1 /*
   2  * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_Instruction.hpp"
  31 #include "c1/c1_LIRAssembler.hpp"
  32 #include "c1/c1_LIRGenerator.hpp"
  33 #include "c1/c1_Runtime1.hpp"
  34 #include "c1/c1_ValueStack.hpp"
  35 #include "ci/ciArray.hpp"
  36 #include "ci/ciObjArrayKlass.hpp"
  37 #include "ci/ciTypeArrayKlass.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "vmreg_aarch64.inline.hpp"
  41 
  42 #ifdef ASSERT
  43 #define __ gen()->lir(__FILE__, __LINE__)->
  44 #else
  45 #define __ gen()->lir()->
  46 #endif
  47 
  48 // Item will be loaded into a byte register; Intel only
  49 void LIRItem::load_byte_item() {
  50   load_item();
  51 }
  52 
  53 
  54 void LIRItem::load_nonconstant() {
  55   LIR_Opr r = value()->operand();
  56   if (r->is_constant()) {
  57     _result = r;
  58   } else {
  59     load_item();
  60   }
  61 }
  62 
  63 //--------------------------------------------------------------
  64 //               LIRGenerator
  65 //--------------------------------------------------------------
  66 
  67 
  68 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::r0_oop_opr; }
  69 LIR_Opr LIRGenerator::exceptionPcOpr()  { return FrameMap::r3_opr; }
  70 LIR_Opr LIRGenerator::divInOpr()        { Unimplemented(); return LIR_OprFact::illegalOpr; }
  71 LIR_Opr LIRGenerator::divOutOpr()       { Unimplemented(); return LIR_OprFact::illegalOpr; }
  72 LIR_Opr LIRGenerator::remOutOpr()       { Unimplemented(); return LIR_OprFact::illegalOpr; }
  73 LIR_Opr LIRGenerator::shiftCountOpr()   { Unimplemented(); return LIR_OprFact::illegalOpr; }
  74 LIR_Opr LIRGenerator::syncLockOpr()     { return new_register(T_INT); }
  75 LIR_Opr LIRGenerator::syncTempOpr()     { return FrameMap::r0_opr; }
  76 LIR_Opr LIRGenerator::getThreadTemp()   { return LIR_OprFact::illegalOpr; }
  77 
  78 
  79 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
  80   LIR_Opr opr;
  81   switch (type->tag()) {
  82     case intTag:     opr = FrameMap::r0_opr;          break;
  83     case objectTag:  opr = FrameMap::r0_oop_opr;      break;
  84     case longTag:    opr = FrameMap::long0_opr;        break;
  85     case floatTag:   opr = FrameMap::fpu0_float_opr;  break;
  86     case doubleTag:  opr = FrameMap::fpu0_double_opr;  break;
  87 
  88     case addressTag:
  89     default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
  90   }
  91 
  92   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
  93   return opr;
  94 }
  95 
  96 
  97 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
  98   LIR_Opr reg = new_register(T_INT);
  99   set_vreg_flag(reg, LIRGenerator::byte_reg);
 100   return reg;
 101 }
 102 
 103 
 104 //--------- loading items into registers --------------------------------
 105 
 106 
 107 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
 108   if (v->type()->as_IntConstant() != NULL) {
 109     return v->type()->as_IntConstant()->value() == 0L;
 110   } else if (v->type()->as_LongConstant() != NULL) {
 111     return v->type()->as_LongConstant()->value() == 0L;
 112   } else if (v->type()->as_ObjectConstant() != NULL) {
 113     return v->type()->as_ObjectConstant()->value()->is_null_object();
 114   } else {
 115     return false;
 116   }
 117 }
 118 
 119 bool LIRGenerator::can_inline_as_constant(Value v) const {
 120   // FIXME: Just a guess
 121   if (v->type()->as_IntConstant() != NULL) {
 122     return Assembler::operand_valid_for_add_sub_immediate(v->type()->as_IntConstant()->value());
 123   } else if (v->type()->as_LongConstant() != NULL) {
 124     return v->type()->as_LongConstant()->value() == 0L;
 125   } else if (v->type()->as_ObjectConstant() != NULL) {
 126     return v->type()->as_ObjectConstant()->value()->is_null_object();
 127   } else {
 128     return false;
 129   }
 130 }
 131 
 132 
 133 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const { return false; }
 134 
 135 
 136 LIR_Opr LIRGenerator::safepoint_poll_register() {
 137   return LIR_OprFact::illegalOpr;
 138 }
 139 
 140 
 141 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
 142                                             int shift, int disp, BasicType type) {
 143   assert(base->is_register(), "must be");
 144   intx large_disp = disp;
 145 
 146   // accumulate fixed displacements
 147   if (index->is_constant()) {
 148     LIR_Const *constant = index->as_constant_ptr();
 149     if (constant->type() == T_INT) {
 150       large_disp += index->as_jint() << shift;
 151     } else {
 152       assert(constant->type() == T_LONG, "should be");
 153       jlong c = index->as_jlong() << shift;
 154       if ((jlong)((jint)c) == c) {
 155         large_disp += c;
 156         index = LIR_OprFact::illegalOpr;
 157       } else {
 158         LIR_Opr tmp = new_register(T_LONG);
 159         __ move(index, tmp);
 160         index = tmp;
 161         // apply shift and displacement below
 162       }
 163     }
 164   }
 165 
 166   if (index->is_register()) {
 167     // apply the shift and accumulate the displacement
 168     if (shift > 0) {
 169       LIR_Opr tmp = new_pointer_register();
 170       __ shift_left(index, shift, tmp);
 171       index = tmp;
 172     }
 173     if (large_disp != 0) {
 174       LIR_Opr tmp = new_pointer_register();
 175       if (Assembler::operand_valid_for_add_sub_immediate(large_disp)) {
 176         __ add(tmp, tmp, LIR_OprFact::intptrConst(large_disp));
 177         index = tmp;
 178       } else {
 179         __ move(tmp, LIR_OprFact::intptrConst(large_disp));
 180         __ add(tmp, index, tmp);
 181         index = tmp;
 182       }
 183       large_disp = 0;
 184     }
 185   } else if (large_disp != 0 && !Address::offset_ok_for_immed(large_disp, shift)) {
 186     // index is illegal so replace it with the displacement loaded into a register
 187     index = new_pointer_register();
 188     __ move(LIR_OprFact::intptrConst(large_disp), index);
 189     large_disp = 0;
 190   }
 191 
 192   // at this point we either have base + index or base + displacement
 193   if (large_disp == 0) {
 194     return new LIR_Address(base, index, type);
 195   } else {
 196     assert(Address::offset_ok_for_immed(large_disp, 0), "must be");
 197     return new LIR_Address(base, large_disp, type);
 198   }
 199 }
 200 
 201 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
 202                                               BasicType type) {
 203   int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
 204   int elem_size = type2aelembytes(type);
 205   int shift = exact_log2(elem_size);
 206 
 207   LIR_Address* addr;
 208   if (index_opr->is_constant()) {
 209     addr = new LIR_Address(array_opr,
 210                            offset_in_bytes + (intx)(index_opr->as_jint()) * elem_size, type);
 211   } else {
 212     if (offset_in_bytes) {
 213       LIR_Opr tmp = new_pointer_register();
 214       __ add(array_opr, LIR_OprFact::intConst(offset_in_bytes), tmp);
 215       array_opr = tmp;
 216       offset_in_bytes = 0;
 217     }
 218     addr =  new LIR_Address(array_opr,
 219                             index_opr,
 220                             LIR_Address::scale(type),
 221                             offset_in_bytes, type);
 222   }
 223   return addr;
 224 }
 225 
 226 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
 227   LIR_Opr r;
 228   if (type == T_LONG) {
 229     r = LIR_OprFact::longConst(x);
 230     if (!Assembler::operand_valid_for_logical_immediate(false, x)) {
 231       LIR_Opr tmp = new_register(type);
 232       __ move(r, tmp);
 233       return tmp;
 234     }
 235   } else if (type == T_INT) {
 236     r = LIR_OprFact::intConst(x);
 237     if (!Assembler::operand_valid_for_logical_immediate(true, x)) {
 238       // This is all rather nasty.  We don't know whether our constant
 239       // is required for a logical or an arithmetic operation, wo we
 240       // don't know what the range of valid values is!!
