1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/assembler.hpp"
  30 #include "oops/compressedOops.hpp"
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39 
  40  public:
  41   using Assembler::mov;
  42   using Assembler::movi;
  43 
  44  protected:
  45 
  46   // Support for VM calls
  47   //
  48   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  49   // may customize this version by overriding it for its purposes (e.g., to save/restore
  50   // additional registers when doing a VM call).
  51   virtual void call_VM_leaf_base(
  52     address entry_point,               // the entry point
  53     int     number_of_arguments,        // the number of arguments to pop after the call
  54     Label *retaddr = NULL
  55   );
  56 
  57   virtual void call_VM_leaf_base(
  58     address entry_point,               // the entry point
  59     int     number_of_arguments,        // the number of arguments to pop after the call
  60     Label &retaddr) {
  61     call_VM_leaf_base(entry_point, number_of_arguments, &retaddr);
  62   }
  63 
  64   // This is the base routine called by the different versions of call_VM. The interpreter
  65   // may customize this version by overriding it for its purposes (e.g., to save/restore
  66   // additional registers when doing a VM call).
  67   //
  68   // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base
  69   // returns the register which contains the thread upon return. If a thread register has been
  70   // specified, the return value will correspond to that register. If no last_java_sp is specified
  71   // (noreg) than rsp will be used instead.
  72   virtual void call_VM_base(           // returns the register containing the thread upon return
  73     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  74     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  75     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  76     address  entry_point,              // the entry point
  77     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  78     bool     check_exceptions          // whether to check for pending exceptions after return
  79   );
  80 
  81   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  82 
  83   // True if an XOR can be used to expand narrow klass references.
  84   bool use_XOR_for_compressed_class_base;
  85 
  86  public:
  87   MacroAssembler(CodeBuffer* code) : Assembler(code) {
  88     use_XOR_for_compressed_class_base
  89       = operand_valid_for_logical_immediate
  90            (/*is32*/false, (uint64_t)CompressedKlassPointers::base())
  91          && ((uint64_t)CompressedKlassPointers::base()
  92              > (1UL << log2_intptr(CompressedKlassPointers::range())));
  93   }
  94 
  95  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  96  // The implementation is only non-empty for the InterpreterMacroAssembler,
  97  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  98  virtual void check_and_handle_popframe(Register java_thread);
  99  virtual void check_and_handle_earlyret(Register java_thread);
 100 
 101   void safepoint_poll(Label& slow_path);
 102   void safepoint_poll_acquire(Label& slow_path);
 103 
 104   // Biased locking support
 105   // lock_reg and obj_reg must be loaded up with the appropriate values.
 106   // swap_reg is killed.
 107   // tmp_reg must be supplied and must not be rscratch1 or rscratch2
 108   // Optional slow case is for implementations (interpreter and C1) which branch to
 109   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 110   // Returns offset of first potentially-faulting instruction for null
 111   // check info (currently consumed only by C1). If
 112   // swap_reg_contains_mark is true then returns -1 as it is assumed
 113   // the calling code has already passed any potential faults.
 114   int biased_locking_enter(Register lock_reg, Register obj_reg,
 115                            Register swap_reg, Register tmp_reg,
 116                            bool swap_reg_contains_mark,
 117                            Label& done, Label* slow_case = NULL,
 118                            BiasedLockingCounters* counters = NULL);
 119   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 120 
 121 
 122   // Helper functions for statistics gathering.
 123   // Unconditional atomic increment.
 124   void atomic_incw(Register counter_addr, Register tmp, Register tmp2);
 125   void atomic_incw(Address counter_addr, Register tmp1, Register tmp2, Register tmp3) {
 126     lea(tmp1, counter_addr);
 127     atomic_incw(tmp1, tmp2, tmp3);
 128   }
 129   // Load Effective Address
 130   void lea(Register r, const Address &a) {
 131     InstructionMark im(this);
 132     code_section()->relocate(inst_mark(), a.rspec());
 133     a.lea(this, r);
 134   }
 135 
 136   void addmw(Address a, Register incr, Register scratch) {
 137     ldrw(scratch, a);
 138     addw(scratch, scratch, incr);
 139     strw(scratch, a);
 140   }
 141 
 142   // Add constant to memory word
 143   void addmw(Address a, int imm, Register scratch) {
 144     ldrw(scratch, a);
 145     if (imm > 0)
 146       addw(scratch, scratch, (unsigned)imm);
 147     else
 148       subw(scratch, scratch, (unsigned)-imm);
 149     strw(scratch, a);
 150   }
 151 
 152   void bind(Label& L) {
 153     Assembler::bind(L);
 154     code()->clear_last_insn();
 155   }
 156 
 157   void membar(Membar_mask_bits order_constraint);
 158 
 159   using Assembler::ldr;
 160   using Assembler::str;
 161 
 162   void ldr(Register Rx, const Address &adr);
 163   void ldrw(Register Rw, const Address &adr);
 164   void str(Register Rx, const Address &adr);
 165   void strw(Register Rx, const Address &adr);
 166 
 167   // Frame creation and destruction shared between JITs.
 168   void build_frame(int framesize);
 169   void remove_frame(int framesize);
 170 
 171   virtual void _call_Unimplemented(address call_site) {
 172     mov(rscratch2, call_site);
 173     haltsim();
 174   }
 175 
 176 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__)
 177 
 178   virtual void notify(int type);
 179 
 180   // aliases defined in AARCH64 spec
 181 
 182   template<class T>
 183   inline void cmpw(Register Rd, T imm)  { subsw(zr, Rd, imm); }
 184 
 185   inline void cmp(Register Rd, unsigned char imm8)  { subs(zr, Rd, imm8); }
 186   inline void cmp(Register Rd, unsigned imm) __attribute__ ((deprecated));
 187 
 188   inline void cmnw(Register Rd, unsigned imm) { addsw(zr, Rd, imm); }
 189   inline void cmn(Register Rd, unsigned imm) { adds(zr, Rd, imm); }
 190 
 191   void cset(Register Rd, Assembler::Condition cond) {
 192     csinc(Rd, zr, zr, ~cond);
 193   }
 194   void csetw(Register Rd, Assembler::Condition cond) {
 195     csincw(Rd, zr, zr, ~cond);
 196   }
 197 
 198   void cneg(Register Rd, Register Rn, Assembler::Condition cond) {
 199     csneg(Rd, Rn, Rn, ~cond);
 200   }
 201   void cnegw(Register Rd, Register Rn, Assembler::Condition cond) {
 202     csnegw(Rd, Rn, Rn, ~cond);
 203   }
 204 
 205   inline void movw(Register Rd, Register Rn) {
 206     if (Rd == sp || Rn == sp) {
 207       addw(Rd, Rn, 0U);
 208     } else {
 209       orrw(Rd, zr, Rn);
 210     }
 211   }
 212   inline void mov(Register Rd, Register Rn) {
 213     assert(Rd != r31_sp && Rn != r31_sp, "should be");
 214     if (Rd == Rn) {
 215     } else if (Rd == sp || Rn == sp) {
 216       add(Rd, Rn, 0U);
 217     } else {
 218       orr(Rd, zr, Rn);
 219     }
 220   }
 221 
 222   inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); }
 223   inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); }
 224 
 225   inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); }
 226   inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); }
 227 
 228   inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); }
 229   inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); }
 230 
 231   inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 232     bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 233   }
 234   inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 235     bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 236   }
 237 
 238   inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 239     bfmw(Rd, Rn, lsb, (lsb + width - 1));
 240   }
 241   inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 242     bfm(Rd, Rn, lsb , (lsb + width - 1));
 243   }
 244 
 245   inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 246     sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 247   }
 248   inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 249     sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 250   }
 251 
 252   inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 253     sbfmw(Rd, Rn, lsb, (lsb + width - 1));
 254   }
 255   inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 256     sbfm(Rd, Rn, lsb , (lsb + width - 1));
 257   }
 258 
 259   inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 260     ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 261   }
 262   inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 263     ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 264   }
 265 
 266   inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 267     ubfmw(Rd, Rn, lsb, (lsb + width - 1));
 268   }
 269   inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 270     ubfm(Rd, Rn, lsb , (lsb + width - 1));
 271   }
 272 
 273   inline void asrw(Register Rd, Register Rn, unsigned imm) {
 274     sbfmw(Rd, Rn, imm, 31);
 275   }
 276 
 277   inline void asr(Register Rd, Register Rn, unsigned imm) {
 278     sbfm(Rd, Rn, imm, 63);
 279   }
 280 
 281   inline void lslw(Register Rd, Register Rn, unsigned imm) {
 282     ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm));
 283   }
 284 
 285   inline void lsl(Register Rd, Register Rn, unsigned imm) {
 286     ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm));
 287   }
 288 
 289   inline void lsrw(Register Rd, Register Rn, unsigned imm) {
 290     ubfmw(Rd, Rn, imm, 31);
 291   }
 292 
 293   inline void lsr(Register Rd, Register Rn, unsigned imm) {
 294     ubfm(Rd, Rn, imm, 63);
 295   }
 296 
 297   inline void rorw(Register Rd, Register Rn, unsigned imm) {
 298     extrw(Rd, Rn, Rn, imm);
 299   }
 300 
 301   inline void ror(Register Rd, Register Rn, unsigned imm) {
 302     extr(Rd, Rn, Rn, imm);
 303   }
 304 
 305   inline void sxtbw(Register Rd, Register Rn) {
 306     sbfmw(Rd, Rn, 0, 7);
 307   }
 308   inline void sxthw(Register Rd, Register Rn) {
 309     sbfmw(Rd, Rn, 0, 15);
 310   }
 311   inline void sxtb(Register Rd, Register Rn) {
 312     sbfm(Rd, Rn, 0, 7);
 313   }
 314   inline void sxth(Register Rd, Register Rn) {
 315     sbfm(Rd, Rn, 0, 15);
 316   }
 317   inline void sxtw(Register Rd, Register Rn) {
 318     sbfm(Rd, Rn, 0, 31);
 319   }
 320 
 321   inline void uxtbw(Register Rd, Register Rn) {
 322     ubfmw(Rd, Rn, 0, 7);
 323   }
 324   inline void uxthw(Register Rd, Register Rn) {
 325     ubfmw(Rd, Rn, 0, 15);
 326   }
 327   inline void uxtb(Register Rd, Register Rn) {
 328     ubfm(Rd, Rn, 0, 7);
 329   }
 330   inline void uxth(Register Rd, Register Rn) {
 331     ubfm(Rd, Rn, 0, 15);
 332   }
 333   inline void uxtw(Register Rd, Register Rn) {
 334     ubfm(Rd, Rn, 0, 31);
 335   }
 336 
 337   inline void cmnw(Register Rn, Register Rm) {
 338     addsw(zr, Rn, Rm);
 339   }
 340   inline void cmn(Register Rn, Register Rm) {
 341     adds(zr, Rn, Rm);
 342   }
 343 
 344   inline void cmpw(Register Rn, Register Rm) {
 345     subsw(zr, Rn, Rm);
 346   }
 347   inline void cmp(Register Rn, Register Rm) {
 348     subs(zr, Rn, Rm);
 349   }
 350 
 351   inline void negw(Register Rd, Register Rn) {
 352     subw(Rd, zr, Rn);
 353   }
 354 
 355   inline void neg(Register Rd, Register Rn) {
 356     sub(Rd, zr, Rn);
 357   }
 358 
 359   inline void negsw(Register Rd, Register Rn) {
 360     subsw(Rd, zr, Rn);
 361   }
 362 
 363   inline void negs(Register Rd, Register Rn) {
 364     subs(Rd, zr, Rn);
 365   }
 366 
 367   inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 368     addsw(zr, Rn, Rm, kind, shift);
 369   }
 370   inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 371     adds(zr, Rn, Rm, kind, shift);
 372   }
 373 
 374   inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 375     subsw(zr, Rn, Rm, kind, shift);
 376   }
 377   inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 378     subs(zr, Rn, Rm, kind, shift);
 379   }
 380 
 381   inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 382     subw(Rd, zr, Rn, kind, shift);
 383   }
 384 
 385   inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 386     sub(Rd, zr, Rn, kind, shift);
 387   }
 388 
 389   inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 390     subsw(Rd, zr, Rn, kind, shift);
 391   }
 392 
 393   inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 394     subs(Rd, zr, Rn, kind, shift);
 395   }
 396 
 397   inline void mnegw(Register Rd, Register Rn, Register Rm) {
 398     msubw(Rd, Rn, Rm, zr);
 399   }
 400   inline void mneg(Register Rd, Register Rn, Register Rm) {
 401     msub(Rd, Rn, Rm, zr);
 402   }
 403 
 404   inline void mulw(Register Rd, Register Rn, Register Rm) {
 405     maddw(Rd, Rn, Rm, zr);
 406   }
 407   inline void mul(Register Rd, Register Rn, Register Rm) {
 408     madd(Rd, Rn, Rm, zr);
 409   }
 410 
 411   inline void smnegl(Register Rd, Register Rn, Register Rm) {
 412     smsubl(Rd, Rn, Rm, zr);
 413   }
 414   inline void smull(Register Rd, Register Rn, Register Rm) {
 415     smaddl(Rd, Rn, Rm, zr);
 416   }
 417 
 418   inline void umnegl(Register Rd, Register Rn, Register Rm) {
 419     umsubl(Rd, Rn, Rm, zr);
 420   }
 421   inline void umull(Register Rd, Register Rn, Register Rm) {
 422     umaddl(Rd, Rn, Rm, zr);
 423   }
 424 
 425 #define WRAP(INSN)                                                            \
 426   void INSN(Register Rd, Register Rn, Register Rm, Register Ra) {             \
 427     if ((VM_Version::features() & VM_Version::CPU_A53MAC) && Ra != zr)        \
 428       nop();                                                                  \
 429     Assembler::INSN(Rd, Rn, Rm, Ra);                                          \
 430   }
 431 
 432   WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw)
 433   WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl)
 434 #undef WRAP
 435 
 436 
 437   // macro assembly operations needed for aarch64
 438 
 439   // first two private routines for loading 32 bit or 64 bit constants
 440 private:
 441 
 442   void mov_immediate64(Register dst, u_int64_t imm64);
 443   void mov_immediate32(Register dst, u_int32_t imm32);
 444 
 445   int push(unsigned int bitset, Register stack);
 446   int pop(unsigned int bitset, Register stack);
 447 
 448   void mov(Register dst, Address a);
 449 
 450 public:
 451   void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); }
 452   void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); }
 453 
 454   // Push and pop everything that might be clobbered by a native
 455   // runtime call except rscratch1 and rscratch2.  (They are always
 456   // scratch, so we don't have to protect them.)  Only save the lower
 457   // 64 bits of each vector register.
 458   void push_call_clobbered_registers();
 459   void pop_call_clobbered_registers();
 460 
 461   // now mov instructions for loading absolute addresses and 32 or
 462   // 64 bit integers
 463 
 464   inline void mov(Register dst, address addr)
 465   {
 466     mov_immediate64(dst, (u_int64_t)addr);
 467   }
 468 
 469   inline void mov(Register dst, u_int64_t imm64)
 470   {
 471     mov_immediate64(dst, imm64);
 472   }
 473 
 474   inline void movw(Register dst, u_int32_t imm32)
 475   {
 476     mov_immediate32(dst, imm32);
 477   }
 478 
 479   inline void mov(Register dst, long l)
 480   {
 481     mov(dst, (u_int64_t)l);
 482   }
 483 
 484   inline void mov(Register dst, int i)
 485   {
 486     mov(dst, (long)i);
 487   }
 488 
 489   void mov(Register dst, RegisterOrConstant src) {
 490     if (src.is_register())
 491       mov(dst, src.as_register());
 492     else
 493       mov(dst, src.as_constant());
 494   }
 495 
 496   void movptr(Register r, uintptr_t imm64);
 497 
 498   void mov(FloatRegister Vd, SIMD_Arrangement T, u_int32_t imm32);
 499 
 500   void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
 501     orr(Vd, T, Vn, Vn);
 502   }
 503 
 504 public:
 505 
 506   // Generalized Test Bit And Branch, including a "far" variety which
 507   // spans more than 32KiB.
 508   void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool far = false) {
 509     assert(cond == EQ || cond == NE, "must be");
 510 
 511     if (far)
 512       cond = ~cond;
 513 
 514     void (Assembler::* branch)(Register Rt, int bitpos, Label &L);
 515     if (cond == Assembler::EQ)
 516       branch = &Assembler::tbz;
 517     else
 518       branch = &Assembler::tbnz;
 519 
 520     if (far) {
 521       Label L;
 522       (this->*branch)(Rt, bitpos, L);
 523       b(dest);
 524       bind(L);
 525     } else {
 526       (this->*branch)(Rt, bitpos, dest);
 527     }
 528   }
 529 
 530   // macro instructions for accessing and updating floating point
 531   // status register
 532   //
 533   // FPSR : op1 == 011
 534   //        CRn == 0100
 535   //        CRm == 0100
 536   //        op2 == 001
 537 
 538   inline void get_fpsr(Register reg)
 539   {
 540     mrs(0b11, 0b0100, 0b0100, 0b001, reg);
 541   }
 542 
 543   inline void set_fpsr(Register reg)
 544   {
 545     msr(0b011, 0b0100, 0b0100, 0b001, reg);
 546   }
 547 
 548   inline void clear_fpsr()
 549   {
 550     msr(0b011, 0b0100, 0b0100, 0b001, zr);
 551   }
 552 
 553   // DCZID_EL0: op1 == 011
 554   //            CRn == 0000
 555   //            CRm == 0000
 556   //            op2 == 111
 557   inline void get_dczid_el0(Register reg)
 558   {
 559     mrs(0b011, 0b0000, 0b0000, 0b111, reg);
 560   }
 561 
 562   // CTR_EL0:   op1 == 011
 563   //            CRn == 0000
 564   //            CRm == 0000
 565   //            op2 == 001
 566   inline void get_ctr_el0(Register reg)
 567   {
 568     mrs(0b011, 0b0000, 0b0000, 0b001, reg);
 569   }
 570 
 571   // idiv variant which deals with MINLONG as dividend and -1 as divisor
 572   int corrected_idivl(Register result, Register ra, Register rb,
 573                       bool want_remainder, Register tmp = rscratch1);
 574   int corrected_idivq(Register result, Register ra, Register rb,
 575                       bool want_remainder, Register tmp = rscratch1);
 576 
 577   // Support for NULL-checks
 578   //
 579   // Generates code that causes a NULL OS exception if the content of reg is NULL.
