1 /* 2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/classLoader.hpp" 27 #include "classfile/javaClasses.hpp" 28 #include "classfile/systemDictionary.hpp" 29 #include "classfile/vmSymbols.hpp" 30 #include "code/scopeDesc.hpp" 31 #include "compiler/compileBroker.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/linkResolver.hpp" 34 #include "interpreter/oopMapCache.hpp" 35 #include "jvmtifiles/jvmtiEnv.hpp" 36 #include "memory/gcLocker.inline.hpp" 37 #include "memory/metaspaceShared.hpp" 38 #include "memory/oopFactory.hpp" 39 #include "memory/universe.inline.hpp" 40 #include "oops/instanceKlass.hpp" 41 #include "oops/objArrayOop.hpp" 42 #include "oops/oop.inline.hpp" 43 #include "oops/symbol.hpp" 44 #include "prims/jvm_misc.hpp" 45 #include "prims/jvmtiExport.hpp" 46 #include "prims/jvmtiThreadState.hpp" 47 #include "prims/privilegedStack.hpp" 48 #include "runtime/arguments.hpp" 49 #include "runtime/biasedLocking.hpp" 50 #include "runtime/deoptimization.hpp" 51 #include "runtime/fprofiler.hpp" 52 #include "runtime/frame.inline.hpp" 53 #include "runtime/init.hpp" 54 #include "runtime/interfaceSupport.hpp" 55 #include "runtime/java.hpp" 56 #include "runtime/javaCalls.hpp" 57 #include "runtime/jniPeriodicChecker.hpp" 58 #include "runtime/memprofiler.hpp" 59 #include "runtime/mutexLocker.hpp" 60 #include "runtime/objectMonitor.hpp" 61 #include "runtime/orderAccess.inline.hpp" 62 #include "runtime/osThread.hpp" 63 #include "runtime/safepoint.hpp" 64 #include "runtime/sharedRuntime.hpp" 65 #include "runtime/statSampler.hpp" 66 #include "runtime/stubRoutines.hpp" 67 #include "runtime/task.hpp" 68 #include "runtime/thread.inline.hpp" 69 #include "runtime/threadCritical.hpp" 70 #include "runtime/threadLocalStorage.hpp" 71 #include "runtime/vframe.hpp" 72 #include "runtime/vframeArray.hpp" 73 #include "runtime/vframe_hp.hpp" 74 #include "runtime/vmThread.hpp" 75 #include "runtime/vm_operations.hpp" 76 #include "services/attachListener.hpp" 77 #include "services/management.hpp" 78 #include "services/memTracker.hpp" 79 #include "services/threadService.hpp" 80 #include "trace/tracing.hpp" 81 #include "trace/traceMacros.hpp" 82 #include "utilities/defaultStream.hpp" 83 #include "utilities/dtrace.hpp" 84 #include "utilities/events.hpp" 85 #include "utilities/preserveException.hpp" 86 #include "utilities/macros.hpp" 87 #ifdef TARGET_OS_FAMILY_linux 88 # include "os_linux.inline.hpp" 89 #endif 90 #ifdef TARGET_OS_FAMILY_solaris 91 # include "os_solaris.inline.hpp" 92 #endif 93 #ifdef TARGET_OS_FAMILY_windows 94 # include "os_windows.inline.hpp" 95 #endif 96 #ifdef TARGET_OS_FAMILY_bsd 97 # include "os_bsd.inline.hpp" 98 #endif 99 #if INCLUDE_ALL_GCS 100 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp" 101 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp" 102 #include "gc_implementation/parallelScavenge/pcTasks.hpp" 103 #endif // INCLUDE_ALL_GCS 104 #ifdef COMPILER1 105 #include "c1/c1_Compiler.hpp" 106 #endif 107 #ifdef COMPILER2 108 #include "opto/c2compiler.hpp" 109 #include "opto/idealGraphPrinter.hpp" 110 #endif 111 #if INCLUDE_RTM_OPT 112 #include "runtime/rtmLocking.hpp" 113 #endif 114 115 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC 116 117 #ifdef DTRACE_ENABLED 118 119 // Only bother with this argument setup if dtrace is available 120 121 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START 122 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP 123 124 #define DTRACE_THREAD_PROBE(probe, javathread) \ 125 { \ 126 ResourceMark rm(this); \ 127 int len = 0; \ 128 const char* name = (javathread)->get_thread_name(); \ 129 len = strlen(name); \ 130 HOTSPOT_THREAD_PROBE_##probe( /* probe = start, stop */ \ 131 (char *) name, len, \ 132 java_lang_Thread::thread_id((javathread)->threadObj()), \ 133 (uintptr_t) (javathread)->osthread()->thread_id(), \ 134 java_lang_Thread::is_daemon((javathread)->threadObj())); \ 135 } 136 137 #else // ndef DTRACE_ENABLED 138 139 #define DTRACE_THREAD_PROBE(probe, javathread) 140 141 #endif // ndef DTRACE_ENABLED 142 143 144 // Class hierarchy 145 // - Thread 146 // - VMThread 147 // - WatcherThread 148 // - ConcurrentMarkSweepThread 149 // - JavaThread 150 // - CompilerThread 151 152 // ======= Thread ======== 153 // Support for forcing alignment of thread objects for biased locking 154 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) { 155 if (UseBiasedLocking) { 156 const int alignment = markOopDesc::biased_lock_alignment; 157 size_t aligned_size = size + (alignment - sizeof(intptr_t)); 158 void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC) 159 : AllocateHeap(aligned_size, flags, CURRENT_PC, 160 AllocFailStrategy::RETURN_NULL); 161 void* aligned_addr = (void*) align_size_up((intptr_t) real_malloc_addr, alignment); 162 assert(((uintptr_t) aligned_addr + (uintptr_t) size) <= 163 ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size), 164 "JavaThread alignment code overflowed allocated storage"); 165 if (TraceBiasedLocking) { 166 if (aligned_addr != real_malloc_addr) 167 tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT, 168 real_malloc_addr, aligned_addr); 169 } 170 ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr; 171 return aligned_addr; 172 } else { 173 return throw_excpt? AllocateHeap(size, flags, CURRENT_PC) 174 : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL); 175 } 176 } 177 178 void Thread::operator delete(void* p) { 179 if (UseBiasedLocking) { 180 void* real_malloc_addr = ((Thread*) p)->_real_malloc_address; 181 FreeHeap(real_malloc_addr, mtThread); 182 } else { 183 FreeHeap(p, mtThread); 184 } 185 } 186 187 188 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread, 189 // JavaThread 190 191 192 Thread::Thread() { 193 // stack and get_thread 194 set_stack_base(NULL); 195 set_stack_size(0); 196 set_self_raw_id(0); 197 set_lgrp_id(-1); 198 199 // allocated data structures 200 set_osthread(NULL); 201 set_resource_area(new (mtThread)ResourceArea()); 202 DEBUG_ONLY(_current_resource_mark = NULL;) 203 set_handle_area(new (mtThread) HandleArea(NULL)); 204 set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true)); 205 set_active_handles(NULL); 206 set_free_handle_block(NULL); 207 set_last_handle_mark(NULL); 208 209 // This initial value ==> never claimed. 210 _oops_do_parity = 0; 211 212 // the handle mark links itself to last_handle_mark 213 new HandleMark(this); 214 215 // plain initialization 216 debug_only(_owned_locks = NULL;) 217 debug_only(_allow_allocation_count = 0;) 218 NOT_PRODUCT(_allow_safepoint_count = 0;) 219 NOT_PRODUCT(_skip_gcalot = false;) 220 _jvmti_env_iteration_count = 0; 221 set_allocated_bytes(0); 222 _vm_operation_started_count = 0; 223 _vm_operation_completed_count = 0; 224 _current_pending_monitor = NULL; 225 _current_pending_monitor_is_from_java = true; 226 _current_waiting_monitor = NULL; 227 _num_nested_signal = 0; 228 omFreeList = NULL ; 229 omFreeCount = 0 ; 230 omFreeProvision = 32 ; 231 omInUseList = NULL ; 232 omInUseCount = 0 ; 233 234 #ifdef ASSERT 235 _visited_for_critical_count = false; 236 #endif 237 238 _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true); 239 _suspend_flags = 0; 240 241 // thread-specific hashCode stream generator state - Marsaglia shift-xor form 242 _hashStateX = os::random() ; 243 _hashStateY = 842502087 ; 244 _hashStateZ = 0x8767 ; // (int)(3579807591LL & 0xffff) ; 245 _hashStateW = 273326509 ; 246 247 _OnTrap = 0 ; 248 _schedctl = NULL ; 249 _Stalled = 0 ; 250 _TypeTag = 0x2BAD ; 251 252 // Many of the following fields are effectively final - immutable 253 // Note that nascent threads can't use the Native Monitor-Mutex 254 // construct until the _MutexEvent is initialized ... 255 // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents 256 // we might instead use a stack of ParkEvents that we could provision on-demand. 257 // The stack would act as a cache to avoid calls to ParkEvent::Allocate() 258 // and ::Release() 259 _ParkEvent = ParkEvent::Allocate (this) ; 260 _SleepEvent = ParkEvent::Allocate (this) ; 261 _MutexEvent = ParkEvent::Allocate (this) ; 262 _MuxEvent = ParkEvent::Allocate (this) ; 263 264 #ifdef CHECK_UNHANDLED_OOPS 265 if (CheckUnhandledOops) { 266 _unhandled_oops = new UnhandledOops(this); 267 } 268 #endif // CHECK_UNHANDLED_OOPS 269 #ifdef ASSERT 270 if (UseBiasedLocking) { 271 assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed"); 272 assert(this == _real_malloc_address || 273 this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment), 274 "bug in forced alignment of thread objects"); 275 } 276 #endif /* ASSERT */ 277 } 278 279 void Thread::initialize_thread_local_storage() { 280 // Note: Make sure this method only calls 281 // non-blocking operations. Otherwise, it might not work 282 // with the thread-startup/safepoint interaction. 283 284 // During Java thread startup, safepoint code should allow this 285 // method to complete because it may need to allocate memory to 286 // store information for the new thread. 287 288 // initialize structure dependent on thread local storage 289 ThreadLocalStorage::set_thread(this); 290 } 291 292 void Thread::record_stack_base_and_size() { 293 set_stack_base(os::current_stack_base()); 294 set_stack_size(os::current_stack_size()); 295 if (is_Java_thread()) { 296 ((JavaThread*) this)->set_stack_overflow_limit(); 297 } 298 // CR 7190089: on Solaris, primordial thread's stack is adjusted 299 // in initialize_thread(). Without the adjustment, stack size is 300 // incorrect if stack is set to unlimited (ulimit -s unlimited). 301 // So far, only Solaris has real implementation of initialize_thread(). 302 // 303 // set up any platform-specific state. 304 os::initialize_thread(this); 305 306 #if INCLUDE_NMT 307 // record thread's native stack, stack grows downward 308 address stack_low_addr = stack_base() - stack_size(); 309 MemTracker::record_thread_stack(stack_low_addr, stack_size(), this, 310 CURRENT_PC); 311 #endif // INCLUDE_NMT 312 } 313 314 315 Thread::~Thread() { 316 // Reclaim the objectmonitors from the omFreeList of the moribund thread. 317 ObjectSynchronizer::omFlush (this) ; 318 319 EVENT_THREAD_DESTRUCT(this); 320 321 // stack_base can be NULL if the thread is never started or exited before 322 // record_stack_base_and_size called. Although, we would like to ensure 323 // that all started threads do call record_stack_base_and_size(), there is 324 // not proper way to enforce that. 325 #if INCLUDE_NMT 326 if (_stack_base != NULL) { 327 address low_stack_addr = stack_base() - stack_size(); 328 MemTracker::release_thread_stack(low_stack_addr, stack_size(), this); 329 #ifdef ASSERT 330 set_stack_base(NULL); 331 #endif 332 } 333 #endif // INCLUDE_NMT 334 335 // deallocate data structures 336 delete resource_area(); 337 // since the handle marks are using the handle area, we have to deallocated the root 338 // handle mark before deallocating the thread's handle area, 339 assert(last_handle_mark() != NULL, "check we have an element"); 340 delete last_handle_mark(); 341 assert(last_handle_mark() == NULL, "check we have reached the end"); 342 343 // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads. 344 // We NULL out the fields for good hygiene. 345 ParkEvent::Release (_ParkEvent) ; _ParkEvent = NULL ; 346 ParkEvent::Release (_SleepEvent) ; _SleepEvent = NULL ; 347 ParkEvent::Release (_MutexEvent) ; _MutexEvent = NULL ; 348 ParkEvent::Release (_MuxEvent) ; _MuxEvent = NULL ; 349 350 delete handle_area(); 351 delete metadata_handles(); 352 353 // osthread() can be NULL, if creation of thread failed. 354 if (osthread() != NULL) os::free_thread(osthread()); 355 356 delete _SR_lock; 357 358 // clear thread local storage if the Thread is deleting itself 359 if (this == Thread::current()) { 360 ThreadLocalStorage::set_thread(NULL); 361 } else { 362 // In the case where we're not the current thread, invalidate all the 363 // caches in case some code tries to get the current thread or the 364 // thread that was destroyed, and gets stale information. 365 ThreadLocalStorage::invalidate_all(); 366 } 367 CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();) 368 } 369 370 // NOTE: dummy function for assertion purpose. 371 void Thread::run() { 372 ShouldNotReachHere(); 373 } 374 375 #ifdef ASSERT 376 // Private method to check for dangling thread pointer 377 void check_for_dangling_thread_pointer(Thread *thread) { 378 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(), 379 "possibility of dangling Thread pointer"); 380 } 381 #endif 382 383 384 #ifndef PRODUCT 385 // Tracing method for basic thread operations 386 void Thread::trace(const char* msg, const Thread* const thread) { 387 if (!TraceThreadEvents) return; 388 ResourceMark rm; 389 ThreadCritical tc; 390 const char *name = "non-Java thread"; 391 int prio = -1; 392 if (thread->is_Java_thread() 393 && !thread->is_Compiler_thread()) { 394 // The Threads_lock must be held to get information about 395 // this thread but may not be in some situations when 396 // tracing thread events. 397 bool release_Threads_lock = false; 398 if (!Threads_lock->owned_by_self()) { 399 Threads_lock->lock(); 400 release_Threads_lock = true; 401 } 402 JavaThread* jt = (JavaThread *)thread; 403 name = (char *)jt->get_thread_name(); 404 oop thread_oop = jt->threadObj(); 405 if (thread_oop != NULL) { 406 prio = java_lang_Thread::priority(thread_oop); 407 } 408 if (release_Threads_lock) { 409 Threads_lock->unlock(); 410 } 411 } 412 tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio); 413 } 414 #endif 415 416 417 ThreadPriority Thread::get_priority(const Thread* const thread) { 418 trace("get priority", thread); 419 ThreadPriority priority; 420 // Can return an error! 421 (void)os::get_priority(thread, priority); 422 assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found"); 423 return priority; 424 } 425 426 void Thread::set_priority(Thread* thread, ThreadPriority priority) { 427 trace("set priority", thread); 428 debug_only(check_for_dangling_thread_pointer(thread);) 429 // Can return an error! 430 (void)os::set_priority(thread, priority); 431 } 432 433 434 void Thread::start(Thread* thread) { 435 trace("start", thread); 436 // Start is different from resume in that its safety is guaranteed by context or 437 // being called from a Java method synchronized on the Thread object. 438 if (!DisableStartThread) { 439 if (thread->is_Java_thread()) { 440 // Initialize the thread state to RUNNABLE before starting this thread. 441 // Can not set it after the thread started because we do not know the 442 // exact thread state at that time. It could be in MONITOR_WAIT or 443 // in SLEEPING or some other state. 444 java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(), 445 java_lang_Thread::RUNNABLE); 446 } 447 os::start_thread(thread); 448 } 449 } 450 451 // Enqueue a VM_Operation to do the job for us - sometime later 452 void Thread::send_async_exception(oop java_thread, oop java_throwable) { 453 VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable); 454 VMThread::execute(vm_stop); 455 } 456 457 458 // 459 // Check if an external suspend request has completed (or has been 460 // cancelled). Returns true if the thread is externally suspended and 461 // false otherwise. 462 // 463 // The bits parameter returns information about the code path through 464 // the routine. Useful for debugging: 465 // 466 // set in is_ext_suspend_completed(): 467 // 0x00000001 - routine was entered 468 // 0x00000010 - routine return false at end 469 // 0x00000100 - thread exited (return false) 470 // 0x00000200 - suspend request cancelled (return false) 471 // 0x00000400 - thread suspended (return true) 472 // 0x00001000 - thread is in a suspend equivalent state (return true) 473 // 0x00002000 - thread is native and walkable (return true) 474 // 0x00004000 - thread is native_trans and walkable (needed retry) 475 // 476 // set in wait_for_ext_suspend_completion(): 477 // 0x00010000 - routine was entered 478 // 0x00020000 - suspend request cancelled before loop (return false) 479 // 0x00040000 - thread suspended before loop (return true) 480 // 0x00080000 - suspend request cancelled in loop (return false) 481 // 0x00100000 - thread suspended in loop (return true) 482 // 0x00200000 - suspend not completed during retry loop (return false) 483 // 484 485 // Helper class for tracing suspend wait debug bits. 486 // 487 // 0x00000100 indicates that the target thread exited before it could 488 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and 489 // 0x00080000 each indicate a cancelled suspend request so they don't 490 // count as wait failures either. 491 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000) 492 493 class TraceSuspendDebugBits : public StackObj { 494 private: 495 JavaThread * jt; 496 bool is_wait; 497 bool called_by_wait; // meaningful when !is_wait 498 uint32_t * bits; 499 500 public: 501 TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait, 502 uint32_t *_bits) { 503 jt = _jt; 504 is_wait = _is_wait; 505 called_by_wait = _called_by_wait; 506 bits = _bits; 507 } 508 509 ~TraceSuspendDebugBits() { 510 if (!is_wait) { 511 #if 1 512 // By default, don't trace bits for is_ext_suspend_completed() calls. 513 // That trace is very chatty. 514 return; 515 #else 516 if (!called_by_wait) { 517 // If tracing for is_ext_suspend_completed() is enabled, then only 518 // trace calls to it from wait_for_ext_suspend_completion() 519 return; 520 } 521 #endif 522 } 523 524 if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) { 525 if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) { 526 MutexLocker ml(Threads_lock); // needed for get_thread_name() 527 ResourceMark rm; 528 529 tty->print_cr( 530 "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)", 531 jt->get_thread_name(), *bits); 532 533 guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed"); 534 } 535 } 536 } 537 }; 538 #undef DEBUG_FALSE_BITS 539 540 541 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) { 542 TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits); 543 544 bool did_trans_retry = false; // only do thread_in_native_trans retry once 545 bool do_trans_retry; // flag to force the retry 546 547 *bits |= 0x00000001; 548 549 do { 550 do_trans_retry = false; 551 552 if (is_exiting()) { 553 // Thread is in the process of exiting. This is always checked 554 // first to reduce the risk of dereferencing a freed JavaThread. 555 *bits |= 0x00000100; 556 return false; 557 } 558 559 if (!is_external_suspend()) { 560 // Suspend request is cancelled. This is always checked before 561 // is_ext_suspended() to reduce the risk of a rogue resume 562 // confusing the thread that made the suspend request. 563 *bits |= 0x00000200; 564 return false; 565 } 566 567 if (is_ext_suspended()) { 568 // thread is suspended 569 *bits |= 0x00000400; 570 return true; 571 } 572 573 // Now that we no longer do hard suspends of threads running 574 // native code, the target thread can be changing thread state 575 // while we are in this routine: 576 // 577 // _thread_in_native -> _thread_in_native_trans -> _thread_blocked 578 // 579 // We save a copy of the thread state as observed at this moment 580 // and make our decision about suspend completeness based on the 581 // copy. This closes the race where the thread state is seen as 582 // _thread_in_native_trans in the if-thread_blocked check, but is 583 // seen as _thread_blocked in if-thread_in_native_trans check. 584 JavaThreadState save_state = thread_state(); 585 586 if (save_state == _thread_blocked && is_suspend_equivalent()) { 587 // If the thread's state is _thread_blocked and this blocking 588 // condition is known to be equivalent to a suspend, then we can 589 // consider the thread to be externally suspended. This means that 590 // the code that sets _thread_blocked has been modified to do 591 // self-suspension if the blocking condition releases. We also 592 // used to check for CONDVAR_WAIT here, but that is now covered by 593 // the _thread_blocked with self-suspension check. 594 // 595 // Return true since we wouldn't be here unless there was still an 596 // external suspend request. 597 *bits |= 0x00001000; 598 return true; 599 } else if (save_state == _thread_in_native && frame_anchor()->walkable()) { 600 // Threads running native code will self-suspend on native==>VM/Java 601 // transitions. If its stack is walkable (should always be the case 602 // unless this function is called before the actual java_suspend() 603 // call), then the wait is done. 604 *bits |= 0x00002000; 605 return true; 606 } else if (!called_by_wait && !did_trans_retry && 607 save_state == _thread_in_native_trans && 608 frame_anchor()->walkable()) { 609 // The thread is transitioning from thread_in_native to another 610 // thread state. check_safepoint_and_suspend_for_native_trans() 611 // will force the thread to self-suspend. If it hasn't gotten 612 // there yet we may have caught the thread in-between the native 613 // code check above and the self-suspend. Lucky us. If we were 614 // called by wait_for_ext_suspend_completion(), then it 615 // will be doing the retries so we don't have to. 616 // 617 // Since we use the saved thread state in the if-statement above, 618 // there is a chance that the thread has already transitioned to 619 // _thread_blocked by the time we get here. In that case, we will 620 // make a single unnecessary pass through the logic below. This 621 // doesn't hurt anything since we still do the trans retry. 622 623 *bits |= 0x00004000; 624 625 // Once the thread leaves thread_in_native_trans for another 626 // thread state, we break out of this retry loop. We shouldn't 627 // need this flag to prevent us from getting back here, but 628 // sometimes paranoia is good. 629 did_trans_retry = true; 630 631 // We wait for the thread to transition to a more usable state. 632 for (int i = 1; i <= SuspendRetryCount; i++) { 633 // We used to do an "os::yield_all(i)" call here with the intention 634 // that yielding would increase on each retry. However, the parameter 635 // is ignored on Linux which means the yield didn't scale up. Waiting 636 // on the SR_lock below provides a much more predictable scale up for 637 // the delay. It also provides a simple/direct point to check for any 638 // safepoint requests from the VMThread 639 640 // temporarily drops SR_lock while doing wait with safepoint check 641 // (if we're a JavaThread - the WatcherThread can also call this) 642 // and increase delay with each retry 643 SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay); 644 645 // check the actual thread state instead of what we saved above 646 if (thread_state() != _thread_in_native_trans) { 647 // the thread has transitioned to another thread state so 648 // try all the checks (except this one) one more time. 649 do_trans_retry = true; 650 break; 651 } 652 } // end retry loop 653 654 655 } 656 } while (do_trans_retry); 657 658 *bits |= 0x00000010; 659 return false; 660 } 661 662 // 663 // Wait for an external suspend request to complete (or be cancelled). 664 // Returns true if the thread is externally suspended and false otherwise. 665 // 666 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay, 667 uint32_t *bits) { 668 TraceSuspendDebugBits tsdb(this, true /* is_wait */, 669 false /* !called_by_wait */, bits); 670 671 // local flag copies to minimize SR_lock hold time 672 bool is_suspended; 673 bool pending; 674 uint32_t reset_bits; 675 676 // set a marker so is_ext_suspend_completed() knows we are the caller 677 *bits |= 0x00010000; 678 679 // We use reset_bits to reinitialize the bits value at the top of 680 // each retry loop. This allows the caller to make use of any 681 // unused bits for their own marking purposes. 682 reset_bits = *bits; 683 684 { 685 MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag); 686 is_suspended = is_ext_suspend_completed(true /* called_by_wait */, 687 delay, bits); 688 pending = is_external_suspend(); 689 } 690 // must release SR_lock to allow suspension to complete 691 692 if (!pending) { 693 // A cancelled suspend request is the only false return from 694 // is_ext_suspend_completed() that keeps us from entering the 695 // retry loop. 696 *bits |= 0x00020000; 697 return false; 698 } 699 700 if (is_suspended) { 701 *bits |= 0x00040000; 702 return true; 703 } 704 705 for (int i = 1; i <= retries; i++) { 706 *bits = reset_bits; // reinit to only track last retry 707 708 // We used to do an "os::yield_all(i)" call here with the intention 709 // that yielding would increase on each retry. However, the parameter 710 // is ignored on Linux which means the yield didn't scale up. Waiting 711 // on the SR_lock below provides a much more predictable scale up for 712 // the delay. It also provides a simple/direct point to check for any 713 // safepoint requests from the VMThread 714 715 { 716 MutexLocker ml(SR_lock()); 717 // wait with safepoint check (if we're a JavaThread - the WatcherThread 718 // can also call this) and increase delay with each retry 719 SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay); 720 721 is_suspended = is_ext_suspend_completed(true /* called_by_wait */, 722 delay, bits); 723 724 // It is possible for the external suspend request to be cancelled 725 // (by a resume) before the actual suspend operation is completed. 726 // Refresh our local copy to see if we still need to wait. 727 pending = is_external_suspend(); 728 } 729 730 if (!pending) { 731 // A cancelled suspend request is the only false return from 732 // is_ext_suspend_completed() that keeps us from staying in the 733 // retry loop. 734 *bits |= 0x00080000; 735 return false; 736 } 737 738 if (is_suspended) { 739 *bits |= 0x00100000; 740 return true; 741 } 742 } // end retry loop 743 744 // thread did not suspend after all our retries 745 *bits |= 0x00200000; 746 return false; 747 } 748 749 #ifndef PRODUCT 750 void JavaThread::record_jump(address target, address instr, const char* file, int line) { 751 752 // This should not need to be atomic as the only way for simultaneous 753 // updates is via interrupts. Even then this should be rare or non-existent 754 // and we don't care that much anyway. 755 756 int index = _jmp_ring_index; 757 _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1); 758 _jmp_ring[index]._target = (intptr_t) target; 759 _jmp_ring[index]._instruction = (intptr_t) instr; 760 _jmp_ring[index]._file = file; 761 _jmp_ring[index]._line = line; 762 } 763 #endif /* PRODUCT */ 764 765 // Called by flat profiler 766 // Callers have already called wait_for_ext_suspend_completion 767 // The assertion for that is currently too complex to put here: 768 bool JavaThread::profile_last_Java_frame(frame* _fr) { 769 bool gotframe = false; 770 // self suspension saves needed state. 771 if (has_last_Java_frame() && _anchor.walkable()) { 772 *_fr = pd_last_frame(); 773 gotframe = true; 774 } 775 return gotframe; 776 } 777 778 void Thread::interrupt(Thread* thread) { 779 trace("interrupt", thread); 780 debug_only(check_for_dangling_thread_pointer(thread);) 781 os::interrupt(thread); 782 } 783 784 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) { 785 trace("is_interrupted", thread); 786 debug_only(check_for_dangling_thread_pointer(thread);) 787 // Note: If clear_interrupted==false, this simply fetches and 788 // returns the value of the field osthread()->interrupted(). 789 return os::is_interrupted(thread, clear_interrupted); 790 } 791 792 793 // GC Support 794 bool Thread::claim_oops_do_par_case(int strong_roots_parity) { 795 jint thread_parity = _oops_do_parity; 796 if (thread_parity != strong_roots_parity) { 797 jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity); 798 if (res == thread_parity) { 799 return true; 800 } else { 801 guarantee(res == strong_roots_parity, "Or else what?"); 802 assert(SharedHeap::heap()->workers()->active_workers() > 0, 803 "Should only fail when parallel."); 804 return false; 805 } 806 } 807 assert(SharedHeap::heap()->workers()->active_workers() > 0, 808 "Should only fail when parallel."); 809 return false; 810 } 811 812 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) { 813 active_handles()->oops_do(f); 814 // Do oop for ThreadShadow 815 f->do_oop((oop*)&_pending_exception); 816 handle_area()->oops_do(f); 817 } 818 819 void Thread::nmethods_do(CodeBlobClosure* cf) { 820 // no nmethods in a generic thread... 821 } 822 823 void Thread::metadata_do(void f(Metadata*)) { 824 if (metadata_handles() != NULL) { 825 for (int i = 0; i< metadata_handles()->length(); i++) { 826 f(metadata_handles()->at(i)); 827 } 828 } 829 } 830 831 void Thread::print_on(outputStream* st) const { 832 // get_priority assumes osthread initialized 833 if (osthread() != NULL) { 834 int os_prio; 835 if (os::get_native_priority(this, &os_prio) == OS_OK) { 836 st->print("os_prio=%d ", os_prio); 837 } 838 st->print("tid=" INTPTR_FORMAT " ", this); 839 osthread()->print_on(st); 840 } 841 debug_only(if (WizardMode) print_owned_locks_on(st);) 842 } 843 844 // Thread::print_on_error() is called by fatal error handler. Don't use 845 // any lock or allocate memory. 846 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const { 847 if (is_VM_thread()) st->print("VMThread"); 848 else if (is_Compiler_thread()) st->print("CompilerThread"); 849 else if (is_Java_thread()) st->print("JavaThread"); 850 else if (is_GC_task_thread()) st->print("GCTaskThread"); 851 else if (is_Watcher_thread()) st->print("WatcherThread"); 852 else if (is_ConcurrentGC_thread()) st->print("ConcurrentGCThread"); 853 else st->print("Thread"); 854 855 st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]", 856 _stack_base - _stack_size, _stack_base); 857 858 if (osthread()) { 859 st->print(" [id=%d]", osthread()->thread_id()); 860 } 861 } 862 863 #ifdef ASSERT 864 void Thread::print_owned_locks_on(outputStream* st) const { 865 Monitor *cur = _owned_locks; 866 if (cur == NULL) { 867 st->print(" (no locks) "); 868 } else { 869 st->print_cr(" Locks owned:"); 870 while(cur) { 871 cur->print_on(st); 872 cur = cur->next(); 873 } 874 } 875 } 876 877 static int ref_use_count = 0; 878 879 bool Thread::owns_locks_but_compiled_lock() const { 880 for(Monitor *cur = _owned_locks; cur; cur = cur->next()) { 881 if (cur != Compile_lock) return true; 882 } 883 return false; 884 } 885 886 887 #endif 888 889 #ifndef PRODUCT 890 891 // The flag: potential_vm_operation notifies if this particular safepoint state could potential 892 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that 893 // no threads which allow_vm_block's are held 894 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) { 895 // Check if current thread is allowed to block at a safepoint 896 if (!(_allow_safepoint_count == 0)) 897 fatal("Possible safepoint reached by thread that does not allow it"); 898 if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) { 899 fatal("LEAF method calling lock?"); 900 } 901 902 #ifdef ASSERT 903 if (potential_vm_operation && is_Java_thread() 904 && !Universe::is_bootstrapping()) { 905 // Make sure we do not hold any locks that the VM thread also uses. 906 // This could potentially lead to deadlocks 907 for(Monitor *cur = _owned_locks; cur; cur = cur->next()) { 908 // Threads_lock is special, since the safepoint synchronization will not start before this is 909 // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock, 910 // since it is used to transfer control between JavaThreads and the VMThread 911 // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first! 912 if ( (cur->allow_vm_block() && 913 cur != Threads_lock && 914 cur != Compile_lock && // Temporary: should not be necessary when we get separate compilation 915 cur != VMOperationRequest_lock && 916 cur != VMOperationQueue_lock) || 917 cur->rank() == Mutex::special) { 918 fatal(err_msg("Thread holding lock at safepoint that vm can block on: %s", cur->name())); 919 } 920 } 921 } 922 923 if (GCALotAtAllSafepoints) { 924 // We could enter a safepoint here and thus have a gc 925 InterfaceSupport::check_gc_alot(); 926 } 927 #endif 928 } 929 #endif 930 931 bool Thread::is_in_stack(address adr) const { 932 assert(Thread::current() == this, "is_in_stack can only be called from current thread"); 933 address end = os::current_stack_pointer(); 934 // Allow non Java threads to call this without stack_base 935 if (_stack_base == NULL) return true; 936 if (stack_base() >= adr && adr >= end) return true; 937 938 return false; 939 } 940 941 942 bool Thread::is_in_usable_stack(address adr) const { 943 size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0; 944 size_t usable_stack_size = _stack_size - stack_guard_size; 945 946 return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size)); 947 } 948 949 950 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter 951 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being 952 // used for compilation in the future. If that change is made, the need for these methods 953 // should be revisited, and they should be removed if possible. 954 955 bool Thread::is_lock_owned(address adr) const { 956 return on_local_stack(adr); 957 } 958 959 bool Thread::set_as_starting_thread() { 960 // NOTE: this must be called inside the main thread. 961 return os::create_main_thread((JavaThread*)this); 962 } 963 964 static void initialize_class(Symbol* class_name, TRAPS) { 965 Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK); 966 InstanceKlass::cast(klass)->initialize(CHECK); 967 } 968 969 970 // Creates the initial ThreadGroup 971 static Handle create_initial_thread_group(TRAPS) { 972 Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH); 973 instanceKlassHandle klass (THREAD, k); 974 975 Handle system_instance = klass->allocate_instance_handle(CHECK_NH); 976 { 977 JavaValue result(T_VOID); 978 JavaCalls::call_special(&result, 979 system_instance, 980 klass, 981 vmSymbols::object_initializer_name(), 982 vmSymbols::void_method_signature(), 983 CHECK_NH); 984 } 985 Universe::set_system_thread_group(system_instance()); 986 987 Handle main_instance = klass->allocate_instance_handle(CHECK_NH); 988 { 989 JavaValue result(T_VOID); 990 Handle string = java_lang_String::create_from_str("main", CHECK_NH); 991 JavaCalls::call_special(&result, 992 main_instance, 993 klass, 994 vmSymbols::object_initializer_name(), 995 vmSymbols::threadgroup_string_void_signature(), 996 system_instance, 997 string, 998 CHECK_NH); 999 } 1000 return main_instance; 1001 } 1002 1003 // Creates the initial Thread 1004 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) { 1005 Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL); 1006 instanceKlassHandle klass (THREAD, k); 1007 instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL); 1008 1009 java_lang_Thread::set_thread(thread_oop(), thread); 1010 java_lang_Thread::set_priority(thread_oop(), NormPriority); 1011 thread->set_threadObj(thread_oop()); 1012 1013 Handle string = java_lang_String::create_from_str("main", CHECK_NULL); 1014 1015 JavaValue result(T_VOID); 1016 JavaCalls::call_special(&result, thread_oop, 1017 klass, 1018 vmSymbols::object_initializer_name(), 1019 vmSymbols::threadgroup_string_void_signature(), 1020 thread_group, 1021 string, 1022 CHECK_NULL); 1023 return thread_oop(); 1024 } 1025 1026 static void call_initializeSystemClass(TRAPS) { 1027 Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK); 1028 instanceKlassHandle klass (THREAD, k); 1029 1030 JavaValue result(T_VOID); 1031 JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(), 1032 vmSymbols::void_method_signature(), CHECK); 1033 } 1034 1035 char java_runtime_name[128] = ""; 1036 char java_runtime_version[128] = ""; 1037 1038 // extract the JRE name from sun.misc.Version.java_runtime_name 1039 static const char* get_java_runtime_name(TRAPS) { 1040 Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(), 1041 Handle(), Handle(), CHECK_AND_CLEAR_NULL); 1042 fieldDescriptor fd; 1043 bool found = k != NULL && 1044 InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(), 1045 vmSymbols::string_signature(), &fd); 1046 if (found) { 1047 oop name_oop = k->java_mirror()->obj_field(fd.offset()); 1048 if (name_oop == NULL) 1049 return NULL; 1050 const char* name = java_lang_String::as_utf8_string(name_oop, 1051 java_runtime_name, 1052 sizeof(java_runtime_name)); 1053 return name; 1054 } else { 1055 return NULL; 1056 } 1057 } 1058 1059 // extract the JRE version from sun.misc.Version.java_runtime_version 1060 static const char* get_java_runtime_version(TRAPS) { 1061 Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(), 1062 Handle(), Handle(), CHECK_AND_CLEAR_NULL); 1063 fieldDescriptor fd; 1064 bool found = k != NULL && 1065 InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(), 1066 vmSymbols::string_signature(), &fd); 1067 if (found) { 1068 oop name_oop = k->java_mirror()->obj_field(fd.offset()); 1069 if (name_oop == NULL) 1070 return NULL; 1071 const char* name = java_lang_String::as_utf8_string(name_oop, 1072 java_runtime_version, 1073 sizeof(java_runtime_version)); 1074 return name; 1075 } else { 1076 return NULL; 1077 } 1078 } 1079 1080 // General purpose hook into Java code, run once when the VM is initialized. 1081 // The Java library method itself may be changed independently from the VM. 1082 static void call_postVMInitHook(TRAPS) { 1083 Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD); 1084 instanceKlassHandle klass (THREAD, k); 1085 if (klass.not_null()) { 1086 JavaValue result(T_VOID); 1087 JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(), 1088 vmSymbols::void_method_signature(), 1089 CHECK); 1090 } 1091 } 1092 1093 static void reset_vm_info_property(TRAPS) { 1094 // the vm info string 1095 ResourceMark rm(THREAD); 1096 const char *vm_info = VM_Version::vm_info_string(); 1097 1098 // java.lang.System class 1099 Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK); 1100 instanceKlassHandle klass (THREAD, k); 1101 1102 // setProperty arguments 1103 Handle key_str = java_lang_String::create_from_str("java.vm.info", CHECK); 1104 Handle value_str = java_lang_String::create_from_str(vm_info, CHECK); 1105 1106 // return value 1107 JavaValue r(T_OBJECT); 1108 1109 // public static String setProperty(String key, String value); 1110 JavaCalls::call_static(&r, 1111 klass, 1112 vmSymbols::setProperty_name(), 1113 vmSymbols::string_string_string_signature(), 1114 key_str, 1115 value_str, 1116 CHECK); 1117 } 1118 1119 1120 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) { 1121 assert(thread_group.not_null(), "thread group should be specified"); 1122 assert(threadObj() == NULL, "should only create Java thread object once"); 1123 1124 Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK); 1125 instanceKlassHandle klass (THREAD, k); 1126 instanceHandle thread_oop = klass->allocate_instance_handle(CHECK); 1127 1128 java_lang_Thread::set_thread(thread_oop(), this); 1129 java_lang_Thread::set_priority(thread_oop(), NormPriority); 1130 set_threadObj(thread_oop()); 1131 1132 JavaValue result(T_VOID); 1133 if (thread_name != NULL) { 1134 Handle name = java_lang_String::create_from_str(thread_name, CHECK); 1135 // Thread gets assigned specified name and null target 1136 JavaCalls::call_special(&result, 1137 thread_oop, 1138 klass, 1139 vmSymbols::object_initializer_name(), 1140 vmSymbols::threadgroup_string_void_signature(), 1141 thread_group, // Argument 1 1142 name, // Argument 2 1143 THREAD); 1144 } else { 1145 // Thread gets assigned name "Thread-nnn" and null target 1146 // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument) 1147 JavaCalls::call_special(&result, 1148 thread_oop, 1149 klass, 1150 vmSymbols::object_initializer_name(), 1151 vmSymbols::threadgroup_runnable_void_signature(), 1152 thread_group, // Argument 1 1153 Handle(), // Argument 2 1154 THREAD); 1155 } 1156 1157 1158 if (daemon) { 1159 java_lang_Thread::set_daemon(thread_oop()); 1160 } 1161 1162 if (HAS_PENDING_EXCEPTION) { 1163 return; 1164 } 1165 1166 KlassHandle group(this, SystemDictionary::ThreadGroup_klass()); 1167 Handle threadObj(this, this->threadObj()); 1168 1169 JavaCalls::call_special(&result, 1170 thread_group, 1171 group, 1172 vmSymbols::add_method_name(), 1173 vmSymbols::thread_void_signature(), 1174 threadObj, // Arg 1 1175 THREAD); 1176 1177 1178 } 1179 1180 // NamedThread -- non-JavaThread subclasses with multiple 1181 // uniquely named instances should derive from this. 1182 NamedThread::NamedThread() : Thread() { 1183 _name = NULL; 1184 _processed_thread = NULL; 1185 } 1186 1187 NamedThread::~NamedThread() { 1188 if (_name != NULL) { 1189 FREE_C_HEAP_ARRAY(char, _name, mtThread); 1190 _name = NULL; 1191 } 1192 } 1193 1194 void NamedThread::set_name(const char* format, ...) { 1195 guarantee(_name == NULL, "Only get to set name once."); 1196 _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread); 1197 guarantee(_name != NULL, "alloc failure"); 1198 va_list ap; 1199 va_start(ap, format); 1200 jio_vsnprintf(_name, max_name_len, format, ap); 1201 va_end(ap); 1202 } 1203 1204 void NamedThread::print_on(outputStream* st) const { 1205 st->print("\"%s\" ", name()); 1206 Thread::print_on(st); 1207 st->cr(); 1208 } 1209 1210 1211 // ======= WatcherThread ======== 1212 1213 // The watcher thread exists to simulate timer interrupts. It should 1214 // be replaced by an abstraction over whatever native support for 1215 // timer interrupts exists on the platform. 1216 1217 WatcherThread* WatcherThread::_watcher_thread = NULL; 1218 bool WatcherThread::_startable = false; 1219 volatile bool WatcherThread::_should_terminate = false; 1220 1221 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) { 1222 assert(watcher_thread() == NULL, "we can only allocate one WatcherThread"); 1223 if (os::create_thread(this, os::watcher_thread)) { 1224 _watcher_thread = this; 1225 1226 // Set the watcher thread to the highest OS priority which should not be 1227 // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY 1228 // is created. The only normal thread using this priority is the reference 1229 // handler thread, which runs for very short intervals only. 1230 // If the VMThread's priority is not lower than the WatcherThread profiling 1231 // will be inaccurate. 1232 os::set_priority(this, MaxPriority); 1233 if (!DisableStartThread) { 1234 os::start_thread(this); 1235 } 1236 } 1237 } 1238 1239 int WatcherThread::sleep() const { 1240 MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag); 1241 1242 // remaining will be zero if there are no tasks, 1243 // causing the WatcherThread to sleep until a task is 1244 // enrolled 1245 int remaining = PeriodicTask::time_to_wait(); 1246 int time_slept = 0; 1247 1248 // we expect this to timeout - we only ever get unparked when 1249 // we should terminate or when a new task has been enrolled 1250 OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */); 1251 1252 jlong time_before_loop = os::javaTimeNanos(); 1253 1254 for (;;) { 1255 bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining); 1256 jlong now = os::javaTimeNanos(); 1257 1258 if (remaining == 0) { 1259 // if we didn't have any tasks we could have waited for a long time 1260 // consider the time_slept zero and reset time_before_loop 1261 time_slept = 0; 1262 time_before_loop = now; 1263 } else { 1264 // need to recalculate since we might have new tasks in _tasks 1265 time_slept = (int) ((now - time_before_loop) / 1000000); 1266 } 1267 1268 // Change to task list or spurious wakeup of some kind 1269 if (timedout || _should_terminate) { 1270 break; 1271 } 1272 1273 remaining = PeriodicTask::time_to_wait(); 1274 if (remaining == 0) { 1275 // Last task was just disenrolled so loop around and wait until 1276 // another task gets enrolled 1277 continue; 1278 } 1279 1280 remaining -= time_slept; 1281 if (remaining <= 0) 1282 break; 1283 } 1284 1285 return time_slept; 1286 } 1287 1288 void WatcherThread::run() { 1289 assert(this == watcher_thread(), "just checking"); 1290 1291 this->record_stack_base_and_size(); 1292 this->initialize_thread_local_storage(); 1293 this->set_active_handles(JNIHandleBlock::allocate_block()); 1294 while(!_should_terminate) { 1295 assert(watcher_thread() == Thread::current(), "thread consistency check"); 1296 assert(watcher_thread() == this, "thread consistency check"); 1297 1298 // Calculate how long it'll be until the next PeriodicTask work 1299 // should be done, and sleep that amount of time. 1300 int time_waited = sleep(); 1301 1302 if (is_error_reported()) { 1303 // A fatal error has happened, the error handler(VMError::report_and_die) 1304 // should abort JVM after creating an error log file. However in some 1305 // rare cases, the error handler itself might deadlock. Here we try to 1306 // kill JVM if the fatal error handler fails to abort in 2 minutes. 1307 // 1308 // This code is in WatcherThread because WatcherThread wakes up 1309 // periodically so the fatal error handler doesn't need to do anything; 1310 // also because the WatcherThread is less likely to crash than other 1311 // threads. 1312 1313 for (;;) { 1314 if (!ShowMessageBoxOnError 1315 && (OnError == NULL || OnError[0] == '\0') 1316 && Arguments::abort_hook() == NULL) { 1317 os::sleep(this, 2 * 60 * 1000, false); 1318 fdStream err(defaultStream::output_fd()); 1319 err.print_raw_cr("# [ timer expired, abort... ]"); 1320 // skip atexit/vm_exit/vm_abort hooks 1321 os::die(); 1322 } 1323 1324 // Wake up 5 seconds later, the fatal handler may reset OnError or 1325 // ShowMessageBoxOnError when it is ready to abort. 1326 os::sleep(this, 5 * 1000, false); 1327 } 1328 } 1329 1330 PeriodicTask::real_time_tick(time_waited); 1331 } 1332 1333 // Signal that it is terminated 1334 { 1335 MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag); 1336 _watcher_thread = NULL; 1337 Terminator_lock->notify(); 1338 } 1339 1340 // Thread destructor usually does this.. 1341 ThreadLocalStorage::set_thread(NULL); 1342 } 1343 1344 void WatcherThread::start() { 1345 assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required"); 1346 1347 if (watcher_thread() == NULL && _startable) { 1348 _should_terminate = false; 1349 // Create the single instance of WatcherThread 1350 new WatcherThread(); 1351 } 1352 } 1353 1354 void WatcherThread::make_startable() { 1355 assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required"); 1356 _startable = true; 1357 } 1358 1359 void WatcherThread::stop() { 1360 { 1361 MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag); 1362 _should_terminate = true; 1363 OrderAccess::fence(); // ensure WatcherThread sees update in main loop 1364 1365 WatcherThread* watcher = watcher_thread(); 1366 if (watcher != NULL) 1367 watcher->unpark(); 1368 } 1369 1370 // it is ok to take late safepoints here, if needed 1371 MutexLocker mu(Terminator_lock); 1372 1373 while(watcher_thread() != NULL) { 1374 // This wait should make safepoint checks, wait without a timeout, 1375 // and wait as a suspend-equivalent condition. 1376 // 1377 // Note: If the FlatProfiler is running, then this thread is waiting 1378 // for the WatcherThread to terminate and the WatcherThread, via the 1379 // FlatProfiler task, is waiting for the external suspend request on 1380 // this thread to complete. wait_for_ext_suspend_completion() will 1381 // eventually timeout, but that takes time. Making this wait a 1382 // suspend-equivalent condition solves that timeout problem. 1383 // 1384 Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0, 1385 Mutex::_as_suspend_equivalent_flag); 1386 } 1387 } 1388 1389 void WatcherThread::unpark() { 1390 MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag); 1391 PeriodicTask_lock->notify(); 1392 } 1393 1394 void WatcherThread::print_on(outputStream* st) const { 1395 st->print("\"%s\" ", name()); 1396 Thread::print_on(st); 1397 st->cr(); 1398 } 1399 1400 // ======= JavaThread ======== 1401 1402 // A JavaThread is a normal Java thread 1403 1404 void JavaThread::initialize() { 1405 // Initialize fields 1406 1407 // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids) 1408 set_claimed_par_id(UINT_MAX); 1409 1410 set_saved_exception_pc(NULL); 1411 set_threadObj(NULL); 1412 _anchor.clear(); 1413 set_entry_point(NULL); 1414 set_jni_functions(jni_functions()); 1415 set_callee_target(NULL); 1416 set_vm_result(NULL); 1417 set_vm_result_2(NULL); 1418 set_vframe_array_head(NULL); 1419 set_vframe_array_last(NULL); 1420 set_deferred_locals(NULL); 1421 set_deopt_mark(NULL); 1422 set_deopt_nmethod(NULL); 1423 clear_must_deopt_id(); 1424 set_monitor_chunks(NULL); 1425 set_next(NULL); 1426 set_thread_state(_thread_new); 1427 #if INCLUDE_NMT 1428 set_recorder(NULL); 1429 #endif 1430 _terminated = _not_terminated; 1431 _privileged_stack_top = NULL; 1432 _array_for_gc = NULL; 1433 _suspend_equivalent = false; 1434 _in_deopt_handler = 0; 1435 _doing_unsafe_access = false; 1436 _stack_guard_state = stack_guard_unused; 1437 (void)const_cast<oop&>(_exception_oop = oop(NULL)); 1438 _exception_pc = 0; 1439 _exception_handler_pc = 0; 1440 _is_method_handle_return = 0; 1441 _jvmti_thread_state= NULL; 1442 _should_post_on_exceptions_flag = JNI_FALSE; 1443 _jvmti_get_loaded_classes_closure = NULL; 1444 _interp_only_mode = 0; 1445 _special_runtime_exit_condition = _no_async_condition; 1446 _pending_async_exception = NULL; 1447 _thread_stat = NULL; 1448 _thread_stat = new ThreadStatistics(); 1449 _blocked_on_compilation = false; 1450 _jni_active_critical = 0; 1451 _do_not_unlock_if_synchronized = false; 1452 _cached_monitor_info = NULL; 1453 _parker = Parker::Allocate(this) ; 1454 1455 #ifndef PRODUCT 1456 _jmp_ring_index = 0; 1457 for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) { 1458 record_jump(NULL, NULL, NULL, 0); 1459 } 1460 #endif /* PRODUCT */ 1461 1462 set_thread_profiler(NULL); 1463 if (FlatProfiler::is_active()) { 1464 // This is where we would decide to either give each thread it's own profiler 1465 // or use one global one from FlatProfiler, 1466 // or up to some count of the number of profiled threads, etc. 1467 ThreadProfiler* pp = new ThreadProfiler(); 1468 pp->engage(); 1469 set_thread_profiler(pp); 1470 } 1471 1472 // Setup safepoint state info for this thread 1473 ThreadSafepointState::create(this); 1474 1475 debug_only(_java_call_counter = 0); 1476 1477 // JVMTI PopFrame support 1478 _popframe_condition = popframe_inactive; 1479 _popframe_preserved_args = NULL; 1480 _popframe_preserved_args_size = 0; 1481 1482 pd_initialize(); 1483 } 1484 1485 #if INCLUDE_ALL_GCS 1486 SATBMarkQueueSet JavaThread::_satb_mark_queue_set; 1487 DirtyCardQueueSet JavaThread::_dirty_card_queue_set; 1488 #endif // INCLUDE_ALL_GCS 1489 1490 JavaThread::JavaThread(bool is_attaching_via_jni) : 1491 Thread() 1492 #if INCLUDE_ALL_GCS 1493 , _satb_mark_queue(&_satb_mark_queue_set), 1494 _dirty_card_queue(&_dirty_card_queue_set) 1495 #endif // INCLUDE_ALL_GCS 1496 { 1497 initialize(); 1498 if (is_attaching_via_jni) { 1499 _jni_attach_state = _attaching_via_jni; 1500 } else { 1501 _jni_attach_state = _not_attaching_via_jni; 1502 } 1503 assert(deferred_card_mark().is_empty(), "Default MemRegion ctor"); 1504 _safepoint_visible = false; 1505 } 1506 1507 bool JavaThread::reguard_stack(address cur_sp) { 1508 if (_stack_guard_state != stack_guard_yellow_disabled) { 1509 return true; // Stack already guarded or guard pages not needed. 1510 } 1511 1512 if (register_stack_overflow()) { 1513 // For those architectures which have separate register and 1514 // memory stacks, we must check the register stack to see if 1515 // it has overflowed. 1516 return false; 1517 } 1518 1519 // Java code never executes within the yellow zone: the latter is only 1520 // there to provoke an exception during stack banging. If java code 1521 // is executing there, either StackShadowPages should be larger, or 1522 // some exception code in c1, c2 or the interpreter isn't unwinding 1523 // when it should. 1524 guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages"); 1525 1526 enable_stack_yellow_zone(); 1527 return true; 1528 } 1529 1530 bool JavaThread::reguard_stack(void) { 1531 return reguard_stack(os::current_stack_pointer()); 1532 } 1533 1534 1535 void JavaThread::block_if_vm_exited() { 1536 if (_terminated == _vm_exited) { 1537 // _vm_exited is set at safepoint, and Threads_lock is never released 1538 // we will block here forever 1539 Threads_lock->lock_without_safepoint_check(); 1540 ShouldNotReachHere(); 1541 } 1542 } 1543 1544 1545 // Remove this ifdef when C1 is ported to the compiler interface. 1546 static void compiler_thread_entry(JavaThread* thread, TRAPS); 1547 1548 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) : 1549 Thread() 1550 #if INCLUDE_ALL_GCS 1551 , _satb_mark_queue(&_satb_mark_queue_set), 1552 _dirty_card_queue(&_dirty_card_queue_set) 1553 #endif // INCLUDE_ALL_GCS 1554 { 1555 if (TraceThreadEvents) { 1556 tty->print_cr("creating thread %p", this); 1557 } 1558 initialize(); 1559 _jni_attach_state = _not_attaching_via_jni; 1560 set_entry_point(entry_point); 1561 // Create the native thread itself. 1562 // %note runtime_23 1563 os::ThreadType thr_type = os::java_thread; 1564 thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread : 1565 os::java_thread; 1566 os::create_thread(this, thr_type, stack_sz); 1567 _safepoint_visible = false; 1568 // The _osthread may be NULL here because we ran out of memory (too many threads active). 1569 // We need to throw and OutOfMemoryError - however we cannot do this here because the caller 1570 // may hold a lock and all locks must be unlocked before throwing the exception (throwing 1571 // the exception consists of creating the exception object & initializing it, initialization 1572 // will leave the VM via a JavaCall and then all locks must be unlocked). 1573 // 1574 // The thread is still suspended when we reach here. Thread must be explicit started 1575 // by creator! Furthermore, the thread must also explicitly be added to the Threads list 1576 // by calling Threads:add. The reason why this is not done here, is because the thread 1577 // object must be fully initialized (take a look at JVM_Start) 1578 } 1579 1580 JavaThread::~JavaThread() { 1581 if (TraceThreadEvents) { 1582 tty->print_cr("terminate thread %p", this); 1583 } 1584 1585 // By now, this thread should already be invisible to safepoint, 1586 // and its per-thread recorder also collected. 1587 assert(!is_safepoint_visible(), "wrong state"); 1588 #if INCLUDE_NMT 1589 assert(get_recorder() == NULL, "Already collected"); 1590 #endif // INCLUDE_NMT 1591 1592 // JSR166 -- return the parker to the free list 1593 Parker::Release(_parker); 1594 _parker = NULL ; 1595 1596 // Free any remaining previous UnrollBlock 1597 vframeArray* old_array = vframe_array_last(); 1598 1599 if (old_array != NULL) { 1600 Deoptimization::UnrollBlock* old_info = old_array->unroll_block(); 1601 old_array->set_unroll_block(NULL); 1602 delete old_info; 1603 delete old_array; 1604 } 1605 1606 GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals(); 1607 if (deferred != NULL) { 1608 // This can only happen if thread is destroyed before deoptimization occurs. 1609 assert(deferred->length() != 0, "empty array!"); 1610 do { 1611 jvmtiDeferredLocalVariableSet* dlv = deferred->at(0); 1612 deferred->remove_at(0); 1613 // individual jvmtiDeferredLocalVariableSet are CHeapObj's 1614 delete dlv; 1615 } while (deferred->length() != 0); 1616 delete deferred; 1617 } 1618 1619 // All Java related clean up happens in exit 1620 ThreadSafepointState::destroy(this); 1621 if (_thread_profiler != NULL) delete _thread_profiler; 1622 if (_thread_stat != NULL) delete _thread_stat; 1623 } 1624 1625 1626 // The first routine called by a new Java thread 1627 void JavaThread::run() { 1628 // initialize thread-local alloc buffer related fields 1629 this->initialize_tlab(); 1630 1631 // used to test validity of stack trace backs 1632 this->record_base_of_stack_pointer(); 1633 1634 // Record real stack base and size. 1635 this->record_stack_base_and_size(); 1636 1637 // Initialize thread local storage; set before calling MutexLocker 1638 this->initialize_thread_local_storage(); 1639 1640 this->create_stack_guard_pages(); 1641 1642 this->cache_global_variables(); 1643 1644 // Thread is now sufficient initialized to be handled by the safepoint code as being 1645 // in the VM. Change thread state from _thread_new to _thread_in_vm 1646 ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm); 1647 1648 assert(JavaThread::current() == this, "sanity check"); 1649 assert(!Thread::current()->owns_locks(), "sanity check"); 1650 1651 DTRACE_THREAD_PROBE(start, this); 1652 1653 // This operation might block. We call that after all safepoint checks for a new thread has 1654 // been completed. 1655 this->set_active_handles(JNIHandleBlock::allocate_block()); 1656 1657 if (JvmtiExport::should_post_thread_life()) { 1658 JvmtiExport::post_thread_start(this); 1659 } 1660 1661 EventThreadStart event; 1662 if (event.should_commit()) { 1663 event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj())); 1664 event.commit(); 1665 } 1666 1667 // We call another function to do the rest so we are sure that the stack addresses used 1668 // from there will be lower than the stack base just computed 1669 thread_main_inner(); 1670 1671 // Note, thread is no longer valid at this point! 1672 } 1673 1674 1675 void JavaThread::thread_main_inner() { 1676 assert(JavaThread::current() == this, "sanity check"); 1677 assert(this->threadObj() != NULL, "just checking"); 1678 1679 // Execute thread entry point unless this thread has a pending exception 1680 // or has been stopped before starting. 1681 // Note: Due to JVM_StopThread we can have pending exceptions already! 1682 if (!this->has_pending_exception() && 1683 !java_lang_Thread::is_stillborn(this->threadObj())) { 1684 { 1685 ResourceMark rm(this); 1686 this->set_native_thread_name(this->get_thread_name()); 1687 } 1688 HandleMark hm(this); 1689 this->entry_point()(this, this); 1690 } 1691 1692 DTRACE_THREAD_PROBE(stop, this); 1693 1694 this->exit(false); 1695 delete this; 1696 } 1697 1698 1699 static void ensure_join(JavaThread* thread) { 1700 // We do not need to grap the Threads_lock, since we are operating on ourself. 1701 Handle threadObj(thread, thread->threadObj()); 1702 assert(threadObj.not_null(), "java thread object must exist"); 1703 ObjectLocker lock(threadObj, thread); 1704 // Ignore pending exception (ThreadDeath), since we are exiting anyway 1705 thread->clear_pending_exception(); 1706 // Thread is exiting. So set thread_status field in java.lang.Thread class to TERMINATED. 1707 java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED); 1708 // Clear the native thread instance - this makes isAlive return false and allows the join() 1709 // to complete once we've done the notify_all below 1710 java_lang_Thread::set_thread(threadObj(), NULL); 1711 lock.notify_all(thread); 1712 // Ignore pending exception (ThreadDeath), since we are exiting anyway 1713 thread->clear_pending_exception(); 1714 } 1715 1716 1717 // For any new cleanup additions, please check to see if they need to be applied to 1718 // cleanup_failed_attach_current_thread as well. 1719 void JavaThread::exit(bool destroy_vm, ExitType exit_type) { 1720 assert(this == JavaThread::current(), "thread consistency check"); 1721 1722 HandleMark hm(this); 1723 Handle uncaught_exception(this, this->pending_exception()); 1724 this->clear_pending_exception(); 1725 Handle threadObj(this, this->threadObj()); 1726 assert(threadObj.not_null(), "Java thread object should be created"); 1727 1728 if (get_thread_profiler() != NULL) { 1729 get_thread_profiler()->disengage(); 1730 ResourceMark rm; 1731 get_thread_profiler()->print(get_thread_name()); 1732 } 1733 1734 1735 // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place 1736 { 1737 EXCEPTION_MARK; 1738 1739 CLEAR_PENDING_EXCEPTION; 1740 } 1741 if (!destroy_vm) { 1742 if (uncaught_exception.not_null()) { 1743 EXCEPTION_MARK; 1744 // Call method Thread.dispatchUncaughtException(). 1745 KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass()); 1746 JavaValue result(T_VOID); 1747 JavaCalls::call_virtual(&result, 1748 threadObj, thread_klass, 1749 vmSymbols::dispatchUncaughtException_name(), 1750 vmSymbols::throwable_void_signature(), 1751 uncaught_exception, 1752 THREAD); 1753 if (HAS_PENDING_EXCEPTION) { 1754 ResourceMark rm(this); 1755 jio_fprintf(defaultStream::error_stream(), 1756 "\nException: %s thrown from the UncaughtExceptionHandler" 1757 " in thread \"%s\"\n", 1758 pending_exception()->klass()->external_name(), 1759 get_thread_name()); 1760 CLEAR_PENDING_EXCEPTION; 1761 } 1762 } 1763 1764 // Called before the java thread exit since we want to read info 1765 // from java_lang_Thread object 1766 EventThreadEnd event; 1767 if (event.should_commit()) { 1768 event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj())); 1769 event.commit(); 1770 } 1771 1772 // Call after last event on thread 1773 EVENT_THREAD_EXIT(this); 1774 1775 // Call Thread.exit(). We try 3 times in case we got another Thread.stop during 1776 // the execution of the method. If that is not enough, then we don't really care. Thread.stop 1777 // is deprecated anyhow. 1778 if (!is_Compiler_thread()) { 1779 int count = 3; 1780 while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) { 1781 EXCEPTION_MARK; 1782 JavaValue result(T_VOID); 1783 KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass()); 1784 JavaCalls::call_virtual(&result, 1785 threadObj, thread_klass, 1786 vmSymbols::exit_method_name(), 1787 vmSymbols::void_method_signature(), 1788 THREAD); 1789 CLEAR_PENDING_EXCEPTION; 1790 } 1791 } 1792 // notify JVMTI 1793 if (JvmtiExport::should_post_thread_life()) { 1794 JvmtiExport::post_thread_end(this); 1795 } 1796 1797 // We have notified the agents that we are exiting, before we go on, 1798 // we must check for a pending external suspend request and honor it 1799 // in order to not surprise the thread that made the suspend request. 1800 while (true) { 1801 { 1802 MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag); 1803 if (!is_external_suspend()) { 1804 set_terminated(_thread_exiting); 1805 ThreadService::current_thread_exiting(this); 1806 break; 1807 } 1808 // Implied else: 1809 // Things get a little tricky here. We have a pending external 1810 // suspend request, but we are holding the SR_lock so we 1811 // can't just self-suspend. So we temporarily drop the lock 1812 // and then self-suspend. 1813 } 1814 1815 ThreadBlockInVM tbivm(this); 1816 java_suspend_self(); 1817 1818 // We're done with this suspend request, but we have to loop around 1819 // and check again. Eventually we will get SR_lock without a pending 1820 // external suspend request and will be able to mark ourselves as 1821 // exiting. 1822 } 1823 // no more external suspends are allowed at this point 1824 } else { 1825 // before_exit() has already posted JVMTI THREAD_END events 1826 } 1827 1828 // Notify waiters on thread object. This has to be done after exit() is called 1829 // on the thread (if the thread is the last thread in a daemon ThreadGroup the 1830 // group should have the destroyed bit set before waiters are notified). 1831 ensure_join(this); 1832 assert(!this->has_pending_exception(), "ensure_join should have cleared"); 1833 1834 // 6282335 JNI DetachCurrentThread spec states that all Java monitors 1835 // held by this thread must be released. A detach operation must only 1836 // get here if there are no Java frames on the stack. Therefore, any 1837 // owned monitors at this point MUST be JNI-acquired monitors which are 1838 // pre-inflated and in the monitor cache. 1839 // 1840 // ensure_join() ignores IllegalThreadStateExceptions, and so does this. 1841 if (exit_type == jni_detach && JNIDetachReleasesMonitors) { 1842 assert(!this->has_last_Java_frame(), "detaching with Java frames?"); 1843 ObjectSynchronizer::release_monitors_owned_by_thread(this); 1844 assert(!this->has_pending_exception(), "release_monitors should have cleared"); 1845 } 1846 1847 // These things needs to be done while we are still a Java Thread. Make sure that thread 1848 // is in a consistent state, in case GC happens 1849 assert(_privileged_stack_top == NULL, "must be NULL when we get here"); 1850 1851 if (active_handles() != NULL) { 1852 JNIHandleBlock* block = active_handles(); 1853 set_active_handles(NULL); 1854 JNIHandleBlock::release_block(block); 1855 } 1856 1857 if (free_handle_block() != NULL) { 1858 JNIHandleBlock* block = free_handle_block(); 1859 set_free_handle_block(NULL); 1860 JNIHandleBlock::release_block(block); 1861 } 1862 1863 // These have to be removed while this is still a valid thread. 1864 remove_stack_guard_pages(); 1865 1866 if (UseTLAB) { 1867 tlab().make_parsable(true); // retire TLAB 1868 } 1869 1870 if (JvmtiEnv::environments_might_exist()) { 1871 JvmtiExport::cleanup_thread(this); 1872 } 1873 1874 // We must flush any deferred card marks before removing a thread from 1875 // the list of active threads. 1876 Universe::heap()->flush_deferred_store_barrier(this); 1877 assert(deferred_card_mark().is_empty(), "Should have been flushed"); 1878 1879 #if INCLUDE_ALL_GCS 1880 // We must flush the G1-related buffers before removing a thread 1881 // from the list of active threads. We must do this after any deferred 1882 // card marks have been flushed (above) so that any entries that are 1883 // added to the thread's dirty card queue as a result are not lost. 1884 if (UseG1GC) { 1885 flush_barrier_queues(); 1886 } 1887 #endif // INCLUDE_ALL_GCS 1888 1889 // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread 1890 Threads::remove(this); 1891 } 1892 1893 #if INCLUDE_ALL_GCS 1894 // Flush G1-related queues. 1895 void JavaThread::flush_barrier_queues() { 1896 satb_mark_queue().flush(); 1897 dirty_card_queue().flush(); 1898 } 1899 1900 void JavaThread::initialize_queues() { 1901 assert(!SafepointSynchronize::is_at_safepoint(), 1902 "we should not be at a safepoint"); 1903 1904 ObjPtrQueue& satb_queue = satb_mark_queue(); 1905 SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set(); 1906 // The SATB queue should have been constructed with its active 1907 // field set to false. 1908 assert(!satb_queue.is_active(), "SATB queue should not be active"); 1909 assert(satb_queue.is_empty(), "SATB queue should be empty"); 1910 // If we are creating the thread during a marking cycle, we should 1911 // set the active field of the SATB queue to true. 1912 if (satb_queue_set.is_active()) { 1913 satb_queue.set_active(true); 1914 } 1915 1916 DirtyCardQueue& dirty_queue = dirty_card_queue(); 1917 // The dirty card queue should have been constructed with its 1918 // active field set to true. 1919 assert(dirty_queue.is_active(), "dirty card queue should be active"); 1920 } 1921 #endif // INCLUDE_ALL_GCS 1922 1923 void JavaThread::cleanup_failed_attach_current_thread() { 1924 if (get_thread_profiler() != NULL) { 1925 get_thread_profiler()->disengage(); 1926 ResourceMark rm; 1927 get_thread_profiler()->print(get_thread_name()); 1928 } 1929 1930 if (active_handles() != NULL) { 1931 JNIHandleBlock* block = active_handles(); 1932 set_active_handles(NULL); 1933 JNIHandleBlock::release_block(block); 1934 } 1935 1936 if (free_handle_block() != NULL) { 1937 JNIHandleBlock* block = free_handle_block(); 1938 set_free_handle_block(NULL); 1939 JNIHandleBlock::release_block(block); 1940 } 1941 1942 // These have to be removed while this is still a valid thread. 1943 remove_stack_guard_pages(); 1944 1945 if (UseTLAB) { 1946 tlab().make_parsable(true); // retire TLAB, if any 1947 } 1948 1949 #if INCLUDE_ALL_GCS 1950 if (UseG1GC) { 1951 flush_barrier_queues(); 1952 } 1953 #endif // INCLUDE_ALL_GCS 1954 1955 Threads::remove(this); 1956 delete this; 1957 } 1958 1959 1960 1961 1962 JavaThread* JavaThread::active() { 1963 Thread* thread = ThreadLocalStorage::thread(); 1964 assert(thread != NULL, "just checking"); 1965 if (thread->is_Java_thread()) { 1966 return (JavaThread*) thread; 1967 } else { 1968 assert(thread->is_VM_thread(), "this must be a vm thread"); 1969 VM_Operation* op = ((VMThread*) thread)->vm_operation(); 1970 JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread(); 1971 assert(ret->is_Java_thread(), "must be a Java thread"); 1972 return ret; 1973 } 1974 } 1975 1976 bool JavaThread::is_lock_owned(address adr) const { 1977 if (Thread::is_lock_owned(adr)) return true; 1978 1979 for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) { 1980 if (chunk->contains(adr)) return true; 1981 } 1982 1983 return false; 1984 } 1985 1986 1987 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) { 1988 chunk->set_next(monitor_chunks()); 1989 set_monitor_chunks(chunk); 1990 } 1991 1992 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) { 1993 guarantee(monitor_chunks() != NULL, "must be non empty"); 1994 if (monitor_chunks() == chunk) { 1995 set_monitor_chunks(chunk->next()); 1996 } else { 1997 MonitorChunk* prev = monitor_chunks(); 1998 while (prev->next() != chunk) prev = prev->next(); 1999 prev->set_next(chunk->next()); 2000 } 2001 } 2002 2003 // JVM support. 2004 2005 // Note: this function shouldn't block if it's called in 2006 // _thread_in_native_trans state (such as from 2007 // check_special_condition_for_native_trans()). 2008 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) { 2009 2010 if (has_last_Java_frame() && has_async_condition()) { 2011 // If we are at a polling page safepoint (not a poll return) 2012 // then we must defer async exception because live registers 2013 // will be clobbered by the exception path. Poll return is 2014 // ok because the call we a returning from already collides 2015 // with exception handling registers and so there is no issue. 2016 // (The exception handling path kills call result registers but 2017 // this is ok since the exception kills the result anyway). 2018 2019 if (is_at_poll_safepoint()) { 2020 // if the code we are returning to has deoptimized we must defer 2021 // the exception otherwise live registers get clobbered on the 2022 // exception path before deoptimization is able to retrieve them. 2023 // 2024 RegisterMap map(this, false); 2025 frame caller_fr = last_frame().sender(&map); 2026 assert(caller_fr.is_compiled_frame(), "what?"); 2027 if (caller_fr.is_deoptimized_frame()) { 2028 if (TraceExceptions) { 2029 ResourceMark rm; 2030 tty->print_cr("deferred async exception at compiled safepoint"); 2031 } 2032 return; 2033 } 2034 } 2035 } 2036 2037 JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition(); 2038 if (condition == _no_async_condition) { 2039 // Conditions have changed since has_special_runtime_exit_condition() 2040 // was called: 2041 // - if we were here only because of an external suspend request, 2042 // then that was taken care of above (or cancelled) so we are done 2043 // - if we were here because of another async request, then it has 2044 // been cleared between the has_special_runtime_exit_condition() 2045 // and now so again we are done 2046 return; 2047 } 2048 2049 // Check for pending async. exception 2050 if (_pending_async_exception != NULL) { 2051 // Only overwrite an already pending exception, if it is not a threadDeath. 2052 if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) { 2053 2054 // We cannot call Exceptions::_throw(...) here because we cannot block 2055 set_pending_exception(_pending_async_exception, __FILE__, __LINE__); 2056 2057 if (TraceExceptions) { 2058 ResourceMark rm; 2059 tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this); 2060 if (has_last_Java_frame() ) { 2061 frame f = last_frame(); 2062 tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp()); 2063 } 2064 tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name()); 2065 } 2066 _pending_async_exception = NULL; 2067 clear_has_async_exception(); 2068 } 2069 } 2070 2071 if (check_unsafe_error && 2072 condition == _async_unsafe_access_error && !has_pending_exception()) { 2073 condition = _no_async_condition; // done 2074 switch (thread_state()) { 2075 case _thread_in_vm: 2076 { 2077 JavaThread* THREAD = this; 2078 THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation"); 2079 } 2080 case _thread_in_native: 2081 { 2082 ThreadInVMfromNative tiv(this); 2083 JavaThread* THREAD = this; 2084 THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation"); 2085 } 2086 case _thread_in_Java: 2087 { 2088 ThreadInVMfromJava tiv(this); 2089 JavaThread* THREAD = this; 2090 THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code"); 2091 } 2092 default: 2093 ShouldNotReachHere(); 2094 } 2095 } 2096 2097 assert(condition == _no_async_condition || has_pending_exception() || 2098 (!check_unsafe_error && condition == _async_unsafe_access_error), 2099 "must have handled the async condition, if no exception"); 2100 } 2101 2102 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) { 2103 // 2104 // Check for pending external suspend. Internal suspend requests do 2105 // not use handle_special_runtime_exit_condition(). 2106 // If JNIEnv proxies are allowed, don't self-suspend if the target 2107 // thread is not the current thread. In older versions of jdbx, jdbx 2108 // threads could call into the VM with another thread's JNIEnv so we 2109 // can be here operating on behalf of a suspended thread (4432884). 2110 bool do_self_suspend = is_external_suspend_with_lock(); 2111 if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) { 2112 // 2113 // Because thread is external suspended the safepoint code will count 2114 // thread as at a safepoint. This can be odd because we can be here 2115 // as _thread_in_Java which would normally transition to _thread_blocked 2116 // at a safepoint. We would like to mark the thread as _thread_blocked 2117 // before calling java_suspend_self like all other callers of it but 2118 // we must then observe proper safepoint protocol. (We can't leave 2119 // _thread_blocked with a safepoint in progress). However we can be 2120 // here as _thread_in_native_trans so we can't use a normal transition 2121 // constructor/destructor pair because they assert on that type of 2122 // transition. We could do something like: 2123 // 2124 // JavaThreadState state = thread_state(); 2125 // set_thread_state(_thread_in_vm); 2126 // { 2127 // ThreadBlockInVM tbivm(this); 2128 // java_suspend_self() 2129 // } 2130 // set_thread_state(_thread_in_vm_trans); 2131 // if (safepoint) block; 2132 // set_thread_state(state); 2133 // 2134 // but that is pretty messy. Instead we just go with the way the 2135 // code has worked before and note that this is the only path to 2136 // java_suspend_self that doesn't put the thread in _thread_blocked 2137 // mode. 2138 2139 frame_anchor()->make_walkable(this); 2140 java_suspend_self(); 2141 2142 // We might be here for reasons in addition to the self-suspend request 2143 // so check for other async requests. 2144 } 2145 2146 if (check_asyncs) { 2147 check_and_handle_async_exceptions(); 2148 } 2149 } 2150 2151 void JavaThread::send_thread_stop(oop java_throwable) { 2152 assert(Thread::current()->is_VM_thread(), "should be in the vm thread"); 2153 assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code"); 2154 assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped"); 2155 2156 // Do not throw asynchronous exceptions against the compiler thread 2157 // (the compiler thread should not be a Java thread -- fix in 1.4.2) 2158 if (is_Compiler_thread()) return; 2159 2160 { 2161 // Actually throw the Throwable against the target Thread - however 2162 // only if there is no thread death exception installed already. 2163 if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) { 2164 // If the topmost frame is a runtime stub, then we are calling into 2165 // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..) 2166 // must deoptimize the caller before continuing, as the compiled exception handler table 2167 // may not be valid 2168 if (has_last_Java_frame()) { 2169 frame f = last_frame(); 2170 if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) { 2171 // BiasedLocking needs an updated RegisterMap for the revoke monitors pass 2172 RegisterMap reg_map(this, UseBiasedLocking); 2173 frame compiled_frame = f.sender(®_map); 2174 if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) { 2175 Deoptimization::deoptimize(this, compiled_frame, ®_map); 2176 } 2177 } 2178 } 2179 2180 // Set async. pending exception in thread. 2181 set_pending_async_exception(java_throwable); 2182 2183 if (TraceExceptions) { 2184 ResourceMark rm; 2185 tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name()); 2186 } 2187 // for AbortVMOnException flag 2188 NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name())); 2189 } 2190 } 2191 2192 2193 // Interrupt thread so it will wake up from a potential wait() 2194 Thread::interrupt(this); 2195 } 2196 2197 // External suspension mechanism. 2198 // 2199 // Tell the VM to suspend a thread when ever it knows that it does not hold on 2200 // to any VM_locks and it is at a transition 2201 // Self-suspension will happen on the transition out of the vm. 2202 // Catch "this" coming in from JNIEnv pointers when the thread has been freed 2203 // 2204 // Guarantees on return: 2205 // + Target thread will not execute any new bytecode (that's why we need to 2206 // force a safepoint) 2207 // + Target thread will not enter any new monitors 2208 // 2209 void JavaThread::java_suspend() { 2210 { MutexLocker mu(Threads_lock); 2211 if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) { 2212 return; 2213 } 2214 } 2215 2216 { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag); 2217 if (!is_external_suspend()) { 2218 // a racing resume has cancelled us; bail out now 2219 return; 2220 } 2221 2222 // suspend is done 2223 uint32_t debug_bits = 0; 2224 // Warning: is_ext_suspend_completed() may temporarily drop the 2225 // SR_lock to allow the thread to reach a stable thread state if 2226 // it is currently in a transient thread state. 2227 if (is_ext_suspend_completed(false /* !called_by_wait */, 2228 SuspendRetryDelay, &debug_bits) ) { 2229 return; 2230 } 2231 } 2232 2233 VM_ForceSafepoint vm_suspend; 2234 VMThread::execute(&vm_suspend); 2235 } 2236 2237 // Part II of external suspension. 2238 // A JavaThread self suspends when it detects a pending external suspend 2239 // request. This is usually on transitions. It is also done in places 2240 // where continuing to the next transition would surprise the caller, 2241 // e.g., monitor entry. 2242 // 2243 // Returns the number of times that the thread self-suspended. 2244 // 2245 // Note: DO NOT call java_suspend_self() when you just want to block current 2246 // thread. java_suspend_self() is the second stage of cooperative 2247 // suspension for external suspend requests and should only be used 2248 // to complete an external suspend request. 2249 // 2250 int JavaThread::java_suspend_self() { 2251 int ret = 0; 2252 2253 // we are in the process of exiting so don't suspend 2254 if (is_exiting()) { 2255 clear_external_suspend(); 2256 return ret; 2257 } 2258 2259 assert(_anchor.walkable() || 2260 (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()), 2261 "must have walkable stack"); 2262 2263 MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag); 2264 2265 assert(!this->is_ext_suspended(), 2266 "a thread trying to self-suspend should not already be suspended"); 2267 2268 if (this->is_suspend_equivalent()) { 2269 // If we are self-suspending as a result of the lifting of a 2270 // suspend equivalent condition, then the suspend_equivalent 2271 // flag is not cleared until we set the ext_suspended flag so 2272 // that wait_for_ext_suspend_completion() returns consistent 2273 // results. 2274 this->clear_suspend_equivalent(); 2275 } 2276 2277 // A racing resume may have cancelled us before we grabbed SR_lock 2278 // above. Or another external suspend request could be waiting for us 2279 // by the time we return from SR_lock()->wait(). The thread 2280 // that requested the suspension may already be trying to walk our 2281 // stack and if we return now, we can change the stack out from under 2282 // it. This would be a "bad thing (TM)" and cause the stack walker 2283 // to crash. We stay self-suspended until there are no more pending 2284 // external suspend requests. 2285 while (is_external_suspend()) { 2286 ret++; 2287 this->set_ext_suspended(); 2288 2289 // _ext_suspended flag is cleared by java_resume() 2290 while (is_ext_suspended()) { 2291 this->SR_lock()->wait(Mutex::_no_safepoint_check_flag); 2292 } 2293 } 2294 2295 return ret; 2296 } 2297 2298 #ifdef ASSERT 2299 // verify the JavaThread has not yet been published in the Threads::list, and 2300 // hence doesn't need protection from concurrent access at this stage 2301 void JavaThread::verify_not_published() { 2302 if (!Threads_lock->owned_by_self()) { 2303 MutexLockerEx ml(Threads_lock, Mutex::_no_safepoint_check_flag); 2304 assert( !Threads::includes(this), 2305 "java thread shouldn't have been published yet!"); 2306 } 2307 else { 2308 assert( !Threads::includes(this), 2309 "java thread shouldn't have been published yet!"); 2310 } 2311 } 2312 #endif 2313 2314 // Slow path when the native==>VM/Java barriers detect a safepoint is in 2315 // progress or when _suspend_flags is non-zero. 2316 // Current thread needs to self-suspend if there is a suspend request and/or 2317 // block if a safepoint is in progress. 2318 // Async exception ISN'T checked. 2319 // Note only the ThreadInVMfromNative transition can call this function 2320 // directly and when thread state is _thread_in_native_trans 2321 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) { 2322 assert(thread->thread_state() == _thread_in_native_trans, "wrong state"); 2323 2324 JavaThread *curJT = JavaThread::current(); 2325 bool do_self_suspend = thread->is_external_suspend(); 2326 2327 assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition"); 2328 2329 // If JNIEnv proxies are allowed, don't self-suspend if the target 2330 // thread is not the current thread. In older versions of jdbx, jdbx 2331 // threads could call into the VM with another thread's JNIEnv so we 2332 // can be here operating on behalf of a suspended thread (4432884). 2333 if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) { 2334 JavaThreadState state = thread->thread_state(); 2335 2336 // We mark this thread_blocked state as a suspend-equivalent so 2337 // that a caller to is_ext_suspend_completed() won't be confused. 2338 // The suspend-equivalent state is cleared by java_suspend_self(). 2339 thread->set_suspend_equivalent(); 2340 2341 // If the safepoint code sees the _thread_in_native_trans state, it will 2342 // wait until the thread changes to other thread state. There is no 2343 // guarantee on how soon we can obtain the SR_lock and complete the 2344 // self-suspend request. It would be a bad idea to let safepoint wait for 2345 // too long. Temporarily change the state to _thread_blocked to 2346 // let the VM thread know that this thread is ready for GC. The problem 2347 // of changing thread state is that safepoint could happen just after 2348 // java_suspend_self() returns after being resumed, and VM thread will 2349 // see the _thread_blocked state. We must check for safepoint 2350 // after restoring the state and make sure we won't leave while a safepoint 2351 // is in progress. 2352 thread->set_thread_state(_thread_blocked); 2353 thread->java_suspend_self(); 2354 thread->set_thread_state(state); 2355 // Make sure new state is seen by VM thread 2356 if (os::is_MP()) { 2357 if (UseMembar) { 2358 // Force a fence between the write above and read below 2359 OrderAccess::fence(); 2360 } else { 2361 // Must use this rather than serialization page in particular on Windows 2362 InterfaceSupport::serialize_memory(thread); 2363 } 2364 } 2365 } 2366 2367 if (SafepointSynchronize::do_call_back()) { 2368 // If we are safepointing, then block the caller which may not be 2369 // the same as the target thread (see above). 2370 SafepointSynchronize::block(curJT); 2371 } 2372 2373 if (thread->is_deopt_suspend()) { 2374 thread->clear_deopt_suspend(); 2375 RegisterMap map(thread, false); 2376 frame f = thread->last_frame(); 2377 while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) { 2378 f = f.sender(&map); 2379 } 2380 if (f.id() == thread->must_deopt_id()) { 2381 thread->clear_must_deopt_id(); 2382 f.deoptimize(thread); 2383 } else { 2384 fatal("missed deoptimization!"); 2385 } 2386 } 2387 } 2388 2389 // Slow path when the native==>VM/Java barriers detect a safepoint is in 2390 // progress or when _suspend_flags is non-zero. 2391 // Current thread needs to self-suspend if there is a suspend request and/or 2392 // block if a safepoint is in progress. 2393 // Also check for pending async exception (not including unsafe access error). 2394 // Note only the native==>VM/Java barriers can call this function and when 2395 // thread state is _thread_in_native_trans. 2396 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) { 2397 check_safepoint_and_suspend_for_native_trans(thread); 2398 2399 if (thread->has_async_exception()) { 2400 // We are in _thread_in_native_trans state, don't handle unsafe 2401 // access error since that may block. 2402 thread->check_and_handle_async_exceptions(false); 2403 } 2404 } 2405 2406 // This is a variant of the normal 2407 // check_special_condition_for_native_trans with slightly different 2408 // semantics for use by critical native wrappers. It does all the 2409 // normal checks but also performs the transition back into 2410 // thread_in_Java state. This is required so that critical natives 2411 // can potentially block and perform a GC if they are the last thread 2412 // exiting the GC_locker. 2413 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) { 2414 check_special_condition_for_native_trans(thread); 2415 2416 // Finish the transition 2417 thread->set_thread_state(_thread_in_Java); 2418 2419 if (thread->do_critical_native_unlock()) { 2420 ThreadInVMfromJavaNoAsyncException tiv(thread); 2421 GC_locker::unlock_critical(thread); 2422 thread->clear_critical_native_unlock(); 2423 } 2424 } 2425 2426 // We need to guarantee the Threads_lock here, since resumes are not 2427 // allowed during safepoint synchronization 2428 // Can only resume from an external suspension 2429 void JavaThread::java_resume() { 2430 assert_locked_or_safepoint(Threads_lock); 2431 2432 // Sanity check: thread is gone, has started exiting or the thread 2433 // was not externally suspended. 2434 if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) { 2435 return; 2436 } 2437 2438 MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag); 2439 2440 clear_external_suspend(); 2441 2442 if (is_ext_suspended()) { 2443 clear_ext_suspended(); 2444 SR_lock()->notify_all(); 2445 } 2446 } 2447 2448 void JavaThread::create_stack_guard_pages() { 2449 if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return; 2450 address low_addr = stack_base() - stack_size(); 2451 size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size(); 2452 2453 int allocate = os::allocate_stack_guard_pages(); 2454 // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len); 2455 2456 if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) { 2457 warning("Attempt to allocate stack guard pages failed."); 2458 return; 2459 } 2460 2461 if (os::guard_memory((char *) low_addr, len)) { 2462 _stack_guard_state = stack_guard_enabled; 2463 } else { 2464 warning("Attempt to protect stack guard pages failed."); 2465 if (os::uncommit_memory((char *) low_addr, len)) { 2466 warning("Attempt to deallocate stack guard pages failed."); 2467 } 2468 } 2469 } 2470 2471 void JavaThread::remove_stack_guard_pages() { 2472 assert(Thread::current() == this, "from different thread"); 2473 if (_stack_guard_state == stack_guard_unused) return; 2474 address low_addr = stack_base() - stack_size(); 2475 size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size(); 2476 2477 if (os::allocate_stack_guard_pages()) { 2478 if (os::remove_stack_guard_pages((char *) low_addr, len)) { 2479 _stack_guard_state = stack_guard_unused; 2480 } else { 2481 warning("Attempt to deallocate stack guard pages failed."); 2482 } 2483 } else { 2484 if (_stack_guard_state == stack_guard_unused) return; 2485 if (os::unguard_memory((char *) low_addr, len)) { 2486 _stack_guard_state = stack_guard_unused; 2487 } else { 2488 warning("Attempt to unprotect stack guard pages failed."); 2489 } 2490 } 2491 } 2492 2493 void JavaThread::enable_stack_yellow_zone() { 2494 assert(_stack_guard_state != stack_guard_unused, "must be using guard pages."); 2495 assert(_stack_guard_state != stack_guard_enabled, "already enabled"); 2496 2497 // The base notation is from the stacks point of view, growing downward. 2498 // We need to adjust it to work correctly with guard_memory() 2499 address base = stack_yellow_zone_base() - stack_yellow_zone_size(); 2500 2501 guarantee(base < stack_base(),"Error calculating stack yellow zone"); 2502 guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone"); 2503 2504 if (os::guard_memory((char *) base, stack_yellow_zone_size())) { 2505 _stack_guard_state = stack_guard_enabled; 2506 } else { 2507 warning("Attempt to guard stack yellow zone failed."); 2508 } 2509 enable_register_stack_guard(); 2510 } 2511 2512 void JavaThread::disable_stack_yellow_zone() { 2513 assert(_stack_guard_state != stack_guard_unused, "must be using guard pages."); 2514 assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled"); 2515 2516 // Simply return if called for a thread that does not use guard pages. 2517 if (_stack_guard_state == stack_guard_unused) return; 2518 2519 // The base notation is from the stacks point of view, growing downward. 2520 // We need to adjust it to work correctly with guard_memory() 2521 address base = stack_yellow_zone_base() - stack_yellow_zone_size(); 2522 2523 if (os::unguard_memory((char *)base, stack_yellow_zone_size())) { 2524 _stack_guard_state = stack_guard_yellow_disabled; 2525 } else { 2526 warning("Attempt to unguard stack yellow zone failed."); 2527 } 2528 disable_register_stack_guard(); 2529 } 2530 2531 void JavaThread::enable_stack_red_zone() { 2532 // The base notation is from the stacks point of view, growing downward. 2533 // We need to adjust it to work correctly with guard_memory() 2534 assert(_stack_guard_state != stack_guard_unused, "must be using guard pages."); 2535 address base = stack_red_zone_base() - stack_red_zone_size(); 2536 2537 guarantee(base < stack_base(),"Error calculating stack red zone"); 2538 guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone"); 2539 2540 if(!os::guard_memory((char *) base, stack_red_zone_size())) { 2541 warning("Attempt to guard stack red zone failed."); 2542 } 2543 } 2544 2545 void JavaThread::disable_stack_red_zone() { 2546 // The base notation is from the stacks point of view, growing downward. 2547 // We need to adjust it to work correctly with guard_memory() 2548 assert(_stack_guard_state != stack_guard_unused, "must be using guard pages."); 2549 address base = stack_red_zone_base() - stack_red_zone_size(); 2550 if (!os::unguard_memory((char *)base, stack_red_zone_size())) { 2551 warning("Attempt to unguard stack red zone failed."); 2552 } 2553 } 2554 2555 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) { 2556 // ignore is there is no stack 2557 if (!has_last_Java_frame()) return; 2558 // traverse the stack frames. Starts from top frame. 2559 for(StackFrameStream fst(this); !fst.is_done(); fst.next()) { 2560 frame* fr = fst.current(); 2561 f(fr, fst.register_map()); 2562 } 2563 } 2564 2565 2566 #ifndef PRODUCT 2567 // Deoptimization 2568 // Function for testing deoptimization 2569 void JavaThread::deoptimize() { 2570 // BiasedLocking needs an updated RegisterMap for the revoke monitors pass 2571 StackFrameStream fst(this, UseBiasedLocking); 2572 bool deopt = false; // Dump stack only if a deopt actually happens. 2573 bool only_at = strlen(DeoptimizeOnlyAt) > 0; 2574 // Iterate over all frames in the thread and deoptimize 2575 for(; !fst.is_done(); fst.next()) { 2576 if(fst.current()->can_be_deoptimized()) { 2577 2578 if (only_at) { 2579 // Deoptimize only at particular bcis. DeoptimizeOnlyAt 2580 // consists of comma or carriage return separated numbers so 2581 // search for the current bci in that string. 2582 address pc = fst.current()->pc(); 2583 nmethod* nm = (nmethod*) fst.current()->cb(); 2584 ScopeDesc* sd = nm->scope_desc_at( pc); 2585 char buffer[8]; 2586 jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci()); 2587 size_t len = strlen(buffer); 2588 const char * found = strstr(DeoptimizeOnlyAt, buffer); 2589 while (found != NULL) { 2590 if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') && 2591 (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) { 2592 // Check that the bci found is bracketed by terminators. 2593 break; 2594 } 2595 found = strstr(found + 1, buffer); 2596 } 2597 if (!found) { 2598 continue; 2599 } 2600 } 2601 2602 if (DebugDeoptimization && !deopt) { 2603 deopt = true; // One-time only print before deopt 2604 tty->print_cr("[BEFORE Deoptimization]"); 2605 trace_frames(); 2606 trace_stack(); 2607 } 2608 Deoptimization::deoptimize(this, *fst.current(), fst.register_map()); 2609 } 2610 } 2611 2612 if (DebugDeoptimization && deopt) { 2613 tty->print_cr("[AFTER Deoptimization]"); 2614 trace_frames(); 2615 } 2616 } 2617 2618 2619 // Make zombies 2620 void JavaThread::make_zombies() { 2621 for(StackFrameStream fst(this); !fst.is_done(); fst.next()) { 2622 if (fst.current()->can_be_deoptimized()) { 2623 // it is a Java nmethod 2624 nmethod* nm = CodeCache::find_nmethod(fst.current()->pc()); 2625 nm->make_not_entrant(); 2626 } 2627 } 2628 } 2629 #endif // PRODUCT 2630 2631 2632 void JavaThread::deoptimized_wrt_marked_nmethods() { 2633 if (!has_last_Java_frame()) return; 2634 // BiasedLocking needs an updated RegisterMap for the revoke monitors pass 2635 StackFrameStream fst(this, UseBiasedLocking); 2636 for(; !fst.is_done(); fst.next()) { 2637 if (fst.current()->should_be_deoptimized()) { 2638 if (LogCompilation && xtty != NULL) { 2639 nmethod* nm = fst.current()->cb()->as_nmethod_or_null(); 2640 xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'", 2641 this->name(), nm != NULL ? nm->compile_id() : -1); 2642 } 2643 2644 Deoptimization::deoptimize(this, *fst.current(), fst.register_map()); 2645 } 2646 } 2647 } 2648 2649 2650 // GC support 2651 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); } 2652 2653 void JavaThread::gc_epilogue() { 2654 frames_do(frame_gc_epilogue); 2655 } 2656 2657 2658 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); } 2659 2660 void JavaThread::gc_prologue() { 2661 frames_do(frame_gc_prologue); 2662 } 2663 2664 // If the caller is a NamedThread, then remember, in the current scope, 2665 // the given JavaThread in its _processed_thread field. 2666 class RememberProcessedThread: public StackObj { 2667 NamedThread* _cur_thr; 2668 public: 2669 RememberProcessedThread(JavaThread* jthr) { 2670 Thread* thread = Thread::current(); 2671 if (thread->is_Named_thread()) { 2672 _cur_thr = (NamedThread *)thread; 2673 _cur_thr->set_processed_thread(jthr); 2674 } else { 2675 _cur_thr = NULL; 2676 } 2677 } 2678 2679 ~RememberProcessedThread() { 2680 if (_cur_thr) { 2681 _cur_thr->set_processed_thread(NULL); 2682 } 2683 } 2684 }; 2685 2686 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) { 2687 // Verify that the deferred card marks have been flushed. 2688 assert(deferred_card_mark().is_empty(), "Should be empty during GC"); 2689 2690 // The ThreadProfiler oops_do is done from FlatProfiler::oops_do 2691 // since there may be more than one thread using each ThreadProfiler. 2692 2693 // Traverse the GCHandles 2694 Thread::oops_do(f, cld_f, cf); 2695 2696 assert( (!has_last_Java_frame() && java_call_counter() == 0) || 2697 (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!"); 2698 2699 if (has_last_Java_frame()) { 2700 // Record JavaThread to GC thread 2701 RememberProcessedThread rpt(this); 2702 2703 // Traverse the privileged stack 2704 if (_privileged_stack_top != NULL) { 2705 _privileged_stack_top->oops_do(f); 2706 } 2707 2708 // traverse the registered growable array 2709 if (_array_for_gc != NULL) { 2710 for (int index = 0; index < _array_for_gc->length(); index++) { 2711 f->do_oop(_array_for_gc->adr_at(index)); 2712 } 2713 } 2714 2715 // Traverse the monitor chunks 2716 for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) { 2717 chunk->oops_do(f); 2718 } 2719 2720 // Traverse the execution stack 2721 for(StackFrameStream fst(this); !fst.is_done(); fst.next()) { 2722 fst.current()->oops_do(f, cld_f, cf, fst.register_map()); 2723 } 2724 } 2725 2726 // callee_target is never live across a gc point so NULL it here should 2727 // it still contain a methdOop. 2728 2729 set_callee_target(NULL); 2730 2731 assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!"); 2732 // If we have deferred set_locals there might be oops waiting to be 2733 // written 2734 GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals(); 2735 if (list != NULL) { 2736 for (int i = 0; i < list->length(); i++) { 2737 list->at(i)->oops_do(f); 2738 } 2739 } 2740 2741 // Traverse instance variables at the end since the GC may be moving things 2742 // around using this function 2743 f->do_oop((oop*) &_threadObj); 2744 f->do_oop((oop*) &_vm_result); 2745 f->do_oop((oop*) &_exception_oop); 2746 f->do_oop((oop*) &_pending_async_exception); 2747 2748 if (jvmti_thread_state() != NULL) { 2749 jvmti_thread_state()->oops_do(f); 2750 } 2751 } 2752 2753 void JavaThread::nmethods_do(CodeBlobClosure* cf) { 2754 Thread::nmethods_do(cf); // (super method is a no-op) 2755 2756 assert( (!has_last_Java_frame() && java_call_counter() == 0) || 2757 (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!"); 2758 2759 if (has_last_Java_frame()) { 2760 // Traverse the execution stack 2761 for(StackFrameStream fst(this); !fst.is_done(); fst.next()) { 2762 fst.current()->nmethods_do(cf); 2763 } 2764 } 2765 } 2766 2767 void JavaThread::metadata_do(void f(Metadata*)) { 2768 Thread::metadata_do(f); 2769 if (has_last_Java_frame()) { 2770 // Traverse the execution stack to call f() on the methods in the stack 2771 for(StackFrameStream fst(this); !fst.is_done(); fst.next()) { 2772 fst.current()->metadata_do(f); 2773 } 2774 } else if (is_Compiler_thread()) { 2775 // need to walk ciMetadata in current compile tasks to keep alive. 2776 CompilerThread* ct = (CompilerThread*)this; 2777 if (ct->env() != NULL) { 2778 ct->env()->metadata_do(f); 2779 } 2780 } 2781 } 2782 2783 // Printing 2784 const char* _get_thread_state_name(JavaThreadState _thread_state) { 2785 switch (_thread_state) { 2786 case _thread_uninitialized: return "_thread_uninitialized"; 2787 case _thread_new: return "_thread_new"; 2788 case _thread_new_trans: return "_thread_new_trans"; 2789 case _thread_in_native: return "_thread_in_native"; 2790 case _thread_in_native_trans: return "_thread_in_native_trans"; 2791 case _thread_in_vm: return "_thread_in_vm"; 2792 case _thread_in_vm_trans: return "_thread_in_vm_trans"; 2793 case _thread_in_Java: return "_thread_in_Java"; 2794 case _thread_in_Java_trans: return "_thread_in_Java_trans"; 2795 case _thread_blocked: return "_thread_blocked"; 2796 case _thread_blocked_trans: return "_thread_blocked_trans"; 2797 default: return "unknown thread state"; 2798 } 2799 } 2800 2801 #ifndef PRODUCT 2802 void JavaThread::print_thread_state_on(outputStream *st) const { 2803 st->print_cr(" JavaThread state: %s", _get_thread_state_name(_thread_state)); 2804 }; 2805 void JavaThread::print_thread_state() const { 2806 print_thread_state_on(tty); 2807 }; 2808 #endif // PRODUCT 2809 2810 // Called by Threads::print() for VM_PrintThreads operation 2811 void JavaThread::print_on(outputStream *st) const { 2812 st->print("\"%s\" ", get_thread_name()); 2813 oop thread_oop = threadObj(); 2814 if (thread_oop != NULL) { 2815 st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop)); 2816 if (java_lang_Thread::is_daemon(thread_oop)) st->print("daemon "); 2817 st->print("prio=%d ", java_lang_Thread::priority(thread_oop)); 2818 } 2819 Thread::print_on(st); 2820 // print guess for valid stack memory region (assume 4K pages); helps lock debugging 2821 st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12)); 2822 if (thread_oop != NULL) { 2823 st->print_cr(" java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop)); 2824 } 2825 #ifndef PRODUCT 2826 print_thread_state_on(st); 2827 _safepoint_state->print_on(st); 2828 #endif // PRODUCT 2829 } 2830 2831 // Called by fatal error handler. The difference between this and 2832 // JavaThread::print() is that we can't grab lock or allocate memory. 2833 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const { 2834 st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen)); 2835 oop thread_obj = threadObj(); 2836 if (thread_obj != NULL) { 2837 if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon"); 2838 } 2839 st->print(" ["); 2840 st->print("%s", _get_thread_state_name(_thread_state)); 2841 if (osthread()) { 2842 st->print(", id=%d", osthread()->thread_id()); 2843 } 2844 st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")", 2845 _stack_base - _stack_size, _stack_base); 2846 st->print("]"); 2847 return; 2848 } 2849 2850 // Verification 2851 2852 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); } 2853 2854 void JavaThread::verify() { 2855 // Verify oops in the thread. 2856 oops_do(&VerifyOopClosure::verify_oop, NULL, NULL); 2857 2858 // Verify the stack frames. 2859 frames_do(frame_verify); 2860 } 2861 2862 // CR 6300358 (sub-CR 2137150) 2863 // Most callers of this method assume that it can't return NULL but a 2864 // thread may not have a name whilst it is in the process of attaching to 2865 // the VM - see CR 6412693, and there are places where a JavaThread can be 2866 // seen prior to having it's threadObj set (eg JNI attaching threads and 2867 // if vm exit occurs during initialization). These cases can all be accounted 2868 // for such that this method never returns NULL. 2869 const char* JavaThread::get_thread_name() const { 2870 #ifdef ASSERT 2871 // early safepoints can hit while current thread does not yet have TLS 2872 if (!SafepointSynchronize::is_at_safepoint()) { 2873 Thread *cur = Thread::current(); 2874 if (!(cur->is_Java_thread() && cur == this)) { 2875 // Current JavaThreads are allowed to get their own name without 2876 // the Threads_lock. 2877 assert_locked_or_safepoint(Threads_lock); 2878 } 2879 } 2880 #endif // ASSERT 2881 return get_thread_name_string(); 2882 } 2883 2884 // Returns a non-NULL representation of this thread's name, or a suitable 2885 // descriptive string if there is no set name 2886 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const { 2887 const char* name_str; 2888 oop thread_obj = threadObj(); 2889 if (thread_obj != NULL) { 2890 typeArrayOop name = java_lang_Thread::name(thread_obj); 2891 if (name != NULL) { 2892 if (buf == NULL) { 2893 name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length()); 2894 } 2895 else { 2896 name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen); 2897 } 2898 } 2899 else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306 2900 name_str = "<no-name - thread is attaching>"; 2901 } 2902 else { 2903 name_str = Thread::name(); 2904 } 2905 } 2906 else { 2907 name_str = Thread::name(); 2908 } 2909 assert(name_str != NULL, "unexpected NULL thread name"); 2910 return name_str; 2911 } 2912 2913 2914 const char* JavaThread::get_threadgroup_name() const { 2915 debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);) 2916 oop thread_obj = threadObj(); 2917 if (thread_obj != NULL) { 2918 oop thread_group = java_lang_Thread::threadGroup(thread_obj); 2919 if (thread_group != NULL) { 2920 typeArrayOop name = java_lang_ThreadGroup::name(thread_group); 2921 // ThreadGroup.name can be null 2922 if (name != NULL) { 2923 const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length()); 2924 return str; 2925 } 2926 } 2927 } 2928 return NULL; 2929 } 2930 2931 const char* JavaThread::get_parent_name() const { 2932 debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);) 2933 oop thread_obj = threadObj(); 2934 if (thread_obj != NULL) { 2935 oop thread_group = java_lang_Thread::threadGroup(thread_obj); 2936 if (thread_group != NULL) { 2937 oop parent = java_lang_ThreadGroup::parent(thread_group); 2938 if (parent != NULL) { 2939 typeArrayOop name = java_lang_ThreadGroup::name(parent); 2940 // ThreadGroup.name can be null 2941 if (name != NULL) { 2942 const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length()); 2943 return str; 2944 } 2945 } 2946 } 2947 } 2948 return NULL; 2949 } 2950 2951 ThreadPriority JavaThread::java_priority() const { 2952 oop thr_oop = threadObj(); 2953 if (thr_oop == NULL) return NormPriority; // Bootstrapping 2954 ThreadPriority priority = java_lang_Thread::priority(thr_oop); 2955 assert(MinPriority <= priority && priority <= MaxPriority, "sanity check"); 2956 return priority; 2957 } 2958 2959 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) { 2960 2961 assert(Threads_lock->owner() == Thread::current(), "must have threads lock"); 2962 // Link Java Thread object <-> C++ Thread 2963 2964 // Get the C++ thread object (an oop) from the JNI handle (a jthread) 2965 // and put it into a new Handle. The Handle "thread_oop" can then 2966 // be used to pass the C++ thread object to other methods. 2967 2968 // Set the Java level thread object (jthread) field of the 2969 // new thread (a JavaThread *) to C++ thread object using the 2970 // "thread_oop" handle. 2971 2972 // Set the thread field (a JavaThread *) of the 2973 // oop representing the java_lang_Thread to the new thread (a JavaThread *). 2974 2975 Handle thread_oop(Thread::current(), 2976 JNIHandles::resolve_non_null(jni_thread)); 2977 assert(InstanceKlass::cast(thread_oop->klass())->is_linked(), 2978 "must be initialized"); 2979 set_threadObj(thread_oop()); 2980 java_lang_Thread::set_thread(thread_oop(), this); 2981 2982 if (prio == NoPriority) { 2983 prio = java_lang_Thread::priority(thread_oop()); 2984 assert(prio != NoPriority, "A valid priority should be present"); 2985 } 2986 2987 // Push the Java priority down to the native thread; needs Threads_lock 2988 Thread::set_priority(this, prio); 2989 2990 // Add the new thread to the Threads list and set it in motion. 2991 // We must have threads lock in order to call Threads::add. 2992 // It is crucial that we do not block before the thread is 2993 // added to the Threads list for if a GC happens, then the java_thread oop 2994 // will not be visited by GC. 2995 Threads::add(this); 2996 } 2997 2998 oop JavaThread::current_park_blocker() { 2999 // Support for JSR-166 locks 3000 oop thread_oop = threadObj(); 3001 if (thread_oop != NULL && 3002 JDK_Version::current().supports_thread_park_blocker()) { 3003 return java_lang_Thread::park_blocker(thread_oop); 3004 } 3005 return NULL; 3006 } 3007 3008 3009 void JavaThread::print_stack_on(outputStream* st) { 3010 if (!has_last_Java_frame()) return; 3011 ResourceMark rm; 3012 HandleMark hm; 3013 3014 RegisterMap reg_map(this); 3015 vframe* start_vf = last_java_vframe(®_map); 3016 int count = 0; 3017 for (vframe* f = start_vf; f; f = f->sender() ) { 3018 if (f->is_java_frame()) { 3019 javaVFrame* jvf = javaVFrame::cast(f); 3020 java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci()); 3021 3022 // Print out lock information 3023 if (JavaMonitorsInStackTrace) { 3024 jvf->print_lock_info_on(st, count); 3025 } 3026 } else { 3027 // Ignore non-Java frames 3028 } 3029 3030 // Bail-out case for too deep stacks 3031 count++; 3032 if (MaxJavaStackTraceDepth == count) return; 3033 } 3034 } 3035 3036 3037 // JVMTI PopFrame support 3038 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) { 3039 assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments"); 3040 if (in_bytes(size_in_bytes) != 0) { 3041 _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread); 3042 _popframe_preserved_args_size = in_bytes(size_in_bytes); 3043 Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size); 3044 } 3045 } 3046 3047 void* JavaThread::popframe_preserved_args() { 3048 return _popframe_preserved_args; 3049 } 3050 3051 ByteSize JavaThread::popframe_preserved_args_size() { 3052 return in_ByteSize(_popframe_preserved_args_size); 3053 } 3054 3055 WordSize JavaThread::popframe_preserved_args_size_in_words() { 3056 int sz = in_bytes(popframe_preserved_args_size()); 3057 assert(sz % wordSize == 0, "argument size must be multiple of wordSize"); 3058 return in_WordSize(sz / wordSize); 3059 } 3060 3061 void JavaThread::popframe_free_preserved_args() { 3062 assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice"); 3063 FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread); 3064 _popframe_preserved_args = NULL; 3065 _popframe_preserved_args_size = 0; 3066 } 3067 3068 #ifndef PRODUCT 3069 3070 void JavaThread::trace_frames() { 3071 tty->print_cr("[Describe stack]"); 3072 int frame_no = 1; 3073 for(StackFrameStream fst(this); !fst.is_done(); fst.next()) { 3074 tty->print(" %d. ", frame_no++); 3075 fst.current()->print_value_on(tty,this); 3076 tty->cr(); 3077 } 3078 } 3079 3080 class PrintAndVerifyOopClosure: public OopClosure { 3081 protected: 3082 template <class T> inline void do_oop_work(T* p) { 3083 oop obj = oopDesc::load_decode_heap_oop(p); 3084 if (obj == NULL) return; 3085 tty->print(INTPTR_FORMAT ": ", p); 3086 if (obj->is_oop_or_null()) { 3087 if (obj->is_objArray()) { 3088 tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj); 3089 } else { 3090 obj->print(); 3091 } 3092 } else { 3093 tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj); 3094 } 3095 tty->cr(); 3096 } 3097 public: 3098 virtual void do_oop(oop* p) { do_oop_work(p); } 3099 virtual void do_oop(narrowOop* p) { do_oop_work(p); } 3100 }; 3101 3102 3103 static void oops_print(frame* f, const RegisterMap *map) { 3104 PrintAndVerifyOopClosure print; 3105 f->print_value(); 3106 f->oops_do(&print, NULL, NULL, (RegisterMap*)map); 3107 } 3108 3109 // Print our all the locations that contain oops and whether they are 3110 // valid or not. This useful when trying to find the oldest frame 3111 // where an oop has gone bad since the frame walk is from youngest to 3112 // oldest. 3113 void JavaThread::trace_oops() { 3114 tty->print_cr("[Trace oops]"); 3115 frames_do(oops_print); 3116 } 3117 3118 3119 #ifdef ASSERT 3120 // Print or validate the layout of stack frames 3121 void JavaThread::print_frame_layout(int depth, bool validate_only) { 3122 ResourceMark rm; 3123 PRESERVE_EXCEPTION_MARK; 3124 FrameValues values; 3125 int frame_no = 0; 3126 for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) { 3127 fst.current()->describe(values, ++frame_no); 3128 if (depth == frame_no) break; 3129 } 3130 if (validate_only) { 3131 values.validate(); 3132 } else { 3133 tty->print_cr("[Describe stack layout]"); 3134 values.print(this); 3135 } 3136 } 3137 #endif 3138 3139 void JavaThread::trace_stack_from(vframe* start_vf) { 3140 ResourceMark rm; 3141 int vframe_no = 1; 3142 for (vframe* f = start_vf; f; f = f->sender() ) { 3143 if (f->is_java_frame()) { 3144 javaVFrame::cast(f)->print_activation(vframe_no++); 3145 } else { 3146 f->print(); 3147 } 3148 if (vframe_no > StackPrintLimit) { 3149 tty->print_cr("...<more frames>..."); 3150 return; 3151 } 3152 } 3153 } 3154 3155 3156 void JavaThread::trace_stack() { 3157 if (!has_last_Java_frame()) return; 3158 ResourceMark rm; 3159 HandleMark hm; 3160 RegisterMap reg_map(this); 3161 trace_stack_from(last_java_vframe(®_map)); 3162 } 3163 3164 3165 #endif // PRODUCT 3166 3167 3168 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) { 3169 assert(reg_map != NULL, "a map must be given"); 3170 frame f = last_frame(); 3171 for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) { 3172 if (vf->is_java_frame()) return javaVFrame::cast(vf); 3173 } 3174 return NULL; 3175 } 3176 3177 3178 Klass* JavaThread::security_get_caller_class(int depth) { 3179 vframeStream vfst(this); 3180 vfst.security_get_caller_frame(depth); 3181 if (!vfst.at_end()) { 3182 return vfst.method()->method_holder(); 3183 } 3184 return NULL; 3185 } 3186 3187 static void compiler_thread_entry(JavaThread* thread, TRAPS) { 3188 assert(thread->is_Compiler_thread(), "must be compiler thread"); 3189 CompileBroker::compiler_thread_loop(); 3190 } 3191 3192 // Create a CompilerThread 3193 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters) 3194 : JavaThread(&compiler_thread_entry) { 3195 _env = NULL; 3196 _log = NULL; 3197 _task = NULL; 3198 _queue = queue; 3199 _counters = counters; 3200 _buffer_blob = NULL; 3201 _scanned_nmethod = NULL; 3202 _compiler = NULL; 3203 3204 #ifndef PRODUCT 3205 _ideal_graph_printer = NULL; 3206 #endif 3207 } 3208 3209 void CompilerThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) { 3210 JavaThread::oops_do(f, cld_f, cf); 3211 if (_scanned_nmethod != NULL && cf != NULL) { 3212 // Safepoints can occur when the sweeper is scanning an nmethod so 3213 // process it here to make sure it isn't unloaded in the middle of 3214 // a scan. 3215 cf->do_code_blob(_scanned_nmethod); 3216 } 3217 } 3218 3219 3220 // ======= Threads ======== 3221 3222 // The Threads class links together all active threads, and provides 3223 // operations over all threads. It is protected by its own Mutex 3224 // lock, which is also used in other contexts to protect thread 3225 // operations from having the thread being operated on from exiting 3226 // and going away unexpectedly (e.g., safepoint synchronization) 3227 3228 JavaThread* Threads::_thread_list = NULL; 3229 int Threads::_number_of_threads = 0; 3230 int Threads::_number_of_non_daemon_threads = 0; 3231 int Threads::_return_code = 0; 3232 size_t JavaThread::_stack_size_at_create = 0; 3233 #ifdef ASSERT 3234 bool Threads::_vm_complete = false; 3235 #endif 3236 3237 // All JavaThreads 3238 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next()) 3239 3240 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system) 3241 void Threads::threads_do(ThreadClosure* tc) { 3242 assert_locked_or_safepoint(Threads_lock); 3243 // ALL_JAVA_THREADS iterates through all JavaThreads 3244 ALL_JAVA_THREADS(p) { 3245 tc->do_thread(p); 3246 } 3247 // Someday we could have a table or list of all non-JavaThreads. 3248 // For now, just manually iterate through them. 3249 tc->do_thread(VMThread::vm_thread()); 3250 Universe::heap()->gc_threads_do(tc); 3251 WatcherThread *wt = WatcherThread::watcher_thread(); 3252 // Strictly speaking, the following NULL check isn't sufficient to make sure 3253 // the data for WatcherThread is still valid upon being examined. However, 3254 // considering that WatchThread terminates when the VM is on the way to 3255 // exit at safepoint, the chance of the above is extremely small. The right 3256 // way to prevent termination of WatcherThread would be to acquire 3257 // Terminator_lock, but we can't do that without violating the lock rank 3258 // checking in some cases. 3259 if (wt != NULL) 3260 tc->do_thread(wt); 3261 3262 // If CompilerThreads ever become non-JavaThreads, add them here 3263 } 3264 3265 3266 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) { 3267 TraceTime timer("Initialize java.lang classes", TraceStartupTime); 3268 3269 if (EagerXrunInit && Arguments::init_libraries_at_startup()) { 3270 create_vm_init_libraries(); 3271 } 3272 3273 initialize_class(vmSymbols::java_lang_String(), CHECK); 3274 3275 // Initialize java_lang.System (needed before creating the thread) 3276 initialize_class(vmSymbols::java_lang_System(), CHECK); 3277 initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK); 3278 Handle thread_group = create_initial_thread_group(CHECK); 3279 Universe::set_main_thread_group(thread_group()); 3280 initialize_class(vmSymbols::java_lang_Thread(), CHECK); 3281 oop thread_object = create_initial_thread(thread_group, main_thread, CHECK); 3282 main_thread->set_threadObj(thread_object); 3283 // Set thread status to running since main thread has 3284 // been started and running. 3285 java_lang_Thread::set_thread_status(thread_object, 3286 java_lang_Thread::RUNNABLE); 3287 3288 // The VM creates & returns objects of this class. Make sure it's initialized. 3289 initialize_class(vmSymbols::java_lang_Class(), CHECK); 3290 3291 // The VM preresolves methods to these classes. Make sure that they get initialized 3292 initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK); 3293 initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK); 3294 call_initializeSystemClass(CHECK); 3295 3296 // get the Java runtime name after java.lang.System is initialized 3297 JDK_Version::set_runtime_name(get_java_runtime_name(THREAD)); 3298 JDK_Version::set_runtime_version(get_java_runtime_version(THREAD)); 3299 3300 // an instance of OutOfMemory exception has been allocated earlier 3301 initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK); 3302 initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK); 3303 initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK); 3304 initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK); 3305 initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK); 3306 initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK); 3307 initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK); 3308 initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK); 3309 } 3310 3311 void Threads::initialize_jsr292_core_classes(TRAPS) { 3312 initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK); 3313 initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK); 3314 initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK); 3315 } 3316 3317 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) { 3318 3319 extern void JDK_Version_init(); 3320 3321 // Check version 3322 if (!is_supported_jni_version(args->version)) return JNI_EVERSION; 3323 3324 // Initialize the output stream module 3325 ostream_init(); 3326 3327 // Process java launcher properties. 3328 Arguments::process_sun_java_launcher_properties(args); 3329 3330 // Initialize the os module before using TLS 3331 os::init(); 3332 3333 // Initialize system properties. 3334 Arguments::init_system_properties(); 3335 3336 // So that JDK version can be used as a discriminator when parsing arguments 3337 JDK_Version_init(); 3338 3339 // Update/Initialize System properties after JDK version number is known 3340 Arguments::init_version_specific_system_properties(); 3341 3342 // Parse arguments 3343 jint parse_result = Arguments::parse(args); 3344 if (parse_result != JNI_OK) return parse_result; 3345 3346 os::init_before_ergo(); 3347 3348 jint ergo_result = Arguments::apply_ergo(); 3349 if (ergo_result != JNI_OK) return ergo_result; 3350 3351 if (PauseAtStartup) { 3352 os::pause(); 3353 } 3354 3355 HOTSPOT_VM_INIT_BEGIN(); 3356 3357 // Record VM creation timing statistics 3358 TraceVmCreationTime create_vm_timer; 3359 create_vm_timer.start(); 3360 3361 // Timing (must come after argument parsing) 3362 TraceTime timer("Create VM", TraceStartupTime); 3363 3364 // Initialize the os module after parsing the args 3365 jint os_init_2_result = os::init_2(); 3366 if (os_init_2_result != JNI_OK) return os_init_2_result; 3367 3368 jint adjust_after_os_result = Arguments::adjust_after_os(); 3369 if (adjust_after_os_result != JNI_OK) return adjust_after_os_result; 3370 3371 // initialize TLS 3372 ThreadLocalStorage::init(); 3373 3374 // Bootstrap native memory tracking, so it can start recording memory 3375 // activities before worker thread is started. This is the first phase 3376 // of bootstrapping, VM is currently running in single-thread mode. 3377 MemTracker::bootstrap_single_thread(); 3378 3379 // Initialize output stream logging 3380 ostream_init_log(); 3381 3382 // Convert -Xrun to -agentlib: if there is no JVM_OnLoad 3383 // Must be before create_vm_init_agents() 3384 if (Arguments::init_libraries_at_startup()) { 3385 convert_vm_init_libraries_to_agents(); 3386 } 3387 3388 // Launch -agentlib/-agentpath and converted -Xrun agents 3389 if (Arguments::init_agents_at_startup()) { 3390 create_vm_init_agents(); 3391 } 3392 3393 // Initialize Threads state 3394 _thread_list = NULL; 3395 _number_of_threads = 0; 3396 _number_of_non_daemon_threads = 0; 3397 3398 // Initialize global data structures and create system classes in heap 3399 vm_init_globals(); 3400 3401 // Attach the main thread to this os thread 3402 JavaThread* main_thread = new JavaThread(); 3403 main_thread->set_thread_state(_thread_in_vm); 3404 // must do this before set_active_handles and initialize_thread_local_storage 3405 // Note: on solaris initialize_thread_local_storage() will (indirectly) 3406 // change the stack size recorded here to one based on the java thread 3407 // stacksize. This adjusted size is what is used to figure the placement 3408 // of the guard pages. 3409 main_thread->record_stack_base_and_size(); 3410 main_thread->initialize_thread_local_storage(); 3411 3412 main_thread->set_active_handles(JNIHandleBlock::allocate_block()); 3413 3414 if (!main_thread->set_as_starting_thread()) { 3415 vm_shutdown_during_initialization( 3416 "Failed necessary internal allocation. Out of swap space"); 3417 delete main_thread; 3418 *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again 3419 return JNI_ENOMEM; 3420 } 3421 3422 // Enable guard page *after* os::create_main_thread(), otherwise it would 3423 // crash Linux VM, see notes in os_linux.cpp. 3424 main_thread->create_stack_guard_pages(); 3425 3426 // Initialize Java-Level synchronization subsystem 3427 ObjectMonitor::Initialize() ; 3428 3429 // Second phase of bootstrapping, VM is about entering multi-thread mode 3430 MemTracker::bootstrap_multi_thread(); 3431 3432 // Initialize global modules 3433 jint status = init_globals(); 3434 if (status != JNI_OK) { 3435 delete main_thread; 3436 *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again 3437 return status; 3438 } 3439 3440 // Should be done after the heap is fully created 3441 main_thread->cache_global_variables(); 3442 3443 HandleMark hm; 3444 3445 { MutexLocker mu(Threads_lock); 3446 Threads::add(main_thread); 3447 } 3448 3449 // Any JVMTI raw monitors entered in onload will transition into 3450 // real raw monitor. VM is setup enough here for raw monitor enter. 3451 JvmtiExport::transition_pending_onload_raw_monitors(); 3452 3453 // Fully start NMT 3454 MemTracker::start(); 3455 3456 // Create the VMThread 3457 { TraceTime timer("Start VMThread", TraceStartupTime); 3458 VMThread::create(); 3459 Thread* vmthread = VMThread::vm_thread(); 3460 3461 if (!os::create_thread(vmthread, os::vm_thread)) 3462 vm_exit_during_initialization("Cannot create VM thread. Out of system resources."); 3463 3464 // Wait for the VM thread to become ready, and VMThread::run to initialize 3465 // Monitors can have spurious returns, must always check another state flag 3466 { 3467 MutexLocker ml(Notify_lock); 3468 os::start_thread(vmthread); 3469 while (vmthread->active_handles() == NULL) { 3470 Notify_lock->wait(); 3471 } 3472 } 3473 } 3474 3475 assert (Universe::is_fully_initialized(), "not initialized"); 3476 if (VerifyDuringStartup) { 3477 // Make sure we're starting with a clean slate. 3478 VM_Verify verify_op; 3479 VMThread::execute(&verify_op); 3480 } 3481 3482 Thread* THREAD = Thread::current(); 3483 3484 // At this point, the Universe is initialized, but we have not executed 3485 // any byte code. Now is a good time (the only time) to dump out the 3486 // internal state of the JVM for sharing. 3487 if (DumpSharedSpaces) { 3488 MetaspaceShared::preload_and_dump(CHECK_JNI_ERR); 3489 ShouldNotReachHere(); 3490 } 3491 3492 // Always call even when there are not JVMTI environments yet, since environments 3493 // may be attached late and JVMTI must track phases of VM execution 3494 JvmtiExport::enter_start_phase(); 3495 3496 // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents. 3497 JvmtiExport::post_vm_start(); 3498 3499 initialize_java_lang_classes(main_thread, CHECK_JNI_ERR); 3500 3501 // We need this for ClassDataSharing - the initial vm.info property is set 3502 // with the default value of CDS "sharing" which may be reset through 3503 // command line options. 3504 reset_vm_info_property(CHECK_JNI_ERR); 3505 3506 quicken_jni_functions(); 3507 3508 // Must be run after init_ft which initializes ft_enabled 3509 if (TRACE_INITIALIZE() != JNI_OK) { 3510 vm_exit_during_initialization("Failed to initialize tracing backend"); 3511 } 3512 3513 // Set flag that basic initialization has completed. Used by exceptions and various 3514 // debug stuff, that does not work until all basic classes have been initialized. 3515 set_init_completed(); 3516 3517 Metaspace::post_initialize(); 3518 3519 HOTSPOT_VM_INIT_END(); 3520 3521 // record VM initialization completion time 3522 #if INCLUDE_MANAGEMENT 3523 Management::record_vm_init_completed(); 3524 #endif // INCLUDE_MANAGEMENT 3525 3526 // Compute system loader. Note that this has to occur after set_init_completed, since 3527 // valid exceptions may be thrown in the process. 3528 // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and 3529 // set_init_completed has just been called, causing exceptions not to be shortcut 3530 // anymore. We call vm_exit_during_initialization directly instead. 3531 SystemDictionary::compute_java_system_loader(CHECK_JNI_ERR); 3532 3533 #if INCLUDE_ALL_GCS 3534 // Support for ConcurrentMarkSweep. This should be cleaned up 3535 // and better encapsulated. The ugly nested if test would go away 3536 // once things are properly refactored. XXX YSR 3537 if (UseConcMarkSweepGC || UseG1GC) { 3538 if (UseConcMarkSweepGC) { 3539 ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR); 3540 } else { 3541 ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR); 3542 } 3543 } 3544 #endif // INCLUDE_ALL_GCS 3545 3546 // Always call even when there are not JVMTI environments yet, since environments 3547 // may be attached late and JVMTI must track phases of VM execution 3548 JvmtiExport::enter_live_phase(); 3549 3550 // Signal Dispatcher needs to be started before VMInit event is posted 3551 os::signal_init(); 3552 3553 // Start Attach Listener if +StartAttachListener or it can't be started lazily 3554 if (!DisableAttachMechanism) { 3555 AttachListener::vm_start(); 3556 if (StartAttachListener || AttachListener::init_at_startup()) { 3557 AttachListener::init(); 3558 } 3559 } 3560 3561 // Launch -Xrun agents 3562 // Must be done in the JVMTI live phase so that for backward compatibility the JDWP 3563 // back-end can launch with -Xdebug -Xrunjdwp. 3564 if (!EagerXrunInit && Arguments::init_libraries_at_startup()) { 3565 create_vm_init_libraries(); 3566 } 3567 3568 // Notify JVMTI agents that VM initialization is complete - nop if no agents. 3569 JvmtiExport::post_vm_initialized(); 3570 3571 if (TRACE_START() != JNI_OK) { 3572 vm_exit_during_initialization("Failed to start tracing backend."); 3573 } 3574 3575 if (CleanChunkPoolAsync) { 3576 Chunk::start_chunk_pool_cleaner_task(); 3577 } 3578 3579 // initialize compiler(s) 3580 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) 3581 CompileBroker::compilation_init(); 3582 #endif 3583 3584 // Pre-initialize some JSR292 core classes to avoid deadlock during class loading. 3585 // It is done after compilers are initialized, because otherwise compilations of 3586 // signature polymorphic MH intrinsics can be missed 3587 // (see SystemDictionary::find_method_handle_intrinsic). 3588 initialize_jsr292_core_classes(CHECK_JNI_ERR); 3589 3590 #if INCLUDE_MANAGEMENT 3591 Management::initialize(THREAD); 3592 3593 if (HAS_PENDING_EXCEPTION) { 3594 // management agent fails to start possibly due to 3595 // configuration problem and is responsible for printing 3596 // stack trace if appropriate. Simply exit VM. 3597 vm_exit(1); 3598 } 3599 #endif // INCLUDE_MANAGEMENT 3600 3601 if (Arguments::has_profile()) FlatProfiler::engage(main_thread, true); 3602 if (MemProfiling) MemProfiler::engage(); 3603 StatSampler::engage(); 3604 if (CheckJNICalls) JniPeriodicChecker::engage(); 3605 3606 BiasedLocking::init(); 3607 3608 #if INCLUDE_RTM_OPT 3609 RTMLockingCounters::init(); 3610 #endif 3611 3612 if (JDK_Version::current().post_vm_init_hook_enabled()) { 3613 call_postVMInitHook(THREAD); 3614 // The Java side of PostVMInitHook.run must deal with all 3615 // exceptions and provide means of diagnosis. 3616 if (HAS_PENDING_EXCEPTION) { 3617 CLEAR_PENDING_EXCEPTION; 3618 } 3619 } 3620 3621 { 3622 MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag); 3623 // Make sure the watcher thread can be started by WatcherThread::start() 3624 // or by dynamic enrollment. 3625 WatcherThread::make_startable(); 3626 // Start up the WatcherThread if there are any periodic tasks 3627 // NOTE: All PeriodicTasks should be registered by now. If they 3628 // aren't, late joiners might appear to start slowly (we might 3629 // take a while to process their first tick). 3630 if (PeriodicTask::num_tasks() > 0) { 3631 WatcherThread::start(); 3632 } 3633 } 3634 3635 // Give os specific code one last chance to start 3636 os::init_3(); 3637 3638 create_vm_timer.end(); 3639 #ifdef ASSERT 3640 _vm_complete = true; 3641 #endif 3642 return JNI_OK; 3643 } 3644 3645 // type for the Agent_OnLoad and JVM_OnLoad entry points 3646 extern "C" { 3647 typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *); 3648 } 3649 // Find a command line agent library and return its entry point for 3650 // -agentlib: -agentpath: -Xrun 3651 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array. 3652 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) { 3653 OnLoadEntry_t on_load_entry = NULL; 3654 void *library = NULL; 3655 3656 if (!agent->valid()) { 3657 char buffer[JVM_MAXPATHLEN]; 3658 char ebuf[1024]; 3659 const char *name = agent->name(); 3660 const char *msg = "Could not find agent library "; 3661 3662 // First check to see if agent is statically linked into executable 3663 if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) { 3664 library = agent->os_lib(); 3665 } else if (agent->is_absolute_path()) { 3666 library = os::dll_load(name, ebuf, sizeof ebuf); 3667 if (library == NULL) { 3668 const char *sub_msg = " in absolute path, with error: "; 3669 size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1; 3670 char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread); 3671 jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf); 3672 // If we can't find the agent, exit. 3673 vm_exit_during_initialization(buf, NULL); 3674 FREE_C_HEAP_ARRAY(char, buf, mtThread); 3675 } 3676 } else { 3677 // Try to load the agent from the standard dll directory 3678 if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), 3679 name)) { 3680 library = os::dll_load(buffer, ebuf, sizeof ebuf); 3681 } 3682 if (library == NULL) { // Try the local directory 3683 char ns[1] = {0}; 3684 if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) { 3685 library = os::dll_load(buffer, ebuf, sizeof ebuf); 3686 } 3687 if (library == NULL) { 3688 const char *sub_msg = " on the library path, with error: "; 3689 size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1; 3690 char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread); 3691 jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf); 3692 // If we can't find the agent, exit. 3693 vm_exit_during_initialization(buf, NULL); 3694 FREE_C_HEAP_ARRAY(char, buf, mtThread); 3695 } 3696 } 3697 } 3698 agent->set_os_lib(library); 3699 agent->set_valid(); 3700 } 3701 3702 // Find the OnLoad function. 3703 on_load_entry = 3704 CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent, 3705 false, 3706 on_load_symbols, 3707 num_symbol_entries)); 3708 return on_load_entry; 3709 } 3710 3711 // Find the JVM_OnLoad entry point 3712 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) { 3713 const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS; 3714 return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*)); 3715 } 3716 3717 // Find the Agent_OnLoad entry point 3718 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) { 3719 const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS; 3720 return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*)); 3721 } 3722 3723 // For backwards compatibility with -Xrun 3724 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be 3725 // treated like -agentpath: 3726 // Must be called before agent libraries are created 3727 void Threads::convert_vm_init_libraries_to_agents() { 3728 AgentLibrary* agent; 3729 AgentLibrary* next; 3730 3731 for (agent = Arguments::libraries(); agent != NULL; agent = next) { 3732 next = agent->next(); // cache the next agent now as this agent may get moved off this list 3733 OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent); 3734 3735 // If there is an JVM_OnLoad function it will get called later, 3736 // otherwise see if there is an Agent_OnLoad 3737 if (on_load_entry == NULL) { 3738 on_load_entry = lookup_agent_on_load(agent); 3739 if (on_load_entry != NULL) { 3740 // switch it to the agent list -- so that Agent_OnLoad will be called, 3741 // JVM_OnLoad won't be attempted and Agent_OnUnload will 3742 Arguments::convert_library_to_agent(agent); 3743 } else { 3744 vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name()); 3745 } 3746 } 3747 } 3748 } 3749 3750 // Create agents for -agentlib: -agentpath: and converted -Xrun 3751 // Invokes Agent_OnLoad 3752 // Called very early -- before JavaThreads exist 3753 void Threads::create_vm_init_agents() { 3754 extern struct JavaVM_ main_vm; 3755 AgentLibrary* agent; 3756 3757 JvmtiExport::enter_onload_phase(); 3758 3759 for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) { 3760 OnLoadEntry_t on_load_entry = lookup_agent_on_load(agent); 3761 3762 if (on_load_entry != NULL) { 3763 // Invoke the Agent_OnLoad function 3764 jint err = (*on_load_entry)(&main_vm, agent->options(), NULL); 3765 if (err != JNI_OK) { 3766 vm_exit_during_initialization("agent library failed to init", agent->name()); 3767 } 3768 } else { 3769 vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name()); 3770 } 3771 } 3772 JvmtiExport::enter_primordial_phase(); 3773 } 3774 3775 extern "C" { 3776 typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *); 3777 } 3778 3779 void Threads::shutdown_vm_agents() { 3780 // Send any Agent_OnUnload notifications 3781 const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS; 3782 size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols); 3783 extern struct JavaVM_ main_vm; 3784 for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) { 3785 3786 // Find the Agent_OnUnload function. 3787 Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t, 3788 os::find_agent_function(agent, 3789 false, 3790 on_unload_symbols, 3791 num_symbol_entries)); 3792 3793 // Invoke the Agent_OnUnload function 3794 if (unload_entry != NULL) { 3795 JavaThread* thread = JavaThread::current(); 3796 ThreadToNativeFromVM ttn(thread); 3797 HandleMark hm(thread); 3798 (*unload_entry)(&main_vm); 3799 } 3800 } 3801 } 3802 3803 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries 3804 // Invokes JVM_OnLoad 3805 void Threads::create_vm_init_libraries() { 3806 extern struct JavaVM_ main_vm; 3807 AgentLibrary* agent; 3808 3809 for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) { 3810 OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent); 3811 3812 if (on_load_entry != NULL) { 3813 // Invoke the JVM_OnLoad function 3814 JavaThread* thread = JavaThread::current(); 3815 ThreadToNativeFromVM ttn(thread); 3816 HandleMark hm(thread); 3817 jint err = (*on_load_entry)(&main_vm, agent->options(), NULL); 3818 if (err != JNI_OK) { 3819 vm_exit_during_initialization("-Xrun library failed to init", agent->name()); 3820 } 3821 } else { 3822 vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name()); 3823 } 3824 } 3825 } 3826 3827 // Last thread running calls java.lang.Shutdown.shutdown() 3828 void JavaThread::invoke_shutdown_hooks() { 3829 HandleMark hm(this); 3830 3831 // We could get here with a pending exception, if so clear it now. 3832 if (this->has_pending_exception()) { 3833 this->clear_pending_exception(); 3834 } 3835 3836 EXCEPTION_MARK; 3837 Klass* k = 3838 SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(), 3839 THREAD); 3840 if (k != NULL) { 3841 // SystemDictionary::resolve_or_null will return null if there was 3842 // an exception. If we cannot load the Shutdown class, just don't 3843 // call Shutdown.shutdown() at all. This will mean the shutdown hooks 3844 // and finalizers (if runFinalizersOnExit is set) won't be run. 3845 // Note that if a shutdown hook was registered or runFinalizersOnExit 3846 // was called, the Shutdown class would have already been loaded 3847 // (Runtime.addShutdownHook and runFinalizersOnExit will load it). 3848 instanceKlassHandle shutdown_klass (THREAD, k); 3849 JavaValue result(T_VOID); 3850 JavaCalls::call_static(&result, 3851 shutdown_klass, 3852 vmSymbols::shutdown_method_name(), 3853 vmSymbols::void_method_signature(), 3854 THREAD); 3855 } 3856 CLEAR_PENDING_EXCEPTION; 3857 } 3858 3859 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when 3860 // the program falls off the end of main(). Another VM exit path is through 3861 // vm_exit() when the program calls System.exit() to return a value or when 3862 // there is a serious error in VM. The two shutdown paths are not exactly 3863 // the same, but they share Shutdown.shutdown() at Java level and before_exit() 3864 // and VM_Exit op at VM level. 3865 // 3866 // Shutdown sequence: 3867 // + Shutdown native memory tracking if it is on 3868 // + Wait until we are the last non-daemon thread to execute 3869 // <-- every thing is still working at this moment --> 3870 // + Call java.lang.Shutdown.shutdown(), which will invoke Java level 3871 // shutdown hooks, run finalizers if finalization-on-exit 3872 // + Call before_exit(), prepare for VM exit 3873 // > run VM level shutdown hooks (they are registered through JVM_OnExit(), 3874 // currently the only user of this mechanism is File.deleteOnExit()) 3875 // > stop flat profiler, StatSampler, watcher thread, CMS threads, 3876 // post thread end and vm death events to JVMTI, 3877 // stop signal thread 3878 // + Call JavaThread::exit(), it will: 3879 // > release JNI handle blocks, remove stack guard pages 3880 // > remove this thread from Threads list 3881 // <-- no more Java code from this thread after this point --> 3882 // + Stop VM thread, it will bring the remaining VM to a safepoint and stop 3883 // the compiler threads at safepoint 3884 // <-- do not use anything that could get blocked by Safepoint --> 3885 // + Disable tracing at JNI/JVM barriers 3886 // + Set _vm_exited flag for threads that are still running native code 3887 // + Delete this thread 3888 // + Call exit_globals() 3889 // > deletes tty 3890 // > deletes PerfMemory resources 3891 // + Return to caller 3892 3893 bool Threads::destroy_vm() { 3894 JavaThread* thread = JavaThread::current(); 3895 3896 #ifdef ASSERT 3897 _vm_complete = false; 3898 #endif 3899 // Wait until we are the last non-daemon thread to execute 3900 { MutexLocker nu(Threads_lock); 3901 while (Threads::number_of_non_daemon_threads() > 1 ) 3902 // This wait should make safepoint checks, wait without a timeout, 3903 // and wait as a suspend-equivalent condition. 3904 // 3905 // Note: If the FlatProfiler is running and this thread is waiting 3906 // for another non-daemon thread to finish, then the FlatProfiler 3907 // is waiting for the external suspend request on this thread to 3908 // complete. wait_for_ext_suspend_completion() will eventually 3909 // timeout, but that takes time. Making this wait a suspend- 3910 // equivalent condition solves that timeout problem. 3911 // 3912 Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0, 3913 Mutex::_as_suspend_equivalent_flag); 3914 } 3915 3916 // Hang forever on exit if we are reporting an error. 3917 if (ShowMessageBoxOnError && is_error_reported()) { 3918 os::infinite_sleep(); 3919 } 3920 os::wait_for_keypress_at_exit(); 3921 3922 // run Java level shutdown hooks 3923 thread->invoke_shutdown_hooks(); 3924 3925 before_exit(thread); 3926 3927 thread->exit(true); 3928 3929 // Stop VM thread. 3930 { 3931 // 4945125 The vm thread comes to a safepoint during exit. 3932 // GC vm_operations can get caught at the safepoint, and the 3933 // heap is unparseable if they are caught. Grab the Heap_lock 3934 // to prevent this. The GC vm_operations will not be able to 3935 // queue until after the vm thread is dead. 3936 // After this point, we'll never emerge out of the safepoint before 3937 // the VM exits, so concurrent GC threads do not need to be explicitly 3938 // stopped; they remain inactive until the process exits. 3939 // Note: some concurrent G1 threads may be running during a safepoint, 3940 // but these will not be accessing the heap, just some G1-specific side 3941 // data structures that are not accessed by any other threads but them 3942 // after this point in a terminal safepoint. 3943 3944 MutexLocker ml(Heap_lock); 3945 3946 VMThread::wait_for_vm_thread_exit(); 3947 assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint"); 3948 VMThread::destroy(); 3949 } 3950 3951 // clean up ideal graph printers 3952 #if defined(COMPILER2) && !defined(PRODUCT) 3953 IdealGraphPrinter::clean_up(); 3954 #endif 3955 3956 // Now, all Java threads are gone except daemon threads. Daemon threads 3957 // running Java code or in VM are stopped by the Safepoint. However, 3958 // daemon threads executing native code are still running. But they 3959 // will be stopped at native=>Java/VM barriers. Note that we can't 3960 // simply kill or suspend them, as it is inherently deadlock-prone. 3961 3962 #ifndef PRODUCT 3963 // disable function tracing at JNI/JVM barriers 3964 TraceJNICalls = false; 3965 TraceJVMCalls = false; 3966 TraceRuntimeCalls = false; 3967 #endif 3968 3969 VM_Exit::set_vm_exited(); 3970 3971 notify_vm_shutdown(); 3972 3973 delete thread; 3974 3975 // exit_globals() will delete tty 3976 exit_globals(); 3977 3978 return true; 3979 } 3980 3981 3982 jboolean Threads::is_supported_jni_version_including_1_1(jint version) { 3983 if (version == JNI_VERSION_1_1) return JNI_TRUE; 3984 return is_supported_jni_version(version); 3985 } 3986 3987 3988 jboolean Threads::is_supported_jni_version(jint version) { 3989 if (version == JNI_VERSION_1_2) return JNI_TRUE; 3990 if (version == JNI_VERSION_1_4) return JNI_TRUE; 3991 if (version == JNI_VERSION_1_6) return JNI_TRUE; 3992 if (version == JNI_VERSION_1_8) return JNI_TRUE; 3993 return JNI_FALSE; 3994 } 3995 3996 3997 void Threads::add(JavaThread* p, bool force_daemon) { 3998 // The threads lock must be owned at this point 3999 assert_locked_or_safepoint(Threads_lock); 4000 4001 // See the comment for this method in thread.hpp for its purpose and 4002 // why it is called here. 4003 p->initialize_queues(); 4004 p->set_next(_thread_list); 4005 _thread_list = p; 4006 _number_of_threads++; 4007 oop threadObj = p->threadObj(); 4008 bool daemon = true; 4009 // Bootstrapping problem: threadObj can be null for initial 4010 // JavaThread (or for threads attached via JNI) 4011 if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) { 4012 _number_of_non_daemon_threads++; 4013 daemon = false; 4014 } 4015 4016 p->set_safepoint_visible(true); 4017 4018 ThreadService::add_thread(p, daemon); 4019 4020 // Possible GC point. 4021 Events::log(p, "Thread added: " INTPTR_FORMAT, p); 4022 } 4023 4024 void Threads::remove(JavaThread* p) { 4025 // Extra scope needed for Thread_lock, so we can check 4026 // that we do not remove thread without safepoint code notice 4027 { MutexLocker ml(Threads_lock); 4028 4029 assert(includes(p), "p must be present"); 4030 4031 JavaThread* current = _thread_list; 4032 JavaThread* prev = NULL; 4033 4034 while (current != p) { 4035 prev = current; 4036 current = current->next(); 4037 } 4038 4039 if (prev) { 4040 prev->set_next(current->next()); 4041 } else { 4042 _thread_list = p->next(); 4043 } 4044 _number_of_threads--; 4045 oop threadObj = p->threadObj(); 4046 bool daemon = true; 4047 if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) { 4048 _number_of_non_daemon_threads--; 4049 daemon = false; 4050 4051 // Only one thread left, do a notify on the Threads_lock so a thread waiting 4052 // on destroy_vm will wake up. 4053 if (number_of_non_daemon_threads() == 1) 4054 Threads_lock->notify_all(); 4055 } 4056 ThreadService::remove_thread(p, daemon); 4057 4058 // Make sure that safepoint code disregard this thread. This is needed since 4059 // the thread might mess around with locks after this point. This can cause it 4060 // to do callbacks into the safepoint code. However, the safepoint code is not aware 4061 // of this thread since it is removed from the queue. 4062 p->set_terminated_value(); 4063 4064 // Now, this thread is not visible to safepoint 4065 p->set_safepoint_visible(false); 4066 // once the thread becomes safepoint invisible, we can not use its per-thread 4067 // recorder. And Threads::do_threads() no longer walks this thread, so we have 4068 // to release its per-thread recorder here. 4069 MemTracker::thread_exiting(p); 4070 } // unlock Threads_lock 4071 4072 // Since Events::log uses a lock, we grab it outside the Threads_lock 4073 Events::log(p, "Thread exited: " INTPTR_FORMAT, p); 4074 } 4075 4076 // Threads_lock must be held when this is called (or must be called during a safepoint) 4077 bool Threads::includes(JavaThread* p) { 4078 assert(Threads_lock->is_locked(), "sanity check"); 4079 ALL_JAVA_THREADS(q) { 4080 if (q == p ) { 4081 return true; 4082 } 4083 } 4084 return false; 4085 } 4086 4087 // Operations on the Threads list for GC. These are not explicitly locked, 4088 // but the garbage collector must provide a safe context for them to run. 4089 // In particular, these things should never be called when the Threads_lock 4090 // is held by some other thread. (Note: the Safepoint abstraction also 4091 // uses the Threads_lock to guarantee this property. It also makes sure that 4092 // all threads gets blocked when exiting or starting). 4093 4094 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) { 4095 ALL_JAVA_THREADS(p) { 4096 p->oops_do(f, cld_f, cf); 4097 } 4098 VMThread::vm_thread()->oops_do(f, cld_f, cf); 4099 } 4100 4101 void Threads::possibly_parallel_oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) { 4102 // Introduce a mechanism allowing parallel threads to claim threads as 4103 // root groups. Overhead should be small enough to use all the time, 4104 // even in sequential code. 4105 SharedHeap* sh = SharedHeap::heap(); 4106 // Cannot yet substitute active_workers for n_par_threads 4107 // because of G1CollectedHeap::verify() use of 4108 // SharedHeap::process_strong_roots(). n_par_threads == 0 will 4109 // turn off parallelism in process_strong_roots while active_workers 4110 // is being used for parallelism elsewhere. 4111 bool is_par = sh->n_par_threads() > 0; 4112 assert(!is_par || 4113 (SharedHeap::heap()->n_par_threads() == 4114 SharedHeap::heap()->workers()->active_workers()), "Mismatch"); 4115 int cp = SharedHeap::heap()->strong_roots_parity(); 4116 ALL_JAVA_THREADS(p) { 4117 if (p->claim_oops_do(is_par, cp)) { 4118 p->oops_do(f, cld_f, cf); 4119 } 4120 } 4121 VMThread* vmt = VMThread::vm_thread(); 4122 if (vmt->claim_oops_do(is_par, cp)) { 4123 vmt->oops_do(f, cld_f, cf); 4124 } 4125 } 4126 4127 #if INCLUDE_ALL_GCS 4128 // Used by ParallelScavenge 4129 void Threads::create_thread_roots_tasks(GCTaskQueue* q) { 4130 ALL_JAVA_THREADS(p) { 4131 q->enqueue(new ThreadRootsTask(p)); 4132 } 4133 q->enqueue(new ThreadRootsTask(VMThread::vm_thread())); 4134 } 4135 4136 // Used by Parallel Old 4137 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) { 4138 ALL_JAVA_THREADS(p) { 4139 q->enqueue(new ThreadRootsMarkingTask(p)); 4140 } 4141 q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread())); 4142 } 4143 #endif // INCLUDE_ALL_GCS 4144 4145 void Threads::nmethods_do(CodeBlobClosure* cf) { 4146 ALL_JAVA_THREADS(p) { 4147 p->nmethods_do(cf); 4148 } 4149 VMThread::vm_thread()->nmethods_do(cf); 4150 } 4151 4152 void Threads::metadata_do(void f(Metadata*)) { 4153 ALL_JAVA_THREADS(p) { 4154 p->metadata_do(f); 4155 } 4156 } 4157 4158 void Threads::gc_epilogue() { 4159 ALL_JAVA_THREADS(p) { 4160 p->gc_epilogue(); 4161 } 4162 } 4163 4164 void Threads::gc_prologue() { 4165 ALL_JAVA_THREADS(p) { 4166 p->gc_prologue(); 4167 } 4168 } 4169 4170 void Threads::deoptimized_wrt_marked_nmethods() { 4171 ALL_JAVA_THREADS(p) { 4172 p->deoptimized_wrt_marked_nmethods(); 4173 } 4174 } 4175 4176 4177 // Get count Java threads that are waiting to enter the specified monitor. 4178 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count, 4179 address monitor, bool doLock) { 4180 assert(doLock || SafepointSynchronize::is_at_safepoint(), 4181 "must grab Threads_lock or be at safepoint"); 4182 GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count); 4183 4184 int i = 0; 4185 { 4186 MutexLockerEx ml(doLock ? Threads_lock : NULL); 4187 ALL_JAVA_THREADS(p) { 4188 if (p->is_Compiler_thread()) continue; 4189 4190 address pending = (address)p->current_pending_monitor(); 4191 if (pending == monitor) { // found a match 4192 if (i < count) result->append(p); // save the first count matches 4193 i++; 4194 } 4195 } 4196 } 4197 return result; 4198 } 4199 4200 4201 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) { 4202 assert(doLock || 4203 Threads_lock->owned_by_self() || 4204 SafepointSynchronize::is_at_safepoint(), 4205 "must grab Threads_lock or be at safepoint"); 4206 4207 // NULL owner means not locked so we can skip the search 4208 if (owner == NULL) return NULL; 4209 4210 { 4211 MutexLockerEx ml(doLock ? Threads_lock : NULL); 4212 ALL_JAVA_THREADS(p) { 4213 // first, see if owner is the address of a Java thread 4214 if (owner == (address)p) return p; 4215 } 4216 } 4217 // Cannot assert on lack of success here since this function may be 4218 // used by code that is trying to report useful problem information 4219 // like deadlock detection. 4220 if (UseHeavyMonitors) return NULL; 4221 4222 // 4223 // If we didn't find a matching Java thread and we didn't force use of 4224 // heavyweight monitors, then the owner is the stack address of the 4225 // Lock Word in the owning Java thread's stack. 4226 // 4227 JavaThread* the_owner = NULL; 4228 { 4229 MutexLockerEx ml(doLock ? Threads_lock : NULL); 4230 ALL_JAVA_THREADS(q) { 4231 if (q->is_lock_owned(owner)) { 4232 the_owner = q; 4233 break; 4234 } 4235 } 4236 } 4237 // cannot assert on lack of success here; see above comment 4238 return the_owner; 4239 } 4240 4241 // Threads::print_on() is called at safepoint by VM_PrintThreads operation. 4242 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) { 4243 char buf[32]; 4244 st->print_cr("%s", os::local_time_string(buf, sizeof(buf))); 4245 4246 st->print_cr("Full thread dump %s (%s %s):", 4247 Abstract_VM_Version::vm_name(), 4248 Abstract_VM_Version::vm_release(), 4249 Abstract_VM_Version::vm_info_string() 4250 ); 4251 st->cr(); 4252 4253 #if INCLUDE_ALL_GCS 4254 // Dump concurrent locks 4255 ConcurrentLocksDump concurrent_locks; 4256 if (print_concurrent_locks) { 4257 concurrent_locks.dump_at_safepoint(); 4258 } 4259 #endif // INCLUDE_ALL_GCS 4260 4261 ALL_JAVA_THREADS(p) { 4262 ResourceMark rm; 4263 p->print_on(st); 4264 if (print_stacks) { 4265 if (internal_format) { 4266 p->trace_stack(); 4267 } else { 4268 p->print_stack_on(st); 4269 } 4270 } 4271 st->cr(); 4272 #if INCLUDE_ALL_GCS 4273 if (print_concurrent_locks) { 4274 concurrent_locks.print_locks_on(p, st); 4275 } 4276 #endif // INCLUDE_ALL_GCS 4277 } 4278 4279 VMThread::vm_thread()->print_on(st); 4280 st->cr(); 4281 Universe::heap()->print_gc_threads_on(st); 4282 WatcherThread* wt = WatcherThread::watcher_thread(); 4283 if (wt != NULL) { 4284 wt->print_on(st); 4285 st->cr(); 4286 } 4287 CompileBroker::print_compiler_threads_on(st); 4288 st->flush(); 4289 } 4290 4291 // Threads::print_on_error() is called by fatal error handler. It's possible 4292 // that VM is not at safepoint and/or current thread is inside signal handler. 4293 // Don't print stack trace, as the stack may not be walkable. Don't allocate 4294 // memory (even in resource area), it might deadlock the error handler. 4295 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) { 4296 bool found_current = false; 4297 st->print_cr("Java Threads: ( => current thread )"); 4298 ALL_JAVA_THREADS(thread) { 4299 bool is_current = (current == thread); 4300 found_current = found_current || is_current; 4301 4302 st->print("%s", is_current ? "=>" : " "); 4303 4304 st->print(PTR_FORMAT, thread); 4305 st->print(" "); 4306 thread->print_on_error(st, buf, buflen); 4307 st->cr(); 4308 } 4309 st->cr(); 4310 4311 st->print_cr("Other Threads:"); 4312 if (VMThread::vm_thread()) { 4313 bool is_current = (current == VMThread::vm_thread()); 4314 found_current = found_current || is_current; 4315 st->print("%s", current == VMThread::vm_thread() ? "=>" : " "); 4316 4317 st->print(PTR_FORMAT, VMThread::vm_thread()); 4318 st->print(" "); 4319 VMThread::vm_thread()->print_on_error(st, buf, buflen); 4320 st->cr(); 4321 } 4322 WatcherThread* wt = WatcherThread::watcher_thread(); 4323 if (wt != NULL) { 4324 bool is_current = (current == wt); 4325 found_current = found_current || is_current; 4326 st->print("%s", is_current ? "=>" : " "); 4327 4328 st->print(PTR_FORMAT, wt); 4329 st->print(" "); 4330 wt->print_on_error(st, buf, buflen); 4331 st->cr(); 4332 } 4333 if (!found_current) { 4334 st->cr(); 4335 st->print("=>" PTR_FORMAT " (exited) ", current); 4336 current->print_on_error(st, buf, buflen); 4337 st->cr(); 4338 } 4339 } 4340 4341 // Internal SpinLock and Mutex 4342 // Based on ParkEvent 4343 4344 // Ad-hoc mutual exclusion primitives: SpinLock and Mux 4345 // 4346 // We employ SpinLocks _only for low-contention, fixed-length 4347 // short-duration critical sections where we're concerned 4348 // about native mutex_t or HotSpot Mutex:: latency. 4349 // The mux construct provides a spin-then-block mutual exclusion 4350 // mechanism. 4351 // 4352 // Testing has shown that contention on the ListLock guarding gFreeList 4353 // is common. If we implement ListLock as a simple SpinLock it's common 4354 // for the JVM to devolve to yielding with little progress. This is true 4355 // despite the fact that the critical sections protected by ListLock are 4356 // extremely short. 4357 // 4358 // TODO-FIXME: ListLock should be of type SpinLock. 4359 // We should make this a 1st-class type, integrated into the lock 4360 // hierarchy as leaf-locks. Critically, the SpinLock structure 4361 // should have sufficient padding to avoid false-sharing and excessive 4362 // cache-coherency traffic. 4363 4364 4365 typedef volatile int SpinLockT ; 4366 4367 void Thread::SpinAcquire (volatile int * adr, const char * LockName) { 4368 if (Atomic::cmpxchg (1, adr, 0) == 0) { 4369 return ; // normal fast-path return 4370 } 4371 4372 // Slow-path : We've encountered contention -- Spin/Yield/Block strategy. 4373 TEVENT (SpinAcquire - ctx) ; 4374 int ctr = 0 ; 4375 int Yields = 0 ; 4376 for (;;) { 4377 while (*adr != 0) { 4378 ++ctr ; 4379 if ((ctr & 0xFFF) == 0 || !os::is_MP()) { 4380 if (Yields > 5) { 4381 os::naked_short_sleep(1); 4382 } else { 4383 os::NakedYield() ; 4384 ++Yields ; 4385 } 4386 } else { 4387 SpinPause() ; 4388 } 4389 } 4390 if (Atomic::cmpxchg (1, adr, 0) == 0) return ; 4391 } 4392 } 4393 4394 void Thread::SpinRelease (volatile int * adr) { 4395 assert (*adr != 0, "invariant") ; 4396 OrderAccess::fence() ; // guarantee at least release consistency. 4397 // Roach-motel semantics. 4398 // It's safe if subsequent LDs and STs float "up" into the critical section, 4399 // but prior LDs and STs within the critical section can't be allowed 4400 // to reorder or float past the ST that releases the lock. 4401 *adr = 0 ; 4402 } 4403 4404 // muxAcquire and muxRelease: 4405 // 4406 // * muxAcquire and muxRelease support a single-word lock-word construct. 4407 // The LSB of the word is set IFF the lock is held. 4408 // The remainder of the word points to the head of a singly-linked list 4409 // of threads blocked on the lock. 4410 // 4411 // * The current implementation of muxAcquire-muxRelease uses its own 4412 // dedicated Thread._MuxEvent instance. If we're interested in 4413 // minimizing the peak number of extant ParkEvent instances then 4414 // we could eliminate _MuxEvent and "borrow" _ParkEvent as long 4415 // as certain invariants were satisfied. Specifically, care would need 4416 // to be taken with regards to consuming unpark() "permits". 4417 // A safe rule of thumb is that a thread would never call muxAcquire() 4418 // if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently 4419 // park(). Otherwise the _ParkEvent park() operation in muxAcquire() could 4420 // consume an unpark() permit intended for monitorenter, for instance. 4421 // One way around this would be to widen the restricted-range semaphore 4422 // implemented in park(). Another alternative would be to provide 4423 // multiple instances of the PlatformEvent() for each thread. One 4424 // instance would be dedicated to muxAcquire-muxRelease, for instance. 4425 // 4426 // * Usage: 4427 // -- Only as leaf locks 4428 // -- for short-term locking only as muxAcquire does not perform 4429 // thread state transitions. 4430 // 4431 // Alternatives: 4432 // * We could implement muxAcquire and muxRelease with MCS or CLH locks 4433 // but with parking or spin-then-park instead of pure spinning. 4434 // * Use Taura-Oyama-Yonenzawa locks. 4435 // * It's possible to construct a 1-0 lock if we encode the lockword as 4436 // (List,LockByte). Acquire will CAS the full lockword while Release 4437 // will STB 0 into the LockByte. The 1-0 scheme admits stranding, so 4438 // acquiring threads use timers (ParkTimed) to detect and recover from 4439 // the stranding window. Thread/Node structures must be aligned on 256-byte 4440 // boundaries by using placement-new. 4441 // * Augment MCS with advisory back-link fields maintained with CAS(). 4442 // Pictorially: LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner. 4443 // The validity of the backlinks must be ratified before we trust the value. 4444 // If the backlinks are invalid the exiting thread must back-track through the 4445 // the forward links, which are always trustworthy. 4446 // * Add a successor indication. The LockWord is currently encoded as 4447 // (List, LOCKBIT:1). We could also add a SUCCBIT or an explicit _succ variable 4448 // to provide the usual futile-wakeup optimization. 4449 // See RTStt for details. 4450 // * Consider schedctl.sc_nopreempt to cover the critical section. 4451 // 4452 4453 4454 typedef volatile intptr_t MutexT ; // Mux Lock-word 4455 enum MuxBits { LOCKBIT = 1 } ; 4456 4457 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) { 4458 intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ; 4459 if (w == 0) return ; 4460 if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) { 4461 return ; 4462 } 4463 4464 TEVENT (muxAcquire - Contention) ; 4465 ParkEvent * const Self = Thread::current()->_MuxEvent ; 4466 assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ; 4467 for (;;) { 4468 int its = (os::is_MP() ? 100 : 0) + 1 ; 4469 4470 // Optional spin phase: spin-then-park strategy 4471 while (--its >= 0) { 4472 w = *Lock ; 4473 if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) { 4474 return ; 4475 } 4476 } 4477 4478 Self->reset() ; 4479 Self->OnList = intptr_t(Lock) ; 4480 // The following fence() isn't _strictly necessary as the subsequent 4481 // CAS() both serializes execution and ratifies the fetched *Lock value. 4482 OrderAccess::fence(); 4483 for (;;) { 4484 w = *Lock ; 4485 if ((w & LOCKBIT) == 0) { 4486 if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) { 4487 Self->OnList = 0 ; // hygiene - allows stronger asserts 4488 return ; 4489 } 4490 continue ; // Interference -- *Lock changed -- Just retry 4491 } 4492 assert (w & LOCKBIT, "invariant") ; 4493 Self->ListNext = (ParkEvent *) (w & ~LOCKBIT ); 4494 if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ; 4495 } 4496 4497 while (Self->OnList != 0) { 4498 Self->park() ; 4499 } 4500 } 4501 } 4502 4503 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) { 4504 intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ; 4505 if (w == 0) return ; 4506 if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) { 4507 return ; 4508 } 4509 4510 TEVENT (muxAcquire - Contention) ; 4511 ParkEvent * ReleaseAfter = NULL ; 4512 if (ev == NULL) { 4513 ev = ReleaseAfter = ParkEvent::Allocate (NULL) ; 4514 } 4515 assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ; 4516 for (;;) { 4517 guarantee (ev->OnList == 0, "invariant") ; 4518 int its = (os::is_MP() ? 100 : 0) + 1 ; 4519 4520 // Optional spin phase: spin-then-park strategy 4521 while (--its >= 0) { 4522 w = *Lock ; 4523 if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) { 4524 if (ReleaseAfter != NULL) { 4525 ParkEvent::Release (ReleaseAfter) ; 4526 } 4527 return ; 4528 } 4529 } 4530 4531 ev->reset() ; 4532 ev->OnList = intptr_t(Lock) ; 4533 // The following fence() isn't _strictly necessary as the subsequent 4534 // CAS() both serializes execution and ratifies the fetched *Lock value. 4535 OrderAccess::fence(); 4536 for (;;) { 4537 w = *Lock ; 4538 if ((w & LOCKBIT) == 0) { 4539 if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) { 4540 ev->OnList = 0 ; 4541 // We call ::Release while holding the outer lock, thus 4542 // artificially lengthening the critical section. 4543 // Consider deferring the ::Release() until the subsequent unlock(), 4544 // after we've dropped the outer lock. 4545 if (ReleaseAfter != NULL) { 4546 ParkEvent::Release (ReleaseAfter) ; 4547 } 4548 return ; 4549 } 4550 continue ; // Interference -- *Lock changed -- Just retry 4551 } 4552 assert (w & LOCKBIT, "invariant") ; 4553 ev->ListNext = (ParkEvent *) (w & ~LOCKBIT ); 4554 if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ; 4555 } 4556 4557 while (ev->OnList != 0) { 4558 ev->park() ; 4559 } 4560 } 4561 } 4562 4563 // Release() must extract a successor from the list and then wake that thread. 4564 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme 4565 // similar to that used by ParkEvent::Allocate() and ::Release(). DMR-based 4566 // Release() would : 4567 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list. 4568 // (B) Extract a successor from the private list "in-hand" 4569 // (C) attempt to CAS() the residual back into *Lock over null. 4570 // If there were any newly arrived threads and the CAS() would fail. 4571 // In that case Release() would detach the RATs, re-merge the list in-hand 4572 // with the RATs and repeat as needed. Alternately, Release() might 4573 // detach and extract a successor, but then pass the residual list to the wakee. 4574 // The wakee would be responsible for reattaching and remerging before it 4575 // competed for the lock. 4576 // 4577 // Both "pop" and DMR are immune from ABA corruption -- there can be 4578 // multiple concurrent pushers, but only one popper or detacher. 4579 // This implementation pops from the head of the list. This is unfair, 4580 // but tends to provide excellent throughput as hot threads remain hot. 4581 // (We wake recently run threads first). 4582 4583 void Thread::muxRelease (volatile intptr_t * Lock) { 4584 for (;;) { 4585 const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ; 4586 assert (w & LOCKBIT, "invariant") ; 4587 if (w == LOCKBIT) return ; 4588 ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ; 4589 assert (List != NULL, "invariant") ; 4590 assert (List->OnList == intptr_t(Lock), "invariant") ; 4591 ParkEvent * nxt = List->ListNext ; 4592 4593 // The following CAS() releases the lock and pops the head element. 4594 if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) { 4595 continue ; 4596 } 4597 List->OnList = 0 ; 4598 OrderAccess::fence() ; 4599 List->unpark () ; 4600 return ; 4601 } 4602 } 4603 4604 4605 void Threads::verify() { 4606 ALL_JAVA_THREADS(p) { 4607 p->verify(); 4608 } 4609 VMThread* thread = VMThread::vm_thread(); 4610 if (thread != NULL) thread->verify(); 4611 }