 241       LIR_Opr tmp = new_register(type);
 242       __ move(r, tmp);
 243       return tmp;
 244     }
 245   } else {
 246     ShouldNotReachHere();
 247     r = NULL;  // unreachable
 248   }
 249   return r;
 250 }
 251 
 252 
 253 
 254 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
 255   LIR_Opr pointer = new_pointer_register();
 256   __ move(LIR_OprFact::intptrConst(counter), pointer);
 257   LIR_Address* addr = new LIR_Address(pointer, type);
 258   increment_counter(addr, step);
 259 }
 260 
 261 
 262 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
 263   LIR_Opr imm = NULL;
 264   switch(addr->type()) {
 265   case T_INT:
 266     imm = LIR_OprFact::intConst(step);
 267     break;
 268   case T_LONG:
 269     imm = LIR_OprFact::longConst(step);
 270     break;
 271   default:
 272     ShouldNotReachHere();
 273   }
 274   LIR_Opr reg = new_register(addr->type());
 275   __ load(addr, reg);
 276   __ add(reg, imm, reg);
 277   __ store(reg, addr);
 278 }
 279 
 280 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
 281   LIR_Opr reg = new_register(T_INT);
 282   __ load(generate_address(base, disp, T_INT), reg, info);
 283   __ cmp(condition, reg, LIR_OprFact::intConst(c));
 284 }
 285 
 286 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
 287   LIR_Opr reg1 = new_register(T_INT);
 288   __ load(generate_address(base, disp, type), reg1, info);
 289   __ cmp(condition, reg, reg1);
 290 }
 291 
 292 
 293 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
 294 
 295   if (is_power_of_2(c - 1)) {
 296     __ shift_left(left, exact_log2(c - 1), tmp);
 297     __ add(tmp, left, result);
 298     return true;
 299   } else if (is_power_of_2(c + 1)) {
 300     __ shift_left(left, exact_log2(c + 1), tmp);
 301     __ sub(tmp, left, result);
 302     return true;
 303   } else {
 304     return false;
 305   }
 306 }
 307 
 308 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
 309   BasicType type = item->type();
 310   __ store(item, new LIR_Address(FrameMap::sp_opr, in_bytes(offset_from_sp), type));
 311 }
 312 
 313 void LIRGenerator::array_store_check(LIR_Opr value, LIR_Opr array, CodeEmitInfo* store_check_info, ciMethod* profiled_method, int profiled_bci) {
 314     LIR_Opr tmp1 = new_register(objectType);
 315     LIR_Opr tmp2 = new_register(objectType);
 316     LIR_Opr tmp3 = new_register(objectType);
 317     __ store_check(value, array, tmp1, tmp2, tmp3, store_check_info, profiled_method, profiled_bci);
 318 }
 319 
 320 //----------------------------------------------------------------------
 321 //             visitor functions
 322 //----------------------------------------------------------------------
 323 
 324 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
 325   assert(x->is_pinned(),"");
 326   LIRItem obj(x->obj(), this);
 327   obj.load_item();
 328 
 329   set_no_result(x);
 330 
 331   // "lock" stores the address of the monitor stack slot, so this is not an oop
 332   LIR_Opr lock = new_register(T_INT);
 333   // Need a scratch register for biased locking
 334   LIR_Opr scratch = LIR_OprFact::illegalOpr;
 335   if (UseBiasedLocking) {
 336     scratch = new_register(T_INT);
 337   }
 338 
 339   CodeEmitInfo* info_for_exception = NULL;
 340   if (x->needs_null_check()) {
 341     info_for_exception = state_for(x);
 342   }
 343   // this CodeEmitInfo must not have the xhandlers because here the
 344   // object is already locked (xhandlers expect object to be unlocked)
 345   CodeEmitInfo* info = state_for(x, x->state(), true);
 346   monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
 347                         x->monitor_no(), info_for_exception, info);
 348 }
 349 
 350 
 351 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
 352   assert(x->is_pinned(),"");
 353 
 354   LIRItem obj(x->obj(), this);
 355   obj.dont_load_item();
 356 
 357   LIR_Opr lock = new_register(T_INT);
 358   LIR_Opr obj_temp = new_register(T_INT);
 359   set_no_result(x);
 360   monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
 361 }
 362 
 363 
 364 void LIRGenerator::do_NegateOp(NegateOp* x) {
 365 
 366   LIRItem from(x->x(), this);
 367   from.load_item();
 368   LIR_Opr result = rlock_result(x);
 369   __ negate (from.result(), result);
 370 
 371 }
 372 
 373 // for  _fadd, _fmul, _fsub, _fdiv, _frem
 374 //      _dadd, _dmul, _dsub, _ddiv, _drem
 375 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
 376 
 377   if (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem) {
 378     // float remainder is implemented as a direct call into the runtime
 379     LIRItem right(x->x(), this);
 380     LIRItem left(x->y(), this);
 381 
 382     BasicTypeList signature(2);
 383     if (x->op() == Bytecodes::_frem) {
 384       signature.append(T_FLOAT);
 385       signature.append(T_FLOAT);
 386     } else {
 387       signature.append(T_DOUBLE);
 388       signature.append(T_DOUBLE);
 389     }
 390     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
 391 
 392     const LIR_Opr result_reg = result_register_for(x->type());
 393     left.load_item_force(cc->at(1));
 394     right.load_item();
 395 
 396     __ move(right.result(), cc->at(0));
 397 
 398     address entry;
 399     if (x->op() == Bytecodes::_frem) {
 400       entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
 401     } else {
 402       entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
 403     }
 404 
 405     LIR_Opr result = rlock_result(x);
 406     __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
 407     __ move(result_reg, result);
 408 
 409     return;
 410   }
 411 
 412   LIRItem left(x->x(),  this);
 413   LIRItem right(x->y(), this);
 414   LIRItem* left_arg  = &left;
 415   LIRItem* right_arg = &right;
 416 
 417   // Always load right hand side.
 418   right.load_item();
 419 
 420   if (!left.is_register())
 421     left.load_item();
 422 
 423   LIR_Opr reg = rlock(x);
 424   LIR_Opr tmp = LIR_OprFact::illegalOpr;
 425   if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
 426     tmp = new_register(T_DOUBLE);
 427   }
 428 
 429   arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp());
 430 
 431   set_result(x, round_item(reg));
 432 }
 433 
 434 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
 435 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
 436 
 437   // missing test if instr is commutative and if we should swap
 438   LIRItem left(x->x(), this);
 439   LIRItem right(x->y(), this);
 440 
 441   if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) {
 442 
 443     left.load_item();
 444     bool need_zero_check = true;
 445     if (right.is_constant()) {
 446       jlong c = right.get_jlong_constant();
 447       // no need to do div-by-zero check if the divisor is a non-zero constant
 448       if (c != 0) need_zero_check = false;
 449       // do not load right if the divisor is a power-of-2 constant
 450       if (c > 0 && is_power_of_2_long(c)) {
 451         right.dont_load_item();
 452       } else {
 453         right.load_item();
 454       }
 455     } else {
 456       right.load_item();
 457     }
 458     if (need_zero_check) {
 459       CodeEmitInfo* info = state_for(x);
 460       __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
 461       __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
 462     }
 463 
 464     rlock_result(x);
 465     switch (x->op()) {
 466     case Bytecodes::_lrem:
 467       __ rem (left.result(), right.result(), x->operand());
 468       break;
 469     case Bytecodes::_ldiv:
 470       __ div (left.result(), right.result(), x->operand());
 471       break;
 472     default:
 473       ShouldNotReachHere();
 474       break;
 475     }
 476 
 477 
 478   } else {
 479     assert (x->op() == Bytecodes::_lmul || x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub,
 480             "expect lmul, ladd or lsub");
 481     // add, sub, mul
 482     left.load_item();
 483     if (! right.is_register()) {
 484       if (x->op() == Bytecodes::_lmul
 485           || ! right.is_constant()
 486           || ! Assembler::operand_valid_for_add_sub_immediate(right.get_jlong_constant())) {
 487         right.load_item();
 488       } else { // add, sub
 489         assert (x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub, "expect ladd or lsub");
 490         // don't load constants to save register
 491         right.load_nonconstant();
 492       }
 493     }
 494     rlock_result(x);
 495     arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
 496   }
 497 }
 498 
 499 // for: _iadd, _imul, _isub, _idiv, _irem
 500 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
 501 
 502   // Test if instr is commutative and if we should swap
 503   LIRItem left(x->x(),  this);
 504   LIRItem right(x->y(), this);
 505   LIRItem* left_arg = &left;
 506   LIRItem* right_arg = &right;
 507   if (x->is_commutative() && left.is_stack() && right.is_register()) {
 508     // swap them if left is real stack (or cached) and right is real register(not cached)
 509     left_arg = &right;
 510     right_arg = &left;
 511   }
 512 
 513   left_arg->load_item();
 514 
 515   // do not need to load right, as we can handle stack and constants
 516   if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
 517 
 518     rlock_result(x);
 519     bool need_zero_check = true;
 520     if (right.is_constant()) {
 521       jint c = right.get_jint_constant();
 522       // no need to do div-by-zero check if the divisor is a non-zero constant
 523       if (c != 0) need_zero_check = false;
 524       // do not load right if the divisor is a power-of-2 constant
 525       if (c > 0 && is_power_of_2(c)) {
 526         right_arg->dont_load_item();
 527       } else {
 528         right_arg->load_item();
 529       }
 530     } else {
 531       right_arg->load_item();
 532     }
 533     if (need_zero_check) {
 534       CodeEmitInfo* info = state_for(x);
 535       __ cmp(lir_cond_equal, right_arg->result(), LIR_OprFact::longConst(0));
 536       __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
 537     }
 538 
 539     LIR_Opr ill = LIR_OprFact::illegalOpr;
 540     if (x->op() == Bytecodes::_irem) {
 541       __ irem(left_arg->result(), right_arg->result(), x->operand(), ill, NULL);
 542     } else if (x->op() == Bytecodes::_idiv) {
 543       __ idiv(left_arg->result(), right_arg->result(), x->operand(), ill, NULL);
 544     }
 545 
 546   } else if (x->op() == Bytecodes::_iadd || x->op() == Bytecodes::_isub) {
 547     if (right.is_constant()
 548         && Assembler::operand_valid_for_add_sub_immediate(right.get_jint_constant())) {
 549       right.load_nonconstant();
 550     } else {
 551       right.load_item();
 552     }
 553     rlock_result(x);
 554     arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), LIR_OprFact::illegalOpr);
 555   } else {
 556     assert (x->op() == Bytecodes::_imul, "expect imul");
 557     if (right.is_constant()) {
 558       jint c = right.get_jint_constant();
 559       if (c > 0 && c < max_jint && (is_power_of_2(c) || is_power_of_2(c - 1) || is_power_of_2(c + 1))) {
 560         right_arg->dont_load_item();
 561       } else {
 562         // Cannot use constant op.
 563         right_arg->load_item();
 564       }
 565     } else {
 566       right.load_item();
 567     }
 568     rlock_result(x);
 569     arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), new_register(T_INT));
 570   }
 571 }
 572 
 573 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
 574   // when an operand with use count 1 is the left operand, then it is
 575   // likely that no move for 2-operand-LIR-form is necessary
 576   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
 577     x->swap_operands();
 578   }
 579 
 580   ValueTag tag = x->type()->tag();
 581   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
 582   switch (tag) {
 583     case floatTag:
 584     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
 585     case longTag:    do_ArithmeticOp_Long(x); return;
 586     case intTag:     do_ArithmeticOp_Int(x);  return;
 587     default:         ShouldNotReachHere();    return;
 588   }
 589 }
 590 
 591 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
 592 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
 593 
 594   LIRItem left(x->x(),  this);
 595   LIRItem right(x->y(), this);
 596 
 597   left.load_item();
 598 
 599   rlock_result(x);
 600   if (right.is_constant()) {
 601     right.dont_load_item();
 602 
 603     switch (x->op()) {
 604     case Bytecodes::_ishl: {
 605       int c = right.get_jint_constant() & 0x1f;
 606       __ shift_left(left.result(), c, x->operand());
 607       break;
 608     }
 609     case Bytecodes::_ishr: {
 610       int c = right.get_jint_constant() & 0x1f;
 611       __ shift_right(left.result(), c, x->operand());
 612       break;
 613     }
 614     case Bytecodes::_iushr: {
 615       int c = right.get_jint_constant() & 0x1f;
 616       __ unsigned_shift_right(left.result(), c, x->operand());
 617       break;
 618     }
 619     case Bytecodes::_lshl: {
 620       int c = right.get_jint_constant() & 0x3f;
 621       __ shift_left(left.result(), c, x->operand());
 622       break;
 623     }
 624     case Bytecodes::_lshr: {
 625       int c = right.get_jint_constant() & 0x3f;
 626       __ shift_right(left.result(), c, x->operand());
 627       break;
 628     }
 629     case Bytecodes::_lushr: {
 630       int c = right.get_jint_constant() & 0x3f;
 631       __ unsigned_shift_right(left.result(), c, x->operand());
 632       break;
 633     }
 634     default:
 635       ShouldNotReachHere();
 636     }
 637   } else {
 638     right.load_item();
 639     LIR_Opr tmp = new_register(T_INT);
 640     switch (x->op()) {
 641     case Bytecodes::_ishl: {
 642       __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
 643       __ shift_left(left.result(), tmp, x->operand(), tmp);
 644       break;
 645     }
 646     case Bytecodes::_ishr: {
 647       __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
 648       __ shift_right(left.result(), tmp, x->operand(), tmp);
 649       break;
 650     }
 651     case Bytecodes::_iushr: {
 652       __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
 653       __ unsigned_shift_right(left.result(), tmp, x->operand(), tmp);
 654       break;
 655     }
 656     case Bytecodes::_lshl: {
 657       __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
 658       __ shift_left(left.result(), tmp, x->operand(), tmp);
 659       break;
 660     }
 661     case Bytecodes::_lshr: {
 662       __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
 663       __ shift_right(left.result(), tmp, x->operand(), tmp);
 664       break;
 665     }
 666     case Bytecodes::_lushr: {
 667       __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
 668       __ unsigned_shift_right(left.result(), tmp, x->operand(), tmp);
 669       break;
 670     }
 671     default:
 672       ShouldNotReachHere();
 673     }
 674   }
 675 }
 676 
 677 // _iand, _land, _ior, _lor, _ixor, _lxor
 678 void LIRGenerator::do_LogicOp(LogicOp* x) {
 679 
 680   LIRItem left(x->x(),  this);
 681   LIRItem right(x->y(), this);
 682 
 683   left.load_item();
 684 
 685   rlock_result(x);
 686   if (right.is_constant()
 687       && ((right.type()->tag() == intTag
 688            && Assembler::operand_valid_for_logical_immediate(true, right.get_jint_constant()))
 689           || (right.type()->tag() == longTag
 690               && Assembler::operand_valid_for_logical_immediate(false, right.get_jlong_constant()))))  {
 691     right.dont_load_item();
 692   } else {
 693     right.load_item();
 694   }
 695   switch (x->op()) {
 696   case Bytecodes::_iand:
 697   case Bytecodes::_land:
 698     __ logical_and(left.result(), right.result(), x->operand()); break;
 699   case Bytecodes::_ior:
 700   case Bytecodes::_lor:
 701     __ logical_or (left.result(), right.result(), x->operand()); break;
 702   case Bytecodes::_ixor:
 703   case Bytecodes::_lxor:
 704     __ logical_xor(left.result(), right.result(), x->operand()); break;
 705   default: Unimplemented();
 706   }
 707 }
 708 
 709 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
 710 void LIRGenerator::do_CompareOp(CompareOp* x) {
 711   LIRItem left(x->x(), this);
 712   LIRItem right(x->y(), this);
 713   ValueTag tag = x->x()->type()->tag();
 714   if (tag == longTag) {
 715     left.set_destroys_register();
 716   }
 717   left.load_item();
 718   right.load_item();
 719   LIR_Opr reg = rlock_result(x);
 720 
 721   if (x->x()->type()->is_float_kind()) {
 722     Bytecodes::Code code = x->op();
 723     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
 724   } else if (x->x()->type()->tag() == longTag) {
 725     __ lcmp2int(left.result(), right.result(), reg);
 726   } else {
 727     Unimplemented();
 728   }
 729 }
 730 
 731 LIR_Opr LIRGenerator::atomic_cmpxchg(BasicType type, LIR_Opr addr, LIRItem& cmp_value, LIRItem& new_value) {
 732   LIR_Opr ill = LIR_OprFact::illegalOpr;  // for convenience
 733   new_value.load_item();
 734   cmp_value.load_item();
 735   LIR_Opr result = new_register(T_INT);
 736   if (type == T_OBJECT || type == T_ARRAY) {
 737     __ cas_obj(addr, cmp_value.result(), new_value.result(), new_register(T_INT), new_register(T_INT), result);
 738   } else if (type == T_INT) {
 739     __ cas_int(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill);
 740   } else if (type == T_LONG) {
 741     __ cas_long(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill);
 742   } else {
 743     ShouldNotReachHere();
 744     Unimplemented();
 745   }
 746   __ logical_xor(FrameMap::r8_opr, LIR_OprFact::intConst(1), result);
 747   return result;
 748 }
 749 
 750 LIR_Opr LIRGenerator::atomic_xchg(BasicType type, LIR_Opr addr, LIRItem& value) {
 751   bool is_oop = type == T_OBJECT || type == T_ARRAY;
 752   LIR_Opr result = new_register(type);
 753   value.load_item();
 754   assert(type == T_INT || is_oop LP64_ONLY( || type == T_LONG ), "unexpected type");
 755   LIR_Opr tmp = new_register(T_INT);
 756   __ xchg(addr, value.result(), result, tmp);
 757   return result;
 758 }
 759 
 760 LIR_Opr LIRGenerator::atomic_add(BasicType type, LIR_Opr addr, LIRItem& value) {
 761   LIR_Opr result = new_register(type);
 762   value.load_item();
 763   assert(type == T_INT LP64_ONLY( || type == T_LONG ), "unexpected type");
 764   LIR_Opr tmp = new_register(T_INT);
 765   __ xadd(addr, value.result(), result, tmp);
 766   return result;
 767 }
 768 
 769 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
 770   assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type");
 771   if (x->id() == vmIntrinsics::_dexp || x->id() == vmIntrinsics::_dlog ||
 772       x->id() == vmIntrinsics::_dpow || x->id() == vmIntrinsics::_dcos ||
 773       x->id() == vmIntrinsics::_dsin || x->id() == vmIntrinsics::_dtan ||
 774       x->id() == vmIntrinsics::_dlog10) {
 775     do_LibmIntrinsic(x);
 776     return;
 777   }
 778   switch (x->id()) {
 779     case vmIntrinsics::_dabs:
 780     case vmIntrinsics::_dsqrt: {
 781       assert(x->number_of_arguments() == 1, "wrong type");
 782       LIRItem value(x->argument_at(0), this);
 783       value.load_item();
 784       LIR_Opr dst = rlock_result(x);
 785 
 786       switch (x->id()) {
 787         case vmIntrinsics::_dsqrt: {
 788           __ sqrt(value.result(), dst, LIR_OprFact::illegalOpr);
 789           break;
 790         }
 791         case vmIntrinsics::_dabs: {
 792           __ abs(value.result(), dst, LIR_OprFact::illegalOpr);
 793           break;
 794         }
 795         default:
 796           ShouldNotReachHere();
 797       }
 798       break;
 799     }
 800     default:
 801       ShouldNotReachHere();
 802   }
 803 }
 804 
 805 void LIRGenerator::do_LibmIntrinsic(Intrinsic* x) {
 806   LIRItem value(x->argument_at(0), this);
 807   value.set_destroys_register();
 808 
 809   LIR_Opr calc_result = rlock_result(x);
 810   LIR_Opr result_reg = result_register_for(x->type());
 811 
 812   CallingConvention* cc = NULL;
 813 
 814   if (x->id() == vmIntrinsics::_dpow) {
 815     LIRItem value1(x->argument_at(1), this);
 816 
 817     value1.set_destroys_register();
 818 
 819     BasicTypeList signature(2);
 820     signature.append(T_DOUBLE);
 821     signature.append(T_DOUBLE);
 822     cc = frame_map()->c_calling_convention(&signature);
 823     value.load_item_force(cc->at(0));
 824     value1.load_item_force(cc->at(1));
 825   } else {
 826     BasicTypeList signature(1);
 827     signature.append(T_DOUBLE);
 828     cc = frame_map()->c_calling_convention(&signature);
 829     value.load_item_force(cc->at(0));
 830   }
 831 
 832   switch (x->id()) {
 833     case vmIntrinsics::_dexp:
 834       if (StubRoutines::dexp() != NULL) {
 835         __ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args());
 836       } else {
 837         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args());
 838       }
 839       break;
 840     case vmIntrinsics::_dlog:
 841       if (StubRoutines::dlog() != NULL) {
 842         __ call_runtime_leaf(StubRoutines::dlog(), getThreadTemp(), result_reg, cc->args());
 843       } else {
 844         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog), getThreadTemp(), result_reg, cc->args());
 845       }
 846       break;
 847     case vmIntrinsics::_dlog10:
 848       if (StubRoutines::dlog10() != NULL) {
 849         __ call_runtime_leaf(StubRoutines::dlog10(), getThreadTemp(), result_reg, cc->args());
 850       } else {
 851         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), getThreadTemp(), result_reg, cc->args());
 852       }
 853       break;
 854     case vmIntrinsics::_dpow:
 855       if (StubRoutines::dpow() != NULL) {
 856         __ call_runtime_leaf(StubRoutines::dpow(), getThreadTemp(), result_reg, cc->args());
 857       } else {
 858         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), getThreadTemp(), result_reg, cc->args());
 859       }
 860       break;
 861     case vmIntrinsics::_dsin:
 862       if (StubRoutines::dsin() != NULL) {
 863         __ call_runtime_leaf(StubRoutines::dsin(), getThreadTemp(), result_reg, cc->args());
 864       } else {
 865         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), getThreadTemp(), result_reg, cc->args());
 866       }
 867       break;
 868     case vmIntrinsics::_dcos:
 869       if (StubRoutines::dcos() != NULL) {
 870         __ call_runtime_leaf(StubRoutines::dcos(), getThreadTemp(), result_reg, cc->args());
 871       } else {
 872         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), getThreadTemp(), result_reg, cc->args());
 873       }
 874       break;
 875     case vmIntrinsics::_dtan:
 876       if (StubRoutines::dtan() != NULL) {
 877         __ call_runtime_leaf(StubRoutines::dtan(), getThreadTemp(), result_reg, cc->args());
 878       } else {
 879         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), getThreadTemp(), result_reg, cc->args());
 880       }
 881       break;
 882     default:  ShouldNotReachHere();
 883   }
 884   __ move(result_reg, calc_result);
 885 }
 886 
 887 
 888 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
 889   assert(x->number_of_arguments() == 5, "wrong type");
 890 
 891   // Make all state_for calls early since they can emit code
 892   CodeEmitInfo* info = state_for(x, x->state());
 893 
 894   LIRItem src(x->argument_at(0), this);
 895   LIRItem src_pos(x->argument_at(1), this);
 896   LIRItem dst(x->argument_at(2), this);
 897   LIRItem dst_pos(x->argument_at(3), this);
 898   LIRItem length(x->argument_at(4), this);
 899 
 900   // operands for arraycopy must use fixed registers, otherwise
 901   // LinearScan will fail allocation (because arraycopy always needs a
 902   // call)
 903 
 904   // The java calling convention will give us enough registers
 905   // so that on the stub side the args will be perfect already.
