1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "gc_interface/collectedHeap.hpp"
  29 #include "gc_interface/collectedHeap.inline.hpp"
  30 #include "memory/referencePolicy.hpp"
  31 #include "memory/referenceProcessor.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/java.hpp"
  34 #include "runtime/jniHandles.hpp"
  35 
  36 ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
  37 ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
  38 bool             ReferenceProcessor::_pending_list_uses_discovered_field = false;
  39 jlong            ReferenceProcessor::_soft_ref_timestamp_clock = 0;
  40 
  41 void referenceProcessor_init() {
  42   ReferenceProcessor::init_statics();
  43 }
  44 
  45 void ReferenceProcessor::init_statics() {
  46   // We need a monotonically non-deccreasing time in ms but
  47   // os::javaTimeMillis() does not guarantee monotonicity.
  48   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  49 
  50   // Initialize the soft ref timestamp clock.
  51   _soft_ref_timestamp_clock = now;
  52   // Also update the soft ref clock in j.l.r.SoftReference
  53   java_lang_ref_SoftReference::set_clock(_soft_ref_timestamp_clock);
  54 
  55   _always_clear_soft_ref_policy = new AlwaysClearPolicy();
  56   _default_soft_ref_policy      = new COMPILER2_PRESENT(LRUMaxHeapPolicy())
  57                                       NOT_COMPILER2(LRUCurrentHeapPolicy());
  58   if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
  59     vm_exit_during_initialization("Could not allocate reference policy object");
  60   }
  61   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
  62             RefDiscoveryPolicy == ReferentBasedDiscovery,
  63             "Unrecongnized RefDiscoveryPolicy");
  64   _pending_list_uses_discovered_field = JDK_Version::current().pending_list_uses_discovered_field();
  65 }
  66 
  67 void ReferenceProcessor::enable_discovery(bool verify_disabled, bool check_no_refs) {
  68 #ifdef ASSERT
  69   // Verify that we're not currently discovering refs
  70   assert(!verify_disabled || !_discovering_refs, "nested call?");
  71 
  72   if (check_no_refs) {
  73     // Verify that the discovered lists are empty
  74     verify_no_references_recorded();
  75   }
  76 #endif // ASSERT
  77 
  78   // Someone could have modified the value of the static
  79   // field in the j.l.r.SoftReference class that holds the
  80   // soft reference timestamp clock using reflection or
  81   // Unsafe between GCs. Unconditionally update the static
  82   // field in ReferenceProcessor here so that we use the new
  83   // value during reference discovery.
  84 
  85   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
  86   _discovering_refs = true;
  87 }
  88 
  89 ReferenceProcessor::ReferenceProcessor(MemRegion span,
  90                                        bool      mt_processing,
  91                                        uint      mt_processing_degree,
  92                                        bool      mt_discovery,
  93                                        uint      mt_discovery_degree,
  94                                        bool      atomic_discovery,
  95                                        BoolObjectClosure* is_alive_non_header,
  96                                        bool      discovered_list_needs_barrier)  :
  97   _discovering_refs(false),
  98   _enqueuing_is_done(false),
  99   _is_alive_non_header(is_alive_non_header),
 100   _discovered_list_needs_barrier(discovered_list_needs_barrier),
 101   _bs(NULL),
 102   _processing_is_mt(mt_processing),
 103   _next_id(0)
 104 {
 105   _span = span;
 106   _discovery_is_atomic = atomic_discovery;
 107   _discovery_is_mt     = mt_discovery;
 108   _num_q               = MAX2(1U, mt_processing_degree);
 109   _max_num_q           = MAX2(_num_q, mt_discovery_degree);
 110   _discovered_refs     = NEW_C_HEAP_ARRAY(DiscoveredList,
 111             _max_num_q * number_of_subclasses_of_ref(), mtGC);
 112 
 113   if (_discovered_refs == NULL) {
 114     vm_exit_during_initialization("Could not allocated RefProc Array");
 115   }
 116   _discoveredSoftRefs    = &_discovered_refs[0];
 117   _discoveredWeakRefs    = &_discoveredSoftRefs[_max_num_q];
 118   _discoveredFinalRefs   = &_discoveredWeakRefs[_max_num_q];
 119   _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q];
 120 
 121   // Initialize all entries to NULL
 122   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 123     _discovered_refs[i].set_head(NULL);
 124     _discovered_refs[i].set_length(0);
 125   }
 126 
 127   // If we do barriers, cache a copy of the barrier set.
 128   if (discovered_list_needs_barrier) {
 129     _bs = Universe::heap()->barrier_set();
 130   }
 131   setup_policy(false /* default soft ref policy */);
 132 }
 133 
 134 #ifndef PRODUCT
 135 void ReferenceProcessor::verify_no_references_recorded() {
 136   guarantee(!_discovering_refs, "Discovering refs?");
 137   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 138     guarantee(_discovered_refs[i].is_empty(),
 139               "Found non-empty discovered list");
 140   }
 141 }
 142 #endif
 143 
 144 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
 145   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 146     if (UseCompressedOops) {
 147       f->do_oop((narrowOop*)_discovered_refs[i].adr_head());
 148     } else {
 149       f->do_oop((oop*)_discovered_refs[i].adr_head());
 150     }
 151   }
 152 }
 153 
 154 void ReferenceProcessor::update_soft_ref_master_clock() {
 155   // Update (advance) the soft ref master clock field. This must be done
 156   // after processing the soft ref list.
 157 
 158   // We need a monotonically non-deccreasing time in ms but
 159   // os::javaTimeMillis() does not guarantee monotonicity.
 160   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 161   jlong soft_ref_clock = java_lang_ref_SoftReference::clock();
 162   assert(soft_ref_clock == _soft_ref_timestamp_clock, "soft ref clocks out of sync");
 163 
 164   NOT_PRODUCT(
 165   if (now < _soft_ref_timestamp_clock) {
 166     warning("time warp: "INT64_FORMAT" to "INT64_FORMAT,
 167             _soft_ref_timestamp_clock, now);
 168   }
 169   )
 170   // The values of now and _soft_ref_timestamp_clock are set using
 171   // javaTimeNanos(), which is guaranteed to be monotonically
 172   // non-decreasing provided the underlying platform provides such
 173   // a time source (and it is bug free).
 174   // In product mode, however, protect ourselves from non-monotonicty.
 175   if (now > _soft_ref_timestamp_clock) {
 176     _soft_ref_timestamp_clock = now;
 177     java_lang_ref_SoftReference::set_clock(now);
 178   }
 179   // Else leave clock stalled at its old value until time progresses
 180   // past clock value.
 181 }
 182 
 183 void ReferenceProcessor::process_discovered_references(
 184   BoolObjectClosure*           is_alive,
 185   OopClosure*                  keep_alive,
 186   VoidClosure*                 complete_gc,
 187   AbstractRefProcTaskExecutor* task_executor) {
 188   NOT_PRODUCT(verify_ok_to_handle_reflists());
 189 
 190   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
 191   // Stop treating discovered references specially.
