1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "gc_implementation/shared/vmGCOperations.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "memory/allocation.inline.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "prims/jvm.h"
  37 #include "prims/jvm_misc.hpp"
  38 #include "prims/privilegedStack.hpp"
  39 #include "runtime/arguments.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/interfaceSupport.hpp"
  42 #include "runtime/java.hpp"
  43 #include "runtime/javaCalls.hpp"
  44 #include "runtime/mutexLocker.hpp"
  45 #include "runtime/os.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "runtime/thread.inline.hpp"
  48 #include "services/attachListener.hpp"
  49 #include "services/memTracker.hpp"
  50 #include "services/threadService.hpp"
  51 #include "utilities/defaultStream.hpp"
  52 #include "utilities/events.hpp"
  53 #ifdef TARGET_OS_FAMILY_linux
  54 # include "os_linux.inline.hpp"
  55 #endif
  56 #ifdef TARGET_OS_FAMILY_solaris
  57 # include "os_solaris.inline.hpp"
  58 #endif
  59 #ifdef TARGET_OS_FAMILY_windows
  60 # include "os_windows.inline.hpp"
  61 #endif
  62 #ifdef TARGET_OS_FAMILY_bsd
  63 # include "os_bsd.inline.hpp"
  64 #endif
  65 
  66 # include <signal.h>
  67 
  68 OSThread*         os::_starting_thread    = NULL;
  69 address           os::_polling_page       = NULL;
  70 volatile int32_t* os::_mem_serialize_page = NULL;
  71 uintptr_t         os::_serialize_page_mask = 0;
  72 long              os::_rand_seed          = 1;
  73 int               os::_processor_count    = 0;
  74 size_t            os::_page_sizes[os::page_sizes_max];
  75 
  76 #ifndef PRODUCT
  77 julong os::num_mallocs = 0;         // # of calls to malloc/realloc
  78 julong os::alloc_bytes = 0;         // # of bytes allocated
  79 julong os::num_frees = 0;           // # of calls to free
  80 julong os::free_bytes = 0;          // # of bytes freed
  81 #endif
  82 
  83 static juint cur_malloc_words = 0;  // current size for MallocMaxTestWords
  84 
  85 void os_init_globals() {
  86   // Called from init_globals().
  87   // See Threads::create_vm() in thread.cpp, and init.cpp.
  88   os::init_globals();
  89 }
  90 
  91 // Fill in buffer with current local time as an ISO-8601 string.
  92 // E.g., yyyy-mm-ddThh:mm:ss-zzzz.
  93 // Returns buffer, or NULL if it failed.
  94 // This would mostly be a call to
  95 //     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
  96 // except that on Windows the %z behaves badly, so we do it ourselves.
  97 // Also, people wanted milliseconds on there,
  98 // and strftime doesn't do milliseconds.
  99 char* os::iso8601_time(char* buffer, size_t buffer_length) {
 100   // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
 101   //                                      1         2
 102   //                             12345678901234567890123456789
 103   static const char* iso8601_format =
 104     "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d";
 105   static const size_t needed_buffer = 29;
 106 
 107   // Sanity check the arguments
 108   if (buffer == NULL) {
 109     assert(false, "NULL buffer");
 110     return NULL;
 111   }
 112   if (buffer_length < needed_buffer) {
 113     assert(false, "buffer_length too small");
 114     return NULL;
 115   }
 116   // Get the current time
 117   jlong milliseconds_since_19700101 = javaTimeMillis();
 118   const int milliseconds_per_microsecond = 1000;
 119   const time_t seconds_since_19700101 =
 120     milliseconds_since_19700101 / milliseconds_per_microsecond;
 121   const int milliseconds_after_second =
 122     milliseconds_since_19700101 % milliseconds_per_microsecond;
 123   // Convert the time value to a tm and timezone variable
 124   struct tm time_struct;
 125   if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
 126     assert(false, "Failed localtime_pd");
 127     return NULL;
 128   }
 129 #if defined(_ALLBSD_SOURCE)
 130   const time_t zone = (time_t) time_struct.tm_gmtoff;
 131 #else
 132   const time_t zone = timezone;
 133 #endif
 134 
 135   // If daylight savings time is in effect,
 136   // we are 1 hour East of our time zone
 137   const time_t seconds_per_minute = 60;
 138   const time_t minutes_per_hour = 60;
 139   const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
 140   time_t UTC_to_local = zone;
 141   if (time_struct.tm_isdst > 0) {
 142     UTC_to_local = UTC_to_local - seconds_per_hour;
 143   }
 144   // Compute the time zone offset.
 145   //    localtime_pd() sets timezone to the difference (in seconds)
 146   //    between UTC and and local time.
 147   //    ISO 8601 says we need the difference between local time and UTC,
 148   //    we change the sign of the localtime_pd() result.
 149   const time_t local_to_UTC = -(UTC_to_local);
 150   // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
 151   char sign_local_to_UTC = '+';
 152   time_t abs_local_to_UTC = local_to_UTC;
 153   if (local_to_UTC < 0) {
 154     sign_local_to_UTC = '-';
 155     abs_local_to_UTC = -(abs_local_to_UTC);
 156   }
 157   // Convert time zone offset seconds to hours and minutes.
 158   const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
 159   const time_t zone_min =
 160     ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
 161 
 162   // Print an ISO 8601 date and time stamp into the buffer
 163   const int year = 1900 + time_struct.tm_year;
 164   const int month = 1 + time_struct.tm_mon;
 165   const int printed = jio_snprintf(buffer, buffer_length, iso8601_format,
 166                                    year,
 167                                    month,
 168                                    time_struct.tm_mday,
 169                                    time_struct.tm_hour,
 170                                    time_struct.tm_min,
 171                                    time_struct.tm_sec,
 172                                    milliseconds_after_second,
 173                                    sign_local_to_UTC,
 174                                    zone_hours,
 175                                    zone_min);
 176   if (printed == 0) {
 177     assert(false, "Failed jio_printf");
 178     return NULL;
 179   }
 180   return buffer;
 181 }
 182 
 183 OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
 184 #ifdef ASSERT
 185   if (!(!thread->is_Java_thread() ||
 186          Thread::current() == thread  ||
 187          Threads_lock->owned_by_self()
 188          || thread->is_Compiler_thread()
 189         )) {
 190     assert(false, "possibility of dangling Thread pointer");
 191   }
 192 #endif
 193 
 194   if (p >= MinPriority && p <= MaxPriority) {
 195     int priority = java_to_os_priority[p];
 196     return set_native_priority(thread, priority);
 197   } else {
 198     assert(false, "Should not happen");
 199     return OS_ERR;
 200   }
 201 }
 202 
 203 // The mapping from OS priority back to Java priority may be inexact because
 204 // Java priorities can map M:1 with native priorities. If you want the definite
 205 // Java priority then use JavaThread::java_priority()
 206 OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
 207   int p;
 208   int os_prio;
 209   OSReturn ret = get_native_priority(thread, &os_prio);
 210   if (ret != OS_OK) return ret;
 211 
 212   if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
 213     for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
 214   } else {
 215     // niceness values are in reverse order
 216     for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
 217   }
 218   priority = (ThreadPriority)p;
 219   return OS_OK;
 220 }
 221 
 222 
 223 // --------------------- sun.misc.Signal (optional) ---------------------
 224 
 225 
 226 // SIGBREAK is sent by the keyboard to query the VM state
 227 #ifndef SIGBREAK
 228 #define SIGBREAK SIGQUIT
 229 #endif
 230 
 231 // sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
 232 
 233 
 234 static void signal_thread_entry(JavaThread* thread, TRAPS) {
 235   os::set_priority(thread, NearMaxPriority);
 236   while (true) {
 237     int sig;
 238     {
 239       // FIXME : Currently we have not decided what should be the status
 240       //         for this java thread blocked here. Once we decide about
 241       //         that we should fix this.
 242       sig = os::signal_wait();
 243     }
 244     if (sig == os::sigexitnum_pd()) {
 245        // Terminate the signal thread
 246        return;
 247     }
 248 
 249     switch (sig) {
 250       case SIGBREAK: {
 251         // Check if the signal is a trigger to start the Attach Listener - in that
 252         // case don't print stack traces.
 253         if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
 254           continue;
 255         }
 256         // Print stack traces
 257         // Any SIGBREAK operations added here should make sure to flush
 258         // the output stream (e.g. tty->flush()) after output.  See 4803766.
 259         // Each module also prints an extra carriage return after its output.
 260         VM_PrintThreads op;
 261         VMThread::execute(&op);
 262         VM_PrintJNI jni_op;
 263         VMThread::execute(&jni_op);
 264         VM_FindDeadlocks op1(tty);
 265         VMThread::execute(&op1);
 266         Universe::print_heap_at_SIGBREAK();
 267         if (PrintClassHistogram) {
 268           VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */);
 269           VMThread::execute(&op1);
 270         }
 271         if (JvmtiExport::should_post_data_dump()) {
 272           JvmtiExport::post_data_dump();
 273         }
 274         break;
 275       }
 276       default: {
 277         // Dispatch the signal to java
 278         HandleMark hm(THREAD);
 279         Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_Signal(), THREAD);
 280         KlassHandle klass (THREAD, k);
 281         if (klass.not_null()) {
 282           JavaValue result(T_VOID);
 283           JavaCallArguments args;
 284           args.push_int(sig);
 285           JavaCalls::call_static(
 286             &result,
 287             klass,
 288             vmSymbols::dispatch_name(),
 289             vmSymbols::int_void_signature(),
 290             &args,
 291             THREAD
 292           );
 293         }
 294         if (HAS_PENDING_EXCEPTION) {
 295           // tty is initialized early so we don't expect it to be null, but
 296           // if it is we can't risk doing an initialization that might
 297           // trigger additional out-of-memory conditions
 298           if (tty != NULL) {
 299             char klass_name[256];
 300             char tmp_sig_name[16];
 301             const char* sig_name = "UNKNOWN";
 302             InstanceKlass::cast(PENDING_EXCEPTION->klass())->
 303               name()->as_klass_external_name(klass_name, 256);
 304             if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
 305               sig_name = tmp_sig_name;
 306             warning("Exception %s occurred dispatching signal %s to handler"
 307                     "- the VM may need to be forcibly terminated",
 308                     klass_name, sig_name );
 309           }
 310           CLEAR_PENDING_EXCEPTION;
 311         }
 312       }
 313     }
 314   }
 315 }
 316 
 317 void os::init_before_ergo() {
 318   // We need to initialize large page support here because ergonomics takes some
 319   // decisions depending on large page support and the calculated large page size.
 320   large_page_init();
 321 }
 322 
 323 void os::signal_init() {
 324   if (!ReduceSignalUsage) {
 325     // Setup JavaThread for processing signals
 326     EXCEPTION_MARK;
 327     Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
 328     instanceKlassHandle klass (THREAD, k);
 329     instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
 330 
 331     const char thread_name[] = "Signal Dispatcher";
 332     Handle string = java_lang_String::create_from_str(thread_name, CHECK);
 333 
 334     // Initialize thread_oop to put it into the system threadGroup
 335     Handle thread_group (THREAD, Universe::system_thread_group());
 336     JavaValue result(T_VOID);
 337     JavaCalls::call_special(&result, thread_oop,
 338                            klass,
 339                            vmSymbols::object_initializer_name(),
 340                            vmSymbols::threadgroup_string_void_signature(),
 341                            thread_group,
 342                            string,
 343                            CHECK);
 344 
 345     KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
 346     JavaCalls::call_special(&result,
 347                             thread_group,
 348                             group,
 349                             vmSymbols::add_method_name(),
 350                             vmSymbols::thread_void_signature(),
 351                             thread_oop,         // ARG 1
 352                             CHECK);
 353 
 354     os::signal_init_pd();
 355 
 356     { MutexLocker mu(Threads_lock);
 357       JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
 358 
 359       // At this point it may be possible that no osthread was created for the
 360       // JavaThread due to lack of memory. We would have to throw an exception
 361       // in that case. However, since this must work and we do not allow
 362       // exceptions anyway, check and abort if this fails.
 363       if (signal_thread == NULL || signal_thread->osthread() == NULL) {
 364         vm_exit_during_initialization("java.lang.OutOfMemoryError",
 365                                       os::native_thread_creation_failed_msg());
 366       }
 367 
 368       java_lang_Thread::set_thread(thread_oop(), signal_thread);
 369       java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
 370       java_lang_Thread::set_daemon(thread_oop());
 371 
 372       signal_thread->set_threadObj(thread_oop());
 373       Threads::add(signal_thread);
 374       Thread::start(signal_thread);
 375     }
 376     // Handle ^BREAK
 377     os::signal(SIGBREAK, os::user_handler());
 378   }
 379 }
 380 
 381 
 382 void os::terminate_signal_thread() {
 383   if (!ReduceSignalUsage)
 384     signal_notify(sigexitnum_pd());
 385 }
 386 
 387 
 388 // --------------------- loading libraries ---------------------
 389 
 390 typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
 391 extern struct JavaVM_ main_vm;
 392 
 393 static void* _native_java_library = NULL;
 394 
 395 void* os::native_java_library() {
 396   if (_native_java_library == NULL) {
 397     char buffer[JVM_MAXPATHLEN];
 398     char ebuf[1024];
 399 
 400     // Try to load verify dll first. In 1.3 java dll depends on it and is not
 401     // always able to find it when the loading executable is outside the JDK.
 402     // In order to keep working with 1.2 we ignore any loading errors.
 403     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
 404                        "verify")) {
 405       dll_load(buffer, ebuf, sizeof(ebuf));
 406     }
 407 
 408     // Load java dll
 409     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
 410                        "java")) {
 411       _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
 412     }
 413     if (_native_java_library == NULL) {
 414       vm_exit_during_initialization("Unable to load native library", ebuf);
 415     }
 416 
 417 #if defined(__OpenBSD__)
 418     // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
 419     // ignore errors
 420     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
 421                        "net")) {
 422       dll_load(buffer, ebuf, sizeof(ebuf));
 423     }
 424 #endif
 425   }
 426   static jboolean onLoaded = JNI_FALSE;
 427   if (onLoaded) {
 428     // We may have to wait to fire OnLoad until TLS is initialized.
 429     if (ThreadLocalStorage::is_initialized()) {
 430       // The JNI_OnLoad handling is normally done by method load in
 431       // java.lang.ClassLoader$NativeLibrary, but the VM loads the base library
 432       // explicitly so we have to check for JNI_OnLoad as well
 433       const char *onLoadSymbols[] = JNI_ONLOAD_SYMBOLS;
 434       JNI_OnLoad_t JNI_OnLoad = CAST_TO_FN_PTR(
 435           JNI_OnLoad_t, dll_lookup(_native_java_library, onLoadSymbols[0]));
 436       if (JNI_OnLoad != NULL) {
 437         JavaThread* thread = JavaThread::current();
 438         ThreadToNativeFromVM ttn(thread);
 439         HandleMark hm(thread);
 440         jint ver = (*JNI_OnLoad)(&main_vm, NULL);
 441         onLoaded = JNI_TRUE;
 442         if (!Threads::is_supported_jni_version_including_1_1(ver)) {
 443           vm_exit_during_initialization("Unsupported JNI version");
 444         }
 445       }
 446     }
 447   }
 448   return _native_java_library;
 449 }
 450 
 451 /*
 452  * Support for finding Agent_On(Un)Load/Attach<_lib_name> if it exists.
 453  * If check_lib == true then we are looking for an
 454  * Agent_OnLoad_lib_name or Agent_OnAttach_lib_name function to determine if
 455  * this library is statically linked into the image.
 456  * If check_lib == false then we will look for the appropriate symbol in the
 457  * executable if agent_lib->is_static_lib() == true or in the shared library
 458  * referenced by 'handle'.
 459  */
 460 void* os::find_agent_function(AgentLibrary *agent_lib, bool check_lib,
 461                               const char *syms[], size_t syms_len) {
 462   assert(agent_lib != NULL, "sanity check");
 463   const char *lib_name;
 464   void *handle = agent_lib->os_lib();
 465   void *entryName = NULL;
 466   char *agent_function_name;
 467   size_t i;
 468 
 469   // If checking then use the agent name otherwise test is_static_lib() to
 470   // see how to process this lookup
 471   lib_name = ((check_lib || agent_lib->is_static_lib()) ? agent_lib->name() : NULL);
 472   for (i = 0; i < syms_len; i++) {
 473     agent_function_name = build_agent_function_name(syms[i], lib_name, agent_lib->is_absolute_path());
 474     if (agent_function_name == NULL) {
 475       break;
 476     }
 477     entryName = dll_lookup(handle, agent_function_name);
 478     FREE_C_HEAP_ARRAY(char, agent_function_name, mtThread);
 479     if (entryName != NULL) {
 480       break;
 481     }
 482   }
 483   return entryName;
 484 }
 485 
 486 // See if the passed in agent is statically linked into the VM image.
 487 bool os::find_builtin_agent(AgentLibrary *agent_lib, const char *syms[],
 488                             size_t syms_len) {
 489   void *ret;
 490   void *proc_handle;
 491   void *save_handle;
 492 
 493   assert(agent_lib != NULL, "sanity check");
 494   if (agent_lib->name() == NULL) {
 495     return false;
 496   }
 497   proc_handle = get_default_process_handle();
 498   // Check for Agent_OnLoad/Attach_lib_name function
 499   save_handle = agent_lib->os_lib();
 500   // We want to look in this process' symbol table.
 501   agent_lib->set_os_lib(proc_handle);
 502   ret = find_agent_function(agent_lib, true, syms, syms_len);
 503   if (ret != NULL) {
 504     // Found an entry point like Agent_OnLoad_lib_name so we have a static agent
 505     agent_lib->set_valid();
 506     agent_lib->set_static_lib(true);
 507     return true;
 508   }
 509   agent_lib->set_os_lib(save_handle);
 510   return false;
 511 }
 512 
 513 // --------------------- heap allocation utilities ---------------------
 514 
 515 char *os::strdup(const char *str, MEMFLAGS flags) {
 516   size_t size = strlen(str);
 517   char *dup_str = (char *)malloc(size + 1, flags);
 518   if (dup_str == NULL) return NULL;
 519   strcpy(dup_str, str);
 520   return dup_str;
 521 }
 522 
 523 
 524 
 525 #ifdef ASSERT
 526 #define space_before             (MallocCushion + sizeof(double))
 527 #define space_after              MallocCushion
 528 #define size_addr_from_base(p)   (size_t*)(p + space_before - sizeof(size_t))
 529 #define size_addr_from_obj(p)    ((size_t*)p - 1)
 530 // MallocCushion: size of extra cushion allocated around objects with +UseMallocOnly
 531 // NB: cannot be debug variable, because these aren't set from the command line until
 532 // *after* the first few allocs already happened
 533 #define MallocCushion            16
 534 #else
 535 #define space_before             0
 536 #define space_after              0
 537 #define size_addr_from_base(p)   should not use w/o ASSERT
 538 #define size_addr_from_obj(p)    should not use w/o ASSERT
 539 #define MallocCushion            0
 540 #endif
 541 #define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
 542 
 543 #ifdef ASSERT
 544 inline size_t get_size(void* obj) {
 545   size_t size = *size_addr_from_obj(obj);
 546   if (size < 0) {
 547     fatal(err_msg("free: size field of object #" PTR_FORMAT " was overwritten ("
 548                   SIZE_FORMAT ")", obj, size));
 549   }
 550   return size;
 551 }
 552 
 553 u_char* find_cushion_backwards(u_char* start) {
 554   u_char* p = start;
 555   while (p[ 0] != badResourceValue || p[-1] != badResourceValue ||
 556          p[-2] != badResourceValue || p[-3] != badResourceValue) p--;
 557   // ok, we have four consecutive marker bytes; find start
 558   u_char* q = p - 4;
 559   while (*q == badResourceValue) q--;
 560   return q + 1;
 561 }
 562 
 563 u_char* find_cushion_forwards(u_char* start) {
 564   u_char* p = start;
 565   while (p[0] != badResourceValue || p[1] != badResourceValue ||
 566          p[2] != badResourceValue || p[3] != badResourceValue) p++;
 567   // ok, we have four consecutive marker bytes; find end of cushion
 568   u_char* q = p + 4;
 569   while (*q == badResourceValue) q++;
 570   return q - MallocCushion;
 571 }
 572 
 573 void print_neighbor_blocks(void* ptr) {
 574   // find block allocated before ptr (not entirely crash-proof)
 575   if (MallocCushion < 4) {
 576     tty->print_cr("### cannot find previous block (MallocCushion < 4)");
 577     return;
 578   }
 579   u_char* start_of_this_block = (u_char*)ptr - space_before;
 580   u_char* end_of_prev_block_data = start_of_this_block - space_after -1;
 581   // look for cushion in front of prev. block
 582   u_char* start_of_prev_block = find_cushion_backwards(end_of_prev_block_data);
 583   ptrdiff_t size = *size_addr_from_base(start_of_prev_block);
 584   u_char* obj = start_of_prev_block + space_before;
 585   if (size <= 0 ) {
 586     // start is bad; may have been confused by OS data in between objects
 587     // search one more backwards
 588     start_of_prev_block = find_cushion_backwards(start_of_prev_block);
 589     size = *size_addr_from_base(start_of_prev_block);
 590     obj = start_of_prev_block + space_before;
 591   }
 592 
 593   if (start_of_prev_block + space_before + size + space_after == start_of_this_block) {
 594     tty->print_cr("### previous object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
 595   } else {
 596     tty->print_cr("### previous object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
 597   }
 598 
 599   // now find successor block
 600   u_char* start_of_next_block = (u_char*)ptr + *size_addr_from_obj(ptr) + space_after;
 601   start_of_next_block = find_cushion_forwards(start_of_next_block);
 602   u_char* next_obj = start_of_next_block + space_before;
 603   ptrdiff_t next_size = *size_addr_from_base(start_of_next_block);
 604   if (start_of_next_block[0] == badResourceValue &&
 605       start_of_next_block[1] == badResourceValue &&
 606       start_of_next_block[2] == badResourceValue &&
 607       start_of_next_block[3] == badResourceValue) {
 608     tty->print_cr("### next object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
 609   } else {
 610     tty->print_cr("### next object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
 611   }
 612 }
 613 
 614 
 615 void report_heap_error(void* memblock, void* bad, const char* where) {
 616   tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
 617   tty->print_cr("## memory stomp: byte at " PTR_FORMAT " %s object " PTR_FORMAT, bad, where, memblock);
 618   print_neighbor_blocks(memblock);
 619   fatal("memory stomping error");
 620 }
 621 
 622 void verify_block(void* memblock) {
 623   size_t size = get_size(memblock);
 624   if (MallocCushion) {
 625     u_char* ptr = (u_char*)memblock - space_before;
 626     for (int i = 0; i < MallocCushion; i++) {
 627       if (ptr[i] != badResourceValue) {
 628         report_heap_error(memblock, ptr+i, "in front of");
 629       }
 630     }
 631     u_char* end = (u_char*)memblock + size + space_after;
 632     for (int j = -MallocCushion; j < 0; j++) {
 633       if (end[j] != badResourceValue) {
 634         report_heap_error(memblock, end+j, "after");
 635       }
 636     }
 637   }
 638 }
 639 #endif
 640 
 641 //
 642 // This function supports testing of the malloc out of memory
 643 // condition without really running the system out of memory.
 644 //
 645 static u_char* testMalloc(size_t alloc_size) {
 646   assert(MallocMaxTestWords > 0, "sanity check");
 647 
 648   if ((cur_malloc_words + (alloc_size / BytesPerWord)) > MallocMaxTestWords) {
 649     return NULL;
 650   }
 651 
 652   u_char* ptr = (u_char*)::malloc(alloc_size);
 653 
 654   if (ptr != NULL) {
 655     Atomic::add(((jint) (alloc_size / BytesPerWord)),
 656                 (volatile jint *) &cur_malloc_words);
 657   }
 658   return ptr;
 659 }
 660 
 661 void* os::malloc(size_t size, MEMFLAGS memflags, address caller) {
 662   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
 663   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
 664 
 665 #ifdef ASSERT
 666   // checking for the WatcherThread and crash_protection first
 667   // since os::malloc can be called when the libjvm.{dll,so} is
 668   // first loaded and we don't have a thread yet.
 669   // try to find the thread after we see that the watcher thread
 670   // exists and has crash protection.
 671   WatcherThread *wt = WatcherThread::watcher_thread();
 672   if (wt != NULL && wt->has_crash_protection()) {
 673     Thread* thread = ThreadLocalStorage::get_thread_slow();
 674     if (thread == wt) {
 675       assert(!wt->has_crash_protection(),
 676           "Can't malloc with crash protection from WatcherThread");
 677     }
 678   }
 679 #endif
 680 
 681   if (size == 0) {
 682     // return a valid pointer if size is zero
 683     // if NULL is returned the calling functions assume out of memory.
 684     size = 1;
 685   }
 686 
 687   const size_t alloc_size = size + space_before + space_after;
 688 
 689   if (size > alloc_size) { // Check for rollover.
 690     return NULL;
 691   }
 692 
 693   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
 694 
 695   u_char* ptr;
 696 
 697   if (MallocMaxTestWords > 0) {
 698     ptr = testMalloc(alloc_size);
 699   } else {
 700     ptr = (u_char*)::malloc(alloc_size);
 701   }
 702 
 703 #ifdef ASSERT
 704   if (ptr == NULL) return NULL;
 705   if (MallocCushion) {
 706     for (u_char* p = ptr; p < ptr + MallocCushion; p++) *p = (u_char)badResourceValue;
 707     u_char* end = ptr + space_before + size;
 708     for (u_char* pq = ptr+MallocCushion; pq < end; pq++) *pq = (u_char)uninitBlockPad;
 709     for (u_char* q = end; q < end + MallocCushion; q++) *q = (u_char)badResourceValue;
 710   }
 711   // put size just before data
 712   *size_addr_from_base(ptr) = size;
 713 #endif
 714   u_char* memblock = ptr + space_before;
 715   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
 716     tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
 717     breakpoint();
 718   }
 719   debug_only(if (paranoid) verify_block(memblock));
 720   if (PrintMalloc && tty != NULL) tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
 721 
 722   // we do not track MallocCushion memory
 723     MemTracker::record_malloc((address)memblock, size, memflags, caller == 0 ? CALLER_PC : caller);
 724 
 725   return memblock;
 726 }
 727 
 728 
 729 void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, address caller) {
 730 #ifndef ASSERT
 731   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
 732   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
 733   MemTracker::Tracker tkr = MemTracker::get_realloc_tracker();
 734   void* ptr = ::realloc(memblock, size);
 735   if (ptr != NULL) {
 736     tkr.record((address)memblock, (address)ptr, size, memflags,
 737      caller == 0 ? CALLER_PC : caller);
 738   } else {
 739     tkr.discard();
 740   }
 741   return ptr;
 742 #else
 743   if (memblock == NULL) {
 744     return malloc(size, memflags, (caller == 0 ? CALLER_PC : caller));
 745   }
 746   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
 747     tty->print_cr("os::realloc caught " PTR_FORMAT, memblock);
 748     breakpoint();
 749   }
 750   verify_block(memblock);
 751   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
 752   if (size == 0) return NULL;
 753   // always move the block
 754   void* ptr = malloc(size, memflags, caller == 0 ? CALLER_PC : caller);
 755   if (PrintMalloc) tty->print_cr("os::remalloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, memblock, ptr);
 756   // Copy to new memory if malloc didn't fail
 757   if ( ptr != NULL ) {
 758     memcpy(ptr, memblock, MIN2(size, get_size(memblock)));
 759     if (paranoid) verify_block(ptr);
 760     if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
 761       tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
 762       breakpoint();
 763     }
 764     free(memblock);
 765   }
 766   return ptr;
 767 #endif
 768 }
 769 
 770 
 771 void  os::free(void *memblock, MEMFLAGS memflags) {
 772   NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
 773 #ifdef ASSERT
 774   if (memblock == NULL) return;
 775   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
 776     if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, memblock);
 777     breakpoint();
 778   }
 779   verify_block(memblock);
 780   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
 781   // Added by detlefs.
 782   if (MallocCushion) {
 783     u_char* ptr = (u_char*)memblock - space_before;
 784     for (u_char* p = ptr; p < ptr + MallocCushion; p++) {
 785       guarantee(*p == badResourceValue,
 786                 "Thing freed should be malloc result.");
 787       *p = (u_char)freeBlockPad;
 788     }
 789     size_t size = get_size(memblock);
 790     inc_stat_counter(&free_bytes, size);
 791     u_char* end = ptr + space_before + size;
 792     for (u_char* q = end; q < end + MallocCushion; q++) {
 793       guarantee(*q == badResourceValue,
 794                 "Thing freed should be malloc result.");
 795       *q = (u_char)freeBlockPad;
 796     }
 797     if (PrintMalloc && tty != NULL)
 798       fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)memblock);
 799   } else if (PrintMalloc && tty != NULL) {
 800     // tty->print_cr("os::free %p", memblock);
 801     fprintf(stderr, "os::free " PTR_FORMAT "\n", (uintptr_t)memblock);
 802   }
 803 #endif
 804   MemTracker::record_free((address)memblock, memflags);
 805 
 806   ::free((char*)memblock - space_before);
 807 }
 808 
 809 void os::init_random(long initval) {
 810   _rand_seed = initval;
 811 }
 812 
 813 
 814 long os::random() {
 815   /* standard, well-known linear congruential random generator with
 816    * next_rand = (16807*seed) mod (2**31-1)
 817    * see
 818    * (1) "Random Number Generators: Good Ones Are Hard to Find",
 819    *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
 820    * (2) "Two Fast Implementations of the 'Minimal Standard' Random
 821    *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
 822   */
 823   const long a = 16807;
 824   const unsigned long m = 2147483647;
 825   const long q = m / a;        assert(q == 127773, "weird math");
 826   const long r = m % a;        assert(r == 2836, "weird math");
 827 
 828   // compute az=2^31p+q
 829   unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
 830   unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
 831   lo += (hi & 0x7FFF) << 16;
 832 
 833   // if q overflowed, ignore the overflow and increment q
 834   if (lo > m) {
 835     lo &= m;
 836     ++lo;
 837   }
 838   lo += hi >> 15;
 839 
 840   // if (p+q) overflowed, ignore the overflow and increment (p+q)
 841   if (lo > m) {
 842     lo &= m;
 843     ++lo;
 844   }
 845   return (_rand_seed = lo);
 846 }
 847 
 848 // The INITIALIZED state is distinguished from the SUSPENDED state because the
 849 // conditions in which a thread is first started are different from those in which
 850 // a suspension is resumed.  These differences make it hard for us to apply the
 851 // tougher checks when starting threads that we want to do when resuming them.
 852 // However, when start_thread is called as a result of Thread.start, on a Java
 853 // thread, the operation is synchronized on the Java Thread object.  So there
 854 // cannot be a race to start the thread and hence for the thread to exit while
 855 // we are working on it.  Non-Java threads that start Java threads either have
 856 // to do so in a context in which races are impossible, or should do appropriate
 857 // locking.
 858 
 859 void os::start_thread(Thread* thread) {
 860   // guard suspend/resume
 861   MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
 862   OSThread* osthread = thread->osthread();
 863   osthread->set_state(RUNNABLE);
 864   pd_start_thread(thread);
 865 }
 866 
 867 //---------------------------------------------------------------------------
 868 // Helper functions for fatal error handler
 869 
 870 void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
 871   assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
 872 
 873   int cols = 0;
 874   int cols_per_line = 0;
 875   switch (unitsize) {
 876     case 1: cols_per_line = 16; break;
 877     case 2: cols_per_line = 8;  break;
 878     case 4: cols_per_line = 4;  break;
 879     case 8: cols_per_line = 2;  break;
 880     default: return;
 881   }
 882 
 883   address p = start;
 884   st->print(PTR_FORMAT ":   ", start);
 885   while (p < end) {
 886     switch (unitsize) {
 887       case 1: st->print("%02x", *(u1*)p); break;
 888       case 2: st->print("%04x", *(u2*)p); break;
 889       case 4: st->print("%08x", *(u4*)p); break;
 890       case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
 891     }
 892     p += unitsize;
 893     cols++;
 894     if (cols >= cols_per_line && p < end) {
 895        cols = 0;
 896        st->cr();
 897        st->print(PTR_FORMAT ":   ", p);
 898     } else {
 899        st->print(" ");
 900     }
 901   }
 902   st->cr();
 903 }
 904 
 905 void os::print_environment_variables(outputStream* st, const char** env_list,
 906                                      char* buffer, int len) {
 907   if (env_list) {
 908     st->print_cr("Environment Variables:");
 909 
 910     for (int i = 0; env_list[i] != NULL; i++) {
 911       if (getenv(env_list[i], buffer, len)) {
 912         st->print(env_list[i]);
 913         st->print("=");
 914         st->print_cr(buffer);
 915       }
 916     }
 917   }
 918 }
 919 
 920 void os::print_cpu_info(outputStream* st) {
 921   // cpu
 922   st->print("CPU:");
 923   st->print("total %d", os::processor_count());
 924   // It's not safe to query number of active processors after crash
 925   // st->print("(active %d)", os::active_processor_count());
 926   st->print(" %s", VM_Version::cpu_features());
 927   st->cr();
 928   pd_print_cpu_info(st);
 929 }
 930 
 931 void os::print_date_and_time(outputStream *st) {
 932   const int secs_per_day  = 86400;
 933   const int secs_per_hour = 3600;
 934   const int secs_per_min  = 60;
 935 
 936   time_t tloc;
 937   (void)time(&tloc);
 938   st->print("time: %s", ctime(&tloc));  // ctime adds newline.
 939 
 940   double t = os::elapsedTime();
 941   // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
 942   //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
 943   //       before printf. We lost some precision, but who cares?
 944   int eltime = (int)t;  // elapsed time in seconds
 945 
 946   // print elapsed time in a human-readable format:
 947   int eldays = eltime / secs_per_day;
 948   int day_secs = eldays * secs_per_day;
 949   int elhours = (eltime - day_secs) / secs_per_hour;
 950   int hour_secs = elhours * secs_per_hour;
 951   int elmins = (eltime - day_secs - hour_secs) / secs_per_min;
 952   int minute_secs = elmins * secs_per_min;
 953   int elsecs = (eltime - day_secs - hour_secs - minute_secs);
 954   st->print_cr("elapsed time: %d seconds (%dd %dh %dm %ds)", eltime, eldays, elhours, elmins, elsecs);
 955 }
 956 
 957 // moved from debug.cpp (used to be find()) but still called from there
 958 // The verbose parameter is only set by the debug code in one case
 959 void os::print_location(outputStream* st, intptr_t x, bool verbose) {
 960   address addr = (address)x;
 961   CodeBlob* b = CodeCache::find_blob_unsafe(addr);
 962   if (b != NULL) {
 963     if (b->is_buffer_blob()) {
 964       // the interpreter is generated into a buffer blob
 965       InterpreterCodelet* i = Interpreter::codelet_containing(addr);
 966       if (i != NULL) {
 967         st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", addr, (int)(addr - i->code_begin()));
 968         i->print_on(st);
 969         return;
 970       }
 971       if (Interpreter::contains(addr)) {
 972         st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
 973                      " (not bytecode specific)", addr);
 974         return;
 975       }
 976       //
 977       if (AdapterHandlerLibrary::contains(b)) {
 978         st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", addr, (int)(addr - b->code_begin()));
 979         AdapterHandlerLibrary::print_handler_on(st, b);
 980       }
 981       // the stubroutines are generated into a buffer blob
 982       StubCodeDesc* d = StubCodeDesc::desc_for(addr);
 983       if (d != NULL) {
 984         st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", addr, (int)(addr - d->begin()));
 985         d->print_on(st);
 986         st->cr();
 987         return;
 988       }
 989       if (StubRoutines::contains(addr)) {
 990         st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) "
 991                      "stub routine", addr);
 992         return;
 993       }
 994       // the InlineCacheBuffer is using stubs generated into a buffer blob
 995       if (InlineCacheBuffer::contains(addr)) {
 996         st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", addr);
 997         return;
 998       }
 999       VtableStub* v = VtableStubs::stub_containing(addr);
1000       if (v != NULL) {
1001         st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", addr, (int)(addr - v->entry_point()));
1002         v->print_on(st);
1003         st->cr();
1004         return;
1005       }
1006     }
1007     nmethod* nm = b->as_nmethod_or_null();
1008     if (nm != NULL) {
1009       ResourceMark rm;
1010       st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
1011                 addr, (int)(addr - nm->entry_point()), nm);
1012       if (verbose) {
1013         st->print(" for ");
1014         nm->method()->print_value_on(st);
1015       }
1016       st->cr();
1017       nm->print_nmethod(verbose);
1018       return;
1019     }
1020     st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", addr, (int)(addr - b->code_begin()));
1021     b->print_on(st);
1022     return;
1023   }
1024 
1025   if (Universe::heap()->is_in(addr)) {
1026     HeapWord* p = Universe::heap()->block_start(addr);
1027     bool print = false;
1028     // If we couldn't find it it just may mean that heap wasn't parsable
1029     // See if we were just given an oop directly
1030     if (p != NULL && Universe::heap()->block_is_obj(p)) {
1031       print = true;
1032     } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
1033       p = (HeapWord*) addr;
1034       print = true;
1035     }
1036     if (print) {
1037       if (p == (HeapWord*) addr) {
1038         st->print_cr(INTPTR_FORMAT " is an oop", addr);
1039       } else {
1040         st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, addr, p);
1041       }
1042       oop(p)->print_on(st);
1043       return;
1044     }
1045   } else {
1046     if (Universe::heap()->is_in_reserved(addr)) {
1047       st->print_cr(INTPTR_FORMAT " is an unallocated location "
1048                    "in the heap", addr);
1049       return;
1050     }
1051   }
1052   if (JNIHandles::is_global_handle((jobject) addr)) {
1053     st->print_cr(INTPTR_FORMAT " is a global jni handle", addr);
1054     return;
1055   }
1056   if (JNIHandles::is_weak_global_handle((jobject) addr)) {
1057     st->print_cr(INTPTR_FORMAT " is a weak global jni handle", addr);
1058     return;
1059   }
1060 #ifndef PRODUCT
1061   // we don't keep the block list in product mode
1062   if (JNIHandleBlock::any_contains((jobject) addr)) {
1063     st->print_cr(INTPTR_FORMAT " is a local jni handle", addr);
1064     return;
1065   }
1066 #endif
1067 
1068   for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
1069     // Check for privilege stack
1070     if (thread->privileged_stack_top() != NULL &&
1071         thread->privileged_stack_top()->contains(addr)) {
1072       st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
1073                    "for thread: " INTPTR_FORMAT, addr, thread);
1074       if (verbose) thread->print_on(st);
1075       return;
1076     }
1077     // If the addr is a java thread print information about that.
1078     if (addr == (address)thread) {
1079       if (verbose) {
1080         thread->print_on(st);
1081       } else {
1082         st->print_cr(INTPTR_FORMAT " is a thread", addr);
1083       }
1084       return;
1085     }
1086     // If the addr is in the stack region for this thread then report that
1087     // and print thread info
1088     if (thread->stack_base() >= addr &&
1089         addr > (thread->stack_base() - thread->stack_size())) {
1090       st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
1091                    INTPTR_FORMAT, addr, thread);
1092       if (verbose) thread->print_on(st);
1093       return;
1094     }
1095 
1096   }
1097 
1098   // Check if in metaspace.
1099   if (ClassLoaderDataGraph::contains((address)addr)) {
1100     // Use addr->print() from the debugger instead (not here)
1101     st->print_cr(INTPTR_FORMAT
1102                  " is pointing into metadata", addr);
1103     return;
1104   }
1105 
1106   // Try an OS specific find
1107   if (os::find(addr, st)) {
1108     return;
1109   }
1110 
1111   st->print_cr(INTPTR_FORMAT " is an unknown value", addr);
1112 }
1113 
1114 // Looks like all platforms except IA64 can use the same function to check
1115 // if C stack is walkable beyond current frame. The check for fp() is not
1116 // necessary on Sparc, but it's harmless.
1117 bool os::is_first_C_frame(frame* fr) {
1118 #if (defined(IA64) && !defined(AIX)) && !defined(_WIN32)
1119   // On IA64 we have to check if the callers bsp is still valid
1120   // (i.e. within the register stack bounds).
1121   // Notice: this only works for threads created by the VM and only if
1122   // we walk the current stack!!! If we want to be able to walk
1123   // arbitrary other threads, we'll have to somehow store the thread
1124   // object in the frame.
1125   Thread *thread = Thread::current();
1126   if ((address)fr->fp() <=
1127       thread->register_stack_base() HPUX_ONLY(+ 0x0) LINUX_ONLY(+ 0x50)) {
1128     // This check is a little hacky, because on Linux the first C
1129     // frame's ('start_thread') register stack frame starts at
1130     // "register_stack_base + 0x48" while on HPUX, the first C frame's
1131     // ('__pthread_bound_body') register stack frame seems to really
1132     // start at "register_stack_base".
1133     return true;
1134   } else {
1135     return false;
1136   }
1137 #elif defined(IA64) && defined(_WIN32)
1138   return true;
1139 #else
1140   // Load up sp, fp, sender sp and sender fp, check for reasonable values.
1141   // Check usp first, because if that's bad the other accessors may fault
1142   // on some architectures.  Ditto ufp second, etc.
1143   uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
1144   // sp on amd can be 32 bit aligned.
1145   uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
1146 
1147   uintptr_t usp    = (uintptr_t)fr->sp();
1148   if ((usp & sp_align_mask) != 0) return true;
1149 
1150   uintptr_t ufp    = (uintptr_t)fr->fp();
1151   if ((ufp & fp_align_mask) != 0) return true;
1152 
1153   uintptr_t old_sp = (uintptr_t)fr->sender_sp();
1154   if ((old_sp & sp_align_mask) != 0) return true;
1155   if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
1156 
1157   uintptr_t old_fp = (uintptr_t)fr->link();
1158   if ((old_fp & fp_align_mask) != 0) return true;
1159   if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
1160 
1161   // stack grows downwards; if old_fp is below current fp or if the stack
1162   // frame is too large, either the stack is corrupted or fp is not saved
1163   // on stack (i.e. on x86, ebp may be used as general register). The stack
1164   // is not walkable beyond current frame.
1165   if (old_fp < ufp) return true;
1166   if (old_fp - ufp > 64 * K) return true;
1167 
1168   return false;
1169 #endif
1170 }
1171 
1172 #ifdef ASSERT
1173 extern "C" void test_random() {
1174   const double m = 2147483647;
1175   double mean = 0.0, variance = 0.0, t;
1176   long reps = 10000;
1177   unsigned long seed = 1;
1178 
1179   tty->print_cr("seed %ld for %ld repeats...", seed, reps);
1180   os::init_random(seed);
1181   long num;
1182   for (int k = 0; k < reps; k++) {
1183     num = os::random();
1184     double u = (double)num / m;
1185     assert(u >= 0.0 && u <= 1.0, "bad random number!");
1186 
1187     // calculate mean and variance of the random sequence
1188     mean += u;
1189     variance += (u*u);
1190   }
1191   mean /= reps;
1192   variance /= (reps - 1);
1193 
1194   assert(num == 1043618065, "bad seed");
1195   tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
1196   tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
1197   const double eps = 0.0001;
1198   t = fabsd(mean - 0.5018);
1199   assert(t < eps, "bad mean");
1200   t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
1201   assert(t < eps, "bad variance");
1202 }
1203 #endif
1204 
1205 
1206 // Set up the boot classpath.
1207 
1208 char* os::format_boot_path(const char* format_string,
1209                            const char* home,
1210                            int home_len,
1211                            char fileSep,
1212                            char pathSep) {
1213     assert((fileSep == '/' && pathSep == ':') ||
1214            (fileSep == '\\' && pathSep == ';'), "unexpected separator chars");
1215 
1216     // Scan the format string to determine the length of the actual
1217     // boot classpath, and handle platform dependencies as well.
1218     int formatted_path_len = 0;
1219     const char* p;
1220     for (p = format_string; *p != 0; ++p) {
1221         if (*p == '%') formatted_path_len += home_len - 1;
1222         ++formatted_path_len;
1223     }
1224 
1225     char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
1226     if (formatted_path == NULL) {
1227         return NULL;
1228     }
1229 
1230     // Create boot classpath from format, substituting separator chars and
1231     // java home directory.
1232     char* q = formatted_path;
1233     for (p = format_string; *p != 0; ++p) {
1234         switch (*p) {
1235         case '%':
1236             strcpy(q, home);
1237             q += home_len;
1238             break;
1239         case '/':
1240             *q++ = fileSep;
1241             break;
1242         case ':':
1243             *q++ = pathSep;
1244             break;
1245         default:
1246             *q++ = *p;
1247         }
1248     }
1249     *q = '\0';
1250 
1251     assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
1252     return formatted_path;
1253 }
1254 
1255 
1256 bool os::set_boot_path(char fileSep, char pathSep) {
1257     const char* home = Arguments::get_java_home();
1258     int home_len = (int)strlen(home);
1259 
1260     static const char* meta_index_dir_format = "%/lib/";
1261     static const char* meta_index_format = "%/lib/meta-index";
1262     char* meta_index = format_boot_path(meta_index_format, home, home_len, fileSep, pathSep);
1263     if (meta_index == NULL) return false;
1264     char* meta_index_dir = format_boot_path(meta_index_dir_format, home, home_len, fileSep, pathSep);
1265     if (meta_index_dir == NULL) return false;
1266     Arguments::set_meta_index_path(meta_index, meta_index_dir);
1267 
1268     // Any modification to the JAR-file list, for the boot classpath must be
1269     // aligned with install/install/make/common/Pack.gmk. Note: boot class
1270     // path class JARs, are stripped for StackMapTable to reduce download size.
1271     static const char classpath_format[] =
1272         "%/lib/resources.jar:"
1273         "%/lib/rt.jar:"
1274         "%/lib/sunrsasign.jar:"
1275         "%/lib/jsse.jar:"
1276         "%/lib/jce.jar:"
1277         "%/lib/charsets.jar:"
1278         "%/lib/jfr.jar:"
1279         "%/classes";
1280     char* sysclasspath = format_boot_path(classpath_format, home, home_len, fileSep, pathSep);
1281     if (sysclasspath == NULL) return false;
1282     Arguments::set_sysclasspath(sysclasspath);
1283 
1284     return true;
1285 }
1286 
1287 /*
1288  * Splits a path, based on its separator, the number of
1289  * elements is returned back in n.
1290  * It is the callers responsibility to:
1291  *   a> check the value of n, and n may be 0.
1292  *   b> ignore any empty path elements
1293  *   c> free up the data.
1294  */
1295 char** os::split_path(const char* path, int* n) {
1296   *n = 0;
1297   if (path == NULL || strlen(path) == 0) {
1298     return NULL;
1299   }
1300   const char psepchar = *os::path_separator();
1301   char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
1302   if (inpath == NULL) {
1303     return NULL;
1304   }
1305   strcpy(inpath, path);
1306   int count = 1;
1307   char* p = strchr(inpath, psepchar);
1308   // Get a count of elements to allocate memory
1309   while (p != NULL) {
1310     count++;
1311     p++;
1312     p = strchr(p, psepchar);
1313   }
1314   char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
1315   if (opath == NULL) {
1316     return NULL;
1317   }
1318 
1319   // do the actual splitting
1320   p = inpath;
1321   for (int i = 0 ; i < count ; i++) {
1322     size_t len = strcspn(p, os::path_separator());
1323     if (len > JVM_MAXPATHLEN) {
1324       return NULL;
1325     }
1326     // allocate the string and add terminator storage
1327     char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
1328     if (s == NULL) {
1329       return NULL;
1330     }
1331     strncpy(s, p, len);
1332     s[len] = '\0';
1333     opath[i] = s;
1334     p += len + 1;
1335   }
1336   FREE_C_HEAP_ARRAY(char, inpath, mtInternal);
1337   *n = count;
1338   return opath;
1339 }
1340 
1341 void os::set_memory_serialize_page(address page) {
1342   int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
1343   _mem_serialize_page = (volatile int32_t *)page;
1344   // We initialize the serialization page shift count here
1345   // We assume a cache line size of 64 bytes
1346   assert(SerializePageShiftCount == count,
1347          "thread size changed, fix SerializePageShiftCount constant");
1348   set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
1349 }
1350 
1351 static volatile intptr_t SerializePageLock = 0;
1352 
1353 // This method is called from signal handler when SIGSEGV occurs while the current
1354 // thread tries to store to the "read-only" memory serialize page during state
1355 // transition.
1356 void os::block_on_serialize_page_trap() {
1357   if (TraceSafepoint) {
1358     tty->print_cr("Block until the serialize page permission restored");
1359   }
1360   // When VMThread is holding the SerializePageLock during modifying the
1361   // access permission of the memory serialize page, the following call
1362   // will block until the permission of that page is restored to rw.
1363   // Generally, it is unsafe to manipulate locks in signal handlers, but in
1364   // this case, it's OK as the signal is synchronous and we know precisely when
1365   // it can occur.
1366   Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
1367   Thread::muxRelease(&SerializePageLock);
1368 }
1369 
1370 // Serialize all thread state variables
1371 void os::serialize_thread_states() {
1372   // On some platforms such as Solaris & Linux, the time duration of the page
1373   // permission restoration is observed to be much longer than expected  due to
1374   // scheduler starvation problem etc. To avoid the long synchronization
1375   // time and expensive page trap spinning, 'SerializePageLock' is used to block
1376   // the mutator thread if such case is encountered. See bug 6546278 for details.
1377   Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
1378   os::protect_memory((char *)os::get_memory_serialize_page(),
1379                      os::vm_page_size(), MEM_PROT_READ);
1380   os::protect_memory((char *)os::get_memory_serialize_page(),
1381                      os::vm_page_size(), MEM_PROT_RW);
1382   Thread::muxRelease(&SerializePageLock);
1383 }
1384 
1385 // Returns true if the current stack pointer is above the stack shadow
1386 // pages, false otherwise.
1387 
1388 bool os::stack_shadow_pages_available(Thread *thread, methodHandle method) {
1389   assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check");
1390   address sp = current_stack_pointer();
1391   // Check if we have StackShadowPages above the yellow zone.  This parameter
1392   // is dependent on the depth of the maximum VM call stack possible from
1393   // the handler for stack overflow.  'instanceof' in the stack overflow
1394   // handler or a println uses at least 8k stack of VM and native code
1395   // respectively.
1396   const int framesize_in_bytes =
1397     Interpreter::size_top_interpreter_activation(method()) * wordSize;
1398   int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages)
1399                       * vm_page_size()) + framesize_in_bytes;
1400   // The very lower end of the stack
1401   address stack_limit = thread->stack_base() - thread->stack_size();
1402   return (sp > (stack_limit + reserved_area));
1403 }
1404 
1405 size_t os::page_size_for_region(size_t region_min_size, size_t region_max_size,
1406                                 uint min_pages)
1407 {
1408   assert(min_pages > 0, "sanity");
1409   if (UseLargePages) {
1410     const size_t max_page_size = region_max_size / min_pages;
1411 
1412     for (unsigned int i = 0; _page_sizes[i] != 0; ++i) {
1413       const size_t sz = _page_sizes[i];
1414       const size_t mask = sz - 1;
1415       if ((region_min_size & mask) == 0 && (region_max_size & mask) == 0) {
1416         // The largest page size with no fragmentation.
1417         return sz;
1418       }
1419 
1420       if (sz <= max_page_size) {
1421         // The largest page size that satisfies the min_pages requirement.
1422         return sz;
1423       }
1424     }
1425   }
1426 
1427   return vm_page_size();
1428 }
1429 
1430 #ifndef PRODUCT
1431 void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count)
1432 {
1433   if (TracePageSizes) {
1434     tty->print("%s: ", str);
1435     for (int i = 0; i < count; ++i) {
1436       tty->print(" " SIZE_FORMAT, page_sizes[i]);
1437     }
1438     tty->cr();
1439   }
1440 }
1441 
1442 void os::trace_page_sizes(const char* str, const size_t region_min_size,
1443                           const size_t region_max_size, const size_t page_size,
1444                           const char* base, const size_t size)
1445 {
1446   if (TracePageSizes) {
1447     tty->print_cr("%s:  min=" SIZE_FORMAT " max=" SIZE_FORMAT
1448                   " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
1449                   " size=" SIZE_FORMAT,
1450                   str, region_min_size, region_max_size,
1451                   page_size, base, size);
1452   }
1453 }
1454 #endif  // #ifndef PRODUCT
1455 
1456 // This is the working definition of a server class machine:
1457 // >= 2 physical CPU's and >=2GB of memory, with some fuzz
1458 // because the graphics memory (?) sometimes masks physical memory.
1459 // If you want to change the definition of a server class machine
1460 // on some OS or platform, e.g., >=4GB on Windows platforms,
1461 // then you'll have to parameterize this method based on that state,
1462 // as was done for logical processors here, or replicate and
1463 // specialize this method for each platform.  (Or fix os to have
1464 // some inheritance structure and use subclassing.  Sigh.)
1465 // If you want some platform to always or never behave as a server
1466 // class machine, change the setting of AlwaysActAsServerClassMachine
1467 // and NeverActAsServerClassMachine in globals*.hpp.
1468 bool os::is_server_class_machine() {
1469   // First check for the early returns
1470   if (NeverActAsServerClassMachine) {
1471     return false;
1472   }
1473   if (AlwaysActAsServerClassMachine) {
1474     return true;
1475   }
1476   // Then actually look at the machine
1477   bool         result            = false;
1478   const unsigned int    server_processors = 2;
1479   const julong server_memory     = 2UL * G;
1480   // We seem not to get our full complement of memory.
1481   //     We allow some part (1/8?) of the memory to be "missing",
1482   //     based on the sizes of DIMMs, and maybe graphics cards.
1483   const julong missing_memory   = 256UL * M;
1484 
1485   /* Is this a server class machine? */
1486   if ((os::active_processor_count() >= (int)server_processors) &&
1487       (os::physical_memory() >= (server_memory - missing_memory))) {
1488     const unsigned int logical_processors =
1489       VM_Version::logical_processors_per_package();
1490     if (logical_processors > 1) {
1491       const unsigned int physical_packages =
1492         os::active_processor_count() / logical_processors;
1493       if (physical_packages > server_processors) {
1494         result = true;
1495       }
1496     } else {
1497       result = true;
1498     }
1499   }
1500   return result;
1501 }
1502 
1503 void os::SuspendedThreadTask::run() {
1504   assert(Threads_lock->owned_by_self() || (_thread == VMThread::vm_thread()), "must have threads lock to call this");
1505   internal_do_task();
1506   _done = true;
1507 }
1508 
1509 bool os::create_stack_guard_pages(char* addr, size_t bytes) {
1510   return os::pd_create_stack_guard_pages(addr, bytes);
1511 }
1512 
1513 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
1514   char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1515   if (result != NULL) {
1516     MemTracker::record_virtual_memory_reserve((address)result, bytes, mtNone, CALLER_PC);
1517   }
1518 
1519   return result;
1520 }
1521 
1522 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint,
1523    MEMFLAGS flags) {
1524   char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1525   if (result != NULL) {
1526     MemTracker::record_virtual_memory_reserve((address)result, bytes, mtNone, CALLER_PC);
1527     MemTracker::record_virtual_memory_type((address)result, flags);
1528   }
1529 
1530   return result;
1531 }
1532 
1533 char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
1534   char* result = pd_attempt_reserve_memory_at(bytes, addr);
1535   if (result != NULL) {
1536     MemTracker::record_virtual_memory_reserve((address)result, bytes, mtNone, CALLER_PC);
1537   }
1538   return result;
1539 }
1540 
1541 void os::split_reserved_memory(char *base, size_t size,
1542                                  size_t split, bool realloc) {
1543   pd_split_reserved_memory(base, size, split, realloc);
1544 }
1545 
1546 bool os::commit_memory(char* addr, size_t bytes, bool executable) {
1547   bool res = pd_commit_memory(addr, bytes, executable);
1548   if (res) {
1549     MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1550   }
1551   return res;
1552 }
1553 
1554 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
1555                               bool executable) {
1556   bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
1557   if (res) {
1558     MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1559   }
1560   return res;
1561 }
1562 
1563 void os::commit_memory_or_exit(char* addr, size_t bytes, bool executable,
1564                                const char* mesg) {
1565   pd_commit_memory_or_exit(addr, bytes, executable, mesg);
1566   MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1567 }
1568 
1569 void os::commit_memory_or_exit(char* addr, size_t size, size_t alignment_hint,
1570                                bool executable, const char* mesg) {
1571   os::pd_commit_memory_or_exit(addr, size, alignment_hint, executable, mesg);
1572   MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1573 }
1574 
1575 bool os::uncommit_memory(char* addr, size_t bytes) {
1576   MemTracker::Tracker tkr = MemTracker::get_virtual_memory_uncommit_tracker();
1577   bool res = pd_uncommit_memory(addr, bytes);
1578   if (res) {
1579     tkr.record((address)addr, bytes);
1580   } else {
1581     tkr.discard();
1582   }
1583   return res;
1584 }
1585 
1586 bool os::release_memory(char* addr, size_t bytes) {
1587   MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1588   bool res = pd_release_memory(addr, bytes);
1589   if (res) {
1590     tkr.record((address)addr, bytes);
1591   } else {
1592     tkr.discard();
1593   }
1594   return res;
1595 }
1596 
1597 
1598 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
1599                            char *addr, size_t bytes, bool read_only,
1600                            bool allow_exec) {
1601   char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
1602   if (result != NULL) {
1603     MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, mtNone, CALLER_PC);
1604   }
1605   return result;
1606 }
1607 
1608 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
1609                              char *addr, size_t bytes, bool read_only,
1610                              bool allow_exec) {
1611   return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
1612                     read_only, allow_exec);
1613 }
1614 
1615 bool os::unmap_memory(char *addr, size_t bytes) {
1616   MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1617   bool result = pd_unmap_memory(addr, bytes);
1618   if (result) {
1619     tkr.record((address)addr, bytes);
1620   } else {
1621     tkr.discard();
1622   }
1623   return result;
1624 }
1625 
1626 void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
1627   pd_free_memory(addr, bytes, alignment_hint);
1628 }
1629 
1630 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
1631   pd_realign_memory(addr, bytes, alignment_hint);
1632 }
1633 
1634 #ifndef TARGET_OS_FAMILY_windows
1635 /* try to switch state from state "from" to state "to"
1636  * returns the state set after the method is complete
1637  */
1638 os::SuspendResume::State os::SuspendResume::switch_state(os::SuspendResume::State from,
1639                                                          os::SuspendResume::State to)
1640 {
1641   os::SuspendResume::State result =
1642     (os::SuspendResume::State) Atomic::cmpxchg((jint) to, (jint *) &_state, (jint) from);
1643   if (result == from) {
1644     // success
1645     return to;
1646   }
1647   return result;
1648 }
1649 #endif