 906   // On the other slow/special case side we call C and the arg
 907   // positions are not similar enough to pick one as the best.
 908   // Also because the java calling convention is a "shifted" version
 909   // of the C convention we can process the java args trivially into C
 910   // args without worry of overwriting during the xfer
 911 
 912   src.load_item_force     (FrameMap::as_oop_opr(j_rarg0));
 913   src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
 914   dst.load_item_force     (FrameMap::as_oop_opr(j_rarg2));
 915   dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
 916   length.load_item_force  (FrameMap::as_opr(j_rarg4));
 917 
 918   LIR_Opr tmp =           FrameMap::as_opr(j_rarg5);
 919 
 920   set_no_result(x);
 921 
 922   int flags;
 923   ciArrayKlass* expected_type;
 924   arraycopy_helper(x, &flags, &expected_type);
 925 
 926   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
 927 }
 928 
 929 void LIRGenerator::do_update_CRC32(Intrinsic* x) {
 930   assert(UseCRC32Intrinsics, "why are we here?");
 931   // Make all state_for calls early since they can emit code
 932   LIR_Opr result = rlock_result(x);
 933   int flags = 0;
 934   switch (x->id()) {
 935     case vmIntrinsics::_updateCRC32: {
 936       LIRItem crc(x->argument_at(0), this);
 937       LIRItem val(x->argument_at(1), this);
 938       // val is destroyed by update_crc32
 939       val.set_destroys_register();
 940       crc.load_item();
 941       val.load_item();
 942       __ update_crc32(crc.result(), val.result(), result);
 943       break;
 944     }
 945     case vmIntrinsics::_updateBytesCRC32:
 946     case vmIntrinsics::_updateByteBufferCRC32: {
 947       bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32);
 948 
 949       LIRItem crc(x->argument_at(0), this);
 950       LIRItem buf(x->argument_at(1), this);
 951       LIRItem off(x->argument_at(2), this);
 952       LIRItem len(x->argument_at(3), this);
 953       buf.load_item();
 954       off.load_nonconstant();
 955 
 956       LIR_Opr index = off.result();
 957       int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
 958       if(off.result()->is_constant()) {
 959         index = LIR_OprFact::illegalOpr;
 960        offset += off.result()->as_jint();
 961       }
 962       LIR_Opr base_op = buf.result();
 963 
 964       if (index->is_valid()) {
 965         LIR_Opr tmp = new_register(T_LONG);
 966         __ convert(Bytecodes::_i2l, index, tmp);
 967         index = tmp;
 968       }
 969 
 970       if (is_updateBytes) {
 971         base_op = access_resolve(ACCESS_READ, base_op);
 972       }
 973 
 974       if (offset) {
 975         LIR_Opr tmp = new_pointer_register();
 976         __ add(base_op, LIR_OprFact::intConst(offset), tmp);
 977         base_op = tmp;
 978         offset = 0;
 979       }
 980 
 981       LIR_Address* a = new LIR_Address(base_op,
 982                                        index,
 983                                        offset,
 984                                        T_BYTE);
 985       BasicTypeList signature(3);
 986       signature.append(T_INT);
 987       signature.append(T_ADDRESS);
 988       signature.append(T_INT);
 989       CallingConvention* cc = frame_map()->c_calling_convention(&signature);
 990       const LIR_Opr result_reg = result_register_for(x->type());
 991 
 992       LIR_Opr addr = new_pointer_register();
 993       __ leal(LIR_OprFact::address(a), addr);
 994 
 995       crc.load_item_force(cc->at(0));
 996       __ move(addr, cc->at(1));
 997       len.load_item_force(cc->at(2));
 998 
 999       __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args());
1000       __ move(result_reg, result);
1001 
1002       break;
1003     }
1004     default: {
1005       ShouldNotReachHere();
1006     }
1007   }
1008 }
1009 
1010 void LIRGenerator::do_update_CRC32C(Intrinsic* x) {
1011   assert(UseCRC32CIntrinsics, "why are we here?");
1012   // Make all state_for calls early since they can emit code
1013   LIR_Opr result = rlock_result(x);
1014   int flags = 0;
1015   switch (x->id()) {
1016     case vmIntrinsics::_updateBytesCRC32C:
1017     case vmIntrinsics::_updateDirectByteBufferCRC32C: {
1018       bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32C);
1019       int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
1020 
1021       LIRItem crc(x->argument_at(0), this);
1022       LIRItem buf(x->argument_at(1), this);
1023       LIRItem off(x->argument_at(2), this);
1024       LIRItem end(x->argument_at(3), this);
1025 
1026       buf.load_item();
1027       off.load_nonconstant();
1028       end.load_nonconstant();
1029 
1030       // len = end - off
1031       LIR_Opr len  = end.result();
1032       LIR_Opr tmpA = new_register(T_INT);
1033       LIR_Opr tmpB = new_register(T_INT);
1034       __ move(end.result(), tmpA);
1035       __ move(off.result(), tmpB);
1036       __ sub(tmpA, tmpB, tmpA);
1037       len = tmpA;
1038 
1039       LIR_Opr index = off.result();
1040       if(off.result()->is_constant()) {
1041         index = LIR_OprFact::illegalOpr;
1042         offset += off.result()->as_jint();
1043       }
1044       LIR_Opr base_op = buf.result();
1045 
1046       if (index->is_valid()) {
1047         LIR_Opr tmp = new_register(T_LONG);
1048         __ convert(Bytecodes::_i2l, index, tmp);
1049         index = tmp;
1050       }
1051 
1052       if (is_updateBytes) {
1053         base_op = access_resolve(ACCESS_READ, base_op);
1054       }
1055 
1056       if (offset) {
1057         LIR_Opr tmp = new_pointer_register();
1058         __ add(base_op, LIR_OprFact::intConst(offset), tmp);
1059         base_op = tmp;
1060         offset = 0;
1061       }
1062 
1063       LIR_Address* a = new LIR_Address(base_op,
1064                                        index,
1065                                        offset,
1066                                        T_BYTE);
1067       BasicTypeList signature(3);
1068       signature.append(T_INT);
1069       signature.append(T_ADDRESS);
1070       signature.append(T_INT);
1071       CallingConvention* cc = frame_map()->c_calling_convention(&signature);
1072       const LIR_Opr result_reg = result_register_for(x->type());
1073 
1074       LIR_Opr addr = new_pointer_register();
1075       __ leal(LIR_OprFact::address(a), addr);
1076 
1077       crc.load_item_force(cc->at(0));
1078       __ move(addr, cc->at(1));
1079       __ move(len, cc->at(2));
1080 
1081       __ call_runtime_leaf(StubRoutines::updateBytesCRC32C(), getThreadTemp(), result_reg, cc->args());
1082       __ move(result_reg, result);
1083 
1084       break;
1085     }
1086     default: {
1087       ShouldNotReachHere();
1088     }
1089   }
1090 }
1091 
1092 void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) {
1093   assert(x->number_of_arguments() == 3, "wrong type");
1094   assert(UseFMA, "Needs FMA instructions support.");
1095   LIRItem value(x->argument_at(0), this);
1096   LIRItem value1(x->argument_at(1), this);
1097   LIRItem value2(x->argument_at(2), this);
1098 
1099   value.load_item();
1100   value1.load_item();
1101   value2.load_item();
1102 
1103   LIR_Opr calc_input = value.result();
1104   LIR_Opr calc_input1 = value1.result();
1105   LIR_Opr calc_input2 = value2.result();
1106   LIR_Opr calc_result = rlock_result(x);
1107 
1108   switch (x->id()) {
1109   case vmIntrinsics::_fmaD:   __ fmad(calc_input, calc_input1, calc_input2, calc_result); break;
1110   case vmIntrinsics::_fmaF:   __ fmaf(calc_input, calc_input1, calc_input2, calc_result); break;
1111   default:                    ShouldNotReachHere();
1112   }
1113 }
1114 
1115 void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) {
1116   fatal("vectorizedMismatch intrinsic is not implemented on this platform");
1117 }
1118 
1119 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
1120 // _i2b, _i2c, _i2s
1121 void LIRGenerator::do_Convert(Convert* x) {
1122   LIRItem value(x->value(), this);
1123   value.load_item();
1124   LIR_Opr input = value.result();
1125   LIR_Opr result = rlock(x);
1126 
1127   // arguments of lir_convert
1128   LIR_Opr conv_input = input;
1129   LIR_Opr conv_result = result;
1130   ConversionStub* stub = NULL;
1131 
1132   __ convert(x->op(), conv_input, conv_result);
1133 
1134   assert(result->is_virtual(), "result must be virtual register");
1135   set_result(x, result);
1136 }
1137 
1138 void LIRGenerator::do_NewInstance(NewInstance* x) {
1139 #ifndef PRODUCT
1140   if (PrintNotLoaded && !x->klass()->is_loaded()) {
1141     tty->print_cr("   ###class not loaded at new bci %d", x->printable_bci());
1142   }
1143 #endif
1144   CodeEmitInfo* info = state_for(x, x->state());
1145   LIR_Opr reg = result_register_for(x->type());
1146   new_instance(reg, x->klass(), x->is_unresolved(),
1147                        FrameMap::r2_oop_opr,
1148                        FrameMap::r5_oop_opr,
1149                        FrameMap::r4_oop_opr,
1150                        LIR_OprFact::illegalOpr,
1151                        FrameMap::r3_metadata_opr, info);
1152   LIR_Opr result = rlock_result(x);
1153   __ move(reg, result);
1154 }
1155 
1156 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
1157   CodeEmitInfo* info = state_for(x, x->state());
1158 
1159   LIRItem length(x->length(), this);
1160   length.load_item_force(FrameMap::r19_opr);
1161 
1162   LIR_Opr reg = result_register_for(x->type());
1163   LIR_Opr tmp1 = FrameMap::r2_oop_opr;
1164   LIR_Opr tmp2 = FrameMap::r4_oop_opr;
1165   LIR_Opr tmp3 = FrameMap::r5_oop_opr;
1166   LIR_Opr tmp4 = reg;
1167   LIR_Opr klass_reg = FrameMap::r3_metadata_opr;
1168   LIR_Opr len = length.result();
1169   BasicType elem_type = x->elt_type();
1170 
1171   __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
1172 
1173   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
1174   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
1175 
1176   LIR_Opr result = rlock_result(x);
1177   __ move(reg, result);
1178 }
1179 
1180 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
1181   LIRItem length(x->length(), this);
1182   // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
1183   // and therefore provide the state before the parameters have been consumed
1184   CodeEmitInfo* patching_info = NULL;
1185   if (!x->klass()->is_loaded() || PatchALot) {
1186     patching_info =  state_for(x, x->state_before());
1187   }
1188 
1189   CodeEmitInfo* info = state_for(x, x->state());
1190 
1191   LIR_Opr reg = result_register_for(x->type());
1192   LIR_Opr tmp1 = FrameMap::r2_oop_opr;
1193   LIR_Opr tmp2 = FrameMap::r4_oop_opr;
1194   LIR_Opr tmp3 = FrameMap::r5_oop_opr;
1195   LIR_Opr tmp4 = reg;
1196   LIR_Opr klass_reg = FrameMap::r3_metadata_opr;
1197 
1198   length.load_item_force(FrameMap::r19_opr);
1199   LIR_Opr len = length.result();
1200 
1201   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
1202   ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass());
1203   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
1204     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
1205   }
1206   klass2reg_with_patching(klass_reg, obj, patching_info);
1207   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
1208 
1209   LIR_Opr result = rlock_result(x);
1210   __ move(reg, result);
1211 }
1212 
1213 
1214 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1215   Values* dims = x->dims();
1216   int i = dims->length();
1217   LIRItemList* items = new LIRItemList(i, i, NULL);
1218   while (i-- > 0) {
1219     LIRItem* size = new LIRItem(dims->at(i), this);
1220     items->at_put(i, size);
1221   }
1222 
1223   // Evaluate state_for early since it may emit code.
1224   CodeEmitInfo* patching_info = NULL;
1225   if (!x->klass()->is_loaded() || PatchALot) {
1226     patching_info = state_for(x, x->state_before());
1227 
1228     // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
1229     // clone all handlers (NOTE: Usually this is handled transparently
1230     // by the CodeEmitInfo cloning logic in CodeStub constructors but
1231     // is done explicitly here because a stub isn't being used).
1232     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1233   }
1234   CodeEmitInfo* info = state_for(x, x->state());
1235 
1236   i = dims->length();
1237   while (i-- > 0) {
1238     LIRItem* size = items->at(i);
1239     size->load_item();
1240 
1241     store_stack_parameter(size->result(), in_ByteSize(i*4));
1242   }
1243 
1244   LIR_Opr klass_reg = FrameMap::r0_metadata_opr;
1245   klass2reg_with_patching(klass_reg, x->klass(), patching_info);
1246 
1247   LIR_Opr rank = FrameMap::r19_opr;
1248   __ move(LIR_OprFact::intConst(x->rank()), rank);
1249   LIR_Opr varargs = FrameMap::r2_opr;
1250   __ move(FrameMap::sp_opr, varargs);
1251   LIR_OprList* args = new LIR_OprList(3);
1252   args->append(klass_reg);
1253   args->append(rank);
1254   args->append(varargs);
1255   LIR_Opr reg = result_register_for(x->type());
1256   __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1257                   LIR_OprFact::illegalOpr,
1258                   reg, args, info);
1259 
1260   LIR_Opr result = rlock_result(x);
1261   __ move(reg, result);
1262 }
1263 
1264 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1265   // nothing to do for now
1266 }
1267 
1268 void LIRGenerator::do_CheckCast(CheckCast* x) {
1269   LIRItem obj(x->obj(), this);
1270 
1271   CodeEmitInfo* patching_info = NULL;
1272   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check() && !x->is_invokespecial_receiver_check())) {
1273     // must do this before locking the destination register as an oop register,
1274     // and before the obj is loaded (the latter is for deoptimization)
1275     patching_info = state_for(x, x->state_before());
1276   }
1277   obj.load_item();
1278 
1279   // info for exceptions
1280   CodeEmitInfo* info_for_exception =
1281       (x->needs_exception_state() ? state_for(x) :
1282                                     state_for(x, x->state_before(), true /*ignore_xhandler*/));
1283 
1284   CodeStub* stub;
1285   if (x->is_incompatible_class_change_check()) {
1286     assert(patching_info == NULL, "can't patch this");
1287     stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1288   } else if (x->is_invokespecial_receiver_check()) {
1289     assert(patching_info == NULL, "can't patch this");
1290     stub = new DeoptimizeStub(info_for_exception,
1291                               Deoptimization::Reason_class_check,
1292                               Deoptimization::Action_none);
1293   } else {
1294     stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1295   }
1296   LIR_Opr reg = rlock_result(x);
1297   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1298   if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1299     tmp3 = new_register(objectType);
1300   }
1301   __ checkcast(reg, obj.result(), x->klass(),
1302                new_register(objectType), new_register(objectType), tmp3,
1303                x->direct_compare(), info_for_exception, patching_info, stub,
1304                x->profiled_method(), x->profiled_bci());
1305 }
1306 
1307 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1308   LIRItem obj(x->obj(), this);
1309 
1310   // result and test object may not be in same register
1311   LIR_Opr reg = rlock_result(x);
1312   CodeEmitInfo* patching_info = NULL;
1313   if ((!x->klass()->is_loaded() || PatchALot)) {
1314     // must do this before locking the destination register as an oop register
1315     patching_info = state_for(x, x->state_before());
1316   }
1317   obj.load_item();
1318   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1319   if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1320     tmp3 = new_register(objectType);
1321   }
1322   __ instanceof(reg, obj.result(), x->klass(),
1323                 new_register(objectType), new_register(objectType), tmp3,
1324                 x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
1325 }
1326 
1327 void LIRGenerator::do_If(If* x) {
1328   assert(x->number_of_sux() == 2, "inconsistency");
1329   ValueTag tag = x->x()->type()->tag();
1330   bool is_safepoint = x->is_safepoint();
1331 
1332   If::Condition cond = x->cond();
1333 
1334   LIRItem xitem(x->x(), this);
1335   LIRItem yitem(x->y(), this);
1336   LIRItem* xin = &xitem;
1337   LIRItem* yin = &yitem;
1338 
1339   if (tag == longTag) {
1340     // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1341     // mirror for other conditions
1342     if (cond == If::gtr || cond == If::leq) {
1343       cond = Instruction::mirror(cond);
1344       xin = &yitem;
1345       yin = &xitem;
1346     }
1347     xin->set_destroys_register();
1348   }
1349   xin->load_item();
1350 
1351   if (tag == longTag) {
1352     if (yin->is_constant()
1353         && Assembler::operand_valid_for_add_sub_immediate(yin->get_jlong_constant())) {
1354       yin->dont_load_item();
1355     } else {
1356       yin->load_item();
1357     }
1358   } else if (tag == intTag) {
1359     if (yin->is_constant()
1360         && Assembler::operand_valid_for_add_sub_immediate(yin->get_jint_constant()))  {
1361       yin->dont_load_item();
1362     } else {
1363       yin->load_item();
1364     }
1365   } else {
1366     yin->load_item();
1367   }
1368 
1369   set_no_result(x);
1370 
1371   LIR_Opr left = xin->result();
1372   LIR_Opr right = yin->result();
1373 
1374   // add safepoint before generating condition code so it can be recomputed
1375   if (x->is_safepoint()) {
1376     // increment backedge counter if needed
1377     increment_backedge_counter_conditionally(lir_cond(cond), left, right, state_for(x, x->state_before()),
1378         x->tsux()->bci(), x->fsux()->bci(), x->profiled_bci());
1379     __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
1380   }
1381 
1382   __ cmp(lir_cond(cond), left, right);
1383   // Generate branch profiling. Profiling code doesn't kill flags.
1384   profile_branch(x, cond);
1385   move_to_phi(x->state());
1386   if (x->x()->type()->is_float_kind()) {
1387     __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
1388   } else {
1389     __ branch(lir_cond(cond), right->type(), x->tsux());
1390   }
1391   assert(x->default_sux() == x->fsux(), "wrong destination above");
1392   __ jump(x->default_sux());
1393 }
1394 
1395 LIR_Opr LIRGenerator::getThreadPointer() {
1396    return FrameMap::as_pointer_opr(rthread);
1397 }
1398 
1399 void LIRGenerator::trace_block_entry(BlockBegin* block) { Unimplemented(); }
1400 
1401 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1402                                         CodeEmitInfo* info) {
1403   __ volatile_store_mem_reg(value, address, info);
1404 }
1405 
1406 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1407                                        CodeEmitInfo* info) {
1408   // 8179954: We need to make sure that the code generated for
1409   // volatile accesses forms a sequentially-consistent set of
1410   // operations when combined with STLR and LDAR.  Without a leading
1411   // membar it's possible for a simple Dekker test to fail if loads
1412   // use LD;DMB but stores use STLR.  This can happen if C2 compiles
1413   // the stores in one method and C1 compiles the loads in another.
1414   if (! UseBarriersForVolatile) {
1415     __ membar();
1416   }
1417 
1418   __ volatile_load_mem_reg(address, result, info);
1419 }