   heap_region_iterate(&cl);
3586 
3587   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3588   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3589                                                                   cl.total_humongous(),
3590                                                                   cl.candidate_humongous());
3591   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3592 
3593   // Finally flush all remembered set entries to re-check into the global DCQS.
3594   cl.flush_rem_set_entries();
3595 }
3596 
3597 #ifdef ASSERT
3598 class VerifyCSetClosure: public HeapRegionClosure {
3599 public:
3600   bool doHeapRegion(HeapRegion* hr) {
3601     // Here we check that the CSet region's RSet is ready for parallel
3602     // iteration. The fields that we'll verify are only manipulated
3603     // when the region is part of a CSet and is collected. Afterwards,
3604     // we reset these fields when we clear the region's RSet (when the
3605     // region is freed) so they are ready when the region is
3606     // re-allocated. The only exception to this is if there's an
3607     // evacuation failure and instead of freeing the region we leave
3608     // it in the heap. In that case, we reset these fields during
3609     // evacuation failure handling.
3610     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3611 
3612     // Here's a good place to add any other checks we'd like to
3613     // perform on CSet regions.
3614     return false;
3615   }
3616 };
3617 #endif // ASSERT
3618 
3619 uint G1CollectedHeap::num_task_queues() const {
3620   return _task_queues->size();
3621 }
3622 
3623 #if TASKQUEUE_STATS
3624 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3625   st->print_raw_cr("GC Task Stats");
3626   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3627   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3628 }
3629 
3630 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3631   print_taskqueue_stats_hdr(st);
3632 
3633   TaskQueueStats totals;
3634   const uint n = num_task_queues();
3635   for (uint i = 0; i < n; ++i) {
3636     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3637     totals += task_queue(i)->stats;
3638   }
3639   st->print_raw("tot "); totals.print(st); st->cr();
3640 
3641   DEBUG_ONLY(totals.verify());
3642 }
3643 
3644 void G1CollectedHeap::reset_taskqueue_stats() {
3645   const uint n = num_task_queues();
3646   for (uint i = 0; i < n; ++i) {
3647     task_queue(i)->stats.reset();
3648   }
3649 }
3650 #endif // TASKQUEUE_STATS
3651 
3652 void G1CollectedHeap::log_gc_header() {
3653   if (!G1Log::fine()) {
3654     return;
3655   }
3656 
3657   gclog_or_tty->gclog_stamp();
3658 
3659   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3660     .append(collector_state()->gcs_are_young() ? "(young)" : "(mixed)")
3661     .append(collector_state()->during_initial_mark_pause() ? " (initial-mark)" : "");
3662 
3663   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3664 }
3665 
3666 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3667   if (!G1Log::fine()) {
3668     return;
3669   }
3670 
3671   if (G1Log::finer()) {
3672     if (evacuation_failed()) {
3673       gclog_or_tty->print(" (to-space exhausted)");
3674     }
3675     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3676     g1_policy()->print_phases(pause_time_sec);
3677     g1_policy()->print_detailed_heap_transition();
3678   } else {
3679     if (evacuation_failed()) {
3680       gclog_or_tty->print("--");
3681     }
3682     g1_policy()->print_heap_transition();
3683     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3684   }
3685   gclog_or_tty->flush();
3686 }
3687 
3688 void G1CollectedHeap::wait_for_root_region_scanning() {
3689   double scan_wait_start = os::elapsedTime();
3690   // We have to wait until the CM threads finish scanning the
3691   // root regions as it's the only way to ensure that all the
3692   // objects on them have been correctly scanned before we start
3693   // moving them during the GC.
3694   bool waited = _cm->root_regions()->wait_until_scan_finished();
3695   double wait_time_ms = 0.0;
3696   if (waited) {
3697     double scan_wait_end = os::elapsedTime();
3698     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3699   }
3700   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3701 }
3702 
3703 bool
3704 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3705   assert_at_safepoint(true /* should_be_vm_thread */);
3706   guarantee(!is_gc_active(), "collection is not reentrant");
3707 
3708   if (GC_locker::check_active_before_gc()) {
3709     return false;
3710   }
3711 
3712   _gc_timer_stw->register_gc_start();
3713 
3714   GCIdMark gc_id_mark;
3715   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3716 
3717   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3718   ResourceMark rm;
3719 
3720   wait_for_root_region_scanning();
3721 
3722   G1Log::update_level();
3723   print_heap_before_gc();
3724   trace_heap_before_gc(_gc_tracer_stw);
3725 
3726   verify_region_sets_optional();
3727   verify_dirty_young_regions();
3728 
3729   // This call will decide whether this pause is an initial-mark
3730   // pause. If it is, during_initial_mark_pause() will return true
3731   // for the duration of this pause.
3732   g1_policy()->decide_on_conc_mark_initiation();
3733 
3734   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3735   assert(!collector_state()->during_initial_mark_pause() ||
3736           collector_state()->gcs_are_young(), "sanity");
3737 
3738   // We also do not allow mixed GCs during marking.
3739   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3740 
3741   // Record whether this pause is an initial mark. When the current
3742   // thread has completed its logging output and it's safe to signal
3743   // the CM thread, the flag's value in the policy has been reset.
3744   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3745 
3746   // Inner scope for scope based logging, timers, and stats collection
3747   {
3748     EvacuationInfo evacuation_info;
3749 
3750     if (collector_state()->during_initial_mark_pause()) {
3751       // We are about to start a marking cycle, so we increment the
3752       // full collection counter.
3753       increment_old_marking_cycles_started();
3754       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3755     }
3756 
3757     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3758 
3759     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3760 
3761     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3762                                                                   workers()->active_workers(),
3763                                                                   Threads::number_of_non_daemon_threads());
3764     workers()->set_active_workers(active_workers);
3765 
3766     double pause_start_sec = os::elapsedTime();
3767     g1_policy()->note_gc_start(active_workers);
3768     log_gc_header();
3769 
3770     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3771     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3772 
3773     // If the secondary_free_list is not empty, append it to the
3774     // free_list. No need to wait for the cleanup operation to finish;
3775     // the region allocation code will check the secondary_free_list
3776     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3777     // set, skip this step so that the region allocation code has to
3778     // get entries from the secondary_free_list.
3779     if (!G1StressConcRegionFreeing) {
3780       append_secondary_free_list_if_not_empty_with_lock();
3781     }
3782 
3783     assert(check_young_list_well_formed(), "young list should be well formed");
3784 
3785     // Don't dynamically change the number of GC threads this early.  A value of
3786     // 0 is used to indicate serial work.  When parallel work is done,
3787     // it will be set.
3788 
3789     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3790       IsGCActiveMark x;
3791 
3792       gc_prologue(false);
3793       increment_total_collections(false /* full gc */);
3794       increment_gc_time_stamp();
3795 
3796       verify_before_gc();
3797 
3798       check_bitmaps("GC Start");
3799 
3800 #if defined(COMPILER2) || INCLUDE_JVMCI
3801       DerivedPointerTable::clear();
3802 #endif
3803 
3804       // Please see comment in g1CollectedHeap.hpp and
3805       // G1CollectedHeap::ref_processing_init() to see how
3806       // reference processing currently works in G1.
3807 
3808       // Enable discovery in the STW reference processor
3809       ref_processor_stw()->enable_discovery();
3810 
3811       {
3812         // We want to temporarily turn off discovery by the
3813         // CM ref processor, if necessary, and turn it back on
3814         // on again later if we do. Using a scoped
3815         // NoRefDiscovery object will do this.
3816         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3817 
3818         // Forget the current alloc region (we might even choose it to be part
3819         // of the collection set!).
3820         _allocator->release_mutator_alloc_region();
3821 
3822         // We should call this after we retire the mutator alloc
3823         // region(s) so that all the ALLOC / RETIRE events are generated
3824         // before the start GC event.
3825         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3826 
3827         // This timing is only used by the ergonomics to handle our pause target.
3828         // It is unclear why this should not include the full pause. We will
3829         // investigate this in CR 7178365.
3830         //
3831         // Preserving the old comment here if that helps the investigation:
3832         //
3833         // The elapsed time induced by the start time below deliberately elides
3834         // the possible verification above.
3835         double sample_start_time_sec = os::elapsedTime();
3836 
3837         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3838 
3839         if (collector_state()->during_initial_mark_pause()) {
3840           concurrent_mark()->checkpointRootsInitialPre();
3841         }
3842 
3843         double time_remaining_ms = g1_policy()->finalize_young_cset_part(target_pause_time_ms);
3844         g1_policy()->finalize_old_cset_part(time_remaining_ms);
3845 
3846         evacuation_info.set_collectionset_regions(g1_policy()->cset_region_length());
3847 
3848         // Make sure the remembered sets are up to date. This needs to be
3849         // done before register_humongous_regions_with_cset(), because the
3850         // remembered sets are used there to choose eager reclaim candidates.
3851         // If the remembered sets are not up to date we might miss some
3852         // entries that need to be handled.
3853         g1_rem_set()->cleanupHRRS();
3854 
3855         register_humongous_regions_with_cset();
3856 
3857         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3858 
3859         _cm->note_start_of_gc();
3860         // We call this after finalize_cset() to
3861         // ensure that the CSet has been finalized.
3862         _cm->verify_no_cset_oops();
3863 
3864         if (_hr_printer.is_active()) {
3865           HeapRegion* hr = g1_policy()->collection_set();
3866           while (hr != NULL) {
3867             _hr_printer.cset(hr);
3868             hr = hr->next_in_collection_set();
3869           }
3870         }
3871 
3872 #ifdef ASSERT
3873         VerifyCSetClosure cl;
3874         collection_set_iterate(&cl);
3875 #endif // ASSERT
3876 
3877         // Initialize the GC alloc regions.
3878         _allocator->init_gc_alloc_regions(evacuation_info);
3879 
3880         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), g1_policy()->young_cset_region_length());
3881         pre_evacuate_collection_set();
3882 
3883         // Actually do the work...
3884         evacuate_collection_set(evacuation_info, &per_thread_states);
3885 
3886         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3887 
3888         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3889         free_collection_set(g1_policy()->collection_set(), evacuation_info, surviving_young_words);
3890 
3891         eagerly_reclaim_humongous_regions();
3892 
3893         g1_policy()->clear_collection_set();
3894 
3895         // Start a new incremental collection set for the next pause.
3896         g1_policy()->start_incremental_cset_building();
3897 
3898         clear_cset_fast_test();
3899 
3900         _young_list->reset_sampled_info();
3901 
3902         // Don't check the whole heap at this point as the
3903         // GC alloc regions from this pause have been tagged
3904         // as survivors and moved on to the survivor list.
3905         // Survivor regions will fail the !is_young() check.
3906         assert(check_young_list_empty(false /* check_heap */),
3907           "young list should be empty");
3908 
3909         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3910                                              _young_list->first_survivor_region(),
3911                                              _young_list->last_survivor_region());
3912 
3913         _young_list->reset_auxilary_lists();
3914 
3915         if (evacuation_failed()) {
3916           set_used(recalculate_used());
3917           if (_archive_allocator != NULL) {
3918             _archive_allocator->clear_used();
3919           }
3920           for (uint i = 0; i < ParallelGCThreads; i++) {
3921             if (_evacuation_failed_info_array[i].has_failed()) {
3922               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3923             }
3924           }
3925         } else {
3926           // The "used" of the the collection set have already been subtracted
3927           // when they were freed.  Add in the bytes evacuated.
3928           increase_used(g1_policy()->bytes_copied_during_gc());
3929         }
3930 
3931         if (collector_state()->during_initial_mark_pause()) {
3932           // We have to do this before we notify the CM threads that
3933           // they can start working to make sure that all the
3934           // appropriate initialization is done on the CM object.
3935           concurrent_mark()->checkpointRootsInitialPost();
3936           collector_state()->set_mark_in_progress(true);
3937           // Note that we don't actually trigger the CM thread at
3938           // this point. We do that later when we're sure that
3939           // the current thread has completed its logging output.
3940         }
3941 
3942         allocate_dummy_regions();
3943 
3944         _allocator->init_mutator_alloc_region();
3945 
3946         {
3947           size_t expand_bytes = g1_policy()->expansion_amount();
3948           if (expand_bytes > 0) {
3949             size_t bytes_before = capacity();
3950             // No need for an ergo verbose message here,
3951             // expansion_amount() does this when it returns a value > 0.
3952             double expand_ms;
3953             if (!expand(expand_bytes, &expand_ms)) {
3954               // We failed to expand the heap. Cannot do anything about it.
3955             }
3956             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3957           }
3958         }
3959 
3960         // We redo the verification but now wrt to the new CSet which
3961         // has just got initialized after the previous CSet was freed.
3962         _cm->verify_no_cset_oops();
3963         _cm->note_end_of_gc();
3964 
3965         // This timing is only used by the ergonomics to handle our pause target.
3966         // It is unclear why this should not include the full pause. We will
3967         // investigate this in CR 7178365.
3968         double sample_end_time_sec = os::elapsedTime();
3969         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3970         size_t total_cards_scanned = per_thread_states.total_cards_scanned();
3971         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned);
3972 
3973         evacuation_info.set_collectionset_used_before(g1_policy()->collection_set_bytes_used_before());
3974         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3975 
3976         MemoryService::track_memory_usage();
3977 
3978         // In prepare_for_verify() below we'll need to scan the deferred
3979         // update buffers to bring the RSets up-to-date if
3980         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3981         // the update buffers we'll probably need to scan cards on the
3982         // regions we just allocated to (i.e., the GC alloc
3983         // regions). However, during the last GC we called
3984         // set_saved_mark() on all the GC alloc regions, so card
3985         // scanning might skip the [saved_mark_word()...top()] area of
3986         // those regions (i.e., the area we allocated objects into
3987         // during the last GC). But it shouldn't. Given that
3988         // saved_mark_word() is conditional on whether the GC time stamp
3989         // on the region is current or not, by incrementing the GC time
3990         // stamp here we invalidate all the GC time stamps on all the
3991         // regions and saved_mark_word() will simply return top() for
3992         // all the regions. This is a nicer way of ensuring this rather
3993         // than iterating over the regions and fixing them. In fact, the
3994         // GC time stamp increment here also ensures that
3995         // saved_mark_word() will return top() between pauses, i.e.,
3996         // during concurrent refinement. So we don't need the
3997         // is_gc_active() check to decided which top to use when
3998         // scanning cards (see CR 7039627).
3999         increment_gc_time_stamp();
4000 
4001         verify_after_gc();
4002         check_bitmaps("GC End");
4003 
4004         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4005         ref_processor_stw()->verify_no_references_recorded();
4006 
4007         // CM reference discovery will be re-enabled if necessary.
4008       }
4009 
4010       // We should do this after we potentially expand the heap so
4011       // that all the COMMIT events are generated before the end GC
4012       // event, and after we retire the GC alloc regions so that all
4013       // RETIRE events are generated before the end GC event.
4014       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4015 
4016 #ifdef TRACESPINNING
4017       ParallelTaskTerminator::print_termination_counts();
4018 #endif
4019 
4020       gc_epilogue(false);
4021     }
4022 
4023     // Print the remainder of the GC log output.
4024     log_gc_footer(os::elapsedTime() - pause_start_sec);
4025 
4026     // It is not yet to safe to tell the concurrent mark to
4027     // start as we have some optional output below. We don't want the
4028     // output from the concurrent mark thread interfering with this
4029     // logging output either.
4030 
4031     _hrm.verify_optional();
4032     verify_region_sets_optional();
4033 
4034     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4035     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4036 
4037     print_heap_after_gc();
4038     trace_heap_after_gc(_gc_tracer_stw);
4039 
4040     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4041     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4042     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4043     // before any GC notifications are raised.
4044     g1mm()->update_sizes();
4045 
4046     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4047     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4048     _gc_timer_stw->register_gc_end();
4049     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4050   }
4051   // It should now be safe to tell the concurrent mark thread to start
4052   // without its logging output interfering with the logging output
4053   // that came from the pause.
4054 
4055   if (should_start_conc_mark) {
4056     // CAUTION: after the doConcurrentMark() call below,
4057     // the concurrent marking thread(s) could be running
4058     // concurrently with us. Make sure that anything after
4059     // this point does not assume that we are the only GC thread
4060     // running. Note: of course, the actual marking work will
4061     // not start until the safepoint itself is released in
4062     // SuspendibleThreadSet::desynchronize().
4063     doConcurrentMark();
4064   }
4065 
4066   return true;
4067 }
4068 
4069 void G1CollectedHeap::remove_self_forwarding_pointers() {
4070   double remove_self_forwards_start = os::elapsedTime();
4071 
4072   G1ParRemoveSelfForwardPtrsTask rsfp_task;
4073   workers()->run_task(&rsfp_task);
4074 
4075   // Now restore saved marks, if any.
4076   for (uint i = 0; i < ParallelGCThreads; i++) {
4077     OopAndMarkOopStack& cur = _preserved_objs[i];
4078     while (!cur.is_empty()) {
4079       OopAndMarkOop elem = cur.pop();
4080       elem.set_mark();
4081     }
4082     cur.clear(true);
4083   }
4084 
4085   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4086 }
4087 
4088 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
4089   if (!_evacuation_failed) {
4090     _evacuation_failed = true;
4091   }
4092 
4093   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
4094 
4095   // We want to call the "for_promotion_failure" version only in the
4096   // case of a promotion failure.
4097   if (m->must_be_preserved_for_promotion_failure(obj)) {
4098     OopAndMarkOop elem(obj, m);
4099     _preserved_objs[worker_id].push(elem);
4100   }
4101 }
4102 
4103 class G1ParEvacuateFollowersClosure : public VoidClosure {
4104 private:
4105   double _start_term;
4106   double _term_time;
4107   size_t _term_attempts;
4108 
4109   void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); }
4110   void end_term_time() { _term_time += os::elapsedTime() - _start_term; }
4111 protected:
4112   G1CollectedHeap*              _g1h;
4113   G1ParScanThreadState*         _par_scan_state;
4114   RefToScanQueueSet*            _queues;
4115   ParallelTaskTerminator*       _terminator;
4116 
4117   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4118   RefToScanQueueSet*      queues()         { return _queues; }
4119   ParallelTaskTerminator* terminator()     { return _terminator; }
4120 
4121 public:
4122   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4123                                 G1ParScanThreadState* par_scan_state,
4124                                 RefToScanQueueSet* queues,
4125                                 ParallelTaskTerminator* terminator)
4126     : _g1h(g1h), _par_scan_state(par_scan_state),
4127       _queues(queues), _terminator(terminator),
4128       _start_term(0.0), _term_time(0.0), _term_attempts(0) {}
4129 
4130   void do_void();
4131 
4132   double term_time() const { return _term_time; }
4133   size_t term_attempts() const { return _term_attempts; }
4134 
4135 private:
4136   inline bool offer_termination();
4137 };
4138 
4139 bool G1ParEvacuateFollowersClosure::offer_termination() {
4140   G1ParScanThreadState* const pss = par_scan_state();
4141   start_term_time();
4142   const bool res = terminator()->offer_termination();
4143   end_term_time();
4144   return res;
4145 }
4146 
4147 void G1ParEvacuateFollowersClosure::do_void() {
4148   G1ParScanThreadState* const pss = par_scan_state();
4149   pss->trim_queue();
4150   do {
4151     pss->steal_and_trim_queue(queues());
4152   } while (!offer_termination());
4153 }
4154 
4155 class G1ParTask : public AbstractGangTask {
4156 protected:
4157   G1CollectedHeap*         _g1h;
4158   G1ParScanThreadStateSet* _pss;
4159   RefToScanQueueSet*       _queues;
4160   G1RootProcessor*         _root_processor;
4161   ParallelTaskTerminator   _terminator;
4162   uint                     _n_workers;
4163 
4164 public:
4165   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
4166     : AbstractGangTask("G1 collection"),
4167       _g1h(g1h),
4168       _pss(per_thread_states),
4169       _queues(task_queues),
4170       _root_processor(root_processor),
4171       _terminator(n_workers, _queues),
4172       _n_workers(n_workers)
4173   {}
4174 
4175   void work(uint worker_id) {
4176     if (worker_id >= _n_workers) return;  // no work needed this round
4177 
4178     double start_sec = os::elapsedTime();
4179     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
4180 
4181     {
4182       ResourceMark rm;
4183       HandleMark   hm;
4184 
4185       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4186 
4187       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
4188       pss->set_ref_processor(rp);
4189 
4190       double start_strong_roots_sec = os::elapsedTime();
4191 
4192       _root_processor->evacuate_roots(pss->closures(), worker_id);
4193 
4194       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);
4195 
4196       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
4197       // treating the nmethods visited to act as roots for concurrent marking.
4198       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
4199       // objects copied by the current evacuation.
4200       size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl,
4201                                                                              pss->closures()->weak_codeblobs(),
4202                                                                              worker_id);
4203 
4204       _pss->add_cards_scanned(worker_id, cards_scanned);
4205 
4206       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
4207 
4208       double term_sec = 0.0;
4209       size_t evac_term_attempts = 0;
4210       {
4211         double start = os::elapsedTime();
4212         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
4213         evac.do_void();
4214 
4215         evac_term_attempts = evac.term_attempts();
4216         term_sec = evac.term_time();
4217         double elapsed_sec = os::elapsedTime() - start;
4218         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4219         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4220         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
4221       }
4222 
4223       assert(pss->queue_is_empty(), "should be empty");
4224 
4225       if (PrintTerminationStats) {
4226         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
4227         size_t lab_waste;
4228         size_t lab_undo_waste;
4229         pss->waste(lab_waste, lab_undo_waste);
4230         _g1h->print_termination_stats(gclog_or_tty,
4231                                       worker_id,
4232                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
4233                                       strong_roots_sec * 1000.0,                  /* strong roots time */
4234                                       term_sec * 1000.0,                          /* evac term time */
4235                                       evac_term_attempts,                         /* evac term attempts */
4236                                       lab_waste,                                  /* alloc buffer waste */
4237                                       lab_undo_waste                              /* undo waste */
4238                                       );
4239       }
4240 
4241       // Close the inner scope so that the ResourceMark and HandleMark
4242       // destructors are executed here and are included as part of the
4243       // "GC Worker Time".
4244     }
4245     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4246   }
4247 };
4248 
4249 void G1CollectedHeap::print_termination_stats_hdr(outputStream* const st) {
4250   st->print_raw_cr("GC Termination Stats");
4251   st->print_raw_cr("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
4252   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts  total   alloc    undo");
4253   st->print_raw_cr("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
4254 }
4255 
4256 void G1CollectedHeap::print_termination_stats(outputStream* const st,
4257                                               uint worker_id,
4258                                               double elapsed_ms,
4259                                               double strong_roots_ms,
4260                                               double term_ms,
4261                                               size_t term_attempts,
4262                                               size_t alloc_buffer_waste,
4263                                               size_t undo_waste) const {
4264   st->print_cr("%3d %9.2f %9.2f %6.2f "
4265                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4266                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4267                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
4268                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
4269                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
4270                alloc_buffer_waste * HeapWordSize / K,
4271                undo_waste * HeapWordSize / K);
4272 }
4273 
4274 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4275 private:
4276   BoolObjectClosure* _is_alive;
4277   int _initial_string_table_size;
4278   int _initial_symbol_table_size;
4279 
4280   bool  _process_strings;
4281   int _strings_processed;
4282   int _strings_removed;
4283 
4284   bool  _process_symbols;
4285   int _symbols_processed;
4286   int _symbols_removed;
4287 
4288 public:
4289   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4290     AbstractGangTask("String/Symbol Unlinking"),
4291     _is_alive(is_alive),
4292     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4293     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4294 
4295     _initial_string_table_size = StringTable::the_table()->table_size();
4296     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4297     if (process_strings) {
4298       StringTable::clear_parallel_claimed_index();
4299     }
4300     if (process_symbols) {
4301       SymbolTable::clear_parallel_claimed_index();
4302     }
4303   }
4304 
4305   ~G1StringSymbolTableUnlinkTask() {
4306     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4307               "claim value %d after unlink less than initial string table size %d",
4308               StringTable::parallel_claimed_index(), _initial_string_table_size);
4309     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4310               "claim value %d after unlink less than initial symbol table size %d",
4311               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
4312 
4313     if (G1TraceStringSymbolTableScrubbing) {
4314       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4315                              "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
4316                              "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
4317                              strings_processed(), strings_removed(),
4318                              symbols_processed(), symbols_removed());
4319     }
4320   }
4321 
4322   void work(uint worker_id) {
4323     int strings_processed = 0;
4324     int strings_removed = 0;
4325     int symbols_processed = 0;
4326     int symbols_removed = 0;
4327     if (_process_strings) {
4328       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4329       Atomic::add(strings_processed, &_strings_processed);
4330       Atomic::add(strings_removed, &_strings_removed);
4331     }
4332     if (_process_symbols) {
4333       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4334       Atomic::add(symbols_processed, &_symbols_processed);
4335       Atomic::add(symbols_removed, &_symbols_removed);
4336     }
4337   }
4338 
4339   size_t strings_processed() const { return (size_t)_strings_processed; }
4340   size_t strings_removed()   const { return (size_t)_strings_removed; }
4341 
4342   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4343   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4344 };
4345 
4346 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4347 private:
4348   static Monitor* _lock;
4349 
4350   BoolObjectClosure* const _is_alive;
4351   const bool               _unloading_occurred;
4352   const uint               _num_workers;
4353 
4354   // Variables used to claim nmethods.
4355   nmethod* _first_nmethod;
4356   volatile nmethod* _claimed_nmethod;
4357 
4358   // The list of nmethods that need to be processed by the second pass.
4359   volatile nmethod* _postponed_list;
4360   volatile uint     _num_entered_barrier;
4361 
4362  public:
4363   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4364       _is_alive(is_alive),
4365       _unloading_occurred(unloading_occurred),
4366       _num_workers(num_workers),
4367       _first_nmethod(NULL),
4368       _claimed_nmethod(NULL),
4369       _postponed_list(NULL),
4370       _num_entered_barrier(0)
4371   {
4372     nmethod::increase_unloading_clock();
4373     // Get first alive nmethod
4374     NMethodIterator iter = NMethodIterator();
4375     if(iter.next_alive()) {
4376       _first_nmethod = iter.method();
4377     }
4378     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4379   }
4380 
4381   ~G1CodeCacheUnloadingTask() {
4382     CodeCache::verify_clean_inline_caches();
4383 
4384     CodeCache::set_needs_cache_clean(false);
4385     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4386 
4387     CodeCache::verify_icholder_relocations();
4388   }
4389 
4390  private:
4391   void add_to_postponed_list(nmethod* nm) {
4392       nmethod* old;
4393       do {
4394         old = (nmethod*)_postponed_list;
4395         nm->set_unloading_next(old);
4396       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4397   }
4398 
4399   void clean_nmethod(nmethod* nm) {
4400     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4401 
4402     if (postponed) {
4403       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4404       add_to_postponed_list(nm);
4405     }
4406 
4407     // Mark that this thread has been cleaned/unloaded.
4408     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4409     nm->set_unloading_clock(nmethod::global_unloading_clock());
4410   }
4411 
4412   void clean_nmethod_postponed(nmethod* nm) {
4413     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4414   }
4415 
4416   static const int MaxClaimNmethods = 16;
4417 
4418   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4419     nmethod* first;
4420     NMethodIterator last;
4421 
4422     do {
4423       *num_claimed_nmethods = 0;
4424 
4425       first = (nmethod*)_claimed_nmethod;
4426       last = NMethodIterator(first);
4427 
4428       if (first != NULL) {
4429 
4430         for (int i = 0; i < MaxClaimNmethods; i++) {
4431           if (!last.next_alive()) {
4432             break;
4433           }
4434           claimed_nmethods[i] = last.method();
4435           (*num_claimed_nmethods)++;
4436         }
4437       }
4438 
4439     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4440   }
4441 
4442   nmethod* claim_postponed_nmethod() {
4443     nmethod* claim;
4444     nmethod* next;
4445 
4446     do {
4447       claim = (nmethod*)_postponed_list;
4448       if (claim == NULL) {
4449         return NULL;
4450       }
4451 
4452       next = claim->unloading_next();
4453 
4454     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4455 
4456     return claim;
4457   }
4458 
4459  public:
4460   // Mark that we're done with the first pass of nmethod cleaning.
4461   void barrier_mark(uint worker_id) {
4462     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4463     _num_entered_barrier++;
4464     if (_num_entered_barrier == _num_workers) {
4465       ml.notify_all();
4466     }
4467   }
4468 
4469   // See if we have to wait for the other workers to
4470   // finish their first-pass nmethod cleaning work.
4471   void barrier_wait(uint worker_id) {
4472     if (_num_entered_barrier < _num_workers) {
4473       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4474       while (_num_entered_barrier < _num_workers) {
4475           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4476       }
4477     }
4478   }
4479 
4480   // Cleaning and unloading of nmethods. Some work has to be postponed
4481   // to the second pass, when we know which nmethods survive.
4482   void work_first_pass(uint worker_id) {
4483     // The first nmethods is claimed by the first worker.
4484     if (worker_id == 0 && _first_nmethod != NULL) {
4485       clean_nmethod(_first_nmethod);
4486       _first_nmethod = NULL;
4487     }
4488 
4489     int num_claimed_nmethods;
4490     nmethod* claimed_nmethods[MaxClaimNmethods];
4491 
4492     while (true) {
4493       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4494 
4495       if (num_claimed_nmethods == 0) {
4496         break;
4497       }
4498 
4499       for (int i = 0; i < num_claimed_nmethods; i++) {
4500         clean_nmethod(claimed_nmethods[i]);
4501       }
4502     }
4503   }
4504 
4505   void work_second_pass(uint worker_id) {
4506     nmethod* nm;
4507     // Take care of postponed nmethods.
4508     while ((nm = claim_postponed_nmethod()) != NULL) {
4509       clean_nmethod_postponed(nm);
4510     }
4511   }
4512 };
4513 
4514 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4515 
4516 class G1KlassCleaningTask : public StackObj {
4517   BoolObjectClosure*                      _is_alive;
4518   volatile jint                           _clean_klass_tree_claimed;
4519   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4520 
4521  public:
4522   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4523       _is_alive(is_alive),
4524       _clean_klass_tree_claimed(0),
4525       _klass_iterator() {
4526   }
4527 
4528  private:
4529   bool claim_clean_klass_tree_task() {
4530     if (_clean_klass_tree_claimed) {
4531       return false;
4532     }
4533 
4534     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4535   }
4536 
4537   InstanceKlass* claim_next_klass() {
4538     Klass* klass;
4539     do {
4540       klass =_klass_iterator.next_klass();
4541     } while (klass != NULL && !klass->is_instance_klass());
4542 
4543     // this can be null so don't call InstanceKlass::cast
4544     return static_cast<InstanceKlass*>(klass);
4545   }
4546 
4547 public:
4548 
4549   void clean_klass(InstanceKlass* ik) {
4550     ik->clean_weak_instanceklass_links(_is_alive);
4551   }
4552 
4553   void work() {
4554     ResourceMark rm;
4555 
4556     // One worker will clean the subklass/sibling klass tree.
4557     if (claim_clean_klass_tree_task()) {
4558       Klass::clean_subklass_tree(_is_alive);
4559     }
4560 
4561     // All workers will help cleaning the classes,
4562     InstanceKlass* klass;
4563     while ((klass = claim_next_klass()) != NULL) {
4564       clean_klass(klass);
4565     }
4566   }
4567 };
4568 
4569 // To minimize the remark pause times, the tasks below are done in parallel.
4570 class G1ParallelCleaningTask : public AbstractGangTask {
4571 private:
4572   G1StringSymbolTableUnlinkTask _string_symbol_task;
4573   G1CodeCacheUnloadingTask      _code_cache_task;
4574   G1KlassCleaningTask           _klass_cleaning_task;
4575 
4576 public:
4577   // The constructor is run in the VMThread.
4578   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4579       AbstractGangTask("Parallel Cleaning"),
4580       _string_symbol_task(is_alive, process_strings, process_symbols),
4581       _code_cache_task(num_workers, is_alive, unloading_occurred),
4582       _klass_cleaning_task(is_alive) {
4583   }
4584 
4585   // The parallel work done by all worker threads.
4586   void work(uint worker_id) {
4587     // Do first pass of code cache cleaning.
4588     _code_cache_task.work_first_pass(worker_id);
4589 
4590     // Let the threads mark that the first pass is done.
4591     _code_cache_task.barrier_mark(worker_id);
4592 
4593     // Clean the Strings and Symbols.
4594     _string_symbol_task.work(worker_id);
4595 
4596     // Wait for all workers to finish the first code cache cleaning pass.
4597     _code_cache_task.barrier_wait(worker_id);
4598 
4599     // Do the second code cache cleaning work, which realize on
4600     // the liveness information gathered during the first pass.
4601     _code_cache_task.work_second_pass(worker_id);
4602 
4603     // Clean all klasses that were not unloaded.
4604     _klass_cleaning_task.work();
4605   }
4606 };
4607 
4608 
4609 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4610                                         bool process_strings,
4611                                         bool process_symbols,
4612                                         bool class_unloading_occurred) {
4613   uint n_workers = workers()->active_workers();
4614 
4615   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4616                                         n_workers, class_unloading_occurred);
4617   workers()->run_task(&g1_unlink_task);
4618 }
4619 
4620 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4621                                                      bool process_strings, bool process_symbols) {
4622   {
4623     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4624     workers()->run_task(&g1_unlink_task);
4625   }
4626 
4627   if (G1StringDedup::is_enabled()) {
4628     G1StringDedup::unlink(is_alive);
4629   }
4630 }
4631 
4632 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4633  private:
4634   DirtyCardQueueSet* _queue;
4635  public:
4636   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
4637 
4638   virtual void work(uint worker_id) {
4639     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
4640     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4641 
4642     RedirtyLoggedCardTableEntryClosure cl;
4643     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4644 
4645     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
4646   }
4647 };
4648 
4649 void G1CollectedHeap::redirty_logged_cards() {
4650   double redirty_logged_cards_start = os::elapsedTime();
4651 
4652   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
4653   dirty_card_queue_set().reset_for_par_iteration();
4654   workers()->run_task(&redirty_task);
4655 
4656   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4657   dcq.merge_bufferlists(&dirty_card_queue_set());
4658   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4659 
4660   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4661 }
4662 
4663 // Weak Reference Processing support
4664 
4665 // An always "is_alive" closure that is used to preserve referents.
4666 // If the object is non-null then it's alive.  Used in the preservation
4667 // of referent objects that are pointed to by reference objects
4668 // discovered by the CM ref processor.
4669 class G1AlwaysAliveClosure: public BoolObjectClosure {
4670   G1CollectedHeap* _g1;
4671 public:
4672   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4673   bool do_object_b(oop p) {
4674     if (p != NULL) {
4675       return true;
4676     }
4677     return false;
4678   }
4679 };
4680 
4681 bool G1STWIsAliveClosure::do_object_b(oop p) {
4682   // An object is reachable if it is outside the collection set,
4683   // or is inside and copied.
4684   return !_g1->is_in_cset(p) || p->is_forwarded();
4685 }
4686 
4687 // Non Copying Keep Alive closure
4688 class G1KeepAliveClosure: public OopClosure {
4689   G1CollectedHeap* _g1;
4690 public:
4691   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4692   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4693   void do_oop(oop* p) {
4694     oop obj = *p;
4695     assert(obj != NULL, "the caller should have filtered out NULL values");
4696 
4697     const InCSetState cset_state = _g1->in_cset_state(obj);
4698     if (!cset_state.is_in_cset_or_humongous()) {
4699       return;
4700     }
4701     if (cset_state.is_in_cset()) {
4702       assert( obj->is_forwarded(), "invariant" );
4703       *p = obj->forwardee();
4704     } else {
4705       assert(!obj->is_forwarded(), "invariant" );
4706       assert(cset_state.is_humongous(),
4707              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
4708       _g1->set_humongous_is_live(obj);
4709     }
4710   }
4711 };
4712 
4713 // Copying Keep Alive closure - can be called from both
4714 // serial and parallel code as long as different worker
4715 // threads utilize different G1ParScanThreadState instances
4716 // and different queues.
4717 
4718 class G1CopyingKeepAliveClosure: public OopClosure {
4719   G1CollectedHeap*         _g1h;
4720   OopClosure*              _copy_non_heap_obj_cl;
4721   G1ParScanThreadState*    _par_scan_state;
4722 
4723 public:
4724   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4725                             OopClosure* non_heap_obj_cl,
4726                             G1ParScanThreadState* pss):
4727     _g1h(g1h),
4728     _copy_non_heap_obj_cl(non_heap_obj_cl),
4729     _par_scan_state(pss)
4730   {}
4731 
4732   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4733   virtual void do_oop(      oop* p) { do_oop_work(p); }
4734 
4735   template <class T> void do_oop_work(T* p) {
4736     oop obj = oopDesc::load_decode_heap_oop(p);
4737 
4738     if (_g1h->is_in_cset_or_humongous(obj)) {
4739       // If the referent object has been forwarded (either copied
4740       // to a new location or to itself in the event of an
4741       // evacuation failure) then we need to update the reference
4742       // field and, if both reference and referent are in the G1
4743       // heap, update the RSet for the referent.
4744       //
4745       // If the referent has not been forwarded then we have to keep
4746       // it alive by policy. Therefore we have copy the referent.
4747       //
4748       // If the reference field is in the G1 heap then we can push
4749       // on the PSS queue. When the queue is drained (after each
4750       // phase of reference processing) the object and it's followers
4751       // will be copied, the reference field set to point to the
4752       // new location, and the RSet updated. Otherwise we need to
4753       // use the the non-heap or metadata closures directly to copy
4754       // the referent object and update the pointer, while avoiding
4755       // updating the RSet.
4756 
4757       if (_g1h->is_in_g1_reserved(p)) {
4758         _par_scan_state->push_on_queue(p);
4759       } else {
4760         assert(!Metaspace::contains((const void*)p),
4761                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
4762         _copy_non_heap_obj_cl->do_oop(p);
4763       }
4764     }
4765   }
4766 };
4767 
4768 // Serial drain queue closure. Called as the 'complete_gc'
4769 // closure for each discovered list in some of the
4770 // reference processing phases.
4771 
4772 class G1STWDrainQueueClosure: public VoidClosure {
4773 protected:
4774   G1CollectedHeap* _g1h;
4775   G1ParScanThreadState* _par_scan_state;
4776 
4777   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4778 
4779 public:
4780   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4781     _g1h(g1h),
4782     _par_scan_state(pss)
4783   { }
4784 
4785   void do_void() {
4786     G1ParScanThreadState* const pss = par_scan_state();
4787     pss->trim_queue();
4788   }
4789 };
4790 
4791 // Parallel Reference Processing closures
4792 
4793 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4794 // processing during G1 evacuation pauses.
4795 
4796 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4797 private:
4798   G1CollectedHeap*          _g1h;
4799   G1ParScanThreadStateSet*  _pss;
4800   RefToScanQueueSet*        _queues;
4801   WorkGang*                 _workers;
4802   uint                      _active_workers;
4803 
4804 public:
4805   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4806                            G1ParScanThreadStateSet* per_thread_states,
4807                            WorkGang* workers,
4808                            RefToScanQueueSet *task_queues,
4809                            uint n_workers) :
4810     _g1h(g1h),
4811     _pss(per_thread_states),
4812     _queues(task_queues),
4813     _workers(workers),
4814     _active_workers(n_workers)
4815   {
4816     assert(n_workers > 0, "shouldn't call this otherwise");
4817   }
4818 
4819   // Executes the given task using concurrent marking worker threads.
4820   virtual void execute(ProcessTask& task);
4821   virtual void execute(EnqueueTask& task);
4822 };
4823 
4824 // Gang task for possibly parallel reference processing
4825 
4826 class G1STWRefProcTaskProxy: public AbstractGangTask {
4827   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4828   ProcessTask&     _proc_task;
4829   G1CollectedHeap* _g1h;
4830   G1ParScanThreadStateSet* _pss;
4831   RefToScanQueueSet* _task_queues;
4832   ParallelTaskTerminator* _terminator;
4833 
4834 public:
4835   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4836                         G1CollectedHeap* g1h,
4837                         G1ParScanThreadStateSet* per_thread_states,
4838                         RefToScanQueueSet *task_queues,
4839                         ParallelTaskTerminator* terminator) :
4840     AbstractGangTask("Process reference objects in parallel"),
4841     _proc_task(proc_task),
4842     _g1h(g1h),
4843     _pss(per_thread_states),
4844     _task_queues(task_queues),
4845     _terminator(terminator)
4846   {}
4847 
4848   virtual void work(uint worker_id) {
4849     // The reference processing task executed by a single worker.
4850     ResourceMark rm;
4851     HandleMark   hm;
4852 
4853     G1STWIsAliveClosure is_alive(_g1h);
4854 
4855     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4856     pss->set_ref_processor(NULL);
4857 
4858     // Keep alive closure.
4859     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4860 
4861     // Complete GC closure
4862     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4863 
4864     // Call the reference processing task's work routine.
4865     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4866 
4867     // Note we cannot assert that the refs array is empty here as not all
4868     // of the processing tasks (specifically phase2 - pp2_work) execute
4869     // the complete_gc closure (which ordinarily would drain the queue) so
4870     // the queue may not be empty.
4871   }
4872 };
4873 
4874 // Driver routine for parallel reference processing.
4875 // Creates an instance of the ref processing gang
4876 // task and has the worker threads execute it.
4877 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4878   assert(_workers != NULL, "Need parallel worker threads.");
4879 
4880   ParallelTaskTerminator terminator(_active_workers, _queues);
4881   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4882 
4883   _workers->run_task(&proc_task_proxy);
4884 }
4885 
4886 // Gang task for parallel reference enqueueing.
4887 
4888 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4889   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4890   EnqueueTask& _enq_task;
4891 
4892 public:
4893   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4894     AbstractGangTask("Enqueue reference objects in parallel"),
4895     _enq_task(enq_task)
4896   { }
4897 
4898   virtual void work(uint worker_id) {
4899     _enq_task.work(worker_id);
4900   }
4901 };
4902 
4903 // Driver routine for parallel reference enqueueing.
4904 // Creates an instance of the ref enqueueing gang
4905 // task and has the worker threads execute it.
4906 
4907 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4908   assert(_workers != NULL, "Need parallel worker threads.");
4909 
4910   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4911 
4912   _workers->run_task(&enq_task_proxy);
4913 }
4914 
4915 // End of weak reference support closures
4916 
4917 // Abstract task used to preserve (i.e. copy) any referent objects
4918 // that are in the collection set and are pointed to by reference
4919 // objects discovered by the CM ref processor.
4920 
4921 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4922 protected:
4923   G1CollectedHeap*         _g1h;
4924   G1ParScanThreadStateSet* _pss;
4925   RefToScanQueueSet*       _queues;
4926   ParallelTaskTerminator   _terminator;
4927   uint                     _n_workers;
4928 
4929 public:
4930   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4931     AbstractGangTask("ParPreserveCMReferents"),
4932     _g1h(g1h),
4933     _pss(per_thread_states),
4934     _queues(task_queues),
4935     _terminator(workers, _queues),
4936     _n_workers(workers)
4937   { }
4938 
4939   void work(uint worker_id) {
4940     ResourceMark rm;
4941     HandleMark   hm;
4942 
4943     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4944     pss->set_ref_processor(NULL);
4945     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4946 
4947     // Is alive closure
4948     G1AlwaysAliveClosure always_alive(_g1h);
4949 
4950     // Copying keep alive closure. Applied to referent objects that need
4951     // to be copied.
4952     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4953 
4954     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4955 
4956     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4957     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4958 
4959     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4960     // So this must be true - but assert just in case someone decides to
4961     // change the worker ids.
4962     assert(worker_id < limit, "sanity");
4963     assert(!rp->discovery_is_atomic(), "check this code");
4964 
4965     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4966     for (uint idx = worker_id; idx < limit; idx += stride) {
4967       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4968 
4969       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4970       while (iter.has_next()) {
4971         // Since discovery is not atomic for the CM ref processor, we
4972         // can see some null referent objects.
4973         iter.load_ptrs(DEBUG_ONLY(true));
4974         oop ref = iter.obj();
4975 
4976         // This will filter nulls.
4977         if (iter.is_referent_alive()) {
4978           iter.make_referent_alive();
4979         }
4980         iter.move_to_next();
4981       }
4982     }
4983 
4984     // Drain the queue - which may cause stealing
4985     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4986     drain_queue.do_void();
4987     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4988     assert(pss->queue_is_empty(), "should be");
4989   }
4990 };
4991 
4992 // Weak Reference processing during an evacuation pause (part 1).
4993 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4994   double ref_proc_start = os::elapsedTime();
4995 
4996   ReferenceProcessor* rp = _ref_processor_stw;
4997   assert(rp->discovery_enabled(), "should have been enabled");
4998 
4999   // Any reference objects, in the collection set, that were 'discovered'
5000   // by the CM ref processor should have already been copied (either by
5001   // applying the external root copy closure to the discovered lists, or
5002   // by following an RSet entry).
5003   //
5004   // But some of the referents, that are in the collection set, that these
5005   // reference objects point to may not have been copied: the STW ref
5006   // processor would have seen that the reference object had already
5007   // been 'discovered' and would have skipped discovering the reference,
5008   // but would not have treated the reference object as a regular oop.
5009   // As a result the copy closure would not have been applied to the
5010   // referent object.
5011   //
5012   // We need to explicitly copy these referent objects - the references
5013   // will be processed at the end of remarking.
5014   //
5015   // We also need to do this copying before we process the reference
5016   // objects discovered by the STW ref processor in case one of these
5017   // referents points to another object which is also referenced by an
5018   // object discovered by the STW ref processor.
5019 
5020   uint no_of_gc_workers = workers()->active_workers();
5021 
5022   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5023                                                  per_thread_states,
5024                                                  no_of_gc_workers,
5025                                                  _task_queues);
5026 
5027   workers()->run_task(&keep_cm_referents);
5028 
5029   // Closure to test whether a referent is alive.
5030   G1STWIsAliveClosure is_alive(this);
5031 
5032   // Even when parallel reference processing is enabled, the processing
5033   // of JNI refs is serial and performed serially by the current thread
5034   // rather than by a worker. The following PSS will be used for processing
5035   // JNI refs.
5036 
5037   // Use only a single queue for this PSS.
5038   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
5039   pss->set_ref_processor(NULL);
5040   assert(pss->queue_is_empty(), "pre-condition");
5041 
5042   // Keep alive closure.
5043   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
5044 
5045   // Serial Complete GC closure
5046   G1STWDrainQueueClosure drain_queue(this, pss);
5047 
5048   // Setup the soft refs policy...
5049   rp->setup_policy(false);
5050 
5051   ReferenceProcessorStats stats;
5052   if (!rp->processing_is_mt()) {
5053     // Serial reference processing...
5054     stats = rp->process_discovered_references(&is_alive,
5055                                               &keep_alive,
5056                                               &drain_queue,
5057                                               NULL,
5058                                               _gc_timer_stw);
5059   } else {
5060     // Parallel reference processing
5061     assert(rp->num_q() == no_of_gc_workers, "sanity");
5062     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5063 
5064     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
5065     stats = rp->process_discovered_references(&is_alive,
5066                                               &keep_alive,
5067                                               &drain_queue,
5068                                               &par_task_executor,
5069                                               _gc_timer_stw);
5070   }
5071 
5072   _gc_tracer_stw->report_gc_reference_stats(stats);
5073 
5074   // We have completed copying any necessary live referent objects.
5075   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
5076 
5077   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5078   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5079 }
5080 
5081 // Weak Reference processing during an evacuation pause (part 2).
5082 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
5083   double ref_enq_start = os::elapsedTime();
5084 
5085   ReferenceProcessor* rp = _ref_processor_stw;
5086   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5087 
5088   // Now enqueue any remaining on the discovered lists on to
5089   // the pending list.
5090   if (!rp->processing_is_mt()) {
5091     // Serial reference processing...
5092     rp->enqueue_discovered_references();
5093   } else {
5094     // Parallel reference enqueueing
5095 
5096     uint n_workers = workers()->active_workers();
5097 
5098     assert(rp->num_q() == n_workers, "sanity");
5099     assert(n_workers <= rp->max_num_q(), "sanity");
5100 
5101     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
5102     rp->enqueue_discovered_references(&par_task_executor);
5103   }
5104 
5105   rp->verify_no_references_recorded();
5106   assert(!rp->discovery_enabled(), "should have been disabled");
5107 
5108   // FIXME
5109   // CM's reference processing also cleans up the string and symbol tables.
5110   // Should we do that here also? We could, but it is a serial operation
5111   // and could significantly increase the pause time.
5112 
5113   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5114   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5115 }
5116 
5117 void G1CollectedHeap::pre_evacuate_collection_set() {
5118   _expand_heap_after_alloc_failure = true;
5119   _evacuation_failed = false;
5120 
5121   // Disable the hot card cache.
5122   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5123   hot_card_cache->reset_hot_cache_claimed_index();
5124   hot_card_cache->set_use_cache(false);
5125 
5126 }
5127 
5128 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5129   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5130 
5131   // Should G1EvacuationFailureALot be in effect for this GC?
5132   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5133 
5134   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5135   double start_par_time_sec = os::elapsedTime();
5136   double end_par_time_sec;
5137 
5138   {
5139     const uint n_workers = workers()->active_workers();
5140     G1RootProcessor root_processor(this, n_workers);
5141     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
5142     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5143     if (collector_state()->during_initial_mark_pause()) {
5144       ClassLoaderDataGraph::clear_claimed_marks();
5145     }
5146 
5147     // The individual threads will set their evac-failure closures.
5148     if (PrintTerminationStats) {
5149       print_termination_stats_hdr(gclog_or_tty);
5150     }
5151 
5152     workers()->run_task(&g1_par_task);
5153     end_par_time_sec = os::elapsedTime();
5154 
5155     // Closing the inner scope will execute the destructor
5156     // for the G1RootProcessor object. We record the current
5157     // elapsed time before closing the scope so that time
5158     // taken for the destructor is NOT included in the
5159     // reported parallel time.
5160   }
5161 
5162   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5163 
5164   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5165   phase_times->record_par_time(par_time_ms);
5166 
5167   double code_root_fixup_time_ms =
5168         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5169   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5170 
5171   // Process any discovered reference objects - we have
5172   // to do this _before_ we retire the GC alloc regions
5173   // as we may have to copy some 'reachable' referent
5174   // objects (and their reachable sub-graphs) that were
5175   // not copied during the pause.
5176   process_discovered_references(per_thread_states);
5177 
5178   if (G1StringDedup::is_enabled()) {
5179     double fixup_start = os::elapsedTime();
5180 
5181     G1STWIsAliveClosure is_alive(this);
5182     G1KeepAliveClosure keep_alive(this);
5183     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5184 
5185     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5186     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5187   }
5188 
5189   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5190 
5191   if (evacuation_failed()) {
5192     remove_self_forwarding_pointers();
5193 
5194     // Reset the G1EvacuationFailureALot counters and flags
5195     // Note: the values are reset only when an actual
5196     // evacuation failure occurs.
5197     NOT_PRODUCT(reset_evacuation_should_fail();)
5198   }
5199 
5200   // Enqueue any remaining references remaining on the STW
5201   // reference processor's discovered lists. We need to do
5202   // this after the card table is cleaned (and verified) as
5203   // the act of enqueueing entries on to the pending list
5204   // will log these updates (and dirty their associated
5205   // cards). We need these updates logged to update any
5206   // RSets.
5207   enqueue_discovered_references(per_thread_states);
5208 }
5209 
5210 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5211   _allocator->release_gc_alloc_regions(evacuation_info);
5212 
5213   per_thread_states->flush();
5214 
5215   record_obj_copy_mem_stats();
5216 
5217   _survivor_evac_stats.adjust_desired_plab_sz();
5218   _old_evac_stats.adjust_desired_plab_sz();
5219 
5220   // Reset and re-enable the hot card cache.
5221   // Note the counts for the cards in the regions in the
5222   // collection set are reset when the collection set is freed.
5223   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5224   hot_card_cache->reset_hot_cache();
5225   hot_card_cache->set_use_cache(true);
5226 
5227   purge_code_root_memory();
5228 
5229   redirty_logged_cards();
5230 #if defined(COMPILER2) || INCLUDE_JVMCI
5231   DerivedPointerTable::update_pointers();
5232 #endif
5233 }
5234 
5235 void G1CollectedHeap::record_obj_copy_mem_stats() {
5236   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
5237                                                create_g1_evac_summary(&_old_evac_stats));
5238 }
5239 
5240 void G1CollectedHeap::free_region(HeapRegion* hr,
5241                                   FreeRegionList* free_list,
5242                                   bool par,
5243                                   bool locked) {
5244   assert(!hr->is_free(), "the region should not be free");
5245   assert(!hr->is_empty(), "the region should not be empty");
5246   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5247   assert(free_list != NULL, "pre-condition");
5248 
5249   if (G1VerifyBitmaps) {
5250     MemRegion mr(hr->bottom(), hr->end());
5251     concurrent_mark()->clearRangePrevBitmap(mr);
5252   }
5253 
5254   // Clear the card counts for this region.
5255   // Note: we only need to do this if the region is not young
5256   // (since we don't refine cards in young regions).
5257   if (!hr->is_young()) {
5258     _cg1r->hot_card_cache()->reset_card_counts(hr);
5259   }
5260   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5261   free_list->add_ordered(hr);
5262 }
5263 
5264 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5265                                             FreeRegionList* free_list,
5266                                             bool par) {
5267   assert(hr->is_humongous(), "this is only for humongous regions");
5268   assert(free_list != NULL, "pre-condition");
5269   hr->clear_humongous();
5270   free_region(hr, free_list, par);
5271 }
5272 
5273 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5274                                            const HeapRegionSetCount& humongous_regions_removed) {
5275   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5276     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5277     _old_set.bulk_remove(old_regions_removed);
5278     _humongous_set.bulk_remove(humongous_regions_removed);
5279   }
5280 
5281 }
5282 
5283 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5284   assert(list != NULL, "list can't be null");
5285   if (!list->is_empty()) {
5286     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5287     _hrm.insert_list_into_free_list(list);
5288   }
5289 }
5290 
5291 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5292   decrease_used(bytes);
5293 }
5294 
5295 class G1ParCleanupCTTask : public AbstractGangTask {
5296   G1SATBCardTableModRefBS* _ct_bs;
5297   G1CollectedHeap* _g1h;
5298   HeapRegion* volatile _su_head;
5299 public:
5300   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5301                      G1CollectedHeap* g1h) :
5302     AbstractGangTask("G1 Par Cleanup CT Task"),
5303     _ct_bs(ct_bs), _g1h(g1h) { }
5304 
5305   void work(uint worker_id) {
5306     HeapRegion* r;
5307     while (r = _g1h->pop_dirty_cards_region()) {
5308       clear_cards(r);
5309     }
5310   }
5311 
5312   void clear_cards(HeapRegion* r) {
5313     // Cards of the survivors should have already been dirtied.
5314     if (!r->is_survivor()) {
5315       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5316     }
5317   }
5318 };
5319 
5320 #ifndef PRODUCT
5321 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5322   G1CollectedHeap* _g1h;
5323   G1SATBCardTableModRefBS* _ct_bs;
5324 public:
5325   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5326     : _g1h(g1h), _ct_bs(ct_bs) { }
5327   virtual bool doHeapRegion(HeapRegion* r) {
5328     if (r->is_survivor()) {
5329       _g1h->verify_dirty_region(r);
5330     } else {
5331       _g1h->verify_not_dirty_region(r);
5332     }
5333     return false;
5334   }
5335 };
5336 
5337 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5338   // All of the region should be clean.
5339   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5340   MemRegion mr(hr->bottom(), hr->end());
5341   ct_bs->verify_not_dirty_region(mr);
5342 }
5343 
5344 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5345   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5346   // dirty allocated blocks as they allocate them. The thread that
5347   // retires each region and replaces it with a new one will do a
5348   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5349   // not dirty that area (one less thing to have to do while holding
5350   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5351   // is dirty.
5352   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5353   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5354   if (hr->is_young()) {
5355     ct_bs->verify_g1_young_region(mr);
5356   } else {
5357     ct_bs->verify_dirty_region(mr);
5358   }
5359 }
5360 
5361 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5362   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5363   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5364     verify_dirty_region(hr);
5365   }
5366 }
5367 
5368 void G1CollectedHeap::verify_dirty_young_regions() {
5369   verify_dirty_young_list(_young_list->first_region());
5370 }
5371 
5372 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5373                                                HeapWord* tams, HeapWord* end) {
5374   guarantee(tams <= end,
5375             "tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end));
5376   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5377   if (result < end) {
5378     gclog_or_tty->cr();
5379     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: " PTR_FORMAT,
5380                            bitmap_name, p2i(result));
5381     gclog_or_tty->print_cr("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT,
5382                            bitmap_name, p2i(tams), p2i(end));
5383     return false;
5384   }
5385   return true;
5386 }
5387 
5388 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5389   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5390   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5391 
5392   HeapWord* bottom = hr->bottom();
5393   HeapWord* ptams  = hr->prev_top_at_mark_start();
5394   HeapWord* ntams  = hr->next_top_at_mark_start();
5395   HeapWord* end    = hr->end();
5396 
5397   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5398 
5399   bool res_n = true;
5400   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5401   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5402   // if we happen to be in that state.
5403   if (collector_state()->mark_in_progress() || !_cmThread->in_progress()) {
5404     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5405   }
5406   if (!res_p || !res_n) {
5407     gclog_or_tty->print_cr("#### Bitmap verification failed for " HR_FORMAT,
5408                            HR_FORMAT_PARAMS(hr));
5409     gclog_or_tty->print_cr("#### Caller: %s", caller);
5410     return false;
5411   }
5412   return true;
5413 }
5414 
5415 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5416   if (!G1VerifyBitmaps) return;
5417 
5418   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5419 }
5420 
5421 class G1VerifyBitmapClosure : public HeapRegionClosure {
5422 private:
5423   const char* _caller;
5424   G1CollectedHeap* _g1h;
5425   bool _failures;
5426 
5427 public:
5428   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5429     _caller(caller), _g1h(g1h), _failures(false) { }
5430 
5431   bool failures() { return _failures; }
5432 
5433   virtual bool doHeapRegion(HeapRegion* hr) {
5434     bool result = _g1h->verify_bitmaps(_caller, hr);
5435     if (!result) {
5436       _failures = true;
5437     }
5438     return false;
5439   }
5440 };
5441 
5442 void G1CollectedHeap::check_bitmaps(const char* caller) {
5443   if (!G1VerifyBitmaps) return;
5444 
5445   G1VerifyBitmapClosure cl(caller, this);
5446   heap_region_iterate(&cl);
5447   guarantee(!cl.failures(), "bitmap verification");
5448 }
5449 
5450 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5451  private:
5452   bool _failures;
5453  public:
5454   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5455 
5456   virtual bool doHeapRegion(HeapRegion* hr) {
5457     uint i = hr->hrm_index();
5458     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5459     if (hr->is_humongous()) {
5460       if (hr->in_collection_set()) {
5461         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5462         _failures = true;
5463         return true;
5464       }
5465       if (cset_state.is_in_cset()) {
5466         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5467         _failures = true;
5468         return true;
5469       }
5470       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5471         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5472         _failures = true;
5473         return true;
5474       }
5475     } else {
5476       if (cset_state.is_humongous()) {
5477         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5478         _failures = true;
5479         return true;
5480       }
5481       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5482         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5483                                hr->in_collection_set(), cset_state.value(), i);
5484         _failures = true;
5485         return true;
5486       }
5487       if (cset_state.is_in_cset()) {
5488         if (hr->is_young() != (cset_state.is_young())) {
5489           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5490                                  hr->is_young(), cset_state.value(), i);
5491           _failures = true;
5492           return true;
5493         }
5494         if (hr->is_old() != (cset_state.is_old())) {
5495           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5496                                  hr->is_old(), cset_state.value(), i);
5497           _failures = true;
5498           return true;
5499         }
5500       }
5501     }
5502     return false;
5503   }
5504 
5505   bool failures() const { return _failures; }
5506 };
5507 
5508 bool G1CollectedHeap::check_cset_fast_test() {
5509   G1CheckCSetFastTableClosure cl;
5510   _hrm.iterate(&cl);
5511   return !cl.failures();
5512 }
5513 #endif // PRODUCT
5514 
5515 void G1CollectedHeap::cleanUpCardTable() {
5516   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5517   double start = os::elapsedTime();
5518 
5519   {
5520     // Iterate over the dirty cards region list.
5521     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5522 
5523     workers()->run_task(&cleanup_task);
5524 #ifndef PRODUCT
5525     if (G1VerifyCTCleanup || VerifyAfterGC) {
5526       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5527       heap_region_iterate(&cleanup_verifier);
5528     }
5529 #endif
5530   }
5531 
5532   double elapsed = os::elapsedTime() - start;
5533   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5534 }
5535 
5536 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
5537   size_t pre_used = 0;
5538   FreeRegionList local_free_list("Local List for CSet Freeing");
5539 
5540   double young_time_ms     = 0.0;
5541   double non_young_time_ms = 0.0;
5542 
5543   // Since the collection set is a superset of the the young list,
5544   // all we need to do to clear the young list is clear its
5545   // head and length, and unlink any young regions in the code below
5546   _young_list->clear();
5547 
5548   G1CollectorPolicy* policy = g1_policy();
5549 
5550   double start_sec = os::elapsedTime();
5551   bool non_young = true;
5552 
5553   HeapRegion* cur = cs_head;
5554   int age_bound = -1;
5555   size_t rs_lengths = 0;
5556 
5557   while (cur != NULL) {
5558     assert(!is_on_master_free_list(cur), "sanity");
5559     if (non_young) {
5560       if (cur->is_young()) {
5561         double end_sec = os::elapsedTime();
5562         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5563         non_young_time_ms += elapsed_ms;
5564 
5565         start_sec = os::elapsedTime();
5566         non_young = false;
5567       }
5568     } else {
5569       if (!cur->is_young()) {
5570         double end_sec = os::elapsedTime();
5571         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5572         young_time_ms += elapsed_ms;
5573 
5574         start_sec = os::elapsedTime();
5575         non_young = true;
5576       }
5577     }
5578 
5579     rs_lengths += cur->rem_set()->occupied_locked();
5580 
5581     HeapRegion* next = cur->next_in_collection_set();
5582     assert(cur->in_collection_set(), "bad CS");
5583     cur->set_next_in_collection_set(NULL);
5584     clear_in_cset(cur);
5585 
5586     if (cur->is_young()) {
5587       int index = cur->young_index_in_cset();
5588       assert(index != -1, "invariant");
5589       assert((uint) index < policy->young_cset_region_length(), "invariant");
5590       size_t words_survived = surviving_young_words[index];
5591       cur->record_surv_words_in_group(words_survived);
5592 
5593       // At this point the we have 'popped' cur from the collection set
5594       // (linked via next_in_collection_set()) but it is still in the
5595       // young list (linked via next_young_region()). Clear the
5596       // _next_young_region field.
5597       cur->set_next_young_region(NULL);
5598     } else {
5599       int index = cur->young_index_in_cset();
5600       assert(index == -1, "invariant");
5601     }
5602 
5603     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5604             (!cur->is_young() && cur->young_index_in_cset() == -1),
5605             "invariant" );
5606 
5607     if (!cur->evacuation_failed()) {
5608       MemRegion used_mr = cur->used_region();
5609 
5610       // And the region is empty.
5611       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5612       pre_used += cur->used();
5613       free_region(cur, &local_free_list, false /* par */, true /* locked */);
5614     } else {
5615       cur->uninstall_surv_rate_group();
5616       if (cur->is_young()) {
5617         cur->set_young_index_in_cset(-1);
5618       }
5619       cur->set_evacuation_failed(false);
5620       // The region is now considered to be old.
5621       cur->set_old();
5622       // Do some allocation statistics accounting. Regions that failed evacuation
5623       // are always made old, so there is no need to update anything in the young
5624       // gen statistics, but we need to update old gen statistics.
5625       size_t used_words = cur->marked_bytes() / HeapWordSize;
5626       _old_evac_stats.add_failure_used_and_waste(used_words, HeapRegion::GrainWords - used_words);
5627       _old_set.add(cur);
5628       evacuation_info.increment_collectionset_used_after(cur->used());
5629     }
5630     cur = next;
5631   }
5632 
5633   evacuation_info.set_regions_freed(local_free_list.length());
5634   policy->record_max_rs_lengths(rs_lengths);
5635   policy->cset_regions_freed();
5636 
5637   double end_sec = os::elapsedTime();
5638   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5639 
5640   if (non_young) {
5641     non_young_time_ms += elapsed_ms;
5642   } else {
5643     young_time_ms += elapsed_ms;
5644   }
5645 
5646   prepend_to_freelist(&local_free_list);
5647   decrement_summary_bytes(pre_used);
5648   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
5649   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
5650 }
5651 
5652 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
5653  private:
5654   FreeRegionList* _free_region_list;
5655   HeapRegionSet* _proxy_set;
5656   HeapRegionSetCount _humongous_regions_removed;
5657   size_t _freed_bytes;
5658  public:
5659 
5660   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
5661     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
5662   }
5663 
5664   virtual bool doHeapRegion(HeapRegion* r) {
5665     if (!r->is_starts_humongous()) {
5666       return false;
5667     }
5668 
5669     G1CollectedHeap* g1h = G1CollectedHeap::heap();
5670 
5671     oop obj = (oop)r->bottom();
5672     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
5673 
5674     // The following checks whether the humongous object is live are sufficient.
5675     // The main additional check (in addition to having a reference from the roots
5676     // or the young gen) is whether the humongous object has a remembered set entry.
5677     //
5678     // A humongous object cannot be live if there is no remembered set for it
5679     // because:
5680     // - there can be no references from within humongous starts regions referencing
5681     // the object because we never allocate other objects into them.
5682     // (I.e. there are no intra-region references that may be missed by the
5683     // remembered set)
5684     // - as soon there is a remembered set entry to the humongous starts region
5685     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5686     // until the end of a concurrent mark.
5687     //
5688     // It is not required to check whether the object has been found dead by marking
5689     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5690     // all objects allocated during that time are considered live.
5691     // SATB marking is even more conservative than the remembered set.
5692     // So if at this point in the collection there is no remembered set entry,
5693     // nobody has a reference to it.
5694     // At the start of collection we flush all refinement logs, and remembered sets
5695     // are completely up-to-date wrt to references to the humongous object.
5696     //
5697     // Other implementation considerations:
5698     // - never consider object arrays at this time because they would pose
5699     // considerable effort for cleaning up the the remembered sets. This is
5700     // required because stale remembered sets might reference locations that
5701     // are currently allocated into.
5702     uint region_idx = r->hrm_index();
5703     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
5704         !r->rem_set()->is_empty()) {
5705 
5706       if (G1TraceEagerReclaimHumongousObjects) {
5707         gclog_or_tty->print_cr("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5708                                region_idx,
5709                                (size_t)obj->size() * HeapWordSize,
5710                                p2i(r->bottom()),
5711                                r->rem_set()->occupied(),
5712                                r->rem_set()->strong_code_roots_list_length(),
5713                                next_bitmap->isMarked(r->bottom()),
5714                                g1h->is_humongous_reclaim_candidate(region_idx),
5715                                obj->is_typeArray()
5716                               );
5717       }
5718 
5719       return false;
5720     }
5721 
5722     guarantee(obj->is_typeArray(),
5723               "Only eagerly reclaiming type arrays is supported, but the object "
5724               PTR_FORMAT " is not.", p2i(r->bottom()));
5725 
5726     if (G1TraceEagerReclaimHumongousObjects) {
5727       gclog_or_tty->print_cr("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5728                              region_idx,
5729                              (size_t)obj->size() * HeapWordSize,
5730                              p2i(r->bottom()),
5731                              r->rem_set()->occupied(),
5732                              r->rem_set()->strong_code_roots_list_length(),
5733                              next_bitmap->isMarked(r->bottom()),
5734                              g1h->is_humongous_reclaim_candidate(region_idx),
5735                              obj->is_typeArray()
5736                             );
5737     }
5738     // Need to clear mark bit of the humongous object if already set.
5739     if (next_bitmap->isMarked(r->bottom())) {
5740       next_bitmap->clear(r->bottom());
5741     }
5742     do {
5743       HeapRegion* next = g1h->next_region_in_humongous(r);
5744       _freed_bytes += r->used();
5745       r->set_containing_set(NULL);
5746       _humongous_regions_removed.increment(1u, r->capacity());
5747       g1h->free_humongous_region(r, _free_region_list, false);
5748       r = next;
5749     } while (r != NULL);
5750 
5751     return false;
5752   }
5753 
5754   HeapRegionSetCount& humongous_free_count() {
5755     return _humongous_regions_removed;
5756   }
5757 
5758   size_t bytes_freed() const {
5759     return _freed_bytes;
5760   }
5761 
5762   size_t humongous_reclaimed() const {
5763     return _humongous_regions_removed.length();
5764   }
5765 };
5766 
5767 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5768   assert_at_safepoint(true);
5769 
5770   if (!G1EagerReclaimHumongousObjects ||
5771       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
5772     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5773     return;
5774   }
5775 
5776   double start_time = os::elapsedTime();
5777 
5778   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5779 
5780   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5781   heap_region_iterate(&cl);
5782 
5783   HeapRegionSetCount empty_set;
5784   remove_from_old_sets(empty_set, cl.humongous_free_count());
5785 
5786   G1HRPrinter* hrp = hr_printer();
5787   if (hrp->is_active()) {
5788     FreeRegionListIterator iter(&local_cleanup_list);
5789     while (iter.more_available()) {
5790       HeapRegion* hr = iter.get_next();
5791       hrp->cleanup(hr);
5792     }
5793   }
5794 
5795   prepend_to_freelist(&local_cleanup_list);
5796   decrement_summary_bytes(cl.bytes_freed());
5797 
5798   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5799                                                                     cl.humongous_reclaimed());
5800 }
5801 
5802 // This routine is similar to the above but does not record
5803 // any policy statistics or update free lists; we are abandoning
5804 // the current incremental collection set in preparation of a
5805 // full collection. After the full GC we will start to build up
5806 // the incremental collection set again.
5807 // This is only called when we're doing a full collection
5808 // and is immediately followed by the tearing down of the young list.
5809 
5810 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
5811   HeapRegion* cur = cs_head;
5812 
5813   while (cur != NULL) {
5814     HeapRegion* next = cur->next_in_collection_set();
5815     assert(cur->in_collection_set(), "bad CS");
5816     cur->set_next_in_collection_set(NULL);
5817     clear_in_cset(cur);
5818     cur->set_young_index_in_cset(-1);
5819     cur = next;
5820   }
5821 }
5822 
5823 void G1CollectedHeap::set_free_regions_coming() {
5824   if (G1ConcRegionFreeingVerbose) {
5825     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5826                            "setting free regions coming");
5827   }
5828 
5829   assert(!free_regions_coming(), "pre-condition");
5830   _free_regions_coming = true;
5831 }
5832 
5833 void G1CollectedHeap::reset_free_regions_coming() {
5834   assert(free_regions_coming(), "pre-condition");
5835 
5836   {
5837     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5838     _free_regions_coming = false;
5839     SecondaryFreeList_lock->notify_all();
5840   }
5841 
5842   if (G1ConcRegionFreeingVerbose) {
5843     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5844                            "reset free regions coming");
5845   }
5846 }
5847 
5848 void G1CollectedHeap::wait_while_free_regions_coming() {
5849   // Most of the time we won't have to wait, so let's do a quick test
5850   // first before we take the lock.
5851   if (!free_regions_coming()) {
5852     return;
5853   }
5854 
5855   if (G1ConcRegionFreeingVerbose) {
5856     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5857                            "waiting for free regions");
5858   }
5859 
5860   {
5861     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5862     while (free_regions_coming()) {
5863       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5864     }
5865   }
5866 
5867   if (G1ConcRegionFreeingVerbose) {
5868     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5869                            "done waiting for free regions");
5870   }
5871 }
5872 
5873 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5874   return _allocator->is_retained_old_region(hr);
5875 }
5876 
5877 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5878   _young_list->push_region(hr);
5879 }
5880 
5881 class NoYoungRegionsClosure: public HeapRegionClosure {
5882 private:
5883   bool _success;
5884 public:
5885   NoYoungRegionsClosure() : _success(true) { }
5886   bool doHeapRegion(HeapRegion* r) {
5887     if (r->is_young()) {
5888       gclog_or_tty->print_cr("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5889                              p2i(r->bottom()), p2i(r->end()));
5890       _success = false;
5891     }
5892     return false;
5893   }
5894   bool success() { return _success; }
5895 };
5896 
5897 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
5898   bool ret = _young_list->check_list_empty(check_sample);
5899 
5900   if (check_heap) {
5901     NoYoungRegionsClosure closure;
5902     heap_region_iterate(&closure);
5903     ret = ret && closure.success();
5904   }
5905 
5906   return ret;
5907 }
5908 
5909 class TearDownRegionSetsClosure : public HeapRegionClosure {
5910 private:
5911   HeapRegionSet *_old_set;
5912 
5913 public:
5914   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5915 
5916   bool doHeapRegion(HeapRegion* r) {
5917     if (r->is_old()) {
5918       _old_set->remove(r);
5919     } else {
5920       // We ignore free regions, we'll empty the free list afterwards.
5921       // We ignore young regions, we'll empty the young list afterwards.
5922       // We ignore humongous regions, we're not tearing down the
5923       // humongous regions set.
5924       assert(r->is_free() || r->is_young() || r->is_humongous(),
5925              "it cannot be another type");
5926     }
5927     return false;
5928   }
5929 
5930   ~TearDownRegionSetsClosure() {
5931     assert(_old_set->is_empty(), "post-condition");
5932   }
5933 };
5934 
5935 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5936   assert_at_safepoint(true /* should_be_vm_thread */);
5937 
5938   if (!free_list_only) {
5939     TearDownRegionSetsClosure cl(&_old_set);
5940     heap_region_iterate(&cl);
5941 
5942     // Note that emptying the _young_list is postponed and instead done as
5943     // the first step when rebuilding the regions sets again. The reason for
5944     // this is that during a full GC string deduplication needs to know if
5945     // a collected region was young or old when the full GC was initiated.
5946   }
5947   _hrm.remove_all_free_regions();
5948 }
5949 
5950 void G1CollectedHeap::increase_used(size_t bytes) {
5951   _summary_bytes_used += bytes;
5952 }
5953 
5954 void G1CollectedHeap::decrease_used(size_t bytes) {
5955   assert(_summary_bytes_used >= bytes,
5956          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5957          _summary_bytes_used, bytes);
5958   _summary_bytes_used -= bytes;
5959 }
5960 
5961 void G1CollectedHeap::set_used(size_t bytes) {
5962   _summary_bytes_used = bytes;
5963 }
5964 
5965 class RebuildRegionSetsClosure : public HeapRegionClosure {
5966 private:
5967   bool            _free_list_only;
5968   HeapRegionSet*   _old_set;
5969   HeapRegionManager*   _hrm;
5970   size_t          _total_used;
5971 
5972 public:
5973   RebuildRegionSetsClosure(bool free_list_only,
5974                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5975     _free_list_only(free_list_only),
5976     _old_set(old_set), _hrm(hrm), _total_used(0) {
5977     assert(_hrm->num_free_regions() == 0, "pre-condition");
5978     if (!free_list_only) {
5979       assert(_old_set->is_empty(), "pre-condition");
5980     }
5981   }
5982 
5983   bool doHeapRegion(HeapRegion* r) {
5984     if (r->is_empty()) {
5985       // Add free regions to the free list
5986       r->set_free();
5987       r->set_allocation_context(AllocationContext::system());
5988       _hrm->insert_into_free_list(r);
5989     } else if (!_free_list_only) {
5990       assert(!r->is_young(), "we should not come across young regions");
5991 
5992       if (r->is_humongous()) {
5993         // We ignore humongous regions. We left the humongous set unchanged.
5994       } else {
5995         // Objects that were compacted would have ended up on regions
5996         // that were previously old or free.  Archive regions (which are
5997         // old) will not have been touched.
5998         assert(r->is_free() || r->is_old(), "invariant");
5999         // We now consider them old, so register as such. Leave
6000         // archive regions set that way, however, while still adding
6001         // them to the old set.
6002         if (!r->is_archive()) {
6003           r->set_old();
6004         }
6005         _old_set->add(r);
6006       }
6007       _total_used += r->used();
6008     }
6009 
6010     return false;
6011   }
6012 
6013   size_t total_used() {
6014     return _total_used;
6015   }
6016 };
6017 
6018 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6019   assert_at_safepoint(true /* should_be_vm_thread */);
6020 
6021   if (!free_list_only) {
6022     _young_list->empty_list();
6023   }
6024 
6025   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6026   heap_region_iterate(&cl);
6027 
6028   if (!free_list_only) {
6029     set_used(cl.total_used());
6030     if (_archive_allocator != NULL) {
6031       _archive_allocator->clear_used();
6032     }
6033   }
6034   assert(used_unlocked() == recalculate_used(),
6035          "inconsistent used_unlocked(), "
6036          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
6037          used_unlocked(), recalculate_used());
6038 }
6039 
6040 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6041   _refine_cte_cl->set_concurrent(concurrent);
6042 }
6043 
6044 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6045   HeapRegion* hr = heap_region_containing(p);
6046   return hr->is_in(p);
6047 }
6048 
6049 // Methods for the mutator alloc region
6050 
6051 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6052                                                       bool force) {
6053   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6054   assert(!force || g1_policy()->can_expand_young_list(),
6055          "if force is true we should be able to expand the young list");
6056   bool young_list_full = g1_policy()->is_young_list_full();
6057   if (force || !young_list_full) {
6058     HeapRegion* new_alloc_region = new_region(word_size,
6059                                               false /* is_old */,
6060                                               false /* do_expand */);
6061     if (new_alloc_region != NULL) {
6062       set_region_short_lived_locked(new_alloc_region);
6063       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6064       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6065       return new_alloc_region;
6066     }
6067   }
6068   return NULL;
6069 }
6070 
6071 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6072                                                   size_t allocated_bytes) {
6073   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6074   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6075 
6076   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6077   increase_used(allocated_bytes);
6078   _hr_printer.retire(alloc_region);
6079   // We update the eden sizes here, when the region is retired,
6080   // instead of when it's allocated, since this is the point that its
6081   // used space has been recored in _summary_bytes_used.
6082   g1mm()->update_eden_size();
6083 }
6084 
6085 // Methods for the GC alloc regions
6086 
6087 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6088                                                  uint count,
6089                                                  InCSetState dest) {
6090   assert(FreeList_lock->owned_by_self(), "pre-condition");
6091 
6092   if (count < g1_policy()->max_regions(dest)) {
6093     const bool is_survivor = (dest.is_young());
6094     HeapRegion* new_alloc_region = new_region(word_size,
6095                                               !is_survivor,
6096                                               true /* do_expand */);
6097     if (new_alloc_region != NULL) {
6098       // We really only need to do this for old regions given that we
6099       // should never scan survivors. But it doesn't hurt to do it
6100       // for survivors too.
6101       new_alloc_region->record_timestamp();
6102       if (is_survivor) {
6103         new_alloc_region->set_survivor();
6104         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6105         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6106       } else {
6107         new_alloc_region->set_old();
6108         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6109         check_bitmaps("Old Region Allocation", new_alloc_region);
6110       }
6111       bool during_im = collector_state()->during_initial_mark_pause();
6112       new_alloc_region->note_start_of_copying(during_im);
6113       return new_alloc_region;
6114     }
6115   }
6116   return NULL;
6117 }
6118 
6119 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6120                                              size_t allocated_bytes,
6121                                              InCSetState dest) {
6122   bool during_im = collector_state()->during_initial_mark_pause();
6123   alloc_region->note_end_of_copying(during_im);
6124   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6125   if (dest.is_young()) {
6126     young_list()->add_survivor_region(alloc_region);
6127   } else {
6128     _old_set.add(alloc_region);
6129   }
6130   _hr_printer.retire(alloc_region);
6131 }
6132 
6133 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
6134   bool expanded = false;
6135   uint index = _hrm.find_highest_free(&expanded);
6136 
6137   if (index != G1_NO_HRM_INDEX) {
6138     if (expanded) {
6139       ergo_verbose1(ErgoHeapSizing,
6140                     "attempt heap expansion",
6141                     ergo_format_reason("requested address range outside heap bounds")
6142                     ergo_format_byte("region size"),
6143                     HeapRegion::GrainWords * HeapWordSize);
6144     }
6145     _hrm.allocate_free_regions_starting_at(index, 1);
6146     return region_at(index);
6147   }
6148   return NULL;
6149 }
6150 
6151 // Heap region set verification
6152 
6153 class VerifyRegionListsClosure : public HeapRegionClosure {
6154 private:
6155   HeapRegionSet*   _old_set;
6156   HeapRegionSet*   _humongous_set;
6157   HeapRegionManager*   _hrm;
6158 
6159 public:
6160   HeapRegionSetCount _old_count;
6161   HeapRegionSetCount _humongous_count;
6162   HeapRegionSetCount _free_count;
6163 
6164   VerifyRegionListsClosure(HeapRegionSet* old_set,
6165                            HeapRegionSet* humongous_set,
6166                            HeapRegionManager* hrm) :
6167     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6168     _old_count(), _humongous_count(), _free_count(){ }
6169 
6170   bool doHeapRegion(HeapRegion* hr) {
6171     if (hr->is_young()) {
6172       // TODO
6173     } else if (hr->is_humongous()) {
6174       assert(hr->containing_set() == _humongous_set, "Heap region %u is humongous but not in humongous set.", hr->hrm_index());
6175       _humongous_count.increment(1u, hr->capacity());
6176     } else if (hr->is_empty()) {
6177       assert(_hrm->is_free(hr), "Heap region %u is empty but not on the free list.", hr->hrm_index());
6178       _free_count.increment(1u, hr->capacity());
6179     } else if (hr->is_old()) {
6180       assert(hr->containing_set() == _old_set, "Heap region %u is old but not in the old set.", hr->hrm_index());
6181       _old_count.increment(1u, hr->capacity());
6182     } else {
6183       // There are no other valid region types. Check for one invalid
6184       // one we can identify: pinned without old or humongous set.
6185       assert(!hr->is_pinned(), "Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index());
6186       ShouldNotReachHere();
6187     }
6188     return false;
6189   }
6190 
6191   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6192     guarantee(old_set->length() == _old_count.length(), "Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length());
6193     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), "Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6194               old_set->total_capacity_bytes(), _old_count.capacity());
6195 
6196     guarantee(humongous_set->length() == _humongous_count.length(), "Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length());
6197     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), "Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6198               humongous_set->total_capacity_bytes(), _humongous_count.capacity());
6199 
6200     guarantee(free_list->num_free_regions() == _free_count.length(), "Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length());
6201     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), "Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6202               free_list->total_capacity_bytes(), _free_count.capacity());
6203   }
6204 };
6205 
6206 void G1CollectedHeap::verify_region_sets() {
6207   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6208 
6209   // First, check the explicit lists.
6210   _hrm.verify();
6211   {
6212     // Given that a concurrent operation might be adding regions to
6213     // the secondary free list we have to take the lock before
6214     // verifying it.
6215     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6216     _secondary_free_list.verify_list();
6217   }
6218 
6219   // If a concurrent region freeing operation is in progress it will
6220   // be difficult to correctly attributed any free regions we come
6221   // across to the correct free list given that they might belong to
6222   // one of several (free_list, secondary_free_list, any local lists,
6223   // etc.). So, if that's the case we will skip the rest of the
6224   // verification operation. Alternatively, waiting for the concurrent
6225   // operation to complete will have a non-trivial effect on the GC's
6226   // operation (no concurrent operation will last longer than the
6227   // interval between two calls to verification) and it might hide
6228   // any issues that we would like to catch during testing.
6229   if (free_regions_coming()) {
6230     return;
6231   }
6232 
6233   // Make sure we append the secondary_free_list on the free_list so
6234   // that all free regions we will come across can be safely
6235   // attributed to the free_list.
6236   append_secondary_free_list_if_not_empty_with_lock();
6237 
6238   // Finally, make sure that the region accounting in the lists is
6239   // consistent with what we see in the heap.
6240 
6241   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6242   heap_region_iterate(&cl);
6243   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6244 }
6245 
6246 // Optimized nmethod scanning
6247 
6248 class RegisterNMethodOopClosure: public OopClosure {
6249   G1CollectedHeap* _g1h;
6250   nmethod* _nm;
6251 
6252   template <class T> void do_oop_work(T* p) {
6253     T heap_oop = oopDesc::load_heap_oop(p);
6254     if (!oopDesc::is_null(heap_oop)) {
6255       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6256       HeapRegion* hr = _g1h->heap_region_containing(obj);
6257       assert(!hr->is_continues_humongous(),
6258              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6259              " starting at " HR_FORMAT,
6260              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6261 
6262       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6263       hr->add_strong_code_root_locked(_nm);
6264     }
6265   }
6266 
6267 public:
6268   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6269     _g1h(g1h), _nm(nm) {}
6270 
6271   void do_oop(oop* p)       { do_oop_work(p); }
6272   void do_oop(narrowOop* p) { do_oop_work(p); }
6273 };
6274 
6275 class UnregisterNMethodOopClosure: public OopClosure {
6276   G1CollectedHeap* _g1h;
6277   nmethod* _nm;
6278 
6279   template <class T> void do_oop_work(T* p) {
6280     T heap_oop = oopDesc::load_heap_oop(p);
6281     if (!oopDesc::is_null(heap_oop)) {
6282       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6283       HeapRegion* hr = _g1h->heap_region_containing(obj);
6284       assert(!hr->is_continues_humongous(),
6285              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6286              " starting at " HR_FORMAT,
6287              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6288 
6289       hr->remove_strong_code_root(_nm);
6290     }
6291   }
6292 
6293 public:
6294   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6295     _g1h(g1h), _nm(nm) {}
6296 
6297   void do_oop(oop* p)       { do_oop_work(p); }
6298   void do_oop(narrowOop* p) { do_oop_work(p); }
6299 };
6300 
6301 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6302   CollectedHeap::register_nmethod(nm);
6303 
6304   guarantee(nm != NULL, "sanity");
6305   RegisterNMethodOopClosure reg_cl(this, nm);
6306   nm->oops_do(&reg_cl);
6307 }
6308 
6309 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6310   CollectedHeap::unregister_nmethod(nm);
6311 
6312   guarantee(nm != NULL, "sanity");
6313   UnregisterNMethodOopClosure reg_cl(this, nm);
6314   nm->oops_do(&reg_cl, true);
6315 }
6316 
6317 void G1CollectedHeap::purge_code_root_memory() {
6318   double purge_start = os::elapsedTime();
6319   G1CodeRootSet::purge();
6320   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6321   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6322 }
6323 
6324 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6325   G1CollectedHeap* _g1h;
6326 
6327 public:
6328   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6329     _g1h(g1h) {}
6330 
6331   void do_code_blob(CodeBlob* cb) {
6332     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6333     if (nm == NULL) {
6334       return;
6335     }
6336 
6337     if (ScavengeRootsInCode) {
6338       _g1h->register_nmethod(nm);
6339     }
6340   }
6341 };
6342 
6343 void G1CollectedHeap::rebuild_strong_code_roots() {
6344   RebuildStrongCodeRootClosure blob_cl(this);
6345   CodeCache::blobs_do(&blob_cl);
6346 }