1 /*
   2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_share_linux.hpp"
  40 #include "prims/jniFastGetField.hpp"
  41 #include "prims/jvm.h"
  42 #include "prims/jvm_misc.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/extendedPC.hpp"
  45 #include "runtime/globals.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/init.hpp"
  48 #include "runtime/java.hpp"
  49 #include "runtime/javaCalls.hpp"
  50 #include "runtime/mutexLocker.hpp"
  51 #include "runtime/objectMonitor.hpp"
  52 #include "runtime/osThread.hpp"
  53 #include "runtime/perfMemory.hpp"
  54 #include "runtime/sharedRuntime.hpp"
  55 #include "runtime/statSampler.hpp"
  56 #include "runtime/stubRoutines.hpp"
  57 #include "runtime/thread.inline.hpp"
  58 #include "runtime/threadCritical.hpp"
  59 #include "runtime/timer.hpp"
  60 #include "services/attachListener.hpp"
  61 #include "services/memTracker.hpp"
  62 #include "services/runtimeService.hpp"
  63 #include "utilities/decoder.hpp"
  64 #include "utilities/defaultStream.hpp"
  65 #include "utilities/events.hpp"
  66 #include "utilities/elfFile.hpp"
  67 #include "utilities/growableArray.hpp"
  68 #include "utilities/vmError.hpp"
  69 
  70 // put OS-includes here
  71 # include <sys/types.h>
  72 # include <sys/mman.h>
  73 # include <sys/stat.h>
  74 # include <sys/select.h>
  75 # include <pthread.h>
  76 # include <signal.h>
  77 # include <errno.h>
  78 # include <dlfcn.h>
  79 # include <stdio.h>
  80 # include <unistd.h>
  81 # include <sys/resource.h>
  82 # include <pthread.h>
  83 # include <sys/stat.h>
  84 # include <sys/time.h>
  85 # include <sys/times.h>
  86 # include <sys/utsname.h>
  87 # include <sys/socket.h>
  88 # include <sys/wait.h>
  89 # include <pwd.h>
  90 # include <poll.h>
  91 # include <semaphore.h>
  92 # include <fcntl.h>
  93 # include <string.h>
  94 # include <syscall.h>
  95 # include <sys/sysinfo.h>
  96 # include <gnu/libc-version.h>
  97 # include <sys/ipc.h>
  98 # include <sys/shm.h>
  99 # include <link.h>
 100 # include <stdint.h>
 101 # include <inttypes.h>
 102 # include <sys/ioctl.h>
 103 
 104 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 105 // getrusage() is prepared to handle the associated failure.
 106 #ifndef RUSAGE_THREAD
 107 #define RUSAGE_THREAD   (1)               /* only the calling thread */
 108 #endif
 109 
 110 #define MAX_PATH    (2 * K)
 111 
 112 // for timer info max values which include all bits
 113 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 114 
 115 #define LARGEPAGES_BIT (1 << 6)
 116 ////////////////////////////////////////////////////////////////////////////////
 117 // global variables
 118 julong os::Linux::_physical_memory = 0;
 119 
 120 address   os::Linux::_initial_thread_stack_bottom = NULL;
 121 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 122 
 123 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 124 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 125 Mutex* os::Linux::_createThread_lock = NULL;
 126 pthread_t os::Linux::_main_thread;
 127 int os::Linux::_page_size = -1;
 128 const int os::Linux::_vm_default_page_size = (8 * K);
 129 bool os::Linux::_is_floating_stack = false;
 130 bool os::Linux::_is_NPTL = false;
 131 bool os::Linux::_supports_fast_thread_cpu_time = false;
 132 const char * os::Linux::_glibc_version = NULL;
 133 const char * os::Linux::_libpthread_version = NULL;
 134 pthread_condattr_t os::Linux::_condattr[1];
 135 
 136 static jlong initial_time_count=0;
 137 
 138 static int clock_tics_per_sec = 100;
 139 
 140 // For diagnostics to print a message once. see run_periodic_checks
 141 static sigset_t check_signal_done;
 142 static bool check_signals = true;;
 143 
 144 static pid_t _initial_pid = 0;
 145 
 146 /* Signal number used to suspend/resume a thread */
 147 
 148 /* do not use any signal number less than SIGSEGV, see 4355769 */
 149 static int SR_signum = SIGUSR2;
 150 sigset_t SR_sigset;
 151 
 152 /* Used to protect dlsym() calls */
 153 static pthread_mutex_t dl_mutex;
 154 
 155 // Declarations
 156 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 157 
 158 #ifdef JAVASE_EMBEDDED
 159 class MemNotifyThread: public Thread {
 160   friend class VMStructs;
 161  public:
 162   virtual void run();
 163 
 164  private:
 165   static MemNotifyThread* _memnotify_thread;
 166   int _fd;
 167 
 168  public:
 169 
 170   // Constructor
 171   MemNotifyThread(int fd);
 172 
 173   // Tester
 174   bool is_memnotify_thread() const { return true; }
 175 
 176   // Printing
 177   char* name() const { return (char*)"Linux MemNotify Thread"; }
 178 
 179   // Returns the single instance of the MemNotifyThread
 180   static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
 181 
 182   // Create and start the single instance of MemNotifyThread
 183   static void start();
 184 };
 185 #endif // JAVASE_EMBEDDED
 186 
 187 // utility functions
 188 
 189 static int SR_initialize();
 190 
 191 julong os::available_memory() {
 192   return Linux::available_memory();
 193 }
 194 
 195 julong os::Linux::available_memory() {
 196   // values in struct sysinfo are "unsigned long"
 197   struct sysinfo si;
 198   sysinfo(&si);
 199 
 200   return (julong)si.freeram * si.mem_unit;
 201 }
 202 
 203 julong os::physical_memory() {
 204   return Linux::physical_memory();
 205 }
 206 
 207 ////////////////////////////////////////////////////////////////////////////////
 208 // environment support
 209 
 210 bool os::getenv(const char* name, char* buf, int len) {
 211   const char* val = ::getenv(name);
 212   if (val != NULL && strlen(val) < (size_t)len) {
 213     strcpy(buf, val);
 214     return true;
 215   }
 216   if (len > 0) buf[0] = 0;  // return a null string
 217   return false;
 218 }
 219 
 220 
 221 // Return true if user is running as root.
 222 
 223 bool os::have_special_privileges() {
 224   static bool init = false;
 225   static bool privileges = false;
 226   if (!init) {
 227     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 228     init = true;
 229   }
 230   return privileges;
 231 }
 232 
 233 
 234 #ifndef SYS_gettid
 235 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 236 #ifdef __ia64__
 237 #define SYS_gettid 1105
 238 #elif __i386__
 239 #define SYS_gettid 224
 240 #elif __amd64__
 241 #define SYS_gettid 186
 242 #elif __sparc__
 243 #define SYS_gettid 143
 244 #else
 245 #error define gettid for the arch
 246 #endif
 247 #endif
 248 
 249 // Cpu architecture string
 250 #if   defined(ZERO)
 251 static char cpu_arch[] = ZERO_LIBARCH;
 252 #elif defined(IA64)
 253 static char cpu_arch[] = "ia64";
 254 #elif defined(IA32)
 255 static char cpu_arch[] = "i386";
 256 #elif defined(AMD64)
 257 static char cpu_arch[] = "amd64";
 258 #elif defined(ARM)
 259 static char cpu_arch[] = "arm";
 260 #elif defined(PPC)
 261 static char cpu_arch[] = "ppc";
 262 #elif defined(SPARC)
 263 #  ifdef _LP64
 264 static char cpu_arch[] = "sparcv9";
 265 #  else
 266 static char cpu_arch[] = "sparc";
 267 #  endif
 268 #else
 269 #error Add appropriate cpu_arch setting
 270 #endif
 271 
 272 
 273 // pid_t gettid()
 274 //
 275 // Returns the kernel thread id of the currently running thread. Kernel
 276 // thread id is used to access /proc.
 277 //
 278 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 279 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 280 //
 281 pid_t os::Linux::gettid() {
 282   int rslt = syscall(SYS_gettid);
 283   if (rslt == -1) {
 284      // old kernel, no NPTL support
 285      return getpid();
 286   } else {
 287      return (pid_t)rslt;
 288   }
 289 }
 290 
 291 // Most versions of linux have a bug where the number of processors are
 292 // determined by looking at the /proc file system.  In a chroot environment,
 293 // the system call returns 1.  This causes the VM to act as if it is
 294 // a single processor and elide locking (see is_MP() call).
 295 static bool unsafe_chroot_detected = false;
 296 static const char *unstable_chroot_error = "/proc file system not found.\n"
 297                      "Java may be unstable running multithreaded in a chroot "
 298                      "environment on Linux when /proc filesystem is not mounted.";
 299 
 300 void os::Linux::initialize_system_info() {
 301   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 302   if (processor_count() == 1) {
 303     pid_t pid = os::Linux::gettid();
 304     char fname[32];
 305     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 306     FILE *fp = fopen(fname, "r");
 307     if (fp == NULL) {
 308       unsafe_chroot_detected = true;
 309     } else {
 310       fclose(fp);
 311     }
 312   }
 313   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 314   assert(processor_count() > 0, "linux error");
 315 }
 316 
 317 void os::init_system_properties_values() {
 318 //  char arch[12];
 319 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
 320 
 321   // The next steps are taken in the product version:
 322   //
 323   // Obtain the JAVA_HOME value from the location of libjvm.so.
 324   // This library should be located at:
 325   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 326   //
 327   // If "/jre/lib/" appears at the right place in the path, then we
 328   // assume libjvm.so is installed in a JDK and we use this path.
 329   //
 330   // Otherwise exit with message: "Could not create the Java virtual machine."
 331   //
 332   // The following extra steps are taken in the debugging version:
 333   //
 334   // If "/jre/lib/" does NOT appear at the right place in the path
 335   // instead of exit check for $JAVA_HOME environment variable.
 336   //
 337   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 338   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 339   // it looks like libjvm.so is installed there
 340   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 341   //
 342   // Otherwise exit.
 343   //
 344   // Important note: if the location of libjvm.so changes this
 345   // code needs to be changed accordingly.
 346 
 347   // The next few definitions allow the code to be verbatim:
 348 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
 349 #define getenv(n) ::getenv(n)
 350 
 351 /*
 352  * See ld(1):
 353  *      The linker uses the following search paths to locate required
 354  *      shared libraries:
 355  *        1: ...
 356  *        ...
 357  *        7: The default directories, normally /lib and /usr/lib.
 358  */
 359 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 360 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 361 #else
 362 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 363 #endif
 364 
 365 #define EXTENSIONS_DIR  "/lib/ext"
 366 #define ENDORSED_DIR    "/lib/endorsed"
 367 #define REG_DIR         "/usr/java/packages"
 368 
 369   {
 370     /* sysclasspath, java_home, dll_dir */
 371     {
 372         char *home_path;
 373         char *dll_path;
 374         char *pslash;
 375         char buf[MAXPATHLEN];
 376         os::jvm_path(buf, sizeof(buf));
 377 
 378         // Found the full path to libjvm.so.
 379         // Now cut the path to <java_home>/jre if we can.
 380         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
 381         pslash = strrchr(buf, '/');
 382         if (pslash != NULL)
 383             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
 384         dll_path = malloc(strlen(buf) + 1);
 385         if (dll_path == NULL)
 386             return;
 387         strcpy(dll_path, buf);
 388         Arguments::set_dll_dir(dll_path);
 389 
 390         if (pslash != NULL) {
 391             pslash = strrchr(buf, '/');
 392             if (pslash != NULL) {
 393                 *pslash = '\0';       /* get rid of /<arch> */
 394                 pslash = strrchr(buf, '/');
 395                 if (pslash != NULL)
 396                     *pslash = '\0';   /* get rid of /lib */
 397             }
 398         }
 399 
 400         home_path = malloc(strlen(buf) + 1);
 401         if (home_path == NULL)
 402             return;
 403         strcpy(home_path, buf);
 404         Arguments::set_java_home(home_path);
 405 
 406         if (!set_boot_path('/', ':'))
 407             return;
 408     }
 409 
 410     /*
 411      * Where to look for native libraries
 412      *
 413      * Note: Due to a legacy implementation, most of the library path
 414      * is set in the launcher.  This was to accomodate linking restrictions
 415      * on legacy Linux implementations (which are no longer supported).
 416      * Eventually, all the library path setting will be done here.
 417      *
 418      * However, to prevent the proliferation of improperly built native
 419      * libraries, the new path component /usr/java/packages is added here.
 420      * Eventually, all the library path setting will be done here.
 421      */
 422     {
 423         char *ld_library_path;
 424 
 425         /*
 426          * Construct the invariant part of ld_library_path. Note that the
 427          * space for the colon and the trailing null are provided by the
 428          * nulls included by the sizeof operator (so actually we allocate
 429          * a byte more than necessary).
 430          */
 431         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
 432             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
 433         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
 434 
 435         /*
 436          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
 437          * should always exist (until the legacy problem cited above is
 438          * addressed).
 439          */
 440         char *v = getenv("LD_LIBRARY_PATH");
 441         if (v != NULL) {
 442             char *t = ld_library_path;
 443             /* That's +1 for the colon and +1 for the trailing '\0' */
 444             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
 445             sprintf(ld_library_path, "%s:%s", v, t);
 446         }
 447         Arguments::set_library_path(ld_library_path);
 448     }
 449 
 450     /*
 451      * Extensions directories.
 452      *
 453      * Note that the space for the colon and the trailing null are provided
 454      * by the nulls included by the sizeof operator (so actually one byte more
 455      * than necessary is allocated).
 456      */
 457     {
 458         char *buf = malloc(strlen(Arguments::get_java_home()) +
 459             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
 460         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
 461             Arguments::get_java_home());
 462         Arguments::set_ext_dirs(buf);
 463     }
 464 
 465     /* Endorsed standards default directory. */
 466     {
 467         char * buf;
 468         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
 469         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 470         Arguments::set_endorsed_dirs(buf);
 471     }
 472   }
 473 
 474 #undef malloc
 475 #undef getenv
 476 #undef EXTENSIONS_DIR
 477 #undef ENDORSED_DIR
 478 
 479   // Done
 480   return;
 481 }
 482 
 483 ////////////////////////////////////////////////////////////////////////////////
 484 // breakpoint support
 485 
 486 void os::breakpoint() {
 487   BREAKPOINT;
 488 }
 489 
 490 extern "C" void breakpoint() {
 491   // use debugger to set breakpoint here
 492 }
 493 
 494 ////////////////////////////////////////////////////////////////////////////////
 495 // signal support
 496 
 497 debug_only(static bool signal_sets_initialized = false);
 498 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 499 
 500 bool os::Linux::is_sig_ignored(int sig) {
 501       struct sigaction oact;
 502       sigaction(sig, (struct sigaction*)NULL, &oact);
 503       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 504                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 505       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 506            return true;
 507       else
 508            return false;
 509 }
 510 
 511 void os::Linux::signal_sets_init() {
 512   // Should also have an assertion stating we are still single-threaded.
 513   assert(!signal_sets_initialized, "Already initialized");
 514   // Fill in signals that are necessarily unblocked for all threads in
 515   // the VM. Currently, we unblock the following signals:
 516   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 517   //                         by -Xrs (=ReduceSignalUsage));
 518   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 519   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 520   // the dispositions or masks wrt these signals.
 521   // Programs embedding the VM that want to use the above signals for their
 522   // own purposes must, at this time, use the "-Xrs" option to prevent
 523   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 524   // (See bug 4345157, and other related bugs).
 525   // In reality, though, unblocking these signals is really a nop, since
 526   // these signals are not blocked by default.
 527   sigemptyset(&unblocked_sigs);
 528   sigemptyset(&allowdebug_blocked_sigs);
 529   sigaddset(&unblocked_sigs, SIGILL);
 530   sigaddset(&unblocked_sigs, SIGSEGV);
 531   sigaddset(&unblocked_sigs, SIGBUS);
 532   sigaddset(&unblocked_sigs, SIGFPE);
 533   sigaddset(&unblocked_sigs, SR_signum);
 534 
 535   if (!ReduceSignalUsage) {
 536    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 537       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 538       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 539    }
 540    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 541       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 542       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 543    }
 544    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 545       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 546       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 547    }
 548   }
 549   // Fill in signals that are blocked by all but the VM thread.
 550   sigemptyset(&vm_sigs);
 551   if (!ReduceSignalUsage)
 552     sigaddset(&vm_sigs, BREAK_SIGNAL);
 553   debug_only(signal_sets_initialized = true);
 554 
 555 }
 556 
 557 // These are signals that are unblocked while a thread is running Java.
 558 // (For some reason, they get blocked by default.)
 559 sigset_t* os::Linux::unblocked_signals() {
 560   assert(signal_sets_initialized, "Not initialized");
 561   return &unblocked_sigs;
 562 }
 563 
 564 // These are the signals that are blocked while a (non-VM) thread is
 565 // running Java. Only the VM thread handles these signals.
 566 sigset_t* os::Linux::vm_signals() {
 567   assert(signal_sets_initialized, "Not initialized");
 568   return &vm_sigs;
 569 }
 570 
 571 // These are signals that are blocked during cond_wait to allow debugger in
 572 sigset_t* os::Linux::allowdebug_blocked_signals() {
 573   assert(signal_sets_initialized, "Not initialized");
 574   return &allowdebug_blocked_sigs;
 575 }
 576 
 577 void os::Linux::hotspot_sigmask(Thread* thread) {
 578 
 579   //Save caller's signal mask before setting VM signal mask
 580   sigset_t caller_sigmask;
 581   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 582 
 583   OSThread* osthread = thread->osthread();
 584   osthread->set_caller_sigmask(caller_sigmask);
 585 
 586   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 587 
 588   if (!ReduceSignalUsage) {
 589     if (thread->is_VM_thread()) {
 590       // Only the VM thread handles BREAK_SIGNAL ...
 591       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 592     } else {
 593       // ... all other threads block BREAK_SIGNAL
 594       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 595     }
 596   }
 597 }
 598 
 599 //////////////////////////////////////////////////////////////////////////////
 600 // detecting pthread library
 601 
 602 void os::Linux::libpthread_init() {
 603   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 604   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 605   // generic name for earlier versions.
 606   // Define macros here so we can build HotSpot on old systems.
 607 # ifndef _CS_GNU_LIBC_VERSION
 608 # define _CS_GNU_LIBC_VERSION 2
 609 # endif
 610 # ifndef _CS_GNU_LIBPTHREAD_VERSION
 611 # define _CS_GNU_LIBPTHREAD_VERSION 3
 612 # endif
 613 
 614   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 615   if (n > 0) {
 616      char *str = (char *)malloc(n, mtInternal);
 617      confstr(_CS_GNU_LIBC_VERSION, str, n);
 618      os::Linux::set_glibc_version(str);
 619   } else {
 620      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 621      static char _gnu_libc_version[32];
 622      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 623               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 624      os::Linux::set_glibc_version(_gnu_libc_version);
 625   }
 626 
 627   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 628   if (n > 0) {
 629      char *str = (char *)malloc(n, mtInternal);
 630      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 631      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 632      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 633      // is the case. LinuxThreads has a hard limit on max number of threads.
 634      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 635      // On the other hand, NPTL does not have such a limit, sysconf()
 636      // will return -1 and errno is not changed. Check if it is really NPTL.
 637      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 638          strstr(str, "NPTL") &&
 639          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 640        free(str);
 641        os::Linux::set_libpthread_version("linuxthreads");
 642      } else {
 643        os::Linux::set_libpthread_version(str);
 644      }
 645   } else {
 646     // glibc before 2.3.2 only has LinuxThreads.
 647     os::Linux::set_libpthread_version("linuxthreads");
 648   }
 649 
 650   if (strstr(libpthread_version(), "NPTL")) {
 651      os::Linux::set_is_NPTL();
 652   } else {
 653      os::Linux::set_is_LinuxThreads();
 654   }
 655 
 656   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 657   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 658   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 659      os::Linux::set_is_floating_stack();
 660   }
 661 }
 662 
 663 /////////////////////////////////////////////////////////////////////////////
 664 // thread stack
 665 
 666 // Force Linux kernel to expand current thread stack. If "bottom" is close
 667 // to the stack guard, caller should block all signals.
 668 //
 669 // MAP_GROWSDOWN:
 670 //   A special mmap() flag that is used to implement thread stacks. It tells
 671 //   kernel that the memory region should extend downwards when needed. This
 672 //   allows early versions of LinuxThreads to only mmap the first few pages
 673 //   when creating a new thread. Linux kernel will automatically expand thread
 674 //   stack as needed (on page faults).
 675 //
 676 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 677 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 678 //   region, it's hard to tell if the fault is due to a legitimate stack
 679 //   access or because of reading/writing non-exist memory (e.g. buffer
 680 //   overrun). As a rule, if the fault happens below current stack pointer,
 681 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 682 //   application (see Linux kernel fault.c).
 683 //
 684 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 685 //   stack overflow detection.
 686 //
 687 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 688 //   not use this flag. However, the stack of initial thread is not created
 689 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 690 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 691 //   and then attach the thread to JVM.
 692 //
 693 // To get around the problem and allow stack banging on Linux, we need to
 694 // manually expand thread stack after receiving the SIGSEGV.
 695 //
 696 // There are two ways to expand thread stack to address "bottom", we used
 697 // both of them in JVM before 1.5:
 698 //   1. adjust stack pointer first so that it is below "bottom", and then
 699 //      touch "bottom"
 700 //   2. mmap() the page in question
 701 //
 702 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 703 // if current sp is already near the lower end of page 101, and we need to
 704 // call mmap() to map page 100, it is possible that part of the mmap() frame
 705 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 706 // That will destroy the mmap() frame and cause VM to crash.
 707 //
 708 // The following code works by adjusting sp first, then accessing the "bottom"
 709 // page to force a page fault. Linux kernel will then automatically expand the
 710 // stack mapping.
 711 //
 712 // _expand_stack_to() assumes its frame size is less than page size, which
 713 // should always be true if the function is not inlined.
 714 
 715 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 716 #define NOINLINE
 717 #else
 718 #define NOINLINE __attribute__ ((noinline))
 719 #endif
 720 
 721 static void _expand_stack_to(address bottom) NOINLINE;
 722 
 723 static void _expand_stack_to(address bottom) {
 724   address sp;
 725   size_t size;
 726   volatile char *p;
 727 
 728   // Adjust bottom to point to the largest address within the same page, it
 729   // gives us a one-page buffer if alloca() allocates slightly more memory.
 730   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 731   bottom += os::Linux::page_size() - 1;
 732 
 733   // sp might be slightly above current stack pointer; if that's the case, we
 734   // will alloca() a little more space than necessary, which is OK. Don't use
 735   // os::current_stack_pointer(), as its result can be slightly below current
 736   // stack pointer, causing us to not alloca enough to reach "bottom".
 737   sp = (address)&sp;
 738 
 739   if (sp > bottom) {
 740     size = sp - bottom;
 741     p = (volatile char *)alloca(size);
 742     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 743     p[0] = '\0';
 744   }
 745 }
 746 
 747 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 748   assert(t!=NULL, "just checking");
 749   assert(t->osthread()->expanding_stack(), "expand should be set");
 750   assert(t->stack_base() != NULL, "stack_base was not initialized");
 751 
 752   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 753     sigset_t mask_all, old_sigset;
 754     sigfillset(&mask_all);
 755     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 756     _expand_stack_to(addr);
 757     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 758     return true;
 759   }
 760   return false;
 761 }
 762 
 763 //////////////////////////////////////////////////////////////////////////////
 764 // create new thread
 765 
 766 static address highest_vm_reserved_address();
 767 
 768 // check if it's safe to start a new thread
 769 static bool _thread_safety_check(Thread* thread) {
 770   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 771     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 772     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 773     //   allocated (MAP_FIXED) from high address space. Every thread stack
 774     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 775     //   it to other values if they rebuild LinuxThreads).
 776     //
 777     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 778     // the memory region has already been mmap'ed. That means if we have too
 779     // many threads and/or very large heap, eventually thread stack will
 780     // collide with heap.
 781     //
 782     // Here we try to prevent heap/stack collision by comparing current
 783     // stack bottom with the highest address that has been mmap'ed by JVM
 784     // plus a safety margin for memory maps created by native code.
 785     //
 786     // This feature can be disabled by setting ThreadSafetyMargin to 0
 787     //
 788     if (ThreadSafetyMargin > 0) {
 789       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 790 
 791       // not safe if our stack extends below the safety margin
 792       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 793     } else {
 794       return true;
 795     }
 796   } else {
 797     // Floating stack LinuxThreads or NPTL:
 798     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 799     //   there's not enough space left, pthread_create() will fail. If we come
 800     //   here, that means enough space has been reserved for stack.
 801     return true;
 802   }
 803 }
 804 
 805 // Thread start routine for all newly created threads
 806 static void *java_start(Thread *thread) {
 807   // Try to randomize the cache line index of hot stack frames.
 808   // This helps when threads of the same stack traces evict each other's
 809   // cache lines. The threads can be either from the same JVM instance, or
 810   // from different JVM instances. The benefit is especially true for
 811   // processors with hyperthreading technology.
 812   static int counter = 0;
 813   int pid = os::current_process_id();
 814   alloca(((pid ^ counter++) & 7) * 128);
 815 
 816   ThreadLocalStorage::set_thread(thread);
 817 
 818   OSThread* osthread = thread->osthread();
 819   Monitor* sync = osthread->startThread_lock();
 820 
 821   // non floating stack LinuxThreads needs extra check, see above
 822   if (!_thread_safety_check(thread)) {
 823     // notify parent thread
 824     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 825     osthread->set_state(ZOMBIE);
 826     sync->notify_all();
 827     return NULL;
 828   }
 829 
 830   // thread_id is kernel thread id (similar to Solaris LWP id)
 831   osthread->set_thread_id(os::Linux::gettid());
 832 
 833   if (UseNUMA) {
 834     int lgrp_id = os::numa_get_group_id();
 835     if (lgrp_id != -1) {
 836       thread->set_lgrp_id(lgrp_id);
 837     }
 838   }
 839   // initialize signal mask for this thread
 840   os::Linux::hotspot_sigmask(thread);
 841 
 842   // initialize floating point control register
 843   os::Linux::init_thread_fpu_state();
 844 
 845   // handshaking with parent thread
 846   {
 847     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 848 
 849     // notify parent thread
 850     osthread->set_state(INITIALIZED);
 851     sync->notify_all();
 852 
 853     // wait until os::start_thread()
 854     while (osthread->get_state() == INITIALIZED) {
 855       sync->wait(Mutex::_no_safepoint_check_flag);
 856     }
 857   }
 858 
 859   // call one more level start routine
 860   thread->run();
 861 
 862   return 0;
 863 }
 864 
 865 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 866   assert(thread->osthread() == NULL, "caller responsible");
 867 
 868   // Allocate the OSThread object
 869   OSThread* osthread = new OSThread(NULL, NULL);
 870   if (osthread == NULL) {
 871     return false;
 872   }
 873 
 874   // set the correct thread state
 875   osthread->set_thread_type(thr_type);
 876 
 877   // Initial state is ALLOCATED but not INITIALIZED
 878   osthread->set_state(ALLOCATED);
 879 
 880   thread->set_osthread(osthread);
 881 
 882   // init thread attributes
 883   pthread_attr_t attr;
 884   pthread_attr_init(&attr);
 885   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 886 
 887   // stack size
 888   if (os::Linux::supports_variable_stack_size()) {
 889     // calculate stack size if it's not specified by caller
 890     if (stack_size == 0) {
 891       stack_size = os::Linux::default_stack_size(thr_type);
 892 
 893       switch (thr_type) {
 894       case os::java_thread:
 895         // Java threads use ThreadStackSize which default value can be
 896         // changed with the flag -Xss
 897         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
 898         stack_size = JavaThread::stack_size_at_create();
 899         break;
 900       case os::compiler_thread:
 901         if (CompilerThreadStackSize > 0) {
 902           stack_size = (size_t)(CompilerThreadStackSize * K);
 903           break;
 904         } // else fall through:
 905           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 906       case os::vm_thread:
 907       case os::pgc_thread:
 908       case os::cgc_thread:
 909       case os::watcher_thread:
 910         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 911         break;
 912       }
 913     }
 914 
 915     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 916     pthread_attr_setstacksize(&attr, stack_size);
 917   } else {
 918     // let pthread_create() pick the default value.
 919   }
 920 
 921   // glibc guard page
 922   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 923 
 924   ThreadState state;
 925 
 926   {
 927     // Serialize thread creation if we are running with fixed stack LinuxThreads
 928     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 929     if (lock) {
 930       os::Linux::createThread_lock()->lock_without_safepoint_check();
 931     }
 932 
 933     pthread_t tid;
 934     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 935 
 936     pthread_attr_destroy(&attr);
 937 
 938     if (ret != 0) {
 939       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 940         perror("pthread_create()");
 941       }
 942       // Need to clean up stuff we've allocated so far
 943       thread->set_osthread(NULL);
 944       delete osthread;
 945       if (lock) os::Linux::createThread_lock()->unlock();
 946       return false;
 947     }
 948 
 949     // Store pthread info into the OSThread
 950     osthread->set_pthread_id(tid);
 951 
 952     // Wait until child thread is either initialized or aborted
 953     {
 954       Monitor* sync_with_child = osthread->startThread_lock();
 955       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 956       while ((state = osthread->get_state()) == ALLOCATED) {
 957         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 958       }
 959     }
 960 
 961     if (lock) {
 962       os::Linux::createThread_lock()->unlock();
 963     }
 964   }
 965 
 966   // Aborted due to thread limit being reached
 967   if (state == ZOMBIE) {
 968       thread->set_osthread(NULL);
 969       delete osthread;
 970       return false;
 971   }
 972 
 973   // The thread is returned suspended (in state INITIALIZED),
 974   // and is started higher up in the call chain
 975   assert(state == INITIALIZED, "race condition");
 976   return true;
 977 }
 978 
 979 /////////////////////////////////////////////////////////////////////////////
 980 // attach existing thread
 981 
 982 // bootstrap the main thread
 983 bool os::create_main_thread(JavaThread* thread) {
 984   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 985   return create_attached_thread(thread);
 986 }
 987 
 988 bool os::create_attached_thread(JavaThread* thread) {
 989 #ifdef ASSERT
 990     thread->verify_not_published();
 991 #endif
 992 
 993   // Allocate the OSThread object
 994   OSThread* osthread = new OSThread(NULL, NULL);
 995 
 996   if (osthread == NULL) {
 997     return false;
 998   }
 999 
1000   // Store pthread info into the OSThread
1001   osthread->set_thread_id(os::Linux::gettid());
1002   osthread->set_pthread_id(::pthread_self());
1003 
1004   // initialize floating point control register
1005   os::Linux::init_thread_fpu_state();
1006 
1007   // Initial thread state is RUNNABLE
1008   osthread->set_state(RUNNABLE);
1009 
1010   thread->set_osthread(osthread);
1011 
1012   if (UseNUMA) {
1013     int lgrp_id = os::numa_get_group_id();
1014     if (lgrp_id != -1) {
1015       thread->set_lgrp_id(lgrp_id);
1016     }
1017   }
1018 
1019   if (os::Linux::is_initial_thread()) {
1020     // If current thread is initial thread, its stack is mapped on demand,
1021     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1022     // the entire stack region to avoid SEGV in stack banging.
1023     // It is also useful to get around the heap-stack-gap problem on SuSE
1024     // kernel (see 4821821 for details). We first expand stack to the top
1025     // of yellow zone, then enable stack yellow zone (order is significant,
1026     // enabling yellow zone first will crash JVM on SuSE Linux), so there
1027     // is no gap between the last two virtual memory regions.
1028 
1029     JavaThread *jt = (JavaThread *)thread;
1030     address addr = jt->stack_yellow_zone_base();
1031     assert(addr != NULL, "initialization problem?");
1032     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1033 
1034     osthread->set_expanding_stack();
1035     os::Linux::manually_expand_stack(jt, addr);
1036     osthread->clear_expanding_stack();
1037   }
1038 
1039   // initialize signal mask for this thread
1040   // and save the caller's signal mask
1041   os::Linux::hotspot_sigmask(thread);
1042 
1043   return true;
1044 }
1045 
1046 void os::pd_start_thread(Thread* thread) {
1047   OSThread * osthread = thread->osthread();
1048   assert(osthread->get_state() != INITIALIZED, "just checking");
1049   Monitor* sync_with_child = osthread->startThread_lock();
1050   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1051   sync_with_child->notify();
1052 }
1053 
1054 // Free Linux resources related to the OSThread
1055 void os::free_thread(OSThread* osthread) {
1056   assert(osthread != NULL, "osthread not set");
1057 
1058   if (Thread::current()->osthread() == osthread) {
1059     // Restore caller's signal mask
1060     sigset_t sigmask = osthread->caller_sigmask();
1061     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1062    }
1063 
1064   delete osthread;
1065 }
1066 
1067 //////////////////////////////////////////////////////////////////////////////
1068 // thread local storage
1069 
1070 int os::allocate_thread_local_storage() {
1071   pthread_key_t key;
1072   int rslt = pthread_key_create(&key, NULL);
1073   assert(rslt == 0, "cannot allocate thread local storage");
1074   return (int)key;
1075 }
1076 
1077 // Note: This is currently not used by VM, as we don't destroy TLS key
1078 // on VM exit.
1079 void os::free_thread_local_storage(int index) {
1080   int rslt = pthread_key_delete((pthread_key_t)index);
1081   assert(rslt == 0, "invalid index");
1082 }
1083 
1084 void os::thread_local_storage_at_put(int index, void* value) {
1085   int rslt = pthread_setspecific((pthread_key_t)index, value);
1086   assert(rslt == 0, "pthread_setspecific failed");
1087 }
1088 
1089 extern "C" Thread* get_thread() {
1090   return ThreadLocalStorage::thread();
1091 }
1092 
1093 //////////////////////////////////////////////////////////////////////////////
1094 // initial thread
1095 
1096 // Check if current thread is the initial thread, similar to Solaris thr_main.
1097 bool os::Linux::is_initial_thread(void) {
1098   char dummy;
1099   // If called before init complete, thread stack bottom will be null.
1100   // Can be called if fatal error occurs before initialization.
1101   if (initial_thread_stack_bottom() == NULL) return false;
1102   assert(initial_thread_stack_bottom() != NULL &&
1103          initial_thread_stack_size()   != 0,
1104          "os::init did not locate initial thread's stack region");
1105   if ((address)&dummy >= initial_thread_stack_bottom() &&
1106       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1107        return true;
1108   else return false;
1109 }
1110 
1111 // Find the virtual memory area that contains addr
1112 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1113   FILE *fp = fopen("/proc/self/maps", "r");
1114   if (fp) {
1115     address low, high;
1116     while (!feof(fp)) {
1117       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1118         if (low <= addr && addr < high) {
1119            if (vma_low)  *vma_low  = low;
1120            if (vma_high) *vma_high = high;
1121            fclose (fp);
1122            return true;
1123         }
1124       }
1125       for (;;) {
1126         int ch = fgetc(fp);
1127         if (ch == EOF || ch == (int)'\n') break;
1128       }
1129     }
1130     fclose(fp);
1131   }
1132   return false;
1133 }
1134 
1135 // Locate initial thread stack. This special handling of initial thread stack
1136 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1137 // bogus value for initial thread.
1138 void os::Linux::capture_initial_stack(size_t max_size) {
1139   // stack size is the easy part, get it from RLIMIT_STACK
1140   size_t stack_size;
1141   struct rlimit rlim;
1142   getrlimit(RLIMIT_STACK, &rlim);
1143   stack_size = rlim.rlim_cur;
1144 
1145   // 6308388: a bug in ld.so will relocate its own .data section to the
1146   //   lower end of primordial stack; reduce ulimit -s value a little bit
1147   //   so we won't install guard page on ld.so's data section.
1148   stack_size -= 2 * page_size();
1149 
1150   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1151   //   7.1, in both cases we will get 2G in return value.
1152   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1153   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1154   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1155   //   in case other parts in glibc still assumes 2M max stack size.
1156   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1157   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1158   if (stack_size > 2 * K * K IA64_ONLY(*2))
1159       stack_size = 2 * K * K IA64_ONLY(*2);
1160   // Try to figure out where the stack base (top) is. This is harder.
1161   //
1162   // When an application is started, glibc saves the initial stack pointer in
1163   // a global variable "__libc_stack_end", which is then used by system
1164   // libraries. __libc_stack_end should be pretty close to stack top. The
1165   // variable is available since the very early days. However, because it is
1166   // a private interface, it could disappear in the future.
1167   //
1168   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1169   // to __libc_stack_end, it is very close to stack top, but isn't the real
1170   // stack top. Note that /proc may not exist if VM is running as a chroot
1171   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1172   // /proc/<pid>/stat could change in the future (though unlikely).
1173   //
1174   // We try __libc_stack_end first. If that doesn't work, look for
1175   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1176   // as a hint, which should work well in most cases.
1177 
1178   uintptr_t stack_start;
1179 
1180   // try __libc_stack_end first
1181   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1182   if (p && *p) {
1183     stack_start = *p;
1184   } else {
1185     // see if we can get the start_stack field from /proc/self/stat
1186     FILE *fp;
1187     int pid;
1188     char state;
1189     int ppid;
1190     int pgrp;
1191     int session;
1192     int nr;
1193     int tpgrp;
1194     unsigned long flags;
1195     unsigned long minflt;
1196     unsigned long cminflt;
1197     unsigned long majflt;
1198     unsigned long cmajflt;
1199     unsigned long utime;
1200     unsigned long stime;
1201     long cutime;
1202     long cstime;
1203     long prio;
1204     long nice;
1205     long junk;
1206     long it_real;
1207     uintptr_t start;
1208     uintptr_t vsize;
1209     intptr_t rss;
1210     uintptr_t rsslim;
1211     uintptr_t scodes;
1212     uintptr_t ecode;
1213     int i;
1214 
1215     // Figure what the primordial thread stack base is. Code is inspired
1216     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1217     // followed by command name surrounded by parentheses, state, etc.
1218     char stat[2048];
1219     int statlen;
1220 
1221     fp = fopen("/proc/self/stat", "r");
1222     if (fp) {
1223       statlen = fread(stat, 1, 2047, fp);
1224       stat[statlen] = '\0';
1225       fclose(fp);
1226 
1227       // Skip pid and the command string. Note that we could be dealing with
1228       // weird command names, e.g. user could decide to rename java launcher
1229       // to "java 1.4.2 :)", then the stat file would look like
1230       //                1234 (java 1.4.2 :)) R ... ...
1231       // We don't really need to know the command string, just find the last
1232       // occurrence of ")" and then start parsing from there. See bug 4726580.
1233       char * s = strrchr(stat, ')');
1234 
1235       i = 0;
1236       if (s) {
1237         // Skip blank chars
1238         do s++; while (isspace(*s));
1239 
1240 #define _UFM UINTX_FORMAT
1241 #define _DFM INTX_FORMAT
1242 
1243         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1244         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1245         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1246              &state,          /* 3  %c  */
1247              &ppid,           /* 4  %d  */
1248              &pgrp,           /* 5  %d  */
1249              &session,        /* 6  %d  */
1250              &nr,             /* 7  %d  */
1251              &tpgrp,          /* 8  %d  */
1252              &flags,          /* 9  %lu  */
1253              &minflt,         /* 10 %lu  */
1254              &cminflt,        /* 11 %lu  */
1255              &majflt,         /* 12 %lu  */
1256              &cmajflt,        /* 13 %lu  */
1257              &utime,          /* 14 %lu  */
1258              &stime,          /* 15 %lu  */
1259              &cutime,         /* 16 %ld  */
1260              &cstime,         /* 17 %ld  */
1261              &prio,           /* 18 %ld  */
1262              &nice,           /* 19 %ld  */
1263              &junk,           /* 20 %ld  */
1264              &it_real,        /* 21 %ld  */
1265              &start,          /* 22 UINTX_FORMAT */
1266              &vsize,          /* 23 UINTX_FORMAT */
1267              &rss,            /* 24 INTX_FORMAT  */
1268              &rsslim,         /* 25 UINTX_FORMAT */
1269              &scodes,         /* 26 UINTX_FORMAT */
1270              &ecode,          /* 27 UINTX_FORMAT */
1271              &stack_start);   /* 28 UINTX_FORMAT */
1272       }
1273 
1274 #undef _UFM
1275 #undef _DFM
1276 
1277       if (i != 28 - 2) {
1278          assert(false, "Bad conversion from /proc/self/stat");
1279          // product mode - assume we are the initial thread, good luck in the
1280          // embedded case.
1281          warning("Can't detect initial thread stack location - bad conversion");
1282          stack_start = (uintptr_t) &rlim;
1283       }
1284     } else {
1285       // For some reason we can't open /proc/self/stat (for example, running on
1286       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1287       // most cases, so don't abort:
1288       warning("Can't detect initial thread stack location - no /proc/self/stat");
1289       stack_start = (uintptr_t) &rlim;
1290     }
1291   }
1292 
1293   // Now we have a pointer (stack_start) very close to the stack top, the
1294   // next thing to do is to figure out the exact location of stack top. We
1295   // can find out the virtual memory area that contains stack_start by
1296   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1297   // and its upper limit is the real stack top. (again, this would fail if
1298   // running inside chroot, because /proc may not exist.)
1299 
1300   uintptr_t stack_top;
1301   address low, high;
1302   if (find_vma((address)stack_start, &low, &high)) {
1303     // success, "high" is the true stack top. (ignore "low", because initial
1304     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1305     stack_top = (uintptr_t)high;
1306   } else {
1307     // failed, likely because /proc/self/maps does not exist
1308     warning("Can't detect initial thread stack location - find_vma failed");
1309     // best effort: stack_start is normally within a few pages below the real
1310     // stack top, use it as stack top, and reduce stack size so we won't put
1311     // guard page outside stack.
1312     stack_top = stack_start;
1313     stack_size -= 16 * page_size();
1314   }
1315 
1316   // stack_top could be partially down the page so align it
1317   stack_top = align_size_up(stack_top, page_size());
1318 
1319   if (max_size && stack_size > max_size) {
1320      _initial_thread_stack_size = max_size;
1321   } else {
1322      _initial_thread_stack_size = stack_size;
1323   }
1324 
1325   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1326   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1327 }
1328 
1329 ////////////////////////////////////////////////////////////////////////////////
1330 // time support
1331 
1332 // Time since start-up in seconds to a fine granularity.
1333 // Used by VMSelfDestructTimer and the MemProfiler.
1334 double os::elapsedTime() {
1335 
1336   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1337 }
1338 
1339 jlong os::elapsed_counter() {
1340   return javaTimeNanos() - initial_time_count;
1341 }
1342 
1343 jlong os::elapsed_frequency() {
1344   return NANOSECS_PER_SEC; // nanosecond resolution
1345 }
1346 
1347 bool os::supports_vtime() { return true; }
1348 bool os::enable_vtime()   { return false; }
1349 bool os::vtime_enabled()  { return false; }
1350 
1351 double os::elapsedVTime() {
1352   struct rusage usage;
1353   int retval = getrusage(RUSAGE_THREAD, &usage);
1354   if (retval == 0) {
1355     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1356   } else {
1357     // better than nothing, but not much
1358     return elapsedTime();
1359   }
1360 }
1361 
1362 jlong os::javaTimeMillis() {
1363   timeval time;
1364   int status = gettimeofday(&time, NULL);
1365   assert(status != -1, "linux error");
1366   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1367 }
1368 
1369 #ifndef CLOCK_MONOTONIC
1370 #define CLOCK_MONOTONIC (1)
1371 #endif
1372 
1373 void os::Linux::clock_init() {
1374   // we do dlopen's in this particular order due to bug in linux
1375   // dynamical loader (see 6348968) leading to crash on exit
1376   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1377   if (handle == NULL) {
1378     handle = dlopen("librt.so", RTLD_LAZY);
1379   }
1380 
1381   if (handle) {
1382     int (*clock_getres_func)(clockid_t, struct timespec*) =
1383            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1384     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1385            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1386     if (clock_getres_func && clock_gettime_func) {
1387       // See if monotonic clock is supported by the kernel. Note that some
1388       // early implementations simply return kernel jiffies (updated every
1389       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1390       // for nano time (though the monotonic property is still nice to have).
1391       // It's fixed in newer kernels, however clock_getres() still returns
1392       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1393       // resolution for now. Hopefully as people move to new kernels, this
1394       // won't be a problem.
1395       struct timespec res;
1396       struct timespec tp;
1397       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1398           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1399         // yes, monotonic clock is supported
1400         _clock_gettime = clock_gettime_func;
1401         return;
1402       } else {
1403         // close librt if there is no monotonic clock
1404         dlclose(handle);
1405       }
1406     }
1407   }
1408   warning("No monotonic clock was available - timed services may " \
1409           "be adversely affected if the time-of-day clock changes");
1410 }
1411 
1412 #ifndef SYS_clock_getres
1413 
1414 #if defined(IA32) || defined(AMD64)
1415 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1416 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1417 #else
1418 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1419 #define sys_clock_getres(x,y)  -1
1420 #endif
1421 
1422 #else
1423 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1424 #endif
1425 
1426 void os::Linux::fast_thread_clock_init() {
1427   if (!UseLinuxPosixThreadCPUClocks) {
1428     return;
1429   }
1430   clockid_t clockid;
1431   struct timespec tp;
1432   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1433       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1434 
1435   // Switch to using fast clocks for thread cpu time if
1436   // the sys_clock_getres() returns 0 error code.
1437   // Note, that some kernels may support the current thread
1438   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1439   // returned by the pthread_getcpuclockid().
1440   // If the fast Posix clocks are supported then the sys_clock_getres()
1441   // must return at least tp.tv_sec == 0 which means a resolution
1442   // better than 1 sec. This is extra check for reliability.
1443 
1444   if(pthread_getcpuclockid_func &&
1445      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1446      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1447 
1448     _supports_fast_thread_cpu_time = true;
1449     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1450   }
1451 }
1452 
1453 jlong os::javaTimeNanos() {
1454   if (Linux::supports_monotonic_clock()) {
1455     struct timespec tp;
1456     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1457     assert(status == 0, "gettime error");
1458     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1459     return result;
1460   } else {
1461     timeval time;
1462     int status = gettimeofday(&time, NULL);
1463     assert(status != -1, "linux error");
1464     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1465     return 1000 * usecs;
1466   }
1467 }
1468 
1469 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1470   if (Linux::supports_monotonic_clock()) {
1471     info_ptr->max_value = ALL_64_BITS;
1472 
1473     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1474     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1475     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1476   } else {
1477     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1478     info_ptr->max_value = ALL_64_BITS;
1479 
1480     // gettimeofday is a real time clock so it skips
1481     info_ptr->may_skip_backward = true;
1482     info_ptr->may_skip_forward = true;
1483   }
1484 
1485   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1486 }
1487 
1488 // Return the real, user, and system times in seconds from an
1489 // arbitrary fixed point in the past.
1490 bool os::getTimesSecs(double* process_real_time,
1491                       double* process_user_time,
1492                       double* process_system_time) {
1493   struct tms ticks;
1494   clock_t real_ticks = times(&ticks);
1495 
1496   if (real_ticks == (clock_t) (-1)) {
1497     return false;
1498   } else {
1499     double ticks_per_second = (double) clock_tics_per_sec;
1500     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1501     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1502     *process_real_time = ((double) real_ticks) / ticks_per_second;
1503 
1504     return true;
1505   }
1506 }
1507 
1508 
1509 char * os::local_time_string(char *buf, size_t buflen) {
1510   struct tm t;
1511   time_t long_time;
1512   time(&long_time);
1513   localtime_r(&long_time, &t);
1514   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1515                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1516                t.tm_hour, t.tm_min, t.tm_sec);
1517   return buf;
1518 }
1519 
1520 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1521   return localtime_r(clock, res);
1522 }
1523 
1524 ////////////////////////////////////////////////////////////////////////////////
1525 // runtime exit support
1526 
1527 // Note: os::shutdown() might be called very early during initialization, or
1528 // called from signal handler. Before adding something to os::shutdown(), make
1529 // sure it is async-safe and can handle partially initialized VM.
1530 void os::shutdown() {
1531 
1532   // allow PerfMemory to attempt cleanup of any persistent resources
1533   perfMemory_exit();
1534 
1535   // needs to remove object in file system
1536   AttachListener::abort();
1537 
1538   // flush buffered output, finish log files
1539   ostream_abort();
1540 
1541   // Check for abort hook
1542   abort_hook_t abort_hook = Arguments::abort_hook();
1543   if (abort_hook != NULL) {
1544     abort_hook();
1545   }
1546 
1547 }
1548 
1549 // Note: os::abort() might be called very early during initialization, or
1550 // called from signal handler. Before adding something to os::abort(), make
1551 // sure it is async-safe and can handle partially initialized VM.
1552 void os::abort(bool dump_core) {
1553   os::shutdown();
1554   if (dump_core) {
1555 #ifndef PRODUCT
1556     fdStream out(defaultStream::output_fd());
1557     out.print_raw("Current thread is ");
1558     char buf[16];
1559     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1560     out.print_raw_cr(buf);
1561     out.print_raw_cr("Dumping core ...");
1562 #endif
1563     ::abort(); // dump core
1564   }
1565 
1566   ::exit(1);
1567 }
1568 
1569 // Die immediately, no exit hook, no abort hook, no cleanup.
1570 void os::die() {
1571   // _exit() on LinuxThreads only kills current thread
1572   ::abort();
1573 }
1574 
1575 // unused on linux for now.
1576 void os::set_error_file(const char *logfile) {}
1577 
1578 
1579 // This method is a copy of JDK's sysGetLastErrorString
1580 // from src/solaris/hpi/src/system_md.c
1581 
1582 size_t os::lasterror(char *buf, size_t len) {
1583 
1584   if (errno == 0)  return 0;
1585 
1586   const char *s = ::strerror(errno);
1587   size_t n = ::strlen(s);
1588   if (n >= len) {
1589     n = len - 1;
1590   }
1591   ::strncpy(buf, s, n);
1592   buf[n] = '\0';
1593   return n;
1594 }
1595 
1596 intx os::current_thread_id() { return (intx)pthread_self(); }
1597 int os::current_process_id() {
1598 
1599   // Under the old linux thread library, linux gives each thread
1600   // its own process id. Because of this each thread will return
1601   // a different pid if this method were to return the result
1602   // of getpid(2). Linux provides no api that returns the pid
1603   // of the launcher thread for the vm. This implementation
1604   // returns a unique pid, the pid of the launcher thread
1605   // that starts the vm 'process'.
1606 
1607   // Under the NPTL, getpid() returns the same pid as the
1608   // launcher thread rather than a unique pid per thread.
1609   // Use gettid() if you want the old pre NPTL behaviour.
1610 
1611   // if you are looking for the result of a call to getpid() that
1612   // returns a unique pid for the calling thread, then look at the
1613   // OSThread::thread_id() method in osThread_linux.hpp file
1614 
1615   return (int)(_initial_pid ? _initial_pid : getpid());
1616 }
1617 
1618 // DLL functions
1619 
1620 const char* os::dll_file_extension() { return ".so"; }
1621 
1622 // This must be hard coded because it's the system's temporary
1623 // directory not the java application's temp directory, ala java.io.tmpdir.
1624 const char* os::get_temp_directory() { return "/tmp"; }
1625 
1626 static bool file_exists(const char* filename) {
1627   struct stat statbuf;
1628   if (filename == NULL || strlen(filename) == 0) {
1629     return false;
1630   }
1631   return os::stat(filename, &statbuf) == 0;
1632 }
1633 
1634 bool os::dll_build_name(char* buffer, size_t buflen,
1635                         const char* pname, const char* fname) {
1636   bool retval = false;
1637   // Copied from libhpi
1638   const size_t pnamelen = pname ? strlen(pname) : 0;
1639 
1640   // Return error on buffer overflow.
1641   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1642     return retval;
1643   }
1644 
1645   if (pnamelen == 0) {
1646     snprintf(buffer, buflen, "lib%s.so", fname);
1647     retval = true;
1648   } else if (strchr(pname, *os::path_separator()) != NULL) {
1649     int n;
1650     char** pelements = split_path(pname, &n);
1651     if (pelements == NULL) {
1652       return false;
1653     }
1654     for (int i = 0 ; i < n ; i++) {
1655       // Really shouldn't be NULL, but check can't hurt
1656       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1657         continue; // skip the empty path values
1658       }
1659       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1660       if (file_exists(buffer)) {
1661         retval = true;
1662         break;
1663       }
1664     }
1665     // release the storage
1666     for (int i = 0 ; i < n ; i++) {
1667       if (pelements[i] != NULL) {
1668         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1669       }
1670     }
1671     if (pelements != NULL) {
1672       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1673     }
1674   } else {
1675     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1676     retval = true;
1677   }
1678   return retval;
1679 }
1680 
1681 // check if addr is inside libjvm.so
1682 bool os::address_is_in_vm(address addr) {
1683   static address libjvm_base_addr;
1684   Dl_info dlinfo;
1685 
1686   if (libjvm_base_addr == NULL) {
1687     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1688       libjvm_base_addr = (address)dlinfo.dli_fbase;
1689     }
1690     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1691   }
1692 
1693   if (dladdr((void *)addr, &dlinfo) != 0) {
1694     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1695   }
1696 
1697   return false;
1698 }
1699 
1700 bool os::dll_address_to_function_name(address addr, char *buf,
1701                                       int buflen, int *offset) {
1702   // buf is not optional, but offset is optional
1703   assert(buf != NULL, "sanity check");
1704 
1705   Dl_info dlinfo;
1706 
1707   if (dladdr((void*)addr, &dlinfo) != 0) {
1708     // see if we have a matching symbol
1709     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1710       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1711         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1712       }
1713       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1714       return true;
1715     }
1716     // no matching symbol so try for just file info
1717     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1718       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1719                           buf, buflen, offset, dlinfo.dli_fname)) {
1720         return true;
1721       }
1722     }
1723   }
1724 
1725   buf[0] = '\0';
1726   if (offset != NULL) *offset = -1;
1727   return false;
1728 }
1729 
1730 struct _address_to_library_name {
1731   address addr;          // input : memory address
1732   size_t  buflen;        //         size of fname
1733   char*   fname;         // output: library name
1734   address base;          //         library base addr
1735 };
1736 
1737 static int address_to_library_name_callback(struct dl_phdr_info *info,
1738                                             size_t size, void *data) {
1739   int i;
1740   bool found = false;
1741   address libbase = NULL;
1742   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1743 
1744   // iterate through all loadable segments
1745   for (i = 0; i < info->dlpi_phnum; i++) {
1746     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1747     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1748       // base address of a library is the lowest address of its loaded
1749       // segments.
1750       if (libbase == NULL || libbase > segbase) {
1751         libbase = segbase;
1752       }
1753       // see if 'addr' is within current segment
1754       if (segbase <= d->addr &&
1755           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1756         found = true;
1757       }
1758     }
1759   }
1760 
1761   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1762   // so dll_address_to_library_name() can fall through to use dladdr() which
1763   // can figure out executable name from argv[0].
1764   if (found && info->dlpi_name && info->dlpi_name[0]) {
1765     d->base = libbase;
1766     if (d->fname) {
1767       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1768     }
1769     return 1;
1770   }
1771   return 0;
1772 }
1773 
1774 bool os::dll_address_to_library_name(address addr, char* buf,
1775                                      int buflen, int* offset) {
1776   // buf is not optional, but offset is optional
1777   assert(buf != NULL, "sanity check");
1778 
1779   Dl_info dlinfo;
1780   struct _address_to_library_name data;
1781 
1782   // There is a bug in old glibc dladdr() implementation that it could resolve
1783   // to wrong library name if the .so file has a base address != NULL. Here
1784   // we iterate through the program headers of all loaded libraries to find
1785   // out which library 'addr' really belongs to. This workaround can be
1786   // removed once the minimum requirement for glibc is moved to 2.3.x.
1787   data.addr = addr;
1788   data.fname = buf;
1789   data.buflen = buflen;
1790   data.base = NULL;
1791   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1792 
1793   if (rslt) {
1794      // buf already contains library name
1795      if (offset) *offset = addr - data.base;
1796      return true;
1797   }
1798   if (dladdr((void*)addr, &dlinfo) != 0) {
1799     if (dlinfo.dli_fname != NULL) {
1800       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1801     }
1802     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1803       *offset = addr - (address)dlinfo.dli_fbase;
1804     }
1805     return true;
1806   }
1807 
1808   buf[0] = '\0';
1809   if (offset) *offset = -1;
1810   return false;
1811 }
1812 
1813   // Loads .dll/.so and
1814   // in case of error it checks if .dll/.so was built for the
1815   // same architecture as Hotspot is running on
1816 
1817 
1818 // Remember the stack's state. The Linux dynamic linker will change
1819 // the stack to 'executable' at most once, so we must safepoint only once.
1820 bool os::Linux::_stack_is_executable = false;
1821 
1822 // VM operation that loads a library.  This is necessary if stack protection
1823 // of the Java stacks can be lost during loading the library.  If we
1824 // do not stop the Java threads, they can stack overflow before the stacks
1825 // are protected again.
1826 class VM_LinuxDllLoad: public VM_Operation {
1827  private:
1828   const char *_filename;
1829   char *_ebuf;
1830   int _ebuflen;
1831   void *_lib;
1832  public:
1833   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1834     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1835   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1836   void doit() {
1837     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1838     os::Linux::_stack_is_executable = true;
1839   }
1840   void* loaded_library() { return _lib; }
1841 };
1842 
1843 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1844 {
1845   void * result = NULL;
1846   bool load_attempted = false;
1847 
1848   // Check whether the library to load might change execution rights
1849   // of the stack. If they are changed, the protection of the stack
1850   // guard pages will be lost. We need a safepoint to fix this.
1851   //
1852   // See Linux man page execstack(8) for more info.
1853   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1854     ElfFile ef(filename);
1855     if (!ef.specifies_noexecstack()) {
1856       if (!is_init_completed()) {
1857         os::Linux::_stack_is_executable = true;
1858         // This is OK - No Java threads have been created yet, and hence no
1859         // stack guard pages to fix.
1860         //
1861         // This should happen only when you are building JDK7 using a very
1862         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1863         //
1864         // Dynamic loader will make all stacks executable after
1865         // this function returns, and will not do that again.
1866         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1867       } else {
1868         warning("You have loaded library %s which might have disabled stack guard. "
1869                 "The VM will try to fix the stack guard now.\n"
1870                 "It's highly recommended that you fix the library with "
1871                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1872                 filename);
1873 
1874         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1875         JavaThread *jt = JavaThread::current();
1876         if (jt->thread_state() != _thread_in_native) {
1877           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1878           // that requires ExecStack. Cannot enter safe point. Let's give up.
1879           warning("Unable to fix stack guard. Giving up.");
1880         } else {
1881           if (!LoadExecStackDllInVMThread) {
1882             // This is for the case where the DLL has an static
1883             // constructor function that executes JNI code. We cannot
1884             // load such DLLs in the VMThread.
1885             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1886           }
1887 
1888           ThreadInVMfromNative tiv(jt);
1889           debug_only(VMNativeEntryWrapper vew;)
1890 
1891           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1892           VMThread::execute(&op);
1893           if (LoadExecStackDllInVMThread) {
1894             result = op.loaded_library();
1895           }
1896           load_attempted = true;
1897         }
1898       }
1899     }
1900   }
1901 
1902   if (!load_attempted) {
1903     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1904   }
1905 
1906   if (result != NULL) {
1907     // Successful loading
1908     return result;
1909   }
1910 
1911   Elf32_Ehdr elf_head;
1912   int diag_msg_max_length=ebuflen-strlen(ebuf);
1913   char* diag_msg_buf=ebuf+strlen(ebuf);
1914 
1915   if (diag_msg_max_length==0) {
1916     // No more space in ebuf for additional diagnostics message
1917     return NULL;
1918   }
1919 
1920 
1921   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1922 
1923   if (file_descriptor < 0) {
1924     // Can't open library, report dlerror() message
1925     return NULL;
1926   }
1927 
1928   bool failed_to_read_elf_head=
1929     (sizeof(elf_head)!=
1930         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1931 
1932   ::close(file_descriptor);
1933   if (failed_to_read_elf_head) {
1934     // file i/o error - report dlerror() msg
1935     return NULL;
1936   }
1937 
1938   typedef struct {
1939     Elf32_Half  code;         // Actual value as defined in elf.h
1940     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1941     char        elf_class;    // 32 or 64 bit
1942     char        endianess;    // MSB or LSB
1943     char*       name;         // String representation
1944   } arch_t;
1945 
1946   #ifndef EM_486
1947   #define EM_486          6               /* Intel 80486 */
1948   #endif
1949 
1950   static const arch_t arch_array[]={
1951     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1952     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1953     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1954     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1955     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1956     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1957     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1958     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1959     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1960     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1961     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1962     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1963     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1964     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1965     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1966     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1967   };
1968 
1969   #if  (defined IA32)
1970     static  Elf32_Half running_arch_code=EM_386;
1971   #elif   (defined AMD64)
1972     static  Elf32_Half running_arch_code=EM_X86_64;
1973   #elif  (defined IA64)
1974     static  Elf32_Half running_arch_code=EM_IA_64;
1975   #elif  (defined __sparc) && (defined _LP64)
1976     static  Elf32_Half running_arch_code=EM_SPARCV9;
1977   #elif  (defined __sparc) && (!defined _LP64)
1978     static  Elf32_Half running_arch_code=EM_SPARC;
1979   #elif  (defined __powerpc64__)
1980     static  Elf32_Half running_arch_code=EM_PPC64;
1981   #elif  (defined __powerpc__)
1982     static  Elf32_Half running_arch_code=EM_PPC;
1983   #elif  (defined ARM)
1984     static  Elf32_Half running_arch_code=EM_ARM;
1985   #elif  (defined S390)
1986     static  Elf32_Half running_arch_code=EM_S390;
1987   #elif  (defined ALPHA)
1988     static  Elf32_Half running_arch_code=EM_ALPHA;
1989   #elif  (defined MIPSEL)
1990     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1991   #elif  (defined PARISC)
1992     static  Elf32_Half running_arch_code=EM_PARISC;
1993   #elif  (defined MIPS)
1994     static  Elf32_Half running_arch_code=EM_MIPS;
1995   #elif  (defined M68K)
1996     static  Elf32_Half running_arch_code=EM_68K;
1997   #else
1998     #error Method os::dll_load requires that one of following is defined:\
1999          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
2000   #endif
2001 
2002   // Identify compatability class for VM's architecture and library's architecture
2003   // Obtain string descriptions for architectures
2004 
2005   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
2006   int running_arch_index=-1;
2007 
2008   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
2009     if (running_arch_code == arch_array[i].code) {
2010       running_arch_index    = i;
2011     }
2012     if (lib_arch.code == arch_array[i].code) {
2013       lib_arch.compat_class = arch_array[i].compat_class;
2014       lib_arch.name         = arch_array[i].name;
2015     }
2016   }
2017 
2018   assert(running_arch_index != -1,
2019     "Didn't find running architecture code (running_arch_code) in arch_array");
2020   if (running_arch_index == -1) {
2021     // Even though running architecture detection failed
2022     // we may still continue with reporting dlerror() message
2023     return NULL;
2024   }
2025 
2026   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2027     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2028     return NULL;
2029   }
2030 
2031 #ifndef S390
2032   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2033     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2034     return NULL;
2035   }
2036 #endif // !S390
2037 
2038   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2039     if ( lib_arch.name!=NULL ) {
2040       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2041         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2042         lib_arch.name, arch_array[running_arch_index].name);
2043     } else {
2044       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2045       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2046         lib_arch.code,
2047         arch_array[running_arch_index].name);
2048     }
2049   }
2050 
2051   return NULL;
2052 }
2053 
2054 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
2055   void * result = ::dlopen(filename, RTLD_LAZY);
2056   if (result == NULL) {
2057     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2058     ebuf[ebuflen-1] = '\0';
2059   }
2060   return result;
2061 }
2062 
2063 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
2064   void * result = NULL;
2065   if (LoadExecStackDllInVMThread) {
2066     result = dlopen_helper(filename, ebuf, ebuflen);
2067   }
2068 
2069   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2070   // library that requires an executable stack, or which does not have this
2071   // stack attribute set, dlopen changes the stack attribute to executable. The
2072   // read protection of the guard pages gets lost.
2073   //
2074   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2075   // may have been queued at the same time.
2076 
2077   if (!_stack_is_executable) {
2078     JavaThread *jt = Threads::first();
2079 
2080     while (jt) {
2081       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2082           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2083         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2084                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2085           warning("Attempt to reguard stack yellow zone failed.");
2086         }
2087       }
2088       jt = jt->next();
2089     }
2090   }
2091 
2092   return result;
2093 }
2094 
2095 /*
2096  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2097  * chances are you might want to run the generated bits against glibc-2.0
2098  * libdl.so, so always use locking for any version of glibc.
2099  */
2100 void* os::dll_lookup(void* handle, const char* name) {
2101   pthread_mutex_lock(&dl_mutex);
2102   void* res = dlsym(handle, name);
2103   pthread_mutex_unlock(&dl_mutex);
2104   return res;
2105 }
2106 
2107 
2108 static bool _print_ascii_file(const char* filename, outputStream* st) {
2109   int fd = ::open(filename, O_RDONLY);
2110   if (fd == -1) {
2111      return false;
2112   }
2113 
2114   char buf[32];
2115   int bytes;
2116   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2117     st->print_raw(buf, bytes);
2118   }
2119 
2120   ::close(fd);
2121 
2122   return true;
2123 }
2124 
2125 void os::print_dll_info(outputStream *st) {
2126    st->print_cr("Dynamic libraries:");
2127 
2128    char fname[32];
2129    pid_t pid = os::Linux::gettid();
2130 
2131    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2132 
2133    if (!_print_ascii_file(fname, st)) {
2134      st->print("Can not get library information for pid = %d\n", pid);
2135    }
2136 }
2137 
2138 void os::print_os_info_brief(outputStream* st) {
2139   os::Linux::print_distro_info(st);
2140 
2141   os::Posix::print_uname_info(st);
2142 
2143   os::Linux::print_libversion_info(st);
2144 
2145 }
2146 
2147 void os::print_os_info(outputStream* st) {
2148   st->print("OS:");
2149 
2150   os::Linux::print_distro_info(st);
2151 
2152   os::Posix::print_uname_info(st);
2153 
2154   // Print warning if unsafe chroot environment detected
2155   if (unsafe_chroot_detected) {
2156     st->print("WARNING!! ");
2157     st->print_cr(unstable_chroot_error);
2158   }
2159 
2160   os::Linux::print_libversion_info(st);
2161 
2162   os::Posix::print_rlimit_info(st);
2163 
2164   os::Posix::print_load_average(st);
2165 
2166   os::Linux::print_full_memory_info(st);
2167 }
2168 
2169 // Try to identify popular distros.
2170 // Most Linux distributions have a /etc/XXX-release file, which contains
2171 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2172 // file that also contains the OS version string. Some have more than one
2173 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2174 // /etc/redhat-release.), so the order is important.
2175 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2176 // their own specific XXX-release file as well as a redhat-release file.
2177 // Because of this the XXX-release file needs to be searched for before the
2178 // redhat-release file.
2179 // Since Red Hat has a lsb-release file that is not very descriptive the
2180 // search for redhat-release needs to be before lsb-release.
2181 // Since the lsb-release file is the new standard it needs to be searched
2182 // before the older style release files.
2183 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2184 // next to last resort.  The os-release file is a new standard that contains
2185 // distribution information and the system-release file seems to be an old
2186 // standard that has been replaced by the lsb-release and os-release files.
2187 // Searching for the debian_version file is the last resort.  It contains
2188 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2189 // "Debian " is printed before the contents of the debian_version file.
2190 void os::Linux::print_distro_info(outputStream* st) {
2191    if (!_print_ascii_file("/etc/oracle-release", st) &&
2192        !_print_ascii_file("/etc/mandriva-release", st) &&
2193        !_print_ascii_file("/etc/mandrake-release", st) &&
2194        !_print_ascii_file("/etc/sun-release", st) &&
2195        !_print_ascii_file("/etc/redhat-release", st) &&
2196        !_print_ascii_file("/etc/lsb-release", st) &&
2197        !_print_ascii_file("/etc/SuSE-release", st) &&
2198        !_print_ascii_file("/etc/turbolinux-release", st) &&
2199        !_print_ascii_file("/etc/gentoo-release", st) &&
2200        !_print_ascii_file("/etc/ltib-release", st) &&
2201        !_print_ascii_file("/etc/angstrom-version", st) &&
2202        !_print_ascii_file("/etc/system-release", st) &&
2203        !_print_ascii_file("/etc/os-release", st)) {
2204 
2205        if (file_exists("/etc/debian_version")) {
2206          st->print("Debian ");
2207          _print_ascii_file("/etc/debian_version", st);
2208        } else {
2209          st->print("Linux");
2210        }
2211    }
2212    st->cr();
2213 }
2214 
2215 void os::Linux::print_libversion_info(outputStream* st) {
2216   // libc, pthread
2217   st->print("libc:");
2218   st->print(os::Linux::glibc_version()); st->print(" ");
2219   st->print(os::Linux::libpthread_version()); st->print(" ");
2220   if (os::Linux::is_LinuxThreads()) {
2221      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2222   }
2223   st->cr();
2224 }
2225 
2226 void os::Linux::print_full_memory_info(outputStream* st) {
2227    st->print("\n/proc/meminfo:\n");
2228    _print_ascii_file("/proc/meminfo", st);
2229    st->cr();
2230 }
2231 
2232 void os::print_memory_info(outputStream* st) {
2233 
2234   st->print("Memory:");
2235   st->print(" %dk page", os::vm_page_size()>>10);
2236 
2237   // values in struct sysinfo are "unsigned long"
2238   struct sysinfo si;
2239   sysinfo(&si);
2240 
2241   st->print(", physical " UINT64_FORMAT "k",
2242             os::physical_memory() >> 10);
2243   st->print("(" UINT64_FORMAT "k free)",
2244             os::available_memory() >> 10);
2245   st->print(", swap " UINT64_FORMAT "k",
2246             ((jlong)si.totalswap * si.mem_unit) >> 10);
2247   st->print("(" UINT64_FORMAT "k free)",
2248             ((jlong)si.freeswap * si.mem_unit) >> 10);
2249   st->cr();
2250 }
2251 
2252 void os::pd_print_cpu_info(outputStream* st) {
2253   st->print("\n/proc/cpuinfo:\n");
2254   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2255     st->print("  <Not Available>");
2256   }
2257   st->cr();
2258 }
2259 
2260 // Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2261 // but they're the same for all the linux arch that we support
2262 // and they're the same for solaris but there's no common place to put this.
2263 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2264                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2265                           "ILL_COPROC", "ILL_BADSTK" };
2266 
2267 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2268                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2269                           "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2270 
2271 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2272 
2273 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2274 
2275 void os::print_siginfo(outputStream* st, void* siginfo) {
2276   st->print("siginfo:");
2277 
2278   const int buflen = 100;
2279   char buf[buflen];
2280   siginfo_t *si = (siginfo_t*)siginfo;
2281   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2282   if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2283     st->print("si_errno=%s", buf);
2284   } else {
2285     st->print("si_errno=%d", si->si_errno);
2286   }
2287   const int c = si->si_code;
2288   assert(c > 0, "unexpected si_code");
2289   switch (si->si_signo) {
2290   case SIGILL:
2291     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2292     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2293     break;
2294   case SIGFPE:
2295     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2296     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2297     break;
2298   case SIGSEGV:
2299     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2300     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2301     break;
2302   case SIGBUS:
2303     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2304     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2305     break;
2306   default:
2307     st->print(", si_code=%d", si->si_code);
2308     // no si_addr
2309   }
2310 
2311   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2312       UseSharedSpaces) {
2313     FileMapInfo* mapinfo = FileMapInfo::current_info();
2314     if (mapinfo->is_in_shared_space(si->si_addr)) {
2315       st->print("\n\nError accessing class data sharing archive."   \
2316                 " Mapped file inaccessible during execution, "      \
2317                 " possible disk/network problem.");
2318     }
2319   }
2320   st->cr();
2321 }
2322 
2323 
2324 static void print_signal_handler(outputStream* st, int sig,
2325                                  char* buf, size_t buflen);
2326 
2327 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2328   st->print_cr("Signal Handlers:");
2329   print_signal_handler(st, SIGSEGV, buf, buflen);
2330   print_signal_handler(st, SIGBUS , buf, buflen);
2331   print_signal_handler(st, SIGFPE , buf, buflen);
2332   print_signal_handler(st, SIGPIPE, buf, buflen);
2333   print_signal_handler(st, SIGXFSZ, buf, buflen);
2334   print_signal_handler(st, SIGILL , buf, buflen);
2335   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2336   print_signal_handler(st, SR_signum, buf, buflen);
2337   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2338   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2339   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2340   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2341 }
2342 
2343 static char saved_jvm_path[MAXPATHLEN] = {0};
2344 
2345 // Find the full path to the current module, libjvm.so
2346 void os::jvm_path(char *buf, jint buflen) {
2347   // Error checking.
2348   if (buflen < MAXPATHLEN) {
2349     assert(false, "must use a large-enough buffer");
2350     buf[0] = '\0';
2351     return;
2352   }
2353   // Lazy resolve the path to current module.
2354   if (saved_jvm_path[0] != 0) {
2355     strcpy(buf, saved_jvm_path);
2356     return;
2357   }
2358 
2359   char dli_fname[MAXPATHLEN];
2360   bool ret = dll_address_to_library_name(
2361                 CAST_FROM_FN_PTR(address, os::jvm_path),
2362                 dli_fname, sizeof(dli_fname), NULL);
2363   assert(ret, "cannot locate libjvm");
2364   char *rp = NULL;
2365   if (ret && dli_fname[0] != '\0') {
2366     rp = realpath(dli_fname, buf);
2367   }
2368   if (rp == NULL)
2369     return;
2370 
2371   if (Arguments::created_by_gamma_launcher()) {
2372     // Support for the gamma launcher.  Typical value for buf is
2373     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2374     // the right place in the string, then assume we are installed in a JDK and
2375     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2376     // up the path so it looks like libjvm.so is installed there (append a
2377     // fake suffix hotspot/libjvm.so).
2378     const char *p = buf + strlen(buf) - 1;
2379     for (int count = 0; p > buf && count < 5; ++count) {
2380       for (--p; p > buf && *p != '/'; --p)
2381         /* empty */ ;
2382     }
2383 
2384     if (strncmp(p, "/jre/lib/", 9) != 0) {
2385       // Look for JAVA_HOME in the environment.
2386       char* java_home_var = ::getenv("JAVA_HOME");
2387       if (java_home_var != NULL && java_home_var[0] != 0) {
2388         char* jrelib_p;
2389         int len;
2390 
2391         // Check the current module name "libjvm.so".
2392         p = strrchr(buf, '/');
2393         assert(strstr(p, "/libjvm") == p, "invalid library name");
2394 
2395         rp = realpath(java_home_var, buf);
2396         if (rp == NULL)
2397           return;
2398 
2399         // determine if this is a legacy image or modules image
2400         // modules image doesn't have "jre" subdirectory
2401         len = strlen(buf);
2402         jrelib_p = buf + len;
2403         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2404         if (0 != access(buf, F_OK)) {
2405           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2406         }
2407 
2408         if (0 == access(buf, F_OK)) {
2409           // Use current module name "libjvm.so"
2410           len = strlen(buf);
2411           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2412         } else {
2413           // Go back to path of .so
2414           rp = realpath(dli_fname, buf);
2415           if (rp == NULL)
2416             return;
2417         }
2418       }
2419     }
2420   }
2421 
2422   strcpy(saved_jvm_path, buf);
2423 }
2424 
2425 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2426   // no prefix required, not even "_"
2427 }
2428 
2429 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2430   // no suffix required
2431 }
2432 
2433 ////////////////////////////////////////////////////////////////////////////////
2434 // sun.misc.Signal support
2435 
2436 static volatile jint sigint_count = 0;
2437 
2438 static void
2439 UserHandler(int sig, void *siginfo, void *context) {
2440   // 4511530 - sem_post is serialized and handled by the manager thread. When
2441   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2442   // don't want to flood the manager thread with sem_post requests.
2443   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2444       return;
2445 
2446   // Ctrl-C is pressed during error reporting, likely because the error
2447   // handler fails to abort. Let VM die immediately.
2448   if (sig == SIGINT && is_error_reported()) {
2449      os::die();
2450   }
2451 
2452   os::signal_notify(sig);
2453 }
2454 
2455 void* os::user_handler() {
2456   return CAST_FROM_FN_PTR(void*, UserHandler);
2457 }
2458 
2459 class Semaphore : public StackObj {
2460   public:
2461     Semaphore();
2462     ~Semaphore();
2463     void signal();
2464     void wait();
2465     bool trywait();
2466     bool timedwait(unsigned int sec, int nsec);
2467   private:
2468     sem_t _semaphore;
2469 };
2470 
2471 
2472 Semaphore::Semaphore() {
2473   sem_init(&_semaphore, 0, 0);
2474 }
2475 
2476 Semaphore::~Semaphore() {
2477   sem_destroy(&_semaphore);
2478 }
2479 
2480 void Semaphore::signal() {
2481   sem_post(&_semaphore);
2482 }
2483 
2484 void Semaphore::wait() {
2485   sem_wait(&_semaphore);
2486 }
2487 
2488 bool Semaphore::trywait() {
2489   return sem_trywait(&_semaphore) == 0;
2490 }
2491 
2492 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2493   struct timespec ts;
2494   unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2495 
2496   while (1) {
2497     int result = sem_timedwait(&_semaphore, &ts);
2498     if (result == 0) {
2499       return true;
2500     } else if (errno == EINTR) {
2501       continue;
2502     } else if (errno == ETIMEDOUT) {
2503       return false;
2504     } else {
2505       return false;
2506     }
2507   }
2508 }
2509 
2510 extern "C" {
2511   typedef void (*sa_handler_t)(int);
2512   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2513 }
2514 
2515 void* os::signal(int signal_number, void* handler) {
2516   struct sigaction sigAct, oldSigAct;
2517 
2518   sigfillset(&(sigAct.sa_mask));
2519   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2520   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2521 
2522   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2523     // -1 means registration failed
2524     return (void *)-1;
2525   }
2526 
2527   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2528 }
2529 
2530 void os::signal_raise(int signal_number) {
2531   ::raise(signal_number);
2532 }
2533 
2534 /*
2535  * The following code is moved from os.cpp for making this
2536  * code platform specific, which it is by its very nature.
2537  */
2538 
2539 // Will be modified when max signal is changed to be dynamic
2540 int os::sigexitnum_pd() {
2541   return NSIG;
2542 }
2543 
2544 // a counter for each possible signal value
2545 static volatile jint pending_signals[NSIG+1] = { 0 };
2546 
2547 // Linux(POSIX) specific hand shaking semaphore.
2548 static sem_t sig_sem;
2549 static Semaphore sr_semaphore;
2550 
2551 void os::signal_init_pd() {
2552   // Initialize signal structures
2553   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2554 
2555   // Initialize signal semaphore
2556   ::sem_init(&sig_sem, 0, 0);
2557 }
2558 
2559 void os::signal_notify(int sig) {
2560   Atomic::inc(&pending_signals[sig]);
2561   ::sem_post(&sig_sem);
2562 }
2563 
2564 static int check_pending_signals(bool wait) {
2565   Atomic::store(0, &sigint_count);
2566   for (;;) {
2567     for (int i = 0; i < NSIG + 1; i++) {
2568       jint n = pending_signals[i];
2569       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2570         return i;
2571       }
2572     }
2573     if (!wait) {
2574       return -1;
2575     }
2576     JavaThread *thread = JavaThread::current();
2577     ThreadBlockInVM tbivm(thread);
2578 
2579     bool threadIsSuspended;
2580     do {
2581       thread->set_suspend_equivalent();
2582       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2583       ::sem_wait(&sig_sem);
2584 
2585       // were we externally suspended while we were waiting?
2586       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2587       if (threadIsSuspended) {
2588         //
2589         // The semaphore has been incremented, but while we were waiting
2590         // another thread suspended us. We don't want to continue running
2591         // while suspended because that would surprise the thread that
2592         // suspended us.
2593         //
2594         ::sem_post(&sig_sem);
2595 
2596         thread->java_suspend_self();
2597       }
2598     } while (threadIsSuspended);
2599   }
2600 }
2601 
2602 int os::signal_lookup() {
2603   return check_pending_signals(false);
2604 }
2605 
2606 int os::signal_wait() {
2607   return check_pending_signals(true);
2608 }
2609 
2610 ////////////////////////////////////////////////////////////////////////////////
2611 // Virtual Memory
2612 
2613 int os::vm_page_size() {
2614   // Seems redundant as all get out
2615   assert(os::Linux::page_size() != -1, "must call os::init");
2616   return os::Linux::page_size();
2617 }
2618 
2619 // Solaris allocates memory by pages.
2620 int os::vm_allocation_granularity() {
2621   assert(os::Linux::page_size() != -1, "must call os::init");
2622   return os::Linux::page_size();
2623 }
2624 
2625 // Rationale behind this function:
2626 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2627 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2628 //  samples for JITted code. Here we create private executable mapping over the code cache
2629 //  and then we can use standard (well, almost, as mapping can change) way to provide
2630 //  info for the reporting script by storing timestamp and location of symbol
2631 void linux_wrap_code(char* base, size_t size) {
2632   static volatile jint cnt = 0;
2633 
2634   if (!UseOprofile) {
2635     return;
2636   }
2637 
2638   char buf[PATH_MAX+1];
2639   int num = Atomic::add(1, &cnt);
2640 
2641   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2642            os::get_temp_directory(), os::current_process_id(), num);
2643   unlink(buf);
2644 
2645   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2646 
2647   if (fd != -1) {
2648     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2649     if (rv != (off_t)-1) {
2650       if (::write(fd, "", 1) == 1) {
2651         mmap(base, size,
2652              PROT_READ|PROT_WRITE|PROT_EXEC,
2653              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2654       }
2655     }
2656     ::close(fd);
2657     unlink(buf);
2658   }
2659 }
2660 
2661 static bool recoverable_mmap_error(int err) {
2662   // See if the error is one we can let the caller handle. This
2663   // list of errno values comes from JBS-6843484. I can't find a
2664   // Linux man page that documents this specific set of errno
2665   // values so while this list currently matches Solaris, it may
2666   // change as we gain experience with this failure mode.
2667   switch (err) {
2668   case EBADF:
2669   case EINVAL:
2670   case ENOTSUP:
2671     // let the caller deal with these errors
2672     return true;
2673 
2674   default:
2675     // Any remaining errors on this OS can cause our reserved mapping
2676     // to be lost. That can cause confusion where different data
2677     // structures think they have the same memory mapped. The worst
2678     // scenario is if both the VM and a library think they have the
2679     // same memory mapped.
2680     return false;
2681   }
2682 }
2683 
2684 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2685                                     int err) {
2686   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2687           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2688           strerror(err), err);
2689 }
2690 
2691 static void warn_fail_commit_memory(char* addr, size_t size,
2692                                     size_t alignment_hint, bool exec,
2693                                     int err) {
2694   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2695           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2696           alignment_hint, exec, strerror(err), err);
2697 }
2698 
2699 // NOTE: Linux kernel does not really reserve the pages for us.
2700 //       All it does is to check if there are enough free pages
2701 //       left at the time of mmap(). This could be a potential
2702 //       problem.
2703 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2704   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2705   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2706                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2707   if (res != (uintptr_t) MAP_FAILED) {
2708     if (UseNUMAInterleaving) {
2709       numa_make_global(addr, size);
2710     }
2711     return 0;
2712   }
2713 
2714   int err = errno;  // save errno from mmap() call above
2715 
2716   if (!recoverable_mmap_error(err)) {
2717     warn_fail_commit_memory(addr, size, exec, err);
2718     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2719   }
2720 
2721   return err;
2722 }
2723 
2724 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2725   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2726 }
2727 
2728 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2729                                   const char* mesg) {
2730   assert(mesg != NULL, "mesg must be specified");
2731   int err = os::Linux::commit_memory_impl(addr, size, exec);
2732   if (err != 0) {
2733     // the caller wants all commit errors to exit with the specified mesg:
2734     warn_fail_commit_memory(addr, size, exec, err);
2735     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2736   }
2737 }
2738 
2739 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2740 #ifndef MAP_HUGETLB
2741 #define MAP_HUGETLB 0x40000
2742 #endif
2743 
2744 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2745 #ifndef MADV_HUGEPAGE
2746 #define MADV_HUGEPAGE 14
2747 #endif
2748 
2749 int os::Linux::commit_memory_impl(char* addr, size_t size,
2750                                   size_t alignment_hint, bool exec) {
2751   int err = os::Linux::commit_memory_impl(addr, size, exec);
2752   if (err == 0) {
2753     realign_memory(addr, size, alignment_hint);
2754   }
2755   return err;
2756 }
2757 
2758 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2759                           bool exec) {
2760   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2761 }
2762 
2763 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2764                                   size_t alignment_hint, bool exec,
2765                                   const char* mesg) {
2766   assert(mesg != NULL, "mesg must be specified");
2767   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2768   if (err != 0) {
2769     // the caller wants all commit errors to exit with the specified mesg:
2770     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2771     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2772   }
2773 }
2774 
2775 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2776   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2777     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2778     // be supported or the memory may already be backed by huge pages.
2779     ::madvise(addr, bytes, MADV_HUGEPAGE);
2780   }
2781 }
2782 
2783 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2784   // This method works by doing an mmap over an existing mmaping and effectively discarding
2785   // the existing pages. However it won't work for SHM-based large pages that cannot be
2786   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2787   // small pages on top of the SHM segment. This method always works for small pages, so we
2788   // allow that in any case.
2789   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2790     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2791   }
2792 }
2793 
2794 void os::numa_make_global(char *addr, size_t bytes) {
2795   Linux::numa_interleave_memory(addr, bytes);
2796 }
2797 
2798 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2799 // bind policy to MPOL_PREFERRED for the current thread.
2800 #define USE_MPOL_PREFERRED 0
2801 
2802 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2803   // To make NUMA and large pages more robust when both enabled, we need to ease
2804   // the requirements on where the memory should be allocated. MPOL_BIND is the
2805   // default policy and it will force memory to be allocated on the specified
2806   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2807   // the specified node, but will not force it. Using this policy will prevent
2808   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2809   // free large pages.
2810   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2811   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2812 }
2813 
2814 bool os::numa_topology_changed()   { return false; }
2815 
2816 size_t os::numa_get_groups_num() {
2817   int max_node = Linux::numa_max_node();
2818   return max_node > 0 ? max_node + 1 : 1;
2819 }
2820 
2821 int os::numa_get_group_id() {
2822   int cpu_id = Linux::sched_getcpu();
2823   if (cpu_id != -1) {
2824     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2825     if (lgrp_id != -1) {
2826       return lgrp_id;
2827     }
2828   }
2829   return 0;
2830 }
2831 
2832 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2833   for (size_t i = 0; i < size; i++) {
2834     ids[i] = i;
2835   }
2836   return size;
2837 }
2838 
2839 bool os::get_page_info(char *start, page_info* info) {
2840   return false;
2841 }
2842 
2843 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2844   return end;
2845 }
2846 
2847 
2848 int os::Linux::sched_getcpu_syscall(void) {
2849   unsigned int cpu;
2850   int retval = -1;
2851 
2852 #if defined(IA32)
2853 # ifndef SYS_getcpu
2854 # define SYS_getcpu 318
2855 # endif
2856   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2857 #elif defined(AMD64)
2858 // Unfortunately we have to bring all these macros here from vsyscall.h
2859 // to be able to compile on old linuxes.
2860 # define __NR_vgetcpu 2
2861 # define VSYSCALL_START (-10UL << 20)
2862 # define VSYSCALL_SIZE 1024
2863 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2864   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2865   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2866   retval = vgetcpu(&cpu, NULL, NULL);
2867 #endif
2868 
2869   return (retval == -1) ? retval : cpu;
2870 }
2871 
2872 // Something to do with the numa-aware allocator needs these symbols
2873 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2874 extern "C" JNIEXPORT void numa_error(char *where) { }
2875 extern "C" JNIEXPORT int fork1() { return fork(); }
2876 
2877 
2878 // If we are running with libnuma version > 2, then we should
2879 // be trying to use symbols with versions 1.1
2880 // If we are running with earlier version, which did not have symbol versions,
2881 // we should use the base version.
2882 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2883   void *f = dlvsym(handle, name, "libnuma_1.1");
2884   if (f == NULL) {
2885     f = dlsym(handle, name);
2886   }
2887   return f;
2888 }
2889 
2890 bool os::Linux::libnuma_init() {
2891   // sched_getcpu() should be in libc.
2892   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2893                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2894 
2895   // If it's not, try a direct syscall.
2896   if (sched_getcpu() == -1)
2897     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2898 
2899   if (sched_getcpu() != -1) { // Does it work?
2900     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2901     if (handle != NULL) {
2902       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2903                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2904       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2905                                        libnuma_dlsym(handle, "numa_max_node")));
2906       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2907                                         libnuma_dlsym(handle, "numa_available")));
2908       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2909                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2910       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2911                                             libnuma_dlsym(handle, "numa_interleave_memory")));
2912       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2913                                             libnuma_dlsym(handle, "numa_set_bind_policy")));
2914 
2915 
2916       if (numa_available() != -1) {
2917         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2918         // Create a cpu -> node mapping
2919         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2920         rebuild_cpu_to_node_map();
2921         return true;
2922       }
2923     }
2924   }
2925   return false;
2926 }
2927 
2928 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2929 // The table is later used in get_node_by_cpu().
2930 void os::Linux::rebuild_cpu_to_node_map() {
2931   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2932                               // in libnuma (possible values are starting from 16,
2933                               // and continuing up with every other power of 2, but less
2934                               // than the maximum number of CPUs supported by kernel), and
2935                               // is a subject to change (in libnuma version 2 the requirements
2936                               // are more reasonable) we'll just hardcode the number they use
2937                               // in the library.
2938   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2939 
2940   size_t cpu_num = os::active_processor_count();
2941   size_t cpu_map_size = NCPUS / BitsPerCLong;
2942   size_t cpu_map_valid_size =
2943     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2944 
2945   cpu_to_node()->clear();
2946   cpu_to_node()->at_grow(cpu_num - 1);
2947   size_t node_num = numa_get_groups_num();
2948 
2949   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2950   for (size_t i = 0; i < node_num; i++) {
2951     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2952       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2953         if (cpu_map[j] != 0) {
2954           for (size_t k = 0; k < BitsPerCLong; k++) {
2955             if (cpu_map[j] & (1UL << k)) {
2956               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2957             }
2958           }
2959         }
2960       }
2961     }
2962   }
2963   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2964 }
2965 
2966 int os::Linux::get_node_by_cpu(int cpu_id) {
2967   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2968     return cpu_to_node()->at(cpu_id);
2969   }
2970   return -1;
2971 }
2972 
2973 GrowableArray<int>* os::Linux::_cpu_to_node;
2974 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2975 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2976 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2977 os::Linux::numa_available_func_t os::Linux::_numa_available;
2978 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2979 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2980 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2981 unsigned long* os::Linux::_numa_all_nodes;
2982 
2983 bool os::pd_uncommit_memory(char* addr, size_t size) {
2984   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2985                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2986   return res  != (uintptr_t) MAP_FAILED;
2987 }
2988 
2989 static
2990 address get_stack_commited_bottom(address bottom, size_t size) {
2991   address nbot = bottom;
2992   address ntop = bottom + size;
2993 
2994   size_t page_sz = os::vm_page_size();
2995   unsigned pages = size / page_sz;
2996 
2997   unsigned char vec[1];
2998   unsigned imin = 1, imax = pages + 1, imid;
2999   int mincore_return_value;
3000 
3001   while (imin < imax) {
3002     imid = (imax + imin) / 2;
3003     nbot = ntop - (imid * page_sz);
3004 
3005     // Use a trick with mincore to check whether the page is mapped or not.
3006     // mincore sets vec to 1 if page resides in memory and to 0 if page
3007     // is swapped output but if page we are asking for is unmapped
3008     // it returns -1,ENOMEM
3009     mincore_return_value = mincore(nbot, page_sz, vec);
3010 
3011     if (mincore_return_value == -1) {
3012       // Page is not mapped go up
3013       // to find first mapped page
3014       if (errno != EAGAIN) {
3015         assert(errno == ENOMEM, "Unexpected mincore errno");
3016         imax = imid;
3017       }
3018     } else {
3019       // Page is mapped go down
3020       // to find first not mapped page
3021       imin = imid + 1;
3022     }
3023   }
3024 
3025   nbot = nbot + page_sz;
3026 
3027   // Adjust stack bottom one page up if last checked page is not mapped
3028   if (mincore_return_value == -1) {
3029     nbot = nbot + page_sz;
3030   }
3031 
3032   return nbot;
3033 }
3034 
3035 
3036 // Linux uses a growable mapping for the stack, and if the mapping for
3037 // the stack guard pages is not removed when we detach a thread the
3038 // stack cannot grow beyond the pages where the stack guard was
3039 // mapped.  If at some point later in the process the stack expands to
3040 // that point, the Linux kernel cannot expand the stack any further
3041 // because the guard pages are in the way, and a segfault occurs.
3042 //
3043 // However, it's essential not to split the stack region by unmapping
3044 // a region (leaving a hole) that's already part of the stack mapping,
3045 // so if the stack mapping has already grown beyond the guard pages at
3046 // the time we create them, we have to truncate the stack mapping.
3047 // So, we need to know the extent of the stack mapping when
3048 // create_stack_guard_pages() is called.
3049 
3050 // We only need this for stacks that are growable: at the time of
3051 // writing thread stacks don't use growable mappings (i.e. those
3052 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3053 // only applies to the main thread.
3054 
3055 // If the (growable) stack mapping already extends beyond the point
3056 // where we're going to put our guard pages, truncate the mapping at
3057 // that point by munmap()ping it.  This ensures that when we later
3058 // munmap() the guard pages we don't leave a hole in the stack
3059 // mapping. This only affects the main/initial thread
3060 
3061 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3062 
3063   if (os::Linux::is_initial_thread()) {
3064     // As we manually grow stack up to bottom inside create_attached_thread(),
3065     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3066     // we don't need to do anything special.
3067     // Check it first, before calling heavy function.
3068     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3069     unsigned char vec[1];
3070 
3071     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3072       // Fallback to slow path on all errors, including EAGAIN
3073       stack_extent = (uintptr_t) get_stack_commited_bottom(
3074                                     os::Linux::initial_thread_stack_bottom(),
3075                                     (size_t)addr - stack_extent);
3076     }
3077 
3078     if (stack_extent < (uintptr_t)addr) {
3079       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3080     }
3081   }
3082 
3083   return os::commit_memory(addr, size, !ExecMem);
3084 }
3085 
3086 // If this is a growable mapping, remove the guard pages entirely by
3087 // munmap()ping them.  If not, just call uncommit_memory(). This only
3088 // affects the main/initial thread, but guard against future OS changes
3089 // It's safe to always unmap guard pages for initial thread because we
3090 // always place it right after end of the mapped region
3091 
3092 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3093   uintptr_t stack_extent, stack_base;
3094 
3095   if (os::Linux::is_initial_thread()) {
3096     return ::munmap(addr, size) == 0;
3097   }
3098 
3099   return os::uncommit_memory(addr, size);
3100 }
3101 
3102 static address _highest_vm_reserved_address = NULL;
3103 
3104 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3105 // at 'requested_addr'. If there are existing memory mappings at the same
3106 // location, however, they will be overwritten. If 'fixed' is false,
3107 // 'requested_addr' is only treated as a hint, the return value may or
3108 // may not start from the requested address. Unlike Linux mmap(), this
3109 // function returns NULL to indicate failure.
3110 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3111   char * addr;
3112   int flags;
3113 
3114   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3115   if (fixed) {
3116     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3117     flags |= MAP_FIXED;
3118   }
3119 
3120   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3121   // touch an uncommitted page. Otherwise, the read/write might
3122   // succeed if we have enough swap space to back the physical page.
3123   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3124                        flags, -1, 0);
3125 
3126   if (addr != MAP_FAILED) {
3127     // anon_mmap() should only get called during VM initialization,
3128     // don't need lock (actually we can skip locking even it can be called
3129     // from multiple threads, because _highest_vm_reserved_address is just a
3130     // hint about the upper limit of non-stack memory regions.)
3131     if ((address)addr + bytes > _highest_vm_reserved_address) {
3132       _highest_vm_reserved_address = (address)addr + bytes;
3133     }
3134   }
3135 
3136   return addr == MAP_FAILED ? NULL : addr;
3137 }
3138 
3139 // Don't update _highest_vm_reserved_address, because there might be memory
3140 // regions above addr + size. If so, releasing a memory region only creates
3141 // a hole in the address space, it doesn't help prevent heap-stack collision.
3142 //
3143 static int anon_munmap(char * addr, size_t size) {
3144   return ::munmap(addr, size) == 0;
3145 }
3146 
3147 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3148                          size_t alignment_hint) {
3149   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3150 }
3151 
3152 bool os::pd_release_memory(char* addr, size_t size) {
3153   return anon_munmap(addr, size);
3154 }
3155 
3156 static address highest_vm_reserved_address() {
3157   return _highest_vm_reserved_address;
3158 }
3159 
3160 static bool linux_mprotect(char* addr, size_t size, int prot) {
3161   // Linux wants the mprotect address argument to be page aligned.
3162   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3163 
3164   // According to SUSv3, mprotect() should only be used with mappings
3165   // established by mmap(), and mmap() always maps whole pages. Unaligned
3166   // 'addr' likely indicates problem in the VM (e.g. trying to change
3167   // protection of malloc'ed or statically allocated memory). Check the
3168   // caller if you hit this assert.
3169   assert(addr == bottom, "sanity check");
3170 
3171   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3172   return ::mprotect(bottom, size, prot) == 0;
3173 }
3174 
3175 // Set protections specified
3176 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3177                         bool is_committed) {
3178   unsigned int p = 0;
3179   switch (prot) {
3180   case MEM_PROT_NONE: p = PROT_NONE; break;
3181   case MEM_PROT_READ: p = PROT_READ; break;
3182   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3183   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3184   default:
3185     ShouldNotReachHere();
3186   }
3187   // is_committed is unused.
3188   return linux_mprotect(addr, bytes, p);
3189 }
3190 
3191 bool os::guard_memory(char* addr, size_t size) {
3192   return linux_mprotect(addr, size, PROT_NONE);
3193 }
3194 
3195 bool os::unguard_memory(char* addr, size_t size) {
3196   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3197 }
3198 
3199 bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
3200   bool result = false;
3201   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3202                  MAP_ANONYMOUS|MAP_PRIVATE,
3203                  -1, 0);
3204   if (p != MAP_FAILED) {
3205     void *aligned_p = align_ptr_up(p, page_size);
3206 
3207     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3208 
3209     munmap(p, page_size * 2);
3210   }
3211 
3212   if (warn && !result) {
3213     warning("TransparentHugePages is not supported by the operating system.");
3214   }
3215 
3216   return result;
3217 }
3218 
3219 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3220   bool result = false;
3221   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3222                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3223                  -1, 0);
3224 
3225   if (p != MAP_FAILED) {
3226     // We don't know if this really is a huge page or not.
3227     FILE *fp = fopen("/proc/self/maps", "r");
3228     if (fp) {
3229       while (!feof(fp)) {
3230         char chars[257];
3231         long x = 0;
3232         if (fgets(chars, sizeof(chars), fp)) {
3233           if (sscanf(chars, "%lx-%*x", &x) == 1
3234               && x == (long)p) {
3235             if (strstr (chars, "hugepage")) {
3236               result = true;
3237               break;
3238             }
3239           }
3240         }
3241       }
3242       fclose(fp);
3243     }
3244     munmap(p, page_size);
3245   }
3246 
3247   if (warn && !result) {
3248     warning("HugeTLBFS is not supported by the operating system.");
3249   }
3250 
3251   return result;
3252 }
3253 
3254 /*
3255 * Set the coredump_filter bits to include largepages in core dump (bit 6)
3256 *
3257 * From the coredump_filter documentation:
3258 *
3259 * - (bit 0) anonymous private memory
3260 * - (bit 1) anonymous shared memory
3261 * - (bit 2) file-backed private memory
3262 * - (bit 3) file-backed shared memory
3263 * - (bit 4) ELF header pages in file-backed private memory areas (it is
3264 *           effective only if the bit 2 is cleared)
3265 * - (bit 5) hugetlb private memory
3266 * - (bit 6) hugetlb shared memory
3267 */
3268 static void set_coredump_filter(void) {
3269   FILE *f;
3270   long cdm;
3271 
3272   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3273     return;
3274   }
3275 
3276   if (fscanf(f, "%lx", &cdm) != 1) {
3277     fclose(f);
3278     return;
3279   }
3280 
3281   rewind(f);
3282 
3283   if ((cdm & LARGEPAGES_BIT) == 0) {
3284     cdm |= LARGEPAGES_BIT;
3285     fprintf(f, "%#lx", cdm);
3286   }
3287 
3288   fclose(f);
3289 }
3290 
3291 // Large page support
3292 
3293 static size_t _large_page_size = 0;
3294 
3295 size_t os::Linux::find_large_page_size() {
3296   size_t large_page_size = 0;
3297 
3298   // large_page_size on Linux is used to round up heap size. x86 uses either
3299   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3300   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3301   // page as large as 256M.
3302   //
3303   // Here we try to figure out page size by parsing /proc/meminfo and looking
3304   // for a line with the following format:
3305   //    Hugepagesize:     2048 kB
3306   //
3307   // If we can't determine the value (e.g. /proc is not mounted, or the text
3308   // format has been changed), we'll use the largest page size supported by
3309   // the processor.
3310 
3311 #ifndef ZERO
3312   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3313                      ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3314 #endif // ZERO
3315 
3316   FILE *fp = fopen("/proc/meminfo", "r");
3317   if (fp) {
3318     while (!feof(fp)) {
3319       int x = 0;
3320       char buf[16];
3321       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3322         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3323           large_page_size = x * K;
3324           break;
3325         }
3326       } else {
3327         // skip to next line
3328         for (;;) {
3329           int ch = fgetc(fp);
3330           if (ch == EOF || ch == (int)'\n') break;
3331         }
3332       }
3333     }
3334     fclose(fp);
3335   }
3336 
3337   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3338     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3339         SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3340         proper_unit_for_byte_size(large_page_size));
3341   }
3342 
3343   return large_page_size;
3344 }
3345 
3346 size_t os::Linux::setup_large_page_size() {
3347   _large_page_size = Linux::find_large_page_size();
3348   const size_t default_page_size = (size_t)Linux::page_size();
3349   if (_large_page_size > default_page_size) {
3350     _page_sizes[0] = _large_page_size;
3351     _page_sizes[1] = default_page_size;
3352     _page_sizes[2] = 0;
3353   }
3354 
3355   return _large_page_size;
3356 }
3357 
3358 bool os::Linux::setup_large_page_type(size_t page_size) {
3359   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3360       FLAG_IS_DEFAULT(UseSHM) &&
3361       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3362 
3363     // The type of large pages has not been specified by the user.
3364 
3365     // Try UseHugeTLBFS and then UseSHM.
3366     UseHugeTLBFS = UseSHM = true;
3367 
3368     // Don't try UseTransparentHugePages since there are known
3369     // performance issues with it turned on. This might change in the future.
3370     UseTransparentHugePages = false;
3371   }
3372 
3373   if (UseTransparentHugePages) {
3374     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3375     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3376       UseHugeTLBFS = false;
3377       UseSHM = false;
3378       return true;
3379     }
3380     UseTransparentHugePages = false;
3381   }
3382 
3383   if (UseHugeTLBFS) {
3384     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3385     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3386       UseSHM = false;
3387       return true;
3388     }
3389     UseHugeTLBFS = false;
3390   }
3391 
3392   return UseSHM;
3393 }
3394 
3395 void os::large_page_init() {
3396   if (!UseLargePages &&
3397       !UseTransparentHugePages &&
3398       !UseHugeTLBFS &&
3399       !UseSHM) {
3400     // Not using large pages.
3401     return;
3402   }
3403 
3404   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3405     // The user explicitly turned off large pages.
3406     // Ignore the rest of the large pages flags.
3407     UseTransparentHugePages = false;
3408     UseHugeTLBFS = false;
3409     UseSHM = false;
3410     return;
3411   }
3412 
3413   size_t large_page_size = Linux::setup_large_page_size();
3414   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3415 
3416   set_coredump_filter();
3417 }
3418 
3419 #ifndef SHM_HUGETLB
3420 #define SHM_HUGETLB 04000
3421 #endif
3422 
3423 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3424   // "exec" is passed in but not used.  Creating the shared image for
3425   // the code cache doesn't have an SHM_X executable permission to check.
3426   assert(UseLargePages && UseSHM, "only for SHM large pages");
3427   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3428 
3429   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3430     return NULL; // Fallback to small pages.
3431   }
3432 
3433   key_t key = IPC_PRIVATE;
3434   char *addr;
3435 
3436   bool warn_on_failure = UseLargePages &&
3437                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3438                          !FLAG_IS_DEFAULT(UseSHM) ||
3439                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3440                         );
3441   char msg[128];
3442 
3443   // Create a large shared memory region to attach to based on size.
3444   // Currently, size is the total size of the heap
3445   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3446   if (shmid == -1) {
3447      // Possible reasons for shmget failure:
3448      // 1. shmmax is too small for Java heap.
3449      //    > check shmmax value: cat /proc/sys/kernel/shmmax
3450      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3451      // 2. not enough large page memory.
3452      //    > check available large pages: cat /proc/meminfo
3453      //    > increase amount of large pages:
3454      //          echo new_value > /proc/sys/vm/nr_hugepages
3455      //      Note 1: different Linux may use different name for this property,
3456      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3457      //      Note 2: it's possible there's enough physical memory available but
3458      //            they are so fragmented after a long run that they can't
3459      //            coalesce into large pages. Try to reserve large pages when
3460      //            the system is still "fresh".
3461      if (warn_on_failure) {
3462        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3463        warning(msg);
3464      }
3465      return NULL;
3466   }
3467 
3468   // attach to the region
3469   addr = (char*)shmat(shmid, req_addr, 0);
3470   int err = errno;
3471 
3472   // Remove shmid. If shmat() is successful, the actual shared memory segment
3473   // will be deleted when it's detached by shmdt() or when the process
3474   // terminates. If shmat() is not successful this will remove the shared
3475   // segment immediately.
3476   shmctl(shmid, IPC_RMID, NULL);
3477 
3478   if ((intptr_t)addr == -1) {
3479      if (warn_on_failure) {
3480        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3481        warning(msg);
3482      }
3483      return NULL;
3484   }
3485 
3486   return addr;
3487 }
3488 
3489 static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
3490   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3491 
3492   bool warn_on_failure = UseLargePages &&
3493       (!FLAG_IS_DEFAULT(UseLargePages) ||
3494        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3495        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3496 
3497   if (warn_on_failure) {
3498     char msg[128];
3499     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3500         PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3501     warning(msg);
3502   }
3503 }
3504 
3505 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
3506   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3507   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3508   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3509 
3510   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3511   char* addr = (char*)::mmap(req_addr, bytes, prot,
3512                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3513                              -1, 0);
3514 
3515   if (addr == MAP_FAILED) {
3516     warn_on_large_pages_failure(req_addr, bytes, errno);
3517     return NULL;
3518   }
3519 
3520   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3521 
3522   return addr;
3523 }
3524 
3525 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3526   size_t large_page_size = os::large_page_size();
3527 
3528   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3529 
3530   // Allocate small pages.
3531 
3532   char* start;
3533   if (req_addr != NULL) {
3534     assert(is_ptr_aligned(req_addr, alignment), "Must be");
3535     assert(is_size_aligned(bytes, alignment), "Must be");
3536     start = os::reserve_memory(bytes, req_addr);
3537     assert(start == NULL || start == req_addr, "Must be");
3538   } else {
3539     start = os::reserve_memory_aligned(bytes, alignment);
3540   }
3541 
3542   if (start == NULL) {
3543     return NULL;
3544   }
3545 
3546   assert(is_ptr_aligned(start, alignment), "Must be");
3547 
3548   // os::reserve_memory_special will record this memory area.
3549   // Need to release it here to prevent overlapping reservations.
3550   MemTracker::record_virtual_memory_release((address)start, bytes);
3551 
3552   char* end = start + bytes;
3553 
3554   // Find the regions of the allocated chunk that can be promoted to large pages.
3555   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3556   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3557 
3558   size_t lp_bytes = lp_end - lp_start;
3559 
3560   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3561 
3562   if (lp_bytes == 0) {
3563     // The mapped region doesn't even span the start and the end of a large page.
3564     // Fall back to allocate a non-special area.
3565     ::munmap(start, end - start);
3566     return NULL;
3567   }
3568 
3569   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3570 
3571 
3572   void* result;
3573 
3574   if (start != lp_start) {
3575     result = ::mmap(start, lp_start - start, prot,
3576                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3577                     -1, 0);
3578     if (result == MAP_FAILED) {
3579       ::munmap(lp_start, end - lp_start);
3580       return NULL;
3581     }
3582   }
3583 
3584   result = ::mmap(lp_start, lp_bytes, prot,
3585                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3586                   -1, 0);
3587   if (result == MAP_FAILED) {
3588     warn_on_large_pages_failure(req_addr, bytes, errno);
3589     // If the mmap above fails, the large pages region will be unmapped and we
3590     // have regions before and after with small pages. Release these regions.
3591     //
3592     // |  mapped  |  unmapped  |  mapped  |
3593     // ^          ^            ^          ^
3594     // start      lp_start     lp_end     end
3595     //
3596     ::munmap(start, lp_start - start);
3597     ::munmap(lp_end, end - lp_end);
3598     return NULL;
3599   }
3600 
3601   if (lp_end != end) {
3602       result = ::mmap(lp_end, end - lp_end, prot,
3603                       MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3604                       -1, 0);
3605     if (result == MAP_FAILED) {
3606       ::munmap(start, lp_end - start);
3607       return NULL;
3608     }
3609   }
3610 
3611   return start;
3612 }
3613 
3614 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3615   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3616   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3617   assert(is_power_of_2(alignment), "Must be");
3618   assert(is_power_of_2(os::large_page_size()), "Must be");
3619   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3620 
3621   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3622     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3623   } else {
3624     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3625   }
3626 }
3627 
3628 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3629   assert(UseLargePages, "only for large pages");
3630 
3631   char* addr;
3632   if (UseSHM) {
3633     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3634   } else {
3635     assert(UseHugeTLBFS, "must be");
3636     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3637   }
3638 
3639   if (addr != NULL) {
3640     if (UseNUMAInterleaving) {
3641       numa_make_global(addr, bytes);
3642     }
3643 
3644     // The memory is committed
3645     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
3646   }
3647 
3648   return addr;
3649 }
3650 
3651 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3652   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3653   return shmdt(base) == 0;
3654 }
3655 
3656 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3657   return pd_release_memory(base, bytes);
3658 }
3659 
3660 bool os::release_memory_special(char* base, size_t bytes) {
3661   assert(UseLargePages, "only for large pages");
3662 
3663   MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3664 
3665   bool res;
3666   if (UseSHM) {
3667     res = os::Linux::release_memory_special_shm(base, bytes);
3668   } else {
3669     assert(UseHugeTLBFS, "must be");
3670     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3671   }
3672 
3673   if (res) {
3674     tkr.record((address)base, bytes);
3675   } else {
3676     tkr.discard();
3677   }
3678 
3679   return res;
3680 }
3681 
3682 size_t os::large_page_size() {
3683   return _large_page_size;
3684 }
3685 
3686 // With SysV SHM the entire memory region must be allocated as shared
3687 // memory.
3688 // HugeTLBFS allows application to commit large page memory on demand.
3689 // However, when committing memory with HugeTLBFS fails, the region
3690 // that was supposed to be committed will lose the old reservation
3691 // and allow other threads to steal that memory region. Because of this
3692 // behavior we can't commit HugeTLBFS memory.
3693 bool os::can_commit_large_page_memory() {
3694   return UseTransparentHugePages;
3695 }
3696 
3697 bool os::can_execute_large_page_memory() {
3698   return UseTransparentHugePages || UseHugeTLBFS;
3699 }
3700 
3701 // Reserve memory at an arbitrary address, only if that area is
3702 // available (and not reserved for something else).
3703 
3704 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3705   const int max_tries = 10;
3706   char* base[max_tries];
3707   size_t size[max_tries];
3708   const size_t gap = 0x000000;
3709 
3710   // Assert only that the size is a multiple of the page size, since
3711   // that's all that mmap requires, and since that's all we really know
3712   // about at this low abstraction level.  If we need higher alignment,
3713   // we can either pass an alignment to this method or verify alignment
3714   // in one of the methods further up the call chain.  See bug 5044738.
3715   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3716 
3717   // Repeatedly allocate blocks until the block is allocated at the
3718   // right spot. Give up after max_tries. Note that reserve_memory() will
3719   // automatically update _highest_vm_reserved_address if the call is
3720   // successful. The variable tracks the highest memory address every reserved
3721   // by JVM. It is used to detect heap-stack collision if running with
3722   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3723   // space than needed, it could confuse the collision detecting code. To
3724   // solve the problem, save current _highest_vm_reserved_address and
3725   // calculate the correct value before return.
3726   address old_highest = _highest_vm_reserved_address;
3727 
3728   // Linux mmap allows caller to pass an address as hint; give it a try first,
3729   // if kernel honors the hint then we can return immediately.
3730   char * addr = anon_mmap(requested_addr, bytes, false);
3731   if (addr == requested_addr) {
3732      return requested_addr;
3733   }
3734 
3735   if (addr != NULL) {
3736      // mmap() is successful but it fails to reserve at the requested address
3737      anon_munmap(addr, bytes);
3738   }
3739 
3740   int i;
3741   for (i = 0; i < max_tries; ++i) {
3742     base[i] = reserve_memory(bytes);
3743 
3744     if (base[i] != NULL) {
3745       // Is this the block we wanted?
3746       if (base[i] == requested_addr) {
3747         size[i] = bytes;
3748         break;
3749       }
3750 
3751       // Does this overlap the block we wanted? Give back the overlapped
3752       // parts and try again.
3753 
3754       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3755       if (top_overlap >= 0 && top_overlap < bytes) {
3756         unmap_memory(base[i], top_overlap);
3757         base[i] += top_overlap;
3758         size[i] = bytes - top_overlap;
3759       } else {
3760         size_t bottom_overlap = base[i] + bytes - requested_addr;
3761         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3762           unmap_memory(requested_addr, bottom_overlap);
3763           size[i] = bytes - bottom_overlap;
3764         } else {
3765           size[i] = bytes;
3766         }
3767       }
3768     }
3769   }
3770 
3771   // Give back the unused reserved pieces.
3772 
3773   for (int j = 0; j < i; ++j) {
3774     if (base[j] != NULL) {
3775       unmap_memory(base[j], size[j]);
3776     }
3777   }
3778 
3779   if (i < max_tries) {
3780     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3781     return requested_addr;
3782   } else {
3783     _highest_vm_reserved_address = old_highest;
3784     return NULL;
3785   }
3786 }
3787 
3788 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3789   return ::read(fd, buf, nBytes);
3790 }
3791 
3792 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3793 // Solaris uses poll(), linux uses park().
3794 // Poll() is likely a better choice, assuming that Thread.interrupt()
3795 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3796 // SIGSEGV, see 4355769.
3797 
3798 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3799   assert(thread == Thread::current(),  "thread consistency check");
3800 
3801   ParkEvent * const slp = thread->_SleepEvent ;
3802   slp->reset() ;
3803   OrderAccess::fence() ;
3804 
3805   if (interruptible) {
3806     jlong prevtime = javaTimeNanos();
3807 
3808     for (;;) {
3809       if (os::is_interrupted(thread, true)) {
3810         return OS_INTRPT;
3811       }
3812 
3813       jlong newtime = javaTimeNanos();
3814 
3815       if (newtime - prevtime < 0) {
3816         // time moving backwards, should only happen if no monotonic clock
3817         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3818         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3819       } else {
3820         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3821       }
3822 
3823       if(millis <= 0) {
3824         return OS_OK;
3825       }
3826 
3827       prevtime = newtime;
3828 
3829       {
3830         assert(thread->is_Java_thread(), "sanity check");
3831         JavaThread *jt = (JavaThread *) thread;
3832         ThreadBlockInVM tbivm(jt);
3833         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3834 
3835         jt->set_suspend_equivalent();
3836         // cleared by handle_special_suspend_equivalent_condition() or
3837         // java_suspend_self() via check_and_wait_while_suspended()
3838 
3839         slp->park(millis);
3840 
3841         // were we externally suspended while we were waiting?
3842         jt->check_and_wait_while_suspended();
3843       }
3844     }
3845   } else {
3846     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3847     jlong prevtime = javaTimeNanos();
3848 
3849     for (;;) {
3850       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3851       // the 1st iteration ...
3852       jlong newtime = javaTimeNanos();
3853 
3854       if (newtime - prevtime < 0) {
3855         // time moving backwards, should only happen if no monotonic clock
3856         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3857         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3858       } else {
3859         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3860       }
3861 
3862       if(millis <= 0) break ;
3863 
3864       prevtime = newtime;
3865       slp->park(millis);
3866     }
3867     return OS_OK ;
3868   }
3869 }
3870 
3871 //
3872 // Short sleep, direct OS call.
3873 //
3874 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3875 // sched_yield(2) will actually give up the CPU:
3876 //
3877 //   * Alone on this pariticular CPU, keeps running.
3878 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled 
3879 //     (pre 2.6.39).
3880 //
3881 // So calling this with 0 is an alternative.
3882 //
3883 void os::naked_short_sleep(jlong ms) {
3884   struct timespec req;
3885 
3886   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3887   req.tv_sec = 0;
3888   if (ms > 0) {
3889     req.tv_nsec = (ms % 1000) * 1000000;
3890   }
3891   else {
3892     req.tv_nsec = 1;
3893   }
3894 
3895   nanosleep(&req, NULL);
3896 
3897   return;
3898 }
3899 
3900 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3901 void os::infinite_sleep() {
3902   while (true) {    // sleep forever ...
3903     ::sleep(100);   // ... 100 seconds at a time
3904   }
3905 }
3906 
3907 // Used to convert frequent JVM_Yield() to nops
3908 bool os::dont_yield() {
3909   return DontYieldALot;
3910 }
3911 
3912 void os::yield() {
3913   sched_yield();
3914 }
3915 
3916 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3917 
3918 void os::yield_all(int attempts) {
3919   // Yields to all threads, including threads with lower priorities
3920   // Threads on Linux are all with same priority. The Solaris style
3921   // os::yield_all() with nanosleep(1ms) is not necessary.
3922   sched_yield();
3923 }
3924 
3925 // Called from the tight loops to possibly influence time-sharing heuristics
3926 void os::loop_breaker(int attempts) {
3927   os::yield_all(attempts);
3928 }
3929 
3930 ////////////////////////////////////////////////////////////////////////////////
3931 // thread priority support
3932 
3933 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3934 // only supports dynamic priority, static priority must be zero. For real-time
3935 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3936 // However, for large multi-threaded applications, SCHED_RR is not only slower
3937 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3938 // of 5 runs - Sep 2005).
3939 //
3940 // The following code actually changes the niceness of kernel-thread/LWP. It
3941 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3942 // not the entire user process, and user level threads are 1:1 mapped to kernel
3943 // threads. It has always been the case, but could change in the future. For
3944 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3945 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3946 
3947 int os::java_to_os_priority[CriticalPriority + 1] = {
3948   19,              // 0 Entry should never be used
3949 
3950    4,              // 1 MinPriority
3951    3,              // 2
3952    2,              // 3
3953 
3954    1,              // 4
3955    0,              // 5 NormPriority
3956   -1,              // 6
3957 
3958   -2,              // 7
3959   -3,              // 8
3960   -4,              // 9 NearMaxPriority
3961 
3962   -5,              // 10 MaxPriority
3963 
3964   -5               // 11 CriticalPriority
3965 };
3966 
3967 static int prio_init() {
3968   if (ThreadPriorityPolicy == 1) {
3969     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3970     // if effective uid is not root. Perhaps, a more elegant way of doing
3971     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3972     if (geteuid() != 0) {
3973       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3974         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3975       }
3976       ThreadPriorityPolicy = 0;
3977     }
3978   }
3979   if (UseCriticalJavaThreadPriority) {
3980     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3981   }
3982   return 0;
3983 }
3984 
3985 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3986   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3987 
3988   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3989   return (ret == 0) ? OS_OK : OS_ERR;
3990 }
3991 
3992 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3993   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3994     *priority_ptr = java_to_os_priority[NormPriority];
3995     return OS_OK;
3996   }
3997 
3998   errno = 0;
3999   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4000   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4001 }
4002 
4003 // Hint to the underlying OS that a task switch would not be good.
4004 // Void return because it's a hint and can fail.
4005 void os::hint_no_preempt() {}
4006 
4007 ////////////////////////////////////////////////////////////////////////////////
4008 // suspend/resume support
4009 
4010 //  the low-level signal-based suspend/resume support is a remnant from the
4011 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4012 //  within hotspot. Now there is a single use-case for this:
4013 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
4014 //      that runs in the watcher thread.
4015 //  The remaining code is greatly simplified from the more general suspension
4016 //  code that used to be used.
4017 //
4018 //  The protocol is quite simple:
4019 //  - suspend:
4020 //      - sends a signal to the target thread
4021 //      - polls the suspend state of the osthread using a yield loop
4022 //      - target thread signal handler (SR_handler) sets suspend state
4023 //        and blocks in sigsuspend until continued
4024 //  - resume:
4025 //      - sets target osthread state to continue
4026 //      - sends signal to end the sigsuspend loop in the SR_handler
4027 //
4028 //  Note that the SR_lock plays no role in this suspend/resume protocol.
4029 //
4030 
4031 static void resume_clear_context(OSThread *osthread) {
4032   osthread->set_ucontext(NULL);
4033   osthread->set_siginfo(NULL);
4034 }
4035 
4036 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
4037   osthread->set_ucontext(context);
4038   osthread->set_siginfo(siginfo);
4039 }
4040 
4041 //
4042 // Handler function invoked when a thread's execution is suspended or
4043 // resumed. We have to be careful that only async-safe functions are
4044 // called here (Note: most pthread functions are not async safe and
4045 // should be avoided.)
4046 //
4047 // Note: sigwait() is a more natural fit than sigsuspend() from an
4048 // interface point of view, but sigwait() prevents the signal hander
4049 // from being run. libpthread would get very confused by not having
4050 // its signal handlers run and prevents sigwait()'s use with the
4051 // mutex granting granting signal.
4052 //
4053 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4054 //
4055 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4056   // Save and restore errno to avoid confusing native code with EINTR
4057   // after sigsuspend.
4058   int old_errno = errno;
4059 
4060   Thread* thread = Thread::current();
4061   OSThread* osthread = thread->osthread();
4062   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4063 
4064   os::SuspendResume::State current = osthread->sr.state();
4065   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4066     suspend_save_context(osthread, siginfo, context);
4067 
4068     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4069     os::SuspendResume::State state = osthread->sr.suspended();
4070     if (state == os::SuspendResume::SR_SUSPENDED) {
4071       sigset_t suspend_set;  // signals for sigsuspend()
4072 
4073       // get current set of blocked signals and unblock resume signal
4074       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4075       sigdelset(&suspend_set, SR_signum);
4076 
4077       sr_semaphore.signal();
4078       // wait here until we are resumed
4079       while (1) {
4080         sigsuspend(&suspend_set);
4081 
4082         os::SuspendResume::State result = osthread->sr.running();
4083         if (result == os::SuspendResume::SR_RUNNING) {
4084           sr_semaphore.signal();
4085           break;
4086         }
4087       }
4088 
4089     } else if (state == os::SuspendResume::SR_RUNNING) {
4090       // request was cancelled, continue
4091     } else {
4092       ShouldNotReachHere();
4093     }
4094 
4095     resume_clear_context(osthread);
4096   } else if (current == os::SuspendResume::SR_RUNNING) {
4097     // request was cancelled, continue
4098   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4099     // ignore
4100   } else {
4101     // ignore
4102   }
4103 
4104   errno = old_errno;
4105 }
4106 
4107 
4108 static int SR_initialize() {
4109   struct sigaction act;
4110   char *s;
4111   /* Get signal number to use for suspend/resume */
4112   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4113     int sig = ::strtol(s, 0, 10);
4114     if (sig > 0 || sig < _NSIG) {
4115         SR_signum = sig;
4116     }
4117   }
4118 
4119   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4120         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4121 
4122   sigemptyset(&SR_sigset);
4123   sigaddset(&SR_sigset, SR_signum);
4124 
4125   /* Set up signal handler for suspend/resume */
4126   act.sa_flags = SA_RESTART|SA_SIGINFO;
4127   act.sa_handler = (void (*)(int)) SR_handler;
4128 
4129   // SR_signum is blocked by default.
4130   // 4528190 - We also need to block pthread restart signal (32 on all
4131   // supported Linux platforms). Note that LinuxThreads need to block
4132   // this signal for all threads to work properly. So we don't have
4133   // to use hard-coded signal number when setting up the mask.
4134   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4135 
4136   if (sigaction(SR_signum, &act, 0) == -1) {
4137     return -1;
4138   }
4139 
4140   // Save signal flag
4141   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4142   return 0;
4143 }
4144 
4145 static int sr_notify(OSThread* osthread) {
4146   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4147   assert_status(status == 0, status, "pthread_kill");
4148   return status;
4149 }
4150 
4151 // "Randomly" selected value for how long we want to spin
4152 // before bailing out on suspending a thread, also how often
4153 // we send a signal to a thread we want to resume
4154 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4155 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4156 
4157 // returns true on success and false on error - really an error is fatal
4158 // but this seems the normal response to library errors
4159 static bool do_suspend(OSThread* osthread) {
4160   assert(osthread->sr.is_running(), "thread should be running");
4161   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4162 
4163   // mark as suspended and send signal
4164   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4165     // failed to switch, state wasn't running?
4166     ShouldNotReachHere();
4167     return false;
4168   }
4169 
4170   if (sr_notify(osthread) != 0) {
4171     ShouldNotReachHere();
4172   }
4173 
4174   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4175   while (true) {
4176     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4177       break;
4178     } else {
4179       // timeout
4180       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4181       if (cancelled == os::SuspendResume::SR_RUNNING) {
4182         return false;
4183       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4184         // make sure that we consume the signal on the semaphore as well
4185         sr_semaphore.wait();
4186         break;
4187       } else {
4188         ShouldNotReachHere();
4189         return false;
4190       }
4191     }
4192   }
4193 
4194   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4195   return true;
4196 }
4197 
4198 static void do_resume(OSThread* osthread) {
4199   assert(osthread->sr.is_suspended(), "thread should be suspended");
4200   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4201 
4202   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4203     // failed to switch to WAKEUP_REQUEST
4204     ShouldNotReachHere();
4205     return;
4206   }
4207 
4208   while (true) {
4209     if (sr_notify(osthread) == 0) {
4210       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4211         if (osthread->sr.is_running()) {
4212           return;
4213         }
4214       }
4215     } else {
4216       ShouldNotReachHere();
4217     }
4218   }
4219 
4220   guarantee(osthread->sr.is_running(), "Must be running!");
4221 }
4222 
4223 ////////////////////////////////////////////////////////////////////////////////
4224 // interrupt support
4225 
4226 void os::interrupt(Thread* thread) {
4227   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4228     "possibility of dangling Thread pointer");
4229 
4230   OSThread* osthread = thread->osthread();
4231 
4232   if (!osthread->interrupted()) {
4233     osthread->set_interrupted(true);
4234     // More than one thread can get here with the same value of osthread,
4235     // resulting in multiple notifications.  We do, however, want the store
4236     // to interrupted() to be visible to other threads before we execute unpark().
4237     OrderAccess::fence();
4238     ParkEvent * const slp = thread->_SleepEvent ;
4239     if (slp != NULL) slp->unpark() ;
4240   }
4241 
4242   // For JSR166. Unpark even if interrupt status already was set
4243   if (thread->is_Java_thread())
4244     ((JavaThread*)thread)->parker()->unpark();
4245 
4246   ParkEvent * ev = thread->_ParkEvent ;
4247   if (ev != NULL) ev->unpark() ;
4248 
4249 }
4250 
4251 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
4252   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4253     "possibility of dangling Thread pointer");
4254 
4255   OSThread* osthread = thread->osthread();
4256 
4257   bool interrupted = osthread->interrupted();
4258 
4259   if (interrupted && clear_interrupted) {
4260     osthread->set_interrupted(false);
4261     // consider thread->_SleepEvent->reset() ... optional optimization
4262   }
4263 
4264   return interrupted;
4265 }
4266 
4267 ///////////////////////////////////////////////////////////////////////////////////
4268 // signal handling (except suspend/resume)
4269 
4270 // This routine may be used by user applications as a "hook" to catch signals.
4271 // The user-defined signal handler must pass unrecognized signals to this
4272 // routine, and if it returns true (non-zero), then the signal handler must
4273 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4274 // routine will never retun false (zero), but instead will execute a VM panic
4275 // routine kill the process.
4276 //
4277 // If this routine returns false, it is OK to call it again.  This allows
4278 // the user-defined signal handler to perform checks either before or after
4279 // the VM performs its own checks.  Naturally, the user code would be making
4280 // a serious error if it tried to handle an exception (such as a null check
4281 // or breakpoint) that the VM was generating for its own correct operation.
4282 //
4283 // This routine may recognize any of the following kinds of signals:
4284 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4285 // It should be consulted by handlers for any of those signals.
4286 //
4287 // The caller of this routine must pass in the three arguments supplied
4288 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4289 // field of the structure passed to sigaction().  This routine assumes that
4290 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4291 //
4292 // Note that the VM will print warnings if it detects conflicting signal
4293 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4294 //
4295 extern "C" JNIEXPORT int
4296 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
4297                         void* ucontext, int abort_if_unrecognized);
4298 
4299 void signalHandler(int sig, siginfo_t* info, void* uc) {
4300   assert(info != NULL && uc != NULL, "it must be old kernel");
4301   int orig_errno = errno;  // Preserve errno value over signal handler.
4302   JVM_handle_linux_signal(sig, info, uc, true);
4303   errno = orig_errno;
4304 }
4305 
4306 
4307 // This boolean allows users to forward their own non-matching signals
4308 // to JVM_handle_linux_signal, harmlessly.
4309 bool os::Linux::signal_handlers_are_installed = false;
4310 
4311 // For signal-chaining
4312 struct sigaction os::Linux::sigact[MAXSIGNUM];
4313 unsigned int os::Linux::sigs = 0;
4314 bool os::Linux::libjsig_is_loaded = false;
4315 typedef struct sigaction *(*get_signal_t)(int);
4316 get_signal_t os::Linux::get_signal_action = NULL;
4317 
4318 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4319   struct sigaction *actp = NULL;
4320 
4321   if (libjsig_is_loaded) {
4322     // Retrieve the old signal handler from libjsig
4323     actp = (*get_signal_action)(sig);
4324   }
4325   if (actp == NULL) {
4326     // Retrieve the preinstalled signal handler from jvm
4327     actp = get_preinstalled_handler(sig);
4328   }
4329 
4330   return actp;
4331 }
4332 
4333 static bool call_chained_handler(struct sigaction *actp, int sig,
4334                                  siginfo_t *siginfo, void *context) {
4335   // Call the old signal handler
4336   if (actp->sa_handler == SIG_DFL) {
4337     // It's more reasonable to let jvm treat it as an unexpected exception
4338     // instead of taking the default action.
4339     return false;
4340   } else if (actp->sa_handler != SIG_IGN) {
4341     if ((actp->sa_flags & SA_NODEFER) == 0) {
4342       // automaticlly block the signal
4343       sigaddset(&(actp->sa_mask), sig);
4344     }
4345 
4346     sa_handler_t hand;
4347     sa_sigaction_t sa;
4348     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4349     // retrieve the chained handler
4350     if (siginfo_flag_set) {
4351       sa = actp->sa_sigaction;
4352     } else {
4353       hand = actp->sa_handler;
4354     }
4355 
4356     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4357       actp->sa_handler = SIG_DFL;
4358     }
4359 
4360     // try to honor the signal mask
4361     sigset_t oset;
4362     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4363 
4364     // call into the chained handler
4365     if (siginfo_flag_set) {
4366       (*sa)(sig, siginfo, context);
4367     } else {
4368       (*hand)(sig);
4369     }
4370 
4371     // restore the signal mask
4372     pthread_sigmask(SIG_SETMASK, &oset, 0);
4373   }
4374   // Tell jvm's signal handler the signal is taken care of.
4375   return true;
4376 }
4377 
4378 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4379   bool chained = false;
4380   // signal-chaining
4381   if (UseSignalChaining) {
4382     struct sigaction *actp = get_chained_signal_action(sig);
4383     if (actp != NULL) {
4384       chained = call_chained_handler(actp, sig, siginfo, context);
4385     }
4386   }
4387   return chained;
4388 }
4389 
4390 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4391   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
4392     return &sigact[sig];
4393   }
4394   return NULL;
4395 }
4396 
4397 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4398   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4399   sigact[sig] = oldAct;
4400   sigs |= (unsigned int)1 << sig;
4401 }
4402 
4403 // for diagnostic
4404 int os::Linux::sigflags[MAXSIGNUM];
4405 
4406 int os::Linux::get_our_sigflags(int sig) {
4407   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4408   return sigflags[sig];
4409 }
4410 
4411 void os::Linux::set_our_sigflags(int sig, int flags) {
4412   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4413   sigflags[sig] = flags;
4414 }
4415 
4416 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4417   // Check for overwrite.
4418   struct sigaction oldAct;
4419   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4420 
4421   void* oldhand = oldAct.sa_sigaction
4422                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4423                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4424   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4425       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4426       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4427     if (AllowUserSignalHandlers || !set_installed) {
4428       // Do not overwrite; user takes responsibility to forward to us.
4429       return;
4430     } else if (UseSignalChaining) {
4431       // save the old handler in jvm
4432       save_preinstalled_handler(sig, oldAct);
4433       // libjsig also interposes the sigaction() call below and saves the
4434       // old sigaction on it own.
4435     } else {
4436       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4437                     "%#lx for signal %d.", (long)oldhand, sig));
4438     }
4439   }
4440 
4441   struct sigaction sigAct;
4442   sigfillset(&(sigAct.sa_mask));
4443   sigAct.sa_handler = SIG_DFL;
4444   if (!set_installed) {
4445     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4446   } else {
4447     sigAct.sa_sigaction = signalHandler;
4448     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4449   }
4450   // Save flags, which are set by ours
4451   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4452   sigflags[sig] = sigAct.sa_flags;
4453 
4454   int ret = sigaction(sig, &sigAct, &oldAct);
4455   assert(ret == 0, "check");
4456 
4457   void* oldhand2  = oldAct.sa_sigaction
4458                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4459                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4460   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4461 }
4462 
4463 // install signal handlers for signals that HotSpot needs to
4464 // handle in order to support Java-level exception handling.
4465 
4466 void os::Linux::install_signal_handlers() {
4467   if (!signal_handlers_are_installed) {
4468     signal_handlers_are_installed = true;
4469 
4470     // signal-chaining
4471     typedef void (*signal_setting_t)();
4472     signal_setting_t begin_signal_setting = NULL;
4473     signal_setting_t end_signal_setting = NULL;
4474     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4475                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4476     if (begin_signal_setting != NULL) {
4477       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4478                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4479       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4480                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4481       libjsig_is_loaded = true;
4482       assert(UseSignalChaining, "should enable signal-chaining");
4483     }
4484     if (libjsig_is_loaded) {
4485       // Tell libjsig jvm is setting signal handlers
4486       (*begin_signal_setting)();
4487     }
4488 
4489     set_signal_handler(SIGSEGV, true);
4490     set_signal_handler(SIGPIPE, true);
4491     set_signal_handler(SIGBUS, true);
4492     set_signal_handler(SIGILL, true);
4493     set_signal_handler(SIGFPE, true);
4494     set_signal_handler(SIGXFSZ, true);
4495 
4496     if (libjsig_is_loaded) {
4497       // Tell libjsig jvm finishes setting signal handlers
4498       (*end_signal_setting)();
4499     }
4500 
4501     // We don't activate signal checker if libjsig is in place, we trust ourselves
4502     // and if UserSignalHandler is installed all bets are off.
4503     // Log that signal checking is off only if -verbose:jni is specified.
4504     if (CheckJNICalls) {
4505       if (libjsig_is_loaded) {
4506         if (PrintJNIResolving) {
4507           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4508         }
4509         check_signals = false;
4510       }
4511       if (AllowUserSignalHandlers) {
4512         if (PrintJNIResolving) {
4513           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4514         }
4515         check_signals = false;
4516       }
4517     }
4518   }
4519 }
4520 
4521 // This is the fastest way to get thread cpu time on Linux.
4522 // Returns cpu time (user+sys) for any thread, not only for current.
4523 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4524 // It might work on 2.6.10+ with a special kernel/glibc patch.
4525 // For reference, please, see IEEE Std 1003.1-2004:
4526 //   http://www.unix.org/single_unix_specification
4527 
4528 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4529   struct timespec tp;
4530   int rc = os::Linux::clock_gettime(clockid, &tp);
4531   assert(rc == 0, "clock_gettime is expected to return 0 code");
4532 
4533   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4534 }
4535 
4536 /////
4537 // glibc on Linux platform uses non-documented flag
4538 // to indicate, that some special sort of signal
4539 // trampoline is used.
4540 // We will never set this flag, and we should
4541 // ignore this flag in our diagnostic
4542 #ifdef SIGNIFICANT_SIGNAL_MASK
4543 #undef SIGNIFICANT_SIGNAL_MASK
4544 #endif
4545 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4546 
4547 static const char* get_signal_handler_name(address handler,
4548                                            char* buf, int buflen) {
4549   int offset;
4550   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4551   if (found) {
4552     // skip directory names
4553     const char *p1, *p2;
4554     p1 = buf;
4555     size_t len = strlen(os::file_separator());
4556     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4557     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4558   } else {
4559     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4560   }
4561   return buf;
4562 }
4563 
4564 static void print_signal_handler(outputStream* st, int sig,
4565                                  char* buf, size_t buflen) {
4566   struct sigaction sa;
4567 
4568   sigaction(sig, NULL, &sa);
4569 
4570   // See comment for SIGNIFICANT_SIGNAL_MASK define
4571   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4572 
4573   st->print("%s: ", os::exception_name(sig, buf, buflen));
4574 
4575   address handler = (sa.sa_flags & SA_SIGINFO)
4576     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4577     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4578 
4579   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4580     st->print("SIG_DFL");
4581   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4582     st->print("SIG_IGN");
4583   } else {
4584     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4585   }
4586 
4587   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
4588 
4589   address rh = VMError::get_resetted_sighandler(sig);
4590   // May be, handler was resetted by VMError?
4591   if(rh != NULL) {
4592     handler = rh;
4593     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4594   }
4595 
4596   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
4597 
4598   // Check: is it our handler?
4599   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4600      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4601     // It is our signal handler
4602     // check for flags, reset system-used one!
4603     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4604       st->print(
4605                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4606                 os::Linux::get_our_sigflags(sig));
4607     }
4608   }
4609   st->cr();
4610 }
4611 
4612 
4613 #define DO_SIGNAL_CHECK(sig) \
4614   if (!sigismember(&check_signal_done, sig)) \
4615     os::Linux::check_signal_handler(sig)
4616 
4617 // This method is a periodic task to check for misbehaving JNI applications
4618 // under CheckJNI, we can add any periodic checks here
4619 
4620 void os::run_periodic_checks() {
4621 
4622   if (check_signals == false) return;
4623 
4624   // SEGV and BUS if overridden could potentially prevent
4625   // generation of hs*.log in the event of a crash, debugging
4626   // such a case can be very challenging, so we absolutely
4627   // check the following for a good measure:
4628   DO_SIGNAL_CHECK(SIGSEGV);
4629   DO_SIGNAL_CHECK(SIGILL);
4630   DO_SIGNAL_CHECK(SIGFPE);
4631   DO_SIGNAL_CHECK(SIGBUS);
4632   DO_SIGNAL_CHECK(SIGPIPE);
4633   DO_SIGNAL_CHECK(SIGXFSZ);
4634 
4635 
4636   // ReduceSignalUsage allows the user to override these handlers
4637   // see comments at the very top and jvm_solaris.h
4638   if (!ReduceSignalUsage) {
4639     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4640     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4641     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4642     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4643   }
4644 
4645   DO_SIGNAL_CHECK(SR_signum);
4646   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4647 }
4648 
4649 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4650 
4651 static os_sigaction_t os_sigaction = NULL;
4652 
4653 void os::Linux::check_signal_handler(int sig) {
4654   char buf[O_BUFLEN];
4655   address jvmHandler = NULL;
4656 
4657 
4658   struct sigaction act;
4659   if (os_sigaction == NULL) {
4660     // only trust the default sigaction, in case it has been interposed
4661     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4662     if (os_sigaction == NULL) return;
4663   }
4664 
4665   os_sigaction(sig, (struct sigaction*)NULL, &act);
4666 
4667 
4668   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4669 
4670   address thisHandler = (act.sa_flags & SA_SIGINFO)
4671     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4672     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4673 
4674 
4675   switch(sig) {
4676   case SIGSEGV:
4677   case SIGBUS:
4678   case SIGFPE:
4679   case SIGPIPE:
4680   case SIGILL:
4681   case SIGXFSZ:
4682     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4683     break;
4684 
4685   case SHUTDOWN1_SIGNAL:
4686   case SHUTDOWN2_SIGNAL:
4687   case SHUTDOWN3_SIGNAL:
4688   case BREAK_SIGNAL:
4689     jvmHandler = (address)user_handler();
4690     break;
4691 
4692   case INTERRUPT_SIGNAL:
4693     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4694     break;
4695 
4696   default:
4697     if (sig == SR_signum) {
4698       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4699     } else {
4700       return;
4701     }
4702     break;
4703   }
4704 
4705   if (thisHandler != jvmHandler) {
4706     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4707     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4708     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4709     // No need to check this sig any longer
4710     sigaddset(&check_signal_done, sig);
4711   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4712     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4713     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4714     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4715     // No need to check this sig any longer
4716     sigaddset(&check_signal_done, sig);
4717   }
4718 
4719   // Dump all the signal
4720   if (sigismember(&check_signal_done, sig)) {
4721     print_signal_handlers(tty, buf, O_BUFLEN);
4722   }
4723 }
4724 
4725 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4726 
4727 extern bool signal_name(int signo, char* buf, size_t len);
4728 
4729 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4730   if (0 < exception_code && exception_code <= SIGRTMAX) {
4731     // signal
4732     if (!signal_name(exception_code, buf, size)) {
4733       jio_snprintf(buf, size, "SIG%d", exception_code);
4734     }
4735     return buf;
4736   } else {
4737     return NULL;
4738   }
4739 }
4740 
4741 // this is called _before_ the most of global arguments have been parsed
4742 void os::init(void) {
4743   char dummy;   /* used to get a guess on initial stack address */
4744 //  first_hrtime = gethrtime();
4745 
4746   // With LinuxThreads the JavaMain thread pid (primordial thread)
4747   // is different than the pid of the java launcher thread.
4748   // So, on Linux, the launcher thread pid is passed to the VM
4749   // via the sun.java.launcher.pid property.
4750   // Use this property instead of getpid() if it was correctly passed.
4751   // See bug 6351349.
4752   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4753 
4754   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4755 
4756   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4757 
4758   init_random(1234567);
4759 
4760   ThreadCritical::initialize();
4761 
4762   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4763   if (Linux::page_size() == -1) {
4764     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4765                   strerror(errno)));
4766   }
4767   init_page_sizes((size_t) Linux::page_size());
4768 
4769   Linux::initialize_system_info();
4770 
4771   // main_thread points to the aboriginal thread
4772   Linux::_main_thread = pthread_self();
4773 
4774   Linux::clock_init();
4775   initial_time_count = javaTimeNanos();
4776 
4777   // pthread_condattr initialization for monotonic clock
4778   int status;
4779   pthread_condattr_t* _condattr = os::Linux::condAttr();
4780   if ((status = pthread_condattr_init(_condattr)) != 0) {
4781     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4782   }
4783   // Only set the clock if CLOCK_MONOTONIC is available
4784   if (Linux::supports_monotonic_clock()) {
4785     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4786       if (status == EINVAL) {
4787         warning("Unable to use monotonic clock with relative timed-waits" \
4788                 " - changes to the time-of-day clock may have adverse affects");
4789       } else {
4790         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4791       }
4792     }
4793   }
4794   // else it defaults to CLOCK_REALTIME
4795 
4796   pthread_mutex_init(&dl_mutex, NULL);
4797 
4798   // If the pagesize of the VM is greater than 8K determine the appropriate
4799   // number of initial guard pages.  The user can change this with the
4800   // command line arguments, if needed.
4801   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4802     StackYellowPages = 1;
4803     StackRedPages = 1;
4804     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4805   }
4806 }
4807 
4808 // To install functions for atexit system call
4809 extern "C" {
4810   static void perfMemory_exit_helper() {
4811     perfMemory_exit();
4812   }
4813 }
4814 
4815 // this is called _after_ the global arguments have been parsed
4816 jint os::init_2(void)
4817 {
4818   Linux::fast_thread_clock_init();
4819 
4820   // Allocate a single page and mark it as readable for safepoint polling
4821   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4822   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4823 
4824   os::set_polling_page( polling_page );
4825 
4826 #ifndef PRODUCT
4827   if(Verbose && PrintMiscellaneous)
4828     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4829 #endif
4830 
4831   if (!UseMembar) {
4832     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4833     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4834     os::set_memory_serialize_page( mem_serialize_page );
4835 
4836 #ifndef PRODUCT
4837     if(Verbose && PrintMiscellaneous)
4838       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4839 #endif
4840   }
4841 
4842   // initialize suspend/resume support - must do this before signal_sets_init()
4843   if (SR_initialize() != 0) {
4844     perror("SR_initialize failed");
4845     return JNI_ERR;
4846   }
4847 
4848   Linux::signal_sets_init();
4849   Linux::install_signal_handlers();
4850 
4851   // Check minimum allowable stack size for thread creation and to initialize
4852   // the java system classes, including StackOverflowError - depends on page
4853   // size.  Add a page for compiler2 recursion in main thread.
4854   // Add in 2*BytesPerWord times page size to account for VM stack during
4855   // class initialization depending on 32 or 64 bit VM.
4856   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4857             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4858                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4859 
4860   size_t threadStackSizeInBytes = ThreadStackSize * K;
4861   if (threadStackSizeInBytes != 0 &&
4862       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4863         tty->print_cr("\nThe stack size specified is too small, "
4864                       "Specify at least %dk",
4865                       os::Linux::min_stack_allowed/ K);
4866         return JNI_ERR;
4867   }
4868 
4869   // Make the stack size a multiple of the page size so that
4870   // the yellow/red zones can be guarded.
4871   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4872         vm_page_size()));
4873 
4874   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4875 
4876 #if defined(IA32)
4877   workaround_expand_exec_shield_cs_limit();
4878 #endif
4879 
4880   Linux::libpthread_init();
4881   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4882      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4883           Linux::glibc_version(), Linux::libpthread_version(),
4884           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4885   }
4886 
4887   if (UseNUMA) {
4888     if (!Linux::libnuma_init()) {
4889       UseNUMA = false;
4890     } else {
4891       if ((Linux::numa_max_node() < 1)) {
4892         // There's only one node(they start from 0), disable NUMA.
4893         UseNUMA = false;
4894       }
4895     }
4896     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4897     // we can make the adaptive lgrp chunk resizing work. If the user specified
4898     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4899     // disable adaptive resizing.
4900     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4901       if (FLAG_IS_DEFAULT(UseNUMA)) {
4902         UseNUMA = false;
4903       } else {
4904         if (FLAG_IS_DEFAULT(UseLargePages) &&
4905             FLAG_IS_DEFAULT(UseSHM) &&
4906             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4907           UseLargePages = false;
4908         } else {
4909           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
4910           UseAdaptiveSizePolicy = false;
4911           UseAdaptiveNUMAChunkSizing = false;
4912         }
4913       }
4914     }
4915     if (!UseNUMA && ForceNUMA) {
4916       UseNUMA = true;
4917     }
4918   }
4919 
4920   if (MaxFDLimit) {
4921     // set the number of file descriptors to max. print out error
4922     // if getrlimit/setrlimit fails but continue regardless.
4923     struct rlimit nbr_files;
4924     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4925     if (status != 0) {
4926       if (PrintMiscellaneous && (Verbose || WizardMode))
4927         perror("os::init_2 getrlimit failed");
4928     } else {
4929       nbr_files.rlim_cur = nbr_files.rlim_max;
4930       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4931       if (status != 0) {
4932         if (PrintMiscellaneous && (Verbose || WizardMode))
4933           perror("os::init_2 setrlimit failed");
4934       }
4935     }
4936   }
4937 
4938   // Initialize lock used to serialize thread creation (see os::create_thread)
4939   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4940 
4941   // at-exit methods are called in the reverse order of their registration.
4942   // atexit functions are called on return from main or as a result of a
4943   // call to exit(3C). There can be only 32 of these functions registered
4944   // and atexit() does not set errno.
4945 
4946   if (PerfAllowAtExitRegistration) {
4947     // only register atexit functions if PerfAllowAtExitRegistration is set.
4948     // atexit functions can be delayed until process exit time, which
4949     // can be problematic for embedded VM situations. Embedded VMs should
4950     // call DestroyJavaVM() to assure that VM resources are released.
4951 
4952     // note: perfMemory_exit_helper atexit function may be removed in
4953     // the future if the appropriate cleanup code can be added to the
4954     // VM_Exit VMOperation's doit method.
4955     if (atexit(perfMemory_exit_helper) != 0) {
4956       warning("os::init2 atexit(perfMemory_exit_helper) failed");
4957     }
4958   }
4959 
4960   // initialize thread priority policy
4961   prio_init();
4962 
4963   return JNI_OK;
4964 }
4965 
4966 // this is called at the end of vm_initialization
4967 void os::init_3(void)
4968 {
4969 #ifdef JAVASE_EMBEDDED
4970   // Start the MemNotifyThread
4971   if (LowMemoryProtection) {
4972     MemNotifyThread::start();
4973   }
4974   return;
4975 #endif
4976 }
4977 
4978 // Mark the polling page as unreadable
4979 void os::make_polling_page_unreadable(void) {
4980   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4981     fatal("Could not disable polling page");
4982 };
4983 
4984 // Mark the polling page as readable
4985 void os::make_polling_page_readable(void) {
4986   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4987     fatal("Could not enable polling page");
4988   }
4989 };
4990 
4991 int os::active_processor_count() {
4992   // Linux doesn't yet have a (official) notion of processor sets,
4993   // so just return the number of online processors.
4994   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4995   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4996   return online_cpus;
4997 }
4998 
4999 void os::set_native_thread_name(const char *name) {
5000   // Not yet implemented.
5001   return;
5002 }
5003 
5004 bool os::distribute_processes(uint length, uint* distribution) {
5005   // Not yet implemented.
5006   return false;
5007 }
5008 
5009 bool os::bind_to_processor(uint processor_id) {
5010   // Not yet implemented.
5011   return false;
5012 }
5013 
5014 ///
5015 
5016 void os::SuspendedThreadTask::internal_do_task() {
5017   if (do_suspend(_thread->osthread())) {
5018     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5019     do_task(context);
5020     do_resume(_thread->osthread());
5021   }
5022 }
5023 
5024 class PcFetcher : public os::SuspendedThreadTask {
5025 public:
5026   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
5027   ExtendedPC result();
5028 protected:
5029   void do_task(const os::SuspendedThreadTaskContext& context);
5030 private:
5031   ExtendedPC _epc;
5032 };
5033 
5034 ExtendedPC PcFetcher::result() {
5035   guarantee(is_done(), "task is not done yet.");
5036   return _epc;
5037 }
5038 
5039 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
5040   Thread* thread = context.thread();
5041   OSThread* osthread = thread->osthread();
5042   if (osthread->ucontext() != NULL) {
5043     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
5044   } else {
5045     // NULL context is unexpected, double-check this is the VMThread
5046     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
5047   }
5048 }
5049 
5050 // Suspends the target using the signal mechanism and then grabs the PC before
5051 // resuming the target. Used by the flat-profiler only
5052 ExtendedPC os::get_thread_pc(Thread* thread) {
5053   // Make sure that it is called by the watcher for the VMThread
5054   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
5055   assert(thread->is_VM_thread(), "Can only be called for VMThread");
5056 
5057   PcFetcher fetcher(thread);
5058   fetcher.run();
5059   return fetcher.result();
5060 }
5061 
5062 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
5063 {
5064    if (is_NPTL()) {
5065       return pthread_cond_timedwait(_cond, _mutex, _abstime);
5066    } else {
5067       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
5068       // word back to default 64bit precision if condvar is signaled. Java
5069       // wants 53bit precision.  Save and restore current value.
5070       int fpu = get_fpu_control_word();
5071       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
5072       set_fpu_control_word(fpu);
5073       return status;
5074    }
5075 }
5076 
5077 ////////////////////////////////////////////////////////////////////////////////
5078 // debug support
5079 
5080 bool os::find(address addr, outputStream* st) {
5081   Dl_info dlinfo;
5082   memset(&dlinfo, 0, sizeof(dlinfo));
5083   if (dladdr(addr, &dlinfo) != 0) {
5084     st->print(PTR_FORMAT ": ", addr);
5085     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5086       st->print("%s+%#x", dlinfo.dli_sname,
5087                  addr - (intptr_t)dlinfo.dli_saddr);
5088     } else if (dlinfo.dli_fbase != NULL) {
5089       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
5090     } else {
5091       st->print("<absolute address>");
5092     }
5093     if (dlinfo.dli_fname != NULL) {
5094       st->print(" in %s", dlinfo.dli_fname);
5095     }
5096     if (dlinfo.dli_fbase != NULL) {
5097       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5098     }
5099     st->cr();
5100 
5101     if (Verbose) {
5102       // decode some bytes around the PC
5103       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5104       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5105       address       lowest = (address) dlinfo.dli_sname;
5106       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5107       if (begin < lowest)  begin = lowest;
5108       Dl_info dlinfo2;
5109       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5110           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
5111         end = (address) dlinfo2.dli_saddr;
5112       Disassembler::decode(begin, end, st);
5113     }
5114     return true;
5115   }
5116   return false;
5117 }
5118 
5119 ////////////////////////////////////////////////////////////////////////////////
5120 // misc
5121 
5122 // This does not do anything on Linux. This is basically a hook for being
5123 // able to use structured exception handling (thread-local exception filters)
5124 // on, e.g., Win32.
5125 void
5126 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
5127                          JavaCallArguments* args, Thread* thread) {
5128   f(value, method, args, thread);
5129 }
5130 
5131 void os::print_statistics() {
5132 }
5133 
5134 int os::message_box(const char* title, const char* message) {
5135   int i;
5136   fdStream err(defaultStream::error_fd());
5137   for (i = 0; i < 78; i++) err.print_raw("=");
5138   err.cr();
5139   err.print_raw_cr(title);
5140   for (i = 0; i < 78; i++) err.print_raw("-");
5141   err.cr();
5142   err.print_raw_cr(message);
5143   for (i = 0; i < 78; i++) err.print_raw("=");
5144   err.cr();
5145 
5146   char buf[16];
5147   // Prevent process from exiting upon "read error" without consuming all CPU
5148   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5149 
5150   return buf[0] == 'y' || buf[0] == 'Y';
5151 }
5152 
5153 int os::stat(const char *path, struct stat *sbuf) {
5154   char pathbuf[MAX_PATH];
5155   if (strlen(path) > MAX_PATH - 1) {
5156     errno = ENAMETOOLONG;
5157     return -1;
5158   }
5159   os::native_path(strcpy(pathbuf, path));
5160   return ::stat(pathbuf, sbuf);
5161 }
5162 
5163 bool os::check_heap(bool force) {
5164   return true;
5165 }
5166 
5167 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
5168   return ::vsnprintf(buf, count, format, args);
5169 }
5170 
5171 // Is a (classpath) directory empty?
5172 bool os::dir_is_empty(const char* path) {
5173   DIR *dir = NULL;
5174   struct dirent *ptr;
5175 
5176   dir = opendir(path);
5177   if (dir == NULL) return true;
5178 
5179   /* Scan the directory */
5180   bool result = true;
5181   char buf[sizeof(struct dirent) + MAX_PATH];
5182   while (result && (ptr = ::readdir(dir)) != NULL) {
5183     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5184       result = false;
5185     }
5186   }
5187   closedir(dir);
5188   return result;
5189 }
5190 
5191 // This code originates from JDK's sysOpen and open64_w
5192 // from src/solaris/hpi/src/system_md.c
5193 
5194 #ifndef O_DELETE
5195 #define O_DELETE 0x10000
5196 #endif
5197 
5198 // Open a file. Unlink the file immediately after open returns
5199 // if the specified oflag has the O_DELETE flag set.
5200 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
5201 
5202 int os::open(const char *path, int oflag, int mode) {
5203 
5204   if (strlen(path) > MAX_PATH - 1) {
5205     errno = ENAMETOOLONG;
5206     return -1;
5207   }
5208   int fd;
5209   int o_delete = (oflag & O_DELETE);
5210   oflag = oflag & ~O_DELETE;
5211 
5212   fd = ::open64(path, oflag, mode);
5213   if (fd == -1) return -1;
5214 
5215   //If the open succeeded, the file might still be a directory
5216   {
5217     struct stat64 buf64;
5218     int ret = ::fstat64(fd, &buf64);
5219     int st_mode = buf64.st_mode;
5220 
5221     if (ret != -1) {
5222       if ((st_mode & S_IFMT) == S_IFDIR) {
5223         errno = EISDIR;
5224         ::close(fd);
5225         return -1;
5226       }
5227     } else {
5228       ::close(fd);
5229       return -1;
5230     }
5231   }
5232 
5233     /*
5234      * All file descriptors that are opened in the JVM and not
5235      * specifically destined for a subprocess should have the
5236      * close-on-exec flag set.  If we don't set it, then careless 3rd
5237      * party native code might fork and exec without closing all
5238      * appropriate file descriptors (e.g. as we do in closeDescriptors in
5239      * UNIXProcess.c), and this in turn might:
5240      *
5241      * - cause end-of-file to fail to be detected on some file
5242      *   descriptors, resulting in mysterious hangs, or
5243      *
5244      * - might cause an fopen in the subprocess to fail on a system
5245      *   suffering from bug 1085341.
5246      *
5247      * (Yes, the default setting of the close-on-exec flag is a Unix
5248      * design flaw)
5249      *
5250      * See:
5251      * 1085341: 32-bit stdio routines should support file descriptors >255
5252      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5253      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5254      */
5255 #ifdef FD_CLOEXEC
5256     {
5257         int flags = ::fcntl(fd, F_GETFD);
5258         if (flags != -1)
5259             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5260     }
5261 #endif
5262 
5263   if (o_delete != 0) {
5264     ::unlink(path);
5265   }
5266   return fd;
5267 }
5268 
5269 
5270 // create binary file, rewriting existing file if required
5271 int os::create_binary_file(const char* path, bool rewrite_existing) {
5272   int oflags = O_WRONLY | O_CREAT;
5273   if (!rewrite_existing) {
5274     oflags |= O_EXCL;
5275   }
5276   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5277 }
5278 
5279 // return current position of file pointer
5280 jlong os::current_file_offset(int fd) {
5281   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5282 }
5283 
5284 // move file pointer to the specified offset
5285 jlong os::seek_to_file_offset(int fd, jlong offset) {
5286   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5287 }
5288 
5289 // This code originates from JDK's sysAvailable
5290 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5291 
5292 int os::available(int fd, jlong *bytes) {
5293   jlong cur, end;
5294   int mode;
5295   struct stat64 buf64;
5296 
5297   if (::fstat64(fd, &buf64) >= 0) {
5298     mode = buf64.st_mode;
5299     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5300       /*
5301       * XXX: is the following call interruptible? If so, this might
5302       * need to go through the INTERRUPT_IO() wrapper as for other
5303       * blocking, interruptible calls in this file.
5304       */
5305       int n;
5306       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5307         *bytes = n;
5308         return 1;
5309       }
5310     }
5311   }
5312   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5313     return 0;
5314   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5315     return 0;
5316   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5317     return 0;
5318   }
5319   *bytes = end - cur;
5320   return 1;
5321 }
5322 
5323 int os::socket_available(int fd, jint *pbytes) {
5324   // Linux doc says EINTR not returned, unlike Solaris
5325   int ret = ::ioctl(fd, FIONREAD, pbytes);
5326 
5327   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
5328   // is expected to return 0 on failure and 1 on success to the jdk.
5329   return (ret < 0) ? 0 : 1;
5330 }
5331 
5332 // Map a block of memory.
5333 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5334                      char *addr, size_t bytes, bool read_only,
5335                      bool allow_exec) {
5336   int prot;
5337   int flags = MAP_PRIVATE;
5338 
5339   if (read_only) {
5340     prot = PROT_READ;
5341   } else {
5342     prot = PROT_READ | PROT_WRITE;
5343   }
5344 
5345   if (allow_exec) {
5346     prot |= PROT_EXEC;
5347   }
5348 
5349   if (addr != NULL) {
5350     flags |= MAP_FIXED;
5351   }
5352 
5353   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5354                                      fd, file_offset);
5355   if (mapped_address == MAP_FAILED) {
5356     return NULL;
5357   }
5358   return mapped_address;
5359 }
5360 
5361 
5362 // Remap a block of memory.
5363 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5364                        char *addr, size_t bytes, bool read_only,
5365                        bool allow_exec) {
5366   // same as map_memory() on this OS
5367   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5368                         allow_exec);
5369 }
5370 
5371 
5372 // Unmap a block of memory.
5373 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5374   return munmap(addr, bytes) == 0;
5375 }
5376 
5377 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5378 
5379 static clockid_t thread_cpu_clockid(Thread* thread) {
5380   pthread_t tid = thread->osthread()->pthread_id();
5381   clockid_t clockid;
5382 
5383   // Get thread clockid
5384   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5385   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5386   return clockid;
5387 }
5388 
5389 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5390 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5391 // of a thread.
5392 //
5393 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5394 // the fast estimate available on the platform.
5395 
5396 jlong os::current_thread_cpu_time() {
5397   if (os::Linux::supports_fast_thread_cpu_time()) {
5398     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5399   } else {
5400     // return user + sys since the cost is the same
5401     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5402   }
5403 }
5404 
5405 jlong os::thread_cpu_time(Thread* thread) {
5406   // consistent with what current_thread_cpu_time() returns
5407   if (os::Linux::supports_fast_thread_cpu_time()) {
5408     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5409   } else {
5410     return slow_thread_cpu_time(thread, true /* user + sys */);
5411   }
5412 }
5413 
5414 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5415   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5416     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5417   } else {
5418     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5419   }
5420 }
5421 
5422 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5423   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5424     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5425   } else {
5426     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5427   }
5428 }
5429 
5430 //
5431 //  -1 on error.
5432 //
5433 
5434 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5435   static bool proc_task_unchecked = true;
5436   static const char *proc_stat_path = "/proc/%d/stat";
5437   pid_t  tid = thread->osthread()->thread_id();
5438   char *s;
5439   char stat[2048];
5440   int statlen;
5441   char proc_name[64];
5442   int count;
5443   long sys_time, user_time;
5444   char cdummy;
5445   int idummy;
5446   long ldummy;
5447   FILE *fp;
5448 
5449   // The /proc/<tid>/stat aggregates per-process usage on
5450   // new Linux kernels 2.6+ where NPTL is supported.
5451   // The /proc/self/task/<tid>/stat still has the per-thread usage.
5452   // See bug 6328462.
5453   // There possibly can be cases where there is no directory
5454   // /proc/self/task, so we check its availability.
5455   if (proc_task_unchecked && os::Linux::is_NPTL()) {
5456     // This is executed only once
5457     proc_task_unchecked = false;
5458     fp = fopen("/proc/self/task", "r");
5459     if (fp != NULL) {
5460       proc_stat_path = "/proc/self/task/%d/stat";
5461       fclose(fp);
5462     }
5463   }
5464 
5465   sprintf(proc_name, proc_stat_path, tid);
5466   fp = fopen(proc_name, "r");
5467   if ( fp == NULL ) return -1;
5468   statlen = fread(stat, 1, 2047, fp);
5469   stat[statlen] = '\0';
5470   fclose(fp);
5471 
5472   // Skip pid and the command string. Note that we could be dealing with
5473   // weird command names, e.g. user could decide to rename java launcher
5474   // to "java 1.4.2 :)", then the stat file would look like
5475   //                1234 (java 1.4.2 :)) R ... ...
5476   // We don't really need to know the command string, just find the last
5477   // occurrence of ")" and then start parsing from there. See bug 4726580.
5478   s = strrchr(stat, ')');
5479   if (s == NULL ) return -1;
5480 
5481   // Skip blank chars
5482   do s++; while (isspace(*s));
5483 
5484   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5485                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5486                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5487                  &user_time, &sys_time);
5488   if ( count != 13 ) return -1;
5489   if (user_sys_cpu_time) {
5490     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5491   } else {
5492     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5493   }
5494 }
5495 
5496 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5497   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5498   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5499   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5500   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5501 }
5502 
5503 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5504   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5505   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5506   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5507   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5508 }
5509 
5510 bool os::is_thread_cpu_time_supported() {
5511   return true;
5512 }
5513 
5514 // System loadavg support.  Returns -1 if load average cannot be obtained.
5515 // Linux doesn't yet have a (official) notion of processor sets,
5516 // so just return the system wide load average.
5517 int os::loadavg(double loadavg[], int nelem) {
5518   return ::getloadavg(loadavg, nelem);
5519 }
5520 
5521 void os::pause() {
5522   char filename[MAX_PATH];
5523   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5524     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5525   } else {
5526     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5527   }
5528 
5529   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5530   if (fd != -1) {
5531     struct stat buf;
5532     ::close(fd);
5533     while (::stat(filename, &buf) == 0) {
5534       (void)::poll(NULL, 0, 100);
5535     }
5536   } else {
5537     jio_fprintf(stderr,
5538       "Could not open pause file '%s', continuing immediately.\n", filename);
5539   }
5540 }
5541 
5542 
5543 // Refer to the comments in os_solaris.cpp park-unpark.
5544 //
5545 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5546 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5547 // For specifics regarding the bug see GLIBC BUGID 261237 :
5548 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5549 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5550 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5551 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5552 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5553 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5554 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5555 // of libpthread avoids the problem, but isn't practical.
5556 //
5557 // Possible remedies:
5558 //
5559 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5560 //      This is palliative and probabilistic, however.  If the thread is preempted
5561 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5562 //      than the minimum period may have passed, and the abstime may be stale (in the
5563 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5564 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5565 //
5566 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5567 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5568 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5569 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5570 //      thread.
5571 //
5572 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5573 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5574 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5575 //      This also works well.  In fact it avoids kernel-level scalability impediments
5576 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5577 //      timers in a graceful fashion.
5578 //
5579 // 4.   When the abstime value is in the past it appears that control returns
5580 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5581 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5582 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5583 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5584 //      It may be possible to avoid reinitialization by checking the return
5585 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5586 //      condvar we must establish the invariant that cond_signal() is only called
5587 //      within critical sections protected by the adjunct mutex.  This prevents
5588 //      cond_signal() from "seeing" a condvar that's in the midst of being
5589 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5590 //      desirable signal-after-unlock optimization that avoids futile context switching.
5591 //
5592 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5593 //      structure when a condvar is used or initialized.  cond_destroy()  would
5594 //      release the helper structure.  Our reinitialize-after-timedwait fix
5595 //      put excessive stress on malloc/free and locks protecting the c-heap.
5596 //
5597 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5598 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5599 // and only enabling the work-around for vulnerable environments.
5600 
5601 // utility to compute the abstime argument to timedwait:
5602 // millis is the relative timeout time
5603 // abstime will be the absolute timeout time
5604 // TODO: replace compute_abstime() with unpackTime()
5605 
5606 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5607   if (millis < 0)  millis = 0;
5608 
5609   jlong seconds = millis / 1000;
5610   millis %= 1000;
5611   if (seconds > 50000000) { // see man cond_timedwait(3T)
5612     seconds = 50000000;
5613   }
5614 
5615   if (os::Linux::supports_monotonic_clock()) {
5616     struct timespec now;
5617     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5618     assert_status(status == 0, status, "clock_gettime");
5619     abstime->tv_sec = now.tv_sec  + seconds;
5620     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5621     if (nanos >= NANOSECS_PER_SEC) {
5622       abstime->tv_sec += 1;
5623       nanos -= NANOSECS_PER_SEC;
5624     }
5625     abstime->tv_nsec = nanos;
5626   } else {
5627     struct timeval now;
5628     int status = gettimeofday(&now, NULL);
5629     assert(status == 0, "gettimeofday");
5630     abstime->tv_sec = now.tv_sec  + seconds;
5631     long usec = now.tv_usec + millis * 1000;
5632     if (usec >= 1000000) {
5633       abstime->tv_sec += 1;
5634       usec -= 1000000;
5635     }
5636     abstime->tv_nsec = usec * 1000;
5637   }
5638   return abstime;
5639 }
5640 
5641 
5642 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5643 // Conceptually TryPark() should be equivalent to park(0).
5644 
5645 int os::PlatformEvent::TryPark() {
5646   for (;;) {
5647     const int v = _Event ;
5648     guarantee ((v == 0) || (v == 1), "invariant") ;
5649     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5650   }
5651 }
5652 
5653 void os::PlatformEvent::park() {       // AKA "down()"
5654   // Invariant: Only the thread associated with the Event/PlatformEvent
5655   // may call park().
5656   // TODO: assert that _Assoc != NULL or _Assoc == Self
5657   int v ;
5658   for (;;) {
5659       v = _Event ;
5660       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5661   }
5662   guarantee (v >= 0, "invariant") ;
5663   if (v == 0) {
5664      // Do this the hard way by blocking ...
5665      int status = pthread_mutex_lock(_mutex);
5666      assert_status(status == 0, status, "mutex_lock");
5667      guarantee (_nParked == 0, "invariant") ;
5668      ++ _nParked ;
5669      while (_Event < 0) {
5670         status = pthread_cond_wait(_cond, _mutex);
5671         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5672         // Treat this the same as if the wait was interrupted
5673         if (status == ETIME) { status = EINTR; }
5674         assert_status(status == 0 || status == EINTR, status, "cond_wait");
5675      }
5676      -- _nParked ;
5677 
5678     _Event = 0 ;
5679      status = pthread_mutex_unlock(_mutex);
5680      assert_status(status == 0, status, "mutex_unlock");
5681     // Paranoia to ensure our locked and lock-free paths interact
5682     // correctly with each other.
5683     OrderAccess::fence();
5684   }
5685   guarantee (_Event >= 0, "invariant") ;
5686 }
5687 
5688 int os::PlatformEvent::park(jlong millis) {
5689   guarantee (_nParked == 0, "invariant") ;
5690 
5691   int v ;
5692   for (;;) {
5693       v = _Event ;
5694       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5695   }
5696   guarantee (v >= 0, "invariant") ;
5697   if (v != 0) return OS_OK ;
5698 
5699   // We do this the hard way, by blocking the thread.
5700   // Consider enforcing a minimum timeout value.
5701   struct timespec abst;
5702   compute_abstime(&abst, millis);
5703 
5704   int ret = OS_TIMEOUT;
5705   int status = pthread_mutex_lock(_mutex);
5706   assert_status(status == 0, status, "mutex_lock");
5707   guarantee (_nParked == 0, "invariant") ;
5708   ++_nParked ;
5709 
5710   // Object.wait(timo) will return because of
5711   // (a) notification
5712   // (b) timeout
5713   // (c) thread.interrupt
5714   //
5715   // Thread.interrupt and object.notify{All} both call Event::set.
5716   // That is, we treat thread.interrupt as a special case of notification.
5717   // The underlying Solaris implementation, cond_timedwait, admits
5718   // spurious/premature wakeups, but the JLS/JVM spec prevents the
5719   // JVM from making those visible to Java code.  As such, we must
5720   // filter out spurious wakeups.  We assume all ETIME returns are valid.
5721   //
5722   // TODO: properly differentiate simultaneous notify+interrupt.
5723   // In that case, we should propagate the notify to another waiter.
5724 
5725   while (_Event < 0) {
5726     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5727     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5728       pthread_cond_destroy (_cond);
5729       pthread_cond_init (_cond, os::Linux::condAttr()) ;
5730     }
5731     assert_status(status == 0 || status == EINTR ||
5732                   status == ETIME || status == ETIMEDOUT,
5733                   status, "cond_timedwait");
5734     if (!FilterSpuriousWakeups) break ;                 // previous semantics
5735     if (status == ETIME || status == ETIMEDOUT) break ;
5736     // We consume and ignore EINTR and spurious wakeups.
5737   }
5738   --_nParked ;
5739   if (_Event >= 0) {
5740      ret = OS_OK;
5741   }
5742   _Event = 0 ;
5743   status = pthread_mutex_unlock(_mutex);
5744   assert_status(status == 0, status, "mutex_unlock");
5745   assert (_nParked == 0, "invariant") ;
5746   // Paranoia to ensure our locked and lock-free paths interact
5747   // correctly with each other.
5748   OrderAccess::fence();
5749   return ret;
5750 }
5751 
5752 void os::PlatformEvent::unpark() {
5753   // Transitions for _Event:
5754   //    0 :=> 1
5755   //    1 :=> 1
5756   //   -1 :=> either 0 or 1; must signal target thread
5757   //          That is, we can safely transition _Event from -1 to either
5758   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
5759   //          unpark() calls.
5760   // See also: "Semaphores in Plan 9" by Mullender & Cox
5761   //
5762   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5763   // that it will take two back-to-back park() calls for the owning
5764   // thread to block. This has the benefit of forcing a spurious return
5765   // from the first park() call after an unpark() call which will help
5766   // shake out uses of park() and unpark() without condition variables.
5767 
5768   if (Atomic::xchg(1, &_Event) >= 0) return;
5769 
5770   // Wait for the thread associated with the event to vacate
5771   int status = pthread_mutex_lock(_mutex);
5772   assert_status(status == 0, status, "mutex_lock");
5773   int AnyWaiters = _nParked;
5774   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5775   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5776     AnyWaiters = 0;
5777     pthread_cond_signal(_cond);
5778   }
5779   status = pthread_mutex_unlock(_mutex);
5780   assert_status(status == 0, status, "mutex_unlock");
5781   if (AnyWaiters != 0) {
5782     status = pthread_cond_signal(_cond);
5783     assert_status(status == 0, status, "cond_signal");
5784   }
5785 
5786   // Note that we signal() _after dropping the lock for "immortal" Events.
5787   // This is safe and avoids a common class of  futile wakeups.  In rare
5788   // circumstances this can cause a thread to return prematurely from
5789   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5790   // simply re-test the condition and re-park itself.
5791 }
5792 
5793 
5794 // JSR166
5795 // -------------------------------------------------------
5796 
5797 /*
5798  * The solaris and linux implementations of park/unpark are fairly
5799  * conservative for now, but can be improved. They currently use a
5800  * mutex/condvar pair, plus a a count.
5801  * Park decrements count if > 0, else does a condvar wait.  Unpark
5802  * sets count to 1 and signals condvar.  Only one thread ever waits
5803  * on the condvar. Contention seen when trying to park implies that someone
5804  * is unparking you, so don't wait. And spurious returns are fine, so there
5805  * is no need to track notifications.
5806  */
5807 
5808 #define MAX_SECS 100000000
5809 /*
5810  * This code is common to linux and solaris and will be moved to a
5811  * common place in dolphin.
5812  *
5813  * The passed in time value is either a relative time in nanoseconds
5814  * or an absolute time in milliseconds. Either way it has to be unpacked
5815  * into suitable seconds and nanoseconds components and stored in the
5816  * given timespec structure.
5817  * Given time is a 64-bit value and the time_t used in the timespec is only
5818  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5819  * overflow if times way in the future are given. Further on Solaris versions
5820  * prior to 10 there is a restriction (see cond_timedwait) that the specified
5821  * number of seconds, in abstime, is less than current_time  + 100,000,000.
5822  * As it will be 28 years before "now + 100000000" will overflow we can
5823  * ignore overflow and just impose a hard-limit on seconds using the value
5824  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5825  * years from "now".
5826  */
5827 
5828 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5829   assert (time > 0, "convertTime");
5830   time_t max_secs = 0;
5831 
5832   if (!os::Linux::supports_monotonic_clock() || isAbsolute) {
5833     struct timeval now;
5834     int status = gettimeofday(&now, NULL);
5835     assert(status == 0, "gettimeofday");
5836 
5837     max_secs = now.tv_sec + MAX_SECS;
5838 
5839     if (isAbsolute) {
5840       jlong secs = time / 1000;
5841       if (secs > max_secs) {
5842         absTime->tv_sec = max_secs;
5843       } else {
5844         absTime->tv_sec = secs;
5845       }
5846       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5847     } else {
5848       jlong secs = time / NANOSECS_PER_SEC;
5849       if (secs >= MAX_SECS) {
5850         absTime->tv_sec = max_secs;
5851         absTime->tv_nsec = 0;
5852       } else {
5853         absTime->tv_sec = now.tv_sec + secs;
5854         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5855         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5856           absTime->tv_nsec -= NANOSECS_PER_SEC;
5857           ++absTime->tv_sec; // note: this must be <= max_secs
5858         }
5859       }
5860     }
5861   } else {
5862     // must be relative using monotonic clock
5863     struct timespec now;
5864     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5865     assert_status(status == 0, status, "clock_gettime");
5866     max_secs = now.tv_sec + MAX_SECS;
5867     jlong secs = time / NANOSECS_PER_SEC;
5868     if (secs >= MAX_SECS) {
5869       absTime->tv_sec = max_secs;
5870       absTime->tv_nsec = 0;
5871     } else {
5872       absTime->tv_sec = now.tv_sec + secs;
5873       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5874       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5875         absTime->tv_nsec -= NANOSECS_PER_SEC;
5876         ++absTime->tv_sec; // note: this must be <= max_secs
5877       }
5878     }
5879   }
5880   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5881   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5882   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5883   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5884 }
5885 
5886 void Parker::park(bool isAbsolute, jlong time) {
5887   // Ideally we'd do something useful while spinning, such
5888   // as calling unpackTime().
5889 
5890   // Optional fast-path check:
5891   // Return immediately if a permit is available.
5892   // We depend on Atomic::xchg() having full barrier semantics
5893   // since we are doing a lock-free update to _counter.
5894   if (Atomic::xchg(0, &_counter) > 0) return;
5895 
5896   Thread* thread = Thread::current();
5897   assert(thread->is_Java_thread(), "Must be JavaThread");
5898   JavaThread *jt = (JavaThread *)thread;
5899 
5900   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5901   // Check interrupt before trying to wait
5902   if (Thread::is_interrupted(thread, false)) {
5903     return;
5904   }
5905 
5906   // Next, demultiplex/decode time arguments
5907   timespec absTime;
5908   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5909     return;
5910   }
5911   if (time > 0) {
5912     unpackTime(&absTime, isAbsolute, time);
5913   }
5914 
5915 
5916   // Enter safepoint region
5917   // Beware of deadlocks such as 6317397.
5918   // The per-thread Parker:: mutex is a classic leaf-lock.
5919   // In particular a thread must never block on the Threads_lock while
5920   // holding the Parker:: mutex.  If safepoints are pending both the
5921   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5922   ThreadBlockInVM tbivm(jt);
5923 
5924   // Don't wait if cannot get lock since interference arises from
5925   // unblocking.  Also. check interrupt before trying wait
5926   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5927     return;
5928   }
5929 
5930   int status ;
5931   if (_counter > 0)  { // no wait needed
5932     _counter = 0;
5933     status = pthread_mutex_unlock(_mutex);
5934     assert (status == 0, "invariant") ;
5935     // Paranoia to ensure our locked and lock-free paths interact
5936     // correctly with each other and Java-level accesses.
5937     OrderAccess::fence();
5938     return;
5939   }
5940 
5941 #ifdef ASSERT
5942   // Don't catch signals while blocked; let the running threads have the signals.
5943   // (This allows a debugger to break into the running thread.)
5944   sigset_t oldsigs;
5945   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5946   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5947 #endif
5948 
5949   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5950   jt->set_suspend_equivalent();
5951   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5952 
5953   assert(_cur_index == -1, "invariant");
5954   if (time == 0) {
5955     _cur_index = REL_INDEX; // arbitrary choice when not timed
5956     status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
5957   } else {
5958     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5959     status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
5960     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5961       pthread_cond_destroy (&_cond[_cur_index]) ;
5962       pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5963     }
5964   }
5965   _cur_index = -1;
5966   assert_status(status == 0 || status == EINTR ||
5967                 status == ETIME || status == ETIMEDOUT,
5968                 status, "cond_timedwait");
5969 
5970 #ifdef ASSERT
5971   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5972 #endif
5973 
5974   _counter = 0 ;
5975   status = pthread_mutex_unlock(_mutex) ;
5976   assert_status(status == 0, status, "invariant") ;
5977   // Paranoia to ensure our locked and lock-free paths interact
5978   // correctly with each other and Java-level accesses.
5979   OrderAccess::fence();
5980 
5981   // If externally suspended while waiting, re-suspend
5982   if (jt->handle_special_suspend_equivalent_condition()) {
5983     jt->java_suspend_self();
5984   }
5985 }
5986 
5987 void Parker::unpark() {
5988   int s, status ;
5989   status = pthread_mutex_lock(_mutex);
5990   assert (status == 0, "invariant") ;
5991   s = _counter;
5992   _counter = 1;
5993   if (s < 1) {
5994     // thread might be parked
5995     if (_cur_index != -1) {
5996       // thread is definitely parked
5997       if (WorkAroundNPTLTimedWaitHang) {
5998         status = pthread_cond_signal (&_cond[_cur_index]);
5999         assert (status == 0, "invariant");
6000         status = pthread_mutex_unlock(_mutex);
6001         assert (status == 0, "invariant");
6002       } else {
6003         status = pthread_mutex_unlock(_mutex);
6004         assert (status == 0, "invariant");
6005         status = pthread_cond_signal (&_cond[_cur_index]);
6006         assert (status == 0, "invariant");
6007       }
6008     } else {
6009       pthread_mutex_unlock(_mutex);
6010       assert (status == 0, "invariant") ;
6011     }
6012   } else {
6013     pthread_mutex_unlock(_mutex);
6014     assert (status == 0, "invariant") ;
6015   }
6016 }
6017 
6018 
6019 extern char** environ;
6020 
6021 #ifndef __NR_fork
6022 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
6023 #endif
6024 
6025 #ifndef __NR_execve
6026 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
6027 #endif
6028 
6029 // Run the specified command in a separate process. Return its exit value,
6030 // or -1 on failure (e.g. can't fork a new process).
6031 // Unlike system(), this function can be called from signal handler. It
6032 // doesn't block SIGINT et al.
6033 int os::fork_and_exec(char* cmd) {
6034   const char * argv[4] = {"sh", "-c", cmd, NULL};
6035 
6036   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
6037   // pthread_atfork handlers and reset pthread library. All we need is a
6038   // separate process to execve. Make a direct syscall to fork process.
6039   // On IA64 there's no fork syscall, we have to use fork() and hope for
6040   // the best...
6041   pid_t pid = NOT_IA64(syscall(__NR_fork);)
6042               IA64_ONLY(fork();)
6043 
6044   if (pid < 0) {
6045     // fork failed
6046     return -1;
6047 
6048   } else if (pid == 0) {
6049     // child process
6050 
6051     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
6052     // first to kill every thread on the thread list. Because this list is
6053     // not reset by fork() (see notes above), execve() will instead kill
6054     // every thread in the parent process. We know this is the only thread
6055     // in the new process, so make a system call directly.
6056     // IA64 should use normal execve() from glibc to match the glibc fork()
6057     // above.
6058     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
6059     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
6060 
6061     // execve failed
6062     _exit(-1);
6063 
6064   } else  {
6065     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
6066     // care about the actual exit code, for now.
6067 
6068     int status;
6069 
6070     // Wait for the child process to exit.  This returns immediately if
6071     // the child has already exited. */
6072     while (waitpid(pid, &status, 0) < 0) {
6073         switch (errno) {
6074         case ECHILD: return 0;
6075         case EINTR: break;
6076         default: return -1;
6077         }
6078     }
6079 
6080     if (WIFEXITED(status)) {
6081        // The child exited normally; get its exit code.
6082        return WEXITSTATUS(status);
6083     } else if (WIFSIGNALED(status)) {
6084        // The child exited because of a signal
6085        // The best value to return is 0x80 + signal number,
6086        // because that is what all Unix shells do, and because
6087        // it allows callers to distinguish between process exit and
6088        // process death by signal.
6089        return 0x80 + WTERMSIG(status);
6090     } else {
6091        // Unknown exit code; pass it through
6092        return status;
6093     }
6094   }
6095 }
6096 
6097 // is_headless_jre()
6098 //
6099 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
6100 // in order to report if we are running in a headless jre
6101 //
6102 // Since JDK8 xawt/libmawt.so was moved into the same directory
6103 // as libawt.so, and renamed libawt_xawt.so
6104 //
6105 bool os::is_headless_jre() {
6106     struct stat statbuf;
6107     char buf[MAXPATHLEN];
6108     char libmawtpath[MAXPATHLEN];
6109     const char *xawtstr  = "/xawt/libmawt.so";
6110     const char *new_xawtstr = "/libawt_xawt.so";
6111     char *p;
6112 
6113     // Get path to libjvm.so
6114     os::jvm_path(buf, sizeof(buf));
6115 
6116     // Get rid of libjvm.so
6117     p = strrchr(buf, '/');
6118     if (p == NULL) return false;
6119     else *p = '\0';
6120 
6121     // Get rid of client or server
6122     p = strrchr(buf, '/');
6123     if (p == NULL) return false;
6124     else *p = '\0';
6125 
6126     // check xawt/libmawt.so
6127     strcpy(libmawtpath, buf);
6128     strcat(libmawtpath, xawtstr);
6129     if (::stat(libmawtpath, &statbuf) == 0) return false;
6130 
6131     // check libawt_xawt.so
6132     strcpy(libmawtpath, buf);
6133     strcat(libmawtpath, new_xawtstr);
6134     if (::stat(libmawtpath, &statbuf) == 0) return false;
6135 
6136     return true;
6137 }
6138 
6139 // Get the default path to the core file
6140 // Returns the length of the string
6141 int os::get_core_path(char* buffer, size_t bufferSize) {
6142   const char* p = get_current_directory(buffer, bufferSize);
6143 
6144   if (p == NULL) {
6145     assert(p != NULL, "failed to get current directory");
6146     return 0;
6147   }
6148 
6149   return strlen(buffer);
6150 }
6151 
6152 #ifdef JAVASE_EMBEDDED
6153 //
6154 // A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
6155 //
6156 MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
6157 
6158 // ctor
6159 //
6160 MemNotifyThread::MemNotifyThread(int fd): Thread() {
6161   assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
6162   _fd = fd;
6163 
6164   if (os::create_thread(this, os::os_thread)) {
6165     _memnotify_thread = this;
6166     os::set_priority(this, NearMaxPriority);
6167     os::start_thread(this);
6168   }
6169 }
6170 
6171 // Where all the work gets done
6172 //
6173 void MemNotifyThread::run() {
6174   assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
6175 
6176   // Set up the select arguments
6177   fd_set rfds;
6178   if (_fd != -1) {
6179     FD_ZERO(&rfds);
6180     FD_SET(_fd, &rfds);
6181   }
6182 
6183   // Now wait for the mem_notify device to wake up
6184   while (1) {
6185     // Wait for the mem_notify device to signal us..
6186     int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
6187     if (rc == -1) {
6188       perror("select!\n");
6189       break;
6190     } else if (rc) {
6191       //ssize_t free_before = os::available_memory();
6192       //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
6193 
6194       // The kernel is telling us there is not much memory left...
6195       // try to do something about that
6196 
6197       // If we are not already in a GC, try one.
6198       if (!Universe::heap()->is_gc_active()) {
6199         Universe::heap()->collect(GCCause::_allocation_failure);
6200 
6201         //ssize_t free_after = os::available_memory();
6202         //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
6203         //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
6204       }
6205       // We might want to do something like the following if we find the GC's are not helping...
6206       // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
6207     }
6208   }
6209 }
6210 
6211 //
6212 // See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
6213 //
6214 void MemNotifyThread::start() {
6215   int    fd;
6216   fd = open ("/dev/mem_notify", O_RDONLY, 0);
6217   if (fd < 0) {
6218       return;
6219   }
6220 
6221   if (memnotify_thread() == NULL) {
6222     new MemNotifyThread(fd);
6223   }
6224 }
6225 
6226 #endif // JAVASE_EMBEDDED
6227 
6228 
6229 /////////////// Unit tests ///////////////
6230 
6231 #ifndef PRODUCT
6232 
6233 #define test_log(...) \
6234   do {\
6235     if (VerboseInternalVMTests) { \
6236       tty->print_cr(__VA_ARGS__); \
6237       tty->flush(); \
6238     }\
6239   } while (false)
6240 
6241 class TestReserveMemorySpecial : AllStatic {
6242  public:
6243   static void small_page_write(void* addr, size_t size) {
6244     size_t page_size = os::vm_page_size();
6245 
6246     char* end = (char*)addr + size;
6247     for (char* p = (char*)addr; p < end; p += page_size) {
6248       *p = 1;
6249     }
6250   }
6251 
6252   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6253     if (!UseHugeTLBFS) {
6254       return;
6255     }
6256 
6257     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6258 
6259     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6260 
6261     if (addr != NULL) {
6262       small_page_write(addr, size);
6263 
6264       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6265     }
6266   }
6267 
6268   static void test_reserve_memory_special_huge_tlbfs_only() {
6269     if (!UseHugeTLBFS) {
6270       return;
6271     }
6272 
6273     size_t lp = os::large_page_size();
6274 
6275     for (size_t size = lp; size <= lp * 10; size += lp) {
6276       test_reserve_memory_special_huge_tlbfs_only(size);
6277     }
6278   }
6279 
6280   static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
6281     if (!UseHugeTLBFS) {
6282         return;
6283     }
6284 
6285     test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
6286         size, alignment);
6287 
6288     assert(size >= os::large_page_size(), "Incorrect input to test");
6289 
6290     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6291 
6292     if (addr != NULL) {
6293       small_page_write(addr, size);
6294 
6295       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6296     }
6297   }
6298 
6299   static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
6300     size_t lp = os::large_page_size();
6301     size_t ag = os::vm_allocation_granularity();
6302 
6303     for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6304       test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
6305     }
6306   }
6307 
6308   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6309     size_t lp = os::large_page_size();
6310     size_t ag = os::vm_allocation_granularity();
6311 
6312     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
6313     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
6314     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
6315     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
6316     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
6317     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
6318     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
6319     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
6320     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
6321   }
6322 
6323   static void test_reserve_memory_special_huge_tlbfs() {
6324     if (!UseHugeTLBFS) {
6325       return;
6326     }
6327 
6328     test_reserve_memory_special_huge_tlbfs_only();
6329     test_reserve_memory_special_huge_tlbfs_mixed();
6330   }
6331 
6332   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6333     if (!UseSHM) {
6334       return;
6335     }
6336 
6337     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6338 
6339     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6340 
6341     if (addr != NULL) {
6342       assert(is_ptr_aligned(addr, alignment), "Check");
6343       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6344 
6345       small_page_write(addr, size);
6346 
6347       os::Linux::release_memory_special_shm(addr, size);
6348     }
6349   }
6350 
6351   static void test_reserve_memory_special_shm() {
6352     size_t lp = os::large_page_size();
6353     size_t ag = os::vm_allocation_granularity();
6354 
6355     for (size_t size = ag; size < lp * 3; size += ag) {
6356       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6357         test_reserve_memory_special_shm(size, alignment);
6358       }
6359     }
6360   }
6361 
6362   static void test() {
6363     test_reserve_memory_special_huge_tlbfs();
6364     test_reserve_memory_special_shm();
6365   }
6366 };
6367 
6368 void TestReserveMemorySpecial_test() {
6369   TestReserveMemorySpecial::test();
6370 }
6371 
6372 #endif