1 /* 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/symbolTable.hpp" 27 #include "classfile/systemDictionary.hpp" 28 #include "code/codeCache.hpp" 29 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp" 30 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp" 31 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp" 32 #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp" 33 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp" 34 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp" 35 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp" 36 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp" 37 #include "gc_implementation/parNew/parNewGeneration.hpp" 38 #include "gc_implementation/shared/collectorCounters.hpp" 39 #include "gc_implementation/shared/gcTimer.hpp" 40 #include "gc_implementation/shared/gcTrace.hpp" 41 #include "gc_implementation/shared/gcTraceTime.hpp" 42 #include "gc_implementation/shared/isGCActiveMark.hpp" 43 #include "gc_interface/collectedHeap.inline.hpp" 44 #include "memory/allocation.hpp" 45 #include "memory/cardTableRS.hpp" 46 #include "memory/collectorPolicy.hpp" 47 #include "memory/gcLocker.inline.hpp" 48 #include "memory/genCollectedHeap.hpp" 49 #include "memory/genMarkSweep.hpp" 50 #include "memory/genOopClosures.inline.hpp" 51 #include "memory/iterator.hpp" 52 #include "memory/referencePolicy.hpp" 53 #include "memory/resourceArea.hpp" 54 #include "oops/oop.inline.hpp" 55 #include "prims/jvmtiExport.hpp" 56 #include "runtime/globals_extension.hpp" 57 #include "runtime/handles.inline.hpp" 58 #include "runtime/java.hpp" 59 #include "runtime/vmThread.hpp" 60 #include "services/memoryService.hpp" 61 #include "services/runtimeService.hpp" 62 63 // statics 64 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL; 65 bool CMSCollector::_full_gc_requested = false; 66 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc; 67 68 ////////////////////////////////////////////////////////////////// 69 // In support of CMS/VM thread synchronization 70 ////////////////////////////////////////////////////////////////// 71 // We split use of the CGC_lock into 2 "levels". 72 // The low-level locking is of the usual CGC_lock monitor. We introduce 73 // a higher level "token" (hereafter "CMS token") built on top of the 74 // low level monitor (hereafter "CGC lock"). 75 // The token-passing protocol gives priority to the VM thread. The 76 // CMS-lock doesn't provide any fairness guarantees, but clients 77 // should ensure that it is only held for very short, bounded 78 // durations. 79 // 80 // When either of the CMS thread or the VM thread is involved in 81 // collection operations during which it does not want the other 82 // thread to interfere, it obtains the CMS token. 83 // 84 // If either thread tries to get the token while the other has 85 // it, that thread waits. However, if the VM thread and CMS thread 86 // both want the token, then the VM thread gets priority while the 87 // CMS thread waits. This ensures, for instance, that the "concurrent" 88 // phases of the CMS thread's work do not block out the VM thread 89 // for long periods of time as the CMS thread continues to hog 90 // the token. (See bug 4616232). 91 // 92 // The baton-passing functions are, however, controlled by the 93 // flags _foregroundGCShouldWait and _foregroundGCIsActive, 94 // and here the low-level CMS lock, not the high level token, 95 // ensures mutual exclusion. 96 // 97 // Two important conditions that we have to satisfy: 98 // 1. if a thread does a low-level wait on the CMS lock, then it 99 // relinquishes the CMS token if it were holding that token 100 // when it acquired the low-level CMS lock. 101 // 2. any low-level notifications on the low-level lock 102 // should only be sent when a thread has relinquished the token. 103 // 104 // In the absence of either property, we'd have potential deadlock. 105 // 106 // We protect each of the CMS (concurrent and sequential) phases 107 // with the CMS _token_, not the CMS _lock_. 108 // 109 // The only code protected by CMS lock is the token acquisition code 110 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the 111 // baton-passing code. 112 // 113 // Unfortunately, i couldn't come up with a good abstraction to factor and 114 // hide the naked CGC_lock manipulation in the baton-passing code 115 // further below. That's something we should try to do. Also, the proof 116 // of correctness of this 2-level locking scheme is far from obvious, 117 // and potentially quite slippery. We have an uneasy supsicion, for instance, 118 // that there may be a theoretical possibility of delay/starvation in the 119 // low-level lock/wait/notify scheme used for the baton-passing because of 120 // potential intereference with the priority scheme embodied in the 121 // CMS-token-passing protocol. See related comments at a CGC_lock->wait() 122 // invocation further below and marked with "XXX 20011219YSR". 123 // Indeed, as we note elsewhere, this may become yet more slippery 124 // in the presence of multiple CMS and/or multiple VM threads. XXX 125 126 class CMSTokenSync: public StackObj { 127 private: 128 bool _is_cms_thread; 129 public: 130 CMSTokenSync(bool is_cms_thread): 131 _is_cms_thread(is_cms_thread) { 132 assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(), 133 "Incorrect argument to constructor"); 134 ConcurrentMarkSweepThread::synchronize(_is_cms_thread); 135 } 136 137 ~CMSTokenSync() { 138 assert(_is_cms_thread ? 139 ConcurrentMarkSweepThread::cms_thread_has_cms_token() : 140 ConcurrentMarkSweepThread::vm_thread_has_cms_token(), 141 "Incorrect state"); 142 ConcurrentMarkSweepThread::desynchronize(_is_cms_thread); 143 } 144 }; 145 146 // Convenience class that does a CMSTokenSync, and then acquires 147 // upto three locks. 148 class CMSTokenSyncWithLocks: public CMSTokenSync { 149 private: 150 // Note: locks are acquired in textual declaration order 151 // and released in the opposite order 152 MutexLockerEx _locker1, _locker2, _locker3; 153 public: 154 CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1, 155 Mutex* mutex2 = NULL, Mutex* mutex3 = NULL): 156 CMSTokenSync(is_cms_thread), 157 _locker1(mutex1, Mutex::_no_safepoint_check_flag), 158 _locker2(mutex2, Mutex::_no_safepoint_check_flag), 159 _locker3(mutex3, Mutex::_no_safepoint_check_flag) 160 { } 161 }; 162 163 164 // Wrapper class to temporarily disable icms during a foreground cms collection. 165 class ICMSDisabler: public StackObj { 166 public: 167 // The ctor disables icms and wakes up the thread so it notices the change; 168 // the dtor re-enables icms. Note that the CMSCollector methods will check 169 // CMSIncrementalMode. 170 ICMSDisabler() { CMSCollector::disable_icms(); CMSCollector::start_icms(); } 171 ~ICMSDisabler() { CMSCollector::enable_icms(); } 172 }; 173 174 ////////////////////////////////////////////////////////////////// 175 // Concurrent Mark-Sweep Generation ///////////////////////////// 176 ////////////////////////////////////////////////////////////////// 177 178 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;) 179 180 // This struct contains per-thread things necessary to support parallel 181 // young-gen collection. 182 class CMSParGCThreadState: public CHeapObj<mtGC> { 183 public: 184 CFLS_LAB lab; 185 PromotionInfo promo; 186 187 // Constructor. 188 CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) { 189 promo.setSpace(cfls); 190 } 191 }; 192 193 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration( 194 ReservedSpace rs, size_t initial_byte_size, int level, 195 CardTableRS* ct, bool use_adaptive_freelists, 196 FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) : 197 CardGeneration(rs, initial_byte_size, level, ct), 198 _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))), 199 _debug_collection_type(Concurrent_collection_type) 200 { 201 HeapWord* bottom = (HeapWord*) _virtual_space.low(); 202 HeapWord* end = (HeapWord*) _virtual_space.high(); 203 204 _direct_allocated_words = 0; 205 NOT_PRODUCT( 206 _numObjectsPromoted = 0; 207 _numWordsPromoted = 0; 208 _numObjectsAllocated = 0; 209 _numWordsAllocated = 0; 210 ) 211 212 _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end), 213 use_adaptive_freelists, 214 dictionaryChoice); 215 NOT_PRODUCT(debug_cms_space = _cmsSpace;) 216 if (_cmsSpace == NULL) { 217 vm_exit_during_initialization( 218 "CompactibleFreeListSpace allocation failure"); 219 } 220 _cmsSpace->_gen = this; 221 222 _gc_stats = new CMSGCStats(); 223 224 // Verify the assumption that FreeChunk::_prev and OopDesc::_klass 225 // offsets match. The ability to tell free chunks from objects 226 // depends on this property. 227 debug_only( 228 FreeChunk* junk = NULL; 229 assert(UseCompressedOops || 230 junk->prev_addr() == (void*)(oop(junk)->klass_addr()), 231 "Offset of FreeChunk::_prev within FreeChunk must match" 232 " that of OopDesc::_klass within OopDesc"); 233 ) 234 if (CollectedHeap::use_parallel_gc_threads()) { 235 typedef CMSParGCThreadState* CMSParGCThreadStatePtr; 236 _par_gc_thread_states = 237 NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads, mtGC); 238 if (_par_gc_thread_states == NULL) { 239 vm_exit_during_initialization("Could not allocate par gc structs"); 240 } 241 for (uint i = 0; i < ParallelGCThreads; i++) { 242 _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace()); 243 if (_par_gc_thread_states[i] == NULL) { 244 vm_exit_during_initialization("Could not allocate par gc structs"); 245 } 246 } 247 } else { 248 _par_gc_thread_states = NULL; 249 } 250 _incremental_collection_failed = false; 251 // The "dilatation_factor" is the expansion that can occur on 252 // account of the fact that the minimum object size in the CMS 253 // generation may be larger than that in, say, a contiguous young 254 // generation. 255 // Ideally, in the calculation below, we'd compute the dilatation 256 // factor as: MinChunkSize/(promoting_gen's min object size) 257 // Since we do not have such a general query interface for the 258 // promoting generation, we'll instead just use the mimimum 259 // object size (which today is a header's worth of space); 260 // note that all arithmetic is in units of HeapWords. 261 assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking"); 262 assert(_dilatation_factor >= 1.0, "from previous assert"); 263 } 264 265 266 // The field "_initiating_occupancy" represents the occupancy percentage 267 // at which we trigger a new collection cycle. Unless explicitly specified 268 // via CMSInitiating[Perm]OccupancyFraction (argument "io" below), it 269 // is calculated by: 270 // 271 // Let "f" be MinHeapFreeRatio in 272 // 273 // _intiating_occupancy = 100-f + 274 // f * (CMSTrigger[Perm]Ratio/100) 275 // where CMSTrigger[Perm]Ratio is the argument "tr" below. 276 // 277 // That is, if we assume the heap is at its desired maximum occupancy at the 278 // end of a collection, we let CMSTrigger[Perm]Ratio of the (purported) free 279 // space be allocated before initiating a new collection cycle. 280 // 281 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, intx tr) { 282 assert(io <= 100 && tr >= 0 && tr <= 100, "Check the arguments"); 283 if (io >= 0) { 284 _initiating_occupancy = (double)io / 100.0; 285 } else { 286 _initiating_occupancy = ((100 - MinHeapFreeRatio) + 287 (double)(tr * MinHeapFreeRatio) / 100.0) 288 / 100.0; 289 } 290 } 291 292 void ConcurrentMarkSweepGeneration::ref_processor_init() { 293 assert(collector() != NULL, "no collector"); 294 collector()->ref_processor_init(); 295 } 296 297 void CMSCollector::ref_processor_init() { 298 if (_ref_processor == NULL) { 299 // Allocate and initialize a reference processor 300 _ref_processor = 301 new ReferenceProcessor(_span, // span 302 (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing 303 (int) ParallelGCThreads, // mt processing degree 304 _cmsGen->refs_discovery_is_mt(), // mt discovery 305 (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree 306 _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic 307 &_is_alive_closure, // closure for liveness info 308 false); // next field updates do not need write barrier 309 // Initialize the _ref_processor field of CMSGen 310 _cmsGen->set_ref_processor(_ref_processor); 311 312 // Allocate a dummy ref processor for perm gen. 313 ReferenceProcessor* rp2 = new ReferenceProcessor(); 314 if (rp2 == NULL) { 315 vm_exit_during_initialization("Could not allocate ReferenceProcessor object"); 316 } 317 _permGen->set_ref_processor(rp2); 318 } 319 } 320 321 CMSAdaptiveSizePolicy* CMSCollector::size_policy() { 322 GenCollectedHeap* gch = GenCollectedHeap::heap(); 323 assert(gch->kind() == CollectedHeap::GenCollectedHeap, 324 "Wrong type of heap"); 325 CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*) 326 gch->gen_policy()->size_policy(); 327 assert(sp->is_gc_cms_adaptive_size_policy(), 328 "Wrong type of size policy"); 329 return sp; 330 } 331 332 CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() { 333 CMSGCAdaptivePolicyCounters* results = 334 (CMSGCAdaptivePolicyCounters*) collector_policy()->counters(); 335 assert( 336 results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind, 337 "Wrong gc policy counter kind"); 338 return results; 339 } 340 341 342 void ConcurrentMarkSweepGeneration::initialize_performance_counters() { 343 344 const char* gen_name = "old"; 345 346 // Generation Counters - generation 1, 1 subspace 347 _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space); 348 349 _space_counters = new GSpaceCounters(gen_name, 0, 350 _virtual_space.reserved_size(), 351 this, _gen_counters); 352 } 353 354 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha): 355 _cms_gen(cms_gen) 356 { 357 assert(alpha <= 100, "bad value"); 358 _saved_alpha = alpha; 359 360 // Initialize the alphas to the bootstrap value of 100. 361 _gc0_alpha = _cms_alpha = 100; 362 363 _cms_begin_time.update(); 364 _cms_end_time.update(); 365 366 _gc0_duration = 0.0; 367 _gc0_period = 0.0; 368 _gc0_promoted = 0; 369 370 _cms_duration = 0.0; 371 _cms_period = 0.0; 372 _cms_allocated = 0; 373 374 _cms_used_at_gc0_begin = 0; 375 _cms_used_at_gc0_end = 0; 376 _allow_duty_cycle_reduction = false; 377 _valid_bits = 0; 378 _icms_duty_cycle = CMSIncrementalDutyCycle; 379 } 380 381 double CMSStats::cms_free_adjustment_factor(size_t free) const { 382 // TBD: CR 6909490 383 return 1.0; 384 } 385 386 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) { 387 } 388 389 // If promotion failure handling is on use 390 // the padded average size of the promotion for each 391 // young generation collection. 392 double CMSStats::time_until_cms_gen_full() const { 393 size_t cms_free = _cms_gen->cmsSpace()->free(); 394 GenCollectedHeap* gch = GenCollectedHeap::heap(); 395 size_t expected_promotion = MIN2(gch->get_gen(0)->capacity(), 396 (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average()); 397 if (cms_free > expected_promotion) { 398 // Start a cms collection if there isn't enough space to promote 399 // for the next minor collection. Use the padded average as 400 // a safety factor. 401 cms_free -= expected_promotion; 402 403 // Adjust by the safety factor. 404 double cms_free_dbl = (double)cms_free; 405 double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0; 406 // Apply a further correction factor which tries to adjust 407 // for recent occurance of concurrent mode failures. 408 cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free); 409 cms_free_dbl = cms_free_dbl * cms_adjustment; 410 411 if (PrintGCDetails && Verbose) { 412 gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free " 413 SIZE_FORMAT " expected_promotion " SIZE_FORMAT, 414 cms_free, expected_promotion); 415 gclog_or_tty->print_cr(" cms_free_dbl %f cms_consumption_rate %f", 416 cms_free_dbl, cms_consumption_rate() + 1.0); 417 } 418 // Add 1 in case the consumption rate goes to zero. 419 return cms_free_dbl / (cms_consumption_rate() + 1.0); 420 } 421 return 0.0; 422 } 423 424 // Compare the duration of the cms collection to the 425 // time remaining before the cms generation is empty. 426 // Note that the time from the start of the cms collection 427 // to the start of the cms sweep (less than the total 428 // duration of the cms collection) can be used. This 429 // has been tried and some applications experienced 430 // promotion failures early in execution. This was 431 // possibly because the averages were not accurate 432 // enough at the beginning. 433 double CMSStats::time_until_cms_start() const { 434 // We add "gc0_period" to the "work" calculation 435 // below because this query is done (mostly) at the 436 // end of a scavenge, so we need to conservatively 437 // account for that much possible delay 438 // in the query so as to avoid concurrent mode failures 439 // due to starting the collection just a wee bit too 440 // late. 441 double work = cms_duration() + gc0_period(); 442 double deadline = time_until_cms_gen_full(); 443 // If a concurrent mode failure occurred recently, we want to be 444 // more conservative and halve our expected time_until_cms_gen_full() 445 if (work > deadline) { 446 if (Verbose && PrintGCDetails) { 447 gclog_or_tty->print( 448 " CMSCollector: collect because of anticipated promotion " 449 "before full %3.7f + %3.7f > %3.7f ", cms_duration(), 450 gc0_period(), time_until_cms_gen_full()); 451 } 452 return 0.0; 453 } 454 return work - deadline; 455 } 456 457 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the 458 // amount of change to prevent wild oscillation. 459 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle, 460 unsigned int new_duty_cycle) { 461 assert(old_duty_cycle <= 100, "bad input value"); 462 assert(new_duty_cycle <= 100, "bad input value"); 463 464 // Note: use subtraction with caution since it may underflow (values are 465 // unsigned). Addition is safe since we're in the range 0-100. 466 unsigned int damped_duty_cycle = new_duty_cycle; 467 if (new_duty_cycle < old_duty_cycle) { 468 const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U); 469 if (new_duty_cycle + largest_delta < old_duty_cycle) { 470 damped_duty_cycle = old_duty_cycle - largest_delta; 471 } 472 } else if (new_duty_cycle > old_duty_cycle) { 473 const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U); 474 if (new_duty_cycle > old_duty_cycle + largest_delta) { 475 damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U); 476 } 477 } 478 assert(damped_duty_cycle <= 100, "invalid duty cycle computed"); 479 480 if (CMSTraceIncrementalPacing) { 481 gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ", 482 old_duty_cycle, new_duty_cycle, damped_duty_cycle); 483 } 484 return damped_duty_cycle; 485 } 486 487 unsigned int CMSStats::icms_update_duty_cycle_impl() { 488 assert(CMSIncrementalPacing && valid(), 489 "should be handled in icms_update_duty_cycle()"); 490 491 double cms_time_so_far = cms_timer().seconds(); 492 double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M; 493 double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far); 494 495 // Avoid division by 0. 496 double time_until_full = MAX2(time_until_cms_gen_full(), 0.01); 497 double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full; 498 499 unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U); 500 if (new_duty_cycle > _icms_duty_cycle) { 501 // Avoid very small duty cycles (1 or 2); 0 is allowed. 502 if (new_duty_cycle > 2) { 503 _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, 504 new_duty_cycle); 505 } 506 } else if (_allow_duty_cycle_reduction) { 507 // The duty cycle is reduced only once per cms cycle (see record_cms_end()). 508 new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle); 509 // Respect the minimum duty cycle. 510 unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin; 511 _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle); 512 } 513 514 if (PrintGCDetails || CMSTraceIncrementalPacing) { 515 gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle); 516 } 517 518 _allow_duty_cycle_reduction = false; 519 return _icms_duty_cycle; 520 } 521 522 #ifndef PRODUCT 523 void CMSStats::print_on(outputStream *st) const { 524 st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha); 525 st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT, 526 gc0_duration(), gc0_period(), gc0_promoted()); 527 st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT, 528 cms_duration(), cms_duration_per_mb(), 529 cms_period(), cms_allocated()); 530 st->print(",cms_since_beg=%g,cms_since_end=%g", 531 cms_time_since_begin(), cms_time_since_end()); 532 st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT, 533 _cms_used_at_gc0_begin, _cms_used_at_gc0_end); 534 if (CMSIncrementalMode) { 535 st->print(",dc=%d", icms_duty_cycle()); 536 } 537 538 if (valid()) { 539 st->print(",promo_rate=%g,cms_alloc_rate=%g", 540 promotion_rate(), cms_allocation_rate()); 541 st->print(",cms_consumption_rate=%g,time_until_full=%g", 542 cms_consumption_rate(), time_until_cms_gen_full()); 543 } 544 st->print(" "); 545 } 546 #endif // #ifndef PRODUCT 547 548 CMSCollector::CollectorState CMSCollector::_collectorState = 549 CMSCollector::Idling; 550 bool CMSCollector::_foregroundGCIsActive = false; 551 bool CMSCollector::_foregroundGCShouldWait = false; 552 553 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen, 554 ConcurrentMarkSweepGeneration* permGen, 555 CardTableRS* ct, 556 ConcurrentMarkSweepPolicy* cp): 557 _cmsGen(cmsGen), 558 _permGen(permGen), 559 _ct(ct), 560 _ref_processor(NULL), // will be set later 561 _conc_workers(NULL), // may be set later 562 _abort_preclean(false), 563 _start_sampling(false), 564 _between_prologue_and_epilogue(false), 565 _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"), 566 _perm_gen_verify_bit_map(0, -1 /* no mutex */, "No_lock"), 567 _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize), 568 -1 /* lock-free */, "No_lock" /* dummy */), 569 _modUnionClosure(&_modUnionTable), 570 _modUnionClosurePar(&_modUnionTable), 571 // Adjust my span to cover old (cms) gen and perm gen 572 _span(cmsGen->reserved()._union(permGen->reserved())), 573 // Construct the is_alive_closure with _span & markBitMap 574 _is_alive_closure(_span, &_markBitMap), 575 _restart_addr(NULL), 576 _overflow_list(NULL), 577 _stats(cmsGen), 578 _eden_chunk_array(NULL), // may be set in ctor body 579 _eden_chunk_capacity(0), // -- ditto -- 580 _eden_chunk_index(0), // -- ditto -- 581 _survivor_plab_array(NULL), // -- ditto -- 582 _survivor_chunk_array(NULL), // -- ditto -- 583 _survivor_chunk_capacity(0), // -- ditto -- 584 _survivor_chunk_index(0), // -- ditto -- 585 _ser_pmc_preclean_ovflw(0), 586 _ser_kac_preclean_ovflw(0), 587 _ser_pmc_remark_ovflw(0), 588 _par_pmc_remark_ovflw(0), 589 _ser_kac_ovflw(0), 590 _par_kac_ovflw(0), 591 #ifndef PRODUCT 592 _num_par_pushes(0), 593 #endif 594 _collection_count_start(0), 595 _verifying(false), 596 _icms_start_limit(NULL), 597 _icms_stop_limit(NULL), 598 _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"), 599 _completed_initialization(false), 600 _collector_policy(cp), 601 _should_unload_classes(false), 602 _concurrent_cycles_since_last_unload(0), 603 _roots_scanning_options(0), 604 _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding), 605 _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding), 606 _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()), 607 _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()), 608 _cms_start_registered(false) 609 { 610 if (ExplicitGCInvokesConcurrentAndUnloadsClasses) { 611 ExplicitGCInvokesConcurrent = true; 612 } 613 // Now expand the span and allocate the collection support structures 614 // (MUT, marking bit map etc.) to cover both generations subject to 615 // collection. 616 617 // First check that _permGen is adjacent to _cmsGen and above it. 618 assert( _cmsGen->reserved().word_size() > 0 619 && _permGen->reserved().word_size() > 0, 620 "generations should not be of zero size"); 621 assert(_cmsGen->reserved().intersection(_permGen->reserved()).is_empty(), 622 "_cmsGen and _permGen should not overlap"); 623 assert(_cmsGen->reserved().end() == _permGen->reserved().start(), 624 "_cmsGen->end() different from _permGen->start()"); 625 626 // For use by dirty card to oop closures. 627 _cmsGen->cmsSpace()->set_collector(this); 628 _permGen->cmsSpace()->set_collector(this); 629 630 // Allocate MUT and marking bit map 631 { 632 MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag); 633 if (!_markBitMap.allocate(_span)) { 634 warning("Failed to allocate CMS Bit Map"); 635 return; 636 } 637 assert(_markBitMap.covers(_span), "_markBitMap inconsistency?"); 638 } 639 { 640 _modUnionTable.allocate(_span); 641 assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?"); 642 } 643 644 if (!_markStack.allocate(MarkStackSize)) { 645 warning("Failed to allocate CMS Marking Stack"); 646 return; 647 } 648 if (!_revisitStack.allocate(CMSRevisitStackSize)) { 649 warning("Failed to allocate CMS Revisit Stack"); 650 return; 651 } 652 653 // Support for multi-threaded concurrent phases 654 if (CMSConcurrentMTEnabled) { 655 if (FLAG_IS_DEFAULT(ConcGCThreads)) { 656 // just for now 657 FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4); 658 } 659 if (ConcGCThreads > 1) { 660 _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads", 661 ConcGCThreads, true); 662 if (_conc_workers == NULL) { 663 warning("GC/CMS: _conc_workers allocation failure: " 664 "forcing -CMSConcurrentMTEnabled"); 665 CMSConcurrentMTEnabled = false; 666 } else { 667 _conc_workers->initialize_workers(); 668 } 669 } else { 670 CMSConcurrentMTEnabled = false; 671 } 672 } 673 if (!CMSConcurrentMTEnabled) { 674 ConcGCThreads = 0; 675 } else { 676 // Turn off CMSCleanOnEnter optimization temporarily for 677 // the MT case where it's not fixed yet; see 6178663. 678 CMSCleanOnEnter = false; 679 } 680 assert((_conc_workers != NULL) == (ConcGCThreads > 1), 681 "Inconsistency"); 682 683 // Parallel task queues; these are shared for the 684 // concurrent and stop-world phases of CMS, but 685 // are not shared with parallel scavenge (ParNew). 686 { 687 uint i; 688 uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads); 689 690 if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled 691 || ParallelRefProcEnabled) 692 && num_queues > 0) { 693 _task_queues = new OopTaskQueueSet(num_queues); 694 if (_task_queues == NULL) { 695 warning("task_queues allocation failure."); 696 return; 697 } 698 _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC); 699 if (_hash_seed == NULL) { 700 warning("_hash_seed array allocation failure"); 701 return; 702 } 703 704 typedef Padded<OopTaskQueue> PaddedOopTaskQueue; 705 for (i = 0; i < num_queues; i++) { 706 PaddedOopTaskQueue *q = new PaddedOopTaskQueue(); 707 if (q == NULL) { 708 warning("work_queue allocation failure."); 709 return; 710 } 711 _task_queues->register_queue(i, q); 712 } 713 for (i = 0; i < num_queues; i++) { 714 _task_queues->queue(i)->initialize(); 715 _hash_seed[i] = 17; // copied from ParNew 716 } 717 } 718 } 719 720 _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio); 721 _permGen->init_initiating_occupancy(CMSInitiatingPermOccupancyFraction, CMSTriggerPermRatio); 722 723 // Clip CMSBootstrapOccupancy between 0 and 100. 724 _bootstrap_occupancy = ((double)MIN2((uintx)100, MAX2((uintx)0, CMSBootstrapOccupancy))) 725 /(double)100; 726 727 _full_gcs_since_conc_gc = 0; 728 729 // Now tell CMS generations the identity of their collector 730 ConcurrentMarkSweepGeneration::set_collector(this); 731 732 // Create & start a CMS thread for this CMS collector 733 _cmsThread = ConcurrentMarkSweepThread::start(this); 734 assert(cmsThread() != NULL, "CMS Thread should have been created"); 735 assert(cmsThread()->collector() == this, 736 "CMS Thread should refer to this gen"); 737 assert(CGC_lock != NULL, "Where's the CGC_lock?"); 738 739 // Support for parallelizing young gen rescan 740 GenCollectedHeap* gch = GenCollectedHeap::heap(); 741 _young_gen = gch->prev_gen(_cmsGen); 742 if (gch->supports_inline_contig_alloc()) { 743 _top_addr = gch->top_addr(); 744 _end_addr = gch->end_addr(); 745 assert(_young_gen != NULL, "no _young_gen"); 746 _eden_chunk_index = 0; 747 _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain; 748 _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC); 749 if (_eden_chunk_array == NULL) { 750 _eden_chunk_capacity = 0; 751 warning("GC/CMS: _eden_chunk_array allocation failure"); 752 } 753 } 754 assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error"); 755 756 // Support for parallelizing survivor space rescan 757 if (CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) { 758 const size_t max_plab_samples = 759 ((DefNewGeneration*)_young_gen)->max_survivor_size()/MinTLABSize; 760 761 _survivor_plab_array = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC); 762 _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples, mtGC); 763 _cursor = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC); 764 if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL 765 || _cursor == NULL) { 766 warning("Failed to allocate survivor plab/chunk array"); 767 if (_survivor_plab_array != NULL) { 768 FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC); 769 _survivor_plab_array = NULL; 770 } 771 if (_survivor_chunk_array != NULL) { 772 FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC); 773 _survivor_chunk_array = NULL; 774 } 775 if (_cursor != NULL) { 776 FREE_C_HEAP_ARRAY(size_t, _cursor, mtGC); 777 _cursor = NULL; 778 } 779 } else { 780 _survivor_chunk_capacity = 2*max_plab_samples; 781 for (uint i = 0; i < ParallelGCThreads; i++) { 782 HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC); 783 if (vec == NULL) { 784 warning("Failed to allocate survivor plab array"); 785 for (int j = i; j > 0; j--) { 786 FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array(), mtGC); 787 } 788 FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC); 789 FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC); 790 _survivor_plab_array = NULL; 791 _survivor_chunk_array = NULL; 792 _survivor_chunk_capacity = 0; 793 break; 794 } else { 795 ChunkArray* cur = 796 ::new (&_survivor_plab_array[i]) ChunkArray(vec, 797 max_plab_samples); 798 assert(cur->end() == 0, "Should be 0"); 799 assert(cur->array() == vec, "Should be vec"); 800 assert(cur->capacity() == max_plab_samples, "Error"); 801 } 802 } 803 } 804 } 805 assert( ( _survivor_plab_array != NULL 806 && _survivor_chunk_array != NULL) 807 || ( _survivor_chunk_capacity == 0 808 && _survivor_chunk_index == 0), 809 "Error"); 810 811 // Choose what strong roots should be scanned depending on verification options 812 // and perm gen collection mode. 813 if (!CMSClassUnloadingEnabled) { 814 // If class unloading is disabled we want to include all classes into the root set. 815 add_root_scanning_option(SharedHeap::SO_AllClasses); 816 } else { 817 add_root_scanning_option(SharedHeap::SO_SystemClasses); 818 } 819 820 NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;) 821 _gc_counters = new CollectorCounters("CMS", 1); 822 _completed_initialization = true; 823 _inter_sweep_timer.start(); // start of time 824 } 825 826 const char* ConcurrentMarkSweepGeneration::name() const { 827 return "concurrent mark-sweep generation"; 828 } 829 void ConcurrentMarkSweepGeneration::update_counters() { 830 if (UsePerfData) { 831 _space_counters->update_all(); 832 _gen_counters->update_all(); 833 } 834 } 835 836 // this is an optimized version of update_counters(). it takes the 837 // used value as a parameter rather than computing it. 838 // 839 void ConcurrentMarkSweepGeneration::update_counters(size_t used) { 840 if (UsePerfData) { 841 _space_counters->update_used(used); 842 _space_counters->update_capacity(); 843 _gen_counters->update_all(); 844 } 845 } 846 847 void ConcurrentMarkSweepGeneration::print() const { 848 Generation::print(); 849 cmsSpace()->print(); 850 } 851 852 #ifndef PRODUCT 853 void ConcurrentMarkSweepGeneration::print_statistics() { 854 cmsSpace()->printFLCensus(0); 855 } 856 #endif 857 858 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) { 859 GenCollectedHeap* gch = GenCollectedHeap::heap(); 860 if (PrintGCDetails) { 861 if (Verbose) { 862 gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]", 863 level(), short_name(), s, used(), capacity()); 864 } else { 865 gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]", 866 level(), short_name(), s, used() / K, capacity() / K); 867 } 868 } 869 if (Verbose) { 870 gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")", 871 gch->used(), gch->capacity()); 872 } else { 873 gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)", 874 gch->used() / K, gch->capacity() / K); 875 } 876 } 877 878 size_t 879 ConcurrentMarkSweepGeneration::contiguous_available() const { 880 // dld proposes an improvement in precision here. If the committed 881 // part of the space ends in a free block we should add that to 882 // uncommitted size in the calculation below. Will make this 883 // change later, staying with the approximation below for the 884 // time being. -- ysr. 885 return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc()); 886 } 887 888 size_t 889 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const { 890 return _cmsSpace->max_alloc_in_words() * HeapWordSize; 891 } 892 893 size_t ConcurrentMarkSweepGeneration::max_available() const { 894 return free() + _virtual_space.uncommitted_size(); 895 } 896 897 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const { 898 size_t available = max_available(); 899 size_t av_promo = (size_t)gc_stats()->avg_promoted()->padded_average(); 900 bool res = (available >= av_promo) || (available >= max_promotion_in_bytes); 901 if (Verbose && PrintGCDetails) { 902 gclog_or_tty->print_cr( 903 "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT")," 904 "max_promo("SIZE_FORMAT")", 905 res? "":" not", available, res? ">=":"<", 906 av_promo, max_promotion_in_bytes); 907 } 908 return res; 909 } 910 911 // At a promotion failure dump information on block layout in heap 912 // (cms old generation). 913 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() { 914 if (CMSDumpAtPromotionFailure) { 915 cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty); 916 } 917 } 918 919 CompactibleSpace* 920 ConcurrentMarkSweepGeneration::first_compaction_space() const { 921 return _cmsSpace; 922 } 923 924 void ConcurrentMarkSweepGeneration::reset_after_compaction() { 925 // Clear the promotion information. These pointers can be adjusted 926 // along with all the other pointers into the heap but 927 // compaction is expected to be a rare event with 928 // a heap using cms so don't do it without seeing the need. 929 if (CollectedHeap::use_parallel_gc_threads()) { 930 for (uint i = 0; i < ParallelGCThreads; i++) { 931 _par_gc_thread_states[i]->promo.reset(); 932 } 933 } 934 } 935 936 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) { 937 blk->do_space(_cmsSpace); 938 } 939 940 void ConcurrentMarkSweepGeneration::compute_new_size() { 941 assert_locked_or_safepoint(Heap_lock); 942 943 // If incremental collection failed, we just want to expand 944 // to the limit. 945 if (incremental_collection_failed()) { 946 clear_incremental_collection_failed(); 947 grow_to_reserved(); 948 return; 949 } 950 951 size_t expand_bytes = 0; 952 double free_percentage = ((double) free()) / capacity(); 953 double desired_free_percentage = (double) MinHeapFreeRatio / 100; 954 double maximum_free_percentage = (double) MaxHeapFreeRatio / 100; 955 956 // compute expansion delta needed for reaching desired free percentage 957 if (free_percentage < desired_free_percentage) { 958 size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage)); 959 assert(desired_capacity >= capacity(), "invalid expansion size"); 960 expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes); 961 } 962 if (expand_bytes > 0) { 963 if (PrintGCDetails && Verbose) { 964 size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage)); 965 gclog_or_tty->print_cr("\nFrom compute_new_size: "); 966 gclog_or_tty->print_cr(" Free fraction %f", free_percentage); 967 gclog_or_tty->print_cr(" Desired free fraction %f", 968 desired_free_percentage); 969 gclog_or_tty->print_cr(" Maximum free fraction %f", 970 maximum_free_percentage); 971 gclog_or_tty->print_cr(" Capactiy "SIZE_FORMAT, capacity()/1000); 972 gclog_or_tty->print_cr(" Desired capacity "SIZE_FORMAT, 973 desired_capacity/1000); 974 int prev_level = level() - 1; 975 if (prev_level >= 0) { 976 size_t prev_size = 0; 977 GenCollectedHeap* gch = GenCollectedHeap::heap(); 978 Generation* prev_gen = gch->_gens[prev_level]; 979 prev_size = prev_gen->capacity(); 980 gclog_or_tty->print_cr(" Younger gen size "SIZE_FORMAT, 981 prev_size/1000); 982 } 983 gclog_or_tty->print_cr(" unsafe_max_alloc_nogc "SIZE_FORMAT, 984 unsafe_max_alloc_nogc()/1000); 985 gclog_or_tty->print_cr(" contiguous available "SIZE_FORMAT, 986 contiguous_available()/1000); 987 gclog_or_tty->print_cr(" Expand by "SIZE_FORMAT" (bytes)", 988 expand_bytes); 989 } 990 // safe if expansion fails 991 expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio); 992 if (PrintGCDetails && Verbose) { 993 gclog_or_tty->print_cr(" Expanded free fraction %f", 994 ((double) free()) / capacity()); 995 } 996 } 997 } 998 999 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const { 1000 return cmsSpace()->freelistLock(); 1001 } 1002 1003 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, 1004 bool tlab) { 1005 CMSSynchronousYieldRequest yr; 1006 MutexLockerEx x(freelistLock(), 1007 Mutex::_no_safepoint_check_flag); 1008 return have_lock_and_allocate(size, tlab); 1009 } 1010 1011 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size, 1012 bool tlab /* ignored */) { 1013 assert_lock_strong(freelistLock()); 1014 size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size); 1015 HeapWord* res = cmsSpace()->allocate(adjustedSize); 1016 // Allocate the object live (grey) if the background collector has 1017 // started marking. This is necessary because the marker may 1018 // have passed this address and consequently this object will 1019 // not otherwise be greyed and would be incorrectly swept up. 1020 // Note that if this object contains references, the writing 1021 // of those references will dirty the card containing this object 1022 // allowing the object to be blackened (and its references scanned) 1023 // either during a preclean phase or at the final checkpoint. 1024 if (res != NULL) { 1025 // We may block here with an uninitialized object with 1026 // its mark-bit or P-bits not yet set. Such objects need 1027 // to be safely navigable by block_start(). 1028 assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here."); 1029 assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size"); 1030 collector()->direct_allocated(res, adjustedSize); 1031 _direct_allocated_words += adjustedSize; 1032 // allocation counters 1033 NOT_PRODUCT( 1034 _numObjectsAllocated++; 1035 _numWordsAllocated += (int)adjustedSize; 1036 ) 1037 } 1038 return res; 1039 } 1040 1041 // In the case of direct allocation by mutators in a generation that 1042 // is being concurrently collected, the object must be allocated 1043 // live (grey) if the background collector has started marking. 1044 // This is necessary because the marker may 1045 // have passed this address and consequently this object will 1046 // not otherwise be greyed and would be incorrectly swept up. 1047 // Note that if this object contains references, the writing 1048 // of those references will dirty the card containing this object 1049 // allowing the object to be blackened (and its references scanned) 1050 // either during a preclean phase or at the final checkpoint. 1051 void CMSCollector::direct_allocated(HeapWord* start, size_t size) { 1052 assert(_markBitMap.covers(start, size), "Out of bounds"); 1053 if (_collectorState >= Marking) { 1054 MutexLockerEx y(_markBitMap.lock(), 1055 Mutex::_no_safepoint_check_flag); 1056 // [see comments preceding SweepClosure::do_blk() below for details] 1057 // 1. need to mark the object as live so it isn't collected 1058 // 2. need to mark the 2nd bit to indicate the object may be uninitialized 1059 // 3. need to mark the end of the object so marking, precleaning or sweeping 1060 // can skip over uninitialized or unparsable objects. An allocated 1061 // object is considered uninitialized for our purposes as long as 1062 // its klass word is NULL. (Unparsable objects are those which are 1063 // initialized in the sense just described, but whose sizes can still 1064 // not be correctly determined. Note that the class of unparsable objects 1065 // can only occur in the perm gen. All old gen objects are parsable 1066 // as soon as they are initialized.) 1067 _markBitMap.mark(start); // object is live 1068 _markBitMap.mark(start + 1); // object is potentially uninitialized? 1069 _markBitMap.mark(start + size - 1); 1070 // mark end of object 1071 } 1072 // check that oop looks uninitialized 1073 assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL"); 1074 } 1075 1076 void CMSCollector::promoted(bool par, HeapWord* start, 1077 bool is_obj_array, size_t obj_size) { 1078 assert(_markBitMap.covers(start), "Out of bounds"); 1079 // See comment in direct_allocated() about when objects should 1080 // be allocated live. 1081 if (_collectorState >= Marking) { 1082 // we already hold the marking bit map lock, taken in 1083 // the prologue 1084 if (par) { 1085 _markBitMap.par_mark(start); 1086 } else { 1087 _markBitMap.mark(start); 1088 } 1089 // We don't need to mark the object as uninitialized (as 1090 // in direct_allocated above) because this is being done with the 1091 // world stopped and the object will be initialized by the 1092 // time the marking, precleaning or sweeping get to look at it. 1093 // But see the code for copying objects into the CMS generation, 1094 // where we need to ensure that concurrent readers of the 1095 // block offset table are able to safely navigate a block that 1096 // is in flux from being free to being allocated (and in 1097 // transition while being copied into) and subsequently 1098 // becoming a bona-fide object when the copy/promotion is complete. 1099 assert(SafepointSynchronize::is_at_safepoint(), 1100 "expect promotion only at safepoints"); 1101 1102 if (_collectorState < Sweeping) { 1103 // Mark the appropriate cards in the modUnionTable, so that 1104 // this object gets scanned before the sweep. If this is 1105 // not done, CMS generation references in the object might 1106 // not get marked. 1107 // For the case of arrays, which are otherwise precisely 1108 // marked, we need to dirty the entire array, not just its head. 1109 if (is_obj_array) { 1110 // The [par_]mark_range() method expects mr.end() below to 1111 // be aligned to the granularity of a bit's representation 1112 // in the heap. In the case of the MUT below, that's a 1113 // card size. 1114 MemRegion mr(start, 1115 (HeapWord*)round_to((intptr_t)(start + obj_size), 1116 CardTableModRefBS::card_size /* bytes */)); 1117 if (par) { 1118 _modUnionTable.par_mark_range(mr); 1119 } else { 1120 _modUnionTable.mark_range(mr); 1121 } 1122 } else { // not an obj array; we can just mark the head 1123 if (par) { 1124 _modUnionTable.par_mark(start); 1125 } else { 1126 _modUnionTable.mark(start); 1127 } 1128 } 1129 } 1130 } 1131 } 1132 1133 static inline size_t percent_of_space(Space* space, HeapWord* addr) 1134 { 1135 size_t delta = pointer_delta(addr, space->bottom()); 1136 return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize)); 1137 } 1138 1139 void CMSCollector::icms_update_allocation_limits() 1140 { 1141 Generation* gen0 = GenCollectedHeap::heap()->get_gen(0); 1142 EdenSpace* eden = gen0->as_DefNewGeneration()->eden(); 1143 1144 const unsigned int duty_cycle = stats().icms_update_duty_cycle(); 1145 if (CMSTraceIncrementalPacing) { 1146 stats().print(); 1147 } 1148 1149 assert(duty_cycle <= 100, "invalid duty cycle"); 1150 if (duty_cycle != 0) { 1151 // The duty_cycle is a percentage between 0 and 100; convert to words and 1152 // then compute the offset from the endpoints of the space. 1153 size_t free_words = eden->free() / HeapWordSize; 1154 double free_words_dbl = (double)free_words; 1155 size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0); 1156 size_t offset_words = (free_words - duty_cycle_words) / 2; 1157 1158 _icms_start_limit = eden->top() + offset_words; 1159 _icms_stop_limit = eden->end() - offset_words; 1160 1161 // The limits may be adjusted (shifted to the right) by 1162 // CMSIncrementalOffset, to allow the application more mutator time after a 1163 // young gen gc (when all mutators were stopped) and before CMS starts and 1164 // takes away one or more cpus. 1165 if (CMSIncrementalOffset != 0) { 1166 double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0; 1167 size_t adjustment = (size_t)adjustment_dbl; 1168 HeapWord* tmp_stop = _icms_stop_limit + adjustment; 1169 if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) { 1170 _icms_start_limit += adjustment; 1171 _icms_stop_limit = tmp_stop; 1172 } 1173 } 1174 } 1175 if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) { 1176 _icms_start_limit = _icms_stop_limit = eden->end(); 1177 } 1178 1179 // Install the new start limit. 1180 eden->set_soft_end(_icms_start_limit); 1181 1182 if (CMSTraceIncrementalMode) { 1183 gclog_or_tty->print(" icms alloc limits: " 1184 PTR_FORMAT "," PTR_FORMAT 1185 " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ", 1186 _icms_start_limit, _icms_stop_limit, 1187 percent_of_space(eden, _icms_start_limit), 1188 percent_of_space(eden, _icms_stop_limit)); 1189 if (Verbose) { 1190 gclog_or_tty->print("eden: "); 1191 eden->print_on(gclog_or_tty); 1192 } 1193 } 1194 } 1195 1196 // Any changes here should try to maintain the invariant 1197 // that if this method is called with _icms_start_limit 1198 // and _icms_stop_limit both NULL, then it should return NULL 1199 // and not notify the icms thread. 1200 HeapWord* 1201 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top, 1202 size_t word_size) 1203 { 1204 // A start_limit equal to end() means the duty cycle is 0, so treat that as a 1205 // nop. 1206 if (CMSIncrementalMode && _icms_start_limit != space->end()) { 1207 if (top <= _icms_start_limit) { 1208 if (CMSTraceIncrementalMode) { 1209 space->print_on(gclog_or_tty); 1210 gclog_or_tty->stamp(); 1211 gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT 1212 ", new limit=" PTR_FORMAT 1213 " (" SIZE_FORMAT "%%)", 1214 top, _icms_stop_limit, 1215 percent_of_space(space, _icms_stop_limit)); 1216 } 1217 ConcurrentMarkSweepThread::start_icms(); 1218 assert(top < _icms_stop_limit, "Tautology"); 1219 if (word_size < pointer_delta(_icms_stop_limit, top)) { 1220 return _icms_stop_limit; 1221 } 1222 1223 // The allocation will cross both the _start and _stop limits, so do the 1224 // stop notification also and return end(). 