 580   // If the accessed location is M[reg + offset] and the offset is known, provide the
 581   // offset. No explicit code generation is needed if the offset is within a certain
 582   // range (0 <= offset <= page_size).
 583 
 584   virtual void null_check(Register reg, int offset = -1);
 585   static bool needs_explicit_null_check(intptr_t offset);
 586   static bool uses_implicit_null_check(void* address);
 587 
 588   static address target_addr_for_insn(address insn_addr, unsigned insn);
 589   static address target_addr_for_insn(address insn_addr) {
 590     unsigned insn = *(unsigned*)insn_addr;
 591     return target_addr_for_insn(insn_addr, insn);
 592   }
 593 
 594   // Required platform-specific helpers for Label::patch_instructions.
 595   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 596   static int pd_patch_instruction_size(address branch, address target);
 597   static void pd_patch_instruction(address branch, address target, const char* file = NULL, int line = 0) {
 598     pd_patch_instruction_size(branch, target);
 599   }
 600   static address pd_call_destination(address branch) {
 601     return target_addr_for_insn(branch);
 602   }
 603 #ifndef PRODUCT
 604   static void pd_print_patched_instruction(address branch);
 605 #endif
 606 
 607   static int patch_oop(address insn_addr, address o);
 608   static int patch_narrow_klass(address insn_addr, narrowKlass n);
 609 
 610   address emit_trampoline_stub(int insts_call_instruction_offset, address target);
 611   void emit_static_call_stub();
 612 
 613   // The following 4 methods return the offset of the appropriate move instruction
 614 
 615   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 616   int load_unsigned_byte(Register dst, Address src);
 617   int load_unsigned_short(Register dst, Address src);
 618 
 619   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 620   int load_signed_byte(Register dst, Address src);
 621   int load_signed_short(Register dst, Address src);
 622 
 623   int load_signed_byte32(Register dst, Address src);
 624   int load_signed_short32(Register dst, Address src);
 625 
 626   // Support for sign-extension (hi:lo = extend_sign(lo))
 627   void extend_sign(Register hi, Register lo);
 628 
 629   // Load and store values by size and signed-ness
 630   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 631   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 632 
 633   // Support for inc/dec with optimal instruction selection depending on value
 634 
 635   // x86_64 aliases an unqualified register/address increment and
 636   // decrement to call incrementq and decrementq but also supports
 637   // explicitly sized calls to incrementq/decrementq or
 638   // incrementl/decrementl
 639 
 640   // for aarch64 the proper convention would be to use
 641   // increment/decrement for 64 bit operatons and
 642   // incrementw/decrementw for 32 bit operations. so when porting
 643   // x86_64 code we can leave calls to increment/decrement as is,
 644   // replace incrementq/decrementq with increment/decrement and
 645   // replace incrementl/decrementl with incrementw/decrementw.
 646 
 647   // n.b. increment/decrement calls with an Address destination will
 648   // need to use a scratch register to load the value to be
 649   // incremented. increment/decrement calls which add or subtract a
 650   // constant value greater than 2^12 will need to use a 2nd scratch
 651   // register to hold the constant. so, a register increment/decrement
 652   // may trash rscratch2 and an address increment/decrement trash
 653   // rscratch and rscratch2
 654 
 655   void decrementw(Address dst, int value = 1);
 656   void decrementw(Register reg, int value = 1);
 657 
 658   void decrement(Register reg, int value = 1);
 659   void decrement(Address dst, int value = 1);
 660 
 661   void incrementw(Address dst, int value = 1);
 662   void incrementw(Register reg, int value = 1);
 663 
 664   void increment(Register reg, int value = 1);
 665   void increment(Address dst, int value = 1);
 666 
 667 
 668   // Alignment
 669   void align(int modulus);
 670 
 671   // Stack frame creation/removal
 672   void enter()
 673   {
 674     stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
 675     mov(rfp, sp);
 676   }
 677   void leave()
 678   {
 679     mov(sp, rfp);
 680     ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
 681   }
 682 
 683   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 684   // The pointer will be loaded into the thread register.
 685   void get_thread(Register thread);
 686 
 687 
 688   // Support for VM calls
 689   //
 690   // It is imperative that all calls into the VM are handled via the call_VM macros.
 691   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 692   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 693 
 694 
 695   void call_VM(Register oop_result,
 696                address entry_point,
 697                bool check_exceptions = true);
 698   void call_VM(Register oop_result,
 699                address entry_point,
 700                Register arg_1,
 701                bool check_exceptions = true);
 702   void call_VM(Register oop_result,
 703                address entry_point,
 704                Register arg_1, Register arg_2,
 705                bool check_exceptions = true);
 706   void call_VM(Register oop_result,
 707                address entry_point,
 708                Register arg_1, Register arg_2, Register arg_3,
 709                bool check_exceptions = true);
 710 
 711   // Overloadings with last_Java_sp
 712   void call_VM(Register oop_result,
 713                Register last_java_sp,
 714                address entry_point,
 715                int number_of_arguments = 0,
 716                bool check_exceptions = true);
 717   void call_VM(Register oop_result,
 718                Register last_java_sp,
 719                address entry_point,
 720                Register arg_1, bool
 721                check_exceptions = true);
 722   void call_VM(Register oop_result,
 723                Register last_java_sp,
 724                address entry_point,
 725                Register arg_1, Register arg_2,
 726                bool check_exceptions = true);
 727   void call_VM(Register oop_result,
 728                Register last_java_sp,
 729                address entry_point,
 730                Register arg_1, Register arg_2, Register arg_3,
 731                bool check_exceptions = true);
 732 
 733   void get_vm_result  (Register oop_result, Register thread);
 734   void get_vm_result_2(Register metadata_result, Register thread);
 735 
 736   // These always tightly bind to MacroAssembler::call_VM_base
 737   // bypassing the virtual implementation
 738   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 739   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 740   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 741   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 742   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 743 
 744   void call_VM_leaf(address entry_point,
 745                     int number_of_arguments = 0);
 746   void call_VM_leaf(address entry_point,
 747                     Register arg_1);
 748   void call_VM_leaf(address entry_point,
 749                     Register arg_1, Register arg_2);
 750   void call_VM_leaf(address entry_point,
 751                     Register arg_1, Register arg_2, Register arg_3);
 752 
 753   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 754   // bypassing the virtual implementation
 755   void super_call_VM_leaf(address entry_point);
 756   void super_call_VM_leaf(address entry_point, Register arg_1);
 757   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 758   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 759   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 760 
 761   // last Java Frame (fills frame anchor)
 762   void set_last_Java_frame(Register last_java_sp,
 763                            Register last_java_fp,
 764                            address last_java_pc,
 765                            Register scratch);
 766 
 767   void set_last_Java_frame(Register last_java_sp,
 768                            Register last_java_fp,
 769                            Label &last_java_pc,
 770                            Register scratch);
 771 
 772   void set_last_Java_frame(Register last_java_sp,
 773                            Register last_java_fp,
 774                            Register last_java_pc,
 775                            Register scratch);
 776 
 777   void reset_last_Java_frame(Register thread);
 778 
 779   // thread in the default location (rthread)
 780   void reset_last_Java_frame(bool clear_fp);
 781 
 782   // Stores
 783   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 784   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 785 
 786   void resolve_jobject(Register value, Register thread, Register tmp);
 787 
 788   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 789   void c2bool(Register x);
 790 
 791   // oop manipulations
 792   void load_klass(Register dst, Register src);
 793   void store_klass(Register dst, Register src);
 794   void cmp_klass(Register oop, Register trial_klass, Register tmp);
 795 
 796   void resolve_oop_handle(Register result, Register tmp = r5);
 797   void load_mirror(Register dst, Register method, Register tmp = r5);
 798 
 799   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 800                       Register tmp1, Register tmp_thread);
 801 
 802   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
 803                        Register tmp1, Register tmp_thread);
 804 
 805   // Resolves obj for access. Result is placed in the same register.
 806   // All other registers are preserved.
 807   void resolve(DecoratorSet decorators, Register obj);
 808 
 809   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
 810                      Register thread_tmp = noreg, DecoratorSet decorators = 0);
 811 
 812   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
 813                               Register thread_tmp = noreg, DecoratorSet decorators = 0);
 814   void store_heap_oop(Address dst, Register src, Register tmp1 = noreg,
 815                       Register tmp_thread = noreg, DecoratorSet decorators = 0);
 816 
 817   // currently unimplemented
 818   // Used for storing NULL. All other oop constants should be
 819   // stored using routines that take a jobject.
 820   void store_heap_oop_null(Address dst);
 821 
 822   void load_prototype_header(Register dst, Register src);
 823 
 824   void store_klass_gap(Register dst, Register src);
 825 
 826   // This dummy is to prevent a call to store_heap_oop from
 827   // converting a zero (like NULL) into a Register by giving
 828   // the compiler two choices it can't resolve
 829 
 830   void store_heap_oop(Address dst, void* dummy);
 831 
 832   void encode_heap_oop(Register d, Register s);
 833   void encode_heap_oop(Register r) { encode_heap_oop(r, r); }
 834   void decode_heap_oop(Register d, Register s);
 835   void decode_heap_oop(Register r) { decode_heap_oop(r, r); }
 836   void encode_heap_oop_not_null(Register r);
 837   void decode_heap_oop_not_null(Register r);
 838   void encode_heap_oop_not_null(Register dst, Register src);
 839   void decode_heap_oop_not_null(Register dst, Register src);
 840 
 841   void set_narrow_oop(Register dst, jobject obj);
 842 
 843   void encode_klass_not_null(Register r);
 844   void decode_klass_not_null(Register r);
 845   void encode_klass_not_null(Register dst, Register src);
 846   void decode_klass_not_null(Register dst, Register src);
 847 
 848   void set_narrow_klass(Register dst, Klass* k);
 849 
 850   // if heap base register is used - reinit it with the correct value
 851   void reinit_heapbase();
 852 
 853   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 854 
 855   void push_CPU_state(bool save_vectors = false);
 856   void pop_CPU_state(bool restore_vectors = false) ;
 857 
 858   // Round up to a power of two
 859   void round_to(Register reg, int modulus);
 860 
 861   // allocation
 862   void eden_allocate(
 863     Register obj,                      // result: pointer to object after successful allocation
 864     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 865     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 866     Register t1,                       // temp register
 867     Label&   slow_case                 // continuation point if fast allocation fails
 868   );
 869   void tlab_allocate(
 870     Register obj,                      // result: pointer to object after successful allocation
 871     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 872     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 873     Register t1,                       // temp register
 874     Register t2,                       // temp register
 875     Label&   slow_case                 // continuation point if fast allocation fails
 876   );
 877   void zero_memory(Register addr, Register len, Register t1);
 878   void verify_tlab();
 879 
 880   // interface method calling
 881   void lookup_interface_method(Register recv_klass,
 882                                Register intf_klass,
 883                                RegisterOrConstant itable_index,
 884                                Register method_result,
 885                                Register scan_temp,
 886                                Label& no_such_interface,
 887                    bool return_method = true);
 888 
 889   // virtual method calling
 890   // n.b. x86 allows RegisterOrConstant for vtable_index
 891   void lookup_virtual_method(Register recv_klass,
 892                              RegisterOrConstant vtable_index,
 893                              Register method_result);
 894 
 895   // Test sub_klass against super_klass, with fast and slow paths.
 896 
 897   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 898   // One of the three labels can be NULL, meaning take the fall-through.
 899   // If super_check_offset is -1, the value is loaded up from super_klass.
 900   // No registers are killed, except temp_reg.
 901   void check_klass_subtype_fast_path(Register sub_klass,
 902                                      Register super_klass,
 903                                      Register temp_reg,
 904                                      Label* L_success,
 905                                      Label* L_failure,
 906                                      Label* L_slow_path,
 907                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 908 
 909   // The rest of the type check; must be wired to a corresponding fast path.
 910   // It does not repeat the fast path logic, so don't use it standalone.
 911   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 912   // Updates the sub's secondary super cache as necessary.
 913   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 914   void check_klass_subtype_slow_path(Register sub_klass,
 915                                      Register super_klass,
 916                                      Register temp_reg,
 917                                      Register temp2_reg,
 918                                      Label* L_success,
 919                                      Label* L_failure,
 920                                      bool set_cond_codes = false);
 921 
 922   // Simplified, combined version, good for typical uses.
 923   // Falls through on failure.
 924   void check_klass_subtype(Register sub_klass,
 925                            Register super_klass,
 926                            Register temp_reg,
 927                            Label& L_success);
 928 
 929   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 930 
 931 
 932   // Debugging
 933 
 934   // only if +VerifyOops
 935   void verify_oop(Register reg, const char* s = "broken oop");
 936   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 937 
 938 // TODO: verify method and klass metadata (compare against vptr?)
 939   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 940   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 941 
 942 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 943 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 944 
 945   // only if +VerifyFPU
 946   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 947 
 948   // prints msg, dumps registers and stops execution
 949   void stop(const char* msg);
 950 
 951   // prints msg and continues
 952   void warn(const char* msg);
 953 
 954   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 955 
 956   void untested()                                { stop("untested"); }
 957 
 958   void unimplemented(const char* what = "");
 959 
 960   void should_not_reach_here()                   { stop("should not reach here"); }
 961 
 962   // Stack overflow checking
 963   void bang_stack_with_offset(int offset) {
 964     // stack grows down, caller passes positive offset
 965     assert(offset > 0, "must bang with negative offset");
 966     sub(rscratch2, sp, offset);
 967     str(zr, Address(rscratch2));
 968   }
 969 
 970   // Writes to stack successive pages until offset reached to check for
 971   // stack overflow + shadow pages.  Also, clobbers tmp
 972   void bang_stack_size(Register size, Register tmp);
 973 
 974   // Check for reserved stack access in method being exited (for JIT)
 975   void reserved_stack_check();
 976 
 977   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 978                                                 Register tmp,
 979                                                 int offset);
 980 
 981   // Arithmetics
 982 
 983   void addptr(const Address &dst, int32_t src);
 984   void cmpptr(Register src1, Address src2);
 985 
 986   void cmpoop(Register obj1, Register obj2);
 987 
 988   // Various forms of CAS
 989 
 990   void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp,
 991                           Label &suceed, Label *fail);
 992   void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
 993                   Label &suceed, Label *fail);
 994 
 995   void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
 996                   Label &suceed, Label *fail);
 997 
 998   void atomic_add(Register prev, RegisterOrConstant incr, Register addr);
 999   void atomic_addw(Register prev, RegisterOrConstant incr, Register addr);
1000   void atomic_addal(Register prev, RegisterOrConstant incr, Register addr);
1001   void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr);
1002 
1003   void atomic_xchg(Register prev, Register newv, Register addr);
1004   void atomic_xchgw(Register prev, Register newv, Register addr);
1005   void atomic_xchgal(Register prev, Register newv, Register addr);
1006   void atomic_xchgalw(Register prev, Register newv, Register addr);
1007 
1008   void orptr(Address adr, RegisterOrConstant src) {
1009     ldr(rscratch1, adr);
1010     if (src.is_register())
1011       orr(rscratch1, rscratch1, src.as_register());
1012     else
1013       orr(rscratch1, rscratch1, src.as_constant());
1014     str(rscratch1, adr);
1015   }
1016 
1017   // A generic CAS; success or failure is in the EQ flag.
1018   // Clobbers rscratch1
1019   void cmpxchg(Register addr, Register expected, Register new_val,
1020                enum operand_size size,
1021                bool acquire, bool release, bool weak,
1022                Register result);
1023 private:
1024   void compare_eq(Register rn, Register rm, enum operand_size size);
1025 
1026 public:
1027   // Calls
1028 
1029   address trampoline_call(Address entry, CodeBuffer *cbuf = NULL);
1030 
1031   static bool far_branches() {
1032     return ReservedCodeCacheSize > branch_range || UseAOT;
1033   }
1034 
1035   // Jumps that can reach anywhere in the code cache.
1036   // Trashes tmp.
1037   void far_call(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
1038   void far_jump(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
1039 
1040   static int far_branch_size() {
1041     if (far_branches()) {
1042       return 3 * 4;  // adrp, add, br
1043     } else {
1044       return 4;
1045     }
1046   }
1047 
1048   // Emit the CompiledIC call idiom
1049   address ic_call(address entry, jint method_index = 0);
1050 
1051 public:
1052 
1053   // Data
1054 
1055   void mov_metadata(Register dst, Metadata* obj);
1056   Address allocate_metadata_address(Metadata* obj);
1057   Address constant_oop_address(jobject obj);
1058 
1059   void movoop(Register dst, jobject obj, bool immediate = false);
1060 
1061   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1062   void kernel_crc32(Register crc, Register buf, Register len,
1063         Register table0, Register table1, Register table2, Register table3,
1064         Register tmp, Register tmp2, Register tmp3);
1065   // CRC32 code for java.util.zip.CRC32C::updateBytes() instrinsic.
1066   void kernel_crc32c(Register crc, Register buf, Register len,
1067         Register table0, Register table1, Register table2, Register table3,
1068         Register tmp, Register tmp2, Register tmp3);
1069 
1070   // Stack push and pop individual 64 bit registers
1071   void push(Register src);
1072   void pop(Register dst);
1073 
1074   // push all registers onto the stack
1075   void pusha();
1076   void popa();
1077 
1078   void repne_scan(Register addr, Register value, Register count,
1079                   Register scratch);
1080   void repne_scanw(Register addr, Register value, Register count,
1081                    Register scratch);
1082 
1083   typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm);
1084   typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift);
1085 
1086   // If a constant does not fit in an immediate field, generate some
1087   // number of MOV instructions and then perform the operation
1088   void wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm,
1089                              add_sub_imm_insn insn1,
1090                              add_sub_reg_insn insn2);
1091   // Seperate vsn which sets the flags
1092   void wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm,
1093                              add_sub_imm_insn insn1,
1094                              add_sub_reg_insn insn2);
1095 
1096 #define WRAP(INSN)                                                      \
1097   void INSN(Register Rd, Register Rn, unsigned imm) {                   \
1098     wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
1099   }                                                                     \
1100                                                                         \
1101   void INSN(Register Rd, Register Rn, Register Rm,                      \
1102              enum shift_kind kind, unsigned shift = 0) {                \
1103     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1104   }                                                                     \
1105                                                                         \
1106   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1107     Assembler::INSN(Rd, Rn, Rm);                                        \
1108   }                                                                     \
1109                                                                         \
1110   void INSN(Register Rd, Register Rn, Register Rm,                      \
1111            ext::operation option, int amount = 0) {                     \
1112     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1113   }
1114 
1115   WRAP(add) WRAP(addw) WRAP(sub) WRAP(subw)
1116 
1117 #undef WRAP
1118 #define WRAP(INSN)                                                      \
1119   void INSN(Register Rd, Register Rn, unsigned imm) {                   \
1120     wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
1121   }                                                                     \
1122                                                                         \
1123   void INSN(Register Rd, Register Rn, Register Rm,                      \
1124              enum shift_kind kind, unsigned shift = 0) {                \
1125     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1126   }                                                                     \
1127                                                                         \
1128   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1129     Assembler::INSN(Rd, Rn, Rm);                                        \
1130   }                                                                     \
1131                                                                         \
1132   void INSN(Register Rd, Register Rn, Register Rm,                      \
1133            ext::operation option, int amount = 0) {                     \
1134     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1135   }
1136 
1137   WRAP(adds) WRAP(addsw) WRAP(subs) WRAP(subsw)
1138 
1139   void add(Register Rd, Register Rn, RegisterOrConstant increment);
1140   void addw(Register Rd, Register Rn, RegisterOrConstant increment);
1141   void sub(Register Rd, Register Rn, RegisterOrConstant decrement);
1142   void subw(Register Rd, Register Rn, RegisterOrConstant decrement);
1143 
1144   void adrp(Register reg1, const Address &dest, unsigned long &byte_offset);
1145 
1146   void tableswitch(Register index, jint lowbound, jint highbound,
1147                    Label &jumptable, Label &jumptable_end, int stride = 1) {
1148     adr(rscratch1, jumptable);
1149     subsw(rscratch2, index, lowbound);
1150     subsw(zr, rscratch2, highbound - lowbound);
1151     br(Assembler::HS, jumptable_end);
1152     add(rscratch1, rscratch1, rscratch2,
1153         ext::sxtw, exact_log2(stride * Assembler::instruction_size));
1154     br(rscratch1);
1155   }
1156 
1157   // Form an address from base + offset in Rd.  Rd may or may not
1158   // actually be used: you must use the Address that is returned.  It
1159   // is up to you to ensure that the shift provided matches the size
1160   // of your data.
1161   Address form_address(Register Rd, Register base, long byte_offset, int shift);
1162 
1163   // Return true iff an address is within the 48-bit AArch64 address
1164   // space.
1165   bool is_valid_AArch64_address(address a) {
1166     return ((uint64_t)a >> 48) == 0;
1167   }
1168 
1169   // Load the base of the cardtable byte map into reg.
1170   void load_byte_map_base(Register reg);
1171 
1172   // Prolog generator routines to support switch between x86 code and
1173   // generated ARM code
1174 
1175   // routine to generate an x86 prolog for a stub function which
1176   // bootstraps into the generated ARM code which directly follows the
1177   // stub
1178   //
1179 
1180   public:
1181   // enum used for aarch64--x86 linkage to define return type of x86 function
1182   enum ret_type { ret_type_void, ret_type_integral, ret_type_float, ret_type_double};
1183 
1184 #ifdef BUILTIN_SIM
1185   void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type, address *prolog_ptr = NULL);
1186 #else
1187   void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type) { }
1188 #endif
1189 
1190   // special version of call_VM_leaf_base needed for aarch64 simulator
1191   // where we need to specify both the gp and fp arg counts and the
1192   // return type so that the linkage routine from aarch64 to x86 and
1193   // back knows which aarch64 registers to copy to x86 registers and
1194   // which x86 result register to copy back to an aarch64 register
1195 
1196   void call_VM_leaf_base1(
1197     address  entry_point,             // the entry point
1198     int      number_of_gp_arguments,  // the number of gp reg arguments to pass
1199     int      number_of_fp_arguments,  // the number of fp reg arguments to pass
1200     ret_type type,                    // the return type for the call
1201     Label*   retaddr = NULL
1202   );
1203 
1204   void ldr_constant(Register dest, const Address &const_addr) {
1205     if (NearCpool) {
1206       ldr(dest, const_addr);
1207     } else {
1208       unsigned long offset;
1209       adrp(dest, InternalAddress(const_addr.target()), offset);
1210       ldr(dest, Address(dest, offset));
1211     }
1212   }
1213 
1214   address read_polling_page(Register r, address page, relocInfo::relocType rtype);
1215   address read_polling_page(Register r, relocInfo::relocType rtype);
1216   void get_polling_page(Register dest, address page, relocInfo::relocType rtype);
1217 
1218   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1219   void update_byte_crc32(Register crc, Register val, Register table);
1220   void update_word_crc32(Register crc, Register v, Register tmp,
1221         Register table0, Register table1, Register table2, Register table3,
1222         bool upper = false);
1223 
1224   void string_compare(Register str1, Register str2,
1225                       Register cnt1, Register cnt2, Register result,
1226                       Register tmp1, Register tmp2, FloatRegister vtmp1,
1227                       FloatRegister vtmp2, FloatRegister vtmp3, int ae);
1228 
1229   void has_negatives(Register ary1, Register len, Register result);
1230 
1231   void arrays_equals(Register a1, Register a2, Register result, Register cnt1,
1232                      Register tmp1, Register tmp2, Register tmp3, int elem_size);
1233 
1234   void string_equals(Register a1, Register a2, Register result, Register cnt1,
1235                      int elem_size);
1236 
1237   void fill_words(Register base, Register cnt, Register value);
1238   void zero_words(Register base, u_int64_t cnt);
1239   void zero_words(Register ptr, Register cnt);
1240   void zero_dcache_blocks(Register base, Register cnt);
1241 
1242   static const int zero_words_block_size;
1243 
1244   void byte_array_inflate(Register src, Register dst, Register len,
1245                           FloatRegister vtmp1, FloatRegister vtmp2,
1246                           FloatRegister vtmp3, Register tmp4);
1247 
1248   void char_array_compress(Register src, Register dst, Register len,
1249                            FloatRegister tmp1Reg, FloatRegister tmp2Reg,
1250                            FloatRegister tmp3Reg, FloatRegister tmp4Reg,
1251                            Register result);
1252 
1253   void encode_iso_array(Register src, Register dst,
1254                         Register len, Register result,
1255                         FloatRegister Vtmp1, FloatRegister Vtmp2,
1256                         FloatRegister Vtmp3, FloatRegister Vtmp4);
1257   void string_indexof(Register str1, Register str2,
1258                       Register cnt1, Register cnt2,
1259                       Register tmp1, Register tmp2,
1260                       Register tmp3, Register tmp4,
1261                       Register tmp5, Register tmp6,
1262                       int int_cnt1, Register result, int ae);
1263   void string_indexof_char(Register str1, Register cnt1,
1264                            Register ch, Register result,
1265                            Register tmp1, Register tmp2, Register tmp3);
1266   void fast_log(FloatRegister vtmp0, FloatRegister vtmp1, FloatRegister vtmp2,
1267                 FloatRegister vtmp3, FloatRegister vtmp4, FloatRegister vtmp5,
1268                 FloatRegister tmpC1, FloatRegister tmpC2, FloatRegister tmpC3,
1269                 FloatRegister tmpC4, Register tmp1, Register tmp2,
1270                 Register tmp3, Register tmp4, Register tmp5);
1271   void generate_dsin_dcos(bool isCos, address npio2_hw, address two_over_pi,
1272       address pio2, address dsin_coef, address dcos_coef);
1273  private:
1274   // begin trigonometric functions support block
1275   void generate__ieee754_rem_pio2(address npio2_hw, address two_over_pi, address pio2);
1276   void generate__kernel_rem_pio2(address two_over_pi, address pio2);
1277   void generate_kernel_sin(FloatRegister x, bool iyIsOne, address dsin_coef);
1278   void generate_kernel_cos(FloatRegister x, address dcos_coef);
1279   // end trigonometric functions support block
1280   void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
1281                        Register src1, Register src2);
1282   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
1283     add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2);
1284   }
1285   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1286                              Register y, Register y_idx, Register z,
1287                              Register carry, Register product,
1288                              Register idx, Register kdx);
1289   void multiply_128_x_128_loop(Register y, Register z,
1290                                Register carry, Register carry2,
1291                                Register idx, Register jdx,
1292                                Register yz_idx1, Register yz_idx2,
1293                                Register tmp, Register tmp3, Register tmp4,
1294                                Register tmp7, Register product_hi);
1295   void kernel_crc32_using_crc32(Register crc, Register buf,
1296         Register len, Register tmp0, Register tmp1, Register tmp2,
1297         Register tmp3);
1298   void kernel_crc32c_using_crc32c(Register crc, Register buf,
1299         Register len, Register tmp0, Register tmp1, Register tmp2,
1300         Register tmp3);
1301 public:
1302   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z,
1303                        Register zlen, Register tmp1, Register tmp2, Register tmp3,
1304                        Register tmp4, Register tmp5, Register tmp6, Register tmp7);
1305   void mul_add(Register out, Register in, Register offs, Register len, Register k);
1306   // ISB may be needed because of a safepoint
1307   void maybe_isb() { isb(); }
1308 
1309 private:
1310   // Return the effective address r + (r1 << ext) + offset.
1311   // Uses rscratch2.
1312   Address offsetted_address(Register r, Register r1, Address::extend ext,
1313                             int offset, int size);
1314 
1315 private:
1316   // Returns an address on the stack which is reachable with a ldr/str of size
1317   // Uses rscratch2 if the address is not directly reachable
1318   Address spill_address(int size, int offset, Register tmp=rscratch2);
1319 
1320   bool merge_alignment_check(Register base, size_t size, long cur_offset, long prev_offset) const;
1321 
1322   // Check whether two loads/stores can be merged into ldp/stp.
1323   bool ldst_can_merge(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store) const;
1324 
1325   // Merge current load/store with previous load/store into ldp/stp.
1326   void merge_ldst(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1327 
1328   // Try to merge two loads/stores into ldp/stp. If success, returns true else false.
1329   bool try_merge_ldst(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1330 
1331 public:
1332   void spill(Register Rx, bool is64, int offset) {
1333     if (is64) {
1334       str(Rx, spill_address(8, offset));
1335     } else {
1336       strw(Rx, spill_address(4, offset));
1337     }
1338   }
1339   void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1340     str(Vx, T, spill_address(1 << (int)T, offset));
1341   }
1342   void unspill(Register Rx, bool is64, int offset) {
1343     if (is64) {
1344       ldr(Rx, spill_address(8, offset));
1345     } else {
1346       ldrw(Rx, spill_address(4, offset));
1347     }
1348   }
1349   void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1350     ldr(Vx, T, spill_address(1 << (int)T, offset));
1351   }
1352   void spill_copy128(int src_offset, int dst_offset,
1353                      Register tmp1=rscratch1, Register tmp2=rscratch2) {
1354     if (src_offset < 512 && (src_offset & 7) == 0 &&
1355         dst_offset < 512 && (dst_offset & 7) == 0) {
1356       ldp(tmp1, tmp2, Address(sp, src_offset));
1357       stp(tmp1, tmp2, Address(sp, dst_offset));
1358     } else {
1359       unspill(tmp1, true, src_offset);
1360       spill(tmp1, true, dst_offset);
1361       unspill(tmp1, true, src_offset+8);
1362       spill(tmp1, true, dst_offset+8);
1363     }
1364   }
1365 };
1366 
1367 #ifdef ASSERT
1368 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
1369 #endif
1370 
1371 /**
1372  * class SkipIfEqual:
1373  *
1374  * Instantiating this class will result in assembly code being output that will
1375  * jump around any code emitted between the creation of the instance and it's
1376  * automatic destruction at the end of a scope block, depending on the value of
1377  * the flag passed to the constructor, which will be checked at run-time.
1378  */
1379 class SkipIfEqual {
1380  private:
1381   MacroAssembler* _masm;
1382   Label _label;
1383 
1384  public:
1385    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1386    ~SkipIfEqual();
1387 };
1388 
1389 struct tableswitch {
1390   Register _reg;
1391   int _insn_index; jint _first_key; jint _last_key;
1392   Label _after;
1393   Label _branches;
1394 };
1395 
1396 #endif // CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP