1 /*
   2  * Copyright (c) 2003, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.hpp"
  28 #include "interpreter/bytecodeHistogram.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "interpreter/interpreterRuntime.hpp"
  31 #include "interpreter/interp_masm.hpp"
  32 #include "interpreter/templateInterpreterGenerator.hpp"
  33 #include "interpreter/templateTable.hpp"
  34 #include "interpreter/bytecodeTracer.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/arrayOop.hpp"
  37 #include "oops/methodData.hpp"
  38 #include "oops/method.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "prims/jvmtiExport.hpp"
  41 #include "prims/jvmtiThreadState.hpp"
  42 #include "runtime/arguments.hpp"
  43 #include "runtime/deoptimization.hpp"
  44 #include "runtime/frame.inline.hpp"
  45 #include "runtime/sharedRuntime.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "runtime/synchronizer.hpp"
  48 #include "runtime/timer.hpp"
  49 #include "runtime/vframeArray.hpp"
  50 #include "utilities/debug.hpp"
  51 #include <sys/types.h>
  52 
  53 #ifndef PRODUCT
  54 #include "oops/method.hpp"
  55 #endif // !PRODUCT
  56 
  57 #ifdef BUILTIN_SIM
  58 #include "../../../../../../simulator/simulator.hpp"
  59 #endif
  60 
  61 // Size of interpreter code.  Increase if too small.  Interpreter will
  62 // fail with a guarantee ("not enough space for interpreter generation");
  63 // if too small.
  64 // Run with +PrintInterpreter to get the VM to print out the size.
  65 // Max size with JVMTI
  66 int TemplateInterpreter::InterpreterCodeSize = 200 * 1024;
  67 
  68 #define __ _masm->
  69 
  70 //-----------------------------------------------------------------------------
  71 
  72 extern "C" void entry(CodeBuffer*);
  73 
  74 //-----------------------------------------------------------------------------
  75 
  76 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
  77   address entry = __ pc();
  78 
  79   __ andr(esp, esp, -16);
  80   __ mov(c_rarg3, esp);
  81   // rmethod
  82   // rlocals
  83   // c_rarg3: first stack arg - wordSize
  84 
  85   // adjust sp
  86   __ sub(sp, c_rarg3, 18 * wordSize);
  87   __ str(lr, Address(__ pre(sp, -2 * wordSize)));
  88   __ call_VM(noreg,
  89              CAST_FROM_FN_PTR(address,
  90                               InterpreterRuntime::slow_signature_handler),
  91              rmethod, rlocals, c_rarg3);
  92 
  93   // r0: result handler
  94 
  95   // Stack layout:
  96   // rsp: return address           <- sp
  97   //      1 garbage
  98   //      8 integer args (if static first is unused)
  99   //      1 float/double identifiers
 100   //      8 double args
 101   //        stack args              <- esp
 102   //        garbage
 103   //        expression stack bottom
 104   //        bcp (NULL)
 105   //        ...
 106 
 107   // Restore LR
 108   __ ldr(lr, Address(__ post(sp, 2 * wordSize)));
 109 
 110   // Do FP first so we can use c_rarg3 as temp
 111   __ ldrw(c_rarg3, Address(sp, 9 * wordSize)); // float/double identifiers
 112 
 113   for (int i = 0; i < Argument::n_float_register_parameters_c; i++) {
 114     const FloatRegister r = as_FloatRegister(i);
 115 
 116     Label d, done;
 117 
 118     __ tbnz(c_rarg3, i, d);
 119     __ ldrs(r, Address(sp, (10 + i) * wordSize));
 120     __ b(done);
 121     __ bind(d);
 122     __ ldrd(r, Address(sp, (10 + i) * wordSize));
 123     __ bind(done);
 124   }
 125 
 126   // c_rarg0 contains the result from the call of
 127   // InterpreterRuntime::slow_signature_handler so we don't touch it
 128   // here.  It will be loaded with the JNIEnv* later.
 129   __ ldr(c_rarg1, Address(sp, 1 * wordSize));
 130   for (int i = c_rarg2->encoding(); i <= c_rarg7->encoding(); i += 2) {
 131     Register rm = as_Register(i), rn = as_Register(i+1);
 132     __ ldp(rm, rn, Address(sp, i * wordSize));
 133   }
 134 
 135   __ add(sp, sp, 18 * wordSize);
 136   __ ret(lr);
 137 
 138   return entry;
 139 }
 140 
 141 
 142 //
 143 // Various method entries
 144 //
 145 
 146 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
 147   // rmethod: Method*
 148   // r13: sender sp
 149   // esp: args
 150 
 151   if (!InlineIntrinsics) return NULL; // Generate a vanilla entry
 152 
 153   // These don't need a safepoint check because they aren't virtually
 154   // callable. We won't enter these intrinsics from compiled code.
 155   // If in the future we added an intrinsic which was virtually callable
 156   // we'd have to worry about how to safepoint so that this code is used.
 157 
 158   // mathematical functions inlined by compiler
 159   // (interpreter must provide identical implementation
 160   // in order to avoid monotonicity bugs when switching
 161   // from interpreter to compiler in the middle of some
 162   // computation)
 163   //
 164   // stack:
 165   //        [ arg ] <-- esp
 166   //        [ arg ]
 167   // retaddr in lr
 168 
 169   address entry_point = NULL;
 170   Register continuation = lr;
 171   switch (kind) {
 172   case Interpreter::java_lang_math_abs:
 173     entry_point = __ pc();
 174     __ ldrd(v0, Address(esp));
 175     __ fabsd(v0, v0);
 176     __ mov(sp, r13); // Restore caller's SP
 177     break;
 178   case Interpreter::java_lang_math_sqrt:
 179     entry_point = __ pc();
 180     __ ldrd(v0, Address(esp));
 181     __ fsqrtd(v0, v0);
 182     __ mov(sp, r13);
 183     break;
 184   case Interpreter::java_lang_math_sin :
 185   case Interpreter::java_lang_math_cos :
 186   case Interpreter::java_lang_math_tan :
 187   case Interpreter::java_lang_math_log :
 188   case Interpreter::java_lang_math_log10 :
 189   case Interpreter::java_lang_math_exp :
 190     entry_point = __ pc();
 191     __ ldrd(v0, Address(esp));
 192     __ mov(sp, r13);
 193     __ mov(r19, lr);
 194     continuation = r19;  // The first callee-saved register
 195     generate_transcendental_entry(kind, 1);
 196     break;
 197   case Interpreter::java_lang_math_pow :
 198     entry_point = __ pc();
 199     __ mov(r19, lr);
 200     continuation = r19;
 201     __ ldrd(v0, Address(esp, 2 * Interpreter::stackElementSize));
 202     __ ldrd(v1, Address(esp));
 203     __ mov(sp, r13);
 204     generate_transcendental_entry(kind, 2);
 205     break;
 206   default:
 207     ;
 208   }
 209   if (entry_point) {
 210     __ br(continuation);
 211   }
 212 
 213   return entry_point;
 214 }
 215 
 216   // double trigonometrics and transcendentals
 217   // static jdouble dsin(jdouble x);
 218   // static jdouble dcos(jdouble x);
 219   // static jdouble dtan(jdouble x);
 220   // static jdouble dlog(jdouble x);
 221   // static jdouble dlog10(jdouble x);
 222   // static jdouble dexp(jdouble x);
 223   // static jdouble dpow(jdouble x, jdouble y);
 224 
 225 void TemplateInterpreterGenerator::generate_transcendental_entry(AbstractInterpreter::MethodKind kind, int fpargs) {
 226   address fn;
 227   switch (kind) {
 228   case Interpreter::java_lang_math_sin :
 229     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
 230     break;
 231   case Interpreter::java_lang_math_cos :
 232     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
 233     break;
 234   case Interpreter::java_lang_math_tan :
 235     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
 236     break;
 237   case Interpreter::java_lang_math_log :
 238     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
 239     break;
 240   case Interpreter::java_lang_math_log10 :
 241     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
 242     break;
 243   case Interpreter::java_lang_math_exp :
 244     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
 245     break;
 246   case Interpreter::java_lang_math_pow :
 247     fpargs = 2;
 248     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
 249     break;
 250   default:
 251     ShouldNotReachHere();
 252     fn = NULL;  // unreachable
 253   }
 254   const int gpargs = 0, rtype = 3;
 255   __ mov(rscratch1, fn);
 256   __ blrt(rscratch1, gpargs, fpargs, rtype);
 257 }
 258 
 259 // Abstract method entry
 260 // Attempt to execute abstract method. Throw exception
 261 address TemplateInterpreterGenerator::generate_abstract_entry(void) {
 262   // rmethod: Method*
 263   // r13: sender SP
 264 
 265   address entry_point = __ pc();
 266 
 267   // abstract method entry
 268 
 269   //  pop return address, reset last_sp to NULL
 270   __ empty_expression_stack();
 271   __ restore_bcp();      // bcp must be correct for exception handler   (was destroyed)
 272   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
 273 
 274   // throw exception
 275   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
 276                              InterpreterRuntime::throw_AbstractMethodError));
 277   // the call_VM checks for exception, so we should never return here.
 278   __ should_not_reach_here();
 279 
 280   return entry_point;
 281 }
 282 
 283 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
 284   address entry = __ pc();
 285 
 286 #ifdef ASSERT
 287   {
 288     Label L;
 289     __ ldr(rscratch1, Address(rfp,
 290                        frame::interpreter_frame_monitor_block_top_offset *
 291                        wordSize));
 292     __ mov(rscratch2, sp);
 293     __ cmp(rscratch1, rscratch2); // maximal rsp for current rfp (stack
 294                            // grows negative)
 295     __ br(Assembler::HS, L); // check if frame is complete
 296     __ stop ("interpreter frame not set up");
 297     __ bind(L);
 298   }
 299 #endif // ASSERT
 300   // Restore bcp under the assumption that the current frame is still
 301   // interpreted
 302   __ restore_bcp();
 303 
 304   // expression stack must be empty before entering the VM if an
 305   // exception happened
 306   __ empty_expression_stack();
 307   // throw exception
 308   __ call_VM(noreg,
 309              CAST_FROM_FN_PTR(address,
 310                               InterpreterRuntime::throw_StackOverflowError));
 311   return entry;
 312 }
 313 
 314 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(
 315         const char* name) {
 316   address entry = __ pc();
 317   // expression stack must be empty before entering the VM if an
 318   // exception happened
 319   __ empty_expression_stack();
 320   // setup parameters
 321   // ??? convention: expect aberrant index in register r1
 322   __ movw(c_rarg2, r1);
 323   __ mov(c_rarg1, (address)name);
 324   __ call_VM(noreg,
 325              CAST_FROM_FN_PTR(address,
 326                               InterpreterRuntime::
 327                               throw_ArrayIndexOutOfBoundsException),
 328              c_rarg1, c_rarg2);
 329   return entry;
 330 }
 331 
 332 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 333   address entry = __ pc();
 334 
 335   // object is at TOS
 336   __ pop(c_rarg1);
 337 
 338   // expression stack must be empty before entering the VM if an
 339   // exception happened
 340   __ empty_expression_stack();
 341 
 342   __ call_VM(noreg,
 343              CAST_FROM_FN_PTR(address,
 344                               InterpreterRuntime::
 345                               throw_ClassCastException),
 346              c_rarg1);
 347   return entry;
 348 }
 349 
 350 address TemplateInterpreterGenerator::generate_exception_handler_common(
 351         const char* name, const char* message, bool pass_oop) {
 352   assert(!pass_oop || message == NULL, "either oop or message but not both");
 353   address entry = __ pc();
 354   if (pass_oop) {
 355     // object is at TOS
 356     __ pop(c_rarg2);
 357   }
 358   // expression stack must be empty before entering the VM if an
 359   // exception happened
 360   __ empty_expression_stack();
 361   // setup parameters
 362   __ lea(c_rarg1, Address((address)name));
 363   if (pass_oop) {
 364     __ call_VM(r0, CAST_FROM_FN_PTR(address,
 365                                     InterpreterRuntime::
 366                                     create_klass_exception),
 367                c_rarg1, c_rarg2);
 368   } else {
 369     // kind of lame ExternalAddress can't take NULL because
 370     // external_word_Relocation will assert.
 371     if (message != NULL) {
 372       __ lea(c_rarg2, Address((address)message));
 373     } else {
 374       __ mov(c_rarg2, NULL_WORD);
 375     }
 376     __ call_VM(r0,
 377                CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception),
 378                c_rarg1, c_rarg2);
 379   }
 380   // throw exception
 381   __ b(address(Interpreter::throw_exception_entry()));
 382   return entry;
 383 }
 384 
 385 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
 386   address entry = __ pc();
 387   // NULL last_sp until next java call
 388   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 389   __ dispatch_next(state);
 390   return entry;
 391 }
 392 
 393 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
 394   address entry = __ pc();
 395 
 396   // Restore stack bottom in case i2c adjusted stack
 397   __ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 398   // and NULL it as marker that esp is now tos until next java call
 399   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 400   __ restore_bcp();
 401   __ restore_locals();
 402   __ restore_constant_pool_cache();
 403   __ get_method(rmethod);
 404 
 405   // Pop N words from the stack
 406   __ get_cache_and_index_at_bcp(r1, r2, 1, index_size);
 407   __ ldr(r1, Address(r1, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()));
 408   __ andr(r1, r1, ConstantPoolCacheEntry::parameter_size_mask);
 409 
 410   __ add(esp, esp, r1, Assembler::LSL, 3);
 411 
 412   // Restore machine SP
 413   __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
 414   __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
 415   __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 2);
 416   __ ldr(rscratch2,
 417          Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize));
 418   __ sub(rscratch1, rscratch2, rscratch1, ext::uxtw, 3);
 419   __ andr(sp, rscratch1, -16);
 420 
 421 #ifndef PRODUCT
 422   // tell the simulator that the method has been reentered
 423   if (NotifySimulator) {
 424     __ notify(Assembler::method_reentry);
 425   }
 426 #endif
 427   __ get_dispatch();
 428   __ dispatch_next(state, step);
 429 
 430   return entry;
 431 }
 432 
 433 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state,
 434                                                                int step) {
 435   address entry = __ pc();
 436   __ restore_bcp();
 437   __ restore_locals();
 438   __ restore_constant_pool_cache();
 439   __ get_method(rmethod);
 440   __ get_dispatch();
 441 
 442   // Calculate stack limit
 443   __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
 444   __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
 445   __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 2);
 446   __ ldr(rscratch2,
 447          Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize));
 448   __ sub(rscratch1, rscratch2, rscratch1, ext::uxtx, 3);
 449   __ andr(sp, rscratch1, -16);
 450 
 451   // Restore expression stack pointer
 452   __ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 453   // NULL last_sp until next java call
 454   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 455 
 456 #if INCLUDE_JVMCI
 457   // Check if we need to take lock at entry of synchronized method.
 458   if (UseJVMCICompiler) {
 459     Label L;
 460     __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
 461     __ cbz(rscratch1, L);
 462     // Clear flag.
 463     __ strb(zr, Address(rthread, JavaThread::pending_monitorenter_offset()));
 464     // Take lock.
 465     lock_method();
 466     __ bind(L);
 467   }
 468 #endif
 469   // handle exceptions
 470   {
 471     Label L;
 472     __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
 473     __ cbz(rscratch1, L);
 474     __ call_VM(noreg,
 475                CAST_FROM_FN_PTR(address,
 476                                 InterpreterRuntime::throw_pending_exception));
 477     __ should_not_reach_here();
 478     __ bind(L);
 479   }
 480 
 481   __ dispatch_next(state, step);
 482   return entry;
 483 }
 484 
 485 address TemplateInterpreterGenerator::generate_result_handler_for(
 486         BasicType type) {
 487     address entry = __ pc();
 488   switch (type) {
 489   case T_BOOLEAN: __ uxtb(r0, r0);        break;
 490   case T_CHAR   : __ uxth(r0, r0);       break;
 491   case T_BYTE   : __ sxtb(r0, r0);        break;
 492   case T_SHORT  : __ sxth(r0, r0);        break;
 493   case T_INT    : __ uxtw(r0, r0);        break;  // FIXME: We almost certainly don't need this
 494   case T_LONG   : /* nothing to do */        break;
 495   case T_VOID   : /* nothing to do */        break;
 496   case T_FLOAT  : /* nothing to do */        break;
 497   case T_DOUBLE : /* nothing to do */        break;
 498   case T_OBJECT :
 499     // retrieve result from frame
 500     __ ldr(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize));
 501     // and verify it
 502     __ verify_oop(r0);
 503     break;
 504   default       : ShouldNotReachHere();
 505   }
 506   __ ret(lr);                                  // return from result handler
 507   return entry;
 508 }
 509 
 510 address TemplateInterpreterGenerator::generate_safept_entry_for(
 511         TosState state,
 512         address runtime_entry) {
 513   address entry = __ pc();
 514   __ push(state);
 515   __ call_VM(noreg, runtime_entry);
 516   __ membar(Assembler::AnyAny);
 517   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
 518   return entry;
 519 }
 520 
 521 // Helpers for commoning out cases in the various type of method entries.
 522 //
 523 
 524 
 525 // increment invocation count & check for overflow
 526 //
 527 // Note: checking for negative value instead of overflow
 528 //       so we have a 'sticky' overflow test
 529 //
 530 // rmethod: method
 531 //
 532 void TemplateInterpreterGenerator::generate_counter_incr(
 533         Label* overflow,
 534         Label* profile_method,
 535         Label* profile_method_continue) {
 536   Label done;
 537   // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not.
 538   if (TieredCompilation) {
 539     int increment = InvocationCounter::count_increment;
 540     Label no_mdo;
 541     if (ProfileInterpreter) {
 542       // Are we profiling?
 543       __ ldr(r0, Address(rmethod, Method::method_data_offset()));
 544       __ cbz(r0, no_mdo);
 545       // Increment counter in the MDO
 546       const Address mdo_invocation_counter(r0, in_bytes(MethodData::invocation_counter_offset()) +
 547                                                 in_bytes(InvocationCounter::counter_offset()));
 548       const Address mask(r0, in_bytes(MethodData::invoke_mask_offset()));
 549       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rscratch1, rscratch2, false, Assembler::EQ, overflow);
 550       __ b(done);
 551     }
 552     __ bind(no_mdo);
 553     // Increment counter in MethodCounters
 554     const Address invocation_counter(rscratch2,
 555                   MethodCounters::invocation_counter_offset() +
 556                   InvocationCounter::counter_offset());
 557     __ get_method_counters(rmethod, rscratch2, done);
 558     const Address mask(rscratch2, in_bytes(MethodCounters::invoke_mask_offset()));
 559     __ increment_mask_and_jump(invocation_counter, increment, mask, rscratch1, r1, false, Assembler::EQ, overflow);
 560     __ bind(done);
 561   } else { // not TieredCompilation
 562     const Address backedge_counter(rscratch2,
 563                   MethodCounters::backedge_counter_offset() +
 564                   InvocationCounter::counter_offset());
 565     const Address invocation_counter(rscratch2,
 566                   MethodCounters::invocation_counter_offset() +
 567                   InvocationCounter::counter_offset());
 568 
 569     __ get_method_counters(rmethod, rscratch2, done);
 570 
 571     if (ProfileInterpreter) { // %%% Merge this into MethodData*
 572       __ ldrw(r1, Address(rscratch2, MethodCounters::interpreter_invocation_counter_offset()));
 573       __ addw(r1, r1, 1);
 574       __ strw(r1, Address(rscratch2, MethodCounters::interpreter_invocation_counter_offset()));
 575     }
 576     // Update standard invocation counters
 577     __ ldrw(r1, invocation_counter);
 578     __ ldrw(r0, backedge_counter);
 579 
 580     __ addw(r1, r1, InvocationCounter::count_increment);
 581     __ andw(r0, r0, InvocationCounter::count_mask_value);
 582 
 583     __ strw(r1, invocation_counter);
 584     __ addw(r0, r0, r1);                // add both counters
 585 
 586     // profile_method is non-null only for interpreted method so
 587     // profile_method != NULL == !native_call
 588 
 589     if (ProfileInterpreter && profile_method != NULL) {
 590       // Test to see if we should create a method data oop
 591       __ ldr(rscratch2, Address(rmethod, Method::method_counters_offset()));
 592       __ ldrw(rscratch2, Address(rscratch2, in_bytes(MethodCounters::interpreter_profile_limit_offset())));
 593       __ cmpw(r0, rscratch2);
 594       __ br(Assembler::LT, *profile_method_continue);
 595 
 596       // if no method data exists, go to profile_method
 597       __ test_method_data_pointer(rscratch2, *profile_method);
 598     }
 599 
 600     {
 601       __ ldr(rscratch2, Address(rmethod, Method::method_counters_offset()));
 602       __ ldrw(rscratch2, Address(rscratch2, in_bytes(MethodCounters::interpreter_invocation_limit_offset())));
 603       __ cmpw(r0, rscratch2);
 604       __ br(Assembler::HS, *overflow);
 605     }
 606     __ bind(done);
 607   }
 608 }
 609 
 610 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) {
 611 
 612   // Asm interpreter on entry
 613   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
 614   // Everything as it was on entry
 615 
 616   // InterpreterRuntime::frequency_counter_overflow takes two
 617   // arguments, the first (thread) is passed by call_VM, the second
 618   // indicates if the counter overflow occurs at a backwards branch
 619   // (NULL bcp).  We pass zero for it.  The call returns the address
 620   // of the verified entry point for the method or NULL if the
 621   // compilation did not complete (either went background or bailed
 622   // out).
 623   __ mov(c_rarg1, 0);
 624   __ call_VM(noreg,
 625              CAST_FROM_FN_PTR(address,
 626                               InterpreterRuntime::frequency_counter_overflow),
 627              c_rarg1);
 628 
 629   __ b(do_continue);
 630 }
 631 
 632 // See if we've got enough room on the stack for locals plus overhead
 633 // below JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError
 634 // without going through the signal handler, i.e., reserved and yellow zones
 635 // will not be made usable. The shadow zone must suffice to handle the
 636 // overflow.
 637 // The expression stack grows down incrementally, so the normal guard
 638 // page mechanism will work for that.
 639 //
 640 // NOTE: Since the additional locals are also always pushed (wasn't
 641 // obvious in generate_method_entry) so the guard should work for them
 642 // too.
 643 //
 644 // Args:
 645 //      r3: number of additional locals this frame needs (what we must check)
 646 //      rmethod: Method*
 647 //
 648 // Kills:
 649 //      r0
 650 void TemplateInterpreterGenerator::generate_stack_overflow_check(void) {
 651 
 652   // monitor entry size: see picture of stack set
 653   // (generate_method_entry) and frame_amd64.hpp
 654   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 655 
 656   // total overhead size: entry_size + (saved rbp through expr stack
 657   // bottom).  be sure to change this if you add/subtract anything
 658   // to/from the overhead area
 659   const int overhead_size =
 660     -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size;
 661 
 662   const int page_size = os::vm_page_size();
 663 
 664   Label after_frame_check;
 665 
 666   // see if the frame is greater than one page in size. If so,
 667   // then we need to verify there is enough stack space remaining
 668   // for the additional locals.
 669   //
 670   // Note that we use SUBS rather than CMP here because the immediate
 671   // field of this instruction may overflow.  SUBS can cope with this
 672   // because it is a macro that will expand to some number of MOV
 673   // instructions and a register operation.
 674   __ subs(rscratch1, r3, (page_size - overhead_size) / Interpreter::stackElementSize);
 675   __ br(Assembler::LS, after_frame_check);
 676 
 677   // compute rsp as if this were going to be the last frame on
 678   // the stack before the red zone
 679 
 680   // locals + overhead, in bytes
 681   __ mov(r0, overhead_size);
 682   __ add(r0, r0, r3, Assembler::LSL, Interpreter::logStackElementSize);  // 2 slots per parameter.
 683 
 684   const Address stack_limit(rthread, JavaThread::stack_overflow_limit_offset());
 685   __ ldr(rscratch1, stack_limit);
 686 
 687 #ifdef ASSERT
 688   Label limit_okay;
 689   // Verify that thread stack limit is non-zero.
 690   __ cbnz(rscratch1, limit_okay);
 691   __ stop("stack overflow limit is zero");
 692   __ bind(limit_okay);
 693 #endif
 694 
 695   // Add stack limit to locals.
 696   __ add(r0, r0, rscratch1);
 697 
 698   // Check against the current stack bottom.
 699   __ cmp(sp, r0);
 700   __ br(Assembler::HI, after_frame_check);
 701 
 702   // Remove the incoming args, peeling the machine SP back to where it
 703   // was in the caller.  This is not strictly necessary, but unless we
 704   // do so the stack frame may have a garbage FP; this ensures a
 705   // correct call stack that we can always unwind.  The ANDR should be
 706   // unnecessary because the sender SP in r13 is always aligned, but
 707   // it doesn't hurt.
 708   __ andr(sp, r13, -16);
 709 
 710   // Note: the restored frame is not necessarily interpreted.
 711   // Use the shared runtime version of the StackOverflowError.
 712   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
 713   __ far_jump(RuntimeAddress(StubRoutines::throw_StackOverflowError_entry()));
 714 
 715   // all done with frame size check
 716   __ bind(after_frame_check);
 717 }
 718 
 719 // Allocate monitor and lock method (asm interpreter)
 720 //
 721 // Args:
 722 //      rmethod: Method*
 723 //      rlocals: locals
 724 //
 725 // Kills:
 726 //      r0
 727 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs)
 728 //      rscratch1, rscratch2 (scratch regs)
 729 void TemplateInterpreterGenerator::lock_method() {
 730   // synchronize method
 731   const Address access_flags(rmethod, Method::access_flags_offset());
 732   const Address monitor_block_top(
 733         rfp,
 734         frame::interpreter_frame_monitor_block_top_offset * wordSize);
 735   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 736 
 737 #ifdef ASSERT
 738   {
 739     Label L;
 740     __ ldrw(r0, access_flags);
 741     __ tst(r0, JVM_ACC_SYNCHRONIZED);
 742     __ br(Assembler::NE, L);
 743     __ stop("method doesn't need synchronization");
 744     __ bind(L);
 745   }
 746 #endif // ASSERT
 747 
 748   // get synchronization object
 749   {
 750     Label done;
 751     __ ldrw(r0, access_flags);
 752     __ tst(r0, JVM_ACC_STATIC);
 753     // get receiver (assume this is frequent case)
 754     __ ldr(r0, Address(rlocals, Interpreter::local_offset_in_bytes(0)));
 755     __ br(Assembler::EQ, done);
 756     __ load_mirror(r0, rmethod);
 757 
 758 #ifdef ASSERT
 759     {
 760       Label L;
 761       __ cbnz(r0, L);
 762       __ stop("synchronization object is NULL");
 763       __ bind(L);
 764     }
 765 #endif // ASSERT
 766 
 767     __ bind(done);
 768   }
 769 
 770   // add space for monitor & lock
 771   __ sub(sp, sp, entry_size); // add space for a monitor entry
 772   __ sub(esp, esp, entry_size);
 773   __ mov(rscratch1, esp);
 774   __ str(rscratch1, monitor_block_top);  // set new monitor block top
 775   // store object
 776   __ str(r0, Address(esp, BasicObjectLock::obj_offset_in_bytes()));
 777   __ mov(c_rarg1, esp); // object address
 778   __ lock_object(c_rarg1);
 779 }
 780 
 781 // Generate a fixed interpreter frame. This is identical setup for
 782 // interpreted methods and for native methods hence the shared code.
 783 //
 784 // Args:
 785 //      lr: return address
 786 //      rmethod: Method*
 787 //      rlocals: pointer to locals
 788 //      rcpool: cp cache
 789 //      stack_pointer: previous sp
 790 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 791   // initialize fixed part of activation frame
 792   if (native_call) {
 793     __ sub(esp, sp, 14 *  wordSize);
 794     __ mov(rbcp, zr);
 795     __ stp(esp, zr, Address(__ pre(sp, -14 * wordSize)));
 796     // add 2 zero-initialized slots for native calls
 797     __ stp(zr, zr, Address(sp, 12 * wordSize));
 798   } else {
 799     __ sub(esp, sp, 12 *  wordSize);
 800     __ ldr(rscratch1, Address(rmethod, Method::const_offset()));      // get ConstMethod
 801     __ add(rbcp, rscratch1, in_bytes(ConstMethod::codes_offset())); // get codebase
 802     __ stp(esp, rbcp, Address(__ pre(sp, -12 * wordSize)));
 803   }
 804 
 805   if (ProfileInterpreter) {
 806     Label method_data_continue;
 807     __ ldr(rscratch1, Address(rmethod, Method::method_data_offset()));
 808     __ cbz(rscratch1, method_data_continue);
 809     __ lea(rscratch1, Address(rscratch1, in_bytes(MethodData::data_offset())));
 810     __ bind(method_data_continue);
 811     __ stp(rscratch1, rmethod, Address(sp, 6 * wordSize));  // save Method* and mdp (method data pointer)
 812   } else {
 813     __ stp(zr, rmethod, Address(sp, 6 * wordSize));        // save Method* (no mdp)
 814   }
 815 
 816   // Get mirror and store it in the frame as GC root for this Method*
 817   __ load_mirror(rscratch1, rmethod);
 818   __ stp(rscratch1, zr, Address(sp, 4 * wordSize));
 819 
 820   __ ldr(rcpool, Address(rmethod, Method::const_offset()));
 821   __ ldr(rcpool, Address(rcpool, ConstMethod::constants_offset()));
 822   __ ldr(rcpool, Address(rcpool, ConstantPool::cache_offset_in_bytes()));
 823   __ stp(rlocals, rcpool, Address(sp, 2 * wordSize));
 824 
 825   __ stp(rfp, lr, Address(sp, 10 * wordSize));
 826   __ lea(rfp, Address(sp, 10 * wordSize));
 827 
 828   // set sender sp
 829   // leave last_sp as null
 830   __ stp(zr, r13, Address(sp, 8 * wordSize));
 831 
 832   // Move SP out of the way
 833   if (! native_call) {
 834     __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
 835     __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
 836     __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 2);
 837     __ sub(rscratch1, sp, rscratch1, ext::uxtw, 3);
 838     __ andr(sp, rscratch1, -16);
 839   }
 840 }
 841 
 842 // End of helpers
 843 
 844 // Various method entries
 845 //------------------------------------------------------------------------------------------------------------------------
 846 //
 847 //
 848 
 849 // Method entry for java.lang.ref.Reference.get.
 850 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
 851 #if INCLUDE_ALL_GCS
 852   // Code: _aload_0, _getfield, _areturn
 853   // parameter size = 1
 854   //
 855   // The code that gets generated by this routine is split into 2 parts:
 856   //    1. The "intrinsified" code for G1 (or any SATB based GC),
 857   //    2. The slow path - which is an expansion of the regular method entry.
 858   //
 859   // Notes:-
 860   // * In the G1 code we do not check whether we need to block for
 861   //   a safepoint. If G1 is enabled then we must execute the specialized
 862   //   code for Reference.get (except when the Reference object is null)
 863   //   so that we can log the value in the referent field with an SATB
 864   //   update buffer.
 865   //   If the code for the getfield template is modified so that the
 866   //   G1 pre-barrier code is executed when the current method is
 867   //   Reference.get() then going through the normal method entry
 868   //   will be fine.
 869   // * The G1 code can, however, check the receiver object (the instance
 870   //   of java.lang.Reference) and jump to the slow path if null. If the
 871   //   Reference object is null then we obviously cannot fetch the referent
 872   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
 873   //   regular method entry code to generate the NPE.
 874   //
 875   // This code is based on generate_accessor_enty.
 876   //
 877   // rmethod: Method*
 878   // r13: senderSP must preserve for slow path, set SP to it on fast path
 879 
 880   address entry = __ pc();
 881 
 882   const int referent_offset = java_lang_ref_Reference::referent_offset;
 883   guarantee(referent_offset > 0, "referent offset not initialized");
 884 
 885   if (UseG1GC) {
 886     Label slow_path;
 887     const Register local_0 = c_rarg0;
 888     // Check if local 0 != NULL
 889     // If the receiver is null then it is OK to jump to the slow path.
 890     __ ldr(local_0, Address(esp, 0));
 891     __ cbz(local_0, slow_path);
 892 
 893 
 894     // Load the value of the referent field.
 895     const Address field_address(local_0, referent_offset);
 896     __ load_heap_oop(local_0, field_address);
 897 
 898     // Generate the G1 pre-barrier code to log the value of
 899     // the referent field in an SATB buffer.
 900     __ enter(); // g1_write may call runtime
 901     __ g1_write_barrier_pre(noreg /* obj */,
 902                             local_0 /* pre_val */,
 903                             rthread /* thread */,
 904                             rscratch2 /* tmp */,
 905                             true /* tosca_live */,
 906                             true /* expand_call */);
 907     __ leave();
 908     // areturn
 909     __ andr(sp, r13, -16);  // done with stack
 910     __ ret(lr);
 911 
 912     // generate a vanilla interpreter entry as the slow path
 913     __ bind(slow_path);
 914     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals));
 915     return entry;
 916   }
 917 #endif // INCLUDE_ALL_GCS
 918 
 919   // If G1 is not enabled then attempt to go through the accessor entry point
 920   // Reference.get is an accessor
 921   return NULL;
 922 }
 923 
 924 /**
 925  * Method entry for static native methods:
 926  *   int java.util.zip.CRC32.update(int crc, int b)
 927  */
 928 address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
 929   if (UseCRC32Intrinsics) {
 930     address entry = __ pc();
 931 
 932     // rmethod: Method*
 933     // r13: senderSP must preserved for slow path
 934     // esp: args
 935 
 936     Label slow_path;
 937     // If we need a safepoint check, generate full interpreter entry.
 938     ExternalAddress state(SafepointSynchronize::address_of_state());
 939     unsigned long offset;
 940     __ adrp(rscratch1, ExternalAddress(SafepointSynchronize::address_of_state()), offset);
 941     __ ldrw(rscratch1, Address(rscratch1, offset));
 942     assert(SafepointSynchronize::_not_synchronized == 0, "rewrite this code");
 943     __ cbnz(rscratch1, slow_path);
 944 
 945     // We don't generate local frame and don't align stack because
 946     // we call stub code and there is no safepoint on this path.
 947 
 948     // Load parameters
 949     const Register crc = c_rarg0;  // crc
 950     const Register val = c_rarg1;  // source java byte value
 951     const Register tbl = c_rarg2;  // scratch
 952 
 953     // Arguments are reversed on java expression stack
 954     __ ldrw(val, Address(esp, 0));              // byte value
 955     __ ldrw(crc, Address(esp, wordSize));       // Initial CRC
 956 
 957     __ adrp(tbl, ExternalAddress(StubRoutines::crc_table_addr()), offset);
 958     __ add(tbl, tbl, offset);
 959 
 960     __ ornw(crc, zr, crc); // ~crc
 961     __ update_byte_crc32(crc, val, tbl);
 962     __ ornw(crc, zr, crc); // ~crc
 963 
 964     // result in c_rarg0
 965 
 966     __ andr(sp, r13, -16);
 967     __ ret(lr);
 968 
 969     // generate a vanilla native entry as the slow path
 970     __ bind(slow_path);
 971     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
 972     return entry;
 973   }
 974   return NULL;
 975 }
 976 
 977 /**
 978  * Method entry for static native methods:
 979  *   int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len)
 980  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
 981  */
 982 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
 983   if (UseCRC32Intrinsics) {
 984     address entry = __ pc();
 985 
 986     // rmethod,: Method*
 987     // r13: senderSP must preserved for slow path
 988 
 989     Label slow_path;
 990     // If we need a safepoint check, generate full interpreter entry.
 991     ExternalAddress state(SafepointSynchronize::address_of_state());
 992     unsigned long offset;
 993     __ adrp(rscratch1, ExternalAddress(SafepointSynchronize::address_of_state()), offset);
 994     __ ldrw(rscratch1, Address(rscratch1, offset));
 995     assert(SafepointSynchronize::_not_synchronized == 0, "rewrite this code");
 996     __ cbnz(rscratch1, slow_path);
 997 
 998     // We don't generate local frame and don't align stack because
 999     // we call stub code and there is no safepoint on this path.
1000 
1001     // Load parameters
1002     const Register crc = c_rarg0;  // crc
1003     const Register buf = c_rarg1;  // source java byte array address
1004     const Register len = c_rarg2;  // length
1005     const Register off = len;      // offset (never overlaps with 'len')
1006 
1007     // Arguments are reversed on java expression stack
1008     // Calculate address of start element
1009     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) {
1010       __ ldr(buf, Address(esp, 2*wordSize)); // long buf
1011       __ ldrw(off, Address(esp, wordSize)); // offset
1012       __ add(buf, buf, off); // + offset
1013       __ ldrw(crc,   Address(esp, 4*wordSize)); // Initial CRC
1014     } else {
1015       __ ldr(buf, Address(esp, 2*wordSize)); // byte[] array
1016       __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size
1017       __ ldrw(off, Address(esp, wordSize)); // offset
1018       __ add(buf, buf, off); // + offset
1019       __ ldrw(crc,   Address(esp, 3*wordSize)); // Initial CRC
1020     }
1021     // Can now load 'len' since we're finished with 'off'
1022     __ ldrw(len, Address(esp, 0x0)); // Length
1023 
1024     __ andr(sp, r13, -16); // Restore the caller's SP
1025 
1026     // We are frameless so we can just jump to the stub.
1027     __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32()));
1028 
1029     // generate a vanilla native entry as the slow path
1030     __ bind(slow_path);
1031     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
1032     return entry;
1033   }
1034   return NULL;
1035 }
1036 
1037 // Not supported
1038 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1039   return NULL;
1040 }
1041 
1042 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
1043   // Bang each page in the shadow zone. We can't assume it's been done for
1044   // an interpreter frame with greater than a page of locals, so each page
1045   // needs to be checked.  Only true for non-native.
1046   if (UseStackBanging) {
1047     const int n_shadow_pages = JavaThread::stack_shadow_zone_size() / os::vm_page_size();
1048     const int start_page = native_call ? n_shadow_pages : 1;
1049     const int page_size = os::vm_page_size();
1050     for (int pages = start_page; pages <= n_shadow_pages ; pages++) {
1051       __ sub(rscratch2, sp, pages*page_size);
1052       __ str(zr, Address(rscratch2));
1053     }
1054   }
1055 }
1056 
1057 
1058 // Interpreter stub for calling a native method. (asm interpreter)
1059 // This sets up a somewhat different looking stack for calling the
1060 // native method than the typical interpreter frame setup.
1061 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
1062   // determine code generation flags
1063   bool inc_counter  = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1064 
1065   // r1: Method*
1066   // rscratch1: sender sp
1067 
1068   address entry_point = __ pc();
1069 
1070   const Address constMethod       (rmethod, Method::const_offset());
1071   const Address access_flags      (rmethod, Method::access_flags_offset());
1072   const Address size_of_parameters(r2, ConstMethod::
1073                                        size_of_parameters_offset());
1074 
1075   // get parameter size (always needed)
1076   __ ldr(r2, constMethod);
1077   __ load_unsigned_short(r2, size_of_parameters);
1078 
1079   // Native calls don't need the stack size check since they have no
1080   // expression stack and the arguments are already on the stack and
1081   // we only add a handful of words to the stack.
1082 
1083   // rmethod: Method*
1084   // r2: size of parameters
1085   // rscratch1: sender sp
1086 
1087   // for natives the size of locals is zero
1088 
1089   // compute beginning of parameters (rlocals)
1090   __ add(rlocals, esp, r2, ext::uxtx, 3);
1091   __ add(rlocals, rlocals, -wordSize);
1092 
1093   // Pull SP back to minimum size: this avoids holes in the stack
1094   __ andr(sp, esp, -16);
1095 
1096   // initialize fixed part of activation frame
1097   generate_fixed_frame(true);
1098 #ifndef PRODUCT
1099   // tell the simulator that a method has been entered
1100   if (NotifySimulator) {
1101     __ notify(Assembler::method_entry);
1102   }
1103 #endif
1104 
1105   // make sure method is native & not abstract
1106 #ifdef ASSERT
1107   __ ldrw(r0, access_flags);
1108   {
1109     Label L;
1110     __ tst(r0, JVM_ACC_NATIVE);
1111     __ br(Assembler::NE, L);
1112     __ stop("tried to execute non-native method as native");
1113     __ bind(L);
1114   }
1115   {
1116     Label L;
1117     __ tst(r0, JVM_ACC_ABSTRACT);
1118     __ br(Assembler::EQ, L);
1119     __ stop("tried to execute abstract method in interpreter");
1120     __ bind(L);
1121   }
1122 #endif
1123 
1124   // Since at this point in the method invocation the exception
1125   // handler would try to exit the monitor of synchronized methods
1126   // which hasn't been entered yet, we set the thread local variable
1127   // _do_not_unlock_if_synchronized to true. The remove_activation
1128   // will check this flag.
1129 
1130    const Address do_not_unlock_if_synchronized(rthread,
1131         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1132   __ mov(rscratch2, true);
1133   __ strb(rscratch2, do_not_unlock_if_synchronized);
1134 
1135   // increment invocation count & check for overflow
1136   Label invocation_counter_overflow;
1137   if (inc_counter) {
1138     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
1139   }
1140 
1141   Label continue_after_compile;
1142   __ bind(continue_after_compile);
1143 
1144   bang_stack_shadow_pages(true);
1145 
1146   // reset the _do_not_unlock_if_synchronized flag
1147   __ strb(zr, do_not_unlock_if_synchronized);
1148 
1149   // check for synchronized methods
1150   // Must happen AFTER invocation_counter check and stack overflow check,
1151   // so method is not locked if overflows.
1152   if (synchronized) {
1153     lock_method();
1154   } else {
1155     // no synchronization necessary
1156 #ifdef ASSERT
1157     {
1158       Label L;
1159       __ ldrw(r0, access_flags);
1160       __ tst(r0, JVM_ACC_SYNCHRONIZED);
1161       __ br(Assembler::EQ, L);
1162       __ stop("method needs synchronization");
1163       __ bind(L);
1164     }
1165 #endif
1166   }
1167 
1168   // start execution
1169 #ifdef ASSERT
1170   {
1171     Label L;
1172     const Address monitor_block_top(rfp,
1173                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
1174     __ ldr(rscratch1, monitor_block_top);
1175     __ cmp(esp, rscratch1);
1176     __ br(Assembler::EQ, L);
1177     __ stop("broken stack frame setup in interpreter");
1178     __ bind(L);
1179   }
1180 #endif
1181 
1182   // jvmti support
1183   __ notify_method_entry();
1184 
1185   // work registers
1186   const Register t = r17;
1187   const Register result_handler = r19;
1188 
1189   // allocate space for parameters
1190   __ ldr(t, Address(rmethod, Method::const_offset()));
1191   __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset()));
1192 
1193   __ sub(rscratch1, esp, t, ext::uxtx, Interpreter::logStackElementSize);
1194   __ andr(sp, rscratch1, -16);
1195   __ mov(esp, rscratch1);
1196 
1197   // get signature handler
1198   {
1199     Label L;
1200     __ ldr(t, Address(rmethod, Method::signature_handler_offset()));
1201     __ cbnz(t, L);
1202     __ call_VM(noreg,
1203                CAST_FROM_FN_PTR(address,
1204                                 InterpreterRuntime::prepare_native_call),
1205                rmethod);
1206     __ ldr(t, Address(rmethod, Method::signature_handler_offset()));
1207     __ bind(L);
1208   }
1209 
1210   // call signature handler
1211   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rlocals,
1212          "adjust this code");
1213   assert(InterpreterRuntime::SignatureHandlerGenerator::to() == sp,
1214          "adjust this code");
1215   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == rscratch1,
1216           "adjust this code");
1217 
1218   // The generated handlers do not touch rmethod (the method).
1219   // However, large signatures cannot be cached and are generated
1220   // each time here.  The slow-path generator can do a GC on return,
1221   // so we must reload it after the call.
1222   __ blr(t);
1223   __ get_method(rmethod);        // slow path can do a GC, reload rmethod
1224 
1225 
1226   // result handler is in r0
1227   // set result handler
1228   __ mov(result_handler, r0);
1229   // pass mirror handle if static call
1230   {
1231     Label L;
1232     __ ldrw(t, Address(rmethod, Method::access_flags_offset()));
1233     __ tbz(t, exact_log2(JVM_ACC_STATIC), L);
1234     // get mirror
1235     __ load_mirror(t, rmethod);
1236     // copy mirror into activation frame
1237     __ str(t, Address(rfp, frame::interpreter_frame_oop_temp_offset * wordSize));
1238     // pass handle to mirror
1239     __ add(c_rarg1, rfp, frame::interpreter_frame_oop_temp_offset * wordSize);
1240     __ bind(L);
1241   }
1242 
1243   // get native function entry point in r10
1244   {
1245     Label L;
1246     __ ldr(r10, Address(rmethod, Method::native_function_offset()));
1247     address unsatisfied = (SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
1248     __ mov(rscratch2, unsatisfied);
1249     __ ldr(rscratch2, rscratch2);
1250     __ cmp(r10, rscratch2);
1251     __ br(Assembler::NE, L);
1252     __ call_VM(noreg,
1253                CAST_FROM_FN_PTR(address,
1254                                 InterpreterRuntime::prepare_native_call),
1255                rmethod);
1256     __ get_method(rmethod);
1257     __ ldr(r10, Address(rmethod, Method::native_function_offset()));
1258     __ bind(L);
1259   }
1260 
1261   // pass JNIEnv
1262   __ add(c_rarg0, rthread, in_bytes(JavaThread::jni_environment_offset()));
1263 
1264   // It is enough that the pc() points into the right code
1265   // segment. It does not have to be the correct return pc.
1266   __ set_last_Java_frame(esp, rfp, (address)NULL, rscratch1);
1267 
1268   // change thread state
1269 #ifdef ASSERT
1270   {
1271     Label L;
1272     __ ldrw(t, Address(rthread, JavaThread::thread_state_offset()));
1273     __ cmp(t, _thread_in_Java);
1274     __ br(Assembler::EQ, L);
1275     __ stop("Wrong thread state in native stub");
1276     __ bind(L);
1277   }
1278 #endif
1279 
1280   // Change state to native
1281   __ mov(rscratch1, _thread_in_native);
1282   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1283   __ stlrw(rscratch1, rscratch2);
1284 
1285   // Call the native method.
1286   __ blrt(r10, rscratch1);
1287   __ maybe_isb();
1288   __ get_method(rmethod);
1289   // result potentially in r0 or v0
1290 
1291   // make room for the pushes we're about to do
1292   __ sub(rscratch1, esp, 4 * wordSize);
1293   __ andr(sp, rscratch1, -16);
1294 
1295   // NOTE: The order of these pushes is known to frame::interpreter_frame_result
1296   // in order to extract the result of a method call. If the order of these
1297   // pushes change or anything else is added to the stack then the code in
1298   // interpreter_frame_result must also change.
1299   __ push(dtos);
1300   __ push(ltos);
1301 
1302   // change thread state
1303   __ mov(rscratch1, _thread_in_native_trans);
1304   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1305   __ stlrw(rscratch1, rscratch2);
1306 
1307   if (os::is_MP()) {
1308     if (UseMembar) {
1309       // Force this write out before the read below
1310       __ dsb(Assembler::SY);
1311     } else {
1312       // Write serialization page so VM thread can do a pseudo remote membar.
1313       // We use the current thread pointer to calculate a thread specific
1314       // offset to write to within the page. This minimizes bus traffic
1315       // due to cache line collision.
1316       __ serialize_memory(rthread, rscratch2);
1317     }
1318   }
1319 
1320   // check for safepoint operation in progress and/or pending suspend requests
1321   {
1322     Label Continue;
1323     {
1324       unsigned long offset;
1325       __ adrp(rscratch2, SafepointSynchronize::address_of_state(), offset);
1326       __ ldrw(rscratch2, Address(rscratch2, offset));
1327     }
1328     assert(SafepointSynchronize::_not_synchronized == 0,
1329            "SafepointSynchronize::_not_synchronized");
1330     Label L;
1331     __ cbnz(rscratch2, L);
1332     __ ldrw(rscratch2, Address(rthread, JavaThread::suspend_flags_offset()));
1333     __ cbz(rscratch2, Continue);
1334     __ bind(L);
1335 
1336     // Don't use call_VM as it will see a possible pending exception
1337     // and forward it and never return here preventing us from
1338     // clearing _last_native_pc down below. So we do a runtime call by
1339     // hand.
1340     //
1341     __ mov(c_rarg0, rthread);
1342     __ mov(rscratch2, CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans));
1343     __ blrt(rscratch2, 1, 0, 0);
1344     __ maybe_isb();
1345     __ get_method(rmethod);
1346     __ reinit_heapbase();
1347     __ bind(Continue);
1348   }
1349 
1350   // change thread state
1351   __ mov(rscratch1, _thread_in_Java);
1352   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1353   __ stlrw(rscratch1, rscratch2);
1354 
1355   // reset_last_Java_frame
1356   __ reset_last_Java_frame(true, true);
1357 
1358   // reset handle block
1359   __ ldr(t, Address(rthread, JavaThread::active_handles_offset()));
1360   __ str(zr, Address(t, JNIHandleBlock::top_offset_in_bytes()));
1361 
1362   // If result is an oop unbox and store it in frame where gc will see it
1363   // and result handler will pick it up
1364 
1365   {
1366     Label no_oop, store_result;
1367     __ adr(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT)));
1368     __ cmp(t, result_handler);
1369     __ br(Assembler::NE, no_oop);
1370     // retrieve result
1371     __ pop(ltos);
1372     __ cbz(r0, store_result);
1373     __ ldr(r0, Address(r0, 0));
1374     __ bind(store_result);
1375     __ str(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize));
1376     // keep stack depth as expected by pushing oop which will eventually be discarded
1377     __ push(ltos);
1378     __ bind(no_oop);
1379   }
1380 
1381   {
1382     Label no_reguard;
1383     __ lea(rscratch1, Address(rthread, in_bytes(JavaThread::stack_guard_state_offset())));
1384     __ ldrw(rscratch1, Address(rscratch1));
1385     __ cmp(rscratch1, JavaThread::stack_guard_yellow_reserved_disabled);
1386     __ br(Assembler::NE, no_reguard);
1387 
1388     __ pusha(); // XXX only save smashed registers
1389     __ mov(c_rarg0, rthread);
1390     __ mov(rscratch2, CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
1391     __ blrt(rscratch2, 0, 0, 0);
1392     __ popa(); // XXX only restore smashed registers
1393     __ bind(no_reguard);
1394   }
1395 
1396   // The method register is junk from after the thread_in_native transition
1397   // until here.  Also can't call_VM until the bcp has been
1398   // restored.  Need bcp for throwing exception below so get it now.
1399   __ get_method(rmethod);
1400 
1401   // restore bcp to have legal interpreter frame, i.e., bci == 0 <=>
1402   // rbcp == code_base()
1403   __ ldr(rbcp, Address(rmethod, Method::const_offset()));   // get ConstMethod*
1404   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));          // get codebase
1405   // handle exceptions (exception handling will handle unlocking!)
1406   {
1407     Label L;
1408     __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
1409     __ cbz(rscratch1, L);
1410     // Note: At some point we may want to unify this with the code
1411     // used in call_VM_base(); i.e., we should use the
1412     // StubRoutines::forward_exception code. For now this doesn't work
1413     // here because the rsp is not correctly set at this point.
1414     __ MacroAssembler::call_VM(noreg,
1415                                CAST_FROM_FN_PTR(address,
1416                                InterpreterRuntime::throw_pending_exception));
1417     __ should_not_reach_here();
1418     __ bind(L);
1419   }
1420 
1421   // do unlocking if necessary
1422   {
1423     Label L;
1424     __ ldrw(t, Address(rmethod, Method::access_flags_offset()));
1425     __ tbz(t, exact_log2(JVM_ACC_SYNCHRONIZED), L);
1426     // the code below should be shared with interpreter macro
1427     // assembler implementation
1428     {
1429       Label unlock;
1430       // BasicObjectLock will be first in list, since this is a
1431       // synchronized method. However, need to check that the object
1432       // has not been unlocked by an explicit monitorexit bytecode.
1433 
1434       // monitor expect in c_rarg1 for slow unlock path
1435       __ lea (c_rarg1, Address(rfp,   // address of first monitor
1436                                (intptr_t)(frame::interpreter_frame_initial_sp_offset *
1437                                           wordSize - sizeof(BasicObjectLock))));
1438 
1439       __ ldr(t, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
1440       __ cbnz(t, unlock);
1441 
1442       // Entry already unlocked, need to throw exception
1443       __ MacroAssembler::call_VM(noreg,
1444                                  CAST_FROM_FN_PTR(address,
1445                    InterpreterRuntime::throw_illegal_monitor_state_exception));
1446       __ should_not_reach_here();
1447 
1448       __ bind(unlock);
1449       __ unlock_object(c_rarg1);
1450     }
1451     __ bind(L);
1452   }
1453 
1454   // jvmti support
1455   // Note: This must happen _after_ handling/throwing any exceptions since
1456   //       the exception handler code notifies the runtime of method exits
1457   //       too. If this happens before, method entry/exit notifications are
1458   //       not properly paired (was bug - gri 11/22/99).
1459   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
1460 
1461   // restore potential result in r0:d0, call result handler to
1462   // restore potential result in ST0 & handle result
1463 
1464   __ pop(ltos);
1465   __ pop(dtos);
1466 
1467   __ blr(result_handler);
1468 
1469   // remove activation
1470   __ ldr(esp, Address(rfp,
1471                     frame::interpreter_frame_sender_sp_offset *
1472                     wordSize)); // get sender sp
1473   // remove frame anchor
1474   __ leave();
1475 
1476   // resture sender sp
1477   __ mov(sp, esp);
1478 
1479   __ ret(lr);
1480 
1481   if (inc_counter) {
1482     // Handle overflow of counter and compile method
1483     __ bind(invocation_counter_overflow);
1484     generate_counter_overflow(continue_after_compile);
1485   }
1486 
1487   return entry_point;
1488 }
1489 
1490 //
1491 // Generic interpreted method entry to (asm) interpreter
1492 //
1493 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1494   // determine code generation flags
1495   bool inc_counter  = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1496 
1497   // rscratch1: sender sp
1498   address entry_point = __ pc();
1499 
1500   const Address constMethod(rmethod, Method::const_offset());
1501   const Address access_flags(rmethod, Method::access_flags_offset());
1502   const Address size_of_parameters(r3,
1503                                    ConstMethod::size_of_parameters_offset());
1504   const Address size_of_locals(r3, ConstMethod::size_of_locals_offset());
1505 
1506   // get parameter size (always needed)
1507   // need to load the const method first
1508   __ ldr(r3, constMethod);
1509   __ load_unsigned_short(r2, size_of_parameters);
1510 
1511   // r2: size of parameters
1512 
1513   __ load_unsigned_short(r3, size_of_locals); // get size of locals in words
1514   __ sub(r3, r3, r2); // r3 = no. of additional locals
1515 
1516   // see if we've got enough room on the stack for locals plus overhead.
1517   generate_stack_overflow_check();
1518 
1519   // compute beginning of parameters (rlocals)
1520   __ add(rlocals, esp, r2, ext::uxtx, 3);
1521   __ sub(rlocals, rlocals, wordSize);
1522 
1523   // Make room for locals
1524   __ sub(rscratch1, esp, r3, ext::uxtx, 3);
1525   __ andr(sp, rscratch1, -16);
1526 
1527   // r3 - # of additional locals
1528   // allocate space for locals
1529   // explicitly initialize locals
1530   {
1531     Label exit, loop;
1532     __ ands(zr, r3, r3);
1533     __ br(Assembler::LE, exit); // do nothing if r3 <= 0
1534     __ bind(loop);
1535     __ str(zr, Address(__ post(rscratch1, wordSize)));
1536     __ sub(r3, r3, 1); // until everything initialized
1537     __ cbnz(r3, loop);
1538     __ bind(exit);
1539   }
1540 
1541   // And the base dispatch table
1542   __ get_dispatch();
1543 
1544   // initialize fixed part of activation frame
1545   generate_fixed_frame(false);
1546 #ifndef PRODUCT
1547   // tell the simulator that a method has been entered
1548   if (NotifySimulator) {
1549     __ notify(Assembler::method_entry);
1550   }
1551 #endif
1552   // make sure method is not native & not abstract
1553 #ifdef ASSERT
1554   __ ldrw(r0, access_flags);
1555   {
1556     Label L;
1557     __ tst(r0, JVM_ACC_NATIVE);
1558     __ br(Assembler::EQ, L);
1559     __ stop("tried to execute native method as non-native");
1560     __ bind(L);
1561   }
1562  {
1563     Label L;
1564     __ tst(r0, JVM_ACC_ABSTRACT);
1565     __ br(Assembler::EQ, L);
1566     __ stop("tried to execute abstract method in interpreter");
1567     __ bind(L);
1568   }
1569 #endif
1570 
1571   // Since at this point in the method invocation the exception
1572   // handler would try to exit the monitor of synchronized methods
1573   // which hasn't been entered yet, we set the thread local variable
1574   // _do_not_unlock_if_synchronized to true. The remove_activation
1575   // will check this flag.
1576 
1577    const Address do_not_unlock_if_synchronized(rthread,
1578         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1579   __ mov(rscratch2, true);
1580   __ strb(rscratch2, do_not_unlock_if_synchronized);
1581 
1582   // increment invocation count & check for overflow
1583   Label invocation_counter_overflow;
1584   Label profile_method;
1585   Label profile_method_continue;
1586   if (inc_counter) {
1587     generate_counter_incr(&invocation_counter_overflow,
1588                           &profile_method,
1589                           &profile_method_continue);
1590     if (ProfileInterpreter) {
1591       __ bind(profile_method_continue);
1592     }
1593   }
1594 
1595   Label continue_after_compile;
1596   __ bind(continue_after_compile);
1597 
1598   bang_stack_shadow_pages(false);
1599 
1600   // reset the _do_not_unlock_if_synchronized flag
1601   __ strb(zr, do_not_unlock_if_synchronized);
1602 
1603   // check for synchronized methods
1604   // Must happen AFTER invocation_counter check and stack overflow check,
1605   // so method is not locked if overflows.
1606   if (synchronized) {
1607     // Allocate monitor and lock method
1608     lock_method();
1609   } else {
1610     // no synchronization necessary
1611 #ifdef ASSERT
1612     {
1613       Label L;
1614       __ ldrw(r0, access_flags);
1615       __ tst(r0, JVM_ACC_SYNCHRONIZED);
1616       __ br(Assembler::EQ, L);
1617       __ stop("method needs synchronization");
1618       __ bind(L);
1619     }
1620 #endif
1621   }
1622 
1623   // start execution
1624 #ifdef ASSERT
1625   {
1626     Label L;
1627      const Address monitor_block_top (rfp,
1628                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
1629     __ ldr(rscratch1, monitor_block_top);
1630     __ cmp(esp, rscratch1);
1631     __ br(Assembler::EQ, L);
1632     __ stop("broken stack frame setup in interpreter");
1633     __ bind(L);
1634   }
1635 #endif
1636 
1637   // jvmti support
1638   __ notify_method_entry();
1639 
1640   __ dispatch_next(vtos);
1641 
1642   // invocation counter overflow
1643   if (inc_counter) {
1644     if (ProfileInterpreter) {
1645       // We have decided to profile this method in the interpreter
1646       __ bind(profile_method);
1647       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1648       __ set_method_data_pointer_for_bcp();
1649       // don't think we need this
1650       __ get_method(r1);
1651       __ b(profile_method_continue);
1652     }
1653     // Handle overflow of counter and compile method
1654     __ bind(invocation_counter_overflow);
1655     generate_counter_overflow(continue_after_compile);
1656   }
1657 
1658   return entry_point;
1659 }
1660 
1661 //-----------------------------------------------------------------------------
1662 // Exceptions
1663 
1664 void TemplateInterpreterGenerator::generate_throw_exception() {
1665   // Entry point in previous activation (i.e., if the caller was
1666   // interpreted)
1667   Interpreter::_rethrow_exception_entry = __ pc();
1668   // Restore sp to interpreter_frame_last_sp even though we are going
1669   // to empty the expression stack for the exception processing.
1670   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1671   // r0: exception
1672   // r3: return address/pc that threw exception
1673   __ restore_bcp();    // rbcp points to call/send
1674   __ restore_locals();
1675   __ restore_constant_pool_cache();
1676   __ reinit_heapbase();  // restore rheapbase as heapbase.
1677   __ get_dispatch();
1678 
1679 #ifndef PRODUCT
1680   // tell the simulator that the caller method has been reentered
1681   if (NotifySimulator) {
1682     __ get_method(rmethod);
1683     __ notify(Assembler::method_reentry);
1684   }
1685 #endif
1686   // Entry point for exceptions thrown within interpreter code
1687   Interpreter::_throw_exception_entry = __ pc();
1688   // If we came here via a NullPointerException on the receiver of a
1689   // method, rmethod may be corrupt.
1690   __ get_method(rmethod);
1691   // expression stack is undefined here
1692   // r0: exception
1693   // rbcp: exception bcp
1694   __ verify_oop(r0);
1695   __ mov(c_rarg1, r0);
1696 
1697   // expression stack must be empty before entering the VM in case of
1698   // an exception
1699   __ empty_expression_stack();
1700   // find exception handler address and preserve exception oop
1701   __ call_VM(r3,
1702              CAST_FROM_FN_PTR(address,
1703                           InterpreterRuntime::exception_handler_for_exception),
1704              c_rarg1);
1705 
1706   // Calculate stack limit
1707   __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
1708   __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
1709   __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 4);
1710   __ ldr(rscratch2,
1711          Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize));
1712   __ sub(rscratch1, rscratch2, rscratch1, ext::uxtx, 3);
1713   __ andr(sp, rscratch1, -16);
1714 
1715   // r0: exception handler entry point
1716   // r3: preserved exception oop
1717   // rbcp: bcp for exception handler
1718   __ push_ptr(r3); // push exception which is now the only value on the stack
1719   __ br(r0); // jump to exception handler (may be _remove_activation_entry!)
1720 
1721   // If the exception is not handled in the current frame the frame is
1722   // removed and the exception is rethrown (i.e. exception
1723   // continuation is _rethrow_exception).
1724   //
1725   // Note: At this point the bci is still the bxi for the instruction
1726   // which caused the exception and the expression stack is
1727   // empty. Thus, for any VM calls at this point, GC will find a legal
1728   // oop map (with empty expression stack).
1729 
1730   //
1731   // JVMTI PopFrame support
1732   //
1733 
1734   Interpreter::_remove_activation_preserving_args_entry = __ pc();
1735   __ empty_expression_stack();
1736   // Set the popframe_processing bit in pending_popframe_condition
1737   // indicating that we are currently handling popframe, so that
1738   // call_VMs that may happen later do not trigger new popframe
1739   // handling cycles.
1740   __ ldrw(r3, Address(rthread, JavaThread::popframe_condition_offset()));
1741   __ orr(r3, r3, JavaThread::popframe_processing_bit);
1742   __ strw(r3, Address(rthread, JavaThread::popframe_condition_offset()));
1743 
1744   {
1745     // Check to see whether we are returning to a deoptimized frame.
1746     // (The PopFrame call ensures that the caller of the popped frame is
1747     // either interpreted or compiled and deoptimizes it if compiled.)
1748     // In this case, we can't call dispatch_next() after the frame is
1749     // popped, but instead must save the incoming arguments and restore
1750     // them after deoptimization has occurred.
1751     //
1752     // Note that we don't compare the return PC against the
1753     // deoptimization blob's unpack entry because of the presence of
1754     // adapter frames in C2.
1755     Label caller_not_deoptimized;
1756     __ ldr(c_rarg1, Address(rfp, frame::return_addr_offset * wordSize));
1757     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1758                                InterpreterRuntime::interpreter_contains), c_rarg1);
1759     __ cbnz(r0, caller_not_deoptimized);
1760 
1761     // Compute size of arguments for saving when returning to
1762     // deoptimized caller
1763     __ get_method(r0);
1764     __ ldr(r0, Address(r0, Method::const_offset()));
1765     __ load_unsigned_short(r0, Address(r0, in_bytes(ConstMethod::
1766                                                     size_of_parameters_offset())));
1767     __ lsl(r0, r0, Interpreter::logStackElementSize);
1768     __ restore_locals(); // XXX do we need this?
1769     __ sub(rlocals, rlocals, r0);
1770     __ add(rlocals, rlocals, wordSize);
1771     // Save these arguments
1772     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1773                                            Deoptimization::
1774                                            popframe_preserve_args),
1775                           rthread, r0, rlocals);
1776 
1777     __ remove_activation(vtos,
1778                          /* throw_monitor_exception */ false,
1779                          /* install_monitor_exception */ false,
1780                          /* notify_jvmdi */ false);
1781 
1782     // Inform deoptimization that it is responsible for restoring
1783     // these arguments
1784     __ mov(rscratch1, JavaThread::popframe_force_deopt_reexecution_bit);
1785     __ strw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
1786 
1787     // Continue in deoptimization handler
1788     __ ret(lr);
1789 
1790     __ bind(caller_not_deoptimized);
1791   }
1792 
1793   __ remove_activation(vtos,
1794                        /* throw_monitor_exception */ false,
1795                        /* install_monitor_exception */ false,
1796                        /* notify_jvmdi */ false);
1797 
1798   // Restore the last_sp and null it out
1799   __ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1800   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1801 
1802   __ restore_bcp();
1803   __ restore_locals();
1804   __ restore_constant_pool_cache();
1805   __ get_method(rmethod);
1806 
1807   // The method data pointer was incremented already during
1808   // call profiling. We have to restore the mdp for the current bcp.
1809   if (ProfileInterpreter) {
1810     __ set_method_data_pointer_for_bcp();
1811   }
1812 
1813   // Clear the popframe condition flag
1814   __ strw(zr, Address(rthread, JavaThread::popframe_condition_offset()));
1815   assert(JavaThread::popframe_inactive == 0, "fix popframe_inactive");
1816 
1817 #if INCLUDE_JVMTI
1818   {
1819     Label L_done;
1820 
1821     __ ldrb(rscratch1, Address(rbcp, 0));
1822     __ cmpw(r1, Bytecodes::_invokestatic);
1823     __ br(Assembler::EQ, L_done);
1824 
1825     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
1826     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
1827 
1828     __ ldr(c_rarg0, Address(rlocals, 0));
1829     __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), c_rarg0, rmethod, rbcp);
1830 
1831     __ cbz(r0, L_done);
1832 
1833     __ str(r0, Address(esp, 0));
1834     __ bind(L_done);
1835   }
1836 #endif // INCLUDE_JVMTI
1837 
1838   // Restore machine SP
1839   __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
1840   __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
1841   __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 4);
1842   __ ldr(rscratch2,
1843          Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize));
1844   __ sub(rscratch1, rscratch2, rscratch1, ext::uxtw, 3);
1845   __ andr(sp, rscratch1, -16);
1846 
1847   __ dispatch_next(vtos);
1848   // end of PopFrame support
1849 
1850   Interpreter::_remove_activation_entry = __ pc();
1851 
1852   // preserve exception over this code sequence
1853   __ pop_ptr(r0);
1854   __ str(r0, Address(rthread, JavaThread::vm_result_offset()));
1855   // remove the activation (without doing throws on illegalMonitorExceptions)
1856   __ remove_activation(vtos, false, true, false);
1857   // restore exception
1858   // restore exception
1859   __ get_vm_result(r0, rthread);
1860 
1861   // In between activations - previous activation type unknown yet
1862   // compute continuation point - the continuation point expects the
1863   // following registers set up:
1864   //
1865   // r0: exception
1866   // lr: return address/pc that threw exception
1867   // rsp: expression stack of caller
1868   // rfp: fp of caller
1869   // FIXME: There's no point saving LR here because VM calls don't trash it
1870   __ stp(r0, lr, Address(__ pre(sp, -2 * wordSize)));  // save exception & return address
1871   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1872                           SharedRuntime::exception_handler_for_return_address),
1873                         rthread, lr);
1874   __ mov(r1, r0);                               // save exception handler
1875   __ ldp(r0, lr, Address(__ post(sp, 2 * wordSize)));  // restore exception & return address
1876   // We might be returning to a deopt handler that expects r3 to
1877   // contain the exception pc
1878   __ mov(r3, lr);
1879   // Note that an "issuing PC" is actually the next PC after the call
1880   __ br(r1);                                    // jump to exception
1881                                                 // handler of caller
1882 }
1883 
1884 
1885 //
1886 // JVMTI ForceEarlyReturn support
1887 //
1888 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
1889   address entry = __ pc();
1890 
1891   __ restore_bcp();
1892   __ restore_locals();
1893   __ empty_expression_stack();
1894   __ load_earlyret_value(state);
1895 
1896   __ ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
1897   Address cond_addr(rscratch1, JvmtiThreadState::earlyret_state_offset());
1898 
1899   // Clear the earlyret state
1900   assert(JvmtiThreadState::earlyret_inactive == 0, "should be");
1901   __ str(zr, cond_addr);
1902 
1903   __ remove_activation(state,
1904                        false, /* throw_monitor_exception */
1905                        false, /* install_monitor_exception */
1906                        true); /* notify_jvmdi */
1907   __ ret(lr);
1908 
1909   return entry;
1910 } // end of ForceEarlyReturn support
1911 
1912 
1913 
1914 //-----------------------------------------------------------------------------
1915 // Helper for vtos entry point generation
1916 
1917 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
1918                                                          address& bep,
1919                                                          address& cep,
1920                                                          address& sep,
1921                                                          address& aep,
1922                                                          address& iep,
1923                                                          address& lep,
1924                                                          address& fep,
1925                                                          address& dep,
1926                                                          address& vep) {
1927   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
1928   Label L;
1929   aep = __ pc();  __ push_ptr();  __ b(L);
1930   fep = __ pc();  __ push_f();    __ b(L);
1931   dep = __ pc();  __ push_d();    __ b(L);
1932   lep = __ pc();  __ push_l();    __ b(L);
1933   bep = cep = sep =
1934   iep = __ pc();  __ push_i();
1935   vep = __ pc();
1936   __ bind(L);
1937   generate_and_dispatch(t);
1938 }
1939 
1940 //-----------------------------------------------------------------------------
1941 
1942 // Non-product code
1943 #ifndef PRODUCT
1944 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
1945   address entry = __ pc();
1946 
1947   __ push(lr);
1948   __ push(state);
1949   __ push(RegSet::range(r0, r15), sp);
1950   __ mov(c_rarg2, r0);  // Pass itos
1951   __ call_VM(noreg,
1952              CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode),
1953              c_rarg1, c_rarg2, c_rarg3);
1954   __ pop(RegSet::range(r0, r15), sp);
1955   __ pop(state);
1956   __ pop(lr);
1957   __ ret(lr);                                   // return from result handler
1958 
1959   return entry;
1960 }
1961 
1962 void TemplateInterpreterGenerator::count_bytecode() {
1963   Register rscratch3 = r0;
1964   __ push(rscratch1);
1965   __ push(rscratch2);
1966   __ push(rscratch3);
1967   __ mov(rscratch3, (address) &BytecodeCounter::_counter_value);
1968   __ atomic_add(noreg, 1, rscratch3);
1969   __ pop(rscratch3);
1970   __ pop(rscratch2);
1971   __ pop(rscratch1);
1972 }
1973 
1974 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) { ; }
1975 
1976 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) { ; }
1977 
1978 
1979 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
1980   // Call a little run-time stub to avoid blow-up for each bytecode.
1981   // The run-time runtime saves the right registers, depending on
1982   // the tosca in-state for the given template.
1983 
1984   assert(Interpreter::trace_code(t->tos_in()) != NULL,
1985          "entry must have been generated");
1986   __ bl(Interpreter::trace_code(t->tos_in()));
1987   __ reinit_heapbase();
1988 }
1989 
1990 
1991 void TemplateInterpreterGenerator::stop_interpreter_at() {
1992   Label L;
1993   __ push(rscratch1);
1994   __ mov(rscratch1, (address) &BytecodeCounter::_counter_value);
1995   __ ldr(rscratch1, Address(rscratch1));
1996   __ mov(rscratch2, StopInterpreterAt);
1997   __ cmpw(rscratch1, rscratch2);
1998   __ br(Assembler::NE, L);
1999   __ brk(0);
2000   __ bind(L);
2001   __ pop(rscratch1);
2002 }
2003 
2004 #ifdef BUILTIN_SIM
2005 
2006 #include <sys/mman.h>
2007 #include <unistd.h>
2008 
2009 extern "C" {
2010   static int PAGESIZE = getpagesize();
2011   int is_mapped_address(u_int64_t address)
2012   {
2013     address = (address & ~((u_int64_t)PAGESIZE - 1));
2014     if (msync((void *)address, PAGESIZE, MS_ASYNC) == 0) {
2015       return true;
2016     }
2017     if (errno != ENOMEM) {
2018       return true;
2019     }
2020     return false;
2021   }
2022 
2023   void bccheck1(u_int64_t pc, u_int64_t fp, char *method, int *bcidx, int *framesize, char *decode)
2024   {
2025     if (method != 0) {
2026       method[0] = '\0';
2027     }
2028     if (bcidx != 0) {
2029       *bcidx = -2;
2030     }
2031     if (decode != 0) {
2032       decode[0] = 0;
2033     }
2034 
2035     if (framesize != 0) {
2036       *framesize = -1;
2037     }
2038 
2039     if (Interpreter::contains((address)pc)) {
2040       AArch64Simulator *sim = AArch64Simulator::get_current(UseSimulatorCache, DisableBCCheck);
2041       Method* meth;
2042       address bcp;
2043       if (fp) {
2044 #define FRAME_SLOT_METHOD 3
2045 #define FRAME_SLOT_BCP 7
2046         meth = (Method*)sim->getMemory()->loadU64(fp - (FRAME_SLOT_METHOD << 3));
2047         bcp = (address)sim->getMemory()->loadU64(fp - (FRAME_SLOT_BCP << 3));
2048 #undef FRAME_SLOT_METHOD
2049 #undef FRAME_SLOT_BCP
2050       } else {
2051         meth = (Method*)sim->getCPUState().xreg(RMETHOD, 0);
2052         bcp = (address)sim->getCPUState().xreg(RBCP, 0);
2053       }
2054       if (meth->is_native()) {
2055         return;
2056       }
2057       if(method && meth->is_method()) {
2058         ResourceMark rm;
2059         method[0] = 'I';
2060         method[1] = ' ';
2061         meth->name_and_sig_as_C_string(method + 2, 398);
2062       }
2063       if (bcidx) {
2064         if (meth->contains(bcp)) {
2065           *bcidx = meth->bci_from(bcp);
2066         } else {
2067           *bcidx = -2;
2068         }
2069       }
2070       if (decode) {
2071         if (!BytecodeTracer::closure()) {
2072           BytecodeTracer::set_closure(BytecodeTracer::std_closure());
2073         }
2074         stringStream str(decode, 400);
2075         BytecodeTracer::trace(meth, bcp, &str);
2076       }
2077     } else {
2078       if (method) {
2079         CodeBlob *cb = CodeCache::find_blob((address)pc);
2080         if (cb != NULL) {
2081           if (cb->is_nmethod()) {
2082             ResourceMark rm;
2083             nmethod* nm = (nmethod*)cb;
2084             method[0] = 'C';
2085             method[1] = ' ';
2086             nm->method()->name_and_sig_as_C_string(method + 2, 398);
2087           } else if (cb->is_adapter_blob()) {
2088             strcpy(method, "B adapter blob");
2089           } else if (cb->is_runtime_stub()) {
2090             strcpy(method, "B runtime stub");
2091           } else if (cb->is_exception_stub()) {
2092             strcpy(method, "B exception stub");
2093           } else if (cb->is_deoptimization_stub()) {
2094             strcpy(method, "B deoptimization stub");
2095           } else if (cb->is_safepoint_stub()) {
2096             strcpy(method, "B safepoint stub");
2097           } else if (cb->is_uncommon_trap_stub()) {
2098             strcpy(method, "B uncommon trap stub");
2099           } else if (cb->contains((address)StubRoutines::call_stub())) {
2100             strcpy(method, "B call stub");
2101           } else {
2102             strcpy(method, "B unknown blob : ");
2103             strcat(method, cb->name());
2104           }
2105           if (framesize != NULL) {
2106             *framesize = cb->frame_size();
2107           }
2108         }
2109       }
2110     }
2111   }
2112 
2113 
2114   JNIEXPORT void bccheck(u_int64_t pc, u_int64_t fp, char *method, int *bcidx, int *framesize, char *decode)
2115   {
2116     bccheck1(pc, fp, method, bcidx, framesize, decode);
2117   }
2118 }
2119 
2120 #endif // BUILTIN_SIM
2121 #endif // !PRODUCT