 192   disable_discovery();
 193 
 194   // If discovery was concurrent, someone could have modified
 195   // the value of the static field in the j.l.r.SoftReference
 196   // class that holds the soft reference timestamp clock using
 197   // reflection or Unsafe between when discovery was enabled and
 198   // now. Unconditionally update the static field in ReferenceProcessor
 199   // here so that we use the new value during processing of the
 200   // discovered soft refs.
 201 
 202   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
 203 
 204   bool trace_time = PrintGCDetails && PrintReferenceGC;
 205   // Soft references
 206   {
 207     TraceTime tt("SoftReference", trace_time, false, gclog_or_tty);
 208     process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true,
 209                                is_alive, keep_alive, complete_gc, task_executor);
 210   }
 211 
 212   update_soft_ref_master_clock();
 213 
 214   // Weak references
 215   {
 216     TraceTime tt("WeakReference", trace_time, false, gclog_or_tty);
 217     process_discovered_reflist(_discoveredWeakRefs, NULL, true,
 218                                is_alive, keep_alive, complete_gc, task_executor);
 219   }
 220 
 221   // Final references
 222   {
 223     TraceTime tt("FinalReference", trace_time, false, gclog_or_tty);
 224     process_discovered_reflist(_discoveredFinalRefs, NULL, false,
 225                                is_alive, keep_alive, complete_gc, task_executor);
 226   }
 227 
 228   // Phantom references
 229   {
 230     TraceTime tt("PhantomReference", trace_time, false, gclog_or_tty);
 231     process_discovered_reflist(_discoveredPhantomRefs, NULL, false,
 232                                is_alive, keep_alive, complete_gc, task_executor);
 233   }
 234 
 235   // Weak global JNI references. It would make more sense (semantically) to
 236   // traverse these simultaneously with the regular weak references above, but
 237   // that is not how the JDK1.2 specification is. See #4126360. Native code can
 238   // thus use JNI weak references to circumvent the phantom references and
 239   // resurrect a "post-mortem" object.
 240   {
 241     TraceTime tt("JNI Weak Reference", trace_time, false, gclog_or_tty);
 242     if (task_executor != NULL) {
 243       task_executor->set_single_threaded_mode();
 244     }
 245     process_phaseJNI(is_alive, keep_alive, complete_gc);
 246   }
 247 }
 248 
 249 #ifndef PRODUCT
 250 // Calculate the number of jni handles.
 251 uint ReferenceProcessor::count_jni_refs() {
 252   class AlwaysAliveClosure: public BoolObjectClosure {
 253   public:
 254     virtual bool do_object_b(oop obj) { return true; }
 255     virtual void do_object(oop obj) { assert(false, "Don't call"); }
 256   };
 257 
 258   class CountHandleClosure: public OopClosure {
 259   private:
 260     int _count;
 261   public:
 262     CountHandleClosure(): _count(0) {}
 263     void do_oop(oop* unused)       { _count++; }
 264     void do_oop(narrowOop* unused) { ShouldNotReachHere(); }
 265     int count() { return _count; }
 266   };
 267   CountHandleClosure global_handle_count;
 268   AlwaysAliveClosure always_alive;
 269   JNIHandles::weak_oops_do(&always_alive, &global_handle_count);
 270   return global_handle_count.count();
 271 }
 272 #endif
 273 
 274 void ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive,
 275                                           OopClosure*        keep_alive,
 276                                           VoidClosure*       complete_gc) {
 277 #ifndef PRODUCT
 278   if (PrintGCDetails && PrintReferenceGC) {
 279     unsigned int count = count_jni_refs();
 280     gclog_or_tty->print(", %u refs", count);
 281   }
 282 #endif
 283   JNIHandles::weak_oops_do(is_alive, keep_alive);
 284   complete_gc->do_void();
 285 }
 286 
 287 
 288 template <class T>
 289 bool enqueue_discovered_ref_helper(ReferenceProcessor* ref,
 290                                    AbstractRefProcTaskExecutor* task_executor) {
 291 
 292   // Remember old value of pending references list
 293   T* pending_list_addr = (T*)java_lang_ref_Reference::pending_list_addr();
 294   T old_pending_list_value = *pending_list_addr;
 295 
 296   // Enqueue references that are not made active again, and
 297   // clear the decks for the next collection (cycle).
 298   ref->enqueue_discovered_reflists((HeapWord*)pending_list_addr, task_executor);
 299   // Do the oop-check on pending_list_addr missed in
 300   // enqueue_discovered_reflist. We should probably
 301   // do a raw oop_check so that future such idempotent
 302   // oop_stores relying on the oop-check side-effect
 303   // may be elided automatically and safely without
 304   // affecting correctness.
 305   oop_store(pending_list_addr, oopDesc::load_decode_heap_oop(pending_list_addr));
 306 
 307   // Stop treating discovered references specially.
 308   ref->disable_discovery();
 309 
 310   // Return true if new pending references were added
 311   return old_pending_list_value != *pending_list_addr;
 312 }
 313 
 314 bool ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor) {
 315   NOT_PRODUCT(verify_ok_to_handle_reflists());
 316   if (UseCompressedOops) {
 317     return enqueue_discovered_ref_helper<narrowOop>(this, task_executor);
 318   } else {
 319     return enqueue_discovered_ref_helper<oop>(this, task_executor);
 320   }
 321 }
 322 
 323 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list,
 324                                                     HeapWord* pending_list_addr) {
 325   // Given a list of refs linked through the "discovered" field
 326   // (java.lang.ref.Reference.discovered), self-loop their "next" field
 327   // thus distinguishing them from active References, then
 328   // prepend them to the pending list.
 329   // BKWRD COMPATIBILITY NOTE: For older JDKs (prior to the fix for 4956777),
 330   // the "next" field is used to chain the pending list, not the discovered
 331   // field.
 332 
 333   if (TraceReferenceGC && PrintGCDetails) {
 334     gclog_or_tty->print_cr("ReferenceProcessor::enqueue_discovered_reflist list "
 335                            INTPTR_FORMAT, (address)refs_list.head());
 336   }
 337 
 338   oop obj = NULL;
 339   oop next_d = refs_list.head();
 340   if (pending_list_uses_discovered_field()) { // New behaviour
 341     // Walk down the list, self-looping the next field
 342     // so that the References are not considered active.
 343     while (obj != next_d) {
 344       obj = next_d;
 345       assert(obj->is_instanceRef(), "should be reference object");
 346       next_d = java_lang_ref_Reference::discovered(obj);
 347       if (TraceReferenceGC && PrintGCDetails) {
 348         gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
 349                                obj, next_d);
 350       }
 351       assert(java_lang_ref_Reference::next(obj) == NULL,
 352              "Reference not active; should not be discovered");
 353       // Self-loop next, so as to make Ref not active.
 354       java_lang_ref_Reference::set_next(obj, obj);
 355       if (next_d == obj) {  // obj is last
 356         // Swap refs_list into pendling_list_addr and
 357         // set obj's discovered to what we read from pending_list_addr.
 358         oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
 359         // Need oop_check on pending_list_addr above;
 360         // see special oop-check code at the end of
 361         // enqueue_discovered_reflists() further below.
 362         java_lang_ref_Reference::set_discovered(obj, old); // old may be NULL
 363       }
 364     }
 365   } else { // Old behaviour
 366     // Walk down the list, copying the discovered field into
 367     // the next field and clearing the discovered field.
 368     while (obj != next_d) {
 369       obj = next_d;
 370       assert(obj->is_instanceRef(), "should be reference object");
 371       next_d = java_lang_ref_Reference::discovered(obj);
 372       if (TraceReferenceGC && PrintGCDetails) {
 373         gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
 374                                obj, next_d);
 375       }
 376       assert(java_lang_ref_Reference::next(obj) == NULL,
 377              "The reference should not be enqueued");
 378       if (next_d == obj) {  // obj is last
 379         // Swap refs_list into pendling_list_addr and
 380         // set obj's next to what we read from pending_list_addr.
 381         oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
 382         // Need oop_check on pending_list_addr above;
 383         // see special oop-check code at the end of
 384         // enqueue_discovered_reflists() further below.
 385         if (old == NULL) {
 386           // obj should be made to point to itself, since
 387           // pending list was empty.
 388           java_lang_ref_Reference::set_next(obj, obj);
 389         } else {
 390           java_lang_ref_Reference::set_next(obj, old);
 391         }
 392       } else {
 393         java_lang_ref_Reference::set_next(obj, next_d);
 394       }
 395       java_lang_ref_Reference::set_discovered(obj, (oop) NULL);
 396     }
 397   }
 398 }
 399 
 400 // Parallel enqueue task
 401 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
 402 public:
 403   RefProcEnqueueTask(ReferenceProcessor& ref_processor,
 404                      DiscoveredList      discovered_refs[],
 405                      HeapWord*           pending_list_addr,
 406                      int                 n_queues)
 407     : EnqueueTask(ref_processor, discovered_refs,
 408                   pending_list_addr, n_queues)
 409   { }
 410 
 411   virtual void work(unsigned int work_id) {
 412     assert(work_id < (unsigned int)_ref_processor.max_num_q(), "Index out-of-bounds");
 413     // Simplest first cut: static partitioning.
 414     int index = work_id;
 415     // The increment on "index" must correspond to the maximum number of queues
 416     // (n_queues) with which that ReferenceProcessor was created.  That
 417     // is because of the "clever" way the discovered references lists were
 418     // allocated and are indexed into.
 419     assert(_n_queues == (int) _ref_processor.max_num_q(), "Different number not expected");
 420     for (int j = 0;
 421          j < ReferenceProcessor::number_of_subclasses_of_ref();
 422          j++, index += _n_queues) {
 423       _ref_processor.enqueue_discovered_reflist(
 424         _refs_lists[index], _pending_list_addr);
 425       _refs_lists[index].set_head(NULL);
 426       _refs_lists[index].set_length(0);
 427     }
 428   }
 429 };
 430 
 431 // Enqueue references that are not made active again
 432 void ReferenceProcessor::enqueue_discovered_reflists(HeapWord* pending_list_addr,
 433   AbstractRefProcTaskExecutor* task_executor) {
 434   if (_processing_is_mt && task_executor != NULL) {
 435     // Parallel code
 436     RefProcEnqueueTask tsk(*this, _discovered_refs,
 437                            pending_list_addr, _max_num_q);
 438     task_executor->execute(tsk);
 439   } else {
 440     // Serial code: call the parent class's implementation
 441     for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 442       enqueue_discovered_reflist(_discovered_refs[i], pending_list_addr);
 443       _discovered_refs[i].set_head(NULL);
 444       _discovered_refs[i].set_length(0);
 445     }
 446   }
 447 }
 448 
 449 void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
 450   _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref);
 451   oop discovered = java_lang_ref_Reference::discovered(_ref);
 452   assert(_discovered_addr && discovered->is_oop_or_null(),
 453          "discovered field is bad");
 454   _next = discovered;
 455   _referent_addr = java_lang_ref_Reference::referent_addr(_ref);
 456   _referent = java_lang_ref_Reference::referent(_ref);
 457   assert(Universe::heap()->is_in_reserved_or_null(_referent),
 458          "Wrong oop found in java.lang.Reference object");
 459   assert(allow_null_referent ?
 460              _referent->is_oop_or_null()
 461            : _referent->is_oop(),
 462          "bad referent");
 463 }
 464 
 465 void DiscoveredListIterator::remove() {
 466   assert(_ref->is_oop(), "Dropping a bad reference");
 467   oop_store_raw(_discovered_addr, NULL);
 468 
 469   // First _prev_next ref actually points into DiscoveredList (gross).
 470   oop new_next;
 471   if (_next == _ref) {
 472     // At the end of the list, we should make _prev point to itself.
 473     // If _ref is the first ref, then _prev_next will be in the DiscoveredList,
 474     // and _prev will be NULL.
 475     new_next = _prev;
 476   } else {
 477     new_next = _next;
 478   }
 479 
 480   if (UseCompressedOops) {
 481     // Remove Reference object from list.
 482     oopDesc::encode_store_heap_oop((narrowOop*)_prev_next, new_next);
 483   } else {
 484     // Remove Reference object from list.
 485     oopDesc::store_heap_oop((oop*)_prev_next, new_next);
 486   }
 487   NOT_PRODUCT(_removed++);
 488   _refs_list.dec_length(1);
 489 }
 490 
 491 // Make the Reference object active again.
 492 void DiscoveredListIterator::make_active() {
 493   // For G1 we don't want to use set_next - it
 494   // will dirty the card for the next field of
 495   // the reference object and will fail
 496   // CT verification.
 497   if (UseG1GC) {
 498     BarrierSet* bs = oopDesc::bs();
 499     HeapWord* next_addr = java_lang_ref_Reference::next_addr(_ref);
 500 
 501     if (UseCompressedOops) {
 502       bs->write_ref_field_pre((narrowOop*)next_addr, NULL);
 503     } else {
 504       bs->write_ref_field_pre((oop*)next_addr, NULL);
 505     }
 506     java_lang_ref_Reference::set_next_raw(_ref, NULL);
 507   } else {
 508     java_lang_ref_Reference::set_next(_ref, NULL);
 509   }
 510 }
 511 
 512 void DiscoveredListIterator::clear_referent() {
 513   oop_store_raw(_referent_addr, NULL);
 514 }
 515 
 516 // NOTE: process_phase*() are largely similar, and at a high level
 517 // merely iterate over the extant list applying a predicate to
 518 // each of its elements and possibly removing that element from the
 519 // list and applying some further closures to that element.
 520 // We should consider the possibility of replacing these
 521 // process_phase*() methods by abstracting them into
 522 // a single general iterator invocation that receives appropriate
 523 // closures that accomplish this work.
 524 
 525 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
 526 // referents are not alive, but that should be kept alive for policy reasons.
 527 // Keep alive the transitive closure of all such referents.
 528 void
 529 ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
 530                                    ReferencePolicy*   policy,
 531                                    BoolObjectClosure* is_alive,
 532                                    OopClosure*        keep_alive,
 533                                    VoidClosure*       complete_gc) {
 534   assert(policy != NULL, "Must have a non-NULL policy");
 535   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 536   // Decide which softly reachable refs should be kept alive.
 537   while (iter.has_next()) {
 538     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
 539     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
 540     if (referent_is_dead &&
 541         !policy->should_clear_reference(iter.obj(), _soft_ref_timestamp_clock)) {
 542       if (TraceReferenceGC) {
 543         gclog_or_tty->print_cr("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
 544                                iter.obj(), iter.obj()->klass()->internal_name());
 545       }
 546       // Remove Reference object from list
 547       iter.remove();
 548       // Make the Reference object active again
 549       iter.make_active();
 550       // keep the referent around
 551       iter.make_referent_alive();
 552       iter.move_to_next();
 553     } else {
 554       iter.next();
 555     }
 556   }
 557   // Close the reachable set
 558   complete_gc->do_void();
 559   NOT_PRODUCT(
 560     if (PrintGCDetails && TraceReferenceGC) {
 561       gclog_or_tty->print_cr(" Dropped %d dead Refs out of %d "
 562         "discovered Refs by policy, from list " INTPTR_FORMAT,
 563         iter.removed(), iter.processed(), (address)refs_list.head());
 564     }
 565   )
 566 }
 567 
 568 // Traverse the list and remove any Refs that are not active, or
 569 // whose referents are either alive or NULL.
 570 void
 571 ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
 572                              BoolObjectClosure* is_alive,
 573                              OopClosure*        keep_alive) {
 574   assert(discovery_is_atomic(), "Error");
 575   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 576   while (iter.has_next()) {
 577     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 578     DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
 579     assert(next == NULL, "Should not discover inactive Reference");
 580     if (iter.is_referent_alive()) {
 581       if (TraceReferenceGC) {
 582         gclog_or_tty->print_cr("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
 583                                iter.obj(), iter.obj()->klass()->internal_name());
 584       }
 585       // The referent is reachable after all.
 586       // Remove Reference object from list.
 587       iter.remove();
 588       // Update the referent pointer as necessary: Note that this
 589       // should not entail any recursive marking because the
 590       // referent must already have been traversed.
 591       iter.make_referent_alive();
 592       iter.move_to_next();
 593     } else {
 594       iter.next();
 595     }
 596   }
 597   NOT_PRODUCT(
 598     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
 599       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
 600         "Refs in discovered list " INTPTR_FORMAT,
 601         iter.removed(), iter.processed(), (address)refs_list.head());
 602     }
 603   )
 604 }
 605 
 606 void
 607 ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
 608                                                   BoolObjectClosure* is_alive,
 609                                                   OopClosure*        keep_alive,
 610                                                   VoidClosure*       complete_gc) {
 611   assert(!discovery_is_atomic(), "Error");
 612   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 613   while (iter.has_next()) {
 614     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
 615     HeapWord* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
 616     oop next = java_lang_ref_Reference::next(iter.obj());
 617     if ((iter.referent() == NULL || iter.is_referent_alive() ||
 618          next != NULL)) {
 619       assert(next->is_oop_or_null(), "bad next field");
 620       // Remove Reference object from list
 621       iter.remove();
 622       // Trace the cohorts
 623       iter.make_referent_alive();
 624       if (UseCompressedOops) {
 625         keep_alive->do_oop((narrowOop*)next_addr);
 626       } else {
 627         keep_alive->do_oop((oop*)next_addr);
 628       }
 629       iter.move_to_next();
 630     } else {
 631       iter.next();
 632     }
 633   }
 634   // Now close the newly reachable set
 635   complete_gc->do_void();
 636   NOT_PRODUCT(
 637     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
 638       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
 639         "Refs in discovered list " INTPTR_FORMAT,
 640         iter.removed(), iter.processed(), (address)refs_list.head());
 641     }
 642   )
 643 }
 644 
 645 // Traverse the list and process the referents, by either
 646 // clearing them or keeping them (and their reachable
 647 // closure) alive.
 648 void
 649 ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
 650                                    bool               clear_referent,
 651                                    BoolObjectClosure* is_alive,
 652                                    OopClosure*        keep_alive,
 653                                    VoidClosure*       complete_gc) {
 654   ResourceMark rm;
 655   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 656   while (iter.has_next()) {
 657     iter.update_discovered();
 658     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 659     if (clear_referent) {
 660       // NULL out referent pointer
 661       iter.clear_referent();
 662     } else {
 663       // keep the referent around
 664       iter.make_referent_alive();
 665     }
 666     if (TraceReferenceGC) {
 667       gclog_or_tty->print_cr("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
 668                              clear_referent ? "cleared " : "",
 669                              iter.obj(), iter.obj()->klass()->internal_name());
 670     }
 671     assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
 672     iter.next();
 673   }
 674   // Remember to update the next pointer of the last ref.
 675   iter.update_discovered();
 676   // Close the reachable set
 677   complete_gc->do_void();
 678 }
 679 
 680 void
 681 ReferenceProcessor::clear_discovered_references(DiscoveredList& refs_list) {
 682   oop obj = NULL;
 683   oop next = refs_list.head();
 684   while (next != obj) {
 685     obj = next;
 686     next = java_lang_ref_Reference::discovered(obj);
 687     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
 688   }
 689   refs_list.set_head(NULL);
 690   refs_list.set_length(0);
 691 }
 692 
 693 void
 694 ReferenceProcessor::abandon_partial_discovered_list(DiscoveredList& refs_list) {
 695   clear_discovered_references(refs_list);
 696 }
 697 
 698 void ReferenceProcessor::abandon_partial_discovery() {
 699   // loop over the lists
 700   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 701     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
 702       gclog_or_tty->print_cr("\nAbandoning %s discovered list", list_name(i));
 703     }
 704     abandon_partial_discovered_list(_discovered_refs[i]);
 705   }
 706 }
 707 
 708 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
 709 public:
 710   RefProcPhase1Task(ReferenceProcessor& ref_processor,
 711                     DiscoveredList      refs_lists[],
 712                     ReferencePolicy*    policy,
 713                     bool                marks_oops_alive)
 714     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
 715       _policy(policy)
 716   { }
 717   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 718                     OopClosure& keep_alive,
 719                     VoidClosure& complete_gc)
 720   {
 721     Thread* thr = Thread::current();
 722     int refs_list_index = ((WorkerThread*)thr)->id();
 723     _ref_processor.process_phase1(_refs_lists[refs_list_index], _policy,
 724                                   &is_alive, &keep_alive, &complete_gc);
 725   }
 726 private:
 727   ReferencePolicy* _policy;
 728 };
 729 
 730 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
 731 public:
 732   RefProcPhase2Task(ReferenceProcessor& ref_processor,
 733                     DiscoveredList      refs_lists[],
 734                     bool                marks_oops_alive)
 735     : ProcessTask(ref_processor, refs_lists, marks_oops_alive)
 736   { }
 737   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 738                     OopClosure& keep_alive,
 739                     VoidClosure& complete_gc)
 740   {
 741     _ref_processor.process_phase2(_refs_lists[i],
 742                                   &is_alive, &keep_alive, &complete_gc);
 743   }
 744 };
 745 
 746 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
 747 public:
 748   RefProcPhase3Task(ReferenceProcessor& ref_processor,
 749                     DiscoveredList      refs_lists[],
 750                     bool                clear_referent,
 751                     bool                marks_oops_alive)
 752     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
 753       _clear_referent(clear_referent)
 754   { }
 755   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 756                     OopClosure& keep_alive,
 757                     VoidClosure& complete_gc)
 758   {
 759     // Don't use "refs_list_index" calculated in this way because
 760     // balance_queues() has moved the Ref's into the first n queues.
 761     // Thread* thr = Thread::current();
 762     // int refs_list_index = ((WorkerThread*)thr)->id();
 763     // _ref_processor.process_phase3(_refs_lists[refs_list_index], _clear_referent,
 764     _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
 765                                   &is_alive, &keep_alive, &complete_gc);
 766   }
 767 private:
 768   bool _clear_referent;
 769 };
 770 
 771 void ReferenceProcessor::set_discovered(oop ref, oop value) {
 772   if (_discovered_list_needs_barrier) {
 773     java_lang_ref_Reference::set_discovered(ref, value);
 774   } else {
 775     java_lang_ref_Reference::set_discovered_raw(ref, value);
 776   }
 777 }
 778 
 779 // Balances reference queues.
 780 // Move entries from all queues[0, 1, ..., _max_num_q-1] to
 781 // queues[0, 1, ..., _num_q-1] because only the first _num_q
 782 // corresponding to the active workers will be processed.
 783 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
 784 {
 785   // calculate total length
 786   size_t total_refs = 0;
 787   if (TraceReferenceGC && PrintGCDetails) {
 788     gclog_or_tty->print_cr("\nBalance ref_lists ");
 789   }
 790 
 791   for (uint i = 0; i < _max_num_q; ++i) {
 792     total_refs += ref_lists[i].length();
 793     if (TraceReferenceGC && PrintGCDetails) {
 794       gclog_or_tty->print("%d ", ref_lists[i].length());
 795     }
 796   }
 797   if (TraceReferenceGC && PrintGCDetails) {
 798     gclog_or_tty->print_cr(" = %d", total_refs);
 799   }
 800   size_t avg_refs = total_refs / _num_q + 1;
 801   uint to_idx = 0;
 802   for (uint from_idx = 0; from_idx < _max_num_q; from_idx++) {
 803     bool move_all = false;
 804     if (from_idx >= _num_q) {
 805       move_all = ref_lists[from_idx].length() > 0;
 806     }
 807     while ((ref_lists[from_idx].length() > avg_refs) ||
 808            move_all) {
 809       assert(to_idx < _num_q, "Sanity Check!");
 810       if (ref_lists[to_idx].length() < avg_refs) {
 811         // move superfluous refs
 812         size_t refs_to_move;
 813         // Move all the Ref's if the from queue will not be processed.
 814         if (move_all) {
 815           refs_to_move = MIN2(ref_lists[from_idx].length(),
 816                               avg_refs - ref_lists[to_idx].length());
 817         } else {
 818           refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs,
 819                               avg_refs - ref_lists[to_idx].length());
 820         }
 821 
 822         assert(refs_to_move > 0, "otherwise the code below will fail");
 823 
 824         oop move_head = ref_lists[from_idx].head();
 825         oop move_tail = move_head;
 826         oop new_head  = move_head;
 827         // find an element to split the list on
 828         for (size_t j = 0; j < refs_to_move; ++j) {
 829           move_tail = new_head;
 830           new_head = java_lang_ref_Reference::discovered(new_head);
 831         }
 832 
 833         // Add the chain to the to list.
 834         if (ref_lists[to_idx].head() == NULL) {
 835           // to list is empty. Make a loop at the end.
 836           set_discovered(move_tail, move_tail);
 837         } else {
 838           set_discovered(move_tail, ref_lists[to_idx].head());
 839         }
 840         ref_lists[to_idx].set_head(move_head);
 841         ref_lists[to_idx].inc_length(refs_to_move);
 842 
 843         // Remove the chain from the from list.
 844         if (move_tail == new_head) {
 845           // We found the end of the from list.
 846           ref_lists[from_idx].set_head(NULL);
 847         } else {
 848           ref_lists[from_idx].set_head(new_head);
 849         }
 850         ref_lists[from_idx].dec_length(refs_to_move);
 851         if (ref_lists[from_idx].length() == 0) {
 852           break;
 853         }
 854       } else {
 855         to_idx = (to_idx + 1) % _num_q;
 856       }
 857     }
 858   }
 859 #ifdef ASSERT
 860   size_t balanced_total_refs = 0;
 861   for (uint i = 0; i < _max_num_q; ++i) {
 862     balanced_total_refs += ref_lists[i].length();
 863     if (TraceReferenceGC && PrintGCDetails) {
 864       gclog_or_tty->print("%d ", ref_lists[i].length());
 865     }
 866   }
 867   if (TraceReferenceGC && PrintGCDetails) {
 868     gclog_or_tty->print_cr(" = %d", balanced_total_refs);
 869     gclog_or_tty->flush();
 870   }
 871   assert(total_refs == balanced_total_refs, "Balancing was incomplete");
 872 #endif
 873 }
 874 
 875 void ReferenceProcessor::balance_all_queues() {
 876   balance_queues(_discoveredSoftRefs);
 877   balance_queues(_discoveredWeakRefs);
 878   balance_queues(_discoveredFinalRefs);
 879   balance_queues(_discoveredPhantomRefs);
 880 }
 881 
 882 void
 883 ReferenceProcessor::process_discovered_reflist(
 884   DiscoveredList               refs_lists[],
 885   ReferencePolicy*             policy,
 886   bool                         clear_referent,
 887   BoolObjectClosure*           is_alive,
 888   OopClosure*                  keep_alive,
 889   VoidClosure*                 complete_gc,
 890   AbstractRefProcTaskExecutor* task_executor)
 891 {
 892   bool mt_processing = task_executor != NULL && _processing_is_mt;
 893   // If discovery used MT and a dynamic number of GC threads, then
 894   // the queues must be balanced for correctness if fewer than the
 895   // maximum number of queues were used.  The number of queue used
 896   // during discovery may be different than the number to be used
 897   // for processing so don't depend of _num_q < _max_num_q as part
 898   // of the test.
 899   bool must_balance = _discovery_is_mt;
 900 
 901   if ((mt_processing && ParallelRefProcBalancingEnabled) ||
 902       must_balance) {
 903     balance_queues(refs_lists);
 904   }
 905   if (PrintReferenceGC && PrintGCDetails) {
 906     size_t total = 0;
 907     for (uint i = 0; i < _max_num_q; ++i) {
 908       total += refs_lists[i].length();
 909     }
 910     gclog_or_tty->print(", %u refs", total);
 911   }
 912 
 913   // Phase 1 (soft refs only):
 914   // . Traverse the list and remove any SoftReferences whose
 915   //   referents are not alive, but that should be kept alive for
 916   //   policy reasons. Keep alive the transitive closure of all
 917   //   such referents.
 918   if (policy != NULL) {
 919     if (mt_processing) {
 920       RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/);
 921       task_executor->execute(phase1);
 922     } else {
 923       for (uint i = 0; i < _max_num_q; i++) {
 924         process_phase1(refs_lists[i], policy,
 925                        is_alive, keep_alive, complete_gc);
 926       }
 927     }
 928   } else { // policy == NULL
 929     assert(refs_lists != _discoveredSoftRefs,
 930            "Policy must be specified for soft references.");
 931   }
 932 
 933   // Phase 2:
 934   // . Traverse the list and remove any refs whose referents are alive.
 935   if (mt_processing) {
 936     RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/);
 937     task_executor->execute(phase2);
 938   } else {
 939     for (uint i = 0; i < _max_num_q; i++) {
 940       process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
 941     }
 942   }
 943 
 944   // Phase 3:
 945   // . Traverse the list and process referents as appropriate.
 946   if (mt_processing) {
 947     RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/);
 948     task_executor->execute(phase3);
 949   } else {
 950     for (uint i = 0; i < _max_num_q; i++) {
 951       process_phase3(refs_lists[i], clear_referent,
 952                      is_alive, keep_alive, complete_gc);
 953     }
 954   }
 955 }
 956 
 957 void ReferenceProcessor::clean_up_discovered_references() {
 958   // loop over the lists
 959   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 960     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
 961       gclog_or_tty->print_cr(
 962         "\nScrubbing %s discovered list of Null referents",
 963         list_name(i));
 964     }
 965     clean_up_discovered_reflist(_discovered_refs[i]);
 966   }
 967 }
 968 
 969 void ReferenceProcessor::clean_up_discovered_reflist(DiscoveredList& refs_list) {
 970   assert(!discovery_is_atomic(), "Else why call this method?");
 971   DiscoveredListIterator iter(refs_list, NULL, NULL);
 972   while (iter.has_next()) {
 973     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
 974     oop next = java_lang_ref_Reference::next(iter.obj());
 975     assert(next->is_oop_or_null(), "bad next field");
 976     // If referent has been cleared or Reference is not active,
 977     // drop it.
 978     if (iter.referent() == NULL || next != NULL) {
 979       debug_only(
 980         if (PrintGCDetails && TraceReferenceGC) {
 981           gclog_or_tty->print_cr("clean_up_discovered_list: Dropping Reference: "
 982             INTPTR_FORMAT " with next field: " INTPTR_FORMAT
 983             " and referent: " INTPTR_FORMAT,
 984             iter.obj(), next, iter.referent());
 985         }
 986       )
 987       // Remove Reference object from list
 988       iter.remove();
 989       iter.move_to_next();
 990     } else {
 991       iter.next();
 992     }
 993   }
 994   NOT_PRODUCT(
 995     if (PrintGCDetails && TraceReferenceGC) {
 996       gclog_or_tty->print(
 997         " Removed %d Refs with NULL referents out of %d discovered Refs",
 998         iter.removed(), iter.processed());
 999     }
1000   )
1001 }
1002 
1003 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
1004   uint id = 0;
1005   // Determine the queue index to use for this object.
1006   if (_discovery_is_mt) {
1007     // During a multi-threaded discovery phase,
1008     // each thread saves to its "own" list.
1009     Thread* thr = Thread::current();
1010     id = thr->as_Worker_thread()->id();
1011   } else {
1012     // single-threaded discovery, we save in round-robin
1013     // fashion to each of the lists.
1014     if (_processing_is_mt) {
1015       id = next_id();
1016     }
1017   }
1018   assert(0 <= id && id < _max_num_q, "Id is out-of-bounds (call Freud?)");
1019 
1020   // Get the discovered queue to which we will add
1021   DiscoveredList* list = NULL;
1022   switch (rt) {
1023     case REF_OTHER:
1024       // Unknown reference type, no special treatment
1025       break;
1026     case REF_SOFT:
1027       list = &_discoveredSoftRefs[id];
1028       break;
1029     case REF_WEAK:
1030       list = &_discoveredWeakRefs[id];
1031       break;
1032     case REF_FINAL:
1033       list = &_discoveredFinalRefs[id];
1034       break;
1035     case REF_PHANTOM:
1036       list = &_discoveredPhantomRefs[id];
1037       break;
1038     case REF_NONE:
1039       // we should not reach here if we are an InstanceRefKlass
1040     default:
1041       ShouldNotReachHere();
1042   }
1043   if (TraceReferenceGC && PrintGCDetails) {
1044     gclog_or_tty->print_cr("Thread %d gets list " INTPTR_FORMAT, id, list);
1045   }
1046   return list;
1047 }
1048 
1049 inline void
1050 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
1051                                               oop             obj,
1052                                               HeapWord*       discovered_addr) {
1053   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
1054   // First we must make sure this object is only enqueued once. CAS in a non null
1055   // discovered_addr.
1056   oop current_head = refs_list.head();
1057   // The last ref must have its discovered field pointing to itself.
1058   oop next_discovered = (current_head != NULL) ? current_head : obj;
1059 
1060   // Note: In the case of G1, this specific pre-barrier is strictly
1061   // not necessary because the only case we are interested in
1062   // here is when *discovered_addr is NULL (see the CAS further below),
1063   // so this will expand to nothing. As a result, we have manually
1064   // elided this out for G1, but left in the test for some future
1065   // collector that might have need for a pre-barrier here, e.g.:-
1066   // _bs->write_ref_field_pre((oop* or narrowOop*)discovered_addr, next_discovered);
1067   assert(!_discovered_list_needs_barrier || UseG1GC,
1068          "Need to check non-G1 collector: "
1069          "may need a pre-write-barrier for CAS from NULL below");
1070   oop retest = oopDesc::atomic_compare_exchange_oop(next_discovered, discovered_addr,
1071                                                     NULL);
1072   if (retest == NULL) {
1073     // This thread just won the right to enqueue the object.
1074     // We have separate lists for enqueueing, so no synchronization
1075     // is necessary.
1076     refs_list.set_head(obj);
1077     refs_list.inc_length(1);
1078     if (_discovered_list_needs_barrier) {
1079       _bs->write_ref_field((void*)discovered_addr, next_discovered);
1080     }
1081 
1082     if (TraceReferenceGC) {
1083       gclog_or_tty->print_cr("Discovered reference (mt) (" INTPTR_FORMAT ": %s)",
1084                              obj, obj->klass()->internal_name());
1085     }
1086   } else {
1087     // If retest was non NULL, another thread beat us to it:
1088     // The reference has already been discovered...
1089     if (TraceReferenceGC) {
1090       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
1091                              obj, obj->klass()->internal_name());
1092     }
1093   }
1094 }
1095 
1096 #ifndef PRODUCT
1097 // Non-atomic (i.e. concurrent) discovery might allow us
1098 // to observe j.l.References with NULL referents, being those
1099 // cleared concurrently by mutators during (or after) discovery.
1100 void ReferenceProcessor::verify_referent(oop obj) {
1101   bool da = discovery_is_atomic();
1102   oop referent = java_lang_ref_Reference::referent(obj);
1103   assert(da ? referent->is_oop() : referent->is_oop_or_null(),
1104          err_msg("Bad referent " INTPTR_FORMAT " found in Reference "
1105                  INTPTR_FORMAT " during %satomic discovery ",
1106                  (intptr_t)referent, (intptr_t)obj, da ? "" : "non-"));
1107 }
1108 #endif
1109 
1110 // We mention two of several possible choices here:
1111 // #0: if the reference object is not in the "originating generation"
1112 //     (or part of the heap being collected, indicated by our "span"
1113 //     we don't treat it specially (i.e. we scan it as we would
1114 //     a normal oop, treating its references as strong references).
1115 //     This means that references can't be discovered unless their
1116 //     referent is also in the same span. This is the simplest,
1117 //     most "local" and most conservative approach, albeit one
1118 //     that may cause weak references to be enqueued least promptly.
1119 //     We call this choice the "ReferenceBasedDiscovery" policy.
1120 // #1: the reference object may be in any generation (span), but if
1121 //     the referent is in the generation (span) being currently collected
1122 //     then we can discover the reference object, provided
1123 //     the object has not already been discovered by
1124 //     a different concurrently running collector (as may be the
1125 //     case, for instance, if the reference object is in CMS and
1126 //     the referent in DefNewGeneration), and provided the processing
1127 //     of this reference object by the current collector will
1128 //     appear atomic to every other collector in the system.
1129 //     (Thus, for instance, a concurrent collector may not
1130 //     discover references in other generations even if the
1131 //     referent is in its own generation). This policy may,
1132 //     in certain cases, enqueue references somewhat sooner than
1133 //     might Policy #0 above, but at marginally increased cost
1134 //     and complexity in processing these references.
1135 //     We call this choice the "RefeferentBasedDiscovery" policy.
1136 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
1137   // Make sure we are discovering refs (rather than processing discovered refs).
1138   if (!_discovering_refs || !RegisterReferences) {
1139     return false;
1140   }
1141   // We only discover active references.
1142   oop next = java_lang_ref_Reference::next(obj);
1143   if (next != NULL) {   // Ref is no longer active
1144     return false;
1145   }
1146 
1147   HeapWord* obj_addr = (HeapWord*)obj;
1148   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1149       !_span.contains(obj_addr)) {
1150     // Reference is not in the originating generation;
1151     // don't treat it specially (i.e. we want to scan it as a normal
1152     // object with strong references).
1153     return false;
1154   }
1155 
1156   // We only discover references whose referents are not (yet)
1157   // known to be strongly reachable.
1158   if (is_alive_non_header() != NULL) {
1159     verify_referent(obj);
1160     if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) {
1161       return false;  // referent is reachable
1162     }
1163   }
1164   if (rt == REF_SOFT) {
1165     // For soft refs we can decide now if these are not
1166     // current candidates for clearing, in which case we
1167     // can mark through them now, rather than delaying that
1168     // to the reference-processing phase. Since all current
1169     // time-stamp policies advance the soft-ref clock only
1170     // at a major collection cycle, this is always currently
1171     // accurate.
1172     if (!_current_soft_ref_policy->should_clear_reference(obj, _soft_ref_timestamp_clock)) {
1173       return false;
1174     }
1175   }
1176 
1177   ResourceMark rm;      // Needed for tracing.
1178 
1179   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
1180   const oop  discovered = java_lang_ref_Reference::discovered(obj);
1181   assert(discovered->is_oop_or_null(), "bad discovered field");
1182   if (discovered != NULL) {
1183     // The reference has already been discovered...
1184     if (TraceReferenceGC) {
1185       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
1186                              obj, obj->klass()->internal_name());
1187     }
1188     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1189       // assumes that an object is not processed twice;
1190       // if it's been already discovered it must be on another
1191       // generation's discovered list; so we won't discover it.
1192       return false;
1193     } else {
1194       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
1195              "Unrecognized policy");
1196       // Check assumption that an object is not potentially
1197       // discovered twice except by concurrent collectors that potentially
1198       // trace the same Reference object twice.
1199       assert(UseConcMarkSweepGC || UseG1GC,
1200              "Only possible with a concurrent marking collector");
1201       return true;
1202     }
1203   }
1204 
1205   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1206     verify_referent(obj);
1207     // Discover if and only if EITHER:
1208     // .. reference is in our span, OR
1209     // .. we are an atomic collector and referent is in our span
1210     if (_span.contains(obj_addr) ||
1211         (discovery_is_atomic() &&
1212          _span.contains(java_lang_ref_Reference::referent(obj)))) {
1213       // should_enqueue = true;
1214     } else {
1215       return false;
1216     }
1217   } else {
1218     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1219            _span.contains(obj_addr), "code inconsistency");
1220   }
1221 
1222   // Get the right type of discovered queue head.
1223   DiscoveredList* list = get_discovered_list(rt);
1224   if (list == NULL) {
1225     return false;   // nothing special needs to be done
1226   }
1227 
1228   if (_discovery_is_mt) {
1229     add_to_discovered_list_mt(*list, obj, discovered_addr);
1230   } else {
1231     // If "_discovered_list_needs_barrier", we do write barriers when
1232     // updating the discovered reference list.  Otherwise, we do a raw store
1233     // here: the field will be visited later when processing the discovered
1234     // references.
1235     oop current_head = list->head();
1236     // The last ref must have its discovered field pointing to itself.
1237     oop next_discovered = (current_head != NULL) ? current_head : obj;
1238 
1239     // As in the case further above, since we are over-writing a NULL
1240     // pre-value, we can safely elide the pre-barrier here for the case of G1.
1241     // e.g.:- _bs->write_ref_field_pre((oop* or narrowOop*)discovered_addr, next_discovered);
1242     assert(discovered == NULL, "control point invariant");
1243     assert(!_discovered_list_needs_barrier || UseG1GC,
1244            "For non-G1 collector, may need a pre-write-barrier for CAS from NULL below");
1245     oop_store_raw(discovered_addr, next_discovered);
1246     if (_discovered_list_needs_barrier) {
1247       _bs->write_ref_field((void*)discovered_addr, next_discovered);
1248     }
1249     list->set_head(obj);
1250     list->inc_length(1);
1251 
1252     if (TraceReferenceGC) {
1253       gclog_or_tty->print_cr("Discovered reference (" INTPTR_FORMAT ": %s)",
1254                                 obj, obj->klass()->internal_name());
1255     }
1256   }
1257   assert(obj->is_oop(), "Discovered a bad reference");
1258   verify_referent(obj);
1259   return true;
1260 }
1261 
1262 // Preclean the discovered references by removing those
1263 // whose referents are alive, and by marking from those that
1264 // are not active. These lists can be handled here
1265 // in any order and, indeed, concurrently.
1266 void ReferenceProcessor::preclean_discovered_references(
1267   BoolObjectClosure* is_alive,
1268   OopClosure* keep_alive,
1269   VoidClosure* complete_gc,
1270   YieldClosure* yield) {
1271 
1272   NOT_PRODUCT(verify_ok_to_handle_reflists());
1273 
1274   // Soft references
1275   {
1276     TraceTime tt("Preclean SoftReferences", PrintGCDetails && PrintReferenceGC,
1277               false, gclog_or_tty);
1278     for (uint i = 0; i < _max_num_q; i++) {
1279       if (yield->should_return()) {
1280         return;
1281       }
1282       preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
1283                                   keep_alive, complete_gc, yield);
1284     }
1285   }
1286 
1287   // Weak references
1288   {
1289     TraceTime tt("Preclean WeakReferences", PrintGCDetails && PrintReferenceGC,
1290               false, gclog_or_tty);
1291     for (uint i = 0; i < _max_num_q; i++) {
1292       if (yield->should_return()) {
1293         return;
1294       }
1295       preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
1296                                   keep_alive, complete_gc, yield);
1297     }
1298   }
1299 
1300   // Final references
1301   {
1302     TraceTime tt("Preclean FinalReferences", PrintGCDetails && PrintReferenceGC,
1303               false, gclog_or_tty);
1304     for (uint i = 0; i < _max_num_q; i++) {
1305       if (yield->should_return()) {
1306         return;
1307       }
1308       preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
1309                                   keep_alive, complete_gc, yield);
1310     }
1311   }
1312 
1313   // Phantom references
1314   {
1315     TraceTime tt("Preclean PhantomReferences", PrintGCDetails && PrintReferenceGC,
1316               false, gclog_or_tty);
1317     for (uint i = 0; i < _max_num_q; i++) {
1318       if (yield->should_return()) {
1319         return;
1320       }
1321       preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
1322                                   keep_alive, complete_gc, yield);
1323     }
1324   }
1325 }
1326 
1327 // Walk the given discovered ref list, and remove all reference objects
1328 // whose referents are still alive, whose referents are NULL or which
1329 // are not active (have a non-NULL next field). NOTE: When we are
1330 // thus precleaning the ref lists (which happens single-threaded today),
1331 // we do not disable refs discovery to honour the correct semantics of
1332 // java.lang.Reference. As a result, we need to be careful below
1333 // that ref removal steps interleave safely with ref discovery steps
1334 // (in this thread).
1335 void
1336 ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
1337                                                 BoolObjectClosure* is_alive,
1338                                                 OopClosure*        keep_alive,
1339                                                 VoidClosure*       complete_gc,
1340                                                 YieldClosure*      yield) {
1341   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
1342   while (iter.has_next()) {
1343     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
1344     oop obj = iter.obj();
1345     oop next = java_lang_ref_Reference::next(obj);
1346     if (iter.referent() == NULL || iter.is_referent_alive() ||
1347         next != NULL) {
1348       // The referent has been cleared, or is alive, or the Reference is not
1349       // active; we need to trace and mark its cohort.
1350       if (TraceReferenceGC) {
1351         gclog_or_tty->print_cr("Precleaning Reference (" INTPTR_FORMAT ": %s)",
1352                                iter.obj(), iter.obj()->klass()->internal_name());
1353       }
1354       // Remove Reference object from list
1355       iter.remove();
1356       // Keep alive its cohort.
1357       iter.make_referent_alive();
1358       if (UseCompressedOops) {
1359         narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr(obj);
1360         keep_alive->do_oop(next_addr);
1361       } else {
1362         oop* next_addr = (oop*)java_lang_ref_Reference::next_addr(obj);
1363         keep_alive->do_oop(next_addr);
1364       }
1365       iter.move_to_next();
1366     } else {
1367       iter.next();
1368     }
1369   }
1370   // Close the reachable set
1371   complete_gc->do_void();
1372 
1373   NOT_PRODUCT(
1374     if (PrintGCDetails && PrintReferenceGC && (iter.processed() > 0)) {
1375       gclog_or_tty->print_cr(" Dropped %d Refs out of %d "
1376         "Refs in discovered list " INTPTR_FORMAT,
1377         iter.removed(), iter.processed(), (address)refs_list.head());
1378     }
1379   )
1380 }
1381 
1382 const char* ReferenceProcessor::list_name(uint i) {
1383    assert(i >= 0 && i <= _max_num_q * number_of_subclasses_of_ref(),
1384           "Out of bounds index");
1385 
1386    int j = i / _max_num_q;
1387    switch (j) {
1388      case 0: return "SoftRef";
1389      case 1: return "WeakRef";
1390      case 2: return "FinalRef";
1391      case 3: return "PhantomRef";
1392    }
1393    ShouldNotReachHere();
1394    return NULL;
1395 }
1396 
1397 #ifndef PRODUCT
1398 void ReferenceProcessor::verify_ok_to_handle_reflists() {
1399   // empty for now
1400 }
1401 #endif
1402 
1403 #ifndef PRODUCT
1404 void ReferenceProcessor::clear_discovered_references() {
1405   guarantee(!_discovering_refs, "Discovering refs?");
1406   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
1407     clear_discovered_references(_discovered_refs[i]);
1408   }
1409 }
1410 
1411 #endif // PRODUCT