1225 if (CMSTraceIncrementalMode) { 1226 space->print_on(gclog_or_tty); 1227 gclog_or_tty->stamp(); 1228 gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT 1229 ", new limit=" PTR_FORMAT 1230 " (" SIZE_FORMAT "%%)", 1231 top, space->end(), 1232 percent_of_space(space, space->end())); 1233 } 1234 ConcurrentMarkSweepThread::stop_icms(); 1235 return space->end(); 1236 } 1237 1238 if (top <= _icms_stop_limit) { 1239 if (CMSTraceIncrementalMode) { 1240 space->print_on(gclog_or_tty); 1241 gclog_or_tty->stamp(); 1242 gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT 1243 ", new limit=" PTR_FORMAT 1244 " (" SIZE_FORMAT "%%)", 1245 top, space->end(), 1246 percent_of_space(space, space->end())); 1247 } 1248 ConcurrentMarkSweepThread::stop_icms(); 1249 return space->end(); 1250 } 1251 1252 if (CMSTraceIncrementalMode) { 1253 space->print_on(gclog_or_tty); 1254 gclog_or_tty->stamp(); 1255 gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT 1256 ", new limit=" PTR_FORMAT, 1257 top, NULL); 1258 } 1259 } 1260 1261 return NULL; 1262 } 1263 1264 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) { 1265 assert(obj_size == (size_t)obj->size(), "bad obj_size passed in"); 1266 // allocate, copy and if necessary update promoinfo -- 1267 // delegate to underlying space. 1268 assert_lock_strong(freelistLock()); 1269 1270 #ifndef PRODUCT 1271 if (Universe::heap()->promotion_should_fail()) { 1272 return NULL; 1273 } 1274 #endif // #ifndef PRODUCT 1275 1276 oop res = _cmsSpace->promote(obj, obj_size); 1277 if (res == NULL) { 1278 // expand and retry 1279 size_t s = _cmsSpace->expansionSpaceRequired(obj_size); // HeapWords 1280 expand(s*HeapWordSize, MinHeapDeltaBytes, 1281 CMSExpansionCause::_satisfy_promotion); 1282 // Since there's currently no next generation, we don't try to promote 1283 // into a more senior generation. 1284 assert(next_gen() == NULL, "assumption, based upon which no attempt " 1285 "is made to pass on a possibly failing " 1286 "promotion to next generation"); 1287 res = _cmsSpace->promote(obj, obj_size); 1288 } 1289 if (res != NULL) { 1290 // See comment in allocate() about when objects should 1291 // be allocated live. 1292 assert(obj->is_oop(), "Will dereference klass pointer below"); 1293 collector()->promoted(false, // Not parallel 1294 (HeapWord*)res, obj->is_objArray(), obj_size); 1295 // promotion counters 1296 NOT_PRODUCT( 1297 _numObjectsPromoted++; 1298 _numWordsPromoted += 1299 (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size())); 1300 ) 1301 } 1302 return res; 1303 } 1304 1305 1306 HeapWord* 1307 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space, 1308 HeapWord* top, 1309 size_t word_sz) 1310 { 1311 return collector()->allocation_limit_reached(space, top, word_sz); 1312 } 1313 1314 // IMPORTANT: Notes on object size recognition in CMS. 1315 // --------------------------------------------------- 1316 // A block of storage in the CMS generation is always in 1317 // one of three states. A free block (FREE), an allocated 1318 // object (OBJECT) whose size() method reports the correct size, 1319 // and an intermediate state (TRANSIENT) in which its size cannot 1320 // be accurately determined. 1321 // STATE IDENTIFICATION: (32 bit and 64 bit w/o COOPS) 1322 // ----------------------------------------------------- 1323 // FREE: klass_word & 1 == 1; mark_word holds block size 1324 // 1325 // OBJECT: klass_word installed; klass_word != 0 && klass_word & 1 == 0; 1326 // obj->size() computes correct size 1327 // [Perm Gen objects needs to be "parsable" before they can be navigated] 1328 // 1329 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT 1330 // 1331 // STATE IDENTIFICATION: (64 bit+COOPS) 1332 // ------------------------------------ 1333 // FREE: mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size 1334 // 1335 // OBJECT: klass_word installed; klass_word != 0; 1336 // obj->size() computes correct size 1337 // [Perm Gen comment above continues to hold] 1338 // 1339 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT 1340 // 1341 // 1342 // STATE TRANSITION DIAGRAM 1343 // 1344 // mut / parnew mut / parnew 1345 // FREE --------------------> TRANSIENT ---------------------> OBJECT --| 1346 // ^ | 1347 // |------------------------ DEAD <------------------------------------| 1348 // sweep mut 1349 // 1350 // While a block is in TRANSIENT state its size cannot be determined 1351 // so readers will either need to come back later or stall until 1352 // the size can be determined. Note that for the case of direct 1353 // allocation, P-bits, when available, may be used to determine the 1354 // size of an object that may not yet have been initialized. 1355 1356 // Things to support parallel young-gen collection. 1357 oop 1358 ConcurrentMarkSweepGeneration::par_promote(int thread_num, 1359 oop old, markOop m, 1360 size_t word_sz) { 1361 #ifndef PRODUCT 1362 if (Universe::heap()->promotion_should_fail()) { 1363 return NULL; 1364 } 1365 #endif // #ifndef PRODUCT 1366 1367 CMSParGCThreadState* ps = _par_gc_thread_states[thread_num]; 1368 PromotionInfo* promoInfo = &ps->promo; 1369 // if we are tracking promotions, then first ensure space for 1370 // promotion (including spooling space for saving header if necessary). 1371 // then allocate and copy, then track promoted info if needed. 1372 // When tracking (see PromotionInfo::track()), the mark word may 1373 // be displaced and in this case restoration of the mark word 1374 // occurs in the (oop_since_save_marks_)iterate phase. 1375 if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) { 1376 // Out of space for allocating spooling buffers; 1377 // try expanding and allocating spooling buffers. 1378 if (!expand_and_ensure_spooling_space(promoInfo)) { 1379 return NULL; 1380 } 1381 } 1382 assert(promoInfo->has_spooling_space(), "Control point invariant"); 1383 const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz); 1384 HeapWord* obj_ptr = ps->lab.alloc(alloc_sz); 1385 if (obj_ptr == NULL) { 1386 obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz); 1387 if (obj_ptr == NULL) { 1388 return NULL; 1389 } 1390 } 1391 oop obj = oop(obj_ptr); 1392 OrderAccess::storestore(); 1393 assert(obj->klass_or_null() == NULL, "Object should be uninitialized here."); 1394 assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size"); 1395 // IMPORTANT: See note on object initialization for CMS above. 1396 // Otherwise, copy the object. Here we must be careful to insert the 1397 // klass pointer last, since this marks the block as an allocated object. 1398 // Except with compressed oops it's the mark word. 1399 HeapWord* old_ptr = (HeapWord*)old; 1400 // Restore the mark word copied above. 1401 obj->set_mark(m); 1402 assert(obj->klass_or_null() == NULL, "Object should be uninitialized here."); 1403 assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size"); 1404 OrderAccess::storestore(); 1405 1406 if (UseCompressedOops) { 1407 // Copy gap missed by (aligned) header size calculation below 1408 obj->set_klass_gap(old->klass_gap()); 1409 } 1410 if (word_sz > (size_t)oopDesc::header_size()) { 1411 Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(), 1412 obj_ptr + oopDesc::header_size(), 1413 word_sz - oopDesc::header_size()); 1414 } 1415 1416 // Now we can track the promoted object, if necessary. We take care 1417 // to delay the transition from uninitialized to full object 1418 // (i.e., insertion of klass pointer) until after, so that it 1419 // atomically becomes a promoted object. 1420 if (promoInfo->tracking()) { 1421 promoInfo->track((PromotedObject*)obj, old->klass()); 1422 } 1423 assert(obj->klass_or_null() == NULL, "Object should be uninitialized here."); 1424 assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size"); 1425 assert(old->is_oop(), "Will use and dereference old klass ptr below"); 1426 1427 // Finally, install the klass pointer (this should be volatile). 1428 OrderAccess::storestore(); 1429 obj->set_klass(old->klass()); 1430 // We should now be able to calculate the right size for this object 1431 assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object"); 1432 1433 collector()->promoted(true, // parallel 1434 obj_ptr, old->is_objArray(), word_sz); 1435 1436 NOT_PRODUCT( 1437 Atomic::inc_ptr(&_numObjectsPromoted); 1438 Atomic::add_ptr(alloc_sz, &_numWordsPromoted); 1439 ) 1440 1441 return obj; 1442 } 1443 1444 void 1445 ConcurrentMarkSweepGeneration:: 1446 par_promote_alloc_undo(int thread_num, 1447 HeapWord* obj, size_t word_sz) { 1448 // CMS does not support promotion undo. 1449 ShouldNotReachHere(); 1450 } 1451 1452 void 1453 ConcurrentMarkSweepGeneration:: 1454 par_promote_alloc_done(int thread_num) { 1455 CMSParGCThreadState* ps = _par_gc_thread_states[thread_num]; 1456 ps->lab.retire(thread_num); 1457 } 1458 1459 void 1460 ConcurrentMarkSweepGeneration:: 1461 par_oop_since_save_marks_iterate_done(int thread_num) { 1462 CMSParGCThreadState* ps = _par_gc_thread_states[thread_num]; 1463 ParScanWithoutBarrierClosure* dummy_cl = NULL; 1464 ps->promo.promoted_oops_iterate_nv(dummy_cl); 1465 } 1466 1467 // XXXPERM 1468 bool ConcurrentMarkSweepGeneration::should_collect(bool full, 1469 size_t size, 1470 bool tlab) 1471 { 1472 // We allow a STW collection only if a full 1473 // collection was requested. 1474 return full || should_allocate(size, tlab); // FIX ME !!! 1475 // This and promotion failure handling are connected at the 1476 // hip and should be fixed by untying them. 1477 } 1478 1479 bool CMSCollector::shouldConcurrentCollect() { 1480 if (_full_gc_requested) { 1481 if (Verbose && PrintGCDetails) { 1482 gclog_or_tty->print_cr("CMSCollector: collect because of explicit " 1483 " gc request (or gc_locker)"); 1484 } 1485 return true; 1486 } 1487 1488 // For debugging purposes, change the type of collection. 1489 // If the rotation is not on the concurrent collection 1490 // type, don't start a concurrent collection. 1491 NOT_PRODUCT( 1492 if (RotateCMSCollectionTypes && 1493 (_cmsGen->debug_collection_type() != 1494 ConcurrentMarkSweepGeneration::Concurrent_collection_type)) { 1495 assert(_cmsGen->debug_collection_type() != 1496 ConcurrentMarkSweepGeneration::Unknown_collection_type, 1497 "Bad cms collection type"); 1498 return false; 1499 } 1500 ) 1501 1502 FreelistLocker x(this); 1503 // ------------------------------------------------------------------ 1504 // Print out lots of information which affects the initiation of 1505 // a collection. 1506 if (PrintCMSInitiationStatistics && stats().valid()) { 1507 gclog_or_tty->print("CMSCollector shouldConcurrentCollect: "); 1508 gclog_or_tty->stamp(); 1509 gclog_or_tty->print_cr(""); 1510 stats().print_on(gclog_or_tty); 1511 gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f", 1512 stats().time_until_cms_gen_full()); 1513 gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free()); 1514 gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT, 1515 _cmsGen->contiguous_available()); 1516 gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate()); 1517 gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate()); 1518 gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy()); 1519 gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy()); 1520 gclog_or_tty->print_cr("initiatingPermOccupancy=%3.7f", _permGen->initiating_occupancy()); 1521 } 1522 // ------------------------------------------------------------------ 1523 1524 // If the estimated time to complete a cms collection (cms_duration()) 1525 // is less than the estimated time remaining until the cms generation 1526 // is full, start a collection. 1527 if (!UseCMSInitiatingOccupancyOnly) { 1528 if (stats().valid()) { 1529 if (stats().time_until_cms_start() == 0.0) { 1530 return true; 1531 } 1532 } else { 1533 // We want to conservatively collect somewhat early in order 1534 // to try and "bootstrap" our CMS/promotion statistics; 1535 // this branch will not fire after the first successful CMS 1536 // collection because the stats should then be valid. 1537 if (_cmsGen->occupancy() >= _bootstrap_occupancy) { 1538 if (Verbose && PrintGCDetails) { 1539 gclog_or_tty->print_cr( 1540 " CMSCollector: collect for bootstrapping statistics:" 1541 " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(), 1542 _bootstrap_occupancy); 1543 } 1544 return true; 1545 } 1546 } 1547 } 1548 1549 // Otherwise, we start a collection cycle if either the perm gen or 1550 // old gen want a collection cycle started. Each may use 1551 // an appropriate criterion for making this decision. 1552 // XXX We need to make sure that the gen expansion 1553 // criterion dovetails well with this. XXX NEED TO FIX THIS 1554 if (_cmsGen->should_concurrent_collect()) { 1555 if (Verbose && PrintGCDetails) { 1556 gclog_or_tty->print_cr("CMS old gen initiated"); 1557 } 1558 return true; 1559 } 1560 1561 // We start a collection if we believe an incremental collection may fail; 1562 // this is not likely to be productive in practice because it's probably too 1563 // late anyway. 1564 GenCollectedHeap* gch = GenCollectedHeap::heap(); 1565 assert(gch->collector_policy()->is_two_generation_policy(), 1566 "You may want to check the correctness of the following"); 1567 if (gch->incremental_collection_will_fail(true /* consult_young */)) { 1568 if (Verbose && PrintGCDetails) { 1569 gclog_or_tty->print("CMSCollector: collect because incremental collection will fail "); 1570 } 1571 return true; 1572 } 1573 1574 if (CMSClassUnloadingEnabled && _permGen->should_concurrent_collect()) { 1575 bool res = update_should_unload_classes(); 1576 if (res) { 1577 if (Verbose && PrintGCDetails) { 1578 gclog_or_tty->print_cr("CMS perm gen initiated"); 1579 } 1580 return true; 1581 } 1582 } 1583 return false; 1584 } 1585 1586 // Clear _expansion_cause fields of constituent generations 1587 void CMSCollector::clear_expansion_cause() { 1588 _cmsGen->clear_expansion_cause(); 1589 _permGen->clear_expansion_cause(); 1590 } 1591 1592 // We should be conservative in starting a collection cycle. To 1593 // start too eagerly runs the risk of collecting too often in the 1594 // extreme. To collect too rarely falls back on full collections, 1595 // which works, even if not optimum in terms of concurrent work. 1596 // As a work around for too eagerly collecting, use the flag 1597 // UseCMSInitiatingOccupancyOnly. This also has the advantage of 1598 // giving the user an easily understandable way of controlling the 1599 // collections. 1600 // We want to start a new collection cycle if any of the following 1601 // conditions hold: 1602 // . our current occupancy exceeds the configured initiating occupancy 1603 // for this generation, or 1604 // . we recently needed to expand this space and have not, since that 1605 // expansion, done a collection of this generation, or 1606 // . the underlying space believes that it may be a good idea to initiate 1607 // a concurrent collection (this may be based on criteria such as the 1608 // following: the space uses linear allocation and linear allocation is 1609 // going to fail, or there is believed to be excessive fragmentation in 1610 // the generation, etc... or ... 1611 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for 1612 // the case of the old generation, not the perm generation; see CR 6543076): 1613 // we may be approaching a point at which allocation requests may fail because 1614 // we will be out of sufficient free space given allocation rate estimates.] 1615 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const { 1616 1617 assert_lock_strong(freelistLock()); 1618 if (occupancy() > initiating_occupancy()) { 1619 if (PrintGCDetails && Verbose) { 1620 gclog_or_tty->print(" %s: collect because of occupancy %f / %f ", 1621 short_name(), occupancy(), initiating_occupancy()); 1622 } 1623 return true; 1624 } 1625 if (UseCMSInitiatingOccupancyOnly) { 1626 return false; 1627 } 1628 if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) { 1629 if (PrintGCDetails && Verbose) { 1630 gclog_or_tty->print(" %s: collect because expanded for allocation ", 1631 short_name()); 1632 } 1633 return true; 1634 } 1635 if (_cmsSpace->should_concurrent_collect()) { 1636 if (PrintGCDetails && Verbose) { 1637 gclog_or_tty->print(" %s: collect because cmsSpace says so ", 1638 short_name()); 1639 } 1640 return true; 1641 } 1642 return false; 1643 } 1644 1645 void ConcurrentMarkSweepGeneration::collect(bool full, 1646 bool clear_all_soft_refs, 1647 size_t size, 1648 bool tlab) 1649 { 1650 collector()->collect(full, clear_all_soft_refs, size, tlab); 1651 } 1652 1653 void CMSCollector::collect(bool full, 1654 bool clear_all_soft_refs, 1655 size_t size, 1656 bool tlab) 1657 { 1658 if (!UseCMSCollectionPassing && _collectorState > Idling) { 1659 // For debugging purposes skip the collection if the state 1660 // is not currently idle 1661 if (TraceCMSState) { 1662 gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d", 1663 Thread::current(), full, _collectorState); 1664 } 1665 return; 1666 } 1667 1668 // The following "if" branch is present for defensive reasons. 1669 // In the current uses of this interface, it can be replaced with: 1670 // assert(!GC_locker.is_active(), "Can't be called otherwise"); 1671 // But I am not placing that assert here to allow future 1672 // generality in invoking this interface. 1673 if (GC_locker::is_active()) { 1674 // A consistency test for GC_locker 1675 assert(GC_locker::needs_gc(), "Should have been set already"); 1676 // Skip this foreground collection, instead 1677 // expanding the heap if necessary. 1678 // Need the free list locks for the call to free() in compute_new_size() 1679 compute_new_size(); 1680 return; 1681 } 1682 acquire_control_and_collect(full, clear_all_soft_refs); 1683 _full_gcs_since_conc_gc++; 1684 1685 } 1686 1687 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) { 1688 GenCollectedHeap* gch = GenCollectedHeap::heap(); 1689 unsigned int gc_count = gch->total_full_collections(); 1690 if (gc_count == full_gc_count) { 1691 MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag); 1692 _full_gc_requested = true; 1693 _full_gc_cause = cause; 1694 CGC_lock->notify(); // nudge CMS thread 1695 } else { 1696 assert(gc_count > full_gc_count, "Error: causal loop"); 1697 } 1698 } 1699 1700 bool CMSCollector::is_external_interruption() { 1701 GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause(); 1702 return GCCause::is_user_requested_gc(cause) || 1703 GCCause::is_serviceability_requested_gc(cause); 1704 } 1705 1706 void CMSCollector::report_concurrent_mode_interruption() { 1707 if (is_external_interruption()) { 1708 if (PrintGCDetails) { 1709 gclog_or_tty->print(" (concurrent mode interrupted)"); 1710 } 1711 } else { 1712 if (PrintGCDetails) { 1713 gclog_or_tty->print(" (concurrent mode failure)"); 1714 } 1715 _gc_tracer_cm->report_concurrent_mode_failure(); 1716 } 1717 } 1718 1719 // The foreground and background collectors need to coordinate in order 1720 // to make sure that they do not mutually interfere with CMS collections. 1721 // When a background collection is active, 1722 // the foreground collector may need to take over (preempt) and 1723 // synchronously complete an ongoing collection. Depending on the 1724 // frequency of the background collections and the heap usage 1725 // of the application, this preemption can be seldom or frequent. 1726 // There are only certain 1727 // points in the background collection that the "collection-baton" 1728 // can be passed to the foreground collector. 1729 // 1730 // The foreground collector will wait for the baton before 1731 // starting any part of the collection. The foreground collector 1732 // will only wait at one location. 1733 // 1734 // The background collector will yield the baton before starting a new 1735 // phase of the collection (e.g., before initial marking, marking from roots, 1736 // precleaning, final re-mark, sweep etc.) This is normally done at the head 1737 // of the loop which switches the phases. The background collector does some 1738 // of the phases (initial mark, final re-mark) with the world stopped. 1739 // Because of locking involved in stopping the world, 1740 // the foreground collector should not block waiting for the background 1741 // collector when it is doing a stop-the-world phase. The background 1742 // collector will yield the baton at an additional point just before 1743 // it enters a stop-the-world phase. Once the world is stopped, the 1744 // background collector checks the phase of the collection. If the 1745 // phase has not changed, it proceeds with the collection. If the 1746 // phase has changed, it skips that phase of the collection. See 1747 // the comments on the use of the Heap_lock in collect_in_background(). 1748 // 1749 // Variable used in baton passing. 1750 // _foregroundGCIsActive - Set to true by the foreground collector when 1751 // it wants the baton. The foreground clears it when it has finished 1752 // the collection. 1753 // _foregroundGCShouldWait - Set to true by the background collector 1754 // when it is running. The foreground collector waits while 1755 // _foregroundGCShouldWait is true. 1756 // CGC_lock - monitor used to protect access to the above variables 1757 // and to notify the foreground and background collectors. 1758 // _collectorState - current state of the CMS collection. 1759 // 1760 // The foreground collector 1761 // acquires the CGC_lock 1762 // sets _foregroundGCIsActive 1763 // waits on the CGC_lock for _foregroundGCShouldWait to be false 1764 // various locks acquired in preparation for the collection 1765 // are released so as not to block the background collector 1766 // that is in the midst of a collection 1767 // proceeds with the collection 1768 // clears _foregroundGCIsActive 1769 // returns 1770 // 1771 // The background collector in a loop iterating on the phases of the 1772 // collection 1773 // acquires the CGC_lock 1774 // sets _foregroundGCShouldWait 1775 // if _foregroundGCIsActive is set 1776 // clears _foregroundGCShouldWait, notifies _CGC_lock 1777 // waits on _CGC_lock for _foregroundGCIsActive to become false 1778 // and exits the loop. 1779 // otherwise 1780 // proceed with that phase of the collection 1781 // if the phase is a stop-the-world phase, 1782 // yield the baton once more just before enqueueing 1783 // the stop-world CMS operation (executed by the VM thread). 1784 // returns after all phases of the collection are done 1785 // 1786 1787 void CMSCollector::acquire_control_and_collect(bool full, 1788 bool clear_all_soft_refs) { 1789 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint"); 1790 assert(!Thread::current()->is_ConcurrentGC_thread(), 1791 "shouldn't try to acquire control from self!"); 1792 1793 // Start the protocol for acquiring control of the 1794 // collection from the background collector (aka CMS thread). 1795 assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(), 1796 "VM thread should have CMS token"); 1797 // Remember the possibly interrupted state of an ongoing 1798 // concurrent collection 1799 CollectorState first_state = _collectorState; 1800 1801 // Signal to a possibly ongoing concurrent collection that 1802 // we want to do a foreground collection. 1803 _foregroundGCIsActive = true; 1804 1805 // Disable incremental mode during a foreground collection. 1806 ICMSDisabler icms_disabler; 1807 1808 // release locks and wait for a notify from the background collector 1809 // releasing the locks in only necessary for phases which 1810 // do yields to improve the granularity of the collection. 1811 assert_lock_strong(bitMapLock()); 1812 // We need to lock the Free list lock for the space that we are 1813 // currently collecting. 1814 assert(haveFreelistLocks(), "Must be holding free list locks"); 1815 bitMapLock()->unlock(); 1816 releaseFreelistLocks(); 1817 { 1818 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 1819 if (_foregroundGCShouldWait) { 1820 // We are going to be waiting for action for the CMS thread; 1821 // it had better not be gone (for instance at shutdown)! 1822 assert(ConcurrentMarkSweepThread::cmst() != NULL, 1823 "CMS thread must be running"); 1824 // Wait here until the background collector gives us the go-ahead 1825 ConcurrentMarkSweepThread::clear_CMS_flag( 1826 ConcurrentMarkSweepThread::CMS_vm_has_token); // release token 1827 // Get a possibly blocked CMS thread going: 1828 // Note that we set _foregroundGCIsActive true above, 1829 // without protection of the CGC_lock. 1830 CGC_lock->notify(); 1831 assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(), 1832 "Possible deadlock"); 1833 while (_foregroundGCShouldWait) { 1834 // wait for notification 1835 CGC_lock->wait(Mutex::_no_safepoint_check_flag); 1836 // Possibility of delay/starvation here, since CMS token does 1837 // not know to give priority to VM thread? Actually, i think 1838 // there wouldn't be any delay/starvation, but the proof of 1839 // that "fact" (?) appears non-trivial. XXX 20011219YSR 1840 } 1841 ConcurrentMarkSweepThread::set_CMS_flag( 1842 ConcurrentMarkSweepThread::CMS_vm_has_token); 1843 } 1844 } 1845 // The CMS_token is already held. Get back the other locks. 1846 assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(), 1847 "VM thread should have CMS token"); 1848 getFreelistLocks(); 1849 bitMapLock()->lock_without_safepoint_check(); 1850 if (TraceCMSState) { 1851 gclog_or_tty->print_cr("CMS foreground collector has asked for control " 1852 INTPTR_FORMAT " with first state %d", Thread::current(), first_state); 1853 gclog_or_tty->print_cr(" gets control with state %d", _collectorState); 1854 } 1855 1856 // Check if we need to do a compaction, or if not, whether 1857 // we need to start the mark-sweep from scratch. 1858 bool should_compact = false; 1859 bool should_start_over = false; 1860 decide_foreground_collection_type(clear_all_soft_refs, 1861 &should_compact, &should_start_over); 1862 1863 NOT_PRODUCT( 1864 if (RotateCMSCollectionTypes) { 1865 if (_cmsGen->debug_collection_type() == 1866 ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) { 1867 should_compact = true; 1868 } else if (_cmsGen->debug_collection_type() == 1869 ConcurrentMarkSweepGeneration::MS_foreground_collection_type) { 1870 should_compact = false; 1871 } 1872 } 1873 ) 1874 1875 if (first_state > Idling) { 1876 report_concurrent_mode_interruption(); 1877 } 1878 1879 if (should_compact) { 1880 // If the collection is being acquired from the background 1881 // collector, there may be references on the discovered 1882 // references lists that have NULL referents (being those 1883 // that were concurrently cleared by a mutator) or 1884 // that are no longer active (having been enqueued concurrently 1885 // by the mutator). 1886 // Scrub the list of those references because Mark-Sweep-Compact 1887 // code assumes referents are not NULL and that all discovered 1888 // Reference objects are active. 1889 ref_processor()->clean_up_discovered_references(); 1890 1891 do_compaction_work(clear_all_soft_refs); 1892 1893 // Has the GC time limit been exceeded? 1894 DefNewGeneration* young_gen = _young_gen->as_DefNewGeneration(); 1895 size_t max_eden_size = young_gen->max_capacity() - 1896 young_gen->to()->capacity() - 1897 young_gen->from()->capacity(); 1898 GenCollectedHeap* gch = GenCollectedHeap::heap(); 1899 GCCause::Cause gc_cause = gch->gc_cause(); 1900 size_policy()->check_gc_overhead_limit(_young_gen->used(), 1901 young_gen->eden()->used(), 1902 _cmsGen->max_capacity(), 1903 max_eden_size, 1904 full, 1905 gc_cause, 1906 gch->collector_policy()); 1907 } else { 1908 do_mark_sweep_work(clear_all_soft_refs, first_state, 1909 should_start_over); 1910 } 1911 // Reset the expansion cause, now that we just completed 1912 // a collection cycle. 1913 clear_expansion_cause(); 1914 _foregroundGCIsActive = false; 1915 return; 1916 } 1917 1918 // Resize the perm generation and the tenured generation 1919 // after obtaining the free list locks for the 1920 // two generations. 1921 void CMSCollector::compute_new_size() { 1922 assert_locked_or_safepoint(Heap_lock); 1923 FreelistLocker z(this); 1924 _permGen->compute_new_size(); 1925 _cmsGen->compute_new_size(); 1926 } 1927 1928 // A work method used by foreground collection to determine 1929 // what type of collection (compacting or not, continuing or fresh) 1930 // it should do. 1931 // NOTE: the intent is to make UseCMSCompactAtFullCollection 1932 // and CMSCompactWhenClearAllSoftRefs the default in the future 1933 // and do away with the flags after a suitable period. 1934 void CMSCollector::decide_foreground_collection_type( 1935 bool clear_all_soft_refs, bool* should_compact, 1936 bool* should_start_over) { 1937 // Normally, we'll compact only if the UseCMSCompactAtFullCollection 1938 // flag is set, and we have either requested a System.gc() or 1939 // the number of full gc's since the last concurrent cycle 1940 // has exceeded the threshold set by CMSFullGCsBeforeCompaction, 1941 // or if an incremental collection has failed 1942 GenCollectedHeap* gch = GenCollectedHeap::heap(); 1943 assert(gch->collector_policy()->is_two_generation_policy(), 1944 "You may want to check the correctness of the following"); 1945 // Inform cms gen if this was due to partial collection failing. 1946 // The CMS gen may use this fact to determine its expansion policy. 1947 if (gch->incremental_collection_will_fail(false /* don't consult_young */)) { 1948 assert(!_cmsGen->incremental_collection_failed(), 1949 "Should have been noticed, reacted to and cleared"); 1950 _cmsGen->set_incremental_collection_failed(); 1951 } 1952 *should_compact = 1953 UseCMSCompactAtFullCollection && 1954 ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) || 1955 GCCause::is_user_requested_gc(gch->gc_cause()) || 1956 gch->incremental_collection_will_fail(true /* consult_young */)); 1957 *should_start_over = false; 1958 if (clear_all_soft_refs && !*should_compact) { 1959 // We are about to do a last ditch collection attempt 1960 // so it would normally make sense to do a compaction 1961 // to reclaim as much space as possible. 1962 if (CMSCompactWhenClearAllSoftRefs) { 1963 // Default: The rationale is that in this case either 1964 // we are past the final marking phase, in which case 1965 // we'd have to start over, or so little has been done 1966 // that there's little point in saving that work. Compaction 1967 // appears to be the sensible choice in either case. 1968 *should_compact = true; 1969 } else { 1970 // We have been asked to clear all soft refs, but not to 1971 // compact. Make sure that we aren't past the final checkpoint 1972 // phase, for that is where we process soft refs. If we are already 1973 // past that phase, we'll need to redo the refs discovery phase and 1974 // if necessary clear soft refs that weren't previously 1975 // cleared. We do so by remembering the phase in which 1976 // we came in, and if we are past the refs processing 1977 // phase, we'll choose to just redo the mark-sweep 1978 // collection from scratch. 1979 if (_collectorState > FinalMarking) { 1980 // We are past the refs processing phase; 1981 // start over and do a fresh synchronous CMS cycle 1982 _collectorState = Resetting; // skip to reset to start new cycle 1983 reset(false /* == !asynch */); 1984 *should_start_over = true; 1985 } // else we can continue a possibly ongoing current cycle 1986 } 1987 } 1988 } 1989 1990 // A work method used by the foreground collector to do 1991 // a mark-sweep-compact. 1992 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) { 1993 GenCollectedHeap* gch = GenCollectedHeap::heap(); 1994 1995 STWGCTimer* gc_timer = GenMarkSweep::gc_timer(); 1996 gc_timer->register_gc_start(os::elapsed_counter()); 1997 1998 SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer(); 1999 gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start()); 2000 2001 GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL); 2002 if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) { 2003 gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d " 2004 "collections passed to foreground collector", _full_gcs_since_conc_gc); 2005 } 2006 2007 // Sample collection interval time and reset for collection pause. 2008 if (UseAdaptiveSizePolicy) { 2009 size_policy()->msc_collection_begin(); 2010 } 2011 2012 // Temporarily widen the span of the weak reference processing to 2013 // the entire heap. 2014 MemRegion new_span(GenCollectedHeap::heap()->reserved_region()); 2015 ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span); 2016 // Temporarily, clear the "is_alive_non_header" field of the 2017 // reference processor. 2018 ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL); 2019 // Temporarily make reference _processing_ single threaded (non-MT). 2020 ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false); 2021 // Temporarily make refs discovery atomic 2022 ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true); 2023 // Temporarily make reference _discovery_ single threaded (non-MT) 2024 ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false); 2025 2026 ref_processor()->set_enqueuing_is_done(false); 2027 ref_processor()->enable_discovery(false /*verify_disabled*/, false /*check_no_refs*/); 2028 ref_processor()->setup_policy(clear_all_soft_refs); 2029 // If an asynchronous collection finishes, the _modUnionTable is 2030 // all clear. If we are assuming the collection from an asynchronous 2031 // collection, clear the _modUnionTable. 2032 assert(_collectorState != Idling || _modUnionTable.isAllClear(), 2033 "_modUnionTable should be clear if the baton was not passed"); 2034 _modUnionTable.clear_all(); 2035 2036 // We must adjust the allocation statistics being maintained 2037 // in the free list space. We do so by reading and clearing 2038 // the sweep timer and updating the block flux rate estimates below. 2039 assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive"); 2040 if (_inter_sweep_timer.is_active()) { 2041 _inter_sweep_timer.stop(); 2042 // Note that we do not use this sample to update the _inter_sweep_estimate. 2043 _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()), 2044 _inter_sweep_estimate.padded_average(), 2045 _intra_sweep_estimate.padded_average()); 2046 } 2047 2048 GenMarkSweep::invoke_at_safepoint(_cmsGen->level(), 2049 ref_processor(), clear_all_soft_refs); 2050 #ifdef ASSERT 2051 CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace(); 2052 size_t free_size = cms_space->free(); 2053 assert(free_size == 2054 pointer_delta(cms_space->end(), cms_space->compaction_top()) 2055 * HeapWordSize, 2056 "All the free space should be compacted into one chunk at top"); 2057 assert(cms_space->dictionary()->total_chunk_size( 2058 debug_only(cms_space->freelistLock())) == 0 || 2059 cms_space->totalSizeInIndexedFreeLists() == 0, 2060 "All the free space should be in a single chunk"); 2061 size_t num = cms_space->totalCount(); 2062 assert((free_size == 0 && num == 0) || 2063 (free_size > 0 && (num == 1 || num == 2)), 2064 "There should be at most 2 free chunks after compaction"); 2065 #endif // ASSERT 2066 _collectorState = Resetting; 2067 assert(_restart_addr == NULL, 2068 "Should have been NULL'd before baton was passed"); 2069 reset(false /* == !asynch */); 2070 _cmsGen->reset_after_compaction(); 2071 _concurrent_cycles_since_last_unload = 0; 2072 2073 if (verifying() && !should_unload_classes()) { 2074 perm_gen_verify_bit_map()->clear_all(); 2075 } 2076 2077 // Clear any data recorded in the PLAB chunk arrays. 2078 if (_survivor_plab_array != NULL) { 2079 reset_survivor_plab_arrays(); 2080 } 2081 2082 // Adjust the per-size allocation stats for the next epoch. 2083 _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */); 2084 // Restart the "inter sweep timer" for the next epoch. 2085 _inter_sweep_timer.reset(); 2086 _inter_sweep_timer.start(); 2087 2088 // Sample collection pause time and reset for collection interval. 2089 if (UseAdaptiveSizePolicy) { 2090 size_policy()->msc_collection_end(gch->gc_cause()); 2091 } 2092 2093 gc_timer->register_gc_end(os::elapsed_counter()); 2094 2095 gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions()); 2096 2097 // For a mark-sweep-compact, compute_new_size() will be called 2098 // in the heap's do_collection() method. 2099 } 2100 2101 // A work method used by the foreground collector to do 2102 // a mark-sweep, after taking over from a possibly on-going 2103 // concurrent mark-sweep collection. 2104 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs, 2105 CollectorState first_state, bool should_start_over) { 2106 if (PrintGC && Verbose) { 2107 gclog_or_tty->print_cr("Pass concurrent collection to foreground " 2108 "collector with count %d", 2109 _full_gcs_since_conc_gc); 2110 } 2111 switch (_collectorState) { 2112 case Idling: 2113 if (first_state == Idling || should_start_over) { 2114 // The background GC was not active, or should 2115 // restarted from scratch; start the cycle. 2116 _collectorState = InitialMarking; 2117 } 2118 // If first_state was not Idling, then a background GC 2119 // was in progress and has now finished. No need to do it 2120 // again. Leave the state as Idling. 2121 break; 2122 case Precleaning: 2123 // In the foreground case don't do the precleaning since 2124 // it is not done concurrently and there is extra work 2125 // required. 2126 _collectorState = FinalMarking; 2127 } 2128 collect_in_foreground(clear_all_soft_refs, GenCollectedHeap::heap()->gc_cause()); 2129 2130 // For a mark-sweep, compute_new_size() will be called 2131 // in the heap's do_collection() method. 2132 } 2133 2134 2135 void CMSCollector::getFreelistLocks() const { 2136 // Get locks for all free lists in all generations that this 2137 // collector is responsible for 2138 _cmsGen->freelistLock()->lock_without_safepoint_check(); 2139 _permGen->freelistLock()->lock_without_safepoint_check(); 2140 } 2141 2142 void CMSCollector::releaseFreelistLocks() const { 2143 // Release locks for all free lists in all generations that this 2144 // collector is responsible for 2145 _cmsGen->freelistLock()->unlock(); 2146 _permGen->freelistLock()->unlock(); 2147 } 2148 2149 bool CMSCollector::haveFreelistLocks() const { 2150 // Check locks for all free lists in all generations that this 2151 // collector is responsible for 2152 assert_lock_strong(_cmsGen->freelistLock()); 2153 assert_lock_strong(_permGen->freelistLock()); 2154 PRODUCT_ONLY(ShouldNotReachHere()); 2155 return true; 2156 } 2157 2158 // A utility class that is used by the CMS collector to 2159 // temporarily "release" the foreground collector from its 2160 // usual obligation to wait for the background collector to 2161 // complete an ongoing phase before proceeding. 2162 class ReleaseForegroundGC: public StackObj { 2163 private: 2164 CMSCollector* _c; 2165 public: 2166 ReleaseForegroundGC(CMSCollector* c) : _c(c) { 2167 assert(_c->_foregroundGCShouldWait, "Else should not need to call"); 2168 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 2169 // allow a potentially blocked foreground collector to proceed 2170 _c->_foregroundGCShouldWait = false; 2171 if (_c->_foregroundGCIsActive) { 2172 CGC_lock->notify(); 2173 } 2174 assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 2175 "Possible deadlock"); 2176 } 2177 2178 ~ReleaseForegroundGC() { 2179 assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?"); 2180 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 2181 _c->_foregroundGCShouldWait = true; 2182 } 2183 }; 2184 2185 // There are separate collect_in_background and collect_in_foreground because of 2186 // the different locking requirements of the background collector and the 2187 // foreground collector. There was originally an attempt to share 2188 // one "collect" method between the background collector and the foreground 2189 // collector but the if-then-else required made it cleaner to have 2190 // separate methods. 2191 void CMSCollector::collect_in_background(bool clear_all_soft_refs, GCCause::Cause cause) { 2192 assert(Thread::current()->is_ConcurrentGC_thread(), 2193 "A CMS asynchronous collection is only allowed on a CMS thread."); 2194 2195 GenCollectedHeap* gch = GenCollectedHeap::heap(); 2196 { 2197 bool safepoint_check = Mutex::_no_safepoint_check_flag; 2198 MutexLockerEx hl(Heap_lock, safepoint_check); 2199 FreelistLocker fll(this); 2200 MutexLockerEx x(CGC_lock, safepoint_check); 2201 if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) { 2202 // The foreground collector is active or we're 2203 // not using asynchronous collections. Skip this 2204 // background collection. 2205 assert(!_foregroundGCShouldWait, "Should be clear"); 2206 return; 2207 } else { 2208 assert(_collectorState == Idling, "Should be idling before start."); 2209 _collectorState = InitialMarking; 2210 register_gc_start(cause); 2211 // Reset the expansion cause, now that we are about to begin 2212 // a new cycle. 2213 clear_expansion_cause(); 2214 } 2215 // Decide if we want to enable class unloading as part of the 2216 // ensuing concurrent GC cycle. 2217 update_should_unload_classes(); 2218 _full_gc_requested = false; // acks all outstanding full gc requests 2219 _full_gc_cause = GCCause::_no_gc; 2220 // Signal that we are about to start a collection 2221 gch->increment_total_full_collections(); // ... starting a collection cycle 2222 _collection_count_start = gch->total_full_collections(); 2223 } 2224 2225 // Used for PrintGC 2226 size_t prev_used; 2227 if (PrintGC && Verbose) { 2228 prev_used = _cmsGen->used(); // XXXPERM 2229 } 2230 2231 // The change of the collection state is normally done at this level; 2232 // the exceptions are phases that are executed while the world is 2233 // stopped. For those phases the change of state is done while the 2234 // world is stopped. For baton passing purposes this allows the 2235 // background collector to finish the phase and change state atomically. 2236 // The foreground collector cannot wait on a phase that is done 2237 // while the world is stopped because the foreground collector already 2238 // has the world stopped and would deadlock. 2239 while (_collectorState != Idling) { 2240 if (TraceCMSState) { 2241 gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d", 2242 Thread::current(), _collectorState); 2243 } 2244 // The foreground collector 2245 // holds the Heap_lock throughout its collection. 2246 // holds the CMS token (but not the lock) 2247 // except while it is waiting for the background collector to yield. 2248 // 2249 // The foreground collector should be blocked (not for long) 2250 // if the background collector is about to start a phase 2251 // executed with world stopped. If the background 2252 // collector has already started such a phase, the 2253 // foreground collector is blocked waiting for the 2254 // Heap_lock. The stop-world phases (InitialMarking and FinalMarking) 2255 // are executed in the VM thread. 2256 // 2257 // The locking order is 2258 // PendingListLock (PLL) -- if applicable (FinalMarking) 2259 // Heap_lock (both this & PLL locked in VM_CMS_Operation::prologue()) 2260 // CMS token (claimed in 2261 // stop_world_and_do() --> 2262 // safepoint_synchronize() --> 2263 // CMSThread::synchronize()) 2264 2265 { 2266 // Check if the FG collector wants us to yield. 2267 CMSTokenSync x(true); // is cms thread 2268 if (waitForForegroundGC()) { 2269 // We yielded to a foreground GC, nothing more to be 2270 // done this round. 2271 assert(_foregroundGCShouldWait == false, "We set it to false in " 2272 "waitForForegroundGC()"); 2273 if (TraceCMSState) { 2274 gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT 2275 " exiting collection CMS state %d", 2276 Thread::current(), _collectorState); 2277 } 2278 return; 2279 } else { 2280 // The background collector can run but check to see if the 2281 // foreground collector has done a collection while the 2282 // background collector was waiting to get the CGC_lock 2283 // above. If yes, break so that _foregroundGCShouldWait 2284 // is cleared before returning. 2285 if (_collectorState == Idling) { 2286 break; 2287 } 2288 } 2289 } 2290 2291 assert(_foregroundGCShouldWait, "Foreground collector, if active, " 2292 "should be waiting"); 2293 2294 switch (_collectorState) { 2295 case InitialMarking: 2296 { 2297 ReleaseForegroundGC x(this); 2298 stats().record_cms_begin(); 2299 VM_CMS_Initial_Mark initial_mark_op(this); 2300 VMThread::execute(&initial_mark_op); 2301 } 2302 // The collector state may be any legal state at this point 2303 // since the background collector may have yielded to the 2304 // foreground collector. 2305 break; 2306 case Marking: 2307 // initial marking in checkpointRootsInitialWork has been completed 2308 if (markFromRoots(true)) { // we were successful 2309 assert(_collectorState == Precleaning, "Collector state should " 2310 "have changed"); 2311 } else { 2312 assert(_foregroundGCIsActive, "Internal state inconsistency"); 2313 } 2314 break; 2315 case Precleaning: 2316 if (UseAdaptiveSizePolicy) { 2317 size_policy()->concurrent_precleaning_begin(); 2318 } 2319 // marking from roots in markFromRoots has been completed 2320 preclean(); 2321 if (UseAdaptiveSizePolicy) { 2322 size_policy()->concurrent_precleaning_end(); 2323 } 2324 assert(_collectorState == AbortablePreclean || 2325 _collectorState == FinalMarking, 2326 "Collector state should have changed"); 2327 break; 2328 case AbortablePreclean: 2329 if (UseAdaptiveSizePolicy) { 2330 size_policy()->concurrent_phases_resume(); 2331 } 2332 abortable_preclean(); 2333 if (UseAdaptiveSizePolicy) { 2334 size_policy()->concurrent_precleaning_end(); 2335 } 2336 assert(_collectorState == FinalMarking, "Collector state should " 2337 "have changed"); 2338 break; 2339 case FinalMarking: 2340 { 2341 ReleaseForegroundGC x(this); 2342 2343 VM_CMS_Final_Remark final_remark_op(this); 2344 VMThread::execute(&final_remark_op); 2345 } 2346 assert(_foregroundGCShouldWait, "block post-condition"); 2347 break; 2348 case Sweeping: 2349 if (UseAdaptiveSizePolicy) { 2350 size_policy()->concurrent_sweeping_begin(); 2351 } 2352 // final marking in checkpointRootsFinal has been completed 2353 sweep(true); 2354 assert(_collectorState == Resizing, "Collector state change " 2355 "to Resizing must be done under the free_list_lock"); 2356 _full_gcs_since_conc_gc = 0; 2357 2358 // Stop the timers for adaptive size policy for the concurrent phases 2359 if (UseAdaptiveSizePolicy) { 2360 size_policy()->concurrent_sweeping_end(); 2361 size_policy()->concurrent_phases_end(gch->gc_cause(), 2362 gch->prev_gen(_cmsGen)->capacity(), 2363 _cmsGen->free()); 2364 } 2365 2366 case Resizing: { 2367 // Sweeping has been completed... 2368 // At this point the background collection has completed. 2369 // Don't move the call to compute_new_size() down 2370 // into code that might be executed if the background 2371 // collection was preempted. 2372 { 2373 ReleaseForegroundGC x(this); // unblock FG collection 2374 MutexLockerEx y(Heap_lock, Mutex::_no_safepoint_check_flag); 2375 CMSTokenSync z(true); // not strictly needed. 2376 if (_collectorState == Resizing) { 2377 compute_new_size(); 2378 save_heap_summary(); 2379 _collectorState = Resetting; 2380 } else { 2381 assert(_collectorState == Idling, "The state should only change" 2382 " because the foreground collector has finished the collection"); 2383 } 2384 } 2385 break; 2386 } 2387 case Resetting: 2388 // CMS heap resizing has been completed 2389 reset(true); 2390 assert(_collectorState == Idling, "Collector state should " 2391 "have changed"); 2392 stats().record_cms_end(); 2393 // Don't move the concurrent_phases_end() and compute_new_size() 2394 // calls to here because a preempted background collection 2395 // has it's state set to "Resetting". 2396 break; 2397 case Idling: 2398 default: 2399 ShouldNotReachHere(); 2400 break; 2401 } 2402 if (TraceCMSState) { 2403 gclog_or_tty->print_cr(" Thread " INTPTR_FORMAT " done - next CMS state %d", 2404 Thread::current(), _collectorState); 2405 } 2406 assert(_foregroundGCShouldWait, "block post-condition"); 2407 } 2408 2409 // Should this be in gc_epilogue? 2410 collector_policy()->counters()->update_counters(); 2411 2412 { 2413 // Clear _foregroundGCShouldWait and, in the event that the 2414 // foreground collector is waiting, notify it, before 2415 // returning. 2416 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 2417 _foregroundGCShouldWait = false; 2418 if (_foregroundGCIsActive) { 2419 CGC_lock->notify(); 2420 } 2421 assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 2422 "Possible deadlock"); 2423 } 2424 if (TraceCMSState) { 2425 gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT 2426 " exiting collection CMS state %d", 2427 Thread::current(), _collectorState); 2428 } 2429 if (PrintGC && Verbose) { 2430 _cmsGen->print_heap_change(prev_used); 2431 } 2432 } 2433 2434 void CMSCollector::register_foreground_gc_start(GCCause::Cause cause) { 2435 if (!_cms_start_registered) { 2436 register_gc_start(cause); 2437 } 2438 } 2439 2440 void CMSCollector::register_gc_start(GCCause::Cause cause) { 2441 _cms_start_registered = true; 2442 _gc_timer_cm->register_gc_start(os::elapsed_counter()); 2443 _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start()); 2444 } 2445 2446 void CMSCollector::register_gc_end() { 2447 if (_cms_start_registered) { 2448 report_heap_summary(GCWhen::AfterGC); 2449 2450 _gc_timer_cm->register_gc_end(os::elapsed_counter()); 2451 _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions()); 2452 _cms_start_registered = false; 2453 } 2454 } 2455 2456 void CMSCollector::save_heap_summary() { 2457 GenCollectedHeap* gch = GenCollectedHeap::heap(); 2458 _last_heap_summary = gch->create_heap_summary(); 2459 _last_perm_gen_summary = gch->create_perm_gen_summary(); 2460 } 2461 2462 void CMSCollector::report_heap_summary(GCWhen::Type when) { 2463 _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary, _last_perm_gen_summary); 2464 } 2465 2466 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs, GCCause::Cause cause) { 2467 assert(_foregroundGCIsActive && !_foregroundGCShouldWait, 2468 "Foreground collector should be waiting, not executing"); 2469 assert(Thread::current()->is_VM_thread(), "A foreground collection" 2470 "may only be done by the VM Thread with the world stopped"); 2471 assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(), 2472 "VM thread should have CMS token"); 2473 2474 NOT_PRODUCT(GCTraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose, 2475 true, NULL);) 2476 if (UseAdaptiveSizePolicy) { 2477 size_policy()->ms_collection_begin(); 2478 } 2479 COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact); 2480 2481 HandleMark hm; // Discard invalid handles created during verification 2482 2483 if (VerifyBeforeGC && 2484 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 2485 Universe::verify(); 2486 } 2487 2488 // Snapshot the soft reference policy to be used in this collection cycle. 2489 ref_processor()->setup_policy(clear_all_soft_refs); 2490 2491 bool init_mark_was_synchronous = false; // until proven otherwise 2492 while (_collectorState != Idling) { 2493 if (TraceCMSState) { 2494 gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d", 2495 Thread::current(), _collectorState); 2496 } 2497 switch (_collectorState) { 2498 case InitialMarking: 2499 register_foreground_gc_start(cause); 2500 init_mark_was_synchronous = true; // fact to be exploited in re-mark 2501 checkpointRootsInitial(false); 2502 assert(_collectorState == Marking, "Collector state should have changed" 2503 " within checkpointRootsInitial()"); 2504 break; 2505 case Marking: 2506 // initial marking in checkpointRootsInitialWork has been completed 2507 if (VerifyDuringGC && 2508 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 2509 gclog_or_tty->print("Verify before initial mark: "); 2510 Universe::verify(); 2511 } 2512 { 2513 bool res = markFromRoots(false); 2514 assert(res && _collectorState == FinalMarking, "Collector state should " 2515 "have changed"); 2516 break; 2517 } 2518 case FinalMarking: 2519 if (VerifyDuringGC && 2520 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 2521 gclog_or_tty->print("Verify before re-mark: "); 2522 Universe::verify(); 2523 } 2524 checkpointRootsFinal(false, clear_all_soft_refs, 2525 init_mark_was_synchronous); 2526 assert(_collectorState == Sweeping, "Collector state should not " 2527 "have changed within checkpointRootsFinal()"); 2528 break; 2529 case Sweeping: 2530 // final marking in checkpointRootsFinal has been completed 2531 if (VerifyDuringGC && 2532 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 2533 gclog_or_tty->print("Verify before sweep: "); 2534 Universe::verify(); 2535 } 2536 sweep(false); 2537 assert(_collectorState == Resizing, "Incorrect state"); 2538 break; 2539 case Resizing: { 2540 // Sweeping has been completed; the actual resize in this case 2541 // is done separately; nothing to be done in this state. 2542 _collectorState = Resetting; 2543 break; 2544 } 2545 case Resetting: 2546 // The heap has been resized. 2547 if (VerifyDuringGC && 2548 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 2549 gclog_or_tty->print("Verify before reset: "); 2550 Universe::verify(); 2551 } 2552 save_heap_summary(); 2553 reset(false); 2554 assert(_collectorState == Idling, "Collector state should " 2555 "have changed"); 2556 break; 2557 case Precleaning: 2558 case AbortablePreclean: 2559 // Elide the preclean phase 2560 _collectorState = FinalMarking; 2561 break; 2562 default: 2563 ShouldNotReachHere(); 2564 } 2565 if (TraceCMSState) { 2566 gclog_or_tty->print_cr(" Thread " INTPTR_FORMAT " done - next CMS state %d", 2567 Thread::current(), _collectorState); 2568 } 2569 } 2570 2571 if (UseAdaptiveSizePolicy) { 2572 GenCollectedHeap* gch = GenCollectedHeap::heap(); 2573 size_policy()->ms_collection_end(gch->gc_cause()); 2574 } 2575 2576 if (VerifyAfterGC && 2577 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 2578 Universe::verify(); 2579 } 2580 if (TraceCMSState) { 2581 gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT 2582 " exiting collection CMS state %d", 2583 Thread::current(), _collectorState); 2584 } 2585 } 2586 2587 bool CMSCollector::waitForForegroundGC() { 2588 bool res = false; 2589 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 2590 "CMS thread should have CMS token"); 2591 // Block the foreground collector until the 2592 // background collectors decides whether to 2593 // yield. 2594 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 2595 _foregroundGCShouldWait = true; 2596 if (_foregroundGCIsActive) { 2597 // The background collector yields to the 2598 // foreground collector and returns a value 2599 // indicating that it has yielded. The foreground 2600 // collector can proceed. 2601 res = true; 2602 _foregroundGCShouldWait = false; 2603 ConcurrentMarkSweepThread::clear_CMS_flag( 2604 ConcurrentMarkSweepThread::CMS_cms_has_token); 2605 ConcurrentMarkSweepThread::set_CMS_flag( 2606 ConcurrentMarkSweepThread::CMS_cms_wants_token); 2607 // Get a possibly blocked foreground thread going 2608 CGC_lock->notify(); 2609 if (TraceCMSState) { 2610 gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d", 2611 Thread::current(), _collectorState); 2612 } 2613 while (_foregroundGCIsActive) { 2614 CGC_lock->wait(Mutex::_no_safepoint_check_flag); 2615 } 2616 ConcurrentMarkSweepThread::set_CMS_flag( 2617 ConcurrentMarkSweepThread::CMS_cms_has_token); 2618 ConcurrentMarkSweepThread::clear_CMS_flag( 2619 ConcurrentMarkSweepThread::CMS_cms_wants_token); 2620 } 2621 if (TraceCMSState) { 2622 gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d", 2623 Thread::current(), _collectorState); 2624 } 2625 return res; 2626 } 2627 2628 // Because of the need to lock the free lists and other structures in 2629 // the collector, common to all the generations that the collector is 2630 // collecting, we need the gc_prologues of individual CMS generations 2631 // delegate to their collector. It may have been simpler had the 2632 // current infrastructure allowed one to call a prologue on a 2633 // collector. In the absence of that we have the generation's 2634 // prologue delegate to the collector, which delegates back 2635 // some "local" work to a worker method in the individual generations 2636 // that it's responsible for collecting, while itself doing any 2637 // work common to all generations it's responsible for. A similar 2638 // comment applies to the gc_epilogue()'s. 2639 // The role of the varaible _between_prologue_and_epilogue is to 2640 // enforce the invocation protocol. 2641 void CMSCollector::gc_prologue(bool full) { 2642 // Call gc_prologue_work() for each CMSGen and PermGen that 2643 // we are responsible for. 2644 2645 // The following locking discipline assumes that we are only called 2646 // when the world is stopped. 2647 assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption"); 2648 2649 // The CMSCollector prologue must call the gc_prologues for the 2650 // "generations" (including PermGen if any) that it's responsible 2651 // for. 2652 2653 assert( Thread::current()->is_VM_thread() 2654 || ( CMSScavengeBeforeRemark 2655 && Thread::current()->is_ConcurrentGC_thread()), 2656 "Incorrect thread type for prologue execution"); 2657 2658 if (_between_prologue_and_epilogue) { 2659 // We have already been invoked; this is a gc_prologue delegation 2660 // from yet another CMS generation that we are responsible for, just 2661 // ignore it since all relevant work has already been done. 2662 return; 2663 } 2664 2665 // set a bit saying prologue has been called; cleared in epilogue 2666 _between_prologue_and_epilogue = true; 2667 // Claim locks for common data structures, then call gc_prologue_work() 2668 // for each CMSGen and PermGen that we are responsible for. 2669 2670 getFreelistLocks(); // gets free list locks on constituent spaces 2671 bitMapLock()->lock_without_safepoint_check(); 2672 2673 // Should call gc_prologue_work() for all cms gens we are responsible for 2674 bool registerClosure = _collectorState >= Marking 2675 && _collectorState < Sweeping; 2676 ModUnionClosure* muc = CollectedHeap::use_parallel_gc_threads() ? 2677 &_modUnionClosurePar 2678 : &_modUnionClosure; 2679 _cmsGen->gc_prologue_work(full, registerClosure, muc); 2680 _permGen->gc_prologue_work(full, registerClosure, muc); 2681 2682 if (!full) { 2683 stats().record_gc0_begin(); 2684 } 2685 } 2686 2687 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) { 2688 // Delegate to CMScollector which knows how to coordinate between 2689 // this and any other CMS generations that it is responsible for 2690 // collecting. 2691 collector()->gc_prologue(full); 2692 } 2693 2694 // This is a "private" interface for use by this generation's CMSCollector. 2695 // Not to be called directly by any other entity (for instance, 2696 // GenCollectedHeap, which calls the "public" gc_prologue method above). 2697 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full, 2698 bool registerClosure, ModUnionClosure* modUnionClosure) { 2699 assert(!incremental_collection_failed(), "Shouldn't be set yet"); 2700 assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL, 2701 "Should be NULL"); 2702 if (registerClosure) { 2703 cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure); 2704 } 2705 cmsSpace()->gc_prologue(); 2706 // Clear stat counters 2707 NOT_PRODUCT( 2708 assert(_numObjectsPromoted == 0, "check"); 2709 assert(_numWordsPromoted == 0, "check"); 2710 if (Verbose && PrintGC) { 2711 gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, " 2712 SIZE_FORMAT" bytes concurrently", 2713 _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord)); 2714 } 2715 _numObjectsAllocated = 0; 2716 _numWordsAllocated = 0; 2717 ) 2718 } 2719 2720 void CMSCollector::gc_epilogue(bool full) { 2721 // The following locking discipline assumes that we are only called 2722 // when the world is stopped. 2723 assert(SafepointSynchronize::is_at_safepoint(), 2724 "world is stopped assumption"); 2725 2726 // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks 2727 // if linear allocation blocks need to be appropriately marked to allow the 2728 // the blocks to be parsable. We also check here whether we need to nudge the 2729 // CMS collector thread to start a new cycle (if it's not already active). 2730 assert( Thread::current()->is_VM_thread() 2731 || ( CMSScavengeBeforeRemark 2732 && Thread::current()->is_ConcurrentGC_thread()), 2733 "Incorrect thread type for epilogue execution"); 2734 2735 if (!_between_prologue_and_epilogue) { 2736 // We have already been invoked; this is a gc_epilogue delegation 2737 // from yet another CMS generation that we are responsible for, just 2738 // ignore it since all relevant work has already been done. 2739 return; 2740 } 2741 assert(haveFreelistLocks(), "must have freelist locks"); 2742 assert_lock_strong(bitMapLock()); 2743 2744 _cmsGen->gc_epilogue_work(full); 2745 _permGen->gc_epilogue_work(full); 2746 2747 if (_collectorState == AbortablePreclean || _collectorState == Precleaning) { 2748 // in case sampling was not already enabled, enable it 2749 _start_sampling = true; 2750 } 2751 // reset _eden_chunk_array so sampling starts afresh 2752 _eden_chunk_index = 0; 2753 2754 size_t cms_used = _cmsGen->cmsSpace()->used(); 2755 size_t perm_used = _permGen->cmsSpace()->used(); 2756 2757 // update performance counters - this uses a special version of 2758 // update_counters() that allows the utilization to be passed as a 2759 // parameter, avoiding multiple calls to used(). 2760 // 2761 _cmsGen->update_counters(cms_used); 2762 _permGen->update_counters(perm_used); 2763 2764 if (CMSIncrementalMode) { 2765 icms_update_allocation_limits(); 2766 } 2767 2768 bitMapLock()->unlock(); 2769 releaseFreelistLocks(); 2770 2771 if (!CleanChunkPoolAsync) { 2772 Chunk::clean_chunk_pool(); 2773 } 2774 2775 _between_prologue_and_epilogue = false; // ready for next cycle 2776 } 2777 2778 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) { 2779 collector()->gc_epilogue(full); 2780 2781 // Also reset promotion tracking in par gc thread states. 2782 if (CollectedHeap::use_parallel_gc_threads()) { 2783 for (uint i = 0; i < ParallelGCThreads; i++) { 2784 _par_gc_thread_states[i]->promo.stopTrackingPromotions(i); 2785 } 2786 } 2787 } 2788 2789 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) { 2790 assert(!incremental_collection_failed(), "Should have been cleared"); 2791 cmsSpace()->setPreconsumptionDirtyCardClosure(NULL); 2792 cmsSpace()->gc_epilogue(); 2793 // Print stat counters 2794 NOT_PRODUCT( 2795 assert(_numObjectsAllocated == 0, "check"); 2796 assert(_numWordsAllocated == 0, "check"); 2797 if (Verbose && PrintGC) { 2798 gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, " 2799 SIZE_FORMAT" bytes", 2800 _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord)); 2801 } 2802 _numObjectsPromoted = 0; 2803 _numWordsPromoted = 0; 2804 ) 2805 2806 if (PrintGC && Verbose) { 2807 // Call down the chain in contiguous_available needs the freelistLock 2808 // so print this out before releasing the freeListLock. 2809 gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ", 2810 contiguous_available()); 2811 } 2812 } 2813 2814 #ifndef PRODUCT 2815 bool CMSCollector::have_cms_token() { 2816 Thread* thr = Thread::current(); 2817 if (thr->is_VM_thread()) { 2818 return ConcurrentMarkSweepThread::vm_thread_has_cms_token(); 2819 } else if (thr->is_ConcurrentGC_thread()) { 2820 return ConcurrentMarkSweepThread::cms_thread_has_cms_token(); 2821 } else if (thr->is_GC_task_thread()) { 2822 return ConcurrentMarkSweepThread::vm_thread_has_cms_token() && 2823 ParGCRareEvent_lock->owned_by_self(); 2824 } 2825 return false; 2826 } 2827 #endif 2828 2829 // Check reachability of the given heap address in CMS generation, 2830 // treating all other generations as roots. 2831 bool CMSCollector::is_cms_reachable(HeapWord* addr) { 2832 // We could "guarantee" below, rather than assert, but i'll 2833 // leave these as "asserts" so that an adventurous debugger 2834 // could try this in the product build provided some subset of 2835 // the conditions were met, provided they were intersted in the 2836 // results and knew that the computation below wouldn't interfere 2837 // with other concurrent computations mutating the structures 2838 // being read or written. 2839 assert(SafepointSynchronize::is_at_safepoint(), 2840 "Else mutations in object graph will make answer suspect"); 2841 assert(have_cms_token(), "Should hold cms token"); 2842 assert(haveFreelistLocks(), "must hold free list locks"); 2843 assert_lock_strong(bitMapLock()); 2844 2845 // Clear the marking bit map array before starting, but, just 2846 // for kicks, first report if the given address is already marked 2847 gclog_or_tty->print_cr("Start: Address 0x%x is%s marked", addr, 2848 _markBitMap.isMarked(addr) ? "" : " not"); 2849 2850 if (verify_after_remark()) { 2851 MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag); 2852 bool result = verification_mark_bm()->isMarked(addr); 2853 gclog_or_tty->print_cr("TransitiveMark: Address 0x%x %s marked", addr, 2854 result ? "IS" : "is NOT"); 2855 return result; 2856 } else { 2857 gclog_or_tty->print_cr("Could not compute result"); 2858 return false; 2859 } 2860 } 2861 2862 //////////////////////////////////////////////////////// 2863 // CMS Verification Support 2864 //////////////////////////////////////////////////////// 2865 // Following the remark phase, the following invariant 2866 // should hold -- each object in the CMS heap which is 2867 // marked in markBitMap() should be marked in the verification_mark_bm(). 2868 2869 class VerifyMarkedClosure: public BitMapClosure { 2870 CMSBitMap* _marks; 2871 bool _failed; 2872 2873 public: 2874 VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {} 2875 2876 bool do_bit(size_t offset) { 2877 HeapWord* addr = _marks->offsetToHeapWord(offset); 2878 if (!_marks->isMarked(addr)) { 2879 oop(addr)->print_on(gclog_or_tty); 2880 gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr); 2881 _failed = true; 2882 } 2883 return true; 2884 } 2885 2886 bool failed() { return _failed; } 2887 }; 2888 2889 bool CMSCollector::verify_after_remark() { 2890 gclog_or_tty->print(" [Verifying CMS Marking... "); 2891 MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag); 2892 static bool init = false; 2893 2894 assert(SafepointSynchronize::is_at_safepoint(), 2895 "Else mutations in object graph will make answer suspect"); 2896 assert(have_cms_token(), 2897 "Else there may be mutual interference in use of " 2898 " verification data structures"); 2899 assert(_collectorState > Marking && _collectorState <= Sweeping, 2900 "Else marking info checked here may be obsolete"); 2901 assert(haveFreelistLocks(), "must hold free list locks"); 2902 assert_lock_strong(bitMapLock()); 2903 2904 2905 // Allocate marking bit map if not already allocated 2906 if (!init) { // first time 2907 if (!verification_mark_bm()->allocate(_span)) { 2908 return false; 2909 } 2910 init = true; 2911 } 2912 2913 assert(verification_mark_stack()->isEmpty(), "Should be empty"); 2914 2915 // Turn off refs discovery -- so we will be tracing through refs. 2916 // This is as intended, because by this time 2917 // GC must already have cleared any refs that need to be cleared, 2918 // and traced those that need to be marked; moreover, 2919 // the marking done here is not going to intefere in any 2920 // way with the marking information used by GC. 2921 NoRefDiscovery no_discovery(ref_processor()); 2922 2923 COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;) 2924 2925 // Clear any marks from a previous round 2926 verification_mark_bm()->clear_all(); 2927 assert(verification_mark_stack()->isEmpty(), "markStack should be empty"); 2928 verify_work_stacks_empty(); 2929 2930 GenCollectedHeap* gch = GenCollectedHeap::heap(); 2931 gch->ensure_parsability(false); // fill TLABs, but no need to retire them 2932 // Update the saved marks which may affect the root scans. 2933 gch->save_marks(); 2934 2935 if (CMSRemarkVerifyVariant == 1) { 2936 // In this first variant of verification, we complete 2937 // all marking, then check if the new marks-verctor is 2938 // a subset of the CMS marks-vector. 2939 verify_after_remark_work_1(); 2940 } else if (CMSRemarkVerifyVariant == 2) { 2941 // In this second variant of verification, we flag an error 2942 // (i.e. an object reachable in the new marks-vector not reachable 2943 // in the CMS marks-vector) immediately, also indicating the 2944 // identify of an object (A) that references the unmarked object (B) -- 2945 // presumably, a mutation to A failed to be picked up by preclean/remark? 2946 verify_after_remark_work_2(); 2947 } else { 2948 warning("Unrecognized value %d for CMSRemarkVerifyVariant", 2949 CMSRemarkVerifyVariant); 2950 } 2951 gclog_or_tty->print(" done] "); 2952 return true; 2953 } 2954 2955 void CMSCollector::verify_after_remark_work_1() { 2956 ResourceMark rm; 2957 HandleMark hm; 2958 GenCollectedHeap* gch = GenCollectedHeap::heap(); 2959 2960 // Mark from roots one level into CMS 2961 MarkRefsIntoClosure notOlder(_span, verification_mark_bm()); 2962 gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel. 2963 2964 gch->gen_process_strong_roots(_cmsGen->level(), 2965 true, // younger gens are roots 2966 true, // activate StrongRootsScope 2967 true, // collecting perm gen 2968 SharedHeap::ScanningOption(roots_scanning_options()), 2969 ¬Older, 2970 true, // walk code active on stacks 2971 NULL); 2972 2973 // Now mark from the roots 2974 assert(_revisitStack.isEmpty(), "Should be empty"); 2975 MarkFromRootsClosure markFromRootsClosure(this, _span, 2976 verification_mark_bm(), verification_mark_stack(), &_revisitStack, 2977 false /* don't yield */, true /* verifying */); 2978 assert(_restart_addr == NULL, "Expected pre-condition"); 2979 verification_mark_bm()->iterate(&markFromRootsClosure); 2980 while (_restart_addr != NULL) { 2981 // Deal with stack overflow: by restarting at the indicated 2982 // address. 2983 HeapWord* ra = _restart_addr; 2984 markFromRootsClosure.reset(ra); 2985 _restart_addr = NULL; 2986 verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end()); 2987 } 2988 assert(verification_mark_stack()->isEmpty(), "Should have been drained"); 2989 verify_work_stacks_empty(); 2990 // Should reset the revisit stack above, since no class tree 2991 // surgery is forthcoming. 2992 _revisitStack.reset(); // throwing away all contents 2993 2994 // Marking completed -- now verify that each bit marked in 2995 // verification_mark_bm() is also marked in markBitMap(); flag all 2996 // errors by printing corresponding objects. 2997 VerifyMarkedClosure vcl(markBitMap()); 2998 verification_mark_bm()->iterate(&vcl); 2999 if (vcl.failed()) { 3000 gclog_or_tty->print("Verification failed"); 3001 Universe::heap()->print_on(gclog_or_tty); 3002 fatal("CMS: failed marking verification after remark"); 3003 } 3004 } 3005 3006 void CMSCollector::verify_after_remark_work_2() { 3007 ResourceMark rm; 3008 HandleMark hm; 3009 GenCollectedHeap* gch = GenCollectedHeap::heap(); 3010 3011 // Mark from roots one level into CMS 3012 MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(), 3013 markBitMap()); 3014 gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel. 3015 gch->gen_process_strong_roots(_cmsGen->level(), 3016 true, // younger gens are roots 3017 true, // activate StrongRootsScope 3018 true, // collecting perm gen 3019 SharedHeap::ScanningOption(roots_scanning_options()), 3020 ¬Older, 3021 true, // walk code active on stacks 3022 NULL); 3023 3024 // Now mark from the roots 3025 assert(_revisitStack.isEmpty(), "Should be empty"); 3026 MarkFromRootsVerifyClosure markFromRootsClosure(this, _span, 3027 verification_mark_bm(), markBitMap(), verification_mark_stack()); 3028 assert(_restart_addr == NULL, "Expected pre-condition"); 3029 verification_mark_bm()->iterate(&markFromRootsClosure); 3030 while (_restart_addr != NULL) { 3031 // Deal with stack overflow: by restarting at the indicated 3032 // address. 3033 HeapWord* ra = _restart_addr; 3034 markFromRootsClosure.reset(ra); 3035 _restart_addr = NULL; 3036 verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end()); 3037 } 3038 assert(verification_mark_stack()->isEmpty(), "Should have been drained"); 3039 verify_work_stacks_empty(); 3040 // Should reset the revisit stack above, since no class tree 3041 // surgery is forthcoming. 3042 _revisitStack.reset(); // throwing away all contents 3043 3044 // Marking completed -- now verify that each bit marked in 3045 // verification_mark_bm() is also marked in markBitMap(); flag all 3046 // errors by printing corresponding objects. 3047 VerifyMarkedClosure vcl(markBitMap()); 3048 verification_mark_bm()->iterate(&vcl); 3049 assert(!vcl.failed(), "Else verification above should not have succeeded"); 3050 } 3051 3052 void ConcurrentMarkSweepGeneration::save_marks() { 3053 // delegate to CMS space 3054 cmsSpace()->save_marks(); 3055 for (uint i = 0; i < ParallelGCThreads; i++) { 3056 _par_gc_thread_states[i]->promo.startTrackingPromotions(); 3057 } 3058 } 3059 3060 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() { 3061 return cmsSpace()->no_allocs_since_save_marks(); 3062 } 3063 3064 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \ 3065 \ 3066 void ConcurrentMarkSweepGeneration:: \ 3067 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \ 3068 cl->set_generation(this); \ 3069 cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl); \ 3070 cl->reset_generation(); \ 3071 save_marks(); \ 3072 } 3073 3074 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN) 3075 3076 void 3077 ConcurrentMarkSweepGeneration::object_iterate_since_last_GC(ObjectClosure* blk) 3078 { 3079 // Not currently implemented; need to do the following. -- ysr. 3080 // dld -- I think that is used for some sort of allocation profiler. So it 3081 // really means the objects allocated by the mutator since the last 3082 // GC. We could potentially implement this cheaply by recording only 3083 // the direct allocations in a side data structure. 3084 // 3085 // I think we probably ought not to be required to support these 3086 // iterations at any arbitrary point; I think there ought to be some 3087 // call to enable/disable allocation profiling in a generation/space, 3088 // and the iterator ought to return the objects allocated in the 3089 // gen/space since the enable call, or the last iterator call (which 3090 // will probably be at a GC.) That way, for gens like CM&S that would 3091 // require some extra data structure to support this, we only pay the 3092 // cost when it's in use... 3093 cmsSpace()->object_iterate_since_last_GC(blk); 3094 } 3095 3096 void 3097 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) { 3098 cl->set_generation(this); 3099 younger_refs_in_space_iterate(_cmsSpace, cl); 3100 cl->reset_generation(); 3101 } 3102 3103 void 3104 ConcurrentMarkSweepGeneration::oop_iterate(MemRegion mr, OopClosure* cl) { 3105 if (freelistLock()->owned_by_self()) { 3106 Generation::oop_iterate(mr, cl); 3107 } else { 3108 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag); 3109 Generation::oop_iterate(mr, cl); 3110 } 3111 } 3112 3113 void 3114 ConcurrentMarkSweepGeneration::oop_iterate(OopClosure* cl) { 3115 if (freelistLock()->owned_by_self()) { 3116 Generation::oop_iterate(cl); 3117 } else { 3118 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag); 3119 Generation::oop_iterate(cl); 3120 } 3121 } 3122 3123 void 3124 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) { 3125 if (freelistLock()->owned_by_self()) { 3126 Generation::object_iterate(cl); 3127 } else { 3128 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag); 3129 Generation::object_iterate(cl); 3130 } 3131 } 3132 3133 void 3134 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) { 3135 if (freelistLock()->owned_by_self()) { 3136 Generation::safe_object_iterate(cl); 3137 } else { 3138 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag); 3139 Generation::safe_object_iterate(cl); 3140 } 3141 } 3142 3143 void 3144 ConcurrentMarkSweepGeneration::pre_adjust_pointers() { 3145 } 3146 3147 void 3148 ConcurrentMarkSweepGeneration::post_compact() { 3149 } 3150 3151 void 3152 ConcurrentMarkSweepGeneration::prepare_for_verify() { 3153 // Fix the linear allocation blocks to look like free blocks. 3154 3155 // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those 3156 // are not called when the heap is verified during universe initialization and 3157 // at vm shutdown. 3158 if (freelistLock()->owned_by_self()) { 3159 cmsSpace()->prepare_for_verify(); 3160 } else { 3161 MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag); 3162 cmsSpace()->prepare_for_verify(); 3163 } 3164 } 3165 3166 void 3167 ConcurrentMarkSweepGeneration::verify() { 3168 // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those 3169 // are not called when the heap is verified during universe initialization and 3170 // at vm shutdown. 3171 if (freelistLock()->owned_by_self()) { 3172 cmsSpace()->verify(); 3173 } else { 3174 MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag); 3175 cmsSpace()->verify(); 3176 } 3177 } 3178 3179 void CMSCollector::verify() { 3180 _cmsGen->verify(); 3181 _permGen->verify(); 3182 } 3183 3184 #ifndef PRODUCT 3185 bool CMSCollector::overflow_list_is_empty() const { 3186 assert(_num_par_pushes >= 0, "Inconsistency"); 3187 if (_overflow_list == NULL) { 3188 assert(_num_par_pushes == 0, "Inconsistency"); 3189 } 3190 return _overflow_list == NULL; 3191 } 3192 3193 // The methods verify_work_stacks_empty() and verify_overflow_empty() 3194 // merely consolidate assertion checks that appear to occur together frequently. 3195 void CMSCollector::verify_work_stacks_empty() const { 3196 assert(_markStack.isEmpty(), "Marking stack should be empty"); 3197 assert(overflow_list_is_empty(), "Overflow list should be empty"); 3198 } 3199 3200 void CMSCollector::verify_overflow_empty() const { 3201 assert(overflow_list_is_empty(), "Overflow list should be empty"); 3202 assert(no_preserved_marks(), "No preserved marks"); 3203 } 3204 #endif // PRODUCT 3205 3206 // Decide if we want to enable class unloading as part of the 3207 // ensuing concurrent GC cycle. We will collect the perm gen and 3208 // unload classes if it's the case that: 3209 // (1) an explicit gc request has been made and the flag 3210 // ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR 3211 // (2) (a) class unloading is enabled at the command line, and 3212 // (b) (i) perm gen threshold has been crossed, or 3213 // (ii) old gen is getting really full, or 3214 // (iii) the previous N CMS collections did not collect the 3215 // perm gen 3216 // NOTE: Provided there is no change in the state of the heap between 3217 // calls to this method, it should have idempotent results. Moreover, 3218 // its results should be monotonically increasing (i.e. going from 0 to 1, 3219 // but not 1 to 0) between successive calls between which the heap was 3220 // not collected. For the implementation below, it must thus rely on 3221 // the property that concurrent_cycles_since_last_unload() 3222 // will not decrease unless a collection cycle happened and that 3223 // _permGen->should_concurrent_collect() and _cmsGen->is_too_full() are 3224 // themselves also monotonic in that sense. See check_monotonicity() 3225 // below. 3226 bool CMSCollector::update_should_unload_classes() { 3227 _should_unload_classes = false; 3228 // Condition 1 above 3229 if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) { 3230 _should_unload_classes = true; 3231 } else if (CMSClassUnloadingEnabled) { // Condition 2.a above 3232 // Disjuncts 2.b.(i,ii,iii) above 3233 _should_unload_classes = (concurrent_cycles_since_last_unload() >= 3234 CMSClassUnloadingMaxInterval) 3235 || _permGen->should_concurrent_collect() 3236 || _cmsGen->is_too_full(); 3237 } 3238 return _should_unload_classes; 3239 } 3240 3241 bool ConcurrentMarkSweepGeneration::is_too_full() const { 3242 bool res = should_concurrent_collect(); 3243 res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0); 3244 return res; 3245 } 3246 3247 void CMSCollector::setup_cms_unloading_and_verification_state() { 3248 const bool should_verify = VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC 3249 || VerifyBeforeExit; 3250 const int rso = SharedHeap::SO_Strings | SharedHeap::SO_CodeCache; 3251 3252 if (should_unload_classes()) { // Should unload classes this cycle 3253 remove_root_scanning_option(rso); // Shrink the root set appropriately 3254 set_verifying(should_verify); // Set verification state for this cycle 3255 return; // Nothing else needs to be done at this time 3256 } 3257 3258 // Not unloading classes this cycle 3259 assert(!should_unload_classes(), "Inconsitency!"); 3260 if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) { 3261 // We were not verifying, or we _were_ unloading classes in the last cycle, 3262 // AND some verification options are enabled this cycle; in this case, 3263 // we must make sure that the deadness map is allocated if not already so, 3264 // and cleared (if already allocated previously -- 3265 // CMSBitMap::sizeInBits() is used to determine if it's allocated). 3266 if (perm_gen_verify_bit_map()->sizeInBits() == 0) { 3267 if (!perm_gen_verify_bit_map()->allocate(_permGen->reserved())) { 3268 warning("Failed to allocate permanent generation verification CMS Bit Map;\n" 3269 "permanent generation verification disabled"); 3270 return; // Note that we leave verification disabled, so we'll retry this 3271 // allocation next cycle. We _could_ remember this failure 3272 // and skip further attempts and permanently disable verification 3273 // attempts if that is considered more desirable. 3274 } 3275 assert(perm_gen_verify_bit_map()->covers(_permGen->reserved()), 3276 "_perm_gen_ver_bit_map inconsistency?"); 3277 } else { 3278 perm_gen_verify_bit_map()->clear_all(); 3279 } 3280 // Include symbols, strings and code cache elements to prevent their resurrection. 3281 add_root_scanning_option(rso); 3282 set_verifying(true); 3283 } else if (verifying() && !should_verify) { 3284 // We were verifying, but some verification flags got disabled. 3285 set_verifying(false); 3286 // Exclude symbols, strings and code cache elements from root scanning to 3287 // reduce IM and RM pauses. 3288 remove_root_scanning_option(rso); 3289 } 3290 } 3291 3292 3293 #ifndef PRODUCT 3294 HeapWord* CMSCollector::block_start(const void* p) const { 3295 const HeapWord* addr = (HeapWord*)p; 3296 if (_span.contains(p)) { 3297 if (_cmsGen->cmsSpace()->is_in_reserved(addr)) { 3298 return _cmsGen->cmsSpace()->block_start(p); 3299 } else { 3300 assert(_permGen->cmsSpace()->is_in_reserved(addr), 3301 "Inconsistent _span?"); 3302 return _permGen->cmsSpace()->block_start(p); 3303 } 3304 } 3305 return NULL; 3306 } 3307 #endif 3308 3309 HeapWord* 3310 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size, 3311 bool tlab, 3312 bool parallel) { 3313 CMSSynchronousYieldRequest yr; 3314 assert(!tlab, "Can't deal with TLAB allocation"); 3315 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag); 3316 expand(word_size*HeapWordSize, MinHeapDeltaBytes, 3317 CMSExpansionCause::_satisfy_allocation); 3318 if (GCExpandToAllocateDelayMillis > 0) { 3319 os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false); 3320 } 3321 return have_lock_and_allocate(word_size, tlab); 3322 } 3323 3324 // YSR: All of this generation expansion/shrinking stuff is an exact copy of 3325 // OneContigSpaceCardGeneration, which makes me wonder if we should move this 3326 // to CardGeneration and share it... 3327 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) { 3328 return CardGeneration::expand(bytes, expand_bytes); 3329 } 3330 3331 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes, 3332 CMSExpansionCause::Cause cause) 3333 { 3334 3335 bool success = expand(bytes, expand_bytes); 3336 3337 // remember why we expanded; this information is used 3338 // by shouldConcurrentCollect() when making decisions on whether to start 3339 // a new CMS cycle. 3340 if (success) { 3341 set_expansion_cause(cause); 3342 if (PrintGCDetails && Verbose) { 3343 gclog_or_tty->print_cr("Expanded CMS gen for %s", 3344 CMSExpansionCause::to_string(cause)); 3345 } 3346 } 3347 } 3348 3349 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) { 3350 HeapWord* res = NULL; 3351 MutexLocker x(ParGCRareEvent_lock); 3352 while (true) { 3353 // Expansion by some other thread might make alloc OK now: 3354 res = ps->lab.alloc(word_sz); 3355 if (res != NULL) return res; 3356 // If there's not enough expansion space available, give up. 3357 if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) { 3358 return NULL; 3359 } 3360 // Otherwise, we try expansion. 3361 expand(word_sz*HeapWordSize, MinHeapDeltaBytes, 3362 CMSExpansionCause::_allocate_par_lab); 3363 // Now go around the loop and try alloc again; 3364 // A competing par_promote might beat us to the expansion space, 3365 // so we may go around the loop again if promotion fails agaion. 3366 if (GCExpandToAllocateDelayMillis > 0) { 3367 os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false); 3368 } 3369 } 3370 } 3371 3372 3373 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space( 3374 PromotionInfo* promo) { 3375 MutexLocker x(ParGCRareEvent_lock); 3376 size_t refill_size_bytes = promo->refillSize() * HeapWordSize; 3377 while (true) { 3378 // Expansion by some other thread might make alloc OK now: 3379 if (promo->ensure_spooling_space()) { 3380 assert(promo->has_spooling_space(), 3381 "Post-condition of successful ensure_spooling_space()"); 3382 return true; 3383 } 3384 // If there's not enough expansion space available, give up. 3385 if (_virtual_space.uncommitted_size() < refill_size_bytes) { 3386 return false; 3387 } 3388 // Otherwise, we try expansion. 3389 expand(refill_size_bytes, MinHeapDeltaBytes, 3390 CMSExpansionCause::_allocate_par_spooling_space); 3391 // Now go around the loop and try alloc again; 3392 // A competing allocation might beat us to the expansion space, 3393 // so we may go around the loop again if allocation fails again. 3394 if (GCExpandToAllocateDelayMillis > 0) { 3395 os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false); 3396 } 3397 } 3398 } 3399 3400 3401 3402 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) { 3403 assert_locked_or_safepoint(Heap_lock); 3404 size_t size = ReservedSpace::page_align_size_down(bytes); 3405 if (size > 0) { 3406 shrink_by(size); 3407 } 3408 } 3409 3410 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) { 3411 assert_locked_or_safepoint(Heap_lock); 3412 bool result = _virtual_space.expand_by(bytes); 3413 if (result) { 3414 HeapWord* old_end = _cmsSpace->end(); 3415 size_t new_word_size = 3416 heap_word_size(_virtual_space.committed_size()); 3417 MemRegion mr(_cmsSpace->bottom(), new_word_size); 3418 _bts->resize(new_word_size); // resize the block offset shared array 3419 Universe::heap()->barrier_set()->resize_covered_region(mr); 3420 // Hmmmm... why doesn't CFLS::set_end verify locking? 3421 // This is quite ugly; FIX ME XXX 3422 _cmsSpace->assert_locked(freelistLock()); 3423 _cmsSpace->set_end((HeapWord*)_virtual_space.high()); 3424 3425 // update the space and generation capacity counters 3426 if (UsePerfData) { 3427 _space_counters->update_capacity(); 3428 _gen_counters->update_all(); 3429 } 3430 3431 if (Verbose && PrintGC) { 3432 size_t new_mem_size = _virtual_space.committed_size(); 3433 size_t old_mem_size = new_mem_size - bytes; 3434 gclog_or_tty->print_cr("Expanding %s from %ldK by %ldK to %ldK", 3435 name(), old_mem_size/K, bytes/K, new_mem_size/K); 3436 } 3437 } 3438 return result; 3439 } 3440 3441 bool ConcurrentMarkSweepGeneration::grow_to_reserved() { 3442 assert_locked_or_safepoint(Heap_lock); 3443 bool success = true; 3444 const size_t remaining_bytes = _virtual_space.uncommitted_size(); 3445 if (remaining_bytes > 0) { 3446 success = grow_by(remaining_bytes); 3447 DEBUG_ONLY(if (!success) warning("grow to reserved failed");) 3448 } 3449 return success; 3450 } 3451 3452 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) { 3453 assert_locked_or_safepoint(Heap_lock); 3454 assert_lock_strong(freelistLock()); 3455 // XXX Fix when compaction is implemented. 3456 warning("Shrinking of CMS not yet implemented"); 3457 return; 3458 } 3459 3460 3461 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent 3462 // phases. 3463 class CMSPhaseAccounting: public StackObj { 3464 public: 3465 CMSPhaseAccounting(CMSCollector *collector, 3466 const char *phase, 3467 bool print_cr = true); 3468 ~CMSPhaseAccounting(); 3469 3470 private: 3471 CMSCollector *_collector; 3472 const char *_phase; 3473 elapsedTimer _wallclock; 3474 bool _print_cr; 3475 3476 public: 3477 // Not MT-safe; so do not pass around these StackObj's 3478 // where they may be accessed by other threads. 3479 jlong wallclock_millis() { 3480 assert(_wallclock.is_active(), "Wall clock should not stop"); 3481 _wallclock.stop(); // to record time 3482 jlong ret = _wallclock.milliseconds(); 3483 _wallclock.start(); // restart 3484 return ret; 3485 } 3486 }; 3487 3488 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector, 3489 const char *phase, 3490 bool print_cr) : 3491 _collector(collector), _phase(phase), _print_cr(print_cr) { 3492 3493 if (PrintCMSStatistics != 0) { 3494 _collector->resetYields(); 3495 } 3496 if (PrintGCDetails && PrintGCTimeStamps) { 3497 gclog_or_tty->date_stamp(PrintGCDateStamps); 3498 gclog_or_tty->stamp(); 3499 gclog_or_tty->print_cr(": [%s-concurrent-%s-start]", 3500 _collector->cmsGen()->short_name(), _phase); 3501 } 3502 _collector->resetTimer(); 3503 _wallclock.start(); 3504 _collector->startTimer(); 3505 } 3506 3507 CMSPhaseAccounting::~CMSPhaseAccounting() { 3508 assert(_wallclock.is_active(), "Wall clock should not have stopped"); 3509 _collector->stopTimer(); 3510 _wallclock.stop(); 3511 if (PrintGCDetails) { 3512 gclog_or_tty->date_stamp(PrintGCDateStamps); 3513 gclog_or_tty->stamp(PrintGCTimeStamps); 3514 gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]", 3515 _collector->cmsGen()->short_name(), 3516 _phase, _collector->timerValue(), _wallclock.seconds()); 3517 if (_print_cr) { 3518 gclog_or_tty->print_cr(""); 3519 } 3520 if (PrintCMSStatistics != 0) { 3521 gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase, 3522 _collector->yields()); 3523 } 3524 } 3525 } 3526 3527 // CMS work 3528 3529 // Checkpoint the roots into this generation from outside 3530 // this generation. [Note this initial checkpoint need only 3531 // be approximate -- we'll do a catch up phase subsequently.] 3532 void CMSCollector::checkpointRootsInitial(bool asynch) { 3533 assert(_collectorState == InitialMarking, "Wrong collector state"); 3534 check_correct_thread_executing(); 3535 TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause()); 3536 3537 save_heap_summary(); 3538 report_heap_summary(GCWhen::BeforeGC); 3539 3540 ReferenceProcessor* rp = ref_processor(); 3541 SpecializationStats::clear(); 3542 assert(_restart_addr == NULL, "Control point invariant"); 3543 if (asynch) { 3544 // acquire locks for subsequent manipulations 3545 MutexLockerEx x(bitMapLock(), 3546 Mutex::_no_safepoint_check_flag); 3547 checkpointRootsInitialWork(asynch); 3548 // enable ("weak") refs discovery 3549 rp->enable_discovery(true /*verify_disabled*/, true /*check_no_refs*/); 3550 _collectorState = Marking; 3551 } else { 3552 // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection 3553 // which recognizes if we are a CMS generation, and doesn't try to turn on 3554 // discovery; verify that they aren't meddling. 3555 assert(!rp->discovery_is_atomic(), 3556 "incorrect setting of discovery predicate"); 3557 assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control " 3558 "ref discovery for this generation kind"); 3559 // already have locks 3560 checkpointRootsInitialWork(asynch); 3561 // now enable ("weak") refs discovery 3562 rp->enable_discovery(true /*verify_disabled*/, false /*verify_no_refs*/); 3563 _collectorState = Marking; 3564 } 3565 SpecializationStats::print(); 3566 } 3567 3568 void CMSCollector::checkpointRootsInitialWork(bool asynch) { 3569 assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped"); 3570 assert(_collectorState == InitialMarking, "just checking"); 3571 3572 // If there has not been a GC[n-1] since last GC[n] cycle completed, 3573 // precede our marking with a collection of all 3574 // younger generations to keep floating garbage to a minimum. 3575 // XXX: we won't do this for now -- it's an optimization to be done later. 3576 3577 // already have locks 3578 assert_lock_strong(bitMapLock()); 3579 assert(_markBitMap.isAllClear(), "was reset at end of previous cycle"); 3580 3581 // Setup the verification and class unloading state for this 3582 // CMS collection cycle. 3583 setup_cms_unloading_and_verification_state(); 3584 3585 NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork", 3586 PrintGCDetails && Verbose, true, _gc_timer_cm);) 3587 if (UseAdaptiveSizePolicy) { 3588 size_policy()->checkpoint_roots_initial_begin(); 3589 } 3590 3591 // Reset all the PLAB chunk arrays if necessary. 3592 if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) { 3593 reset_survivor_plab_arrays(); 3594 } 3595 3596 ResourceMark rm; 3597 HandleMark hm; 3598 3599 FalseClosure falseClosure; 3600 // In the case of a synchronous collection, we will elide the 3601 // remark step, so it's important to catch all the nmethod oops 3602 // in this step. 3603 // The final 'true' flag to gen_process_strong_roots will ensure this. 3604 // If 'async' is true, we can relax the nmethod tracing. 3605 MarkRefsIntoClosure notOlder(_span, &_markBitMap); 3606 GenCollectedHeap* gch = GenCollectedHeap::heap(); 3607 3608 verify_work_stacks_empty(); 3609 verify_overflow_empty(); 3610 3611 gch->ensure_parsability(false); // fill TLABs, but no need to retire them 3612 // Update the saved marks which may affect the root scans. 3613 gch->save_marks(); 3614 3615 // weak reference processing has not started yet. 3616 ref_processor()->set_enqueuing_is_done(false); 3617 3618 { 3619 // This is not needed. DEBUG_ONLY(RememberKlassesChecker imx(true);) 3620 COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;) 3621 gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel. 3622 gch->gen_process_strong_roots(_cmsGen->level(), 3623 true, // younger gens are roots 3624 true, // activate StrongRootsScope 3625 true, // collecting perm gen 3626 SharedHeap::ScanningOption(roots_scanning_options()), 3627 ¬Older, 3628 true, // walk all of code cache if (so & SO_CodeCache) 3629 NULL); 3630 } 3631 3632 // Clear mod-union table; it will be dirtied in the prologue of 3633 // CMS generation per each younger generation collection. 3634 3635 assert(_modUnionTable.isAllClear(), 3636 "Was cleared in most recent final checkpoint phase" 3637 " or no bits are set in the gc_prologue before the start of the next " 3638 "subsequent marking phase."); 3639 3640 // Save the end of the used_region of the constituent generations 3641 // to be used to limit the extent of sweep in each generation. 3642 save_sweep_limits(); 3643 if (UseAdaptiveSizePolicy) { 3644 size_policy()->checkpoint_roots_initial_end(gch->gc_cause()); 3645 } 3646 verify_overflow_empty(); 3647 } 3648 3649 bool CMSCollector::markFromRoots(bool asynch) { 3650 // we might be tempted to assert that: 3651 // assert(asynch == !SafepointSynchronize::is_at_safepoint(), 3652 // "inconsistent argument?"); 3653 // However that wouldn't be right, because it's possible that 3654 // a safepoint is indeed in progress as a younger generation 3655 // stop-the-world GC happens even as we mark in this generation. 3656 assert(_collectorState == Marking, "inconsistent state?"); 3657 check_correct_thread_executing(); 3658 verify_overflow_empty(); 3659 3660 bool res; 3661 if (asynch) { 3662 3663 // Start the timers for adaptive size policy for the concurrent phases 3664 // Do it here so that the foreground MS can use the concurrent 3665 // timer since a foreground MS might has the sweep done concurrently 3666 // or STW. 3667 if (UseAdaptiveSizePolicy) { 3668 size_policy()->concurrent_marking_begin(); 3669 } 3670 3671 // Weak ref discovery note: We may be discovering weak 3672 // refs in this generation concurrent (but interleaved) with 3673 // weak ref discovery by a younger generation collector. 3674 3675 CMSTokenSyncWithLocks ts(true, bitMapLock()); 3676 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 3677 CMSPhaseAccounting pa(this, "mark", !PrintGCDetails); 3678 res = markFromRootsWork(asynch); 3679 if (res) { 3680 _collectorState = Precleaning; 3681 } else { // We failed and a foreground collection wants to take over 3682 assert(_foregroundGCIsActive, "internal state inconsistency"); 3683 assert(_restart_addr == NULL, "foreground will restart from scratch"); 3684 if (PrintGCDetails) { 3685 gclog_or_tty->print_cr("bailing out to foreground collection"); 3686 } 3687 } 3688 if (UseAdaptiveSizePolicy) { 3689 size_policy()->concurrent_marking_end(); 3690 } 3691 } else { 3692 assert(SafepointSynchronize::is_at_safepoint(), 3693 "inconsistent with asynch == false"); 3694 if (UseAdaptiveSizePolicy) { 3695 size_policy()->ms_collection_marking_begin(); 3696 } 3697 // already have locks 3698 res = markFromRootsWork(asynch); 3699 _collectorState = FinalMarking; 3700 if (UseAdaptiveSizePolicy) { 3701 GenCollectedHeap* gch = GenCollectedHeap::heap(); 3702 size_policy()->ms_collection_marking_end(gch->gc_cause()); 3703 } 3704 } 3705 verify_overflow_empty(); 3706 return res; 3707 } 3708 3709 bool CMSCollector::markFromRootsWork(bool asynch) { 3710 // iterate over marked bits in bit map, doing a full scan and mark 3711 // from these roots using the following algorithm: 3712 // . if oop is to the right of the current scan pointer, 3713 // mark corresponding bit (we'll process it later) 3714 // . else (oop is to left of current scan pointer) 3715 // push oop on marking stack 3716 // . drain the marking stack 3717 3718 // Note that when we do a marking step we need to hold the 3719 // bit map lock -- recall that direct allocation (by mutators) 3720 // and promotion (by younger generation collectors) is also 3721 // marking the bit map. [the so-called allocate live policy.] 3722 // Because the implementation of bit map marking is not 3723 // robust wrt simultaneous marking of bits in the same word, 3724 // we need to make sure that there is no such interference 3725 // between concurrent such updates. 3726 3727 // already have locks 3728 assert_lock_strong(bitMapLock()); 3729 3730 // Clear the revisit stack, just in case there are any 3731 // obsolete contents from a short-circuited previous CMS cycle. 3732 _revisitStack.reset(); 3733 verify_work_stacks_empty(); 3734 verify_overflow_empty(); 3735 assert(_revisitStack.isEmpty(), "tabula rasa"); 3736 DEBUG_ONLY(RememberKlassesChecker cmx(should_unload_classes());) 3737 bool result = false; 3738 if (CMSConcurrentMTEnabled && ConcGCThreads > 0) { 3739 result = do_marking_mt(asynch); 3740 } else { 3741 result = do_marking_st(asynch); 3742 } 3743 return result; 3744 } 3745 3746 // Forward decl 3747 class CMSConcMarkingTask; 3748 3749 class CMSConcMarkingTerminator: public ParallelTaskTerminator { 3750 CMSCollector* _collector; 3751 CMSConcMarkingTask* _task; 3752 public: 3753 virtual void yield(); 3754 3755 // "n_threads" is the number of threads to be terminated. 3756 // "queue_set" is a set of work queues of other threads. 3757 // "collector" is the CMS collector associated with this task terminator. 3758 // "yield" indicates whether we need the gang as a whole to yield. 3759 CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) : 3760 ParallelTaskTerminator(n_threads, queue_set), 3761 _collector(collector) { } 3762 3763 void set_task(CMSConcMarkingTask* task) { 3764 _task = task; 3765 } 3766 }; 3767 3768 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator { 3769 CMSConcMarkingTask* _task; 3770 public: 3771 bool should_exit_termination(); 3772 void set_task(CMSConcMarkingTask* task) { 3773 _task = task; 3774 } 3775 }; 3776 3777 // MT Concurrent Marking Task 3778 class CMSConcMarkingTask: public YieldingFlexibleGangTask { 3779 CMSCollector* _collector; 3780 int _n_workers; // requested/desired # workers 3781 bool _asynch; 3782 bool _result; 3783 CompactibleFreeListSpace* _cms_space; 3784 CompactibleFreeListSpace* _perm_space; 3785 char _pad_front[64]; // padding to ... 3786 HeapWord* _global_finger; // ... avoid sharing cache line 3787 char _pad_back[64]; 3788 HeapWord* _restart_addr; 3789 3790 // Exposed here for yielding support 3791 Mutex* const _bit_map_lock; 3792 3793 // The per thread work queues, available here for stealing 3794 OopTaskQueueSet* _task_queues; 3795 3796 // Termination (and yielding) support 3797 CMSConcMarkingTerminator _term; 3798 CMSConcMarkingTerminatorTerminator _term_term; 3799 3800 public: 3801 CMSConcMarkingTask(CMSCollector* collector, 3802 CompactibleFreeListSpace* cms_space, 3803 CompactibleFreeListSpace* perm_space, 3804 bool asynch, 3805 YieldingFlexibleWorkGang* workers, 3806 OopTaskQueueSet* task_queues): 3807 YieldingFlexibleGangTask("Concurrent marking done multi-threaded"), 3808 _collector(collector), 3809 _cms_space(cms_space), 3810 _perm_space(perm_space), 3811 _asynch(asynch), _n_workers(0), _result(true), 3812 _task_queues(task_queues), 3813 _term(_n_workers, task_queues, _collector), 3814 _bit_map_lock(collector->bitMapLock()) 3815 { 3816 _requested_size = _n_workers; 3817 _term.set_task(this); 3818 _term_term.set_task(this); 3819 assert(_cms_space->bottom() < _perm_space->bottom(), 3820 "Finger incorrectly initialized below"); 3821 _restart_addr = _global_finger = _cms_space->bottom(); 3822 } 3823 3824 3825 OopTaskQueueSet* task_queues() { return _task_queues; } 3826 3827 OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); } 3828 3829 HeapWord** global_finger_addr() { return &_global_finger; } 3830 3831 CMSConcMarkingTerminator* terminator() { return &_term; } 3832 3833 virtual void set_for_termination(int active_workers) { 3834 terminator()->reset_for_reuse(active_workers); 3835 } 3836 3837 void work(uint worker_id); 3838 bool should_yield() { 3839 return ConcurrentMarkSweepThread::should_yield() 3840 && !_collector->foregroundGCIsActive() 3841 && _asynch; 3842 } 3843 3844 virtual void coordinator_yield(); // stuff done by coordinator 3845 bool result() { return _result; } 3846 3847 void reset(HeapWord* ra) { 3848 assert(_global_finger >= _cms_space->end(), "Postcondition of ::work(i)"); 3849 assert(_global_finger >= _perm_space->end(), "Postcondition of ::work(i)"); 3850 assert(ra < _perm_space->end(), "ra too large"); 3851 _restart_addr = _global_finger = ra; 3852 _term.reset_for_reuse(); 3853 } 3854 3855 static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk, 3856 OopTaskQueue* work_q); 3857 3858 private: 3859 void do_scan_and_mark(int i, CompactibleFreeListSpace* sp); 3860 void do_work_steal(int i); 3861 void bump_global_finger(HeapWord* f); 3862 }; 3863 3864 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() { 3865 assert(_task != NULL, "Error"); 3866 return _task->yielding(); 3867 // Note that we do not need the disjunct || _task->should_yield() above 3868 // because we want terminating threads to yield only if the task 3869 // is already in the midst of yielding, which happens only after at least one 3870 // thread has yielded. 3871 } 3872 3873 void CMSConcMarkingTerminator::yield() { 3874 if (_task->should_yield()) { 3875 _task->yield(); 3876 } else { 3877 ParallelTaskTerminator::yield(); 3878 } 3879 } 3880 3881 //////////////////////////////////////////////////////////////// 3882 // Concurrent Marking Algorithm Sketch 3883 //////////////////////////////////////////////////////////////// 3884 // Until all tasks exhausted (both spaces): 3885 // -- claim next available chunk 3886 // -- bump global finger via CAS 3887 // -- find first object that starts in this chunk 3888 // and start scanning bitmap from that position 3889 // -- scan marked objects for oops 3890 // -- CAS-mark target, and if successful: 3891 // . if target oop is above global finger (volatile read) 3892 // nothing to do 3893 // . if target oop is in chunk and above local finger 3894 // then nothing to do 3895 // . else push on work-queue 3896 // -- Deal with possible overflow issues: 3897 // . local work-queue overflow causes stuff to be pushed on 3898 // global (common) overflow queue 3899 // . always first empty local work queue 3900 // . then get a batch of oops from global work queue if any 3901 // . then do work stealing 3902 // -- When all tasks claimed (both spaces) 3903 // and local work queue empty, 3904 // then in a loop do: 3905 // . check global overflow stack; steal a batch of oops and trace 3906 // . try to steal from other threads oif GOS is empty 3907 // . if neither is available, offer termination 3908 // -- Terminate and return result 3909 // 3910 void CMSConcMarkingTask::work(uint worker_id) { 3911 elapsedTimer _timer; 3912 ResourceMark rm; 3913 HandleMark hm; 3914 3915 DEBUG_ONLY(_collector->verify_overflow_empty();) 3916 3917 // Before we begin work, our work queue should be empty 3918 assert(work_queue(worker_id)->size() == 0, "Expected to be empty"); 3919 // Scan the bitmap covering _cms_space, tracing through grey objects. 3920 _timer.start(); 3921 do_scan_and_mark(worker_id, _cms_space); 3922 _timer.stop(); 3923 if (PrintCMSStatistics != 0) { 3924 gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec", 3925 worker_id, _timer.seconds()); 3926 // XXX: need xxx/xxx type of notation, two timers 3927 } 3928 3929 // ... do the same for the _perm_space 3930 _timer.reset(); 3931 _timer.start(); 3932 do_scan_and_mark(worker_id, _perm_space); 3933 _timer.stop(); 3934 if (PrintCMSStatistics != 0) { 3935 gclog_or_tty->print_cr("Finished perm space scanning in %dth thread: %3.3f sec", 3936 worker_id, _timer.seconds()); 3937 // XXX: need xxx/xxx type of notation, two timers 3938 } 3939 3940 // ... do work stealing 3941 _timer.reset(); 3942 _timer.start(); 3943 do_work_steal(worker_id); 3944 _timer.stop(); 3945 if (PrintCMSStatistics != 0) { 3946 gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec", 3947 worker_id, _timer.seconds()); 3948 // XXX: need xxx/xxx type of notation, two timers 3949 } 3950 assert(_collector->_markStack.isEmpty(), "Should have been emptied"); 3951 assert(work_queue(worker_id)->size() == 0, "Should have been emptied"); 3952 // Note that under the current task protocol, the 3953 // following assertion is true even of the spaces 3954 // expanded since the completion of the concurrent 3955 // marking. XXX This will likely change under a strict 3956 // ABORT semantics. 3957 assert(_global_finger > _cms_space->end() && 3958 _global_finger >= _perm_space->end(), 3959 "All tasks have been completed"); 3960 DEBUG_ONLY(_collector->verify_overflow_empty();) 3961 } 3962 3963 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) { 3964 HeapWord* read = _global_finger; 3965 HeapWord* cur = read; 3966 while (f > read) { 3967 cur = read; 3968 read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur); 3969 if (cur == read) { 3970 // our cas succeeded 3971 assert(_global_finger >= f, "protocol consistency"); 3972 break; 3973 } 3974 } 3975 } 3976 3977 // This is really inefficient, and should be redone by 3978 // using (not yet available) block-read and -write interfaces to the 3979 // stack and the work_queue. XXX FIX ME !!! 3980 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk, 3981 OopTaskQueue* work_q) { 3982 // Fast lock-free check 3983 if (ovflw_stk->length() == 0) { 3984 return false; 3985 } 3986 assert(work_q->size() == 0, "Shouldn't steal"); 3987 MutexLockerEx ml(ovflw_stk->par_lock(), 3988 Mutex::_no_safepoint_check_flag); 3989 // Grab up to 1/4 the size of the work queue 3990 size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4, 3991 (size_t)ParGCDesiredObjsFromOverflowList); 3992 num = MIN2(num, ovflw_stk->length()); 3993 for (int i = (int) num; i > 0; i--) { 3994 oop cur = ovflw_stk->pop(); 3995 assert(cur != NULL, "Counted wrong?"); 3996 work_q->push(cur); 3997 } 3998 return num > 0; 3999 } 4000 4001 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) { 4002 SequentialSubTasksDone* pst = sp->conc_par_seq_tasks(); 4003 int n_tasks = pst->n_tasks(); 4004 // We allow that there may be no tasks to do here because 4005 // we are restarting after a stack overflow. 4006 assert(pst->valid() || n_tasks == 0, "Uninitialized use?"); 4007 uint nth_task = 0; 4008 4009 HeapWord* aligned_start = sp->bottom(); 4010 if (sp->used_region().contains(_restart_addr)) { 4011 // Align down to a card boundary for the start of 0th task 4012 // for this space. 4013 aligned_start = 4014 (HeapWord*)align_size_down((uintptr_t)_restart_addr, 4015 CardTableModRefBS::card_size); 4016 } 4017 4018 size_t chunk_size = sp->marking_task_size(); 4019 while (!pst->is_task_claimed(/* reference */ nth_task)) { 4020 // Having claimed the nth task in this space, 4021 // compute the chunk that it corresponds to: 4022 MemRegion span = MemRegion(aligned_start + nth_task*chunk_size, 4023 aligned_start + (nth_task+1)*chunk_size); 4024 // Try and bump the global finger via a CAS; 4025 // note that we need to do the global finger bump 4026 // _before_ taking the intersection below, because 4027 // the task corresponding to that region will be 4028 // deemed done even if the used_region() expands 4029 // because of allocation -- as it almost certainly will 4030 // during start-up while the threads yield in the 4031 // closure below. 4032 HeapWord* finger = span.end(); 4033 bump_global_finger(finger); // atomically 4034 // There are null tasks here corresponding to chunks 4035 // beyond the "top" address of the space. 4036 span = span.intersection(sp->used_region()); 4037 if (!span.is_empty()) { // Non-null task 4038 HeapWord* prev_obj; 4039 assert(!span.contains(_restart_addr) || nth_task == 0, 4040 "Inconsistency"); 4041 if (nth_task == 0) { 4042 // For the 0th task, we'll not need to compute a block_start. 4043 if (span.contains(_restart_addr)) { 4044 // In the case of a restart because of stack overflow, 4045 // we might additionally skip a chunk prefix. 4046 prev_obj = _restart_addr; 4047 } else { 4048 prev_obj = span.start(); 4049 } 4050 } else { 4051 // We want to skip the first object because 4052 // the protocol is to scan any object in its entirety 4053 // that _starts_ in this span; a fortiori, any 4054 // object starting in an earlier span is scanned 4055 // as part of an earlier claimed task. 4056 // Below we use the "careful" version of block_start 4057 // so we do not try to navigate uninitialized objects. 4058 prev_obj = sp->block_start_careful(span.start()); 4059 // Below we use a variant of block_size that uses the 4060 // Printezis bits to avoid waiting for allocated 4061 // objects to become initialized/parsable. 4062 while (prev_obj < span.start()) { 4063 size_t sz = sp->block_size_no_stall(prev_obj, _collector); 4064 if (sz > 0) { 4065 prev_obj += sz; 4066 } else { 4067 // In this case we may end up doing a bit of redundant 4068 // scanning, but that appears unavoidable, short of 4069 // locking the free list locks; see bug 6324141. 4070 break; 4071 } 4072 } 4073 } 4074 if (prev_obj < span.end()) { 4075 MemRegion my_span = MemRegion(prev_obj, span.end()); 4076 // Do the marking work within a non-empty span -- 4077 // the last argument to the constructor indicates whether the 4078 // iteration should be incremental with periodic yields. 4079 Par_MarkFromRootsClosure cl(this, _collector, my_span, 4080 &_collector->_markBitMap, 4081 work_queue(i), 4082 &_collector->_markStack, 4083 &_collector->_revisitStack, 4084 _asynch); 4085 _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end()); 4086 } // else nothing to do for this task 4087 } // else nothing to do for this task 4088 } 4089 // We'd be tempted to assert here that since there are no 4090 // more tasks left to claim in this space, the global_finger 4091 // must exceed space->top() and a fortiori space->end(). However, 4092 // that would not quite be correct because the bumping of 4093 // global_finger occurs strictly after the claiming of a task, 4094 // so by the time we reach here the global finger may not yet 4095 // have been bumped up by the thread that claimed the last 4096 // task. 4097 pst->all_tasks_completed(); 4098 } 4099 4100 class Par_ConcMarkingClosure: public Par_KlassRememberingOopClosure { 4101 private: 4102 CMSConcMarkingTask* _task; 4103 MemRegion _span; 4104 CMSBitMap* _bit_map; 4105 CMSMarkStack* _overflow_stack; 4106 OopTaskQueue* _work_queue; 4107 protected: 4108 DO_OOP_WORK_DEFN 4109 public: 4110 Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue, 4111 CMSBitMap* bit_map, CMSMarkStack* overflow_stack, 4112 CMSMarkStack* revisit_stack): 4113 Par_KlassRememberingOopClosure(collector, collector->ref_processor(), revisit_stack), 4114 _task(task), 4115 _span(collector->_span), 4116 _work_queue(work_queue), 4117 _bit_map(bit_map), 4118 _overflow_stack(overflow_stack) 4119 { } 4120 virtual void do_oop(oop* p); 4121 virtual void do_oop(narrowOop* p); 4122 void trim_queue(size_t max); 4123 void handle_stack_overflow(HeapWord* lost); 4124 void do_yield_check() { 4125 if (_task->should_yield()) { 4126 _task->yield(); 4127 } 4128 } 4129 }; 4130 4131 // Grey object scanning during work stealing phase -- 4132 // the salient assumption here is that any references 4133 // that are in these stolen objects being scanned must 4134 // already have been initialized (else they would not have 4135 // been published), so we do not need to check for 4136 // uninitialized objects before pushing here. 4137 void Par_ConcMarkingClosure::do_oop(oop obj) { 4138 assert(obj->is_oop_or_null(true), "expected an oop or NULL"); 4139 HeapWord* addr = (HeapWord*)obj; 4140 // Check if oop points into the CMS generation 4141 // and is not marked 4142 if (_span.contains(addr) && !_bit_map->isMarked(addr)) { 4143 // a white object ... 4144 // If we manage to "claim" the object, by being the 4145 // first thread to mark it, then we push it on our 4146 // marking stack 4147 if (_bit_map->par_mark(addr)) { // ... now grey 4148 // push on work queue (grey set) 4149 bool simulate_overflow = false; 4150 NOT_PRODUCT( 4151 if (CMSMarkStackOverflowALot && 4152 _collector->simulate_overflow()) { 4153 // simulate a stack overflow 4154 simulate_overflow = true; 4155 } 4156 ) 4157 if (simulate_overflow || 4158 !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) { 4159 // stack overflow 4160 if (PrintCMSStatistics != 0) { 4161 gclog_or_tty->print_cr("CMS marking stack overflow (benign) at " 4162 SIZE_FORMAT, _overflow_stack->capacity()); 4163 } 4164 // We cannot assert that the overflow stack is full because 4165 // it may have been emptied since. 4166 assert(simulate_overflow || 4167 _work_queue->size() == _work_queue->max_elems(), 4168 "Else push should have succeeded"); 4169 handle_stack_overflow(addr); 4170 } 4171 } // Else, some other thread got there first 4172 do_yield_check(); 4173 } 4174 } 4175 4176 void Par_ConcMarkingClosure::do_oop(oop* p) { Par_ConcMarkingClosure::do_oop_work(p); } 4177 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); } 4178 4179 void Par_ConcMarkingClosure::trim_queue(size_t max) { 4180 while (_work_queue->size() > max) { 4181 oop new_oop; 4182 if (_work_queue->pop_local(new_oop)) { 4183 assert(new_oop->is_oop(), "Should be an oop"); 4184 assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object"); 4185 assert(_span.contains((HeapWord*)new_oop), "Not in span"); 4186 assert(new_oop->is_parsable(), "Should be parsable"); 4187 new_oop->oop_iterate(this); // do_oop() above 4188 do_yield_check(); 4189 } 4190 } 4191 } 4192 4193 // Upon stack overflow, we discard (part of) the stack, 4194 // remembering the least address amongst those discarded 4195 // in CMSCollector's _restart_address. 4196 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) { 4197 // We need to do this under a mutex to prevent other 4198 // workers from interfering with the work done below. 4199 MutexLockerEx ml(_overflow_stack->par_lock(), 4200 Mutex::_no_safepoint_check_flag); 4201 // Remember the least grey address discarded 4202 HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost); 4203 _collector->lower_restart_addr(ra); 4204 _overflow_stack->reset(); // discard stack contents 4205 _overflow_stack->expand(); // expand the stack if possible 4206 } 4207 4208 4209 void CMSConcMarkingTask::do_work_steal(int i) { 4210 OopTaskQueue* work_q = work_queue(i); 4211 oop obj_to_scan; 4212 CMSBitMap* bm = &(_collector->_markBitMap); 4213 CMSMarkStack* ovflw = &(_collector->_markStack); 4214 CMSMarkStack* revisit = &(_collector->_revisitStack); 4215 int* seed = _collector->hash_seed(i); 4216 Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw, revisit); 4217 while (true) { 4218 cl.trim_queue(0); 4219 assert(work_q->size() == 0, "Should have been emptied above"); 4220 if (get_work_from_overflow_stack(ovflw, work_q)) { 4221 // Can't assert below because the work obtained from the 4222 // overflow stack may already have been stolen from us. 4223 // assert(work_q->size() > 0, "Work from overflow stack"); 4224 continue; 4225 } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) { 4226 assert(obj_to_scan->is_oop(), "Should be an oop"); 4227 assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object"); 4228 obj_to_scan->oop_iterate(&cl); 4229 } else if (terminator()->offer_termination(&_term_term)) { 4230 assert(work_q->size() == 0, "Impossible!"); 4231 break; 4232 } else if (yielding() || should_yield()) { 4233 yield(); 4234 } 4235 } 4236 } 4237 4238 // This is run by the CMS (coordinator) thread. 4239 void CMSConcMarkingTask::coordinator_yield() { 4240 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 4241 "CMS thread should hold CMS token"); 4242 DEBUG_ONLY(RememberKlassesChecker mux(false);) 4243 // First give up the locks, then yield, then re-lock 4244 // We should probably use a constructor/destructor idiom to 4245 // do this unlock/lock or modify the MutexUnlocker class to 4246 // serve our purpose. XXX 4247 assert_lock_strong(_bit_map_lock); 4248 _bit_map_lock->unlock(); 4249 ConcurrentMarkSweepThread::desynchronize(true); 4250 ConcurrentMarkSweepThread::acknowledge_yield_request(); 4251 _collector->stopTimer(); 4252 if (PrintCMSStatistics != 0) { 4253 _collector->incrementYields(); 4254 } 4255 _collector->icms_wait(); 4256 4257 // It is possible for whichever thread initiated the yield request 4258 // not to get a chance to wake up and take the bitmap lock between 4259 // this thread releasing it and reacquiring it. So, while the 4260 // should_yield() flag is on, let's sleep for a bit to give the 4261 // other thread a chance to wake up. The limit imposed on the number 4262 // of iterations is defensive, to avoid any unforseen circumstances 4263 // putting us into an infinite loop. Since it's always been this 4264 // (coordinator_yield()) method that was observed to cause the 4265 // problem, we are using a parameter (CMSCoordinatorYieldSleepCount) 4266 // which is by default non-zero. For the other seven methods that 4267 // also perform the yield operation, as are using a different 4268 // parameter (CMSYieldSleepCount) which is by default zero. This way we 4269 // can enable the sleeping for those methods too, if necessary. 4270 // See 6442774. 4271 // 4272 // We really need to reconsider the synchronization between the GC 4273 // thread and the yield-requesting threads in the future and we 4274 // should really use wait/notify, which is the recommended 4275 // way of doing this type of interaction. Additionally, we should 4276 // consolidate the eight methods that do the yield operation and they 4277 // are almost identical into one for better maintenability and 4278 // readability. See 6445193. 4279 // 4280 // Tony 2006.06.29 4281 for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount && 4282 ConcurrentMarkSweepThread::should_yield() && 4283 !CMSCollector::foregroundGCIsActive(); ++i) { 4284 os::sleep(Thread::current(), 1, false); 4285 ConcurrentMarkSweepThread::acknowledge_yield_request(); 4286 } 4287 4288 ConcurrentMarkSweepThread::synchronize(true); 4289 _bit_map_lock->lock_without_safepoint_check(); 4290 _collector->startTimer(); 4291 } 4292 4293 bool CMSCollector::do_marking_mt(bool asynch) { 4294 assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition"); 4295 int num_workers = AdaptiveSizePolicy::calc_active_conc_workers( 4296 conc_workers()->total_workers(), 4297 conc_workers()->active_workers(), 4298 Threads::number_of_non_daemon_threads()); 4299 conc_workers()->set_active_workers(num_workers); 4300 4301 CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace(); 4302 CompactibleFreeListSpace* perm_space = _permGen->cmsSpace(); 4303 4304 CMSConcMarkingTask tsk(this, 4305 cms_space, 4306 perm_space, 4307 asynch, 4308 conc_workers(), 4309 task_queues()); 4310 4311 // Since the actual number of workers we get may be different 4312 // from the number we requested above, do we need to do anything different 4313 // below? In particular, may be we need to subclass the SequantialSubTasksDone 4314 // class?? XXX 4315 cms_space ->initialize_sequential_subtasks_for_marking(num_workers); 4316 perm_space->initialize_sequential_subtasks_for_marking(num_workers); 4317 4318 // Refs discovery is already non-atomic. 4319 assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic"); 4320 assert(ref_processor()->discovery_is_mt(), "Discovery should be MT"); 4321 DEBUG_ONLY(RememberKlassesChecker cmx(should_unload_classes());) 4322 conc_workers()->start_task(&tsk); 4323 while (tsk.yielded()) { 4324 tsk.coordinator_yield(); 4325 conc_workers()->continue_task(&tsk); 4326 } 4327 // If the task was aborted, _restart_addr will be non-NULL 4328 assert(tsk.completed() || _restart_addr != NULL, "Inconsistency"); 4329 while (_restart_addr != NULL) { 4330 // XXX For now we do not make use of ABORTED state and have not 4331 // yet implemented the right abort semantics (even in the original 4332 // single-threaded CMS case). That needs some more investigation 4333 // and is deferred for now; see CR# TBF. 07252005YSR. XXX 4334 assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency"); 4335 // If _restart_addr is non-NULL, a marking stack overflow 4336 // occurred; we need to do a fresh marking iteration from the 4337 // indicated restart address. 4338 if (_foregroundGCIsActive && asynch) { 4339 // We may be running into repeated stack overflows, having 4340 // reached the limit of the stack size, while making very 4341 // slow forward progress. It may be best to bail out and 4342 // let the foreground collector do its job. 4343 // Clear _restart_addr, so that foreground GC 4344 // works from scratch. This avoids the headache of 4345 // a "rescan" which would otherwise be needed because 4346 // of the dirty mod union table & card table. 4347 _restart_addr = NULL; 4348 return false; 4349 } 4350 // Adjust the task to restart from _restart_addr 4351 tsk.reset(_restart_addr); 4352 cms_space ->initialize_sequential_subtasks_for_marking(num_workers, 4353 _restart_addr); 4354 perm_space->initialize_sequential_subtasks_for_marking(num_workers, 4355 _restart_addr); 4356 _restart_addr = NULL; 4357 // Get the workers going again 4358 conc_workers()->start_task(&tsk); 4359 while (tsk.yielded()) { 4360 tsk.coordinator_yield(); 4361 conc_workers()->continue_task(&tsk); 4362 } 4363 } 4364 assert(tsk.completed(), "Inconsistency"); 4365 assert(tsk.result() == true, "Inconsistency"); 4366 return true; 4367 } 4368 4369 bool CMSCollector::do_marking_st(bool asynch) { 4370 ResourceMark rm; 4371 HandleMark hm; 4372 4373 // Temporarily make refs discovery single threaded (non-MT) 4374 ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false); 4375 MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap, 4376 &_markStack, &_revisitStack, CMSYield && asynch); 4377 // the last argument to iterate indicates whether the iteration 4378 // should be incremental with periodic yields. 4379 _markBitMap.iterate(&markFromRootsClosure); 4380 // If _restart_addr is non-NULL, a marking stack overflow 4381 // occurred; we need to do a fresh iteration from the 4382 // indicated restart address. 4383 while (_restart_addr != NULL) { 4384 if (_foregroundGCIsActive && asynch) { 4385 // We may be running into repeated stack overflows, having 4386 // reached the limit of the stack size, while making very 4387 // slow forward progress. It may be best to bail out and 4388 // let the foreground collector do its job. 4389 // Clear _restart_addr, so that foreground GC 4390 // works from scratch. This avoids the headache of 4391 // a "rescan" which would otherwise be needed because 4392 // of the dirty mod union table & card table. 4393 _restart_addr = NULL; 4394 return false; // indicating failure to complete marking 4395 } 4396 // Deal with stack overflow: 4397 // we restart marking from _restart_addr 4398 HeapWord* ra = _restart_addr; 4399 markFromRootsClosure.reset(ra); 4400 _restart_addr = NULL; 4401 _markBitMap.iterate(&markFromRootsClosure, ra, _span.end()); 4402 } 4403 return true; 4404 } 4405 4406 void CMSCollector::preclean() { 4407 check_correct_thread_executing(); 4408 assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread"); 4409 verify_work_stacks_empty(); 4410 verify_overflow_empty(); 4411 _abort_preclean = false; 4412 if (CMSPrecleaningEnabled) { 4413 _eden_chunk_index = 0; 4414 size_t used = get_eden_used(); 4415 size_t capacity = get_eden_capacity(); 4416 // Don't start sampling unless we will get sufficiently 4417 // many samples. 4418 if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100) 4419 * CMSScheduleRemarkEdenPenetration)) { 4420 _start_sampling = true; 4421 } else { 4422 _start_sampling = false; 4423 } 4424 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 4425 CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails); 4426 preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1); 4427 } 4428 CMSTokenSync x(true); // is cms thread 4429 if (CMSPrecleaningEnabled) { 4430 sample_eden(); 4431 _collectorState = AbortablePreclean; 4432 } else { 4433 _collectorState = FinalMarking; 4434 } 4435 verify_work_stacks_empty(); 4436 verify_overflow_empty(); 4437 } 4438 4439 // Try and schedule the remark such that young gen 4440 // occupancy is CMSScheduleRemarkEdenPenetration %. 4441 void CMSCollector::abortable_preclean() { 4442 check_correct_thread_executing(); 4443 assert(CMSPrecleaningEnabled, "Inconsistent control state"); 4444 assert(_collectorState == AbortablePreclean, "Inconsistent control state"); 4445 4446 // If Eden's current occupancy is below this threshold, 4447 // immediately schedule the remark; else preclean 4448 // past the next scavenge in an effort to 4449 // schedule the pause as described avove. By choosing 4450 // CMSScheduleRemarkEdenSizeThreshold >= max eden size 4451 // we will never do an actual abortable preclean cycle. 4452 if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) { 4453 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 4454 CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails); 4455 // We need more smarts in the abortable preclean 4456 // loop below to deal with cases where allocation 4457 // in young gen is very very slow, and our precleaning 4458 // is running a losing race against a horde of 4459 // mutators intent on flooding us with CMS updates 4460 // (dirty cards). 4461 // One, admittedly dumb, strategy is to give up 4462 // after a certain number of abortable precleaning loops 4463 // or after a certain maximum time. We want to make 4464 // this smarter in the next iteration. 4465 // XXX FIX ME!!! YSR 4466 size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0; 4467 while (!(should_abort_preclean() || 4468 ConcurrentMarkSweepThread::should_terminate())) { 4469 workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2); 4470 cumworkdone += workdone; 4471 loops++; 4472 // Voluntarily terminate abortable preclean phase if we have 4473 // been at it for too long. 4474 if ((CMSMaxAbortablePrecleanLoops != 0) && 4475 loops >= CMSMaxAbortablePrecleanLoops) { 4476 if (PrintGCDetails) { 4477 gclog_or_tty->print(" CMS: abort preclean due to loops "); 4478 } 4479 break; 4480 } 4481 if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) { 4482 if (PrintGCDetails) { 4483 gclog_or_tty->print(" CMS: abort preclean due to time "); 4484 } 4485 break; 4486 } 4487 // If we are doing little work each iteration, we should 4488 // take a short break. 4489 if (workdone < CMSAbortablePrecleanMinWorkPerIteration) { 4490 // Sleep for some time, waiting for work to accumulate 4491 stopTimer(); 4492 cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis); 4493 startTimer(); 4494 waited++; 4495 } 4496 } 4497 if (PrintCMSStatistics > 0) { 4498 gclog_or_tty->print(" [%d iterations, %d waits, %d cards)] ", 4499 loops, waited, cumworkdone); 4500 } 4501 } 4502 CMSTokenSync x(true); // is cms thread 4503 if (_collectorState != Idling) { 4504 assert(_collectorState == AbortablePreclean, 4505 "Spontaneous state transition?"); 4506 _collectorState = FinalMarking; 4507 } // Else, a foreground collection completed this CMS cycle. 4508 return; 4509 } 4510 4511 // Respond to an Eden sampling opportunity 4512 void CMSCollector::sample_eden() { 4513 // Make sure a young gc cannot sneak in between our 4514 // reading and recording of a sample. 4515 assert(Thread::current()->is_ConcurrentGC_thread(), 4516 "Only the cms thread may collect Eden samples"); 4517 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 4518 "Should collect samples while holding CMS token"); 4519 if (!_start_sampling) { 4520 return; 4521 } 4522 if (_eden_chunk_array) { 4523 if (_eden_chunk_index < _eden_chunk_capacity) { 4524 _eden_chunk_array[_eden_chunk_index] = *_top_addr; // take sample 4525 assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr, 4526 "Unexpected state of Eden"); 4527 // We'd like to check that what we just sampled is an oop-start address; 4528 // however, we cannot do that here since the object may not yet have been 4529 // initialized. So we'll instead do the check when we _use_ this sample 4530 // later. 4531 if (_eden_chunk_index == 0 || 4532 (pointer_delta(_eden_chunk_array[_eden_chunk_index], 4533 _eden_chunk_array[_eden_chunk_index-1]) 4534 >= CMSSamplingGrain)) { 4535 _eden_chunk_index++; // commit sample 4536 } 4537 } 4538 } 4539 if ((_collectorState == AbortablePreclean) && !_abort_preclean) { 4540 size_t used = get_eden_used(); 4541 size_t capacity = get_eden_capacity(); 4542 assert(used <= capacity, "Unexpected state of Eden"); 4543 if (used > (capacity/100 * CMSScheduleRemarkEdenPenetration)) { 4544 _abort_preclean = true; 4545 } 4546 } 4547 } 4548 4549 4550 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) { 4551 assert(_collectorState == Precleaning || 4552 _collectorState == AbortablePreclean, "incorrect state"); 4553 ResourceMark rm; 4554 HandleMark hm; 4555 4556 // Precleaning is currently not MT but the reference processor 4557 // may be set for MT. Disable it temporarily here. 4558 ReferenceProcessor* rp = ref_processor(); 4559 ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false); 4560 4561 // Do one pass of scrubbing the discovered reference lists 4562 // to remove any reference objects with strongly-reachable 4563 // referents. 4564 if (clean_refs) { 4565 CMSPrecleanRefsYieldClosure yield_cl(this); 4566 assert(rp->span().equals(_span), "Spans should be equal"); 4567 CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap, 4568 &_markStack, &_revisitStack, 4569 true /* preclean */); 4570 CMSDrainMarkingStackClosure complete_trace(this, 4571 _span, &_markBitMap, &_markStack, 4572 &keep_alive, true /* preclean */); 4573 4574 // We don't want this step to interfere with a young 4575 // collection because we don't want to take CPU 4576 // or memory bandwidth away from the young GC threads 4577 // (which may be as many as there are CPUs). 4578 // Note that we don't need to protect ourselves from 4579 // interference with mutators because they can't 4580 // manipulate the discovered reference lists nor affect 4581 // the computed reachability of the referents, the 4582 // only properties manipulated by the precleaning 4583 // of these reference lists. 4584 stopTimer(); 4585 CMSTokenSyncWithLocks x(true /* is cms thread */, 4586 bitMapLock()); 4587 startTimer(); 4588 sample_eden(); 4589 4590 // The following will yield to allow foreground 4591 // collection to proceed promptly. XXX YSR: 4592 // The code in this method may need further 4593 // tweaking for better performance and some restructuring 4594 // for cleaner interfaces. 4595 GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases 4596 rp->preclean_discovered_references( 4597 rp->is_alive_non_header(), &keep_alive, &complete_trace, 4598 &yield_cl, should_unload_classes(), gc_timer); 4599 } 4600 4601 if (clean_survivor) { // preclean the active survivor space(s) 4602 assert(_young_gen->kind() == Generation::DefNew || 4603 _young_gen->kind() == Generation::ParNew || 4604 _young_gen->kind() == Generation::ASParNew, 4605 "incorrect type for cast"); 4606 DefNewGeneration* dng = (DefNewGeneration*)_young_gen; 4607 PushAndMarkClosure pam_cl(this, _span, ref_processor(), 4608 &_markBitMap, &_modUnionTable, 4609 &_markStack, &_revisitStack, 4610 true /* precleaning phase */); 4611 stopTimer(); 4612 CMSTokenSyncWithLocks ts(true /* is cms thread */, 4613 bitMapLock()); 4614 startTimer(); 4615 unsigned int before_count = 4616 GenCollectedHeap::heap()->total_collections(); 4617 SurvivorSpacePrecleanClosure 4618 sss_cl(this, _span, &_markBitMap, &_markStack, 4619 &pam_cl, before_count, CMSYield); 4620 DEBUG_ONLY(RememberKlassesChecker mx(should_unload_classes());) 4621 dng->from()->object_iterate_careful(&sss_cl); 4622 dng->to()->object_iterate_careful(&sss_cl); 4623 } 4624 MarkRefsIntoAndScanClosure 4625 mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable, 4626 &_markStack, &_revisitStack, this, CMSYield, 4627 true /* precleaning phase */); 4628 // CAUTION: The following closure has persistent state that may need to 4629 // be reset upon a decrease in the sequence of addresses it 4630 // processes. 4631 ScanMarkedObjectsAgainCarefullyClosure 4632 smoac_cl(this, _span, 4633 &_markBitMap, &_markStack, &_revisitStack, &mrias_cl, CMSYield); 4634 4635 // Preclean dirty cards in ModUnionTable and CardTable using 4636 // appropriate convergence criterion; 4637 // repeat CMSPrecleanIter times unless we find that 4638 // we are losing. 4639 assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large"); 4640 assert(CMSPrecleanNumerator < CMSPrecleanDenominator, 4641 "Bad convergence multiplier"); 4642 assert(CMSPrecleanThreshold >= 100, 4643 "Unreasonably low CMSPrecleanThreshold"); 4644 4645 size_t numIter, cumNumCards, lastNumCards, curNumCards; 4646 for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0; 4647 numIter < CMSPrecleanIter; 4648 numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) { 4649 curNumCards = preclean_mod_union_table(_cmsGen, &smoac_cl); 4650 if (CMSPermGenPrecleaningEnabled) { 4651 curNumCards += preclean_mod_union_table(_permGen, &smoac_cl); 4652 } 4653 if (Verbose && PrintGCDetails) { 4654 gclog_or_tty->print(" (modUnionTable: %d cards)", curNumCards); 4655 } 4656 // Either there are very few dirty cards, so re-mark 4657 // pause will be small anyway, or our pre-cleaning isn't 4658 // that much faster than the rate at which cards are being 4659 // dirtied, so we might as well stop and re-mark since 4660 // precleaning won't improve our re-mark time by much. 4661 if (curNumCards <= CMSPrecleanThreshold || 4662 (numIter > 0 && 4663 (curNumCards * CMSPrecleanDenominator > 4664 lastNumCards * CMSPrecleanNumerator))) { 4665 numIter++; 4666 cumNumCards += curNumCards; 4667 break; 4668 } 4669 } 4670 curNumCards = preclean_card_table(_cmsGen, &smoac_cl); 4671 if (CMSPermGenPrecleaningEnabled) { 4672 curNumCards += preclean_card_table(_permGen, &smoac_cl); 4673 } 4674 cumNumCards += curNumCards; 4675 if (PrintGCDetails && PrintCMSStatistics != 0) { 4676 gclog_or_tty->print_cr(" (cardTable: %d cards, re-scanned %d cards, %d iterations)", 4677 curNumCards, cumNumCards, numIter); 4678 } 4679 return cumNumCards; // as a measure of useful work done 4680 } 4681 4682 // PRECLEANING NOTES: 4683 // Precleaning involves: 4684 // . reading the bits of the modUnionTable and clearing the set bits. 4685 // . For the cards corresponding to the set bits, we scan the 4686 // objects on those cards. This means we need the free_list_lock 4687 // so that we can safely iterate over the CMS space when scanning 4688 // for oops. 4689 // . When we scan the objects, we'll be both reading and setting 4690 // marks in the marking bit map, so we'll need the marking bit map. 4691 // . For protecting _collector_state transitions, we take the CGC_lock. 4692 // Note that any races in the reading of of card table entries by the 4693 // CMS thread on the one hand and the clearing of those entries by the 4694 // VM thread or the setting of those entries by the mutator threads on the 4695 // other are quite benign. However, for efficiency it makes sense to keep 4696 // the VM thread from racing with the CMS thread while the latter is 4697 // dirty card info to the modUnionTable. We therefore also use the 4698 // CGC_lock to protect the reading of the card table and the mod union 4699 // table by the CM thread. 4700 // . We run concurrently with mutator updates, so scanning 4701 // needs to be done carefully -- we should not try to scan 4702 // potentially uninitialized objects. 4703 // 4704 // Locking strategy: While holding the CGC_lock, we scan over and 4705 // reset a maximal dirty range of the mod union / card tables, then lock 4706 // the free_list_lock and bitmap lock to do a full marking, then 4707 // release these locks; and repeat the cycle. This allows for a 4708 // certain amount of fairness in the sharing of these locks between 4709 // the CMS collector on the one hand, and the VM thread and the 4710 // mutators on the other. 4711 4712 // NOTE: preclean_mod_union_table() and preclean_card_table() 4713 // further below are largely identical; if you need to modify 4714 // one of these methods, please check the other method too. 4715 4716 size_t CMSCollector::preclean_mod_union_table( 4717 ConcurrentMarkSweepGeneration* gen, 4718 ScanMarkedObjectsAgainCarefullyClosure* cl) { 4719 verify_work_stacks_empty(); 4720 verify_overflow_empty(); 4721 4722 // Turn off checking for this method but turn it back on 4723 // selectively. There are yield points in this method 4724 // but it is difficult to turn the checking off just around 4725 // the yield points. It is simpler to selectively turn 4726 // it on. 4727 DEBUG_ONLY(RememberKlassesChecker mux(false);) 4728 4729 // strategy: starting with the first card, accumulate contiguous 4730 // ranges of dirty cards; clear these cards, then scan the region 4731 // covered by these cards. 4732 4733 // Since all of the MUT is committed ahead, we can just use 4734 // that, in case the generations expand while we are precleaning. 4735 // It might also be fine to just use the committed part of the 4736 // generation, but we might potentially miss cards when the 4737 // generation is rapidly expanding while we are in the midst 4738 // of precleaning. 4739 HeapWord* startAddr = gen->reserved().start(); 4740 HeapWord* endAddr = gen->reserved().end(); 4741 4742 cl->setFreelistLock(gen->freelistLock()); // needed for yielding 4743 4744 size_t numDirtyCards, cumNumDirtyCards; 4745 HeapWord *nextAddr, *lastAddr; 4746 for (cumNumDirtyCards = numDirtyCards = 0, 4747 nextAddr = lastAddr = startAddr; 4748 nextAddr < endAddr; 4749 nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) { 4750 4751 ResourceMark rm; 4752 HandleMark hm; 4753 4754 MemRegion dirtyRegion; 4755 { 4756 stopTimer(); 4757 // Potential yield point 4758 CMSTokenSync ts(true); 4759 startTimer(); 4760 sample_eden(); 4761 // Get dirty region starting at nextOffset (inclusive), 4762 // simultaneously clearing it. 4763 dirtyRegion = 4764 _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr); 4765 assert(dirtyRegion.start() >= nextAddr, 4766 "returned region inconsistent?"); 4767 } 4768 // Remember where the next search should begin. 4769 // The returned region (if non-empty) is a right open interval, 4770 // so lastOffset is obtained from the right end of that 4771 // interval. 4772 lastAddr = dirtyRegion.end(); 4773 // Should do something more transparent and less hacky XXX 4774 numDirtyCards = 4775 _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size()); 4776 4777 // We'll scan the cards in the dirty region (with periodic 4778 // yields for foreground GC as needed). 4779 if (!dirtyRegion.is_empty()) { 4780 assert(numDirtyCards > 0, "consistency check"); 4781 HeapWord* stop_point = NULL; 4782 stopTimer(); 4783 // Potential yield point 4784 CMSTokenSyncWithLocks ts(true, gen->freelistLock(), 4785 bitMapLock()); 4786 startTimer(); 4787 { 4788 verify_work_stacks_empty(); 4789 verify_overflow_empty(); 4790 sample_eden(); 4791 DEBUG_ONLY(RememberKlassesChecker mx(should_unload_classes());) 4792 stop_point = 4793 gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl); 4794 } 4795 if (stop_point != NULL) { 4796 // The careful iteration stopped early either because it found an 4797 // uninitialized object, or because we were in the midst of an 4798 // "abortable preclean", which should now be aborted. Redirty 4799 // the bits corresponding to the partially-scanned or unscanned 4800 // cards. We'll either restart at the next block boundary or 4801 // abort the preclean. 4802 assert((CMSPermGenPrecleaningEnabled && (gen == _permGen)) || 4803 (_collectorState == AbortablePreclean && should_abort_preclean()), 4804 "Unparsable objects should only be in perm gen."); 4805 _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end())); 4806 if (should_abort_preclean()) { 4807 break; // out of preclean loop 4808 } else { 4809 // Compute the next address at which preclean should pick up; 4810 // might need bitMapLock in order to read P-bits. 4811 lastAddr = next_card_start_after_block(stop_point); 4812 } 4813 } 4814 } else { 4815 assert(lastAddr == endAddr, "consistency check"); 4816 assert(numDirtyCards == 0, "consistency check"); 4817 break; 4818 } 4819 } 4820 verify_work_stacks_empty(); 4821 verify_overflow_empty(); 4822 return cumNumDirtyCards; 4823 } 4824 4825 // NOTE: preclean_mod_union_table() above and preclean_card_table() 4826 // below are largely identical; if you need to modify 4827 // one of these methods, please check the other method too. 4828 4829 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen, 4830 ScanMarkedObjectsAgainCarefullyClosure* cl) { 4831 // strategy: it's similar to precleamModUnionTable above, in that 4832 // we accumulate contiguous ranges of dirty cards, mark these cards 4833 // precleaned, then scan the region covered by these cards. 4834 HeapWord* endAddr = (HeapWord*)(gen->_virtual_space.high()); 4835 HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low()); 4836 4837 cl->setFreelistLock(gen->freelistLock()); // needed for yielding 4838 4839 size_t numDirtyCards, cumNumDirtyCards; 4840 HeapWord *lastAddr, *nextAddr; 4841 4842 for (cumNumDirtyCards = numDirtyCards = 0, 4843 nextAddr = lastAddr = startAddr; 4844 nextAddr < endAddr; 4845 nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) { 4846 4847 ResourceMark rm; 4848 HandleMark hm; 4849 4850 MemRegion dirtyRegion; 4851 { 4852 // See comments in "Precleaning notes" above on why we 4853 // do this locking. XXX Could the locking overheads be 4854 // too high when dirty cards are sparse? [I don't think so.] 4855 stopTimer(); 4856 CMSTokenSync x(true); // is cms thread 4857 startTimer(); 4858 sample_eden(); 4859 // Get and clear dirty region from card table 4860 dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset( 4861 MemRegion(nextAddr, endAddr), 4862 true, 4863 CardTableModRefBS::precleaned_card_val()); 4864 4865 assert(dirtyRegion.start() >= nextAddr, 4866 "returned region inconsistent?"); 4867 } 4868 lastAddr = dirtyRegion.end(); 4869 numDirtyCards = 4870 dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words; 4871 4872 if (!dirtyRegion.is_empty()) { 4873 stopTimer(); 4874 CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock()); 4875 startTimer(); 4876 sample_eden(); 4877 verify_work_stacks_empty(); 4878 verify_overflow_empty(); 4879 DEBUG_ONLY(RememberKlassesChecker mx(should_unload_classes());) 4880 HeapWord* stop_point = 4881 gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl); 4882 if (stop_point != NULL) { 4883 // The careful iteration stopped early because it found an 4884 // uninitialized object. Redirty the bits corresponding to the 4885 // partially-scanned or unscanned cards, and start again at the 4886 // next block boundary. 4887 assert(CMSPermGenPrecleaningEnabled || 4888 (_collectorState == AbortablePreclean && should_abort_preclean()), 4889 "Unparsable objects should only be in perm gen."); 4890 _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end())); 4891 if (should_abort_preclean()) { 4892 break; // out of preclean loop 4893 } else { 4894 // Compute the next address at which preclean should pick up. 4895 lastAddr = next_card_start_after_block(stop_point); 4896 } 4897 } 4898 } else { 4899 break; 4900 } 4901 } 4902 verify_work_stacks_empty(); 4903 verify_overflow_empty(); 4904 return cumNumDirtyCards; 4905 } 4906 4907 void CMSCollector::checkpointRootsFinal(bool asynch, 4908 bool clear_all_soft_refs, bool init_mark_was_synchronous) { 4909 assert(_collectorState == FinalMarking, "incorrect state transition?"); 4910 check_correct_thread_executing(); 4911 // world is stopped at this checkpoint 4912 assert(SafepointSynchronize::is_at_safepoint(), 4913 "world should be stopped"); 4914 TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause()); 4915 4916 verify_work_stacks_empty(); 4917 verify_overflow_empty(); 4918 4919 SpecializationStats::clear(); 4920 if (PrintGCDetails) { 4921 gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]", 4922 _young_gen->used() / K, 4923 _young_gen->capacity() / K); 4924 } 4925 if (asynch) { 4926 if (CMSScavengeBeforeRemark) { 4927 GenCollectedHeap* gch = GenCollectedHeap::heap(); 4928 // Temporarily set flag to false, GCH->do_collection will 4929 // expect it to be false and set to true 4930 FlagSetting fl(gch->_is_gc_active, false); 4931 NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark", 4932 PrintGCDetails && Verbose, true, _gc_timer_cm);) 4933 int level = _cmsGen->level() - 1; 4934 if (level >= 0) { 4935 gch->do_collection(true, // full (i.e. force, see below) 4936 false, // !clear_all_soft_refs 4937 0, // size 4938 false, // is_tlab 4939 level // max_level 4940 ); 4941 } 4942 } 4943 FreelistLocker x(this); 4944 MutexLockerEx y(bitMapLock(), 4945 Mutex::_no_safepoint_check_flag); 4946 assert(!init_mark_was_synchronous, "but that's impossible!"); 4947 checkpointRootsFinalWork(asynch, clear_all_soft_refs, false); 4948 } else { 4949 // already have all the locks 4950 checkpointRootsFinalWork(asynch, clear_all_soft_refs, 4951 init_mark_was_synchronous); 4952 } 4953 verify_work_stacks_empty(); 4954 verify_overflow_empty(); 4955 SpecializationStats::print(); 4956 } 4957 4958 void CMSCollector::checkpointRootsFinalWork(bool asynch, 4959 bool clear_all_soft_refs, bool init_mark_was_synchronous) { 4960 4961 NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm);) 4962 4963 assert(haveFreelistLocks(), "must have free list locks"); 4964 assert_lock_strong(bitMapLock()); 4965 4966 if (UseAdaptiveSizePolicy) { 4967 size_policy()->checkpoint_roots_final_begin(); 4968 } 4969 4970 ResourceMark rm; 4971 HandleMark hm; 4972 4973 GenCollectedHeap* gch = GenCollectedHeap::heap(); 4974 4975 if (should_unload_classes()) { 4976 CodeCache::gc_prologue(); 4977 } 4978 assert(haveFreelistLocks(), "must have free list locks"); 4979 assert_lock_strong(bitMapLock()); 4980 4981 DEBUG_ONLY(RememberKlassesChecker fmx(should_unload_classes());) 4982 if (!init_mark_was_synchronous) { 4983 // We might assume that we need not fill TLAB's when 4984 // CMSScavengeBeforeRemark is set, because we may have just done 4985 // a scavenge which would have filled all TLAB's -- and besides 4986 // Eden would be empty. This however may not always be the case -- 4987 // for instance although we asked for a scavenge, it may not have 4988 // happened because of a JNI critical section. We probably need 4989 // a policy for deciding whether we can in that case wait until 4990 // the critical section releases and then do the remark following 4991 // the scavenge, and skip it here. In the absence of that policy, 4992 // or of an indication of whether the scavenge did indeed occur, 4993 // we cannot rely on TLAB's having been filled and must do 4994 // so here just in case a scavenge did not happen. 4995 gch->ensure_parsability(false); // fill TLAB's, but no need to retire them 4996 // Update the saved marks which may affect the root scans. 4997 gch->save_marks(); 4998 4999 { 5000 COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;) 5001 5002 // Note on the role of the mod union table: 5003 // Since the marker in "markFromRoots" marks concurrently with 5004 // mutators, it is possible for some reachable objects not to have been 5005 // scanned. For instance, an only reference to an object A was 5006 // placed in object B after the marker scanned B. Unless B is rescanned, 5007 // A would be collected. Such updates to references in marked objects 5008 // are detected via the mod union table which is the set of all cards 5009 // dirtied since the first checkpoint in this GC cycle and prior to 5010 // the most recent young generation GC, minus those cleaned up by the 5011 // concurrent precleaning. 5012 if (CMSParallelRemarkEnabled && CollectedHeap::use_parallel_gc_threads()) { 5013 GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm); 5014 do_remark_parallel(); 5015 } else { 5016 GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false, 5017 _gc_timer_cm); 5018 do_remark_non_parallel(); 5019 } 5020 } 5021 } else { 5022 assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode"); 5023 // The initial mark was stop-world, so there's no rescanning to 5024 // do; go straight on to the next step below. 5025 } 5026 verify_work_stacks_empty(); 5027 verify_overflow_empty(); 5028 5029 { 5030 NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm);) 5031 refProcessingWork(asynch, clear_all_soft_refs); 5032 } 5033 verify_work_stacks_empty(); 5034 verify_overflow_empty(); 5035 5036 if (should_unload_classes()) { 5037 CodeCache::gc_epilogue(); 5038 } 5039 JvmtiExport::gc_epilogue(); 5040 5041 // If we encountered any (marking stack / work queue) overflow 5042 // events during the current CMS cycle, take appropriate 5043 // remedial measures, where possible, so as to try and avoid 5044 // recurrence of that condition. 5045 assert(_markStack.isEmpty(), "No grey objects"); 5046 size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw + 5047 _ser_kac_ovflw + _ser_kac_preclean_ovflw; 5048 if (ser_ovflw > 0) { 5049 if (PrintCMSStatistics != 0) { 5050 gclog_or_tty->print_cr("Marking stack overflow (benign) " 5051 "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT 5052 ", kac_preclean="SIZE_FORMAT")", 5053 _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw, 5054 _ser_kac_ovflw, _ser_kac_preclean_ovflw); 5055 } 5056 _markStack.expand(); 5057 _ser_pmc_remark_ovflw = 0; 5058 _ser_pmc_preclean_ovflw = 0; 5059 _ser_kac_preclean_ovflw = 0; 5060 _ser_kac_ovflw = 0; 5061 } 5062 if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) { 5063 if (PrintCMSStatistics != 0) { 5064 gclog_or_tty->print_cr("Work queue overflow (benign) " 5065 "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")", 5066 _par_pmc_remark_ovflw, _par_kac_ovflw); 5067 } 5068 _par_pmc_remark_ovflw = 0; 5069 _par_kac_ovflw = 0; 5070 } 5071 if (PrintCMSStatistics != 0) { 5072 if (_markStack._hit_limit > 0) { 5073 gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")", 5074 _markStack._hit_limit); 5075 } 5076 if (_markStack._failed_double > 0) { 5077 gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT")," 5078 " current capacity "SIZE_FORMAT, 5079 _markStack._failed_double, 5080 _markStack.capacity()); 5081 } 5082 } 5083 _markStack._hit_limit = 0; 5084 _markStack._failed_double = 0; 5085 5086 // Check that all the klasses have been checked 5087 assert(_revisitStack.isEmpty(), "Not all klasses revisited"); 5088 5089 if ((VerifyAfterGC || VerifyDuringGC) && 5090 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 5091 verify_after_remark(); 5092 } 5093 5094 _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure); 5095 5096 // Change under the freelistLocks. 5097 _collectorState = Sweeping; 5098 // Call isAllClear() under bitMapLock 5099 assert(_modUnionTable.isAllClear(), "Should be clear by end of the" 5100 " final marking"); 5101 if (UseAdaptiveSizePolicy) { 5102 size_policy()->checkpoint_roots_final_end(gch->gc_cause()); 5103 } 5104 } 5105 5106 // Parallel remark task 5107 class CMSParRemarkTask: public AbstractGangTask { 5108 CMSCollector* _collector; 5109 int _n_workers; 5110 CompactibleFreeListSpace* _cms_space; 5111 CompactibleFreeListSpace* _perm_space; 5112 5113 // The per-thread work queues, available here for stealing. 5114 OopTaskQueueSet* _task_queues; 5115 ParallelTaskTerminator _term; 5116 5117 public: 5118 // A value of 0 passed to n_workers will cause the number of 5119 // workers to be taken from the active workers in the work gang. 5120 CMSParRemarkTask(CMSCollector* collector, 5121 CompactibleFreeListSpace* cms_space, 5122 CompactibleFreeListSpace* perm_space, 5123 int n_workers, FlexibleWorkGang* workers, 5124 OopTaskQueueSet* task_queues): 5125 AbstractGangTask("Rescan roots and grey objects in parallel"), 5126 _collector(collector), 5127 _cms_space(cms_space), _perm_space(perm_space), 5128 _n_workers(n_workers), 5129 _task_queues(task_queues), 5130 _term(n_workers, task_queues) { } 5131 5132 OopTaskQueueSet* task_queues() { return _task_queues; } 5133 5134 OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); } 5135 5136 ParallelTaskTerminator* terminator() { return &_term; } 5137 int n_workers() { return _n_workers; } 5138 5139 void work(uint worker_id); 5140 5141 private: 5142 // Work method in support of parallel rescan ... of young gen spaces 5143 void do_young_space_rescan(int i, Par_MarkRefsIntoAndScanClosure* cl, 5144 ContiguousSpace* space, 5145 HeapWord** chunk_array, size_t chunk_top); 5146 5147 // ... of dirty cards in old space 5148 void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i, 5149 Par_MarkRefsIntoAndScanClosure* cl); 5150 5151 // ... work stealing for the above 5152 void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed); 5153 }; 5154 5155 // work_queue(i) is passed to the closure 5156 // Par_MarkRefsIntoAndScanClosure. The "i" parameter 5157 // also is passed to do_dirty_card_rescan_tasks() and to 5158 // do_work_steal() to select the i-th task_queue. 5159 5160 void CMSParRemarkTask::work(uint worker_id) { 5161 elapsedTimer _timer; 5162 ResourceMark rm; 5163 HandleMark hm; 5164 5165 // ---------- rescan from roots -------------- 5166 _timer.start(); 5167 GenCollectedHeap* gch = GenCollectedHeap::heap(); 5168 Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector, 5169 _collector->_span, _collector->ref_processor(), 5170 &(_collector->_markBitMap), 5171 work_queue(worker_id), &(_collector->_revisitStack)); 5172 5173 // Rescan young gen roots first since these are likely 5174 // coarsely partitioned and may, on that account, constitute 5175 // the critical path; thus, it's best to start off that 5176 // work first. 5177 // ---------- young gen roots -------------- 5178 { 5179 DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration(); 5180 EdenSpace* eden_space = dng->eden(); 5181 ContiguousSpace* from_space = dng->from(); 5182 ContiguousSpace* to_space = dng->to(); 5183 5184 HeapWord** eca = _collector->_eden_chunk_array; 5185 size_t ect = _collector->_eden_chunk_index; 5186 HeapWord** sca = _collector->_survivor_chunk_array; 5187 size_t sct = _collector->_survivor_chunk_index; 5188 5189 assert(ect <= _collector->_eden_chunk_capacity, "out of bounds"); 5190 assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds"); 5191 5192 do_young_space_rescan(worker_id, &par_mrias_cl, to_space, NULL, 0); 5193 do_young_space_rescan(worker_id, &par_mrias_cl, from_space, sca, sct); 5194 do_young_space_rescan(worker_id, &par_mrias_cl, eden_space, eca, ect); 5195 5196 _timer.stop(); 5197 if (PrintCMSStatistics != 0) { 5198 gclog_or_tty->print_cr( 5199 "Finished young gen rescan work in %dth thread: %3.3f sec", 5200 worker_id, _timer.seconds()); 5201 } 5202 } 5203 5204 // ---------- remaining roots -------------- 5205 _timer.reset(); 5206 _timer.start(); 5207 gch->gen_process_strong_roots(_collector->_cmsGen->level(), 5208 false, // yg was scanned above 5209 false, // this is parallel code 5210 true, // collecting perm gen 5211 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()), 5212 &par_mrias_cl, 5213 true, // walk all of code cache if (so & SO_CodeCache) 5214 NULL); 5215 assert(_collector->should_unload_classes() 5216 || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_CodeCache), 5217 "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops"); 5218 _timer.stop(); 5219 if (PrintCMSStatistics != 0) { 5220 gclog_or_tty->print_cr( 5221 "Finished remaining root rescan work in %dth thread: %3.3f sec", 5222 worker_id, _timer.seconds()); 5223 } 5224 5225 // ---------- rescan dirty cards ------------ 5226 _timer.reset(); 5227 _timer.start(); 5228 5229 // Do the rescan tasks for each of the two spaces 5230 // (cms_space and perm_space) in turn. 5231 // "worker_id" is passed to select the task_queue for "worker_id" 5232 do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl); 5233 do_dirty_card_rescan_tasks(_perm_space, worker_id, &par_mrias_cl); 5234 _timer.stop(); 5235 if (PrintCMSStatistics != 0) { 5236 gclog_or_tty->print_cr( 5237 "Finished dirty card rescan work in %dth thread: %3.3f sec", 5238 worker_id, _timer.seconds()); 5239 } 5240 5241 // ---------- steal work from other threads ... 5242 // ---------- ... and drain overflow list. 5243 _timer.reset(); 5244 _timer.start(); 5245 do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id)); 5246 _timer.stop(); 5247 if (PrintCMSStatistics != 0) { 5248 gclog_or_tty->print_cr( 5249 "Finished work stealing in %dth thread: %3.3f sec", 5250 worker_id, _timer.seconds()); 5251 } 5252 } 5253 5254 // Note that parameter "i" is not used. 5255 void 5256 CMSParRemarkTask::do_young_space_rescan(int i, 5257 Par_MarkRefsIntoAndScanClosure* cl, ContiguousSpace* space, 5258 HeapWord** chunk_array, size_t chunk_top) { 5259 // Until all tasks completed: 5260 // . claim an unclaimed task 5261 // . compute region boundaries corresponding to task claimed 5262 // using chunk_array 5263 // . par_oop_iterate(cl) over that region 5264 5265 ResourceMark rm; 5266 HandleMark hm; 5267 5268 SequentialSubTasksDone* pst = space->par_seq_tasks(); 5269 assert(pst->valid(), "Uninitialized use?"); 5270 5271 uint nth_task = 0; 5272 uint n_tasks = pst->n_tasks(); 5273 5274 HeapWord *start, *end; 5275 while (!pst->is_task_claimed(/* reference */ nth_task)) { 5276 // We claimed task # nth_task; compute its boundaries. 5277 if (chunk_top == 0) { // no samples were taken 5278 assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task"); 5279 start = space->bottom(); 5280 end = space->top(); 5281 } else if (nth_task == 0) { 5282 start = space->bottom(); 5283 end = chunk_array[nth_task]; 5284 } else if (nth_task < (uint)chunk_top) { 5285 assert(nth_task >= 1, "Control point invariant"); 5286 start = chunk_array[nth_task - 1]; 5287 end = chunk_array[nth_task]; 5288 } else { 5289 assert(nth_task == (uint)chunk_top, "Control point invariant"); 5290 start = chunk_array[chunk_top - 1]; 5291 end = space->top(); 5292 } 5293 MemRegion mr(start, end); 5294 // Verify that mr is in space 5295 assert(mr.is_empty() || space->used_region().contains(mr), 5296 "Should be in space"); 5297 // Verify that "start" is an object boundary 5298 assert(mr.is_empty() || oop(mr.start())->is_oop(), 5299 "Should be an oop"); 5300 space->par_oop_iterate(mr, cl); 5301 } 5302 pst->all_tasks_completed(); 5303 } 5304 5305 void 5306 CMSParRemarkTask::do_dirty_card_rescan_tasks( 5307 CompactibleFreeListSpace* sp, int i, 5308 Par_MarkRefsIntoAndScanClosure* cl) { 5309 // Until all tasks completed: 5310 // . claim an unclaimed task 5311 // . compute region boundaries corresponding to task claimed 5312 // . transfer dirty bits ct->mut for that region 5313 // . apply rescanclosure to dirty mut bits for that region 5314 5315 ResourceMark rm; 5316 HandleMark hm; 5317 5318 OopTaskQueue* work_q = work_queue(i); 5319 ModUnionClosure modUnionClosure(&(_collector->_modUnionTable)); 5320 // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! 5321 // CAUTION: This closure has state that persists across calls to 5322 // the work method dirty_range_iterate_clear() in that it has 5323 // imbedded in it a (subtype of) UpwardsObjectClosure. The 5324 // use of that state in the imbedded UpwardsObjectClosure instance 5325 // assumes that the cards are always iterated (even if in parallel 5326 // by several threads) in monotonically increasing order per each 5327 // thread. This is true of the implementation below which picks 5328 // card ranges (chunks) in monotonically increasing order globally 5329 // and, a-fortiori, in monotonically increasing order per thread 5330 // (the latter order being a subsequence of the former). 5331 // If the work code below is ever reorganized into a more chaotic 5332 // work-partitioning form than the current "sequential tasks" 5333 // paradigm, the use of that persistent state will have to be 5334 // revisited and modified appropriately. See also related 5335 // bug 4756801 work on which should examine this code to make 5336 // sure that the changes there do not run counter to the 5337 // assumptions made here and necessary for correctness and 5338 // efficiency. Note also that this code might yield inefficient 5339 // behaviour in the case of very large objects that span one or 5340 // more work chunks. Such objects would potentially be scanned 5341 // several times redundantly. Work on 4756801 should try and 5342 // address that performance anomaly if at all possible. XXX 5343 MemRegion full_span = _collector->_span; 5344 CMSBitMap* bm = &(_collector->_markBitMap); // shared 5345 CMSMarkStack* rs = &(_collector->_revisitStack); // shared 5346 MarkFromDirtyCardsClosure 5347 greyRescanClosure(_collector, full_span, // entire span of interest 5348 sp, bm, work_q, rs, cl); 5349 5350 SequentialSubTasksDone* pst = sp->conc_par_seq_tasks(); 5351 assert(pst->valid(), "Uninitialized use?"); 5352 uint nth_task = 0; 5353 const int alignment = CardTableModRefBS::card_size * BitsPerWord; 5354 MemRegion span = sp->used_region(); 5355 HeapWord* start_addr = span.start(); 5356 HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(), 5357 alignment); 5358 const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units 5359 assert((HeapWord*)round_to((intptr_t)start_addr, alignment) == 5360 start_addr, "Check alignment"); 5361 assert((size_t)round_to((intptr_t)chunk_size, alignment) == 5362 chunk_size, "Check alignment"); 5363 5364 while (!pst->is_task_claimed(/* reference */ nth_task)) { 5365 // Having claimed the nth_task, compute corresponding mem-region, 5366 // which is a-fortiori aligned correctly (i.e. at a MUT bopundary). 5367 // The alignment restriction ensures that we do not need any 5368 // synchronization with other gang-workers while setting or 5369 // clearing bits in thus chunk of the MUT. 5370 MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size, 5371 start_addr + (nth_task+1)*chunk_size); 5372 // The last chunk's end might be way beyond end of the 5373 // used region. In that case pull back appropriately. 5374 if (this_span.end() > end_addr) { 5375 this_span.set_end(end_addr); 5376 assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)"); 5377 } 5378 // Iterate over the dirty cards covering this chunk, marking them 5379 // precleaned, and setting the corresponding bits in the mod union 5380 // table. Since we have been careful to partition at Card and MUT-word 5381 // boundaries no synchronization is needed between parallel threads. 5382 _collector->_ct->ct_bs()->dirty_card_iterate(this_span, 5383 &modUnionClosure); 5384 5385 // Having transferred these marks into the modUnionTable, 5386 // rescan the marked objects on the dirty cards in the modUnionTable. 5387 // Even if this is at a synchronous collection, the initial marking 5388 // may have been done during an asynchronous collection so there 5389 // may be dirty bits in the mod-union table. 5390 _collector->_modUnionTable.dirty_range_iterate_clear( 5391 this_span, &greyRescanClosure); 5392 _collector->_modUnionTable.verifyNoOneBitsInRange( 5393 this_span.start(), 5394 this_span.end()); 5395 } 5396 pst->all_tasks_completed(); // declare that i am done 5397 } 5398 5399 // . see if we can share work_queues with ParNew? XXX 5400 void 5401 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, 5402 int* seed) { 5403 OopTaskQueue* work_q = work_queue(i); 5404 NOT_PRODUCT(int num_steals = 0;) 5405 oop obj_to_scan; 5406 CMSBitMap* bm = &(_collector->_markBitMap); 5407 5408 while (true) { 5409 // Completely finish any left over work from (an) earlier round(s) 5410 cl->trim_queue(0); 5411 size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4, 5412 (size_t)ParGCDesiredObjsFromOverflowList); 5413 // Now check if there's any work in the overflow list 5414 // Passing ParallelGCThreads as the third parameter, no_of_gc_threads, 5415 // only affects the number of attempts made to get work from the 5416 // overflow list and does not affect the number of workers. Just 5417 // pass ParallelGCThreads so this behavior is unchanged. 5418 if (_collector->par_take_from_overflow_list(num_from_overflow_list, 5419 work_q, 5420 ParallelGCThreads)) { 5421 // found something in global overflow list; 5422 // not yet ready to go stealing work from others. 5423 // We'd like to assert(work_q->size() != 0, ...) 5424 // because we just took work from the overflow list, 5425 // but of course we can't since all of that could have 5426 // been already stolen from us. 5427 // "He giveth and He taketh away." 5428 continue; 5429 } 5430 // Verify that we have no work before we resort to stealing 5431 assert(work_q->size() == 0, "Have work, shouldn't steal"); 5432 // Try to steal from other queues that have work 5433 if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) { 5434 NOT_PRODUCT(num_steals++;) 5435 assert(obj_to_scan->is_oop(), "Oops, not an oop!"); 5436 assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?"); 5437 // Do scanning work 5438 obj_to_scan->oop_iterate(cl); 5439 // Loop around, finish this work, and try to steal some more 5440 } else if (terminator()->offer_termination()) { 5441 break; // nirvana from the infinite cycle 5442 } 5443 } 5444 NOT_PRODUCT( 5445 if (PrintCMSStatistics != 0) { 5446 gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals); 5447 } 5448 ) 5449 assert(work_q->size() == 0 && _collector->overflow_list_is_empty(), 5450 "Else our work is not yet done"); 5451 } 5452 5453 // Return a thread-local PLAB recording array, as appropriate. 5454 void* CMSCollector::get_data_recorder(int thr_num) { 5455 if (_survivor_plab_array != NULL && 5456 (CMSPLABRecordAlways || 5457 (_collectorState > Marking && _collectorState < FinalMarking))) { 5458 assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds"); 5459 ChunkArray* ca = &_survivor_plab_array[thr_num]; 5460 ca->reset(); // clear it so that fresh data is recorded 5461 return (void*) ca; 5462 } else { 5463 return NULL; 5464 } 5465 } 5466 5467 // Reset all the thread-local PLAB recording arrays 5468 void CMSCollector::reset_survivor_plab_arrays() { 5469 for (uint i = 0; i < ParallelGCThreads; i++) { 5470 _survivor_plab_array[i].reset(); 5471 } 5472 } 5473 5474 // Merge the per-thread plab arrays into the global survivor chunk 5475 // array which will provide the partitioning of the survivor space 5476 // for CMS rescan. 5477 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv, 5478 int no_of_gc_threads) { 5479 assert(_survivor_plab_array != NULL, "Error"); 5480 assert(_survivor_chunk_array != NULL, "Error"); 5481 assert(_collectorState == FinalMarking, "Error"); 5482 for (int j = 0; j < no_of_gc_threads; j++) { 5483 _cursor[j] = 0; 5484 } 5485 HeapWord* top = surv->top(); 5486 size_t i; 5487 for (i = 0; i < _survivor_chunk_capacity; i++) { // all sca entries 5488 HeapWord* min_val = top; // Higher than any PLAB address 5489 uint min_tid = 0; // position of min_val this round 5490 for (int j = 0; j < no_of_gc_threads; j++) { 5491 ChunkArray* cur_sca = &_survivor_plab_array[j]; 5492 if (_cursor[j] == cur_sca->end()) { 5493 continue; 5494 } 5495 assert(_cursor[j] < cur_sca->end(), "ctl pt invariant"); 5496 HeapWord* cur_val = cur_sca->nth(_cursor[j]); 5497 assert(surv->used_region().contains(cur_val), "Out of bounds value"); 5498 if (cur_val < min_val) { 5499 min_tid = j; 5500 min_val = cur_val; 5501 } else { 5502 assert(cur_val < top, "All recorded addresses should be less"); 5503 } 5504 } 5505 // At this point min_val and min_tid are respectively 5506 // the least address in _survivor_plab_array[j]->nth(_cursor[j]) 5507 // and the thread (j) that witnesses that address. 5508 // We record this address in the _survivor_chunk_array[i] 5509 // and increment _cursor[min_tid] prior to the next round i. 5510 if (min_val == top) { 5511 break; 5512 } 5513 _survivor_chunk_array[i] = min_val; 5514 _cursor[min_tid]++; 5515 } 5516 // We are all done; record the size of the _survivor_chunk_array 5517 _survivor_chunk_index = i; // exclusive: [0, i) 5518 if (PrintCMSStatistics > 0) { 5519 gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i); 5520 } 5521 // Verify that we used up all the recorded entries 5522 #ifdef ASSERT 5523 size_t total = 0; 5524 for (int j = 0; j < no_of_gc_threads; j++) { 5525 assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant"); 5526 total += _cursor[j]; 5527 } 5528 assert(total == _survivor_chunk_index, "Ctl Pt Invariant"); 5529 // Check that the merged array is in sorted order 5530 if (total > 0) { 5531 for (size_t i = 0; i < total - 1; i++) { 5532 if (PrintCMSStatistics > 0) { 5533 gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ", 5534 i, _survivor_chunk_array[i]); 5535 } 5536 assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1], 5537 "Not sorted"); 5538 } 5539 } 5540 #endif // ASSERT 5541 } 5542 5543 // Set up the space's par_seq_tasks structure for work claiming 5544 // for parallel rescan of young gen. 5545 // See ParRescanTask where this is currently used. 5546 void 5547 CMSCollector:: 5548 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) { 5549 assert(n_threads > 0, "Unexpected n_threads argument"); 5550 DefNewGeneration* dng = (DefNewGeneration*)_young_gen; 5551 5552 // Eden space 5553 { 5554 SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks(); 5555 assert(!pst->valid(), "Clobbering existing data?"); 5556 // Each valid entry in [0, _eden_chunk_index) represents a task. 5557 size_t n_tasks = _eden_chunk_index + 1; 5558 assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error"); 5559 // Sets the condition for completion of the subtask (how many threads 5560 // need to finish in order to be done). 5561 pst->set_n_threads(n_threads); 5562 pst->set_n_tasks((int)n_tasks); 5563 } 5564 5565 // Merge the survivor plab arrays into _survivor_chunk_array 5566 if (_survivor_plab_array != NULL) { 5567 merge_survivor_plab_arrays(dng->from(), n_threads); 5568 } else { 5569 assert(_survivor_chunk_index == 0, "Error"); 5570 } 5571 5572 // To space 5573 { 5574 SequentialSubTasksDone* pst = dng->to()->par_seq_tasks(); 5575 assert(!pst->valid(), "Clobbering existing data?"); 5576 // Sets the condition for completion of the subtask (how many threads 5577 // need to finish in order to be done). 5578 pst->set_n_threads(n_threads); 5579 pst->set_n_tasks(1); 5580 assert(pst->valid(), "Error"); 5581 } 5582 5583 // From space 5584 { 5585 SequentialSubTasksDone* pst = dng->from()->par_seq_tasks(); 5586 assert(!pst->valid(), "Clobbering existing data?"); 5587 size_t n_tasks = _survivor_chunk_index + 1; 5588 assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error"); 5589 // Sets the condition for completion of the subtask (how many threads 5590 // need to finish in order to be done). 5591 pst->set_n_threads(n_threads); 5592 pst->set_n_tasks((int)n_tasks); 5593 assert(pst->valid(), "Error"); 5594 } 5595 } 5596 5597 // Parallel version of remark 5598 void CMSCollector::do_remark_parallel() { 5599 GenCollectedHeap* gch = GenCollectedHeap::heap(); 5600 FlexibleWorkGang* workers = gch->workers(); 5601 assert(workers != NULL, "Need parallel worker threads."); 5602 // Choose to use the number of GC workers most recently set 5603 // into "active_workers". If active_workers is not set, set it 5604 // to ParallelGCThreads. 5605 int n_workers = workers->active_workers(); 5606 if (n_workers == 0) { 5607 assert(n_workers > 0, "Should have been set during scavenge"); 5608 n_workers = ParallelGCThreads; 5609 workers->set_active_workers(n_workers); 5610 } 5611 CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace(); 5612 CompactibleFreeListSpace* perm_space = _permGen->cmsSpace(); 5613 5614 CMSParRemarkTask tsk(this, 5615 cms_space, perm_space, 5616 n_workers, workers, task_queues()); 5617 5618 // Set up for parallel process_strong_roots work. 5619 gch->set_par_threads(n_workers); 5620 // We won't be iterating over the cards in the card table updating 5621 // the younger_gen cards, so we shouldn't call the following else 5622 // the verification code as well as subsequent younger_refs_iterate 5623 // code would get confused. XXX 5624 // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel 5625 5626 // The young gen rescan work will not be done as part of 5627 // process_strong_roots (which currently doesn't knw how to 5628 // parallelize such a scan), but rather will be broken up into 5629 // a set of parallel tasks (via the sampling that the [abortable] 5630 // preclean phase did of EdenSpace, plus the [two] tasks of 5631 // scanning the [two] survivor spaces. Further fine-grain 5632 // parallelization of the scanning of the survivor spaces 5633 // themselves, and of precleaning of the younger gen itself 5634 // is deferred to the future. 5635 initialize_sequential_subtasks_for_young_gen_rescan(n_workers); 5636 5637 // The dirty card rescan work is broken up into a "sequence" 5638 // of parallel tasks (per constituent space) that are dynamically 5639 // claimed by the parallel threads. 5640 cms_space->initialize_sequential_subtasks_for_rescan(n_workers); 5641 perm_space->initialize_sequential_subtasks_for_rescan(n_workers); 5642 5643 // It turns out that even when we're using 1 thread, doing the work in a 5644 // separate thread causes wide variance in run times. We can't help this 5645 // in the multi-threaded case, but we special-case n=1 here to get 5646 // repeatable measurements of the 1-thread overhead of the parallel code. 5647 if (n_workers > 1) { 5648 // Make refs discovery MT-safe, if it isn't already: it may not 5649 // necessarily be so, since it's possible that we are doing 5650 // ST marking. 5651 ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true); 5652 GenCollectedHeap::StrongRootsScope srs(gch); 5653 workers->run_task(&tsk); 5654 } else { 5655 ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false); 5656 GenCollectedHeap::StrongRootsScope srs(gch); 5657 tsk.work(0); 5658 } 5659 gch->set_par_threads(0); // 0 ==> non-parallel. 5660 // restore, single-threaded for now, any preserved marks 5661 // as a result of work_q overflow 5662 restore_preserved_marks_if_any(); 5663 } 5664 5665 // Non-parallel version of remark 5666 void CMSCollector::do_remark_non_parallel() { 5667 ResourceMark rm; 5668 HandleMark hm; 5669 GenCollectedHeap* gch = GenCollectedHeap::heap(); 5670 ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false); 5671 5672 MarkRefsIntoAndScanClosure 5673 mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable, 5674 &_markStack, &_revisitStack, this, 5675 false /* should_yield */, false /* not precleaning */); 5676 MarkFromDirtyCardsClosure 5677 markFromDirtyCardsClosure(this, _span, 5678 NULL, // space is set further below 5679 &_markBitMap, &_markStack, &_revisitStack, 5680 &mrias_cl); 5681 { 5682 GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm); 5683 // Iterate over the dirty cards, setting the corresponding bits in the 5684 // mod union table. 5685 { 5686 ModUnionClosure modUnionClosure(&_modUnionTable); 5687 _ct->ct_bs()->dirty_card_iterate( 5688 _cmsGen->used_region(), 5689 &modUnionClosure); 5690 _ct->ct_bs()->dirty_card_iterate( 5691 _permGen->used_region(), 5692 &modUnionClosure); 5693 } 5694 // Having transferred these marks into the modUnionTable, we just need 5695 // to rescan the marked objects on the dirty cards in the modUnionTable. 5696 // The initial marking may have been done during an asynchronous 5697 // collection so there may be dirty bits in the mod-union table. 5698 const int alignment = 5699 CardTableModRefBS::card_size * BitsPerWord; 5700 { 5701 // ... First handle dirty cards in CMS gen 5702 markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace()); 5703 MemRegion ur = _cmsGen->used_region(); 5704 HeapWord* lb = ur.start(); 5705 HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment); 5706 MemRegion cms_span(lb, ub); 5707 _modUnionTable.dirty_range_iterate_clear(cms_span, 5708 &markFromDirtyCardsClosure); 5709 verify_work_stacks_empty(); 5710 if (PrintCMSStatistics != 0) { 5711 gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ", 5712 markFromDirtyCardsClosure.num_dirty_cards()); 5713 } 5714 } 5715 { 5716 // .. and then repeat for dirty cards in perm gen 5717 markFromDirtyCardsClosure.set_space(_permGen->cmsSpace()); 5718 MemRegion ur = _permGen->used_region(); 5719 HeapWord* lb = ur.start(); 5720 HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment); 5721 MemRegion perm_span(lb, ub); 5722 _modUnionTable.dirty_range_iterate_clear(perm_span, 5723 &markFromDirtyCardsClosure); 5724 verify_work_stacks_empty(); 5725 if (PrintCMSStatistics != 0) { 5726 gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in perm gen) ", 5727 markFromDirtyCardsClosure.num_dirty_cards()); 5728 } 5729 } 5730 } 5731 if (VerifyDuringGC && 5732 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 5733 HandleMark hm; // Discard invalid handles created during verification 5734 Universe::verify(); 5735 } 5736 { 5737 GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm); 5738 5739 verify_work_stacks_empty(); 5740 5741 gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel. 5742 GenCollectedHeap::StrongRootsScope srs(gch); 5743 gch->gen_process_strong_roots(_cmsGen->level(), 5744 true, // younger gens as roots 5745 false, // use the local StrongRootsScope 5746 true, // collecting perm gen 5747 SharedHeap::ScanningOption(roots_scanning_options()), 5748 &mrias_cl, 5749 true, // walk code active on stacks 5750 NULL); 5751 assert(should_unload_classes() 5752 || (roots_scanning_options() & SharedHeap::SO_CodeCache), 5753 "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops"); 5754 } 5755 verify_work_stacks_empty(); 5756 // Restore evacuated mark words, if any, used for overflow list links 5757 if (!CMSOverflowEarlyRestoration) { 5758 restore_preserved_marks_if_any(); 5759 } 5760 verify_overflow_empty(); 5761 } 5762 5763 //////////////////////////////////////////////////////// 5764 // Parallel Reference Processing Task Proxy Class 5765 //////////////////////////////////////////////////////// 5766 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues { 5767 typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask; 5768 CMSCollector* _collector; 5769 CMSBitMap* _mark_bit_map; 5770 const MemRegion _span; 5771 ProcessTask& _task; 5772 5773 public: 5774 CMSRefProcTaskProxy(ProcessTask& task, 5775 CMSCollector* collector, 5776 const MemRegion& span, 5777 CMSBitMap* mark_bit_map, 5778 AbstractWorkGang* workers, 5779 OopTaskQueueSet* task_queues): 5780 // XXX Should superclass AGTWOQ also know about AWG since it knows 5781 // about the task_queues used by the AWG? Then it could initialize 5782 // the terminator() object. See 6984287. The set_for_termination() 5783 // below is a temporary band-aid for the regression in 6984287. 5784 AbstractGangTaskWOopQueues("Process referents by policy in parallel", 5785 task_queues), 5786 _task(task), 5787 _collector(collector), _span(span), _mark_bit_map(mark_bit_map) 5788 { 5789 assert(_collector->_span.equals(_span) && !_span.is_empty(), 5790 "Inconsistency in _span"); 5791 set_for_termination(workers->active_workers()); 5792 } 5793 5794 OopTaskQueueSet* task_queues() { return queues(); } 5795 5796 OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); } 5797 5798 void do_work_steal(int i, 5799 CMSParDrainMarkingStackClosure* drain, 5800 CMSParKeepAliveClosure* keep_alive, 5801 int* seed); 5802 5803 virtual void work(uint worker_id); 5804 }; 5805 5806 void CMSRefProcTaskProxy::work(uint worker_id) { 5807 assert(_collector->_span.equals(_span), "Inconsistency in _span"); 5808 CMSParKeepAliveClosure par_keep_alive(_collector, _span, 5809 _mark_bit_map, 5810 &_collector->_revisitStack, 5811 work_queue(worker_id)); 5812 CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span, 5813 _mark_bit_map, 5814 &_collector->_revisitStack, 5815 work_queue(worker_id)); 5816 CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map); 5817 _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack); 5818 if (_task.marks_oops_alive()) { 5819 do_work_steal(worker_id, &par_drain_stack, &par_keep_alive, 5820 _collector->hash_seed(worker_id)); 5821 } 5822 assert(work_queue(worker_id)->size() == 0, "work_queue should be empty"); 5823 assert(_collector->_overflow_list == NULL, "non-empty _overflow_list"); 5824 } 5825 5826 class CMSRefEnqueueTaskProxy: public AbstractGangTask { 5827 typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask; 5828 EnqueueTask& _task; 5829 5830 public: 5831 CMSRefEnqueueTaskProxy(EnqueueTask& task) 5832 : AbstractGangTask("Enqueue reference objects in parallel"), 5833 _task(task) 5834 { } 5835 5836 virtual void work(uint worker_id) 5837 { 5838 _task.work(worker_id); 5839 } 5840 }; 5841 5842 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector, 5843 MemRegion span, CMSBitMap* bit_map, CMSMarkStack* revisit_stack, 5844 OopTaskQueue* work_queue): 5845 Par_KlassRememberingOopClosure(collector, NULL, revisit_stack), 5846 _span(span), 5847 _bit_map(bit_map), 5848 _work_queue(work_queue), 5849 _mark_and_push(collector, span, bit_map, revisit_stack, work_queue), 5850 _low_water_mark(MIN2((uint)(work_queue->max_elems()/4), 5851 (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))) 5852 { } 5853 5854 // . see if we can share work_queues with ParNew? XXX 5855 void CMSRefProcTaskProxy::do_work_steal(int i, 5856 CMSParDrainMarkingStackClosure* drain, 5857 CMSParKeepAliveClosure* keep_alive, 5858 int* seed) { 5859 OopTaskQueue* work_q = work_queue(i); 5860 NOT_PRODUCT(int num_steals = 0;) 5861 oop obj_to_scan; 5862 5863 while (true) { 5864 // Completely finish any left over work from (an) earlier round(s) 5865 drain->trim_queue(0); 5866 size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4, 5867 (size_t)ParGCDesiredObjsFromOverflowList); 5868 // Now check if there's any work in the overflow list 5869 // Passing ParallelGCThreads as the third parameter, no_of_gc_threads, 5870 // only affects the number of attempts made to get work from the 5871 // overflow list and does not affect the number of workers. Just 5872 // pass ParallelGCThreads so this behavior is unchanged. 5873 if (_collector->par_take_from_overflow_list(num_from_overflow_list, 5874 work_q, 5875 ParallelGCThreads)) { 5876 // Found something in global overflow list; 5877 // not yet ready to go stealing work from others. 5878 // We'd like to assert(work_q->size() != 0, ...) 5879 // because we just took work from the overflow list, 5880 // but of course we can't, since all of that might have 5881 // been already stolen from us. 5882 continue; 5883 } 5884 // Verify that we have no work before we resort to stealing 5885 assert(work_q->size() == 0, "Have work, shouldn't steal"); 5886 // Try to steal from other queues that have work 5887 if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) { 5888 NOT_PRODUCT(num_steals++;) 5889 assert(obj_to_scan->is_oop(), "Oops, not an oop!"); 5890 assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?"); 5891 // Do scanning work 5892 obj_to_scan->oop_iterate(keep_alive); 5893 // Loop around, finish this work, and try to steal some more 5894 } else if (terminator()->offer_termination()) { 5895 break; // nirvana from the infinite cycle 5896 } 5897 } 5898 NOT_PRODUCT( 5899 if (PrintCMSStatistics != 0) { 5900 gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals); 5901 } 5902 ) 5903 } 5904 5905 void CMSRefProcTaskExecutor::execute(ProcessTask& task) 5906 { 5907 GenCollectedHeap* gch = GenCollectedHeap::heap(); 5908 FlexibleWorkGang* workers = gch->workers(); 5909 assert(workers != NULL, "Need parallel worker threads."); 5910 CMSRefProcTaskProxy rp_task(task, &_collector, 5911 _collector.ref_processor()->span(), 5912 _collector.markBitMap(), 5913 workers, _collector.task_queues()); 5914 workers->run_task(&rp_task); 5915 } 5916 5917 void CMSRefProcTaskExecutor::execute(EnqueueTask& task) 5918 { 5919 5920 GenCollectedHeap* gch = GenCollectedHeap::heap(); 5921 FlexibleWorkGang* workers = gch->workers(); 5922 assert(workers != NULL, "Need parallel worker threads."); 5923 CMSRefEnqueueTaskProxy enq_task(task); 5924 workers->run_task(&enq_task); 5925 } 5926 5927 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) { 5928 5929 ResourceMark rm; 5930 HandleMark hm; 5931 5932 ReferenceProcessor* rp = ref_processor(); 5933 assert(rp->span().equals(_span), "Spans should be equal"); 5934 assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete"); 5935 // Process weak references. 5936 rp->setup_policy(clear_all_soft_refs); 5937 verify_work_stacks_empty(); 5938 5939 CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap, 5940 &_markStack, &_revisitStack, 5941 false /* !preclean */); 5942 CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this, 5943 _span, &_markBitMap, &_markStack, 5944 &cmsKeepAliveClosure, false /* !preclean */); 5945 { 5946 GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm); 5947 5948 ReferenceProcessorStats stats; 5949 if (rp->processing_is_mt()) { 5950 // Set the degree of MT here. If the discovery is done MT, there 5951 // may have been a different number of threads doing the discovery 5952 // and a different number of discovered lists may have Ref objects. 5953 // That is OK as long as the Reference lists are balanced (see 5954 // balance_all_queues() and balance_queues()). 5955 GenCollectedHeap* gch = GenCollectedHeap::heap(); 5956 int active_workers = ParallelGCThreads; 5957 FlexibleWorkGang* workers = gch->workers(); 5958 if (workers != NULL) { 5959 active_workers = workers->active_workers(); 5960 // The expectation is that active_workers will have already 5961 // been set to a reasonable value. If it has not been set, 5962 // investigate. 5963 assert(active_workers > 0, "Should have been set during scavenge"); 5964 } 5965 rp->set_active_mt_degree(active_workers); 5966 CMSRefProcTaskExecutor task_executor(*this); 5967 stats = rp->process_discovered_references(&_is_alive_closure, 5968 &cmsKeepAliveClosure, 5969 &cmsDrainMarkingStackClosure, 5970 &task_executor, 5971 _gc_timer_cm); 5972 } else { 5973 stats = rp->process_discovered_references(&_is_alive_closure, 5974 &cmsKeepAliveClosure, 5975 &cmsDrainMarkingStackClosure, 5976 NULL, 5977 _gc_timer_cm); 5978 } 5979 _gc_tracer_cm->report_gc_reference_stats(stats); 5980 5981 verify_work_stacks_empty(); 5982 } 5983 5984 if (should_unload_classes()) { 5985 { 5986 GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm); 5987 5988 // Follow SystemDictionary roots and unload classes 5989 bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure); 5990 5991 // Follow CodeCache roots and unload any methods marked for unloading 5992 CodeCache::do_unloading(&_is_alive_closure, 5993 &cmsKeepAliveClosure, 5994 purged_class); 5995 5996 cmsDrainMarkingStackClosure.do_void(); 5997 verify_work_stacks_empty(); 5998 5999 // Update subklass/sibling/implementor links in KlassKlass descendants 6000 assert(!_revisitStack.isEmpty(), "revisit stack should not be empty"); 6001 oop k; 6002 while ((k = _revisitStack.pop()) != NULL) { 6003 ((Klass*)(oopDesc*)k)->follow_weak_klass_links( 6004 &_is_alive_closure, 6005 &cmsKeepAliveClosure); 6006 } 6007 assert(!ClassUnloading || 6008 (_markStack.isEmpty() && overflow_list_is_empty()), 6009 "Should not have found new reachable objects"); 6010 assert(_revisitStack.isEmpty(), "revisit stack should have been drained"); 6011 cmsDrainMarkingStackClosure.do_void(); 6012 verify_work_stacks_empty(); 6013 } 6014 6015 { 6016 GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm); 6017 // Clean up unreferenced symbols in symbol table. 6018 SymbolTable::unlink(); 6019 } 6020 } 6021 6022 if (should_unload_classes() || !JavaObjectsInPerm) { 6023 GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm); 6024 // Now clean up stale oops in StringTable 6025 StringTable::unlink(&_is_alive_closure); 6026 } 6027 6028 verify_work_stacks_empty(); 6029 // Restore any preserved marks as a result of mark stack or 6030 // work queue overflow 6031 restore_preserved_marks_if_any(); // done single-threaded for now 6032 6033 rp->set_enqueuing_is_done(true); 6034 if (rp->processing_is_mt()) { 6035 rp->balance_all_queues(); 6036 CMSRefProcTaskExecutor task_executor(*this); 6037 rp->enqueue_discovered_references(&task_executor); 6038 } else { 6039 rp->enqueue_discovered_references(NULL); 6040 } 6041 rp->verify_no_references_recorded(); 6042 assert(!rp->discovery_enabled(), "should have been disabled"); 6043 } 6044 6045 #ifndef PRODUCT 6046 void CMSCollector::check_correct_thread_executing() { 6047 Thread* t = Thread::current(); 6048 // Only the VM thread or the CMS thread should be here. 6049 assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(), 6050 "Unexpected thread type"); 6051 // If this is the vm thread, the foreground process 6052 // should not be waiting. Note that _foregroundGCIsActive is 6053 // true while the foreground collector is waiting. 6054 if (_foregroundGCShouldWait) { 6055 // We cannot be the VM thread 6056 assert(t->is_ConcurrentGC_thread(), 6057 "Should be CMS thread"); 6058 } else { 6059 // We can be the CMS thread only if we are in a stop-world 6060 // phase of CMS collection. 6061 if (t->is_ConcurrentGC_thread()) { 6062 assert(_collectorState == InitialMarking || 6063 _collectorState == FinalMarking, 6064 "Should be a stop-world phase"); 6065 // The CMS thread should be holding the CMS_token. 6066 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 6067 "Potential interference with concurrently " 6068 "executing VM thread"); 6069 } 6070 } 6071 } 6072 #endif 6073 6074 void CMSCollector::sweep(bool asynch) { 6075 assert(_collectorState == Sweeping, "just checking"); 6076 check_correct_thread_executing(); 6077 verify_work_stacks_empty(); 6078 verify_overflow_empty(); 6079 increment_sweep_count(); 6080 TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause()); 6081 6082 _inter_sweep_timer.stop(); 6083 _inter_sweep_estimate.sample(_inter_sweep_timer.seconds()); 6084 size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free()); 6085 6086 // PermGen verification support: If perm gen sweeping is disabled in 6087 // this cycle, we preserve the perm gen object "deadness" information 6088 // in the perm_gen_verify_bit_map. In order to do that we traverse 6089 // all blocks in perm gen and mark all dead objects. 6090 if (verifying() && !should_unload_classes()) { 6091 assert(perm_gen_verify_bit_map()->sizeInBits() != 0, 6092 "Should have already been allocated"); 6093 MarkDeadObjectsClosure mdo(this, _permGen->cmsSpace(), 6094 markBitMap(), perm_gen_verify_bit_map()); 6095 if (asynch) { 6096 CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(), 6097 bitMapLock()); 6098 _permGen->cmsSpace()->blk_iterate(&mdo); 6099 } else { 6100 // In the case of synchronous sweep, we already have 6101 // the requisite locks/tokens. 6102 _permGen->cmsSpace()->blk_iterate(&mdo); 6103 } 6104 } 6105 6106 assert(!_intra_sweep_timer.is_active(), "Should not be active"); 6107 _intra_sweep_timer.reset(); 6108 _intra_sweep_timer.start(); 6109 if (asynch) { 6110 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 6111 CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails); 6112 // First sweep the old gen then the perm gen 6113 { 6114 CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(), 6115 bitMapLock()); 6116 sweepWork(_cmsGen, asynch); 6117 } 6118 6119 // Now repeat for perm gen 6120 if (should_unload_classes()) { 6121 CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(), 6122 bitMapLock()); 6123 sweepWork(_permGen, asynch); 6124 } 6125 6126 // Update Universe::_heap_*_at_gc figures. 6127 // We need all the free list locks to make the abstract state 6128 // transition from Sweeping to Resetting. See detailed note 6129 // further below. 6130 { 6131 CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(), 6132 _permGen->freelistLock()); 6133 // Update heap occupancy information which is used as 6134 // input to soft ref clearing policy at the next gc. 6135 Universe::update_heap_info_at_gc(); 6136 _collectorState = Resizing; 6137 } 6138 } else { 6139 // already have needed locks 6140 sweepWork(_cmsGen, asynch); 6141 6142 if (should_unload_classes()) { 6143 sweepWork(_permGen, asynch); 6144 } 6145 // Update heap occupancy information which is used as 6146 // input to soft ref clearing policy at the next gc. 6147 Universe::update_heap_info_at_gc(); 6148 _collectorState = Resizing; 6149 } 6150 verify_work_stacks_empty(); 6151 verify_overflow_empty(); 6152 6153 _intra_sweep_timer.stop(); 6154 _intra_sweep_estimate.sample(_intra_sweep_timer.seconds()); 6155 6156 _inter_sweep_timer.reset(); 6157 _inter_sweep_timer.start(); 6158 6159 // We need to use a monotonically non-deccreasing time in ms 6160 // or we will see time-warp warnings and os::javaTimeMillis() 6161 // does not guarantee monotonicity. 6162 jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; 6163 update_time_of_last_gc(now); 6164 6165 // NOTE on abstract state transitions: 6166 // Mutators allocate-live and/or mark the mod-union table dirty 6167 // based on the state of the collection. The former is done in 6168 // the interval [Marking, Sweeping] and the latter in the interval 6169 // [Marking, Sweeping). Thus the transitions into the Marking state 6170 // and out of the Sweeping state must be synchronously visible 6171 // globally to the mutators. 6172 // The transition into the Marking state happens with the world 6173 // stopped so the mutators will globally see it. Sweeping is 6174 // done asynchronously by the background collector so the transition 6175 // from the Sweeping state to the Resizing state must be done 6176 // under the freelistLock (as is the check for whether to 6177 // allocate-live and whether to dirty the mod-union table). 6178 assert(_collectorState == Resizing, "Change of collector state to" 6179 " Resizing must be done under the freelistLocks (plural)"); 6180 6181 // Now that sweeping has been completed, we clear 6182 // the incremental_collection_failed flag, 6183 // thus inviting a younger gen collection to promote into 6184 // this generation. If such a promotion may still fail, 6185 // the flag will be set again when a young collection is 6186 // attempted. 6187 GenCollectedHeap* gch = GenCollectedHeap::heap(); 6188 gch->clear_incremental_collection_failed(); // Worth retrying as fresh space may have been freed up 6189 gch->update_full_collections_completed(_collection_count_start); 6190 } 6191 6192 // FIX ME!!! Looks like this belongs in CFLSpace, with 6193 // CMSGen merely delegating to it. 6194 void ConcurrentMarkSweepGeneration::setNearLargestChunk() { 6195 double nearLargestPercent = FLSLargestBlockCoalesceProximity; 6196 HeapWord* minAddr = _cmsSpace->bottom(); 6197 HeapWord* largestAddr = 6198 (HeapWord*) _cmsSpace->dictionary()->find_largest_dict(); 6199 if (largestAddr == NULL) { 6200 // The dictionary appears to be empty. In this case 6201 // try to coalesce at the end of the heap. 6202 largestAddr = _cmsSpace->end(); 6203 } 6204 size_t largestOffset = pointer_delta(largestAddr, minAddr); 6205 size_t nearLargestOffset = 6206 (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize; 6207 if (PrintFLSStatistics != 0) { 6208 gclog_or_tty->print_cr( 6209 "CMS: Large Block: " PTR_FORMAT ";" 6210 " Proximity: " PTR_FORMAT " -> " PTR_FORMAT, 6211 largestAddr, 6212 _cmsSpace->nearLargestChunk(), minAddr + nearLargestOffset); 6213 } 6214 _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset); 6215 } 6216 6217 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) { 6218 return addr >= _cmsSpace->nearLargestChunk(); 6219 } 6220 6221 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() { 6222 return _cmsSpace->find_chunk_at_end(); 6223 } 6224 6225 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level, 6226 bool full) { 6227 // The next lower level has been collected. Gather any statistics 6228 // that are of interest at this point. 6229 if (!full && (current_level + 1) == level()) { 6230 // Gather statistics on the young generation collection. 6231 collector()->stats().record_gc0_end(used()); 6232 } 6233 } 6234 6235 CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() { 6236 GenCollectedHeap* gch = GenCollectedHeap::heap(); 6237 assert(gch->kind() == CollectedHeap::GenCollectedHeap, 6238 "Wrong type of heap"); 6239 CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*) 6240 gch->gen_policy()->size_policy(); 6241 assert(sp->is_gc_cms_adaptive_size_policy(), 6242 "Wrong type of size policy"); 6243 return sp; 6244 } 6245 6246 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() { 6247 if (PrintGCDetails && Verbose) { 6248 gclog_or_tty->print("Rotate from %d ", _debug_collection_type); 6249 } 6250 _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1); 6251 _debug_collection_type = 6252 (CollectionTypes) (_debug_collection_type % Unknown_collection_type); 6253 if (PrintGCDetails && Verbose) { 6254 gclog_or_tty->print_cr("to %d ", _debug_collection_type); 6255 } 6256 } 6257 6258 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen, 6259 bool asynch) { 6260 // We iterate over the space(s) underlying this generation, 6261 // checking the mark bit map to see if the bits corresponding 6262 // to specific blocks are marked or not. Blocks that are 6263 // marked are live and are not swept up. All remaining blocks 6264 // are swept up, with coalescing on-the-fly as we sweep up 6265 // contiguous free and/or garbage blocks: 6266 // We need to ensure that the sweeper synchronizes with allocators 6267 // and stop-the-world collectors. In particular, the following 6268 // locks are used: 6269 // . CMS token: if this is held, a stop the world collection cannot occur 6270 // . freelistLock: if this is held no allocation can occur from this 6271 // generation by another thread 6272 // . bitMapLock: if this is held, no other thread can access or update 6273 // 6274 6275 // Note that we need to hold the freelistLock if we use 6276 // block iterate below; else the iterator might go awry if 6277 // a mutator (or promotion) causes block contents to change 6278 // (for instance if the allocator divvies up a block). 6279 // If we hold the free list lock, for all practical purposes 6280 // young generation GC's can't occur (they'll usually need to 6281 // promote), so we might as well prevent all young generation 6282 // GC's while we do a sweeping step. For the same reason, we might 6283 // as well take the bit map lock for the entire duration 6284 6285 // check that we hold the requisite locks 6286 assert(have_cms_token(), "Should hold cms token"); 6287 assert( (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token()) 6288 || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()), 6289 "Should possess CMS token to sweep"); 6290 assert_lock_strong(gen->freelistLock()); 6291 assert_lock_strong(bitMapLock()); 6292 6293 assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context"); 6294 assert(_intra_sweep_timer.is_active(), "Was switched on in an outer context"); 6295 gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()), 6296 _inter_sweep_estimate.padded_average(), 6297 _intra_sweep_estimate.padded_average()); 6298 gen->setNearLargestChunk(); 6299 6300 { 6301 SweepClosure sweepClosure(this, gen, &_markBitMap, 6302 CMSYield && asynch); 6303 gen->cmsSpace()->blk_iterate_careful(&sweepClosure); 6304 // We need to free-up/coalesce garbage/blocks from a 6305 // co-terminal free run. This is done in the SweepClosure 6306 // destructor; so, do not remove this scope, else the 6307 // end-of-sweep-census below will be off by a little bit. 6308 } 6309 gen->cmsSpace()->sweep_completed(); 6310 gen->cmsSpace()->endSweepFLCensus(sweep_count()); 6311 if (should_unload_classes()) { // unloaded classes this cycle, 6312 _concurrent_cycles_since_last_unload = 0; // ... reset count 6313 } else { // did not unload classes, 6314 _concurrent_cycles_since_last_unload++; // ... increment count 6315 } 6316 } 6317 6318 // Reset CMS data structures (for now just the marking bit map) 6319 // preparatory for the next cycle. 6320 void CMSCollector::reset(bool asynch) { 6321 GenCollectedHeap* gch = GenCollectedHeap::heap(); 6322 CMSAdaptiveSizePolicy* sp = size_policy(); 6323 AdaptiveSizePolicyOutput(sp, gch->total_collections()); 6324 if (asynch) { 6325 CMSTokenSyncWithLocks ts(true, bitMapLock()); 6326 6327 // If the state is not "Resetting", the foreground thread 6328 // has done a collection and the resetting. 6329 if (_collectorState != Resetting) { 6330 assert(_collectorState == Idling, "The state should only change" 6331 " because the foreground collector has finished the collection"); 6332 return; 6333 } 6334 6335 // Clear the mark bitmap (no grey objects to start with) 6336 // for the next cycle. 6337 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 6338 CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails); 6339 6340 HeapWord* curAddr = _markBitMap.startWord(); 6341 while (curAddr < _markBitMap.endWord()) { 6342 size_t remaining = pointer_delta(_markBitMap.endWord(), curAddr); 6343 MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining)); 6344 _markBitMap.clear_large_range(chunk); 6345 if (ConcurrentMarkSweepThread::should_yield() && 6346 !foregroundGCIsActive() && 6347 CMSYield) { 6348 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 6349 "CMS thread should hold CMS token"); 6350 assert_lock_strong(bitMapLock()); 6351 bitMapLock()->unlock(); 6352 ConcurrentMarkSweepThread::desynchronize(true); 6353 ConcurrentMarkSweepThread::acknowledge_yield_request(); 6354 stopTimer(); 6355 if (PrintCMSStatistics != 0) { 6356 incrementYields(); 6357 } 6358 icms_wait(); 6359 6360 // See the comment in coordinator_yield() 6361 for (unsigned i = 0; i < CMSYieldSleepCount && 6362 ConcurrentMarkSweepThread::should_yield() && 6363 !CMSCollector::foregroundGCIsActive(); ++i) { 6364 os::sleep(Thread::current(), 1, false); 6365 ConcurrentMarkSweepThread::acknowledge_yield_request(); 6366 } 6367 6368 ConcurrentMarkSweepThread::synchronize(true); 6369 bitMapLock()->lock_without_safepoint_check(); 6370 startTimer(); 6371 } 6372 curAddr = chunk.end(); 6373 } 6374 // A successful mostly concurrent collection has been done. 6375 // Because only the full (i.e., concurrent mode failure) collections 6376 // are being measured for gc overhead limits, clean the "near" flag 6377 // and count. 6378 sp->reset_gc_overhead_limit_count(); 6379 _collectorState = Idling; 6380 } else { 6381 // already have the lock 6382 assert(_collectorState == Resetting, "just checking"); 6383 assert_lock_strong(bitMapLock()); 6384 _markBitMap.clear_all(); 6385 _collectorState = Idling; 6386 } 6387 6388 // Stop incremental mode after a cycle completes, so that any future cycles 6389 // are triggered by allocation. 6390 stop_icms(); 6391 6392 NOT_PRODUCT( 6393 if (RotateCMSCollectionTypes) { 6394 _cmsGen->rotate_debug_collection_type(); 6395 } 6396 ) 6397 6398 register_gc_end(); 6399 } 6400 6401 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) { 6402 gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps); 6403 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 6404 GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL); 6405 TraceCollectorStats tcs(counters()); 6406 6407 switch (op) { 6408 case CMS_op_checkpointRootsInitial: { 6409 SvcGCMarker sgcm(SvcGCMarker::OTHER); 6410 checkpointRootsInitial(true); // asynch 6411 if (PrintGC) { 6412 _cmsGen->printOccupancy("initial-mark"); 6413 } 6414 break; 6415 } 6416 case CMS_op_checkpointRootsFinal: { 6417 SvcGCMarker sgcm(SvcGCMarker::OTHER); 6418 checkpointRootsFinal(true, // asynch 6419 false, // !clear_all_soft_refs 6420 false); // !init_mark_was_synchronous 6421 if (PrintGC) { 6422 _cmsGen->printOccupancy("remark"); 6423 } 6424 break; 6425 } 6426 default: 6427 fatal("No such CMS_op"); 6428 } 6429 } 6430 6431 #ifndef PRODUCT 6432 size_t const CMSCollector::skip_header_HeapWords() { 6433 return FreeChunk::header_size(); 6434 } 6435 6436 // Try and collect here conditions that should hold when 6437 // CMS thread is exiting. The idea is that the foreground GC 6438 // thread should not be blocked if it wants to terminate 6439 // the CMS thread and yet continue to run the VM for a while 6440 // after that. 6441 void CMSCollector::verify_ok_to_terminate() const { 6442 assert(Thread::current()->is_ConcurrentGC_thread(), 6443 "should be called by CMS thread"); 6444 assert(!_foregroundGCShouldWait, "should be false"); 6445 // We could check here that all the various low-level locks 6446 // are not held by the CMS thread, but that is overkill; see 6447 // also CMSThread::verify_ok_to_terminate() where the CGC_lock 6448 // is checked. 6449 } 6450 #endif 6451 6452 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const { 6453 assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1), 6454 "missing Printezis mark?"); 6455 HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2); 6456 size_t size = pointer_delta(nextOneAddr + 1, addr); 6457 assert(size == CompactibleFreeListSpace::adjustObjectSize(size), 6458 "alignment problem"); 6459 assert(size >= 3, "Necessary for Printezis marks to work"); 6460 return size; 6461 } 6462 6463 // A variant of the above (block_size_using_printezis_bits()) except 6464 // that we return 0 if the P-bits are not yet set. 6465 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const { 6466 if (_markBitMap.isMarked(addr + 1)) { 6467 assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects"); 6468 HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2); 6469 size_t size = pointer_delta(nextOneAddr + 1, addr); 6470 assert(size == CompactibleFreeListSpace::adjustObjectSize(size), 6471 "alignment problem"); 6472 assert(size >= 3, "Necessary for Printezis marks to work"); 6473 return size; 6474 } 6475 return 0; 6476 } 6477 6478 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const { 6479 size_t sz = 0; 6480 oop p = (oop)addr; 6481 if (p->klass_or_null() != NULL && p->is_parsable()) { 6482 sz = CompactibleFreeListSpace::adjustObjectSize(p->size()); 6483 } else { 6484 sz = block_size_using_printezis_bits(addr); 6485 } 6486 assert(sz > 0, "size must be nonzero"); 6487 HeapWord* next_block = addr + sz; 6488 HeapWord* next_card = (HeapWord*)round_to((uintptr_t)next_block, 6489 CardTableModRefBS::card_size); 6490 assert(round_down((uintptr_t)addr, CardTableModRefBS::card_size) < 6491 round_down((uintptr_t)next_card, CardTableModRefBS::card_size), 6492 "must be different cards"); 6493 return next_card; 6494 } 6495 6496 6497 // CMS Bit Map Wrapper ///////////////////////////////////////// 6498 6499 // Construct a CMS bit map infrastructure, but don't create the 6500 // bit vector itself. That is done by a separate call CMSBitMap::allocate() 6501 // further below. 6502 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name): 6503 _bm(), 6504 _shifter(shifter), 6505 _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL) 6506 { 6507 _bmStartWord = 0; 6508 _bmWordSize = 0; 6509 } 6510 6511 bool CMSBitMap::allocate(MemRegion mr) { 6512 _bmStartWord = mr.start(); 6513 _bmWordSize = mr.word_size(); 6514 ReservedSpace brs(ReservedSpace::allocation_align_size_up( 6515 (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1)); 6516 if (!brs.is_reserved()) { 6517 warning("CMS bit map allocation failure"); 6518 return false; 6519 } 6520 // For now we'll just commit all of the bit map up fromt. 6521 // Later on we'll try to be more parsimonious with swap. 6522 if (!_virtual_space.initialize(brs, brs.size())) { 6523 warning("CMS bit map backing store failure"); 6524 return false; 6525 } 6526 assert(_virtual_space.committed_size() == brs.size(), 6527 "didn't reserve backing store for all of CMS bit map?"); 6528 _bm.set_map((BitMap::bm_word_t*)_virtual_space.low()); 6529 assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >= 6530 _bmWordSize, "inconsistency in bit map sizing"); 6531 _bm.set_size(_bmWordSize >> _shifter); 6532 6533 // bm.clear(); // can we rely on getting zero'd memory? verify below 6534 assert(isAllClear(), 6535 "Expected zero'd memory from ReservedSpace constructor"); 6536 assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()), 6537 "consistency check"); 6538 return true; 6539 } 6540 6541 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) { 6542 HeapWord *next_addr, *end_addr, *last_addr; 6543 assert_locked(); 6544 assert(covers(mr), "out-of-range error"); 6545 // XXX assert that start and end are appropriately aligned 6546 for (next_addr = mr.start(), end_addr = mr.end(); 6547 next_addr < end_addr; next_addr = last_addr) { 6548 MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr); 6549 last_addr = dirty_region.end(); 6550 if (!dirty_region.is_empty()) { 6551 cl->do_MemRegion(dirty_region); 6552 } else { 6553 assert(last_addr == end_addr, "program logic"); 6554 return; 6555 } 6556 } 6557 } 6558 6559 #ifndef PRODUCT 6560 void CMSBitMap::assert_locked() const { 6561 CMSLockVerifier::assert_locked(lock()); 6562 } 6563 6564 bool CMSBitMap::covers(MemRegion mr) const { 6565 // assert(_bm.map() == _virtual_space.low(), "map inconsistency"); 6566 assert((size_t)_bm.size() == (_bmWordSize >> _shifter), 6567 "size inconsistency"); 6568 return (mr.start() >= _bmStartWord) && 6569 (mr.end() <= endWord()); 6570 } 6571 6572 bool CMSBitMap::covers(HeapWord* start, size_t size) const { 6573 return (start >= _bmStartWord && (start + size) <= endWord()); 6574 } 6575 6576 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) { 6577 // verify that there are no 1 bits in the interval [left, right) 6578 FalseBitMapClosure falseBitMapClosure; 6579 iterate(&falseBitMapClosure, left, right); 6580 } 6581 6582 void CMSBitMap::region_invariant(MemRegion mr) 6583 { 6584 assert_locked(); 6585 // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize)); 6586 assert(!mr.is_empty(), "unexpected empty region"); 6587 assert(covers(mr), "mr should be covered by bit map"); 6588 // convert address range into offset range 6589 size_t start_ofs = heapWordToOffset(mr.start()); 6590 // Make sure that end() is appropriately aligned 6591 assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(), 6592 (1 << (_shifter+LogHeapWordSize))), 6593 "Misaligned mr.end()"); 6594 size_t end_ofs = heapWordToOffset(mr.end()); 6595 assert(end_ofs > start_ofs, "Should mark at least one bit"); 6596 } 6597 6598 #endif 6599 6600 bool CMSMarkStack::allocate(size_t size) { 6601 // allocate a stack of the requisite depth 6602 ReservedSpace rs(ReservedSpace::allocation_align_size_up( 6603 size * sizeof(oop))); 6604 if (!rs.is_reserved()) { 6605 warning("CMSMarkStack allocation failure"); 6606 return false; 6607 } 6608 if (!_virtual_space.initialize(rs, rs.size())) { 6609 warning("CMSMarkStack backing store failure"); 6610 return false; 6611 } 6612 assert(_virtual_space.committed_size() == rs.size(), 6613 "didn't reserve backing store for all of CMS stack?"); 6614 _base = (oop*)(_virtual_space.low()); 6615 _index = 0; 6616 _capacity = size; 6617 NOT_PRODUCT(_max_depth = 0); 6618 return true; 6619 } 6620 6621 // XXX FIX ME !!! In the MT case we come in here holding a 6622 // leaf lock. For printing we need to take a further lock 6623 // which has lower rank. We need to recallibrate the two 6624 // lock-ranks involved in order to be able to rpint the 6625 // messages below. (Or defer the printing to the caller. 6626 // For now we take the expedient path of just disabling the 6627 // messages for the problematic case.) 6628 void CMSMarkStack::expand() { 6629 assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted"); 6630 if (_capacity == MarkStackSizeMax) { 6631 if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) { 6632 // We print a warning message only once per CMS cycle. 6633 gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit"); 6634 } 6635 return; 6636 } 6637 // Double capacity if possible 6638 size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax); 6639 // Do not give up existing stack until we have managed to 6640 // get the double capacity that we desired. 6641 ReservedSpace rs(ReservedSpace::allocation_align_size_up( 6642 new_capacity * sizeof(oop))); 6643 if (rs.is_reserved()) { 6644 // Release the backing store associated with old stack 6645 _virtual_space.release(); 6646 // Reinitialize virtual space for new stack 6647 if (!_virtual_space.initialize(rs, rs.size())) { 6648 fatal("Not enough swap for expanded marking stack"); 6649 } 6650 _base = (oop*)(_virtual_space.low()); 6651 _index = 0; 6652 _capacity = new_capacity; 6653 } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) { 6654 // Failed to double capacity, continue; 6655 // we print a detail message only once per CMS cycle. 6656 gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to " 6657 SIZE_FORMAT"K", 6658 _capacity / K, new_capacity / K); 6659 } 6660 } 6661 6662 6663 // Closures 6664 // XXX: there seems to be a lot of code duplication here; 6665 // should refactor and consolidate common code. 6666 6667 // This closure is used to mark refs into the CMS generation in 6668 // the CMS bit map. Called at the first checkpoint. This closure 6669 // assumes that we do not need to re-mark dirty cards; if the CMS 6670 // generation on which this is used is not an oldest (modulo perm gen) 6671 // generation then this will lose younger_gen cards! 6672 6673 MarkRefsIntoClosure::MarkRefsIntoClosure( 6674 MemRegion span, CMSBitMap* bitMap): 6675 _span(span), 6676 _bitMap(bitMap) 6677 { 6678 assert(_ref_processor == NULL, "deliberately left NULL"); 6679 assert(_bitMap->covers(_span), "_bitMap/_span mismatch"); 6680 } 6681 6682 void MarkRefsIntoClosure::do_oop(oop obj) { 6683 // if p points into _span, then mark corresponding bit in _markBitMap 6684 assert(obj->is_oop(), "expected an oop"); 6685 HeapWord* addr = (HeapWord*)obj; 6686 if (_span.contains(addr)) { 6687 // this should be made more efficient 6688 _bitMap->mark(addr); 6689 } 6690 } 6691 6692 void MarkRefsIntoClosure::do_oop(oop* p) { MarkRefsIntoClosure::do_oop_work(p); } 6693 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); } 6694 6695 // A variant of the above, used for CMS marking verification. 6696 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure( 6697 MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm): 6698 _span(span), 6699 _verification_bm(verification_bm), 6700 _cms_bm(cms_bm) 6701 { 6702 assert(_ref_processor == NULL, "deliberately left NULL"); 6703 assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch"); 6704 } 6705 6706 void MarkRefsIntoVerifyClosure::do_oop(oop obj) { 6707 // if p points into _span, then mark corresponding bit in _markBitMap 6708 assert(obj->is_oop(), "expected an oop"); 6709 HeapWord* addr = (HeapWord*)obj; 6710 if (_span.contains(addr)) { 6711 _verification_bm->mark(addr); 6712 if (!_cms_bm->isMarked(addr)) { 6713 oop(addr)->print(); 6714 gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr); 6715 fatal("... aborting"); 6716 } 6717 } 6718 } 6719 6720 void MarkRefsIntoVerifyClosure::do_oop(oop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); } 6721 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); } 6722 6723 ////////////////////////////////////////////////// 6724 // MarkRefsIntoAndScanClosure 6725 ////////////////////////////////////////////////// 6726 6727 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span, 6728 ReferenceProcessor* rp, 6729 CMSBitMap* bit_map, 6730 CMSBitMap* mod_union_table, 6731 CMSMarkStack* mark_stack, 6732 CMSMarkStack* revisit_stack, 6733 CMSCollector* collector, 6734 bool should_yield, 6735 bool concurrent_precleaning): 6736 _collector(collector), 6737 _span(span), 6738 _bit_map(bit_map), 6739 _mark_stack(mark_stack), 6740 _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table, 6741 mark_stack, revisit_stack, concurrent_precleaning), 6742 _yield(should_yield), 6743 _concurrent_precleaning(concurrent_precleaning), 6744 _freelistLock(NULL) 6745 { 6746 _ref_processor = rp; 6747 assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL"); 6748 } 6749 6750 // This closure is used to mark refs into the CMS generation at the 6751 // second (final) checkpoint, and to scan and transitively follow 6752 // the unmarked oops. It is also used during the concurrent precleaning 6753 // phase while scanning objects on dirty cards in the CMS generation. 6754 // The marks are made in the marking bit map and the marking stack is 6755 // used for keeping the (newly) grey objects during the scan. 6756 // The parallel version (Par_...) appears further below. 6757 void MarkRefsIntoAndScanClosure::do_oop(oop obj) { 6758 if (obj != NULL) { 6759 assert(obj->is_oop(), "expected an oop"); 6760 HeapWord* addr = (HeapWord*)obj; 6761 assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)"); 6762 assert(_collector->overflow_list_is_empty(), 6763 "overflow list should be empty"); 6764 if (_span.contains(addr) && 6765 !_bit_map->isMarked(addr)) { 6766 // mark bit map (object is now grey) 6767 _bit_map->mark(addr); 6768 // push on marking stack (stack should be empty), and drain the 6769 // stack by applying this closure to the oops in the oops popped 6770 // from the stack (i.e. blacken the grey objects) 6771 bool res = _mark_stack->push(obj); 6772 assert(res, "Should have space to push on empty stack"); 6773 do { 6774 oop new_oop = _mark_stack->pop(); 6775 assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop"); 6776 assert(new_oop->is_parsable(), "Found unparsable oop"); 6777 assert(_bit_map->isMarked((HeapWord*)new_oop), 6778 "only grey objects on this stack"); 6779 // iterate over the oops in this oop, marking and pushing 6780 // the ones in CMS heap (i.e. in _span). 6781 new_oop->oop_iterate(&_pushAndMarkClosure); 6782 // check if it's time to yield 6783 do_yield_check(); 6784 } while (!_mark_stack->isEmpty() || 6785 (!_concurrent_precleaning && take_from_overflow_list())); 6786 // if marking stack is empty, and we are not doing this 6787 // during precleaning, then check the overflow list 6788 } 6789 assert(_mark_stack->isEmpty(), "post-condition (eager drainage)"); 6790 assert(_collector->overflow_list_is_empty(), 6791 "overflow list was drained above"); 6792 // We could restore evacuated mark words, if any, used for 6793 // overflow list links here because the overflow list is 6794 // provably empty here. That would reduce the maximum 6795 // size requirements for preserved_{oop,mark}_stack. 6796 // But we'll just postpone it until we are all done 6797 // so we can just stream through. 6798 if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) { 6799 _collector->restore_preserved_marks_if_any(); 6800 assert(_collector->no_preserved_marks(), "No preserved marks"); 6801 } 6802 assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(), 6803 "All preserved marks should have been restored above"); 6804 } 6805 } 6806 6807 void MarkRefsIntoAndScanClosure::do_oop(oop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); } 6808 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); } 6809 6810 void MarkRefsIntoAndScanClosure::do_yield_work() { 6811 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 6812 "CMS thread should hold CMS token"); 6813 assert_lock_strong(_freelistLock); 6814 assert_lock_strong(_bit_map->lock()); 6815 // relinquish the free_list_lock and bitMaplock() 6816 DEBUG_ONLY(RememberKlassesChecker mux(false);) 6817 _bit_map->lock()->unlock(); 6818 _freelistLock->unlock(); 6819 ConcurrentMarkSweepThread::desynchronize(true); 6820 ConcurrentMarkSweepThread::acknowledge_yield_request(); 6821 _collector->stopTimer(); 6822 GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr()); 6823 if (PrintCMSStatistics != 0) { 6824 _collector->incrementYields(); 6825 } 6826 _collector->icms_wait(); 6827 6828 // See the comment in coordinator_yield() 6829 for (unsigned i = 0; 6830 i < CMSYieldSleepCount && 6831 ConcurrentMarkSweepThread::should_yield() && 6832 !CMSCollector::foregroundGCIsActive(); 6833 ++i) { 6834 os::sleep(Thread::current(), 1, false); 6835 ConcurrentMarkSweepThread::acknowledge_yield_request(); 6836 } 6837 6838 ConcurrentMarkSweepThread::synchronize(true); 6839 _freelistLock->lock_without_safepoint_check(); 6840 _bit_map->lock()->lock_without_safepoint_check(); 6841 _collector->startTimer(); 6842 } 6843 6844 /////////////////////////////////////////////////////////// 6845 // Par_MarkRefsIntoAndScanClosure: a parallel version of 6846 // MarkRefsIntoAndScanClosure 6847 /////////////////////////////////////////////////////////// 6848 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure( 6849 CMSCollector* collector, MemRegion span, ReferenceProcessor* rp, 6850 CMSBitMap* bit_map, OopTaskQueue* work_queue, CMSMarkStack* revisit_stack): 6851 _span(span), 6852 _bit_map(bit_map), 6853 _work_queue(work_queue), 6854 _low_water_mark(MIN2((uint)(work_queue->max_elems()/4), 6855 (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))), 6856 _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue, 6857 revisit_stack) 6858 { 6859 _ref_processor = rp; 6860 assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL"); 6861 } 6862 6863 // This closure is used to mark refs into the CMS generation at the 6864 // second (final) checkpoint, and to scan and transitively follow 6865 // the unmarked oops. The marks are made in the marking bit map and 6866 // the work_queue is used for keeping the (newly) grey objects during 6867 // the scan phase whence they are also available for stealing by parallel 6868 // threads. Since the marking bit map is shared, updates are 6869 // synchronized (via CAS). 6870 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) { 6871 if (obj != NULL) { 6872 // Ignore mark word because this could be an already marked oop 6873 // that may be chained at the end of the overflow list. 6874 assert(obj->is_oop(true), "expected an oop"); 6875 HeapWord* addr = (HeapWord*)obj; 6876 if (_span.contains(addr) && 6877 !_bit_map->isMarked(addr)) { 6878 // mark bit map (object will become grey): 6879 // It is possible for several threads to be 6880 // trying to "claim" this object concurrently; 6881 // the unique thread that succeeds in marking the 6882 // object first will do the subsequent push on 6883 // to the work queue (or overflow list). 6884 if (_bit_map->par_mark(addr)) { 6885 // push on work_queue (which may not be empty), and trim the 6886 // queue to an appropriate length by applying this closure to 6887 // the oops in the oops popped from the stack (i.e. blacken the 6888 // grey objects) 6889 bool res = _work_queue->push(obj); 6890 assert(res, "Low water mark should be less than capacity?"); 6891 trim_queue(_low_water_mark); 6892 } // Else, another thread claimed the object 6893 } 6894 } 6895 } 6896 6897 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); } 6898 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); } 6899 6900 // This closure is used to rescan the marked objects on the dirty cards 6901 // in the mod union table and the card table proper. 6902 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m( 6903 oop p, MemRegion mr) { 6904 6905 size_t size = 0; 6906 HeapWord* addr = (HeapWord*)p; 6907 DEBUG_ONLY(_collector->verify_work_stacks_empty();) 6908 assert(_span.contains(addr), "we are scanning the CMS generation"); 6909 // check if it's time to yield 6910 if (do_yield_check()) { 6911 // We yielded for some foreground stop-world work, 6912 // and we have been asked to abort this ongoing preclean cycle. 6913 return 0; 6914 } 6915 if (_bitMap->isMarked(addr)) { 6916 // it's marked; is it potentially uninitialized? 6917 if (p->klass_or_null() != NULL) { 6918 // If is_conc_safe is false, the object may be undergoing 6919 // change by the VM outside a safepoint. Don't try to 6920 // scan it, but rather leave it for the remark phase. 6921 if (CMSPermGenPrecleaningEnabled && 6922 (!p->is_conc_safe() || !p->is_parsable())) { 6923 // Signal precleaning to redirty the card since 6924 // the klass pointer is already installed. 6925 assert(size == 0, "Initial value"); 6926 } else { 6927 assert(p->is_parsable(), "must be parsable."); 6928 // an initialized object; ignore mark word in verification below 6929 // since we are running concurrent with mutators 6930 assert(p->is_oop(true), "should be an oop"); 6931 if (p->is_objArray()) { 6932 // objArrays are precisely marked; restrict scanning 6933 // to dirty cards only. 6934 size = CompactibleFreeListSpace::adjustObjectSize( 6935 p->oop_iterate(_scanningClosure, mr)); 6936 } else { 6937 // A non-array may have been imprecisely marked; we need 6938 // to scan object in its entirety. 6939 size = CompactibleFreeListSpace::adjustObjectSize( 6940 p->oop_iterate(_scanningClosure)); 6941 } 6942 #ifdef DEBUG 6943 size_t direct_size = 6944 CompactibleFreeListSpace::adjustObjectSize(p->size()); 6945 assert(size == direct_size, "Inconsistency in size"); 6946 assert(size >= 3, "Necessary for Printezis marks to work"); 6947 if (!_bitMap->isMarked(addr+1)) { 6948 _bitMap->verifyNoOneBitsInRange(addr+2, addr+size); 6949 } else { 6950 _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1); 6951 assert(_bitMap->isMarked(addr+size-1), 6952 "inconsistent Printezis mark"); 6953 } 6954 #endif // DEBUG 6955 } 6956 } else { 6957 // an unitialized object 6958 assert(_bitMap->isMarked(addr+1), "missing Printezis mark?"); 6959 HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2); 6960 size = pointer_delta(nextOneAddr + 1, addr); 6961 assert(size == CompactibleFreeListSpace::adjustObjectSize(size), 6962 "alignment problem"); 6963 // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass() 6964 // will dirty the card when the klass pointer is installed in the 6965 // object (signalling the completion of initialization). 6966 } 6967 } else { 6968 // Either a not yet marked object or an uninitialized object 6969 if (p->klass_or_null() == NULL || !p->is_parsable()) { 6970 // An uninitialized object, skip to the next card, since 6971 // we may not be able to read its P-bits yet. 6972 assert(size == 0, "Initial value"); 6973 } else { 6974 // An object not (yet) reached by marking: we merely need to 6975 // compute its size so as to go look at the next block. 6976 assert(p->is_oop(true), "should be an oop"); 6977 size = CompactibleFreeListSpace::adjustObjectSize(p->size()); 6978 } 6979 } 6980 DEBUG_ONLY(_collector->verify_work_stacks_empty();) 6981 return size; 6982 } 6983 6984 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() { 6985 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 6986 "CMS thread should hold CMS token"); 6987 assert_lock_strong(_freelistLock); 6988 assert_lock_strong(_bitMap->lock()); 6989 DEBUG_ONLY(RememberKlassesChecker mux(false);) 6990 // relinquish the free_list_lock and bitMaplock() 6991 _bitMap->lock()->unlock(); 6992 _freelistLock->unlock(); 6993 ConcurrentMarkSweepThread::desynchronize(true); 6994 ConcurrentMarkSweepThread::acknowledge_yield_request(); 6995 _collector->stopTimer(); 6996 GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr()); 6997 if (PrintCMSStatistics != 0) { 6998 _collector->incrementYields(); 6999 } 7000 _collector->icms_wait(); 7001 7002 // See the comment in coordinator_yield() 7003 for (unsigned i = 0; i < CMSYieldSleepCount && 7004 ConcurrentMarkSweepThread::should_yield() && 7005 !CMSCollector::foregroundGCIsActive(); ++i) { 7006 os::sleep(Thread::current(), 1, false); 7007 ConcurrentMarkSweepThread::acknowledge_yield_request(); 7008 } 7009 7010 ConcurrentMarkSweepThread::synchronize(true); 7011 _freelistLock->lock_without_safepoint_check(); 7012 _bitMap->lock()->lock_without_safepoint_check(); 7013 _collector->startTimer(); 7014 } 7015 7016 7017 ////////////////////////////////////////////////////////////////// 7018 // SurvivorSpacePrecleanClosure 7019 ////////////////////////////////////////////////////////////////// 7020 // This (single-threaded) closure is used to preclean the oops in 7021 // the survivor spaces. 7022 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) { 7023 7024 HeapWord* addr = (HeapWord*)p; 7025 DEBUG_ONLY(_collector->verify_work_stacks_empty();) 7026 assert(!_span.contains(addr), "we are scanning the survivor spaces"); 7027 assert(p->klass_or_null() != NULL, "object should be initializd"); 7028 assert(p->is_parsable(), "must be parsable."); 7029 // an initialized object; ignore mark word in verification below 7030 // since we are running concurrent with mutators 7031 assert(p->is_oop(true), "should be an oop"); 7032 // Note that we do not yield while we iterate over 7033 // the interior oops of p, pushing the relevant ones 7034 // on our marking stack. 7035 size_t size = p->oop_iterate(_scanning_closure); 7036 do_yield_check(); 7037 // Observe that below, we do not abandon the preclean 7038 // phase as soon as we should; rather we empty the 7039 // marking stack before returning. This is to satisfy 7040 // some existing assertions. In general, it may be a 7041 // good idea to abort immediately and complete the marking 7042 // from the grey objects at a later time. 7043 while (!_mark_stack->isEmpty()) { 7044 oop new_oop = _mark_stack->pop(); 7045 assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop"); 7046 assert(new_oop->is_parsable(), "Found unparsable oop"); 7047 assert(_bit_map->isMarked((HeapWord*)new_oop), 7048 "only grey objects on this stack"); 7049 // iterate over the oops in this oop, marking and pushing 7050 // the ones in CMS heap (i.e. in _span). 7051 new_oop->oop_iterate(_scanning_closure); 7052 // check if it's time to yield 7053 do_yield_check(); 7054 } 7055 unsigned int after_count = 7056 GenCollectedHeap::heap()->total_collections(); 7057 bool abort = (_before_count != after_count) || 7058 _collector->should_abort_preclean(); 7059 return abort ? 0 : size; 7060 } 7061 7062 void SurvivorSpacePrecleanClosure::do_yield_work() { 7063 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 7064 "CMS thread should hold CMS token"); 7065 assert_lock_strong(_bit_map->lock()); 7066 DEBUG_ONLY(RememberKlassesChecker smx(false);) 7067 // Relinquish the bit map lock 7068 _bit_map->lock()->unlock(); 7069 ConcurrentMarkSweepThread::desynchronize(true); 7070 ConcurrentMarkSweepThread::acknowledge_yield_request(); 7071 _collector->stopTimer(); 7072 GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr()); 7073 if (PrintCMSStatistics != 0) { 7074 _collector->incrementYields(); 7075 } 7076 _collector->icms_wait(); 7077 7078 // See the comment in coordinator_yield() 7079 for (unsigned i = 0; i < CMSYieldSleepCount && 7080 ConcurrentMarkSweepThread::should_yield() && 7081 !CMSCollector::foregroundGCIsActive(); ++i) { 7082 os::sleep(Thread::current(), 1, false); 7083 ConcurrentMarkSweepThread::acknowledge_yield_request(); 7084 } 7085 7086 ConcurrentMarkSweepThread::synchronize(true); 7087 _bit_map->lock()->lock_without_safepoint_check(); 7088 _collector->startTimer(); 7089 } 7090 7091 // This closure is used to rescan the marked objects on the dirty cards 7092 // in the mod union table and the card table proper. In the parallel 7093 // case, although the bitMap is shared, we do a single read so the 7094 // isMarked() query is "safe". 7095 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) { 7096 // Ignore mark word because we are running concurrent with mutators 7097 assert(p->is_oop_or_null(true), "expected an oop or null"); 7098 HeapWord* addr = (HeapWord*)p; 7099 assert(_span.contains(addr), "we are scanning the CMS generation"); 7100 bool is_obj_array = false; 7101 #ifdef DEBUG 7102 if (!_parallel) { 7103 assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)"); 7104 assert(_collector->overflow_list_is_empty(), 7105 "overflow list should be empty"); 7106 7107 } 7108 #endif // DEBUG 7109 if (_bit_map->isMarked(addr)) { 7110 // Obj arrays are precisely marked, non-arrays are not; 7111 // so we scan objArrays precisely and non-arrays in their 7112 // entirety. 7113 if (p->is_objArray()) { 7114 is_obj_array = true; 7115 if (_parallel) { 7116 p->oop_iterate(_par_scan_closure, mr); 7117 } else { 7118 p->oop_iterate(_scan_closure, mr); 7119 } 7120 } else { 7121 if (_parallel) { 7122 p->oop_iterate(_par_scan_closure); 7123 } else { 7124 p->oop_iterate(_scan_closure); 7125 } 7126 } 7127 } 7128 #ifdef DEBUG 7129 if (!_parallel) { 7130 assert(_mark_stack->isEmpty(), "post-condition (eager drainage)"); 7131 assert(_collector->overflow_list_is_empty(), 7132 "overflow list should be empty"); 7133 7134 } 7135 #endif // DEBUG 7136 return is_obj_array; 7137 } 7138 7139 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector, 7140 MemRegion span, 7141 CMSBitMap* bitMap, CMSMarkStack* markStack, 7142 CMSMarkStack* revisitStack, 7143 bool should_yield, bool verifying): 7144 _collector(collector), 7145 _span(span), 7146 _bitMap(bitMap), 7147 _mut(&collector->_modUnionTable), 7148 _markStack(markStack), 7149 _revisitStack(revisitStack), 7150 _yield(should_yield), 7151 _skipBits(0) 7152 { 7153 assert(_markStack->isEmpty(), "stack should be empty"); 7154 _finger = _bitMap->startWord(); 7155 _threshold = _finger; 7156 assert(_collector->_restart_addr == NULL, "Sanity check"); 7157 assert(_span.contains(_finger), "Out of bounds _finger?"); 7158 DEBUG_ONLY(_verifying = verifying;) 7159 } 7160 7161 void MarkFromRootsClosure::reset(HeapWord* addr) { 7162 assert(_markStack->isEmpty(), "would cause duplicates on stack"); 7163 assert(_span.contains(addr), "Out of bounds _finger?"); 7164 _finger = addr; 7165 _threshold = (HeapWord*)round_to( 7166 (intptr_t)_finger, CardTableModRefBS::card_size); 7167 } 7168 7169 // Should revisit to see if this should be restructured for 7170 // greater efficiency. 7171 bool MarkFromRootsClosure::do_bit(size_t offset) { 7172 if (_skipBits > 0) { 7173 _skipBits--; 7174 return true; 7175 } 7176 // convert offset into a HeapWord* 7177 HeapWord* addr = _bitMap->startWord() + offset; 7178 assert(_bitMap->endWord() && addr < _bitMap->endWord(), 7179 "address out of range"); 7180 assert(_bitMap->isMarked(addr), "tautology"); 7181 if (_bitMap->isMarked(addr+1)) { 7182 // this is an allocated but not yet initialized object 7183 assert(_skipBits == 0, "tautology"); 7184 _skipBits = 2; // skip next two marked bits ("Printezis-marks") 7185 oop p = oop(addr); 7186 if (p->klass_or_null() == NULL || !p->is_parsable()) { 7187 DEBUG_ONLY(if (!_verifying) {) 7188 // We re-dirty the cards on which this object lies and increase 7189 // the _threshold so that we'll come back to scan this object 7190 // during the preclean or remark phase. (CMSCleanOnEnter) 7191 if (CMSCleanOnEnter) { 7192 size_t sz = _collector->block_size_using_printezis_bits(addr); 7193 HeapWord* end_card_addr = (HeapWord*)round_to( 7194 (intptr_t)(addr+sz), CardTableModRefBS::card_size); 7195 MemRegion redirty_range = MemRegion(addr, end_card_addr); 7196 assert(!redirty_range.is_empty(), "Arithmetical tautology"); 7197 // Bump _threshold to end_card_addr; note that 7198 // _threshold cannot possibly exceed end_card_addr, anyhow. 7199 // This prevents future clearing of the card as the scan proceeds 7200 // to the right. 7201 assert(_threshold <= end_card_addr, 7202 "Because we are just scanning into this object"); 7203 if (_threshold < end_card_addr) { 7204 _threshold = end_card_addr; 7205 } 7206 if (p->klass_or_null() != NULL) { 7207 // Redirty the range of cards... 7208 _mut->mark_range(redirty_range); 7209 } // ...else the setting of klass will dirty the card anyway. 7210 } 7211 DEBUG_ONLY(}) 7212 return true; 7213 } 7214 } 7215 scanOopsInOop(addr); 7216 return true; 7217 } 7218 7219 // We take a break if we've been at this for a while, 7220 // so as to avoid monopolizing the locks involved. 7221 void MarkFromRootsClosure::do_yield_work() { 7222 // First give up the locks, then yield, then re-lock 7223 // We should probably use a constructor/destructor idiom to 7224 // do this unlock/lock or modify the MutexUnlocker class to 7225 // serve our purpose. XXX 7226 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 7227 "CMS thread should hold CMS token"); 7228 assert_lock_strong(_bitMap->lock()); 7229 DEBUG_ONLY(RememberKlassesChecker mux(false);) 7230 _bitMap->lock()->unlock(); 7231 ConcurrentMarkSweepThread::desynchronize(true); 7232 ConcurrentMarkSweepThread::acknowledge_yield_request(); 7233 _collector->stopTimer(); 7234 GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr()); 7235 if (PrintCMSStatistics != 0) { 7236 _collector->incrementYields(); 7237 } 7238 _collector->icms_wait(); 7239 7240 // See the comment in coordinator_yield() 7241 for (unsigned i = 0; i < CMSYieldSleepCount && 7242 ConcurrentMarkSweepThread::should_yield() && 7243 !CMSCollector::foregroundGCIsActive(); ++i) { 7244 os::sleep(Thread::current(), 1, false); 7245 ConcurrentMarkSweepThread::acknowledge_yield_request(); 7246 } 7247 7248 ConcurrentMarkSweepThread::synchronize(true); 7249 _bitMap->lock()->lock_without_safepoint_check(); 7250 _collector->startTimer(); 7251 } 7252 7253 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) { 7254 assert(_bitMap->isMarked(ptr), "expected bit to be set"); 7255 assert(_markStack->isEmpty(), 7256 "should drain stack to limit stack usage"); 7257 // convert ptr to an oop preparatory to scanning 7258 oop obj = oop(ptr); 7259 // Ignore mark word in verification below, since we 7260 // may be running concurrent with mutators. 7261 assert(obj->is_oop(true), "should be an oop"); 7262 assert(_finger <= ptr, "_finger runneth ahead"); 7263 // advance the finger to right end of this object 7264 _finger = ptr + obj->size(); 7265 assert(_finger > ptr, "we just incremented it above"); 7266 // On large heaps, it may take us some time to get through 7267 // the marking phase (especially if running iCMS). During 7268 // this time it's possible that a lot of mutations have 7269 // accumulated in the card table and the mod union table -- 7270 // these mutation records are redundant until we have 7271 // actually traced into the corresponding card. 7272 // Here, we check whether advancing the finger would make 7273 // us cross into a new card, and if so clear corresponding 7274 // cards in the MUT (preclean them in the card-table in the 7275 // future). 7276 7277 DEBUG_ONLY(if (!_verifying) {) 7278 // The clean-on-enter optimization is disabled by default, 7279 // until we fix 6178663. 7280 if (CMSCleanOnEnter && (_finger > _threshold)) { 7281 // [_threshold, _finger) represents the interval 7282 // of cards to be cleared in MUT (or precleaned in card table). 7283 // The set of cards to be cleared is all those that overlap 7284 // with the interval [_threshold, _finger); note that 7285 // _threshold is always kept card-aligned but _finger isn't 7286 // always card-aligned. 7287 HeapWord* old_threshold = _threshold; 7288 assert(old_threshold == (HeapWord*)round_to( 7289 (intptr_t)old_threshold, CardTableModRefBS::card_size), 7290 "_threshold should always be card-aligned"); 7291 _threshold = (HeapWord*)round_to( 7292 (intptr_t)_finger, CardTableModRefBS::card_size); 7293 MemRegion mr(old_threshold, _threshold); 7294 assert(!mr.is_empty(), "Control point invariant"); 7295 assert(_span.contains(mr), "Should clear within span"); 7296 // XXX When _finger crosses from old gen into perm gen 7297 // we may be doing unnecessary cleaning; do better in the 7298 // future by detecting that condition and clearing fewer 7299 // MUT/CT entries. 7300 _mut->clear_range(mr); 7301 } 7302 DEBUG_ONLY(}) 7303 // Note: the finger doesn't advance while we drain 7304 // the stack below. 7305 PushOrMarkClosure pushOrMarkClosure(_collector, 7306 _span, _bitMap, _markStack, 7307 _revisitStack, 7308 _finger, this); 7309 bool res = _markStack->push(obj); 7310 assert(res, "Empty non-zero size stack should have space for single push"); 7311 while (!_markStack->isEmpty()) { 7312 oop new_oop = _markStack->pop(); 7313 // Skip verifying header mark word below because we are 7314 // running concurrent with mutators. 7315 assert(new_oop->is_oop(true), "Oops! expected to pop an oop"); 7316 // now scan this oop's oops 7317 new_oop->oop_iterate(&pushOrMarkClosure); 7318 do_yield_check(); 7319 } 7320 assert(_markStack->isEmpty(), "tautology, emphasizing post-condition"); 7321 } 7322 7323 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task, 7324 CMSCollector* collector, MemRegion span, 7325 CMSBitMap* bit_map, 7326 OopTaskQueue* work_queue, 7327 CMSMarkStack* overflow_stack, 7328 CMSMarkStack* revisit_stack, 7329 bool should_yield): 7330 _collector(collector), 7331 _whole_span(collector->_span), 7332 _span(span), 7333 _bit_map(bit_map), 7334 _mut(&collector->_modUnionTable), 7335 _work_queue(work_queue), 7336 _overflow_stack(overflow_stack), 7337 _revisit_stack(revisit_stack), 7338 _yield(should_yield), 7339 _skip_bits(0), 7340 _task(task) 7341 { 7342 assert(_work_queue->size() == 0, "work_queue should be empty"); 7343 _finger = span.start(); 7344 _threshold = _finger; // XXX Defer clear-on-enter optimization for now 7345 assert(_span.contains(_finger), "Out of bounds _finger?"); 7346 } 7347 7348 // Should revisit to see if this should be restructured for 7349 // greater efficiency. 7350 bool Par_MarkFromRootsClosure::do_bit(size_t offset) { 7351 if (_skip_bits > 0) { 7352 _skip_bits--; 7353 return true; 7354 } 7355 // convert offset into a HeapWord* 7356 HeapWord* addr = _bit_map->startWord() + offset; 7357 assert(_bit_map->endWord() && addr < _bit_map->endWord(), 7358 "address out of range"); 7359 assert(_bit_map->isMarked(addr), "tautology"); 7360 if (_bit_map->isMarked(addr+1)) { 7361 // this is an allocated object that might not yet be initialized 7362 assert(_skip_bits == 0, "tautology"); 7363 _skip_bits = 2; // skip next two marked bits ("Printezis-marks") 7364 oop p = oop(addr); 7365 if (p->klass_or_null() == NULL || !p->is_parsable()) { 7366 // in the case of Clean-on-Enter optimization, redirty card 7367 // and avoid clearing card by increasing the threshold. 7368 return true; 7369 } 7370 } 7371 scan_oops_in_oop(addr); 7372 return true; 7373 } 7374 7375 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) { 7376 assert(_bit_map->isMarked(ptr), "expected bit to be set"); 7377 // Should we assert that our work queue is empty or 7378 // below some drain limit? 7379 assert(_work_queue->size() == 0, 7380 "should drain stack to limit stack usage"); 7381 // convert ptr to an oop preparatory to scanning 7382 oop obj = oop(ptr); 7383 // Ignore mark word in verification below, since we 7384 // may be running concurrent with mutators. 7385 assert(obj->is_oop(true), "should be an oop"); 7386 assert(_finger <= ptr, "_finger runneth ahead"); 7387 // advance the finger to right end of this object 7388 _finger = ptr + obj->size(); 7389 assert(_finger > ptr, "we just incremented it above"); 7390 // On large heaps, it may take us some time to get through 7391 // the marking phase (especially if running iCMS). During 7392 // this time it's possible that a lot of mutations have 7393 // accumulated in the card table and the mod union table -- 7394 // these mutation records are redundant until we have 7395 // actually traced into the corresponding card. 7396 // Here, we check whether advancing the finger would make 7397 // us cross into a new card, and if so clear corresponding 7398 // cards in the MUT (preclean them in the card-table in the 7399 // future). 7400 7401 // The clean-on-enter optimization is disabled by default, 7402 // until we fix 6178663. 7403 if (CMSCleanOnEnter && (_finger > _threshold)) { 7404 // [_threshold, _finger) represents the interval 7405 // of cards to be cleared in MUT (or precleaned in card table). 7406 // The set of cards to be cleared is all those that overlap 7407 // with the interval [_threshold, _finger); note that 7408 // _threshold is always kept card-aligned but _finger isn't 7409 // always card-aligned. 7410 HeapWord* old_threshold = _threshold; 7411 assert(old_threshold == (HeapWord*)round_to( 7412 (intptr_t)old_threshold, CardTableModRefBS::card_size), 7413 "_threshold should always be card-aligned"); 7414 _threshold = (HeapWord*)round_to( 7415 (intptr_t)_finger, CardTableModRefBS::card_size); 7416 MemRegion mr(old_threshold, _threshold); 7417 assert(!mr.is_empty(), "Control point invariant"); 7418 assert(_span.contains(mr), "Should clear within span"); // _whole_span ?? 7419 // XXX When _finger crosses from old gen into perm gen 7420 // we may be doing unnecessary cleaning; do better in the 7421 // future by detecting that condition and clearing fewer 7422 // MUT/CT entries. 7423 _mut->clear_range(mr); 7424 } 7425 7426 // Note: the local finger doesn't advance while we drain 7427 // the stack below, but the global finger sure can and will. 7428 HeapWord** gfa = _task->global_finger_addr(); 7429 Par_PushOrMarkClosure pushOrMarkClosure(_collector, 7430 _span, _bit_map, 7431 _work_queue, 7432 _overflow_stack, 7433 _revisit_stack, 7434 _finger, 7435 gfa, this); 7436 bool res = _work_queue->push(obj); // overflow could occur here 7437 assert(res, "Will hold once we use workqueues"); 7438 while (true) { 7439 oop new_oop; 7440 if (!_work_queue->pop_local(new_oop)) { 7441 // We emptied our work_queue; check if there's stuff that can 7442 // be gotten from the overflow stack. 7443 if (CMSConcMarkingTask::get_work_from_overflow_stack( 7444 _overflow_stack, _work_queue)) { 7445 do_yield_check(); 7446 continue; 7447 } else { // done 7448 break; 7449 } 7450 } 7451 // Skip verifying header mark word below because we are 7452 // running concurrent with mutators. 7453 assert(new_oop->is_oop(true), "Oops! expected to pop an oop"); 7454 // now scan this oop's oops 7455 new_oop->oop_iterate(&pushOrMarkClosure); 7456 do_yield_check(); 7457 } 7458 assert(_work_queue->size() == 0, "tautology, emphasizing post-condition"); 7459 } 7460 7461 // Yield in response to a request from VM Thread or 7462 // from mutators. 7463 void Par_MarkFromRootsClosure::do_yield_work() { 7464 assert(_task != NULL, "sanity"); 7465 _task->yield(); 7466 } 7467 7468 // A variant of the above used for verifying CMS marking work. 7469 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector, 7470 MemRegion span, 7471 CMSBitMap* verification_bm, CMSBitMap* cms_bm, 7472 CMSMarkStack* mark_stack): 7473 _collector(collector), 7474 _span(span), 7475 _verification_bm(verification_bm), 7476 _cms_bm(cms_bm), 7477 _mark_stack(mark_stack), 7478 _pam_verify_closure(collector, span, verification_bm, cms_bm, 7479 mark_stack) 7480 { 7481 assert(_mark_stack->isEmpty(), "stack should be empty"); 7482 _finger = _verification_bm->startWord(); 7483 assert(_collector->_restart_addr == NULL, "Sanity check"); 7484 assert(_span.contains(_finger), "Out of bounds _finger?"); 7485 } 7486 7487 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) { 7488 assert(_mark_stack->isEmpty(), "would cause duplicates on stack"); 7489 assert(_span.contains(addr), "Out of bounds _finger?"); 7490 _finger = addr; 7491 } 7492 7493 // Should revisit to see if this should be restructured for 7494 // greater efficiency. 7495 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) { 7496 // convert offset into a HeapWord* 7497 HeapWord* addr = _verification_bm->startWord() + offset; 7498 assert(_verification_bm->endWord() && addr < _verification_bm->endWord(), 7499 "address out of range"); 7500 assert(_verification_bm->isMarked(addr), "tautology"); 7501 assert(_cms_bm->isMarked(addr), "tautology"); 7502 7503 assert(_mark_stack->isEmpty(), 7504 "should drain stack to limit stack usage"); 7505 // convert addr to an oop preparatory to scanning 7506 oop obj = oop(addr); 7507 assert(obj->is_oop(), "should be an oop"); 7508 assert(_finger <= addr, "_finger runneth ahead"); 7509 // advance the finger to right end of this object 7510 _finger = addr + obj->size(); 7511 assert(_finger > addr, "we just incremented it above"); 7512 // Note: the finger doesn't advance while we drain 7513 // the stack below. 7514 bool res = _mark_stack->push(obj); 7515 assert(res, "Empty non-zero size stack should have space for single push"); 7516 while (!_mark_stack->isEmpty()) { 7517 oop new_oop = _mark_stack->pop(); 7518 assert(new_oop->is_oop(), "Oops! expected to pop an oop"); 7519 // now scan this oop's oops 7520 new_oop->oop_iterate(&_pam_verify_closure); 7521 } 7522 assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition"); 7523 return true; 7524 } 7525 7526 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure( 7527 CMSCollector* collector, MemRegion span, 7528 CMSBitMap* verification_bm, CMSBitMap* cms_bm, 7529 CMSMarkStack* mark_stack): 7530 OopClosure(collector->ref_processor()), 7531 _collector(collector), 7532 _span(span), 7533 _verification_bm(verification_bm), 7534 _cms_bm(cms_bm), 7535 _mark_stack(mark_stack) 7536 { } 7537 7538 void PushAndMarkVerifyClosure::do_oop(oop* p) { PushAndMarkVerifyClosure::do_oop_work(p); } 7539 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); } 7540 7541 // Upon stack overflow, we discard (part of) the stack, 7542 // remembering the least address amongst those discarded 7543 // in CMSCollector's _restart_address. 7544 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) { 7545 // Remember the least grey address discarded 7546 HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost); 7547 _collector->lower_restart_addr(ra); 7548 _mark_stack->reset(); // discard stack contents 7549 _mark_stack->expand(); // expand the stack if possible 7550 } 7551 7552 void PushAndMarkVerifyClosure::do_oop(oop obj) { 7553 assert(obj->is_oop_or_null(), "expected an oop or NULL"); 7554 HeapWord* addr = (HeapWord*)obj; 7555 if (_span.contains(addr) && !_verification_bm->isMarked(addr)) { 7556 // Oop lies in _span and isn't yet grey or black 7557 _verification_bm->mark(addr); // now grey 7558 if (!_cms_bm->isMarked(addr)) { 7559 oop(addr)->print(); 7560 gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", 7561 addr); 7562 fatal("... aborting"); 7563 } 7564 7565 if (!_mark_stack->push(obj)) { // stack overflow 7566 if (PrintCMSStatistics != 0) { 7567 gclog_or_tty->print_cr("CMS marking stack overflow (benign) at " 7568 SIZE_FORMAT, _mark_stack->capacity()); 7569 } 7570 assert(_mark_stack->isFull(), "Else push should have succeeded"); 7571 handle_stack_overflow(addr); 7572 } 7573 // anything including and to the right of _finger 7574 // will be scanned as we iterate over the remainder of the 7575 // bit map 7576 } 7577 } 7578 7579 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector, 7580 MemRegion span, 7581 CMSBitMap* bitMap, CMSMarkStack* markStack, 7582 CMSMarkStack* revisitStack, 7583 HeapWord* finger, MarkFromRootsClosure* parent) : 7584 KlassRememberingOopClosure(collector, collector->ref_processor(), revisitStack), 7585 _span(span), 7586 _bitMap(bitMap), 7587 _markStack(markStack), 7588 _finger(finger), 7589 _parent(parent) 7590 { } 7591 7592 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector, 7593 MemRegion span, 7594 CMSBitMap* bit_map, 7595 OopTaskQueue* work_queue, 7596 CMSMarkStack* overflow_stack, 7597 CMSMarkStack* revisit_stack, 7598 HeapWord* finger, 7599 HeapWord** global_finger_addr, 7600 Par_MarkFromRootsClosure* parent) : 7601 Par_KlassRememberingOopClosure(collector, 7602 collector->ref_processor(), 7603 revisit_stack), 7604 _whole_span(collector->_span), 7605 _span(span), 7606 _bit_map(bit_map), 7607 _work_queue(work_queue), 7608 _overflow_stack(overflow_stack), 7609 _finger(finger), 7610 _global_finger_addr(global_finger_addr), 7611 _parent(parent) 7612 { } 7613 7614 // Assumes thread-safe access by callers, who are 7615 // responsible for mutual exclusion. 7616 void CMSCollector::lower_restart_addr(HeapWord* low) { 7617 assert(_span.contains(low), "Out of bounds addr"); 7618 if (_restart_addr == NULL) { 7619 _restart_addr = low; 7620 } else { 7621 _restart_addr = MIN2(_restart_addr, low); 7622 } 7623 } 7624 7625 // Upon stack overflow, we discard (part of) the stack, 7626 // remembering the least address amongst those discarded 7627 // in CMSCollector's _restart_address. 7628 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) { 7629 // Remember the least grey address discarded 7630 HeapWord* ra = (HeapWord*)_markStack->least_value(lost); 7631 _collector->lower_restart_addr(ra); 7632 _markStack->reset(); // discard stack contents 7633 _markStack->expand(); // expand the stack if possible 7634 } 7635 7636 // Upon stack overflow, we discard (part of) the stack, 7637 // remembering the least address amongst those discarded 7638 // in CMSCollector's _restart_address. 7639 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) { 7640 // We need to do this under a mutex to prevent other 7641 // workers from interfering with the work done below. 7642 MutexLockerEx ml(_overflow_stack->par_lock(), 7643 Mutex::_no_safepoint_check_flag); 7644 // Remember the least grey address discarded 7645 HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost); 7646 _collector->lower_restart_addr(ra); 7647 _overflow_stack->reset(); // discard stack contents 7648 _overflow_stack->expand(); // expand the stack if possible 7649 } 7650 7651 void PushOrMarkClosure::do_oop(oop obj) { 7652 // Ignore mark word because we are running concurrent with mutators. 7653 assert(obj->is_oop_or_null(true), "expected an oop or NULL"); 7654 HeapWord* addr = (HeapWord*)obj; 7655 if (_span.contains(addr) && !_bitMap->isMarked(addr)) { 7656 // Oop lies in _span and isn't yet grey or black 7657 _bitMap->mark(addr); // now grey 7658 if (addr < _finger) { 7659 // the bit map iteration has already either passed, or 7660 // sampled, this bit in the bit map; we'll need to 7661 // use the marking stack to scan this oop's oops. 7662 bool simulate_overflow = false; 7663 NOT_PRODUCT( 7664 if (CMSMarkStackOverflowALot && 7665 _collector->simulate_overflow()) { 7666 // simulate a stack overflow 7667 simulate_overflow = true; 7668 } 7669 ) 7670 if (simulate_overflow || !_markStack->push(obj)) { // stack overflow 7671 if (PrintCMSStatistics != 0) { 7672 gclog_or_tty->print_cr("CMS marking stack overflow (benign) at " 7673 SIZE_FORMAT, _markStack->capacity()); 7674 } 7675 assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded"); 7676 handle_stack_overflow(addr); 7677 } 7678 } 7679 // anything including and to the right of _finger 7680 // will be scanned as we iterate over the remainder of the 7681 // bit map 7682 do_yield_check(); 7683 } 7684 } 7685 7686 void PushOrMarkClosure::do_oop(oop* p) { PushOrMarkClosure::do_oop_work(p); } 7687 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); } 7688 7689 void Par_PushOrMarkClosure::do_oop(oop obj) { 7690 // Ignore mark word because we are running concurrent with mutators. 7691 assert(obj->is_oop_or_null(true), "expected an oop or NULL"); 7692 HeapWord* addr = (HeapWord*)obj; 7693 if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) { 7694 // Oop lies in _span and isn't yet grey or black 7695 // We read the global_finger (volatile read) strictly after marking oop 7696 bool res = _bit_map->par_mark(addr); // now grey 7697 volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr; 7698 // Should we push this marked oop on our stack? 7699 // -- if someone else marked it, nothing to do 7700 // -- if target oop is above global finger nothing to do 7701 // -- if target oop is in chunk and above local finger 7702 // then nothing to do 7703 // -- else push on work queue 7704 if ( !res // someone else marked it, they will deal with it 7705 || (addr >= *gfa) // will be scanned in a later task 7706 || (_span.contains(addr) && addr >= _finger)) { // later in this chunk 7707 return; 7708 } 7709 // the bit map iteration has already either passed, or 7710 // sampled, this bit in the bit map; we'll need to 7711 // use the marking stack to scan this oop's oops. 7712 bool simulate_overflow = false; 7713 NOT_PRODUCT( 7714 if (CMSMarkStackOverflowALot && 7715 _collector->simulate_overflow()) { 7716 // simulate a stack overflow 7717 simulate_overflow = true; 7718 } 7719 ) 7720 if (simulate_overflow || 7721 !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) { 7722 // stack overflow 7723 if (PrintCMSStatistics != 0) { 7724 gclog_or_tty->print_cr("CMS marking stack overflow (benign) at " 7725 SIZE_FORMAT, _overflow_stack->capacity()); 7726 } 7727 // We cannot assert that the overflow stack is full because 7728 // it may have been emptied since. 7729 assert(simulate_overflow || 7730 _work_queue->size() == _work_queue->max_elems(), 7731 "Else push should have succeeded"); 7732 handle_stack_overflow(addr); 7733 } 7734 do_yield_check(); 7735 } 7736 } 7737 7738 void Par_PushOrMarkClosure::do_oop(oop* p) { Par_PushOrMarkClosure::do_oop_work(p); } 7739 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); } 7740 7741 KlassRememberingOopClosure::KlassRememberingOopClosure(CMSCollector* collector, 7742 ReferenceProcessor* rp, 7743 CMSMarkStack* revisit_stack) : 7744 OopClosure(rp), 7745 _collector(collector), 7746 _revisit_stack(revisit_stack), 7747 _should_remember_klasses(collector->should_unload_classes()) {} 7748 7749 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector, 7750 MemRegion span, 7751 ReferenceProcessor* rp, 7752 CMSBitMap* bit_map, 7753 CMSBitMap* mod_union_table, 7754 CMSMarkStack* mark_stack, 7755 CMSMarkStack* revisit_stack, 7756 bool concurrent_precleaning): 7757 KlassRememberingOopClosure(collector, rp, revisit_stack), 7758 _span(span), 7759 _bit_map(bit_map), 7760 _mod_union_table(mod_union_table), 7761 _mark_stack(mark_stack), 7762 _concurrent_precleaning(concurrent_precleaning) 7763 { 7764 assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL"); 7765 } 7766 7767 // Grey object rescan during pre-cleaning and second checkpoint phases -- 7768 // the non-parallel version (the parallel version appears further below.) 7769 void PushAndMarkClosure::do_oop(oop obj) { 7770 // Ignore mark word verification. If during concurrent precleaning, 7771 // the object monitor may be locked. If during the checkpoint 7772 // phases, the object may already have been reached by a different 7773 // path and may be at the end of the global overflow list (so 7774 // the mark word may be NULL). 7775 assert(obj->is_oop_or_null(true /* ignore mark word */), 7776 "expected an oop or NULL"); 7777 HeapWord* addr = (HeapWord*)obj; 7778 // Check if oop points into the CMS generation 7779 // and is not marked 7780 if (_span.contains(addr) && !_bit_map->isMarked(addr)) { 7781 // a white object ... 7782 _bit_map->mark(addr); // ... now grey 7783 // push on the marking stack (grey set) 7784 bool simulate_overflow = false; 7785 NOT_PRODUCT( 7786 if (CMSMarkStackOverflowALot && 7787 _collector->simulate_overflow()) { 7788 // simulate a stack overflow 7789 simulate_overflow = true; 7790 } 7791 ) 7792 if (simulate_overflow || !_mark_stack->push(obj)) { 7793 if (_concurrent_precleaning) { 7794 // During precleaning we can just dirty the appropriate card(s) 7795 // in the mod union table, thus ensuring that the object remains 7796 // in the grey set and continue. In the case of object arrays 7797 // we need to dirty all of the cards that the object spans, 7798 // since the rescan of object arrays will be limited to the 7799 // dirty cards. 7800 // Note that no one can be intefering with us in this action 7801 // of dirtying the mod union table, so no locking or atomics 7802 // are required. 7803 if (obj->is_objArray()) { 7804 size_t sz = obj->size(); 7805 HeapWord* end_card_addr = (HeapWord*)round_to( 7806 (intptr_t)(addr+sz), CardTableModRefBS::card_size); 7807 MemRegion redirty_range = MemRegion(addr, end_card_addr); 7808 assert(!redirty_range.is_empty(), "Arithmetical tautology"); 7809 _mod_union_table->mark_range(redirty_range); 7810 } else { 7811 _mod_union_table->mark(addr); 7812 } 7813 _collector->_ser_pmc_preclean_ovflw++; 7814 } else { 7815 // During the remark phase, we need to remember this oop 7816 // in the overflow list. 7817 _collector->push_on_overflow_list(obj); 7818 _collector->_ser_pmc_remark_ovflw++; 7819 } 7820 } 7821 } 7822 } 7823 7824 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector, 7825 MemRegion span, 7826 ReferenceProcessor* rp, 7827 CMSBitMap* bit_map, 7828 OopTaskQueue* work_queue, 7829 CMSMarkStack* revisit_stack): 7830 Par_KlassRememberingOopClosure(collector, rp, revisit_stack), 7831 _span(span), 7832 _bit_map(bit_map), 7833 _work_queue(work_queue) 7834 { 7835 assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL"); 7836 } 7837 7838 void PushAndMarkClosure::do_oop(oop* p) { PushAndMarkClosure::do_oop_work(p); } 7839 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); } 7840 7841 // Grey object rescan during second checkpoint phase -- 7842 // the parallel version. 7843 void Par_PushAndMarkClosure::do_oop(oop obj) { 7844 // In the assert below, we ignore the mark word because 7845 // this oop may point to an already visited object that is 7846 // on the overflow stack (in which case the mark word has 7847 // been hijacked for chaining into the overflow stack -- 7848 // if this is the last object in the overflow stack then 7849 // its mark word will be NULL). Because this object may 7850 // have been subsequently popped off the global overflow 7851 // stack, and the mark word possibly restored to the prototypical 7852 // value, by the time we get to examined this failing assert in 7853 // the debugger, is_oop_or_null(false) may subsequently start 7854 // to hold. 7855 assert(obj->is_oop_or_null(true), 7856 "expected an oop or NULL"); 7857 HeapWord* addr = (HeapWord*)obj; 7858 // Check if oop points into the CMS generation 7859 // and is not marked 7860 if (_span.contains(addr) && !_bit_map->isMarked(addr)) { 7861 // a white object ... 7862 // If we manage to "claim" the object, by being the 7863 // first thread to mark it, then we push it on our 7864 // marking stack 7865 if (_bit_map->par_mark(addr)) { // ... now grey 7866 // push on work queue (grey set) 7867 bool simulate_overflow = false; 7868 NOT_PRODUCT( 7869 if (CMSMarkStackOverflowALot && 7870 _collector->par_simulate_overflow()) { 7871 // simulate a stack overflow 7872 simulate_overflow = true; 7873 } 7874 ) 7875 if (simulate_overflow || !_work_queue->push(obj)) { 7876 _collector->par_push_on_overflow_list(obj); 7877 _collector->_par_pmc_remark_ovflw++; // imprecise OK: no need to CAS 7878 } 7879 } // Else, some other thread got there first 7880 } 7881 } 7882 7883 void Par_PushAndMarkClosure::do_oop(oop* p) { Par_PushAndMarkClosure::do_oop_work(p); } 7884 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); } 7885 7886 void PushAndMarkClosure::remember_mdo(DataLayout* v) { 7887 // TBD 7888 } 7889 7890 void Par_PushAndMarkClosure::remember_mdo(DataLayout* v) { 7891 // TBD 7892 } 7893 7894 void CMSPrecleanRefsYieldClosure::do_yield_work() { 7895 DEBUG_ONLY(RememberKlassesChecker mux(false);) 7896 Mutex* bml = _collector->bitMapLock(); 7897 assert_lock_strong(bml); 7898 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 7899 "CMS thread should hold CMS token"); 7900 7901 bml->unlock(); 7902 ConcurrentMarkSweepThread::desynchronize(true); 7903 7904 ConcurrentMarkSweepThread::acknowledge_yield_request(); 7905 7906 _collector->stopTimer(); 7907 GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr()); 7908 if (PrintCMSStatistics != 0) { 7909 _collector->incrementYields(); 7910 } 7911 _collector->icms_wait(); 7912 7913 // See the comment in coordinator_yield() 7914 for (unsigned i = 0; i < CMSYieldSleepCount && 7915 ConcurrentMarkSweepThread::should_yield() && 7916 !CMSCollector::foregroundGCIsActive(); ++i) { 7917 os::sleep(Thread::current(), 1, false); 7918 ConcurrentMarkSweepThread::acknowledge_yield_request(); 7919 } 7920 7921 ConcurrentMarkSweepThread::synchronize(true); 7922 bml->lock(); 7923 7924 _collector->startTimer(); 7925 } 7926 7927 bool CMSPrecleanRefsYieldClosure::should_return() { 7928 if (ConcurrentMarkSweepThread::should_yield()) { 7929 do_yield_work(); 7930 } 7931 return _collector->foregroundGCIsActive(); 7932 } 7933 7934 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) { 7935 assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0, 7936 "mr should be aligned to start at a card boundary"); 7937 // We'd like to assert: 7938 // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0, 7939 // "mr should be a range of cards"); 7940 // However, that would be too strong in one case -- the last 7941 // partition ends at _unallocated_block which, in general, can be 7942 // an arbitrary boundary, not necessarily card aligned. 7943 if (PrintCMSStatistics != 0) { 7944 _num_dirty_cards += 7945 mr.word_size()/CardTableModRefBS::card_size_in_words; 7946 } 7947 _space->object_iterate_mem(mr, &_scan_cl); 7948 } 7949 7950 SweepClosure::SweepClosure(CMSCollector* collector, 7951 ConcurrentMarkSweepGeneration* g, 7952 CMSBitMap* bitMap, bool should_yield) : 7953 _collector(collector), 7954 _g(g), 7955 _sp(g->cmsSpace()), 7956 _limit(_sp->sweep_limit()), 7957 _freelistLock(_sp->freelistLock()), 7958 _bitMap(bitMap), 7959 _yield(should_yield), 7960 _inFreeRange(false), // No free range at beginning of sweep 7961 _freeRangeInFreeLists(false), // No free range at beginning of sweep 7962 _lastFreeRangeCoalesced(false), 7963 _freeFinger(g->used_region().start()) 7964 { 7965 NOT_PRODUCT( 7966 _numObjectsFreed = 0; 7967 _numWordsFreed = 0; 7968 _numObjectsLive = 0; 7969 _numWordsLive = 0; 7970 _numObjectsAlreadyFree = 0; 7971 _numWordsAlreadyFree = 0; 7972 _last_fc = NULL; 7973 7974 _sp->initializeIndexedFreeListArrayReturnedBytes(); 7975 _sp->dictionary()->initialize_dict_returned_bytes(); 7976 ) 7977 assert(_limit >= _sp->bottom() && _limit <= _sp->end(), 7978 "sweep _limit out of bounds"); 7979 if (CMSTraceSweeper) { 7980 gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT, 7981 _limit); 7982 } 7983 } 7984 7985 void SweepClosure::print_on(outputStream* st) const { 7986 tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")", 7987 _sp->bottom(), _sp->end()); 7988 tty->print_cr("_limit = " PTR_FORMAT, _limit); 7989 tty->print_cr("_freeFinger = " PTR_FORMAT, _freeFinger); 7990 NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, _last_fc);) 7991 tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d", 7992 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced); 7993 } 7994 7995 #ifndef PRODUCT 7996 // Assertion checking only: no useful work in product mode -- 7997 // however, if any of the flags below become product flags, 7998 // you may need to review this code to see if it needs to be 7999 // enabled in product mode. 8000 SweepClosure::~SweepClosure() { 8001 assert_lock_strong(_freelistLock); 8002 assert(_limit >= _sp->bottom() && _limit <= _sp->end(), 8003 "sweep _limit out of bounds"); 8004 if (inFreeRange()) { 8005 warning("inFreeRange() should have been reset; dumping state of SweepClosure"); 8006 print(); 8007 ShouldNotReachHere(); 8008 } 8009 if (Verbose && PrintGC) { 8010 gclog_or_tty->print("Collected "SIZE_FORMAT" objects, " SIZE_FORMAT " bytes", 8011 _numObjectsFreed, _numWordsFreed*sizeof(HeapWord)); 8012 gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects, " 8013 SIZE_FORMAT" bytes " 8014 "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes", 8015 _numObjectsLive, _numWordsLive*sizeof(HeapWord), 8016 _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord)); 8017 size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) 8018 * sizeof(HeapWord); 8019 gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes); 8020 8021 if (PrintCMSStatistics && CMSVerifyReturnedBytes) { 8022 size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes(); 8023 size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes(); 8024 size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes; 8025 gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returned_bytes); 8026 gclog_or_tty->print(" Indexed List Returned "SIZE_FORMAT" bytes", 8027 indexListReturnedBytes); 8028 gclog_or_tty->print_cr(" Dictionary Returned "SIZE_FORMAT" bytes", 8029 dict_returned_bytes); 8030 } 8031 } 8032 if (CMSTraceSweeper) { 8033 gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================", 8034 _limit); 8035 } 8036 } 8037 #endif // PRODUCT 8038 8039 void SweepClosure::initialize_free_range(HeapWord* freeFinger, 8040 bool freeRangeInFreeLists) { 8041 if (CMSTraceSweeper) { 8042 gclog_or_tty->print("---- Start free range at 0x%x with free block (%d)\n", 8043 freeFinger, freeRangeInFreeLists); 8044 } 8045 assert(!inFreeRange(), "Trampling existing free range"); 8046 set_inFreeRange(true); 8047 set_lastFreeRangeCoalesced(false); 8048 8049 set_freeFinger(freeFinger); 8050 set_freeRangeInFreeLists(freeRangeInFreeLists); 8051 if (CMSTestInFreeList) { 8052 if (freeRangeInFreeLists) { 8053 FreeChunk* fc = (FreeChunk*) freeFinger; 8054 assert(fc->is_free(), "A chunk on the free list should be free."); 8055 assert(fc->size() > 0, "Free range should have a size"); 8056 assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists"); 8057 } 8058 } 8059 } 8060 8061 // Note that the sweeper runs concurrently with mutators. Thus, 8062 // it is possible for direct allocation in this generation to happen 8063 // in the middle of the sweep. Note that the sweeper also coalesces 8064 // contiguous free blocks. Thus, unless the sweeper and the allocator 8065 // synchronize appropriately freshly allocated blocks may get swept up. 8066 // This is accomplished by the sweeper locking the free lists while 8067 // it is sweeping. Thus blocks that are determined to be free are 8068 // indeed free. There is however one additional complication: 8069 // blocks that have been allocated since the final checkpoint and 8070 // mark, will not have been marked and so would be treated as 8071 // unreachable and swept up. To prevent this, the allocator marks 8072 // the bit map when allocating during the sweep phase. This leads, 8073 // however, to a further complication -- objects may have been allocated 8074 // but not yet initialized -- in the sense that the header isn't yet 8075 // installed. The sweeper can not then determine the size of the block 8076 // in order to skip over it. To deal with this case, we use a technique 8077 // (due to Printezis) to encode such uninitialized block sizes in the 8078 // bit map. Since the bit map uses a bit per every HeapWord, but the 8079 // CMS generation has a minimum object size of 3 HeapWords, it follows 8080 // that "normal marks" won't be adjacent in the bit map (there will 8081 // always be at least two 0 bits between successive 1 bits). We make use 8082 // of these "unused" bits to represent uninitialized blocks -- the bit 8083 // corresponding to the start of the uninitialized object and the next 8084 // bit are both set. Finally, a 1 bit marks the end of the object that 8085 // started with the two consecutive 1 bits to indicate its potentially 8086 // uninitialized state. 8087 8088 size_t SweepClosure::do_blk_careful(HeapWord* addr) { 8089 FreeChunk* fc = (FreeChunk*)addr; 8090 size_t res; 8091 8092 // Check if we are done sweeping. Below we check "addr >= _limit" rather 8093 // than "addr == _limit" because although _limit was a block boundary when 8094 // we started the sweep, it may no longer be one because heap expansion 8095 // may have caused us to coalesce the block ending at the address _limit 8096 // with a newly expanded chunk (this happens when _limit was set to the 8097 // previous _end of the space), so we may have stepped past _limit: 8098 // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740. 8099 if (addr >= _limit) { // we have swept up to or past the limit: finish up 8100 assert(_limit >= _sp->bottom() && _limit <= _sp->end(), 8101 "sweep _limit out of bounds"); 8102 assert(addr < _sp->end(), "addr out of bounds"); 8103 // Flush any free range we might be holding as a single 8104 // coalesced chunk to the appropriate free list. 8105 if (inFreeRange()) { 8106 assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit, 8107 err_msg("freeFinger() " PTR_FORMAT" is out-of-bounds", freeFinger())); 8108 flush_cur_free_chunk(freeFinger(), 8109 pointer_delta(addr, freeFinger())); 8110 if (CMSTraceSweeper) { 8111 gclog_or_tty->print("Sweep: last chunk: "); 8112 gclog_or_tty->print("put_free_blk 0x%x ("SIZE_FORMAT") " 8113 "[coalesced:"SIZE_FORMAT"]\n", 8114 freeFinger(), pointer_delta(addr, freeFinger()), 8115 lastFreeRangeCoalesced()); 8116 } 8117 } 8118 8119 // help the iterator loop finish 8120 return pointer_delta(_sp->end(), addr); 8121 } 8122 8123 assert(addr < _limit, "sweep invariant"); 8124 // check if we should yield 8125 do_yield_check(addr); 8126 if (fc->is_free()) { 8127 // Chunk that is already free 8128 res = fc->size(); 8129 do_already_free_chunk(fc); 8130 debug_only(_sp->verifyFreeLists()); 8131 // If we flush the chunk at hand in lookahead_and_flush() 8132 // and it's coalesced with a preceding chunk, then the 8133 // process of "mangling" the payload of the coalesced block 8134 // will cause erasure of the size information from the 8135 // (erstwhile) header of all the coalesced blocks but the 8136 // first, so the first disjunct in the assert will not hold 8137 // in that specific case (in which case the second disjunct 8138 // will hold). 8139 assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit, 8140 "Otherwise the size info doesn't change at this step"); 8141 NOT_PRODUCT( 8142 _numObjectsAlreadyFree++; 8143 _numWordsAlreadyFree += res; 8144 ) 8145 NOT_PRODUCT(_last_fc = fc;) 8146 } else if (!_bitMap->isMarked(addr)) { 8147 // Chunk is fresh garbage 8148 res = do_garbage_chunk(fc); 8149 debug_only(_sp->verifyFreeLists()); 8150 NOT_PRODUCT( 8151 _numObjectsFreed++; 8152 _numWordsFreed += res; 8153 ) 8154 } else { 8155 // Chunk that is alive. 8156 res = do_live_chunk(fc); 8157 debug_only(_sp->verifyFreeLists()); 8158 NOT_PRODUCT( 8159 _numObjectsLive++; 8160 _numWordsLive += res; 8161 ) 8162 } 8163 return res; 8164 } 8165 8166 // For the smart allocation, record following 8167 // split deaths - a free chunk is removed from its free list because 8168 // it is being split into two or more chunks. 8169 // split birth - a free chunk is being added to its free list because 8170 // a larger free chunk has been split and resulted in this free chunk. 8171 // coal death - a free chunk is being removed from its free list because 8172 // it is being coalesced into a large free chunk. 8173 // coal birth - a free chunk is being added to its free list because 8174 // it was created when two or more free chunks where coalesced into 8175 // this free chunk. 8176 // 8177 // These statistics are used to determine the desired number of free 8178 // chunks of a given size. The desired number is chosen to be relative 8179 // to the end of a CMS sweep. The desired number at the end of a sweep 8180 // is the 8181 // count-at-end-of-previous-sweep (an amount that was enough) 8182 // - count-at-beginning-of-current-sweep (the excess) 8183 // + split-births (gains in this size during interval) 8184 // - split-deaths (demands on this size during interval) 8185 // where the interval is from the end of one sweep to the end of the 8186 // next. 8187 // 8188 // When sweeping the sweeper maintains an accumulated chunk which is 8189 // the chunk that is made up of chunks that have been coalesced. That 8190 // will be termed the left-hand chunk. A new chunk of garbage that 8191 // is being considered for coalescing will be referred to as the 8192 // right-hand chunk. 8193 // 8194 // When making a decision on whether to coalesce a right-hand chunk with 8195 // the current left-hand chunk, the current count vs. the desired count 8196 // of the left-hand chunk is considered. Also if the right-hand chunk 8197 // is near the large chunk at the end of the heap (see 8198 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the 8199 // left-hand chunk is coalesced. 8200 // 8201 // When making a decision about whether to split a chunk, the desired count 8202 // vs. the current count of the candidate to be split is also considered. 8203 // If the candidate is underpopulated (currently fewer chunks than desired) 8204 // a chunk of an overpopulated (currently more chunks than desired) size may 8205 // be chosen. The "hint" associated with a free list, if non-null, points 8206 // to a free list which may be overpopulated. 8207 // 8208 8209 void SweepClosure::do_already_free_chunk(FreeChunk* fc) { 8210 const size_t size = fc->size(); 8211 // Chunks that cannot be coalesced are not in the 8212 // free lists. 8213 if (CMSTestInFreeList && !fc->cantCoalesce()) { 8214 assert(_sp->verify_chunk_in_free_list(fc), 8215 "free chunk should be in free lists"); 8216 } 8217 // a chunk that is already free, should not have been 8218 // marked in the bit map 8219 HeapWord* const addr = (HeapWord*) fc; 8220 assert(!_bitMap->isMarked(addr), "free chunk should be unmarked"); 8221 // Verify that the bit map has no bits marked between 8222 // addr and purported end of this block. 8223 _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size); 8224 8225 // Some chunks cannot be coalesced under any circumstances. 8226 // See the definition of cantCoalesce(). 8227 if (!fc->cantCoalesce()) { 8228 // This chunk can potentially be coalesced. 8229 if (_sp->adaptive_freelists()) { 8230 // All the work is done in 8231 do_post_free_or_garbage_chunk(fc, size); 8232 } else { // Not adaptive free lists 8233 // this is a free chunk that can potentially be coalesced by the sweeper; 8234 if (!inFreeRange()) { 8235 // if the next chunk is a free block that can't be coalesced 8236 // it doesn't make sense to remove this chunk from the free lists 8237 FreeChunk* nextChunk = (FreeChunk*)(addr + size); 8238 assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?"); 8239 if ((HeapWord*)nextChunk < _sp->end() && // There is another free chunk to the right ... 8240 nextChunk->is_free() && // ... which is free... 8241 nextChunk->cantCoalesce()) { // ... but can't be coalesced 8242 // nothing to do 8243 } else { 8244 // Potentially the start of a new free range: 8245 // Don't eagerly remove it from the free lists. 8246 // No need to remove it if it will just be put 8247 // back again. (Also from a pragmatic point of view 8248 // if it is a free block in a region that is beyond 8249 // any allocated blocks, an assertion will fail) 8250 // Remember the start of a free run. 8251 initialize_free_range(addr, true); 8252 // end - can coalesce with next chunk 8253 } 8254 } else { 8255 // the midst of a free range, we are coalescing 8256 print_free_block_coalesced(fc); 8257 if (CMSTraceSweeper) { 8258 gclog_or_tty->print(" -- pick up free block 0x%x (%d)\n", fc, size); 8259 } 8260 // remove it from the free lists 8261 _sp->removeFreeChunkFromFreeLists(fc); 8262 set_lastFreeRangeCoalesced(true); 8263 // If the chunk is being coalesced and the current free range is 8264 // in the free lists, remove the current free range so that it 8265 // will be returned to the free lists in its entirety - all 8266 // the coalesced pieces included. 8267 if (freeRangeInFreeLists()) { 8268 FreeChunk* ffc = (FreeChunk*) freeFinger(); 8269 assert(ffc->size() == pointer_delta(addr, freeFinger()), 8270 "Size of free range is inconsistent with chunk size."); 8271 if (CMSTestInFreeList) { 8272 assert(_sp->verify_chunk_in_free_list(ffc), 8273 "free range is not in free lists"); 8274 } 8275 _sp->removeFreeChunkFromFreeLists(ffc); 8276 set_freeRangeInFreeLists(false); 8277 } 8278 } 8279 } 8280 // Note that if the chunk is not coalescable (the else arm 8281 // below), we unconditionally flush, without needing to do 8282 // a "lookahead," as we do below. 8283 if (inFreeRange()) lookahead_and_flush(fc, size); 8284 } else { 8285 // Code path common to both original and adaptive free lists. 8286 8287 // cant coalesce with previous block; this should be treated 8288 // as the end of a free run if any 8289 if (inFreeRange()) { 8290 // we kicked some butt; time to pick up the garbage 8291 assert(freeFinger() < addr, "freeFinger points too high"); 8292 flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger())); 8293 } 8294 // else, nothing to do, just continue 8295 } 8296 } 8297 8298 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) { 8299 // This is a chunk of garbage. It is not in any free list. 8300 // Add it to a free list or let it possibly be coalesced into 8301 // a larger chunk. 8302 HeapWord* const addr = (HeapWord*) fc; 8303 const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()); 8304 8305 if (_sp->adaptive_freelists()) { 8306 // Verify that the bit map has no bits marked between 8307 // addr and purported end of just dead object. 8308 _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size); 8309 8310 do_post_free_or_garbage_chunk(fc, size); 8311 } else { 8312 if (!inFreeRange()) { 8313 // start of a new free range 8314 assert(size > 0, "A free range should have a size"); 8315 initialize_free_range(addr, false); 8316 } else { 8317 // this will be swept up when we hit the end of the 8318 // free range 8319 if (CMSTraceSweeper) { 8320 gclog_or_tty->print(" -- pick up garbage 0x%x (%d) \n", fc, size); 8321 } 8322 // If the chunk is being coalesced and the current free range is 8323 // in the free lists, remove the current free range so that it 8324 // will be returned to the free lists in its entirety - all 8325 // the coalesced pieces included. 8326 if (freeRangeInFreeLists()) { 8327 FreeChunk* ffc = (FreeChunk*)freeFinger(); 8328 assert(ffc->size() == pointer_delta(addr, freeFinger()), 8329 "Size of free range is inconsistent with chunk size."); 8330 if (CMSTestInFreeList) { 8331 assert(_sp->verify_chunk_in_free_list(ffc), 8332 "free range is not in free lists"); 8333 } 8334 _sp->removeFreeChunkFromFreeLists(ffc); 8335 set_freeRangeInFreeLists(false); 8336 } 8337 set_lastFreeRangeCoalesced(true); 8338 } 8339 // this will be swept up when we hit the end of the free range 8340 8341 // Verify that the bit map has no bits marked between 8342 // addr and purported end of just dead object. 8343 _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size); 8344 } 8345 assert(_limit >= addr + size, 8346 "A freshly garbage chunk can't possibly straddle over _limit"); 8347 if (inFreeRange()) lookahead_and_flush(fc, size); 8348 return size; 8349 } 8350 8351 size_t SweepClosure::do_live_chunk(FreeChunk* fc) { 8352 HeapWord* addr = (HeapWord*) fc; 8353 // The sweeper has just found a live object. Return any accumulated 8354 // left hand chunk to the free lists. 8355 if (inFreeRange()) { 8356 assert(freeFinger() < addr, "freeFinger points too high"); 8357 flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger())); 8358 } 8359 8360 // This object is live: we'd normally expect this to be 8361 // an oop, and like to assert the following: 8362 // assert(oop(addr)->is_oop(), "live block should be an oop"); 8363 // However, as we commented above, this may be an object whose 8364 // header hasn't yet been initialized. 8365 size_t size; 8366 assert(_bitMap->isMarked(addr), "Tautology for this control point"); 8367 if (_bitMap->isMarked(addr + 1)) { 8368 // Determine the size from the bit map, rather than trying to 8369 // compute it from the object header. 8370 HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2); 8371 size = pointer_delta(nextOneAddr + 1, addr); 8372 assert(size == CompactibleFreeListSpace::adjustObjectSize(size), 8373 "alignment problem"); 8374 8375 #ifdef DEBUG 8376 if (oop(addr)->klass_or_null() != NULL && 8377 ( !_collector->should_unload_classes() 8378 || (oop(addr)->is_parsable()) && 8379 oop(addr)->is_conc_safe())) { 8380 // Ignore mark word because we are running concurrent with mutators 8381 assert(oop(addr)->is_oop(true), "live block should be an oop"); 8382 // is_conc_safe is checked before performing this assertion 8383 // because an object that is not is_conc_safe may yet have 8384 // the return from size() correct. 8385 assert(size == 8386 CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()), 8387 "P-mark and computed size do not agree"); 8388 } 8389 #endif 8390 8391 } else { 8392 // This should be an initialized object that's alive. 8393 assert(oop(addr)->klass_or_null() != NULL && 8394 (!_collector->should_unload_classes() 8395 || oop(addr)->is_parsable()), 8396 "Should be an initialized object"); 8397 // Note that there are objects used during class redefinition, 8398 // e.g. merge_cp in VM_RedefineClasses::merge_cp_and_rewrite(), 8399 // which are discarded with their is_conc_safe state still 8400 // false. These object may be floating garbage so may be 8401 // seen here. If they are floating garbage their size 8402 // should be attainable from their klass. Do not that 8403 // is_conc_safe() is true for oop(addr). 8404 // Ignore mark word because we are running concurrent with mutators 8405 assert(oop(addr)->is_oop(true), "live block should be an oop"); 8406 // Verify that the bit map has no bits marked between 8407 // addr and purported end of this block. 8408 size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()); 8409 assert(size >= 3, "Necessary for Printezis marks to work"); 8410 assert(!_bitMap->isMarked(addr+1), "Tautology for this control point"); 8411 DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);) 8412 } 8413 return size; 8414 } 8415 8416 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc, 8417 size_t chunkSize) { 8418 // do_post_free_or_garbage_chunk() should only be called in the case 8419 // of the adaptive free list allocator. 8420 const bool fcInFreeLists = fc->is_free(); 8421 assert(_sp->adaptive_freelists(), "Should only be used in this case."); 8422 assert((HeapWord*)fc <= _limit, "sweep invariant"); 8423 if (CMSTestInFreeList && fcInFreeLists) { 8424 assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists"); 8425 } 8426 8427 if (CMSTraceSweeper) { 8428 gclog_or_tty->print_cr(" -- pick up another chunk at 0x%x (%d)", fc, chunkSize); 8429 } 8430 8431 HeapWord* const fc_addr = (HeapWord*) fc; 8432 8433 bool coalesce; 8434 const size_t left = pointer_delta(fc_addr, freeFinger()); 8435 const size_t right = chunkSize; 8436 switch (FLSCoalescePolicy) { 8437 // numeric value forms a coalition aggressiveness metric 8438 case 0: { // never coalesce 8439 coalesce = false; 8440 break; 8441 } 8442 case 1: { // coalesce if left & right chunks on overpopulated lists 8443 coalesce = _sp->coalOverPopulated(left) && 8444 _sp->coalOverPopulated(right); 8445 break; 8446 } 8447 case 2: { // coalesce if left chunk on overpopulated list (default) 8448 coalesce = _sp->coalOverPopulated(left); 8449 break; 8450 } 8451 case 3: { // coalesce if left OR right chunk on overpopulated list 8452 coalesce = _sp->coalOverPopulated(left) || 8453 _sp->coalOverPopulated(right); 8454 break; 8455 } 8456 case 4: { // always coalesce 8457 coalesce = true; 8458 break; 8459 } 8460 default: 8461 ShouldNotReachHere(); 8462 } 8463 8464 // Should the current free range be coalesced? 8465 // If the chunk is in a free range and either we decided to coalesce above 8466 // or the chunk is near the large block at the end of the heap 8467 // (isNearLargestChunk() returns true), then coalesce this chunk. 8468 const bool doCoalesce = inFreeRange() 8469 && (coalesce || _g->isNearLargestChunk(fc_addr)); 8470 if (doCoalesce) { 8471 // Coalesce the current free range on the left with the new 8472 // chunk on the right. If either is on a free list, 8473 // it must be removed from the list and stashed in the closure. 8474 if (freeRangeInFreeLists()) { 8475 FreeChunk* const ffc = (FreeChunk*)freeFinger(); 8476 assert(ffc->size() == pointer_delta(fc_addr, freeFinger()), 8477 "Size of free range is inconsistent with chunk size."); 8478 if (CMSTestInFreeList) { 8479 assert(_sp->verify_chunk_in_free_list(ffc), 8480 "Chunk is not in free lists"); 8481 } 8482 _sp->coalDeath(ffc->size()); 8483 _sp->removeFreeChunkFromFreeLists(ffc); 8484 set_freeRangeInFreeLists(false); 8485 } 8486 if (fcInFreeLists) { 8487 _sp->coalDeath(chunkSize); 8488 assert(fc->size() == chunkSize, 8489 "The chunk has the wrong size or is not in the free lists"); 8490 _sp->removeFreeChunkFromFreeLists(fc); 8491 } 8492 set_lastFreeRangeCoalesced(true); 8493 print_free_block_coalesced(fc); 8494 } else { // not in a free range and/or should not coalesce 8495 // Return the current free range and start a new one. 8496 if (inFreeRange()) { 8497 // In a free range but cannot coalesce with the right hand chunk. 8498 // Put the current free range into the free lists. 8499 flush_cur_free_chunk(freeFinger(), 8500 pointer_delta(fc_addr, freeFinger())); 8501 } 8502 // Set up for new free range. Pass along whether the right hand 8503 // chunk is in the free lists. 8504 initialize_free_range((HeapWord*)fc, fcInFreeLists); 8505 } 8506 } 8507 8508 // Lookahead flush: 8509 // If we are tracking a free range, and this is the last chunk that 8510 // we'll look at because its end crosses past _limit, we'll preemptively 8511 // flush it along with any free range we may be holding on to. Note that 8512 // this can be the case only for an already free or freshly garbage 8513 // chunk. If this block is an object, it can never straddle 8514 // over _limit. The "straddling" occurs when _limit is set at 8515 // the previous end of the space when this cycle started, and 8516 // a subsequent heap expansion caused the previously co-terminal 8517 // free block to be coalesced with the newly expanded portion, 8518 // thus rendering _limit a non-block-boundary making it dangerous 8519 // for the sweeper to step over and examine. 8520 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) { 8521 assert(inFreeRange(), "Should only be called if currently in a free range."); 8522 HeapWord* const eob = ((HeapWord*)fc) + chunk_size; 8523 assert(_sp->used_region().contains(eob - 1), 8524 err_msg("eob = " PTR_FORMAT " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")" 8525 " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")", 8526 _limit, _sp->bottom(), _sp->end(), fc, chunk_size)); 8527 if (eob >= _limit) { 8528 assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit"); 8529 if (CMSTraceSweeper) { 8530 gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block " 8531 "[" PTR_FORMAT "," PTR_FORMAT ") in space " 8532 "[" PTR_FORMAT "," PTR_FORMAT ")", 8533 _limit, fc, eob, _sp->bottom(), _sp->end()); 8534 } 8535 // Return the storage we are tracking back into the free lists. 8536 if (CMSTraceSweeper) { 8537 gclog_or_tty->print_cr("Flushing ... "); 8538 } 8539 assert(freeFinger() < eob, "Error"); 8540 flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger())); 8541 } 8542 } 8543 8544 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) { 8545 assert(inFreeRange(), "Should only be called if currently in a free range."); 8546 assert(size > 0, 8547 "A zero sized chunk cannot be added to the free lists."); 8548 if (!freeRangeInFreeLists()) { 8549 if (CMSTestInFreeList) { 8550 FreeChunk* fc = (FreeChunk*) chunk; 8551 fc->set_size(size); 8552 assert(!_sp->verify_chunk_in_free_list(fc), 8553 "chunk should not be in free lists yet"); 8554 } 8555 if (CMSTraceSweeper) { 8556 gclog_or_tty->print_cr(" -- add free block 0x%x (%d) to free lists", 8557 chunk, size); 8558 } 8559 // A new free range is going to be starting. The current 8560 // free range has not been added to the free lists yet or 8561 // was removed so add it back. 8562 // If the current free range was coalesced, then the death 8563 // of the free range was recorded. Record a birth now. 8564 if (lastFreeRangeCoalesced()) { 8565 _sp->coalBirth(size); 8566 } 8567 _sp->addChunkAndRepairOffsetTable(chunk, size, 8568 lastFreeRangeCoalesced()); 8569 } else if (CMSTraceSweeper) { 8570 gclog_or_tty->print_cr("Already in free list: nothing to flush"); 8571 } 8572 set_inFreeRange(false); 8573 set_freeRangeInFreeLists(false); 8574 } 8575 8576 // We take a break if we've been at this for a while, 8577 // so as to avoid monopolizing the locks involved. 8578 void SweepClosure::do_yield_work(HeapWord* addr) { 8579 // Return current free chunk being used for coalescing (if any) 8580 // to the appropriate freelist. After yielding, the next 8581 // free block encountered will start a coalescing range of 8582 // free blocks. If the next free block is adjacent to the 8583 // chunk just flushed, they will need to wait for the next 8584 // sweep to be coalesced. 8585 if (inFreeRange()) { 8586 flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger())); 8587 } 8588 8589 // First give up the locks, then yield, then re-lock. 8590 // We should probably use a constructor/destructor idiom to 8591 // do this unlock/lock or modify the MutexUnlocker class to 8592 // serve our purpose. XXX 8593 assert_lock_strong(_bitMap->lock()); 8594 assert_lock_strong(_freelistLock); 8595 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 8596 "CMS thread should hold CMS token"); 8597 _bitMap->lock()->unlock(); 8598 _freelistLock->unlock(); 8599 ConcurrentMarkSweepThread::desynchronize(true); 8600 ConcurrentMarkSweepThread::acknowledge_yield_request(); 8601 _collector->stopTimer(); 8602 GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr()); 8603 if (PrintCMSStatistics != 0) { 8604 _collector->incrementYields(); 8605 } 8606 _collector->icms_wait(); 8607 8608 // See the comment in coordinator_yield() 8609 for (unsigned i = 0; i < CMSYieldSleepCount && 8610 ConcurrentMarkSweepThread::should_yield() && 8611 !CMSCollector::foregroundGCIsActive(); ++i) { 8612 os::sleep(Thread::current(), 1, false); 8613 ConcurrentMarkSweepThread::acknowledge_yield_request(); 8614 } 8615 8616 ConcurrentMarkSweepThread::synchronize(true); 8617 _freelistLock->lock(); 8618 _bitMap->lock()->lock_without_safepoint_check(); 8619 _collector->startTimer(); 8620 } 8621 8622 #ifndef PRODUCT 8623 // This is actually very useful in a product build if it can 8624 // be called from the debugger. Compile it into the product 8625 // as needed. 8626 bool debug_verify_chunk_in_free_list(FreeChunk* fc) { 8627 return debug_cms_space->verify_chunk_in_free_list(fc); 8628 } 8629 #endif 8630 8631 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const { 8632 if (CMSTraceSweeper) { 8633 gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")", 8634 fc, fc->size()); 8635 } 8636 } 8637 8638 // CMSIsAliveClosure 8639 bool CMSIsAliveClosure::do_object_b(oop obj) { 8640 HeapWord* addr = (HeapWord*)obj; 8641 return addr != NULL && 8642 (!_span.contains(addr) || _bit_map->isMarked(addr)); 8643 } 8644 8645 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector, 8646 MemRegion span, 8647 CMSBitMap* bit_map, CMSMarkStack* mark_stack, 8648 CMSMarkStack* revisit_stack, bool cpc): 8649 KlassRememberingOopClosure(collector, NULL, revisit_stack), 8650 _span(span), 8651 _bit_map(bit_map), 8652 _mark_stack(mark_stack), 8653 _concurrent_precleaning(cpc) { 8654 assert(!_span.is_empty(), "Empty span could spell trouble"); 8655 } 8656 8657 8658 // CMSKeepAliveClosure: the serial version 8659 void CMSKeepAliveClosure::do_oop(oop obj) { 8660 HeapWord* addr = (HeapWord*)obj; 8661 if (_span.contains(addr) && 8662 !_bit_map->isMarked(addr)) { 8663 _bit_map->mark(addr); 8664 bool simulate_overflow = false; 8665 NOT_PRODUCT( 8666 if (CMSMarkStackOverflowALot && 8667 _collector->simulate_overflow()) { 8668 // simulate a stack overflow 8669 simulate_overflow = true; 8670 } 8671 ) 8672 if (simulate_overflow || !_mark_stack->push(obj)) { 8673 if (_concurrent_precleaning) { 8674 // We dirty the overflown object and let the remark 8675 // phase deal with it. 8676 assert(_collector->overflow_list_is_empty(), "Error"); 8677 // In the case of object arrays, we need to dirty all of 8678 // the cards that the object spans. No locking or atomics 8679 // are needed since no one else can be mutating the mod union 8680 // table. 8681 if (obj->is_objArray()) { 8682 size_t sz = obj->size(); 8683 HeapWord* end_card_addr = 8684 (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size); 8685 MemRegion redirty_range = MemRegion(addr, end_card_addr); 8686 assert(!redirty_range.is_empty(), "Arithmetical tautology"); 8687 _collector->_modUnionTable.mark_range(redirty_range); 8688 } else { 8689 _collector->_modUnionTable.mark(addr); 8690 } 8691 _collector->_ser_kac_preclean_ovflw++; 8692 } else { 8693 _collector->push_on_overflow_list(obj); 8694 _collector->_ser_kac_ovflw++; 8695 } 8696 } 8697 } 8698 } 8699 8700 void CMSKeepAliveClosure::do_oop(oop* p) { CMSKeepAliveClosure::do_oop_work(p); } 8701 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); } 8702 8703 // CMSParKeepAliveClosure: a parallel version of the above. 8704 // The work queues are private to each closure (thread), 8705 // but (may be) available for stealing by other threads. 8706 void CMSParKeepAliveClosure::do_oop(oop obj) { 8707 HeapWord* addr = (HeapWord*)obj; 8708 if (_span.contains(addr) && 8709 !_bit_map->isMarked(addr)) { 8710 // In general, during recursive tracing, several threads 8711 // may be concurrently getting here; the first one to 8712 // "tag" it, claims it. 8713 if (_bit_map->par_mark(addr)) { 8714 bool res = _work_queue->push(obj); 8715 assert(res, "Low water mark should be much less than capacity"); 8716 // Do a recursive trim in the hope that this will keep 8717 // stack usage lower, but leave some oops for potential stealers 8718 trim_queue(_low_water_mark); 8719 } // Else, another thread got there first 8720 } 8721 } 8722 8723 void CMSParKeepAliveClosure::do_oop(oop* p) { CMSParKeepAliveClosure::do_oop_work(p); } 8724 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); } 8725 8726 void CMSParKeepAliveClosure::trim_queue(uint max) { 8727 while (_work_queue->size() > max) { 8728 oop new_oop; 8729 if (_work_queue->pop_local(new_oop)) { 8730 assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop"); 8731 assert(_bit_map->isMarked((HeapWord*)new_oop), 8732 "no white objects on this stack!"); 8733 assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop"); 8734 // iterate over the oops in this oop, marking and pushing 8735 // the ones in CMS heap (i.e. in _span). 8736 new_oop->oop_iterate(&_mark_and_push); 8737 } 8738 } 8739 } 8740 8741 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure( 8742 CMSCollector* collector, 8743 MemRegion span, CMSBitMap* bit_map, 8744 CMSMarkStack* revisit_stack, 8745 OopTaskQueue* work_queue): 8746 Par_KlassRememberingOopClosure(collector, NULL, revisit_stack), 8747 _span(span), 8748 _bit_map(bit_map), 8749 _work_queue(work_queue) { } 8750 8751 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) { 8752 HeapWord* addr = (HeapWord*)obj; 8753 if (_span.contains(addr) && 8754 !_bit_map->isMarked(addr)) { 8755 if (_bit_map->par_mark(addr)) { 8756 bool simulate_overflow = false; 8757 NOT_PRODUCT( 8758 if (CMSMarkStackOverflowALot && 8759 _collector->par_simulate_overflow()) { 8760 // simulate a stack overflow 8761 simulate_overflow = true; 8762 } 8763 ) 8764 if (simulate_overflow || !_work_queue->push(obj)) { 8765 _collector->par_push_on_overflow_list(obj); 8766 _collector->_par_kac_ovflw++; 8767 } 8768 } // Else another thread got there already 8769 } 8770 } 8771 8772 void CMSInnerParMarkAndPushClosure::do_oop(oop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); } 8773 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); } 8774 8775 ////////////////////////////////////////////////////////////////// 8776 // CMSExpansionCause ///////////////////////////// 8777 ////////////////////////////////////////////////////////////////// 8778 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) { 8779 switch (cause) { 8780 case _no_expansion: 8781 return "No expansion"; 8782 case _satisfy_free_ratio: 8783 return "Free ratio"; 8784 case _satisfy_promotion: 8785 return "Satisfy promotion"; 8786 case _satisfy_allocation: 8787 return "allocation"; 8788 case _allocate_par_lab: 8789 return "Par LAB"; 8790 case _allocate_par_spooling_space: 8791 return "Par Spooling Space"; 8792 case _adaptive_size_policy: 8793 return "Ergonomics"; 8794 default: 8795 return "unknown"; 8796 } 8797 } 8798 8799 void CMSDrainMarkingStackClosure::do_void() { 8800 // the max number to take from overflow list at a time 8801 const size_t num = _mark_stack->capacity()/4; 8802 assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(), 8803 "Overflow list should be NULL during concurrent phases"); 8804 while (!_mark_stack->isEmpty() || 8805 // if stack is empty, check the overflow list 8806 _collector->take_from_overflow_list(num, _mark_stack)) { 8807 oop obj = _mark_stack->pop(); 8808 HeapWord* addr = (HeapWord*)obj; 8809 assert(_span.contains(addr), "Should be within span"); 8810 assert(_bit_map->isMarked(addr), "Should be marked"); 8811 assert(obj->is_oop(), "Should be an oop"); 8812 obj->oop_iterate(_keep_alive); 8813 } 8814 } 8815 8816 void CMSParDrainMarkingStackClosure::do_void() { 8817 // drain queue 8818 trim_queue(0); 8819 } 8820 8821 // Trim our work_queue so its length is below max at return 8822 void CMSParDrainMarkingStackClosure::trim_queue(uint max) { 8823 while (_work_queue->size() > max) { 8824 oop new_oop; 8825 if (_work_queue->pop_local(new_oop)) { 8826 assert(new_oop->is_oop(), "Expected an oop"); 8827 assert(_bit_map->isMarked((HeapWord*)new_oop), 8828 "no white objects on this stack!"); 8829 assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop"); 8830 // iterate over the oops in this oop, marking and pushing 8831 // the ones in CMS heap (i.e. in _span). 8832 new_oop->oop_iterate(&_mark_and_push); 8833 } 8834 } 8835 } 8836 8837 //////////////////////////////////////////////////////////////////// 8838 // Support for Marking Stack Overflow list handling and related code 8839 //////////////////////////////////////////////////////////////////// 8840 // Much of the following code is similar in shape and spirit to the 8841 // code used in ParNewGC. We should try and share that code 8842 // as much as possible in the future. 8843 8844 #ifndef PRODUCT 8845 // Debugging support for CMSStackOverflowALot 8846 8847 // It's OK to call this multi-threaded; the worst thing 8848 // that can happen is that we'll get a bunch of closely 8849 // spaced simulated oveflows, but that's OK, in fact 8850 // probably good as it would exercise the overflow code 8851 // under contention. 8852 bool CMSCollector::simulate_overflow() { 8853 if (_overflow_counter-- <= 0) { // just being defensive 8854 _overflow_counter = CMSMarkStackOverflowInterval; 8855 return true; 8856 } else { 8857 return false; 8858 } 8859 } 8860 8861 bool CMSCollector::par_simulate_overflow() { 8862 return simulate_overflow(); 8863 } 8864 #endif 8865 8866 // Single-threaded 8867 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) { 8868 assert(stack->isEmpty(), "Expected precondition"); 8869 assert(stack->capacity() > num, "Shouldn't bite more than can chew"); 8870 size_t i = num; 8871 oop cur = _overflow_list; 8872 const markOop proto = markOopDesc::prototype(); 8873 NOT_PRODUCT(ssize_t n = 0;) 8874 for (oop next; i > 0 && cur != NULL; cur = next, i--) { 8875 next = oop(cur->mark()); 8876 cur->set_mark(proto); // until proven otherwise 8877 assert(cur->is_oop(), "Should be an oop"); 8878 bool res = stack->push(cur); 8879 assert(res, "Bit off more than can chew?"); 8880 NOT_PRODUCT(n++;) 8881 } 8882 _overflow_list = cur; 8883 #ifndef PRODUCT 8884 assert(_num_par_pushes >= n, "Too many pops?"); 8885 _num_par_pushes -=n; 8886 #endif 8887 return !stack->isEmpty(); 8888 } 8889 8890 #define BUSY (oop(0x1aff1aff)) 8891 // (MT-safe) Get a prefix of at most "num" from the list. 8892 // The overflow list is chained through the mark word of 8893 // each object in the list. We fetch the entire list, 8894 // break off a prefix of the right size and return the 8895 // remainder. If other threads try to take objects from 8896 // the overflow list at that time, they will wait for 8897 // some time to see if data becomes available. If (and 8898 // only if) another thread places one or more object(s) 8899 // on the global list before we have returned the suffix 8900 // to the global list, we will walk down our local list 8901 // to find its end and append the global list to 8902 // our suffix before returning it. This suffix walk can 8903 // prove to be expensive (quadratic in the amount of traffic) 8904 // when there are many objects in the overflow list and 8905 // there is much producer-consumer contention on the list. 8906 // *NOTE*: The overflow list manipulation code here and 8907 // in ParNewGeneration:: are very similar in shape, 8908 // except that in the ParNew case we use the old (from/eden) 8909 // copy of the object to thread the list via its klass word. 8910 // Because of the common code, if you make any changes in 8911 // the code below, please check the ParNew version to see if 8912 // similar changes might be needed. 8913 // CR 6797058 has been filed to consolidate the common code. 8914 bool CMSCollector::par_take_from_overflow_list(size_t num, 8915 OopTaskQueue* work_q, 8916 int no_of_gc_threads) { 8917 assert(work_q->size() == 0, "First empty local work queue"); 8918 assert(num < work_q->max_elems(), "Can't bite more than we can chew"); 8919 if (_overflow_list == NULL) { 8920 return false; 8921 } 8922 // Grab the entire list; we'll put back a suffix 8923 oop prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list); 8924 Thread* tid = Thread::current(); 8925 // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was 8926 // set to ParallelGCThreads. 8927 size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads; 8928 size_t sleep_time_millis = MAX2((size_t)1, num/100); 8929 // If the list is busy, we spin for a short while, 8930 // sleeping between attempts to get the list. 8931 for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) { 8932 os::sleep(tid, sleep_time_millis, false); 8933 if (_overflow_list == NULL) { 8934 // Nothing left to take 8935 return false; 8936 } else if (_overflow_list != BUSY) { 8937 // Try and grab the prefix 8938 prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list); 8939 } 8940 } 8941 // If the list was found to be empty, or we spun long 8942 // enough, we give up and return empty-handed. If we leave 8943 // the list in the BUSY state below, it must be the case that 8944 // some other thread holds the overflow list and will set it 8945 // to a non-BUSY state in the future. 8946 if (prefix == NULL || prefix == BUSY) { 8947 // Nothing to take or waited long enough 8948 if (prefix == NULL) { 8949 // Write back the NULL in case we overwrote it with BUSY above 8950 // and it is still the same value. 8951 (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY); 8952 } 8953 return false; 8954 } 8955 assert(prefix != NULL && prefix != BUSY, "Error"); 8956 size_t i = num; 8957 oop cur = prefix; 8958 // Walk down the first "num" objects, unless we reach the end. 8959 for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--); 8960 if (cur->mark() == NULL) { 8961 // We have "num" or fewer elements in the list, so there 8962 // is nothing to return to the global list. 8963 // Write back the NULL in lieu of the BUSY we wrote 8964 // above, if it is still the same value. 8965 if (_overflow_list == BUSY) { 8966 (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY); 8967 } 8968 } else { 8969 // Chop off the suffix and rerturn it to the global list. 8970 assert(cur->mark() != BUSY, "Error"); 8971 oop suffix_head = cur->mark(); // suffix will be put back on global list 8972 cur->set_mark(NULL); // break off suffix 8973 // It's possible that the list is still in the empty(busy) state 8974 // we left it in a short while ago; in that case we may be 8975 // able to place back the suffix without incurring the cost 8976 // of a walk down the list. 8977 oop observed_overflow_list = _overflow_list; 8978 oop cur_overflow_list = observed_overflow_list; 8979 bool attached = false; 8980 while (observed_overflow_list == BUSY || observed_overflow_list == NULL) { 8981 observed_overflow_list = 8982 (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list); 8983 if (cur_overflow_list == observed_overflow_list) { 8984 attached = true; 8985 break; 8986 } else cur_overflow_list = observed_overflow_list; 8987 } 8988 if (!attached) { 8989 // Too bad, someone else sneaked in (at least) an element; we'll need 8990 // to do a splice. Find tail of suffix so we can prepend suffix to global 8991 // list. 8992 for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark())); 8993 oop suffix_tail = cur; 8994 assert(suffix_tail != NULL && suffix_tail->mark() == NULL, 8995 "Tautology"); 8996 observed_overflow_list = _overflow_list; 8997 do { 8998 cur_overflow_list = observed_overflow_list; 8999 if (cur_overflow_list != BUSY) { 9000 // Do the splice ... 9001 suffix_tail->set_mark(markOop(cur_overflow_list)); 9002 } else { // cur_overflow_list == BUSY 9003 suffix_tail->set_mark(NULL); 9004 } 9005 // ... and try to place spliced list back on overflow_list ... 9006 observed_overflow_list = 9007 (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list); 9008 } while (cur_overflow_list != observed_overflow_list); 9009 // ... until we have succeeded in doing so. 9010 } 9011 } 9012 9013 // Push the prefix elements on work_q 9014 assert(prefix != NULL, "control point invariant"); 9015 const markOop proto = markOopDesc::prototype(); 9016 oop next; 9017 NOT_PRODUCT(ssize_t n = 0;) 9018 for (cur = prefix; cur != NULL; cur = next) { 9019 next = oop(cur->mark()); 9020 cur->set_mark(proto); // until proven otherwise 9021 assert(cur->is_oop(), "Should be an oop"); 9022 bool res = work_q->push(cur); 9023 assert(res, "Bit off more than we can chew?"); 9024 NOT_PRODUCT(n++;) 9025 } 9026 #ifndef PRODUCT 9027 assert(_num_par_pushes >= n, "Too many pops?"); 9028 Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes); 9029 #endif 9030 return true; 9031 } 9032 9033 // Single-threaded 9034 void CMSCollector::push_on_overflow_list(oop p) { 9035 NOT_PRODUCT(_num_par_pushes++;) 9036 assert(p->is_oop(), "Not an oop"); 9037 preserve_mark_if_necessary(p); 9038 p->set_mark((markOop)_overflow_list); 9039 _overflow_list = p; 9040 } 9041 9042 // Multi-threaded; use CAS to prepend to overflow list 9043 void CMSCollector::par_push_on_overflow_list(oop p) { 9044 NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);) 9045 assert(p->is_oop(), "Not an oop"); 9046 par_preserve_mark_if_necessary(p); 9047 oop observed_overflow_list = _overflow_list; 9048 oop cur_overflow_list; 9049 do { 9050 cur_overflow_list = observed_overflow_list; 9051 if (cur_overflow_list != BUSY) { 9052 p->set_mark(markOop(cur_overflow_list)); 9053 } else { 9054 p->set_mark(NULL); 9055 } 9056 observed_overflow_list = 9057 (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list); 9058 } while (cur_overflow_list != observed_overflow_list); 9059 } 9060 #undef BUSY 9061 9062 // Single threaded 9063 // General Note on GrowableArray: pushes may silently fail 9064 // because we are (temporarily) out of C-heap for expanding 9065 // the stack. The problem is quite ubiquitous and affects 9066 // a lot of code in the JVM. The prudent thing for GrowableArray 9067 // to do (for now) is to exit with an error. However, that may 9068 // be too draconian in some cases because the caller may be 9069 // able to recover without much harm. For such cases, we 9070 // should probably introduce a "soft_push" method which returns 9071 // an indication of success or failure with the assumption that 9072 // the caller may be able to recover from a failure; code in 9073 // the VM can then be changed, incrementally, to deal with such 9074 // failures where possible, thus, incrementally hardening the VM 9075 // in such low resource situations. 9076 void CMSCollector::preserve_mark_work(oop p, markOop m) { 9077 _preserved_oop_stack.push(p); 9078 _preserved_mark_stack.push(m); 9079 assert(m == p->mark(), "Mark word changed"); 9080 assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(), 9081 "bijection"); 9082 } 9083 9084 // Single threaded 9085 void CMSCollector::preserve_mark_if_necessary(oop p) { 9086 markOop m = p->mark(); 9087 if (m->must_be_preserved(p)) { 9088 preserve_mark_work(p, m); 9089 } 9090 } 9091 9092 void CMSCollector::par_preserve_mark_if_necessary(oop p) { 9093 markOop m = p->mark(); 9094 if (m->must_be_preserved(p)) { 9095 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); 9096 // Even though we read the mark word without holding 9097 // the lock, we are assured that it will not change 9098 // because we "own" this oop, so no other thread can 9099 // be trying to push it on the overflow list; see 9100 // the assertion in preserve_mark_work() that checks 9101 // that m == p->mark(). 9102 preserve_mark_work(p, m); 9103 } 9104 } 9105 9106 // We should be able to do this multi-threaded, 9107 // a chunk of stack being a task (this is 9108 // correct because each oop only ever appears 9109 // once in the overflow list. However, it's 9110 // not very easy to completely overlap this with 9111 // other operations, so will generally not be done 9112 // until all work's been completed. Because we 9113 // expect the preserved oop stack (set) to be small, 9114 // it's probably fine to do this single-threaded. 9115 // We can explore cleverer concurrent/overlapped/parallel 9116 // processing of preserved marks if we feel the 9117 // need for this in the future. Stack overflow should 9118 // be so rare in practice and, when it happens, its 9119 // effect on performance so great that this will 9120 // likely just be in the noise anyway. 9121 void CMSCollector::restore_preserved_marks_if_any() { 9122 assert(SafepointSynchronize::is_at_safepoint(), 9123 "world should be stopped"); 9124 assert(Thread::current()->is_ConcurrentGC_thread() || 9125 Thread::current()->is_VM_thread(), 9126 "should be single-threaded"); 9127 assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(), 9128 "bijection"); 9129 9130 while (!_preserved_oop_stack.is_empty()) { 9131 oop p = _preserved_oop_stack.pop(); 9132 assert(p->is_oop(), "Should be an oop"); 9133 assert(_span.contains(p), "oop should be in _span"); 9134 assert(p->mark() == markOopDesc::prototype(), 9135 "Set when taken from overflow list"); 9136 markOop m = _preserved_mark_stack.pop(); 9137 p->set_mark(m); 9138 } 9139 assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(), 9140 "stacks were cleared above"); 9141 } 9142 9143 #ifndef PRODUCT 9144 bool CMSCollector::no_preserved_marks() const { 9145 return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(); 9146 } 9147 #endif 9148 9149 CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const 9150 { 9151 GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap(); 9152 CMSAdaptiveSizePolicy* size_policy = 9153 (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy(); 9154 assert(size_policy->is_gc_cms_adaptive_size_policy(), 9155 "Wrong type for size policy"); 9156 return size_policy; 9157 } 9158 9159 void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size, 9160 size_t desired_promo_size) { 9161 if (cur_promo_size < desired_promo_size) { 9162 size_t expand_bytes = desired_promo_size - cur_promo_size; 9163 if (PrintAdaptiveSizePolicy && Verbose) { 9164 gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize " 9165 "Expanding tenured generation by " SIZE_FORMAT " (bytes)", 9166 expand_bytes); 9167 } 9168 expand(expand_bytes, 9169 MinHeapDeltaBytes, 9170 CMSExpansionCause::_adaptive_size_policy); 9171 } else if (desired_promo_size < cur_promo_size) { 9172 size_t shrink_bytes = cur_promo_size - desired_promo_size; 9173 if (PrintAdaptiveSizePolicy && Verbose) { 9174 gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize " 9175 "Shrinking tenured generation by " SIZE_FORMAT " (bytes)", 9176 shrink_bytes); 9177 } 9178 shrink(shrink_bytes); 9179 } 9180 } 9181 9182 CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() { 9183 GenCollectedHeap* gch = GenCollectedHeap::heap(); 9184 CMSGCAdaptivePolicyCounters* counters = 9185 (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters(); 9186 assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind, 9187 "Wrong kind of counters"); 9188 return counters; 9189 } 9190 9191 9192 void ASConcurrentMarkSweepGeneration::update_counters() { 9193 if (UsePerfData) { 9194 _space_counters->update_all(); 9195 _gen_counters->update_all(); 9196 CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters(); 9197 GenCollectedHeap* gch = GenCollectedHeap::heap(); 9198 CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats(); 9199 assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind, 9200 "Wrong gc statistics type"); 9201 counters->update_counters(gc_stats_l); 9202 } 9203 } 9204 9205 void ASConcurrentMarkSweepGeneration::update_counters(size_t used) { 9206 if (UsePerfData) { 9207 _space_counters->update_used(used); 9208 _space_counters->update_capacity(); 9209 _gen_counters->update_all(); 9210 9211 CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters(); 9212 GenCollectedHeap* gch = GenCollectedHeap::heap(); 9213 CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats(); 9214 assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind, 9215 "Wrong gc statistics type"); 9216 counters->update_counters(gc_stats_l); 9217 } 9218 } 9219 9220 // The desired expansion delta is computed so that: 9221 // . desired free percentage or greater is used 9222 void ASConcurrentMarkSweepGeneration::compute_new_size() { 9223 assert_locked_or_safepoint(Heap_lock); 9224 9225 GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap(); 9226 9227 // If incremental collection failed, we just want to expand 9228 // to the limit. 9229 if (incremental_collection_failed()) { 9230 clear_incremental_collection_failed(); 9231 grow_to_reserved(); 9232 return; 9233 } 9234 9235 assert(UseAdaptiveSizePolicy, "Should be using adaptive sizing"); 9236 9237 assert(gch->kind() == CollectedHeap::GenCollectedHeap, 9238 "Wrong type of heap"); 9239 int prev_level = level() - 1; 9240 assert(prev_level >= 0, "The cms generation is the lowest generation"); 9241 Generation* prev_gen = gch->get_gen(prev_level); 9242 assert(prev_gen->kind() == Generation::ASParNew, 9243 "Wrong type of young generation"); 9244 ParNewGeneration* younger_gen = (ParNewGeneration*) prev_gen; 9245 size_t cur_eden = younger_gen->eden()->capacity(); 9246 CMSAdaptiveSizePolicy* size_policy = cms_size_policy(); 9247 size_t cur_promo = free(); 9248 size_policy->compute_tenured_generation_free_space(cur_promo, 9249 max_available(), 9250 cur_eden); 9251 resize(cur_promo, size_policy->promo_size()); 9252 9253 // Record the new size of the space in the cms generation 9254 // that is available for promotions. This is temporary. 9255 // It should be the desired promo size. 9256 size_policy->avg_cms_promo()->sample(free()); 9257 size_policy->avg_old_live()->sample(used()); 9258 9259 if (UsePerfData) { 9260 CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters(); 9261 counters->update_cms_capacity_counter(capacity()); 9262 } 9263 } 9264 9265 void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) { 9266 assert_locked_or_safepoint(Heap_lock); 9267 assert_lock_strong(freelistLock()); 9268 HeapWord* old_end = _cmsSpace->end(); 9269 HeapWord* unallocated_start = _cmsSpace->unallocated_block(); 9270 assert(old_end >= unallocated_start, "Miscalculation of unallocated_start"); 9271 FreeChunk* chunk_at_end = find_chunk_at_end(); 9272 if (chunk_at_end == NULL) { 9273 // No room to shrink 9274 if (PrintGCDetails && Verbose) { 9275 gclog_or_tty->print_cr("No room to shrink: old_end " 9276 PTR_FORMAT " unallocated_start " PTR_FORMAT 9277 " chunk_at_end " PTR_FORMAT, 9278 old_end, unallocated_start, chunk_at_end); 9279 } 9280 return; 9281 } else { 9282 9283 // Find the chunk at the end of the space and determine 9284 // how much it can be shrunk. 9285 size_t shrinkable_size_in_bytes = chunk_at_end->size(); 9286 size_t aligned_shrinkable_size_in_bytes = 9287 align_size_down(shrinkable_size_in_bytes, os::vm_page_size()); 9288 assert(unallocated_start <= chunk_at_end->end(), 9289 "Inconsistent chunk at end of space"); 9290 size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes); 9291 size_t word_size_before = heap_word_size(_virtual_space.committed_size()); 9292 9293 // Shrink the underlying space 9294 _virtual_space.shrink_by(bytes); 9295 if (PrintGCDetails && Verbose) { 9296 gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:" 9297 " desired_bytes " SIZE_FORMAT 9298 " shrinkable_size_in_bytes " SIZE_FORMAT 9299 " aligned_shrinkable_size_in_bytes " SIZE_FORMAT 9300 " bytes " SIZE_FORMAT, 9301 desired_bytes, shrinkable_size_in_bytes, 9302 aligned_shrinkable_size_in_bytes, bytes); 9303 gclog_or_tty->print_cr(" old_end " SIZE_FORMAT 9304 " unallocated_start " SIZE_FORMAT, 9305 old_end, unallocated_start); 9306 } 9307 9308 // If the space did shrink (shrinking is not guaranteed), 9309 // shrink the chunk at the end by the appropriate amount. 9310 if (((HeapWord*)_virtual_space.high()) < old_end) { 9311 size_t new_word_size = 9312 heap_word_size(_virtual_space.committed_size()); 9313 9314 // Have to remove the chunk from the dictionary because it is changing 9315 // size and might be someplace elsewhere in the dictionary. 9316 9317 // Get the chunk at end, shrink it, and put it 9318 // back. 9319 _cmsSpace->removeChunkFromDictionary(chunk_at_end); 9320 size_t word_size_change = word_size_before - new_word_size; 9321 size_t chunk_at_end_old_size = chunk_at_end->size(); 9322 assert(chunk_at_end_old_size >= word_size_change, 9323 "Shrink is too large"); 9324 chunk_at_end->set_size(chunk_at_end_old_size - 9325 word_size_change); 9326 _cmsSpace->freed((HeapWord*) chunk_at_end->end(), 9327 word_size_change); 9328 9329 _cmsSpace->returnChunkToDictionary(chunk_at_end); 9330 9331 MemRegion mr(_cmsSpace->bottom(), new_word_size); 9332 _bts->resize(new_word_size); // resize the block offset shared array 9333 Universe::heap()->barrier_set()->resize_covered_region(mr); 9334 _cmsSpace->assert_locked(); 9335 _cmsSpace->set_end((HeapWord*)_virtual_space.high()); 9336 9337 NOT_PRODUCT(_cmsSpace->dictionary()->verify()); 9338 9339 // update the space and generation capacity counters 9340 if (UsePerfData) { 9341 _space_counters->update_capacity(); 9342 _gen_counters->update_all(); 9343 } 9344 9345 if (Verbose && PrintGCDetails) { 9346 size_t new_mem_size = _virtual_space.committed_size(); 9347 size_t old_mem_size = new_mem_size + bytes; 9348 gclog_or_tty->print_cr("Shrinking %s from %ldK by %ldK to %ldK", 9349 name(), old_mem_size/K, bytes/K, new_mem_size/K); 9350 } 9351 } 9352 9353 assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(), 9354 "Inconsistency at end of space"); 9355 assert(chunk_at_end->end() == _cmsSpace->end(), 9356 "Shrinking is inconsistent"); 9357 return; 9358 } 9359 } 9360 9361 // Transfer some number of overflown objects to usual marking 9362 // stack. Return true if some objects were transferred. 9363 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() { 9364 size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4, 9365 (size_t)ParGCDesiredObjsFromOverflowList); 9366 9367 bool res = _collector->take_from_overflow_list(num, _mark_stack); 9368 assert(_collector->overflow_list_is_empty() || res, 9369 "If list is not empty, we should have taken something"); 9370 assert(!res || !_mark_stack->isEmpty(), 9371 "If we took something, it should now be on our stack"); 9372 return res; 9373 } 9374 9375 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) { 9376 size_t res = _sp->block_size_no_stall(addr, _collector); 9377 if (_sp->block_is_obj(addr)) { 9378 if (_live_bit_map->isMarked(addr)) { 9379 // It can't have been dead in a previous cycle 9380 guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!"); 9381 } else { 9382 _dead_bit_map->mark(addr); // mark the dead object 9383 } 9384 } 9385 // Could be 0, if the block size could not be computed without stalling. 9386 return res; 9387 } 9388 9389 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() { 9390 9391 switch (phase) { 9392 case CMSCollector::InitialMarking: 9393 initialize(true /* fullGC */ , 9394 cause /* cause of the GC */, 9395 true /* recordGCBeginTime */, 9396 true /* recordPreGCUsage */, 9397 false /* recordPeakUsage */, 9398 false /* recordPostGCusage */, 9399 true /* recordAccumulatedGCTime */, 9400 false /* recordGCEndTime */, 9401 false /* countCollection */ ); 9402 break; 9403 9404 case CMSCollector::FinalMarking: 9405 initialize(true /* fullGC */ , 9406 cause /* cause of the GC */, 9407 false /* recordGCBeginTime */, 9408 false /* recordPreGCUsage */, 9409 false /* recordPeakUsage */, 9410 false /* recordPostGCusage */, 9411 true /* recordAccumulatedGCTime */, 9412 false /* recordGCEndTime */, 9413 false /* countCollection */ ); 9414 break; 9415 9416 case CMSCollector::Sweeping: 9417 initialize(true /* fullGC */ , 9418 cause /* cause of the GC */, 9419 false /* recordGCBeginTime */, 9420 false /* recordPreGCUsage */, 9421 true /* recordPeakUsage */, 9422 true /* recordPostGCusage */, 9423 false /* recordAccumulatedGCTime */, 9424 true /* recordGCEndTime */, 9425 true /* countCollection */ ); 9426 break; 9427 9428 default: 9429 ShouldNotReachHere(); 9430 } 9431 } 9432