1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #include "utilities/compilerWarnings.hpp"
  29 #include "utilities/debug.hpp"
  30 #include "utilities/macros.hpp"
  31 
  32 #include COMPILER_HEADER(utilities/globalDefinitions)
  33 
  34 // Defaults for macros that might be defined per compiler.
  35 #ifndef NOINLINE
  36 #define NOINLINE
  37 #endif
  38 #ifndef ALWAYSINLINE
  39 #define ALWAYSINLINE inline
  40 #endif
  41 
  42 // This file holds all globally used constants & types, class (forward)
  43 // declarations and a few frequently used utility functions.
  44 
  45 //----------------------------------------------------------------------------------------------------
  46 // Printf-style formatters for fixed- and variable-width types as pointers and
  47 // integers.  These are derived from the definitions in inttypes.h.  If the platform
  48 // doesn't provide appropriate definitions, they should be provided in
  49 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
  50 
  51 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
  52 
  53 // Format 32-bit quantities.
  54 #define INT32_FORMAT           "%" PRId32
  55 #define UINT32_FORMAT          "%" PRIu32
  56 #define INT32_FORMAT_W(width)  "%" #width PRId32
  57 #define UINT32_FORMAT_W(width) "%" #width PRIu32
  58 
  59 #define PTR32_FORMAT           "0x%08" PRIx32
  60 #define PTR32_FORMAT_W(width)  "0x%" #width PRIx32
  61 
  62 // Format 64-bit quantities.
  63 #define INT64_FORMAT           "%" PRId64
  64 #define UINT64_FORMAT          "%" PRIu64
  65 #define UINT64_FORMAT_X        "%" PRIx64
  66 #define INT64_FORMAT_W(width)  "%" #width PRId64
  67 #define UINT64_FORMAT_W(width) "%" #width PRIu64
  68 
  69 #define PTR64_FORMAT           "0x%016" PRIx64
  70 
  71 // Format jlong, if necessary
  72 #ifndef JLONG_FORMAT
  73 #define JLONG_FORMAT           INT64_FORMAT
  74 #endif
  75 #ifndef JULONG_FORMAT
  76 #define JULONG_FORMAT          UINT64_FORMAT
  77 #endif
  78 #ifndef JULONG_FORMAT_X
  79 #define JULONG_FORMAT_X        UINT64_FORMAT_X
  80 #endif
  81 
  82 // Format pointers which change size between 32- and 64-bit.
  83 #ifdef  _LP64
  84 #define INTPTR_FORMAT "0x%016" PRIxPTR
  85 #define PTR_FORMAT    "0x%016" PRIxPTR
  86 #else   // !_LP64
  87 #define INTPTR_FORMAT "0x%08"  PRIxPTR
  88 #define PTR_FORMAT    "0x%08"  PRIxPTR
  89 #endif  // _LP64
  90 
  91 // Format pointers without leading zeros
  92 #define INTPTRNZ_FORMAT "0x%"  PRIxPTR
  93 
  94 #define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
  95 
  96 #define SSIZE_FORMAT             "%"   PRIdPTR
  97 #define SIZE_FORMAT              "%"   PRIuPTR
  98 #define SIZE_FORMAT_HEX          "0x%" PRIxPTR
  99 #define SSIZE_FORMAT_W(width)    "%"   #width PRIdPTR
 100 #define SIZE_FORMAT_W(width)     "%"   #width PRIuPTR
 101 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
 102 
 103 #define INTX_FORMAT           "%" PRIdPTR
 104 #define UINTX_FORMAT          "%" PRIuPTR
 105 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
 106 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
 107 
 108 //----------------------------------------------------------------------------------------------------
 109 // Constants
 110 
 111 const int LogBytesPerShort   = 1;
 112 const int LogBytesPerInt     = 2;
 113 #ifdef _LP64
 114 const int LogBytesPerWord    = 3;
 115 #else
 116 const int LogBytesPerWord    = 2;
 117 #endif
 118 const int LogBytesPerLong    = 3;
 119 
 120 const int BytesPerShort      = 1 << LogBytesPerShort;
 121 const int BytesPerInt        = 1 << LogBytesPerInt;
 122 const int BytesPerWord       = 1 << LogBytesPerWord;
 123 const int BytesPerLong       = 1 << LogBytesPerLong;
 124 
 125 const int LogBitsPerByte     = 3;
 126 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
 127 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
 128 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
 129 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
 130 
 131 const int BitsPerByte        = 1 << LogBitsPerByte;
 132 const int BitsPerShort       = 1 << LogBitsPerShort;
 133 const int BitsPerInt         = 1 << LogBitsPerInt;
 134 const int BitsPerWord        = 1 << LogBitsPerWord;
 135 const int BitsPerLong        = 1 << LogBitsPerLong;
 136 
 137 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
 138 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
 139 
 140 const int WordsPerLong       = 2;       // Number of stack entries for longs
 141 
 142 const int oopSize            = sizeof(char*); // Full-width oop
 143 extern int heapOopSize;                       // Oop within a java object
 144 const int wordSize           = sizeof(char*);
 145 const int longSize           = sizeof(jlong);
 146 const int jintSize           = sizeof(jint);
 147 const int size_tSize         = sizeof(size_t);
 148 
 149 const int BytesPerOop        = BytesPerWord;  // Full-width oop
 150 
 151 extern int LogBytesPerHeapOop;                // Oop within a java object
 152 extern int LogBitsPerHeapOop;
 153 extern int BytesPerHeapOop;
 154 extern int BitsPerHeapOop;
 155 
 156 const int BitsPerJavaInteger = 32;
 157 const int BitsPerJavaLong    = 64;
 158 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 159 
 160 // Size of a char[] needed to represent a jint as a string in decimal.
 161 const int jintAsStringSize = 12;
 162 
 163 // In fact this should be
 164 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
 165 // see os::set_memory_serialize_page()
 166 #ifdef _LP64
 167 const int SerializePageShiftCount = 4;
 168 #else
 169 const int SerializePageShiftCount = 3;
 170 #endif
 171 
 172 // An opaque struct of heap-word width, so that HeapWord* can be a generic
 173 // pointer into the heap.  We require that object sizes be measured in
 174 // units of heap words, so that that
 175 //   HeapWord* hw;
 176 //   hw += oop(hw)->foo();
 177 // works, where foo is a method (like size or scavenge) that returns the
 178 // object size.
 179 class HeapWord {
 180   friend class VMStructs;
 181  private:
 182   char* i;
 183 #ifndef PRODUCT
 184  public:
 185   char* value() { return i; }
 186 #endif
 187 };
 188 
 189 // Analogous opaque struct for metadata allocated from
 190 // metaspaces.
 191 class MetaWord {
 192  private:
 193   char* i;
 194 };
 195 
 196 // HeapWordSize must be 2^LogHeapWordSize.
 197 const int HeapWordSize        = sizeof(HeapWord);
 198 #ifdef _LP64
 199 const int LogHeapWordSize     = 3;
 200 #else
 201 const int LogHeapWordSize     = 2;
 202 #endif
 203 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 204 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 205 
 206 // The minimum number of native machine words necessary to contain "byte_size"
 207 // bytes.
 208 inline size_t heap_word_size(size_t byte_size) {
 209   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 210 }
 211 
 212 //-------------------------------------------
 213 // Constant for jlong (standardized by C++11)
 214 
 215 // Build a 64bit integer constant
 216 #define CONST64(x)  (x ## LL)
 217 #define UCONST64(x) (x ## ULL)
 218 
 219 const jlong min_jlong = CONST64(0x8000000000000000);
 220 const jlong max_jlong = CONST64(0x7fffffffffffffff);
 221 
 222 const size_t K                  = 1024;
 223 const size_t M                  = K*K;
 224 const size_t G                  = M*K;
 225 const size_t HWperKB            = K / sizeof(HeapWord);
 226 
 227 // Constants for converting from a base unit to milli-base units.  For
 228 // example from seconds to milliseconds and microseconds
 229 
 230 const int MILLIUNITS    = 1000;         // milli units per base unit
 231 const int MICROUNITS    = 1000000;      // micro units per base unit
 232 const int NANOUNITS     = 1000000000;   // nano units per base unit
 233 
 234 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 235 const jint  NANOSECS_PER_MILLISEC = 1000000;
 236 
 237 inline const char* proper_unit_for_byte_size(size_t s) {
 238 #ifdef _LP64
 239   if (s >= 10*G) {
 240     return "G";
 241   }
 242 #endif
 243   if (s >= 10*M) {
 244     return "M";
 245   } else if (s >= 10*K) {
 246     return "K";
 247   } else {
 248     return "B";
 249   }
 250 }
 251 
 252 template <class T>
 253 inline T byte_size_in_proper_unit(T s) {
 254 #ifdef _LP64
 255   if (s >= 10*G) {
 256     return (T)(s/G);
 257   }
 258 #endif
 259   if (s >= 10*M) {
 260     return (T)(s/M);
 261   } else if (s >= 10*K) {
 262     return (T)(s/K);
 263   } else {
 264     return s;
 265   }
 266 }
 267 
 268 inline const char* exact_unit_for_byte_size(size_t s) {
 269 #ifdef _LP64
 270   if (s >= G && (s % G) == 0) {
 271     return "G";
 272   }
 273 #endif
 274   if (s >= M && (s % M) == 0) {
 275     return "M";
 276   }
 277   if (s >= K && (s % K) == 0) {
 278     return "K";
 279   }
 280   return "B";
 281 }
 282 
 283 inline size_t byte_size_in_exact_unit(size_t s) {
 284 #ifdef _LP64
 285   if (s >= G && (s % G) == 0) {
 286     return s / G;
 287   }
 288 #endif
 289   if (s >= M && (s % M) == 0) {
 290     return s / M;
 291   }
 292   if (s >= K && (s % K) == 0) {
 293     return s / K;
 294   }
 295   return s;
 296 }
 297 
 298 //----------------------------------------------------------------------------------------------------
 299 // VM type definitions
 300 
 301 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 302 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 303 
 304 typedef intptr_t  intx;
 305 typedef uintptr_t uintx;
 306 
 307 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 308 const intx  max_intx  = (uintx)min_intx - 1;
 309 const uintx max_uintx = (uintx)-1;
 310 
 311 // Table of values:
 312 //      sizeof intx         4               8
 313 // min_intx             0x80000000      0x8000000000000000
 314 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 315 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 316 
 317 typedef unsigned int uint;   NEEDS_CLEANUP
 318 
 319 
 320 //----------------------------------------------------------------------------------------------------
 321 // Java type definitions
 322 
 323 // All kinds of 'plain' byte addresses
 324 typedef   signed char s_char;
 325 typedef unsigned char u_char;
 326 typedef u_char*       address;
 327 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 328                                     // except for some implementations of a C++
 329                                     // linkage pointer to function. Should never
 330                                     // need one of those to be placed in this
 331                                     // type anyway.
 332 
 333 //  Utility functions to "portably" (?) bit twiddle pointers
 334 //  Where portable means keep ANSI C++ compilers quiet
 335 
 336 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 337 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 338 
 339 //  Utility functions to "portably" make cast to/from function pointers.
 340 
 341 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 342 inline address_word  castable_address(address x)              { return address_word(x) ; }
 343 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 344 
 345 // Pointer subtraction.
 346 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 347 // the range we might need to find differences from one end of the heap
 348 // to the other.
 349 // A typical use might be:
 350 //     if (pointer_delta(end(), top()) >= size) {
 351 //       // enough room for an object of size
 352 //       ...
 353 // and then additions like
 354 //       ... top() + size ...
 355 // are safe because we know that top() is at least size below end().
 356 inline size_t pointer_delta(const volatile void* left,
 357                             const volatile void* right,
 358                             size_t element_size) {
 359   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 360 }
 361 
 362 // A version specialized for HeapWord*'s.
 363 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 364   return pointer_delta(left, right, sizeof(HeapWord));
 365 }
 366 // A version specialized for MetaWord*'s.
 367 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 368   return pointer_delta(left, right, sizeof(MetaWord));
 369 }
 370 
 371 //
 372 // ANSI C++ does not allow casting from one pointer type to a function pointer
 373 // directly without at best a warning. This macro accomplishes it silently
 374 // In every case that is present at this point the value be cast is a pointer
 375 // to a C linkage function. In some case the type used for the cast reflects
 376 // that linkage and a picky compiler would not complain. In other cases because
 377 // there is no convenient place to place a typedef with extern C linkage (i.e
 378 // a platform dependent header file) it doesn't. At this point no compiler seems
 379 // picky enough to catch these instances (which are few). It is possible that
 380 // using templates could fix these for all cases. This use of templates is likely
 381 // so far from the middle of the road that it is likely to be problematic in
 382 // many C++ compilers.
 383 //
 384 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
 385 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 386 
 387 // Unsigned byte types for os and stream.hpp
 388 
 389 // Unsigned one, two, four and eigth byte quantities used for describing
 390 // the .class file format. See JVM book chapter 4.
 391 
 392 typedef jubyte  u1;
 393 typedef jushort u2;
 394 typedef juint   u4;
 395 typedef julong  u8;
 396 
 397 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 398 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 399 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 400 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 401 
 402 typedef jbyte  s1;
 403 typedef jshort s2;
 404 typedef jint   s4;
 405 typedef jlong  s8;
 406 
 407 const jbyte min_jbyte = -(1 << 7);       // smallest jbyte
 408 const jbyte max_jbyte = (1 << 7) - 1;    // largest jbyte
 409 const jshort min_jshort = -(1 << 15);    // smallest jshort
 410 const jshort max_jshort = (1 << 15) - 1; // largest jshort
 411 
 412 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 413 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 414 
 415 //----------------------------------------------------------------------------------------------------
 416 // JVM spec restrictions
 417 
 418 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 419 
 420 //----------------------------------------------------------------------------------------------------
 421 // Default and minimum StringTableSize values
 422 
 423 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
 424 const int minimumStringTableSize = 1009;
 425 
 426 const int defaultSymbolTableSize = 20011;
 427 const int minimumSymbolTableSize = 1009;
 428 
 429 
 430 //----------------------------------------------------------------------------------------------------
 431 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
 432 //
 433 // Determines whether on-the-fly class replacement and frame popping are enabled.
 434 
 435 #define HOTSWAP
 436 
 437 //----------------------------------------------------------------------------------------------------
 438 // Object alignment, in units of HeapWords.
 439 //
 440 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 441 // reference fields can be naturally aligned.
 442 
 443 extern int MinObjAlignment;
 444 extern int MinObjAlignmentInBytes;
 445 extern int MinObjAlignmentInBytesMask;
 446 
 447 extern int LogMinObjAlignment;
 448 extern int LogMinObjAlignmentInBytes;
 449 
 450 const int LogKlassAlignmentInBytes = 3;
 451 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
 452 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
 453 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
 454 const int KlassPtrValueTypeMask    = (1 << (LogKlassAlignmentInBytes + 1)) - 1;
 455 
 456 // Maximal size of heap where unscaled compression can be used. Also upper bound
 457 // for heap placement: 4GB.
 458 const  uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
 459 // Maximal size of heap where compressed oops can be used. Also upper bound for heap
 460 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
 461 extern uint64_t OopEncodingHeapMax;
 462 
 463 // Maximal size of compressed class space. Above this limit compression is not possible.
 464 // Also upper bound for placement of zero based class space. (Class space is further limited
 465 // to be < 3G, see arguments.cpp.)
 466 const  uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
 467 
 468 // Machine dependent stuff
 469 
 470 // The maximum size of the code cache.  Can be overridden by targets.
 471 #define CODE_CACHE_SIZE_LIMIT (2*G)
 472 // Allow targets to reduce the default size of the code cache.
 473 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
 474 
 475 #include CPU_HEADER(globalDefinitions)
 476 
 477 // To assure the IRIW property on processors that are not multiple copy
 478 // atomic, sync instructions must be issued between volatile reads to
 479 // assure their ordering, instead of after volatile stores.
 480 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
 481 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
 482 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
 483 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
 484 #else
 485 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
 486 #endif
 487 
 488 // The expected size in bytes of a cache line, used to pad data structures.
 489 #ifndef DEFAULT_CACHE_LINE_SIZE
 490   #define DEFAULT_CACHE_LINE_SIZE 64
 491 #endif
 492 
 493 
 494 //----------------------------------------------------------------------------------------------------
 495 // Utility macros for compilers
 496 // used to silence compiler warnings
 497 
 498 #define Unused_Variable(var) var
 499 
 500 
 501 //----------------------------------------------------------------------------------------------------
 502 // Prototyping
 503 // "Code Missing Here" macro, un-define when integrating back from prototyping stage and break
 504 // compilation on purpose (i.e. "forget me not")
 505 #define PROTOTYPE
 506 #ifdef PROTOTYPE
 507 #define CMH(m)
 508 #endif
 509 
 510 //----------------------------------------------------------------------------------------------------
 511 // Miscellaneous
 512 
 513 // 6302670 Eliminate Hotspot __fabsf dependency
 514 // All fabs() callers should call this function instead, which will implicitly
 515 // convert the operand to double, avoiding a dependency on __fabsf which
 516 // doesn't exist in early versions of Solaris 8.
 517 inline double fabsd(double value) {
 518   return fabs(value);
 519 }
 520 
 521 // Returns numerator/denominator as percentage value from 0 to 100. If denominator
 522 // is zero, return 0.0.
 523 template<typename T>
 524 inline double percent_of(T numerator, T denominator) {
 525   return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0;
 526 }
 527 
 528 //----------------------------------------------------------------------------------------------------
 529 // Special casts
 530 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
 531 typedef union {
 532   jfloat f;
 533   jint i;
 534 } FloatIntConv;
 535 
 536 typedef union {
 537   jdouble d;
 538   jlong l;
 539   julong ul;
 540 } DoubleLongConv;
 541 
 542 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
 543 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
 544 
 545 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
 546 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
 547 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
 548 
 549 inline jint low (jlong value)                    { return jint(value); }
 550 inline jint high(jlong value)                    { return jint(value >> 32); }
 551 
 552 // the fancy casts are a hopefully portable way
 553 // to do unsigned 32 to 64 bit type conversion
 554 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 555                                                    *value |= (jlong)(julong)(juint)low; }
 556 
 557 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 558                                                    *value |= (jlong)high       << 32; }
 559 
 560 inline jlong jlong_from(jint h, jint l) {
 561   jlong result = 0; // initialization to avoid warning
 562   set_high(&result, h);
 563   set_low(&result,  l);
 564   return result;
 565 }
 566 
 567 union jlong_accessor {
 568   jint  words[2];
 569   jlong long_value;
 570 };
 571 
 572 void basic_types_init(); // cannot define here; uses assert
 573 
 574 
 575 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 576 enum BasicType {
 577   T_BOOLEAN     =  4,
 578   T_CHAR        =  5,
 579   T_FLOAT       =  6,
 580   T_DOUBLE      =  7,
 581   T_BYTE        =  8,
 582   T_SHORT       =  9,
 583   T_INT         = 10,
 584   T_LONG        = 11,
 585   T_OBJECT      = 12,
 586   T_ARRAY       = 13,
 587   T_VALUETYPE   = 14,
 588   T_VOID        = 15,
 589   T_ADDRESS     = 16,
 590   T_NARROWOOP   = 17,
 591   T_METADATA    = 18,
 592   T_NARROWKLASS = 19,
 593   T_VALUETYPEPTR= 20, // the compiler needs a way to identify buffered values
 594   T_CONFLICT    = 21, // for stack value type with conflicting contents
 595   T_ILLEGAL     = 99
 596 };
 597 
 598 inline bool is_java_primitive(BasicType t) {
 599   return T_BOOLEAN <= t && t <= T_LONG;
 600 }
 601 
 602 inline bool is_subword_type(BasicType t) {
 603   // these guys are processed exactly like T_INT in calling sequences:
 604   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 605 }
 606 
 607 inline bool is_signed_subword_type(BasicType t) {
 608   return (t == T_BYTE || t == T_SHORT);
 609 }
 610 
 611 inline bool is_reference_type(BasicType t) {
 612   return (t == T_OBJECT || t == T_ARRAY);
 613 }
 614 
 615 // Convert a char from a classfile signature to a BasicType
 616 inline BasicType char2type(char c) {
 617   switch( c ) {
 618   case 'B': return T_BYTE;
 619   case 'C': return T_CHAR;
 620   case 'D': return T_DOUBLE;
 621   case 'F': return T_FLOAT;
 622   case 'I': return T_INT;
 623   case 'J': return T_LONG;
 624   case 'S': return T_SHORT;
 625   case 'Z': return T_BOOLEAN;
 626   case 'V': return T_VOID;
 627   case 'L': return T_OBJECT;
 628   case '[': return T_ARRAY;
 629   case 'Q': return T_VALUETYPE;
 630   }
 631   return T_ILLEGAL;
 632 }
 633 
 634 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 635 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 636 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 637 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 638 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 639 extern BasicType name2type(const char* name);
 640 
 641 // Auxiliary math routines
 642 // least common multiple
 643 extern size_t lcm(size_t a, size_t b);
 644 
 645 
 646 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 647 enum BasicTypeSize {
 648   T_BOOLEAN_size     = 1,
 649   T_CHAR_size        = 1,
 650   T_FLOAT_size       = 1,
 651   T_DOUBLE_size      = 2,
 652   T_BYTE_size        = 1,
 653   T_SHORT_size       = 1,
 654   T_INT_size         = 1,
 655   T_LONG_size        = 2,
 656   T_OBJECT_size      = 1,
 657   T_ARRAY_size       = 1,
 658   T_NARROWOOP_size   = 1,
 659   T_NARROWKLASS_size = 1,
 660   T_VOID_size        = 0,
 661   T_VALUETYPE_size   = 1
 662 };
 663 
 664 
 665 // maps a BasicType to its instance field storage type:
 666 // all sub-word integral types are widened to T_INT
 667 extern BasicType type2field[T_CONFLICT+1];
 668 extern BasicType type2wfield[T_CONFLICT+1];
 669 
 670 
 671 // size in bytes
 672 enum ArrayElementSize {
 673   T_BOOLEAN_aelem_bytes     = 1,
 674   T_CHAR_aelem_bytes        = 2,
 675   T_FLOAT_aelem_bytes       = 4,
 676   T_DOUBLE_aelem_bytes      = 8,
 677   T_BYTE_aelem_bytes        = 1,
 678   T_SHORT_aelem_bytes       = 2,
 679   T_INT_aelem_bytes         = 4,
 680   T_LONG_aelem_bytes        = 8,
 681 #ifdef _LP64
 682   T_OBJECT_aelem_bytes      = 8,
 683   T_ARRAY_aelem_bytes       = 8,
 684   T_VALUETYPE_aelem_bytes   = 8,
 685 #else
 686   T_OBJECT_aelem_bytes      = 4,
 687   T_ARRAY_aelem_bytes       = 4,
 688   T_VALUETYPE_aelem_bytes   = 4,
 689 #endif
 690   T_NARROWOOP_aelem_bytes   = 4,
 691   T_NARROWKLASS_aelem_bytes = 4,
 692   T_VOID_aelem_bytes        = 0,
 693 #ifdef _LP64
 694   T_VALUETYPEPTR_aelem_bytes= 8
 695 #else
 696   T_VALUETYPEPTR_aelem_bytes= 4
 697 #endif
 698 };
 699 
 700 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 701 #ifdef ASSERT
 702 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 703 #else
 704 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 705 #endif
 706 
 707 
 708 // JavaValue serves as a container for arbitrary Java values.
 709 
 710 class JavaValue {
 711 
 712  public:
 713   typedef union JavaCallValue {
 714     jfloat   f;
 715     jdouble  d;
 716     jint     i;
 717     jlong    l;
 718     jobject  h;
 719     jvaluetype q;
 720   } JavaCallValue;
 721 
 722  private:
 723   BasicType _type;
 724   JavaCallValue _value;
 725 
 726  public:
 727   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 728 
 729   JavaValue(jfloat value) {
 730     _type    = T_FLOAT;
 731     _value.f = value;
 732   }
 733 
 734   JavaValue(jdouble value) {
 735     _type    = T_DOUBLE;
 736     _value.d = value;
 737   }
 738 
 739  jfloat get_jfloat() const { return _value.f; }
 740  jdouble get_jdouble() const { return _value.d; }
 741  jint get_jint() const { return _value.i; }
 742  jlong get_jlong() const { return _value.l; }
 743  jobject get_jobject() const { return _value.h; }
 744  JavaCallValue* get_value_addr() { return &_value; }
 745  BasicType get_type() const { return _type; }
 746 
 747  void set_jfloat(jfloat f) { _value.f = f;}
 748  void set_jdouble(jdouble d) { _value.d = d;}
 749  void set_jint(jint i) { _value.i = i;}
 750  void set_jlong(jlong l) { _value.l = l;}
 751  void set_jobject(jobject h) { _value.h = h;}
 752  void set_type(BasicType t) { _type = t; }
 753 
 754  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 755  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 756  jchar get_jchar() const { return (jchar) (_value.i);}
 757  jshort get_jshort() const { return (jshort) (_value.i);}
 758 
 759 };
 760 
 761 
 762 #define STACK_BIAS      0
 763 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 764 // in order to extend the reach of the stack pointer.
 765 #if defined(SPARC) && defined(_LP64)
 766 #undef STACK_BIAS
 767 #define STACK_BIAS      0x7ff
 768 #endif
 769 
 770 
 771 // TosState describes the top-of-stack state before and after the execution of
 772 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 773 // registers. The TosState corresponds to the 'machine representation' of this cached
 774 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 775 // as well as a 5th state in case the top-of-stack value is actually on the top
 776 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 777 // state when it comes to machine representation but is used separately for (oop)
 778 // type specific operations (e.g. verification code).
 779 
 780 enum TosState {         // describes the tos cache contents
 781   btos = 0,             // byte, bool tos cached
 782   ztos = 1,             // byte, bool tos cached
 783   ctos = 2,             // char tos cached
 784   stos = 3,             // short tos cached
 785   itos = 4,             // int tos cached
 786   ltos = 5,             // long tos cached
 787   ftos = 6,             // float tos cached
 788   dtos = 7,             // double tos cached
 789   atos = 8,             // object cached
 790   vtos = 9,             // tos not cached,
 791   number_of_states,
 792   ilgl                  // illegal state: should not occur
 793 };
 794 
 795 
 796 inline TosState as_TosState(BasicType type) {
 797   switch (type) {
 798     case T_BYTE   : return btos;
 799     case T_BOOLEAN: return ztos;
 800     case T_CHAR   : return ctos;
 801     case T_SHORT  : return stos;
 802     case T_INT    : return itos;
 803     case T_LONG   : return ltos;
 804     case T_FLOAT  : return ftos;
 805     case T_DOUBLE : return dtos;
 806     case T_VOID   : return vtos;
 807     case T_VALUETYPE: // fall through
 808     case T_ARRAY  :   // fall through
 809     case T_OBJECT : return atos;
 810     default       : return ilgl;
 811   }
 812 }
 813 
 814 inline BasicType as_BasicType(TosState state) {
 815   switch (state) {
 816     case btos : return T_BYTE;
 817     case ztos : return T_BOOLEAN;
 818     case ctos : return T_CHAR;
 819     case stos : return T_SHORT;
 820     case itos : return T_INT;
 821     case ltos : return T_LONG;
 822     case ftos : return T_FLOAT;
 823     case dtos : return T_DOUBLE;
 824     case atos : return T_OBJECT;
 825     case vtos : return T_VOID;
 826     default   : return T_ILLEGAL;
 827   }
 828 }
 829 
 830 
 831 // Helper function to convert BasicType info into TosState
 832 // Note: Cannot define here as it uses global constant at the time being.
 833 TosState as_TosState(BasicType type);
 834 
 835 
 836 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 837 // information is needed by the safepoint code.
 838 //
 839 // There are 4 essential states:
 840 //
 841 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 842 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 843 //  _thread_in_vm       : Executing in the vm
 844 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 845 //
 846 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 847 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 848 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 849 //
 850 // Given a state, the xxxx_trans state can always be found by adding 1.
 851 //
 852 enum JavaThreadState {
 853   _thread_uninitialized     =  0, // should never happen (missing initialization)
 854   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 855   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 856   _thread_in_native         =  4, // running in native code
 857   _thread_in_native_trans   =  5, // corresponding transition state
 858   _thread_in_vm             =  6, // running in VM
 859   _thread_in_vm_trans       =  7, // corresponding transition state
 860   _thread_in_Java           =  8, // running in Java or in stub code
 861   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 862   _thread_blocked           = 10, // blocked in vm
 863   _thread_blocked_trans     = 11, // corresponding transition state
 864   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 865 };
 866 
 867 
 868 
 869 //----------------------------------------------------------------------------------------------------
 870 // 'Forward' declarations of frequently used classes
 871 // (in order to reduce interface dependencies & reduce
 872 // number of unnecessary compilations after changes)
 873 
 874 class ClassFileStream;
 875 
 876 class Event;
 877 
 878 class Thread;
 879 class  VMThread;
 880 class  JavaThread;
 881 class Threads;
 882 
 883 class VM_Operation;
 884 class VMOperationQueue;
 885 
 886 class CodeBlob;
 887 class  CompiledMethod;
 888 class   nmethod;
 889 class RuntimeBlob;
 890 class  OSRAdapter;
 891 class  I2CAdapter;
 892 class  C2IAdapter;
 893 class CompiledIC;
 894 class relocInfo;
 895 class ScopeDesc;
 896 class PcDesc;
 897 
 898 class Recompiler;
 899 class Recompilee;
 900 class RecompilationPolicy;
 901 class RFrame;
 902 class  CompiledRFrame;
 903 class  InterpretedRFrame;
 904 
 905 class vframe;
 906 class   javaVFrame;
 907 class     interpretedVFrame;
 908 class     compiledVFrame;
 909 class     deoptimizedVFrame;
 910 class   externalVFrame;
 911 class     entryVFrame;
 912 
 913 class RegisterMap;
 914 
 915 class Mutex;
 916 class Monitor;
 917 class BasicLock;
 918 class BasicObjectLock;
 919 
 920 class PeriodicTask;
 921 
 922 class JavaCallWrapper;
 923 
 924 class   oopDesc;
 925 class   metaDataOopDesc;
 926 
 927 class NativeCall;
 928 
 929 class zone;
 930 
 931 class StubQueue;
 932 
 933 class outputStream;
 934 
 935 class ResourceArea;
 936 
 937 class DebugInformationRecorder;
 938 class ScopeValue;
 939 class CompressedStream;
 940 class   DebugInfoReadStream;
 941 class   DebugInfoWriteStream;
 942 class LocationValue;
 943 class ConstantValue;
 944 class IllegalValue;
 945 
 946 class PrivilegedElement;
 947 class MonitorArray;
 948 
 949 class MonitorInfo;
 950 
 951 class OffsetClosure;
 952 class OopMapCache;
 953 class InterpreterOopMap;
 954 class OopMapCacheEntry;
 955 class OSThread;
 956 
 957 typedef int (*OSThreadStartFunc)(void*);
 958 
 959 class Space;
 960 
 961 class JavaValue;
 962 class methodHandle;
 963 class JavaCallArguments;
 964 
 965 //----------------------------------------------------------------------------------------------------
 966 // Special constants for debugging
 967 
 968 const jint     badInt           = -3;                       // generic "bad int" value
 969 const intptr_t badAddressVal    = -2;                       // generic "bad address" value
 970 const intptr_t badOopVal        = -1;                       // generic "bad oop" value
 971 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
 972 const int      badStackSegVal   = 0xCA;                     // value used to zap stack segments
 973 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
 974 const int      badResourceValue = 0xAB;                     // value used to zap resource area
 975 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
 976 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
 977 const juint    uninitMetaWordVal= 0xf7f7f7f7;               // value used to zap newly allocated metachunk
 978 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
 979 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
 980 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
 981 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
 982 
 983 
 984 // (These must be implemented as #defines because C++ compilers are
 985 // not obligated to inline non-integral constants!)
 986 #define       badAddress        ((address)::badAddressVal)
 987 #define       badOop            (cast_to_oop(::badOopVal))
 988 #define       badHeapWord       (::badHeapWordVal)
 989 
 990 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
 991 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
 992 
 993 //----------------------------------------------------------------------------------------------------
 994 // Utility functions for bitfield manipulations
 995 
 996 const intptr_t AllBits    = ~0; // all bits set in a word
 997 const intptr_t NoBits     =  0; // no bits set in a word
 998 const jlong    NoLongBits =  0; // no bits set in a long
 999 const intptr_t OneBit     =  1; // only right_most bit set in a word
1000 
1001 // get a word with the n.th or the right-most or left-most n bits set
1002 // (note: #define used only so that they can be used in enum constant definitions)
1003 #define nth_bit(n)        (((n) >= BitsPerWord) ? 0 : (OneBit << (n)))
1004 #define right_n_bits(n)   (nth_bit(n) - 1)
1005 #define left_n_bits(n)    (right_n_bits(n) << (((n) >= BitsPerWord) ? 0 : (BitsPerWord - (n))))
1006 
1007 // bit-operations using a mask m
1008 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
1009 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
1010 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
1011 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
1012 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
1013 
1014 // bit-operations using the n.th bit
1015 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
1016 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
1017 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1018 
1019 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1020 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1021   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1022 }
1023 
1024 
1025 //----------------------------------------------------------------------------------------------------
1026 // Utility functions for integers
1027 
1028 // Avoid use of global min/max macros which may cause unwanted double
1029 // evaluation of arguments.
1030 #ifdef max
1031 #undef max
1032 #endif
1033 
1034 #ifdef min
1035 #undef min
1036 #endif
1037 
1038 // The following defines serve the purpose of preventing use of accidentally
1039 // included min max macros from compiling, while continuing to allow innocent
1040 // min and max identifiers in the code to compile as intended.
1041 #define max max
1042 #define min min
1043 
1044 // It is necessary to use templates here. Having normal overloaded
1045 // functions does not work because it is necessary to provide both 32-
1046 // and 64-bit overloaded functions, which does not work, and having
1047 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1048 // will be even more error-prone than macros.
1049 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
1050 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
1051 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1052 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1053 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1054 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1055 
1056 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
1057 
1058 // true if x is a power of 2, false otherwise
1059 inline bool is_power_of_2(intptr_t x) {
1060   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
1061 }
1062 
1063 // long version of is_power_of_2
1064 inline bool is_power_of_2_long(jlong x) {
1065   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
1066 }
1067 
1068 // Returns largest i such that 2^i <= x.
1069 // If x < 0, the function returns 31 on a 32-bit machine and 63 on a 64-bit machine.
1070 // If x == 0, the function returns -1.
1071 inline int log2_intptr(intptr_t x) {
1072   int i = -1;
1073   uintptr_t p = 1;
1074   while (p != 0 && p <= (uintptr_t)x) {
1075     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1076     i++; p *= 2;
1077   }
1078   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1079   // If p = 0, overflow has occurred and i = 31 or i = 63 (depending on the machine word size).
1080   return i;
1081 }
1082 
1083 //* largest i such that 2^i <= x
1084 //  A negative value of 'x' will return '63'
1085 inline int log2_long(jlong x) {
1086   int i = -1;
1087   julong p =  1;
1088   while (p != 0 && p <= (julong)x) {
1089     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1090     i++; p *= 2;
1091   }
1092   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1093   // (if p = 0 then overflow occurred and i = 63)
1094   return i;
1095 }
1096 
1097 //* the argument must be exactly a power of 2
1098 inline int exact_log2(intptr_t x) {
1099   assert(is_power_of_2(x), "x must be a power of 2: " INTPTR_FORMAT, x);
1100   return log2_intptr(x);
1101 }
1102 
1103 // the argument doesn't need to be a power of two
1104 inline int upper_log2(intptr_t x) {
1105   int shift = log2_intptr(x);
1106   intptr_t y = 1 << shift;
1107   if (y < x) {
1108     shift++;
1109   }
1110   return shift;
1111 }
1112 
1113 //* the argument must be exactly a power of 2
1114 inline int exact_log2_long(jlong x) {
1115   assert(is_power_of_2_long(x), "x must be a power of 2: " JLONG_FORMAT, x);
1116   return log2_long(x);
1117 }
1118 
1119 inline bool is_odd (intx x) { return x & 1;      }
1120 inline bool is_even(intx x) { return !is_odd(x); }
1121 
1122 // "to" should be greater than "from."
1123 inline intx byte_size(void* from, void* to) {
1124   return (address)to - (address)from;
1125 }
1126 
1127 //----------------------------------------------------------------------------------------------------
1128 // Avoid non-portable casts with these routines (DEPRECATED)
1129 
1130 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1131 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1132 
1133 // Given sequence of four bytes, build into a 32-bit word
1134 // following the conventions used in class files.
1135 // On the 386, this could be realized with a simple address cast.
1136 //
1137 
1138 // This routine takes eight bytes:
1139 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1140   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1141        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1142        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1143        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1144        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1145        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1146        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1147        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1148 }
1149 
1150 // This routine takes four bytes:
1151 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1152   return  (( u4(c1) << 24 )  &  0xff000000)
1153        |  (( u4(c2) << 16 )  &  0x00ff0000)
1154        |  (( u4(c3) <<  8 )  &  0x0000ff00)
1155        |  (( u4(c4) <<  0 )  &  0x000000ff);
1156 }
1157 
1158 // And this one works if the four bytes are contiguous in memory:
1159 inline u4 build_u4_from( u1* p ) {
1160   return  build_u4_from( p[0], p[1], p[2], p[3] );
1161 }
1162 
1163 // Ditto for two-byte ints:
1164 inline u2 build_u2_from( u1 c1, u1 c2 ) {
1165   return  u2((( u2(c1) <<  8 )  &  0xff00)
1166           |  (( u2(c2) <<  0 )  &  0x00ff));
1167 }
1168 
1169 // And this one works if the two bytes are contiguous in memory:
1170 inline u2 build_u2_from( u1* p ) {
1171   return  build_u2_from( p[0], p[1] );
1172 }
1173 
1174 // Ditto for floats:
1175 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1176   u4 u = build_u4_from( c1, c2, c3, c4 );
1177   return  *(jfloat*)&u;
1178 }
1179 
1180 inline jfloat build_float_from( u1* p ) {
1181   u4 u = build_u4_from( p );
1182   return  *(jfloat*)&u;
1183 }
1184 
1185 
1186 // now (64-bit) longs
1187 
1188 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1189   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1190        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1191        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1192        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1193        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1194        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1195        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1196        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1197 }
1198 
1199 inline jlong build_long_from( u1* p ) {
1200   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1201 }
1202 
1203 
1204 // Doubles, too!
1205 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1206   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1207   return  *(jdouble*)&u;
1208 }
1209 
1210 inline jdouble build_double_from( u1* p ) {
1211   jlong u = build_long_from( p );
1212   return  *(jdouble*)&u;
1213 }
1214 
1215 
1216 // Portable routines to go the other way:
1217 
1218 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1219   c1 = u1(x >> 8);
1220   c2 = u1(x);
1221 }
1222 
1223 inline void explode_short_to( u2 x, u1* p ) {
1224   explode_short_to( x, p[0], p[1]);
1225 }
1226 
1227 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1228   c1 = u1(x >> 24);
1229   c2 = u1(x >> 16);
1230   c3 = u1(x >>  8);
1231   c4 = u1(x);
1232 }
1233 
1234 inline void explode_int_to( u4 x, u1* p ) {
1235   explode_int_to( x, p[0], p[1], p[2], p[3]);
1236 }
1237 
1238 
1239 // Pack and extract shorts to/from ints:
1240 
1241 inline int extract_low_short_from_int(jint x) {
1242   return x & 0xffff;
1243 }
1244 
1245 inline int extract_high_short_from_int(jint x) {
1246   return (x >> 16) & 0xffff;
1247 }
1248 
1249 inline int build_int_from_shorts( jushort low, jushort high ) {
1250   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1251 }
1252 
1253 // Convert pointer to intptr_t, for use in printing pointers.
1254 inline intptr_t p2i(const void * p) {
1255   return (intptr_t) p;
1256 }
1257 
1258 // swap a & b
1259 template<class T> static void swap(T& a, T& b) {
1260   T tmp = a;
1261   a = b;
1262   b = tmp;
1263 }
1264 
1265 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1266 
1267 //----------------------------------------------------------------------------------------------------
1268 // Sum and product which can never overflow: they wrap, just like the
1269 // Java operations.  Note that we don't intend these to be used for
1270 // general-purpose arithmetic: their purpose is to emulate Java
1271 // operations.
1272 
1273 // The goal of this code to avoid undefined or implementation-defined
1274 // behavior.  The use of an lvalue to reference cast is explicitly
1275 // permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
1276 // 15 in C++03]
1277 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
1278 inline TYPE NAME (TYPE in1, TYPE in2) {                 \
1279   UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1280   ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
1281   return reinterpret_cast<TYPE&>(ures);                 \
1282 }
1283 
1284 JAVA_INTEGER_OP(+, java_add, jint, juint)
1285 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1286 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1287 JAVA_INTEGER_OP(+, java_add, jlong, julong)
1288 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1289 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1290 
1291 #undef JAVA_INTEGER_OP
1292 
1293 // Dereference vptr
1294 // All C++ compilers that we know of have the vtbl pointer in the first
1295 // word.  If there are exceptions, this function needs to be made compiler
1296 // specific.
1297 static inline void* dereference_vptr(const void* addr) {
1298   return *(void**)addr;
1299 }
1300 
1301 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP