1 /*
   2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP
  27 
  28 #include "gc_implementation/parallelScavenge/objectStartArray.hpp"
  29 #include "gc_implementation/parallelScavenge/parMarkBitMap.hpp"
  30 #include "gc_implementation/parallelScavenge/psCompactionManager.hpp"
  31 #include "gc_implementation/shared/collectorCounters.hpp"
  32 #include "gc_implementation/shared/markSweep.hpp"
  33 #include "gc_implementation/shared/mutableSpace.hpp"
  34 #include "memory/sharedHeap.hpp"
  35 #include "oops/oop.hpp"
  36 
  37 class ParallelScavengeHeap;
  38 class PSAdaptiveSizePolicy;
  39 class PSYoungGen;
  40 class PSOldGen;
  41 class ParCompactionManager;
  42 class ParallelTaskTerminator;
  43 class PSParallelCompact;
  44 class GCTaskManager;
  45 class GCTaskQueue;
  46 class PreGCValues;
  47 class MoveAndUpdateClosure;
  48 class RefProcTaskExecutor;
  49 
  50 // The SplitInfo class holds the information needed to 'split' a source region
  51 // so that the live data can be copied to two destination *spaces*.  Normally,
  52 // all the live data in a region is copied to a single destination space (e.g.,
  53 // everything live in a region in eden is copied entirely into the old gen).
  54 // However, when the heap is nearly full, all the live data in eden may not fit
  55 // into the old gen.  Copying only some of the regions from eden to old gen
  56 // requires finding a region that does not contain a partial object (i.e., no
  57 // live object crosses the region boundary) somewhere near the last object that
  58 // does fit into the old gen.  Since it's not always possible to find such a
  59 // region, splitting is necessary for predictable behavior.
  60 //
  61 // A region is always split at the end of the partial object.  This avoids
  62 // additional tests when calculating the new location of a pointer, which is a
  63 // very hot code path.  The partial object and everything to its left will be
  64 // copied to another space (call it dest_space_1).  The live data to the right
  65 // of the partial object will be copied either within the space itself, or to a
  66 // different destination space (distinct from dest_space_1).
  67 //
  68 // Split points are identified during the summary phase, when region
  69 // destinations are computed:  data about the split, including the
  70 // partial_object_size, is recorded in a SplitInfo record and the
  71 // partial_object_size field in the summary data is set to zero.  The zeroing is
  72 // possible (and necessary) since the partial object will move to a different
  73 // destination space than anything to its right, thus the partial object should
  74 // not affect the locations of any objects to its right.
  75 //
  76 // The recorded data is used during the compaction phase, but only rarely:  when
  77 // the partial object on the split region will be copied across a destination
  78 // region boundary.  This test is made once each time a region is filled, and is
  79 // a simple address comparison, so the overhead is negligible (see
  80 // PSParallelCompact::first_src_addr()).
  81 //
  82 // Notes:
  83 //
  84 // Only regions with partial objects are split; a region without a partial
  85 // object does not need any extra bookkeeping.
  86 //
  87 // At most one region is split per space, so the amount of data required is
  88 // constant.
  89 //
  90 // A region is split only when the destination space would overflow.  Once that
  91 // happens, the destination space is abandoned and no other data (even from
  92 // other source spaces) is targeted to that destination space.  Abandoning the
  93 // destination space may leave a somewhat large unused area at the end, if a
  94 // large object caused the overflow.
  95 //
  96 // Future work:
  97 //
  98 // More bookkeeping would be required to continue to use the destination space.
  99 // The most general solution would allow data from regions in two different
 100 // source spaces to be "joined" in a single destination region.  At the very
 101 // least, additional code would be required in next_src_region() to detect the
 102 // join and skip to an out-of-order source region.  If the join region was also
 103 // the last destination region to which a split region was copied (the most
 104 // likely case), then additional work would be needed to get fill_region() to
 105 // stop iteration and switch to a new source region at the right point.  Basic
 106 // idea would be to use a fake value for the top of the source space.  It is
 107 // doable, if a bit tricky.
 108 //
 109 // A simpler (but less general) solution would fill the remainder of the
 110 // destination region with a dummy object and continue filling the next
 111 // destination region.
 112 
 113 class SplitInfo
 114 {
 115 public:
 116   // Return true if this split info is valid (i.e., if a split has been
 117   // recorded).  The very first region cannot have a partial object and thus is
 118   // never split, so 0 is the 'invalid' value.
 119   bool is_valid() const { return _src_region_idx > 0; }
 120 
 121   // Return true if this split holds data for the specified source region.
 122   inline bool is_split(size_t source_region) const;
 123 
 124   // The index of the split region, the size of the partial object on that
 125   // region and the destination of the partial object.
 126   size_t    src_region_idx() const   { return _src_region_idx; }
 127   size_t    partial_obj_size() const { return _partial_obj_size; }
 128   HeapWord* destination() const      { return _destination; }
 129 
 130   // The destination count of the partial object referenced by this split
 131   // (either 1 or 2).  This must be added to the destination count of the
 132   // remainder of the source region.
 133   unsigned int destination_count() const { return _destination_count; }
 134 
 135   // If a word within the partial object will be written to the first word of a
 136   // destination region, this is the address of the destination region;
 137   // otherwise this is NULL.
 138   HeapWord* dest_region_addr() const     { return _dest_region_addr; }
 139 
 140   // If a word within the partial object will be written to the first word of a
 141   // destination region, this is the address of that word within the partial
 142   // object; otherwise this is NULL.
 143   HeapWord* first_src_addr() const       { return _first_src_addr; }
 144 
 145   // Record the data necessary to split the region src_region_idx.
 146   void record(size_t src_region_idx, size_t partial_obj_size,
 147               HeapWord* destination);
 148 
 149   void clear();
 150 
 151   DEBUG_ONLY(void verify_clear();)
 152 
 153 private:
 154   size_t       _src_region_idx;
 155   size_t       _partial_obj_size;
 156   HeapWord*    _destination;
 157   unsigned int _destination_count;
 158   HeapWord*    _dest_region_addr;
 159   HeapWord*    _first_src_addr;
 160 };
 161 
 162 inline bool SplitInfo::is_split(size_t region_idx) const
 163 {
 164   return _src_region_idx == region_idx && is_valid();
 165 }
 166 
 167 class SpaceInfo
 168 {
 169  public:
 170   MutableSpace* space() const { return _space; }
 171 
 172   // Where the free space will start after the collection.  Valid only after the
 173   // summary phase completes.
 174   HeapWord* new_top() const { return _new_top; }
 175 
 176   // Allows new_top to be set.
 177   HeapWord** new_top_addr() { return &_new_top; }
 178 
 179   // Where the smallest allowable dense prefix ends (used only for perm gen).
 180   HeapWord* min_dense_prefix() const { return _min_dense_prefix; }
 181 
 182   // Where the dense prefix ends, or the compacted region begins.
 183   HeapWord* dense_prefix() const { return _dense_prefix; }
 184 
 185   // The start array for the (generation containing the) space, or NULL if there
 186   // is no start array.
 187   ObjectStartArray* start_array() const { return _start_array; }
 188 
 189   SplitInfo& split_info() { return _split_info; }
 190 
 191   void set_space(MutableSpace* s)           { _space = s; }
 192   void set_new_top(HeapWord* addr)          { _new_top = addr; }
 193   void set_min_dense_prefix(HeapWord* addr) { _min_dense_prefix = addr; }
 194   void set_dense_prefix(HeapWord* addr)     { _dense_prefix = addr; }
 195   void set_start_array(ObjectStartArray* s) { _start_array = s; }
 196 
 197   void publish_new_top() const              { _space->set_top(_new_top); }
 198 
 199  private:
 200   MutableSpace*     _space;
 201   HeapWord*         _new_top;
 202   HeapWord*         _min_dense_prefix;
 203   HeapWord*         _dense_prefix;
 204   ObjectStartArray* _start_array;
 205   SplitInfo         _split_info;
 206 };
 207 
 208 class ParallelCompactData
 209 {
 210 public:
 211   // Sizes are in HeapWords, unless indicated otherwise.
 212   static const size_t Log2RegionSize;
 213   static const size_t RegionSize;
 214   static const size_t RegionSizeBytes;
 215 
 216   // Mask for the bits in a size_t to get an offset within a region.
 217   static const size_t RegionSizeOffsetMask;
 218   // Mask for the bits in a pointer to get an offset within a region.
 219   static const size_t RegionAddrOffsetMask;
 220   // Mask for the bits in a pointer to get the address of the start of a region.
 221   static const size_t RegionAddrMask;
 222 
 223   class RegionData
 224   {
 225   public:
 226     // Destination address of the region.
 227     HeapWord* destination() const { return _destination; }
 228 
 229     // The first region containing data destined for this region.
 230     size_t source_region() const { return _source_region; }
 231 
 232     // The object (if any) starting in this region and ending in a different
 233     // region that could not be updated during the main (parallel) compaction
 234     // phase.  This is different from _partial_obj_addr, which is an object that
 235     // extends onto a source region.  However, the two uses do not overlap in
 236     // time, so the same field is used to save space.
 237     HeapWord* deferred_obj_addr() const { return _partial_obj_addr; }
 238 
 239     // The starting address of the partial object extending onto the region.
 240     HeapWord* partial_obj_addr() const { return _partial_obj_addr; }
 241 
 242     // Size of the partial object extending onto the region (words).
 243     size_t partial_obj_size() const { return _partial_obj_size; }
 244 
 245     // Size of live data that lies within this region due to objects that start
 246     // in this region (words).  This does not include the partial object
 247     // extending onto the region (if any), or the part of an object that extends
 248     // onto the next region (if any).
 249     size_t live_obj_size() const { return _dc_and_los & los_mask; }
 250 
 251     // Total live data that lies within the region (words).
 252     size_t data_size() const { return partial_obj_size() + live_obj_size(); }
 253 
 254     // The destination_count is the number of other regions to which data from
 255     // this region will be copied.  At the end of the summary phase, the valid
 256     // values of destination_count are
 257     //
 258     // 0 - data from the region will be compacted completely into itself, or the
 259     //     region is empty.  The region can be claimed and then filled.
 260     // 1 - data from the region will be compacted into 1 other region; some
 261     //     data from the region may also be compacted into the region itself.
 262     // 2 - data from the region will be copied to 2 other regions.
 263     //
 264     // During compaction as regions are emptied, the destination_count is
 265     // decremented (atomically) and when it reaches 0, it can be claimed and
 266     // then filled.
 267     //
 268     // A region is claimed for processing by atomically changing the
 269     // destination_count to the claimed value (dc_claimed).  After a region has
 270     // been filled, the destination_count should be set to the completed value
 271     // (dc_completed).
 272     inline uint destination_count() const;
 273     inline uint destination_count_raw() const;
 274 
 275     // The location of the java heap data that corresponds to this region.
 276     inline HeapWord* data_location() const;
 277 
 278     // The highest address referenced by objects in this region.
 279     inline HeapWord* highest_ref() const;
 280 
 281     // Whether this region is available to be claimed, has been claimed, or has
 282     // been completed.
 283     //
 284     // Minor subtlety:  claimed() returns true if the region is marked
 285     // completed(), which is desirable since a region must be claimed before it
 286     // can be completed.
 287     bool available() const { return _dc_and_los < dc_one; }
 288     bool claimed() const   { return _dc_and_los >= dc_claimed; }
 289     bool completed() const { return _dc_and_los >= dc_completed; }
 290 
 291     // These are not atomic.
 292     void set_destination(HeapWord* addr)       { _destination = addr; }
 293     void set_source_region(size_t region)      { _source_region = region; }
 294     void set_deferred_obj_addr(HeapWord* addr) { _partial_obj_addr = addr; }
 295     void set_partial_obj_addr(HeapWord* addr)  { _partial_obj_addr = addr; }
 296     void set_partial_obj_size(size_t words)    {
 297       _partial_obj_size = (region_sz_t) words;
 298     }
 299 
 300     inline void set_destination_count(uint count);
 301     inline void set_live_obj_size(size_t words);
 302     inline void set_data_location(HeapWord* addr);
 303     inline void set_completed();
 304     inline bool claim_unsafe();
 305 
 306     // These are atomic.
 307     inline void add_live_obj(size_t words);
 308     inline void set_highest_ref(HeapWord* addr);
 309     inline void decrement_destination_count();
 310     inline bool claim();
 311 
 312   private:
 313     // The type used to represent object sizes within a region.
 314     typedef uint region_sz_t;
 315 
 316     // Constants for manipulating the _dc_and_los field, which holds both the
 317     // destination count and live obj size.  The live obj size lives at the
 318     // least significant end so no masking is necessary when adding.
 319     static const region_sz_t dc_shift;           // Shift amount.
 320     static const region_sz_t dc_mask;            // Mask for destination count.
 321     static const region_sz_t dc_one;             // 1, shifted appropriately.
 322     static const region_sz_t dc_claimed;         // Region has been claimed.
 323     static const region_sz_t dc_completed;       // Region has been completed.
 324     static const region_sz_t los_mask;           // Mask for live obj size.
 325 
 326     HeapWord*            _destination;
 327     size_t               _source_region;
 328     HeapWord*            _partial_obj_addr;
 329     region_sz_t          _partial_obj_size;
 330     region_sz_t volatile _dc_and_los;
 331 #ifdef ASSERT
 332     // These enable optimizations that are only partially implemented.  Use
 333     // debug builds to prevent the code fragments from breaking.
 334     HeapWord*            _data_location;
 335     HeapWord*            _highest_ref;
 336 #endif  // #ifdef ASSERT
 337 
 338 #ifdef ASSERT
 339    public:
 340     uint            _pushed;   // 0 until region is pushed onto a worker's stack
 341    private:
 342 #endif
 343   };
 344 
 345 public:
 346   ParallelCompactData();
 347   bool initialize(MemRegion covered_region);
 348 
 349   size_t region_count() const { return _region_count; }
 350 
 351   // Convert region indices to/from RegionData pointers.
 352   inline RegionData* region(size_t region_idx) const;
 353   inline size_t     region(const RegionData* const region_ptr) const;
 354 
 355   // Returns true if the given address is contained within the region
 356   bool region_contains(size_t region_index, HeapWord* addr);
 357 
 358   void add_obj(HeapWord* addr, size_t len);
 359   void add_obj(oop p, size_t len) { add_obj((HeapWord*)p, len); }
 360 
 361   // Fill in the regions covering [beg, end) so that no data moves; i.e., the
 362   // destination of region n is simply the start of region n.  The argument beg
 363   // must be region-aligned; end need not be.
 364   void summarize_dense_prefix(HeapWord* beg, HeapWord* end);
 365 
 366   HeapWord* summarize_split_space(size_t src_region, SplitInfo& split_info,
 367                                   HeapWord* destination, HeapWord* target_end,
 368                                   HeapWord** target_next);
 369   bool summarize(SplitInfo& split_info,
 370                  HeapWord* source_beg, HeapWord* source_end,
 371                  HeapWord** source_next,
 372                  HeapWord* target_beg, HeapWord* target_end,
 373                  HeapWord** target_next);
 374 
 375   void clear();
 376   void clear_range(size_t beg_region, size_t end_region);
 377   void clear_range(HeapWord* beg, HeapWord* end) {
 378     clear_range(addr_to_region_idx(beg), addr_to_region_idx(end));
 379   }
 380 
 381   // Return the number of words between addr and the start of the region
 382   // containing addr.
 383   inline size_t     region_offset(const HeapWord* addr) const;
 384 
 385   // Convert addresses to/from a region index or region pointer.
 386   inline size_t     addr_to_region_idx(const HeapWord* addr) const;
 387   inline RegionData* addr_to_region_ptr(const HeapWord* addr) const;
 388   inline HeapWord*  region_to_addr(size_t region) const;
 389   inline HeapWord*  region_to_addr(size_t region, size_t offset) const;
 390   inline HeapWord*  region_to_addr(const RegionData* region) const;
 391 
 392   inline HeapWord*  region_align_down(HeapWord* addr) const;
 393   inline HeapWord*  region_align_up(HeapWord* addr) const;
 394   inline bool       is_region_aligned(HeapWord* addr) const;
 395 
 396   // Return the address one past the end of the partial object.
 397   HeapWord* partial_obj_end(size_t region_idx) const;
 398 
 399   // Return the new location of the object p after the
 400   // the compaction.
 401   HeapWord* calc_new_pointer(HeapWord* addr);
 402 
 403   HeapWord* calc_new_pointer(oop p) {
 404     return calc_new_pointer((HeapWord*) p);
 405   }
 406 
 407 #ifdef  ASSERT
 408   void verify_clear(const PSVirtualSpace* vspace);
 409   void verify_clear();
 410 #endif  // #ifdef ASSERT
 411 
 412 private:
 413   bool initialize_region_data(size_t region_size);
 414   PSVirtualSpace* create_vspace(size_t count, size_t element_size);
 415 
 416 private:
 417   HeapWord*       _region_start;
 418 #ifdef  ASSERT
 419   HeapWord*       _region_end;
 420 #endif  // #ifdef ASSERT
 421 
 422   PSVirtualSpace* _region_vspace;
 423   RegionData*     _region_data;
 424   size_t          _region_count;
 425 };
 426 
 427 inline uint
 428 ParallelCompactData::RegionData::destination_count_raw() const
 429 {
 430   return _dc_and_los & dc_mask;
 431 }
 432 
 433 inline uint
 434 ParallelCompactData::RegionData::destination_count() const
 435 {
 436   return destination_count_raw() >> dc_shift;
 437 }
 438 
 439 inline void
 440 ParallelCompactData::RegionData::set_destination_count(uint count)
 441 {
 442   assert(count <= (dc_completed >> dc_shift), "count too large");
 443   const region_sz_t live_sz = (region_sz_t) live_obj_size();
 444   _dc_and_los = (count << dc_shift) | live_sz;
 445 }
 446 
 447 inline void ParallelCompactData::RegionData::set_live_obj_size(size_t words)
 448 {
 449   assert(words <= los_mask, "would overflow");
 450   _dc_and_los = destination_count_raw() | (region_sz_t)words;
 451 }
 452 
 453 inline void ParallelCompactData::RegionData::decrement_destination_count()
 454 {
 455   assert(_dc_and_los < dc_claimed, "already claimed");
 456   assert(_dc_and_los >= dc_one, "count would go negative");
 457   Atomic::add((int)dc_mask, (volatile int*)&_dc_and_los);
 458 }
 459 
 460 inline HeapWord* ParallelCompactData::RegionData::data_location() const
 461 {
 462   DEBUG_ONLY(return _data_location;)
 463   NOT_DEBUG(return NULL;)
 464 }
 465 
 466 inline HeapWord* ParallelCompactData::RegionData::highest_ref() const
 467 {
 468   DEBUG_ONLY(return _highest_ref;)
 469   NOT_DEBUG(return NULL;)
 470 }
 471 
 472 inline void ParallelCompactData::RegionData::set_data_location(HeapWord* addr)
 473 {
 474   DEBUG_ONLY(_data_location = addr;)
 475 }
 476 
 477 inline void ParallelCompactData::RegionData::set_completed()
 478 {
 479   assert(claimed(), "must be claimed first");
 480   _dc_and_los = dc_completed | (region_sz_t) live_obj_size();
 481 }
 482 
 483 // MT-unsafe claiming of a region.  Should only be used during single threaded
 484 // execution.
 485 inline bool ParallelCompactData::RegionData::claim_unsafe()
 486 {
 487   if (available()) {
 488     _dc_and_los |= dc_claimed;
 489     return true;
 490   }
 491   return false;
 492 }
 493 
 494 inline void ParallelCompactData::RegionData::add_live_obj(size_t words)
 495 {
 496   assert(words <= (size_t)los_mask - live_obj_size(), "overflow");
 497   Atomic::add((int) words, (volatile int*) &_dc_and_los);
 498 }
 499 
 500 inline void ParallelCompactData::RegionData::set_highest_ref(HeapWord* addr)
 501 {
 502 #ifdef ASSERT
 503   HeapWord* tmp = _highest_ref;
 504   while (addr > tmp) {
 505     tmp = (HeapWord*)Atomic::cmpxchg_ptr(addr, &_highest_ref, tmp);
 506   }
 507 #endif  // #ifdef ASSERT
 508 }
 509 
 510 inline bool ParallelCompactData::RegionData::claim()
 511 {
 512   const int los = (int) live_obj_size();
 513   const int old = Atomic::cmpxchg(dc_claimed | los,
 514                                   (volatile int*) &_dc_and_los, los);
 515   return old == los;
 516 }
 517 
 518 inline ParallelCompactData::RegionData*
 519 ParallelCompactData::region(size_t region_idx) const
 520 {
 521   assert(region_idx <= region_count(), "bad arg");
 522   return _region_data + region_idx;
 523 }
 524 
 525 inline size_t
 526 ParallelCompactData::region(const RegionData* const region_ptr) const
 527 {
 528   assert(region_ptr >= _region_data, "bad arg");
 529   assert(region_ptr <= _region_data + region_count(), "bad arg");
 530   return pointer_delta(region_ptr, _region_data, sizeof(RegionData));
 531 }
 532 
 533 inline size_t
 534 ParallelCompactData::region_offset(const HeapWord* addr) const
 535 {
 536   assert(addr >= _region_start, "bad addr");
 537   assert(addr <= _region_end, "bad addr");
 538   return (size_t(addr) & RegionAddrOffsetMask) >> LogHeapWordSize;
 539 }
 540 
 541 inline size_t
 542 ParallelCompactData::addr_to_region_idx(const HeapWord* addr) const
 543 {
 544   assert(addr >= _region_start, "bad addr");
 545   assert(addr <= _region_end, "bad addr");
 546   return pointer_delta(addr, _region_start) >> Log2RegionSize;
 547 }
 548 
 549 inline ParallelCompactData::RegionData*
 550 ParallelCompactData::addr_to_region_ptr(const HeapWord* addr) const
 551 {
 552   return region(addr_to_region_idx(addr));
 553 }
 554 
 555 inline HeapWord*
 556 ParallelCompactData::region_to_addr(size_t region) const
 557 {
 558   assert(region <= _region_count, "region out of range");
 559   return _region_start + (region << Log2RegionSize);
 560 }
 561 
 562 inline HeapWord*
 563 ParallelCompactData::region_to_addr(const RegionData* region) const
 564 {
 565   return region_to_addr(pointer_delta(region, _region_data,
 566                                       sizeof(RegionData)));
 567 }
 568 
 569 inline HeapWord*
 570 ParallelCompactData::region_to_addr(size_t region, size_t offset) const
 571 {
 572   assert(region <= _region_count, "region out of range");
 573   assert(offset < RegionSize, "offset too big");  // This may be too strict.
 574   return region_to_addr(region) + offset;
 575 }
 576 
 577 inline HeapWord*
 578 ParallelCompactData::region_align_down(HeapWord* addr) const
 579 {
 580   assert(addr >= _region_start, "bad addr");
 581   assert(addr < _region_end + RegionSize, "bad addr");
 582   return (HeapWord*)(size_t(addr) & RegionAddrMask);
 583 }
 584 
 585 inline HeapWord*
 586 ParallelCompactData::region_align_up(HeapWord* addr) const
 587 {
 588   assert(addr >= _region_start, "bad addr");
 589   assert(addr <= _region_end, "bad addr");
 590   return region_align_down(addr + RegionSizeOffsetMask);
 591 }
 592 
 593 inline bool
 594 ParallelCompactData::is_region_aligned(HeapWord* addr) const
 595 {
 596   return region_offset(addr) == 0;
 597 }
 598 
 599 // Abstract closure for use with ParMarkBitMap::iterate(), which will invoke the
 600 // do_addr() method.
 601 //
 602 // The closure is initialized with the number of heap words to process
 603 // (words_remaining()), and becomes 'full' when it reaches 0.  The do_addr()
 604 // methods in subclasses should update the total as words are processed.  Since
 605 // only one subclass actually uses this mechanism to terminate iteration, the
 606 // default initial value is > 0.  The implementation is here and not in the
 607 // single subclass that uses it to avoid making is_full() virtual, and thus
 608 // adding a virtual call per live object.
 609 
 610 class ParMarkBitMapClosure: public StackObj {
 611  public:
 612   typedef ParMarkBitMap::idx_t idx_t;
 613   typedef ParMarkBitMap::IterationStatus IterationStatus;
 614 
 615  public:
 616   inline ParMarkBitMapClosure(ParMarkBitMap* mbm, ParCompactionManager* cm,
 617                               size_t words = max_uintx);
 618 
 619   inline ParCompactionManager* compaction_manager() const;
 620   inline ParMarkBitMap*        bitmap() const;
 621   inline size_t                words_remaining() const;
 622   inline bool                  is_full() const;
 623   inline HeapWord*             source() const;
 624 
 625   inline void                  set_source(HeapWord* addr);
 626 
 627   virtual IterationStatus do_addr(HeapWord* addr, size_t words) = 0;
 628 
 629  protected:
 630   inline void decrement_words_remaining(size_t words);
 631 
 632  private:
 633   ParMarkBitMap* const        _bitmap;
 634   ParCompactionManager* const _compaction_manager;
 635   DEBUG_ONLY(const size_t     _initial_words_remaining;) // Useful in debugger.
 636   size_t                      _words_remaining; // Words left to copy.
 637 
 638  protected:
 639   HeapWord*                   _source;          // Next addr that would be read.
 640 };
 641 
 642 inline
 643 ParMarkBitMapClosure::ParMarkBitMapClosure(ParMarkBitMap* bitmap,
 644                                            ParCompactionManager* cm,
 645                                            size_t words):
 646   _bitmap(bitmap), _compaction_manager(cm)
 647 #ifdef  ASSERT
 648   , _initial_words_remaining(words)
 649 #endif
 650 {
 651   _words_remaining = words;
 652   _source = NULL;
 653 }
 654 
 655 inline ParCompactionManager* ParMarkBitMapClosure::compaction_manager() const {
 656   return _compaction_manager;
 657 }
 658 
 659 inline ParMarkBitMap* ParMarkBitMapClosure::bitmap() const {
 660   return _bitmap;
 661 }
 662 
 663 inline size_t ParMarkBitMapClosure::words_remaining() const {
 664   return _words_remaining;
 665 }
 666 
 667 inline bool ParMarkBitMapClosure::is_full() const {
 668   return words_remaining() == 0;
 669 }
 670 
 671 inline HeapWord* ParMarkBitMapClosure::source() const {
 672   return _source;
 673 }
 674 
 675 inline void ParMarkBitMapClosure::set_source(HeapWord* addr) {
 676   _source = addr;
 677 }
 678 
 679 inline void ParMarkBitMapClosure::decrement_words_remaining(size_t words) {
 680   assert(_words_remaining >= words, "processed too many words");
 681   _words_remaining -= words;
 682 }
 683 
 684 // The UseParallelOldGC collector is a stop-the-world garbage collector that
 685 // does parts of the collection using parallel threads.  The collection includes
 686 // the tenured generation and the young generation.  The permanent generation is
 687 // collected at the same time as the other two generations but the permanent
 688 // generation is collect by a single GC thread.  The permanent generation is
 689 // collected serially because of the requirement that during the processing of a
 690 // klass AAA, any objects reference by AAA must already have been processed.
 691 // This requirement is enforced by a left (lower address) to right (higher
 692 // address) sliding compaction.
 693 //
 694 // There are four phases of the collection.
 695 //
 696 //      - marking phase
 697 //      - summary phase
 698 //      - compacting phase
 699 //      - clean up phase
 700 //
 701 // Roughly speaking these phases correspond, respectively, to
 702 //      - mark all the live objects
 703 //      - calculate the destination of each object at the end of the collection
 704 //      - move the objects to their destination
 705 //      - update some references and reinitialize some variables
 706 //
 707 // These three phases are invoked in PSParallelCompact::invoke_no_policy().  The
 708 // marking phase is implemented in PSParallelCompact::marking_phase() and does a
 709 // complete marking of the heap.  The summary phase is implemented in
 710 // PSParallelCompact::summary_phase().  The move and update phase is implemented
 711 // in PSParallelCompact::compact().
 712 //
 713 // A space that is being collected is divided into regions and with each region
 714 // is associated an object of type ParallelCompactData.  Each region is of a
 715 // fixed size and typically will contain more than 1 object and may have parts
 716 // of objects at the front and back of the region.
 717 //
 718 // region            -----+---------------------+----------
 719 // objects covered   [ AAA  )[ BBB )[ CCC   )[ DDD     )
 720 //
 721 // The marking phase does a complete marking of all live objects in the heap.
 722 // The marking also compiles the size of the data for all live objects covered
 723 // by the region.  This size includes the part of any live object spanning onto
 724 // the region (part of AAA if it is live) from the front, all live objects
 725 // contained in the region (BBB and/or CCC if they are live), and the part of
 726 // any live objects covered by the region that extends off the region (part of
 727 // DDD if it is live).  The marking phase uses multiple GC threads and marking
 728 // is done in a bit array of type ParMarkBitMap.  The marking of the bit map is
 729 // done atomically as is the accumulation of the size of the live objects
 730 // covered by a region.
 731 //
 732 // The summary phase calculates the total live data to the left of each region
 733 // XXX.  Based on that total and the bottom of the space, it can calculate the
 734 // starting location of the live data in XXX.  The summary phase calculates for
 735 // each region XXX quantites such as
 736 //
 737 //      - the amount of live data at the beginning of a region from an object
 738 //        entering the region.
 739 //      - the location of the first live data on the region
 740 //      - a count of the number of regions receiving live data from XXX.
 741 //
 742 // See ParallelCompactData for precise details.  The summary phase also
 743 // calculates the dense prefix for the compaction.  The dense prefix is a
 744 // portion at the beginning of the space that is not moved.  The objects in the
 745 // dense prefix do need to have their object references updated.  See method
 746 // summarize_dense_prefix().
 747 //
 748 // The summary phase is done using 1 GC thread.
 749 //
 750 // The compaction phase moves objects to their new location and updates all
 751 // references in the object.
 752 //
 753 // A current exception is that objects that cross a region boundary are moved
 754 // but do not have their references updated.  References are not updated because
 755 // it cannot easily be determined if the klass pointer KKK for the object AAA
 756 // has been updated.  KKK likely resides in a region to the left of the region
 757 // containing AAA.  These AAA's have there references updated at the end in a
 758 // clean up phase.  See the method PSParallelCompact::update_deferred_objects().
 759 // An alternate strategy is being investigated for this deferral of updating.
 760 //
 761 // Compaction is done on a region basis.  A region that is ready to be filled is
 762 // put on a ready list and GC threads take region off the list and fill them.  A
 763 // region is ready to be filled if it empty of live objects.  Such a region may
 764 // have been initially empty (only contained dead objects) or may have had all
 765 // its live objects copied out already.  A region that compacts into itself is
 766 // also ready for filling.  The ready list is initially filled with empty
 767 // regions and regions compacting into themselves.  There is always at least 1
 768 // region that can be put on the ready list.  The regions are atomically added
 769 // and removed from the ready list.
 770 
 771 class PSParallelCompact : AllStatic {
 772  public:
 773   // Convenient access to type names.
 774   typedef ParMarkBitMap::idx_t idx_t;
 775   typedef ParallelCompactData::RegionData RegionData;
 776 
 777   typedef enum {
 778     old_space_id, eden_space_id,
 779     from_space_id, to_space_id, last_space_id
 780   } SpaceId;
 781 
 782  public:
 783   // Inline closure decls
 784   //
 785   class IsAliveClosure: public BoolObjectClosure {
 786    public:
 787     virtual void do_object(oop p);
 788     virtual bool do_object_b(oop p);
 789   };
 790 
 791   class KeepAliveClosure: public OopClosure {
 792    private:
 793     ParCompactionManager* _compaction_manager;
 794    protected:
 795     template <class T> inline void do_oop_work(T* p);
 796    public:
 797     KeepAliveClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
 798     virtual void do_oop(oop* p);
 799     virtual void do_oop(narrowOop* p);
 800   };
 801 
 802   class FollowStackClosure: public VoidClosure {
 803    private:
 804     ParCompactionManager* _compaction_manager;
 805    public:
 806     FollowStackClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
 807     virtual void do_void();
 808   };
 809 
 810   class AdjustPointerClosure: public OopClosure {
 811    public:
 812     virtual void do_oop(oop* p);
 813     virtual void do_oop(narrowOop* p);
 814     // do not walk from thread stacks to the code cache on this phase
 815     virtual void do_code_blob(CodeBlob* cb) const { }
 816   };
 817 
 818   class AdjustKlassClosure : public KlassClosure {
 819    public:
 820     void do_klass(Klass* klass);
 821   };
 822 
 823   friend class KeepAliveClosure;
 824   friend class FollowStackClosure;
 825   friend class AdjustPointerClosure;
 826   friend class AdjustKlassClosure;
 827   friend class FollowKlassClosure;
 828   friend class InstanceClassLoaderKlass;
 829   friend class RefProcTaskProxy;
 830 
 831  private:
 832   static elapsedTimer         _accumulated_time;
 833   static unsigned int         _total_invocations;
 834   static unsigned int         _maximum_compaction_gc_num;
 835   static jlong                _time_of_last_gc;   // ms
 836   static CollectorCounters*   _counters;
 837   static ParMarkBitMap        _mark_bitmap;
 838   static ParallelCompactData  _summary_data;
 839   static IsAliveClosure       _is_alive_closure;
 840   static SpaceInfo            _space_info[last_space_id];
 841   static bool                 _print_phases;
 842   static AdjustPointerClosure _adjust_pointer_closure;
 843   static AdjustKlassClosure   _adjust_klass_closure;
 844 
 845   // Reference processing (used in ...follow_contents)
 846   static ReferenceProcessor*  _ref_processor;
 847 
 848   // Updated location of intArrayKlassObj.
 849   static Klass* _updated_int_array_klass_obj;
 850 
 851   // Values computed at initialization and used by dead_wood_limiter().
 852   static double _dwl_mean;
 853   static double _dwl_std_dev;
 854   static double _dwl_first_term;
 855   static double _dwl_adjustment;
 856 #ifdef  ASSERT
 857   static bool   _dwl_initialized;
 858 #endif  // #ifdef ASSERT
 859 
 860  private:
 861 
 862   static void initialize_space_info();
 863 
 864   // Return true if details about individual phases should be printed.
 865   static inline bool print_phases();
 866 
 867   // Clear the marking bitmap and summary data that cover the specified space.
 868   static void clear_data_covering_space(SpaceId id);
 869 
 870   static void pre_compact(PreGCValues* pre_gc_values);
 871   static void post_compact();
 872 
 873   // Mark live objects
 874   static void marking_phase(ParCompactionManager* cm,
 875                             bool maximum_heap_compaction);
 876 
 877   template <class T>
 878   static inline void follow_root(ParCompactionManager* cm, T* p);
 879 
 880   // Compute the dense prefix for the designated space.  This is an experimental
 881   // implementation currently not used in production.
 882   static HeapWord* compute_dense_prefix_via_density(const SpaceId id,
 883                                                     bool maximum_compaction);
 884 
 885   // Methods used to compute the dense prefix.
 886 
 887   // Compute the value of the normal distribution at x = density.  The mean and
 888   // standard deviation are values saved by initialize_dead_wood_limiter().
 889   static inline double normal_distribution(double density);
 890 
 891   // Initialize the static vars used by dead_wood_limiter().
 892   static void initialize_dead_wood_limiter();
 893 
 894   // Return the percentage of space that can be treated as "dead wood" (i.e.,
 895   // not reclaimed).
 896   static double dead_wood_limiter(double density, size_t min_percent);
 897 
 898   // Find the first (left-most) region in the range [beg, end) that has at least
 899   // dead_words of dead space to the left.  The argument beg must be the first
 900   // region in the space that is not completely live.
 901   static RegionData* dead_wood_limit_region(const RegionData* beg,
 902                                             const RegionData* end,
 903                                             size_t dead_words);
 904 
 905   // Return a pointer to the first region in the range [beg, end) that is not
 906   // completely full.
 907   static RegionData* first_dead_space_region(const RegionData* beg,
 908                                              const RegionData* end);
 909 
 910   // Return a value indicating the benefit or 'yield' if the compacted region
 911   // were to start (or equivalently if the dense prefix were to end) at the
 912   // candidate region.  Higher values are better.
 913   //
 914   // The value is based on the amount of space reclaimed vs. the costs of (a)
 915   // updating references in the dense prefix plus (b) copying objects and
 916   // updating references in the compacted region.
 917   static inline double reclaimed_ratio(const RegionData* const candidate,
 918                                        HeapWord* const bottom,
 919                                        HeapWord* const top,
 920                                        HeapWord* const new_top);
 921 
 922   // Compute the dense prefix for the designated space.
 923   static HeapWord* compute_dense_prefix(const SpaceId id,
 924                                         bool maximum_compaction);
 925 
 926   // Return true if dead space crosses onto the specified Region; bit must be
 927   // the bit index corresponding to the first word of the Region.
 928   static inline bool dead_space_crosses_boundary(const RegionData* region,
 929                                                  idx_t bit);
 930 
 931   // Summary phase utility routine to fill dead space (if any) at the dense
 932   // prefix boundary.  Should only be called if the the dense prefix is
 933   // non-empty.
 934   static void fill_dense_prefix_end(SpaceId id);
 935 
 936   // Clear the summary data source_region field for the specified addresses.
 937   static void clear_source_region(HeapWord* beg_addr, HeapWord* end_addr);
 938 
 939 #ifndef PRODUCT
 940   // Routines to provoke splitting a young gen space (ParallelOldGCSplitALot).
 941 
 942   // Fill the region [start, start + words) with live object(s).  Only usable
 943   // for the old and permanent generations.
 944   static void fill_with_live_objects(SpaceId id, HeapWord* const start,
 945                                      size_t words);
 946   // Include the new objects in the summary data.
 947   static void summarize_new_objects(SpaceId id, HeapWord* start);
 948 
 949   // Add live objects to a survivor space since it's rare that both survivors
 950   // are non-empty.
 951   static void provoke_split_fill_survivor(SpaceId id);
 952 
 953   // Add live objects and/or choose the dense prefix to provoke splitting.
 954   static void provoke_split(bool & maximum_compaction);
 955 #endif
 956 
 957   static void summarize_spaces_quick();
 958   static void summarize_space(SpaceId id, bool maximum_compaction);
 959   static void summary_phase(ParCompactionManager* cm, bool maximum_compaction);
 960 
 961   // Adjust addresses in roots.  Does not adjust addresses in heap.
 962   static void adjust_roots();
 963 
 964   // Move objects to new locations.
 965   static void compact_perm(ParCompactionManager* cm);
 966   static void compact();
 967 
 968   // Add available regions to the stack and draining tasks to the task queue.
 969   static void enqueue_region_draining_tasks(GCTaskQueue* q,
 970                                             uint parallel_gc_threads);
 971 
 972   // Add dense prefix update tasks to the task queue.
 973   static void enqueue_dense_prefix_tasks(GCTaskQueue* q,
 974                                          uint parallel_gc_threads);
 975 
 976   // Add region stealing tasks to the task queue.
 977   static void enqueue_region_stealing_tasks(
 978                                        GCTaskQueue* q,
 979                                        ParallelTaskTerminator* terminator_ptr,
 980                                        uint parallel_gc_threads);
 981 
 982   // If objects are left in eden after a collection, try to move the boundary
 983   // and absorb them into the old gen.  Returns true if eden was emptied.
 984   static bool absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
 985                                          PSYoungGen* young_gen,
 986                                          PSOldGen* old_gen);
 987 
 988   // Reset time since last full gc
 989   static void reset_millis_since_last_gc();
 990 
 991  public:
 992   class MarkAndPushClosure: public OopClosure {
 993    private:
 994     ParCompactionManager* _compaction_manager;
 995    public:
 996     MarkAndPushClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
 997     virtual void do_oop(oop* p);
 998     virtual void do_oop(narrowOop* p);
 999   };
1000 
1001   // The one and only place to start following the classes.
1002   // Should only be applied to the ClassLoaderData klasses list.
1003   class FollowKlassClosure : public KlassClosure {
1004    private:
1005     MarkAndPushClosure* _mark_and_push_closure;
1006    public:
1007     FollowKlassClosure(MarkAndPushClosure* mark_and_push_closure) :
1008         _mark_and_push_closure(mark_and_push_closure) { }
1009     void do_klass(Klass* klass);
1010   };
1011 
1012   PSParallelCompact();
1013 
1014   // Convenient accessor for Universe::heap().
1015   static ParallelScavengeHeap* gc_heap() {
1016     return (ParallelScavengeHeap*)Universe::heap();
1017   }
1018 
1019   static void invoke(bool maximum_heap_compaction);
1020   static bool invoke_no_policy(bool maximum_heap_compaction);
1021 
1022   static void post_initialize();
1023   // Perform initialization for PSParallelCompact that requires
1024   // allocations.  This should be called during the VM initialization
1025   // at a pointer where it would be appropriate to return a JNI_ENOMEM
1026   // in the event of a failure.
1027   static bool initialize();
1028 
1029   // Closure accessors
1030   static OopClosure* adjust_pointer_closure()      { return (OopClosure*)&_adjust_pointer_closure; }
1031   static KlassClosure* adjust_klass_closure()      { return (KlassClosure*)&_adjust_klass_closure; }
1032   static BoolObjectClosure* is_alive_closure()     { return (BoolObjectClosure*)&_is_alive_closure; }
1033 
1034   // Public accessors
1035   static elapsedTimer* accumulated_time() { return &_accumulated_time; }
1036   static unsigned int total_invocations() { return _total_invocations; }
1037   static CollectorCounters* counters()    { return _counters; }
1038 
1039   // Used to add tasks
1040   static GCTaskManager* const gc_task_manager();
1041   static Klass* updated_int_array_klass_obj() {
1042     return _updated_int_array_klass_obj;
1043   }
1044 
1045   // Marking support
1046   static inline bool mark_obj(oop obj);
1047   static inline bool is_marked(oop obj);
1048   // Check mark and maybe push on marking stack
1049   template <class T> static inline void mark_and_push(ParCompactionManager* cm,
1050                                                       T* p);
1051   template <class T> static inline void adjust_pointer(T* p);
1052 
1053   static void follow_klass(ParCompactionManager* cm, Klass* klass);
1054   static void adjust_klass(ParCompactionManager* cm, Klass* klass);
1055 
1056   static void follow_class_loader(ParCompactionManager* cm,
1057                                   ClassLoaderData* klass);
1058   static void adjust_class_loader(ParCompactionManager* cm,
1059                                   ClassLoaderData* klass);
1060 
1061   // Compaction support.
1062   // Return true if p is in the range [beg_addr, end_addr).
1063   static inline bool is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr);
1064   static inline bool is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr);
1065 
1066   // Convenience wrappers for per-space data kept in _space_info.
1067   static inline MutableSpace*     space(SpaceId space_id);
1068   static inline HeapWord*         new_top(SpaceId space_id);
1069   static inline HeapWord*         dense_prefix(SpaceId space_id);
1070   static inline ObjectStartArray* start_array(SpaceId space_id);
1071 
1072   // Move and update the live objects in the specified space.
1073   static void move_and_update(ParCompactionManager* cm, SpaceId space_id);
1074 
1075   // Process the end of the given region range in the dense prefix.
1076   // This includes saving any object not updated.
1077   static void dense_prefix_regions_epilogue(ParCompactionManager* cm,
1078                                             size_t region_start_index,
1079                                             size_t region_end_index,
1080                                             idx_t exiting_object_offset,
1081                                             idx_t region_offset_start,
1082                                             idx_t region_offset_end);
1083 
1084   // Update a region in the dense prefix.  For each live object
1085   // in the region, update it's interior references.  For each
1086   // dead object, fill it with deadwood. Dead space at the end
1087   // of a region range will be filled to the start of the next
1088   // live object regardless of the region_index_end.  None of the
1089   // objects in the dense prefix move and dead space is dead
1090   // (holds only dead objects that don't need any processing), so
1091   // dead space can be filled in any order.
1092   static void update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
1093                                                   SpaceId space_id,
1094                                                   size_t region_index_start,
1095                                                   size_t region_index_end);
1096 
1097   // Return the address of the count + 1st live word in the range [beg, end).
1098   static HeapWord* skip_live_words(HeapWord* beg, HeapWord* end, size_t count);
1099 
1100   // Return the address of the word to be copied to dest_addr, which must be
1101   // aligned to a region boundary.
1102   static HeapWord* first_src_addr(HeapWord* const dest_addr,
1103                                   SpaceId src_space_id,
1104                                   size_t src_region_idx);
1105 
1106   // Determine the next source region, set closure.source() to the start of the
1107   // new region return the region index.  Parameter end_addr is the address one
1108   // beyond the end of source range just processed.  If necessary, switch to a
1109   // new source space and set src_space_id (in-out parameter) and src_space_top
1110   // (out parameter) accordingly.
1111   static size_t next_src_region(MoveAndUpdateClosure& closure,
1112                                 SpaceId& src_space_id,
1113                                 HeapWord*& src_space_top,
1114                                 HeapWord* end_addr);
1115 
1116   // Decrement the destination count for each non-empty source region in the
1117   // range [beg_region, region(region_align_up(end_addr))).  If the destination
1118   // count for a region goes to 0 and it needs to be filled, enqueue it.
1119   static void decrement_destination_counts(ParCompactionManager* cm,
1120                                            SpaceId src_space_id,
1121                                            size_t beg_region,
1122                                            HeapWord* end_addr);
1123 
1124   // Fill a region, copying objects from one or more source regions.
1125   static void fill_region(ParCompactionManager* cm, size_t region_idx);
1126   static void fill_and_update_region(ParCompactionManager* cm, size_t region) {
1127     fill_region(cm, region);
1128   }
1129 
1130   // Update the deferred objects in the space.
1131   static void update_deferred_objects(ParCompactionManager* cm, SpaceId id);
1132 
1133   static ParMarkBitMap* mark_bitmap() { return &_mark_bitmap; }
1134   static ParallelCompactData& summary_data() { return _summary_data; }
1135 
1136   // Reference Processing
1137   static ReferenceProcessor* const ref_processor() { return _ref_processor; }
1138 
1139   // Return the SpaceId for the given address.
1140   static SpaceId space_id(HeapWord* addr);
1141 
1142   // Time since last full gc (in milliseconds).
1143   static jlong millis_since_last_gc();
1144 
1145   static void print_on_error(outputStream* st);
1146 
1147 #ifndef PRODUCT
1148   // Debugging support.
1149   static const char* space_names[last_space_id];
1150   static void print_region_ranges();
1151   static void print_dense_prefix_stats(const char* const algorithm,
1152                                        const SpaceId id,
1153                                        const bool maximum_compaction,
1154                                        HeapWord* const addr);
1155   static void summary_phase_msg(SpaceId dst_space_id,
1156                                 HeapWord* dst_beg, HeapWord* dst_end,
1157                                 SpaceId src_space_id,
1158                                 HeapWord* src_beg, HeapWord* src_end);
1159 #endif  // #ifndef PRODUCT
1160 
1161 #ifdef  ASSERT
1162   // Sanity check the new location of a word in the heap.
1163   static inline void check_new_location(HeapWord* old_addr, HeapWord* new_addr);
1164   // Verify that all the regions have been emptied.
1165   static void verify_complete(SpaceId space_id);
1166 #endif  // #ifdef ASSERT
1167 };
1168 
1169 inline bool PSParallelCompact::mark_obj(oop obj) {
1170   const int obj_size = obj->size();
1171   if (mark_bitmap()->mark_obj(obj, obj_size)) {
1172     _summary_data.add_obj(obj, obj_size);
1173     return true;
1174   } else {
1175     return false;
1176   }
1177 }
1178 
1179 inline bool PSParallelCompact::is_marked(oop obj) {
1180   return mark_bitmap()->is_marked(obj);
1181 }
1182 
1183 template <class T>
1184 inline void PSParallelCompact::follow_root(ParCompactionManager* cm, T* p) {
1185   assert(!Universe::heap()->is_in_reserved(p),
1186          "roots shouldn't be things within the heap");
1187 
1188   T heap_oop = oopDesc::load_heap_oop(p);
1189   if (!oopDesc::is_null(heap_oop)) {
1190     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
1191     if (mark_bitmap()->is_unmarked(obj)) {
1192       if (mark_obj(obj)) {
1193         obj->follow_contents(cm);
1194       }
1195     }
1196   }
1197   cm->follow_marking_stacks();
1198 }
1199 
1200 template <class T>
1201 inline void PSParallelCompact::mark_and_push(ParCompactionManager* cm, T* p) {
1202   T heap_oop = oopDesc::load_heap_oop(p);
1203   if (!oopDesc::is_null(heap_oop)) {
1204     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
1205     if (mark_bitmap()->is_unmarked(obj) && mark_obj(obj)) {
1206       cm->push(obj);
1207     }
1208   }
1209 }
1210 
1211 template <class T>
1212 inline void PSParallelCompact::adjust_pointer(T* p) {
1213   T heap_oop = oopDesc::load_heap_oop(p);
1214   if (!oopDesc::is_null(heap_oop)) {
1215     oop obj     = oopDesc::decode_heap_oop_not_null(heap_oop);
1216     oop new_obj = (oop)summary_data().calc_new_pointer(obj);
1217     assert(new_obj != NULL,                    // is forwarding ptr?
1218            "should be forwarded");
1219     // Just always do the update unconditionally?
1220     if (new_obj != NULL) {
1221       assert(Universe::heap()->is_in_reserved(new_obj),
1222              "should be in object space");
1223       oopDesc::encode_store_heap_oop_not_null(p, new_obj);
1224     }
1225   }
1226 }
1227 
1228 template <class T>
1229 inline void PSParallelCompact::KeepAliveClosure::do_oop_work(T* p) {
1230   mark_and_push(_compaction_manager, p);
1231 }
1232 
1233 inline bool PSParallelCompact::print_phases() {
1234   return _print_phases;
1235 }
1236 
1237 inline double PSParallelCompact::normal_distribution(double density) {
1238   assert(_dwl_initialized, "uninitialized");
1239   const double squared_term = (density - _dwl_mean) / _dwl_std_dev;
1240   return _dwl_first_term * exp(-0.5 * squared_term * squared_term);
1241 }
1242 
1243 inline bool
1244 PSParallelCompact::dead_space_crosses_boundary(const RegionData* region,
1245                                                idx_t bit)
1246 {
1247   assert(bit > 0, "cannot call this for the first bit/region");
1248   assert(_summary_data.region_to_addr(region) == _mark_bitmap.bit_to_addr(bit),
1249          "sanity check");
1250 
1251   // Dead space crosses the boundary if (1) a partial object does not extend
1252   // onto the region, (2) an object does not start at the beginning of the
1253   // region, and (3) an object does not end at the end of the prior region.
1254   return region->partial_obj_size() == 0 &&
1255     !_mark_bitmap.is_obj_beg(bit) &&
1256     !_mark_bitmap.is_obj_end(bit - 1);
1257 }
1258 
1259 inline bool
1260 PSParallelCompact::is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr) {
1261   return p >= beg_addr && p < end_addr;
1262 }
1263 
1264 inline bool
1265 PSParallelCompact::is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr) {
1266   return is_in((HeapWord*)p, beg_addr, end_addr);
1267 }
1268 
1269 inline MutableSpace* PSParallelCompact::space(SpaceId id) {
1270   assert(id < last_space_id, "id out of range");
1271   return _space_info[id].space();
1272 }
1273 
1274 inline HeapWord* PSParallelCompact::new_top(SpaceId id) {
1275   assert(id < last_space_id, "id out of range");
1276   return _space_info[id].new_top();
1277 }
1278 
1279 inline HeapWord* PSParallelCompact::dense_prefix(SpaceId id) {
1280   assert(id < last_space_id, "id out of range");
1281   return _space_info[id].dense_prefix();
1282 }
1283 
1284 inline ObjectStartArray* PSParallelCompact::start_array(SpaceId id) {
1285   assert(id < last_space_id, "id out of range");
1286   return _space_info[id].start_array();
1287 }
1288 
1289 #ifdef ASSERT
1290 inline void
1291 PSParallelCompact::check_new_location(HeapWord* old_addr, HeapWord* new_addr)
1292 {
1293   assert(old_addr >= new_addr || space_id(old_addr) != space_id(new_addr),
1294          "must move left or to a different space");
1295   assert(is_object_aligned((intptr_t)old_addr) && is_object_aligned((intptr_t)new_addr),
1296          "checking alignment");
1297 }
1298 #endif // ASSERT
1299 
1300 class MoveAndUpdateClosure: public ParMarkBitMapClosure {
1301  public:
1302   inline MoveAndUpdateClosure(ParMarkBitMap* bitmap, ParCompactionManager* cm,
1303                               ObjectStartArray* start_array,
1304                               HeapWord* destination, size_t words);
1305 
1306   // Accessors.
1307   HeapWord* destination() const         { return _destination; }
1308 
1309   // If the object will fit (size <= words_remaining()), copy it to the current
1310   // destination, update the interior oops and the start array and return either
1311   // full (if the closure is full) or incomplete.  If the object will not fit,
1312   // return would_overflow.
1313   virtual IterationStatus do_addr(HeapWord* addr, size_t size);
1314 
1315   // Copy enough words to fill this closure, starting at source().  Interior
1316   // oops and the start array are not updated.  Return full.
1317   IterationStatus copy_until_full();
1318 
1319   // Copy enough words to fill this closure or to the end of an object,
1320   // whichever is smaller, starting at source().  Interior oops and the start
1321   // array are not updated.
1322   void copy_partial_obj();
1323 
1324  protected:
1325   // Update variables to indicate that word_count words were processed.
1326   inline void update_state(size_t word_count);
1327 
1328  protected:
1329   ObjectStartArray* const _start_array;
1330   HeapWord*               _destination;         // Next addr to be written.
1331 };
1332 
1333 inline
1334 MoveAndUpdateClosure::MoveAndUpdateClosure(ParMarkBitMap* bitmap,
1335                                            ParCompactionManager* cm,
1336                                            ObjectStartArray* start_array,
1337                                            HeapWord* destination,
1338                                            size_t words) :
1339   ParMarkBitMapClosure(bitmap, cm, words), _start_array(start_array)
1340 {
1341   _destination = destination;
1342 }
1343 
1344 inline void MoveAndUpdateClosure::update_state(size_t words)
1345 {
1346   decrement_words_remaining(words);
1347   _source += words;
1348   _destination += words;
1349 }
1350 
1351 class UpdateOnlyClosure: public ParMarkBitMapClosure {
1352  private:
1353   const PSParallelCompact::SpaceId _space_id;
1354   ObjectStartArray* const          _start_array;
1355 
1356  public:
1357   UpdateOnlyClosure(ParMarkBitMap* mbm,
1358                     ParCompactionManager* cm,
1359                     PSParallelCompact::SpaceId space_id);
1360 
1361   // Update the object.
1362   virtual IterationStatus do_addr(HeapWord* addr, size_t words);
1363 
1364   inline void do_addr(HeapWord* addr);
1365 };
1366 
1367 inline void UpdateOnlyClosure::do_addr(HeapWord* addr)
1368 {
1369   _start_array->allocate_block(addr);
1370   oop(addr)->update_contents(compaction_manager());
1371 }
1372 
1373 class FillClosure: public ParMarkBitMapClosure
1374 {
1375 public:
1376   FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id) :
1377     ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm),
1378     _start_array(PSParallelCompact::start_array(space_id))
1379   {
1380     assert(space_id == PSParallelCompact::old_space_id,
1381            "cannot use FillClosure in the young gen");
1382   }
1383 
1384   virtual IterationStatus do_addr(HeapWord* addr, size_t size) {
1385     CollectedHeap::fill_with_objects(addr, size);
1386     HeapWord* const end = addr + size;
1387     do {
1388       _start_array->allocate_block(addr);
1389       addr += oop(addr)->size();
1390     } while (addr < end);
1391     return ParMarkBitMap::incomplete;
1392   }
1393 
1394 private:
1395   ObjectStartArray* const _start_array;
1396 };
1397 
1398 #endif // SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP