1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "gc_interface/collectedHeap.hpp"
  29 #include "gc_interface/collectedHeap.inline.hpp"
  30 #include "memory/referencePolicy.hpp"
  31 #include "memory/referenceProcessor.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/java.hpp"
  34 #include "runtime/jniHandles.hpp"
  35 
  36 ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
  37 ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
  38 bool             ReferenceProcessor::_pending_list_uses_discovered_field = false;
  39 jlong            ReferenceProcessor::_soft_ref_timestamp_clock = 0;
  40 
  41 void referenceProcessor_init() {
  42   ReferenceProcessor::init_statics();
  43 }
  44 
  45 void ReferenceProcessor::init_statics() {
  46   // We need a monotonically non-deccreasing time in ms but
  47   // os::javaTimeMillis() does not guarantee monotonicity.
  48   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  49 
  50   // Initialize the soft ref timestamp clock.
  51   _soft_ref_timestamp_clock = now;
  52   // Also update the soft ref clock in j.l.r.SoftReference
  53   java_lang_ref_SoftReference::set_clock(_soft_ref_timestamp_clock);
  54 
  55   _always_clear_soft_ref_policy = new AlwaysClearPolicy();
  56   _default_soft_ref_policy      = new COMPILER2_PRESENT(LRUMaxHeapPolicy())
  57                                       NOT_COMPILER2(LRUCurrentHeapPolicy());
  58   if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
  59     vm_exit_during_initialization("Could not allocate reference policy object");
  60   }
  61   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
  62             RefDiscoveryPolicy == ReferentBasedDiscovery,
  63             "Unrecongnized RefDiscoveryPolicy");
  64   _pending_list_uses_discovered_field = JDK_Version::current().pending_list_uses_discovered_field();
  65 }
  66 
  67 void ReferenceProcessor::enable_discovery(bool verify_disabled, bool check_no_refs) {
  68 #ifdef ASSERT
  69   // Verify that we're not currently discovering refs
  70   assert(!verify_disabled || !_discovering_refs, "nested call?");
  71 
  72   if (check_no_refs) {
  73     // Verify that the discovered lists are empty
  74     verify_no_references_recorded();
  75   }
  76 #endif // ASSERT
  77 
  78   // Someone could have modified the value of the static
  79   // field in the j.l.r.SoftReference class that holds the
  80   // soft reference timestamp clock using reflection or
  81   // Unsafe between GCs. Unconditionally update the static
  82   // field in ReferenceProcessor here so that we use the new
  83   // value during reference discovery.
  84 
  85   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
  86   _discovering_refs = true;
  87 }
  88 
  89 ReferenceProcessor::ReferenceProcessor(MemRegion span,
  90                                        bool      mt_processing,
  91                                        uint      mt_processing_degree,
  92                                        bool      mt_discovery,
  93                                        uint      mt_discovery_degree,
  94                                        bool      atomic_discovery,
  95                                        BoolObjectClosure* is_alive_non_header,
  96                                        bool      discovered_list_needs_barrier)  :
  97   _discovering_refs(false),
  98   _enqueuing_is_done(false),
  99   _is_alive_non_header(is_alive_non_header),
 100   _discovered_list_needs_barrier(discovered_list_needs_barrier),
 101   _bs(NULL),
 102   _processing_is_mt(mt_processing),
 103   _next_id(0)
 104 {
 105   _span = span;
 106   _discovery_is_atomic = atomic_discovery;
 107   _discovery_is_mt     = mt_discovery;
 108   _num_q               = MAX2(1U, mt_processing_degree);
 109   _max_num_q           = MAX2(_num_q, mt_discovery_degree);
 110   _discovered_refs     = NEW_C_HEAP_ARRAY(DiscoveredList,
 111             _max_num_q * number_of_subclasses_of_ref(), mtGC);
 112 
 113   if (_discovered_refs == NULL) {
 114     vm_exit_during_initialization("Could not allocated RefProc Array");
 115   }
 116   _discoveredSoftRefs    = &_discovered_refs[0];
 117   _discoveredWeakRefs    = &_discoveredSoftRefs[_max_num_q];
 118   _discoveredFinalRefs   = &_discoveredWeakRefs[_max_num_q];
 119   _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q];
 120 
 121   // Initialize all entries to NULL
 122   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 123     _discovered_refs[i].set_head(NULL);
 124     _discovered_refs[i].set_length(0);
 125   }
 126 
 127   // If we do barriers, cache a copy of the barrier set.
 128   if (discovered_list_needs_barrier) {
 129     _bs = Universe::heap()->barrier_set();
 130   }
 131   setup_policy(false /* default soft ref policy */);
 132 }
 133 
 134 #ifndef PRODUCT
 135 void ReferenceProcessor::verify_no_references_recorded() {
 136   guarantee(!_discovering_refs, "Discovering refs?");
 137   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 138     guarantee(_discovered_refs[i].is_empty(),
 139               "Found non-empty discovered list");
 140   }
 141 }
 142 #endif
 143 
 144 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
 145   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 146     if (UseCompressedOops) {
 147       f->do_oop((narrowOop*)_discovered_refs[i].adr_head());
 148     } else {
 149       f->do_oop((oop*)_discovered_refs[i].adr_head());
 150     }
 151   }
 152 }
 153 
 154 void ReferenceProcessor::update_soft_ref_master_clock() {
 155   // Update (advance) the soft ref master clock field. This must be done
 156   // after processing the soft ref list.
 157 
 158   // We need a monotonically non-deccreasing time in ms but
 159   // os::javaTimeMillis() does not guarantee monotonicity.
 160   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 161   jlong soft_ref_clock = java_lang_ref_SoftReference::clock();
 162   assert(soft_ref_clock == _soft_ref_timestamp_clock, "soft ref clocks out of sync");
 163 
 164   NOT_PRODUCT(
 165   if (now < _soft_ref_timestamp_clock) {
 166     warning("time warp: "INT64_FORMAT" to "INT64_FORMAT,
 167             _soft_ref_timestamp_clock, now);
 168   }
 169   )
 170   // The values of now and _soft_ref_timestamp_clock are set using
 171   // javaTimeNanos(), which is guaranteed to be monotonically
 172   // non-decreasing provided the underlying platform provides such
 173   // a time source (and it is bug free).
 174   // In product mode, however, protect ourselves from non-monotonicty.
 175   if (now > _soft_ref_timestamp_clock) {
 176     _soft_ref_timestamp_clock = now;
 177     java_lang_ref_SoftReference::set_clock(now);
 178   }
 179   // Else leave clock stalled at its old value until time progresses
 180   // past clock value.
 181 }
 182 
 183 void ReferenceProcessor::process_discovered_references(
 184   BoolObjectClosure*           is_alive,
 185   OopClosure*                  keep_alive,
 186   VoidClosure*                 complete_gc,
 187   AbstractRefProcTaskExecutor* task_executor) {
 188   NOT_PRODUCT(verify_ok_to_handle_reflists());
 189 
 190   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
 191   // Stop treating discovered references specially.
 192   disable_discovery();
 193 
 194   // If discovery was concurrent, someone could have modified
 195   // the value of the static field in the j.l.r.SoftReference
 196   // class that holds the soft reference timestamp clock using
 197   // reflection or Unsafe between when discovery was enabled and
 198   // now. Unconditionally update the static field in ReferenceProcessor
 199   // here so that we use the new value during processing of the
 200   // discovered soft refs.
 201 
 202   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
 203 
 204   bool trace_time = PrintGCDetails && PrintReferenceGC;
 205   // Soft references
 206   {
 207     TraceTime tt("SoftReference", trace_time, false, gclog_or_tty);
 208     process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true,
 209                                is_alive, keep_alive, complete_gc, task_executor);
 210   }
 211 
 212   update_soft_ref_master_clock();
 213 
 214   // Weak references
 215   {
 216     TraceTime tt("WeakReference", trace_time, false, gclog_or_tty);
 217     process_discovered_reflist(_discoveredWeakRefs, NULL, true,
 218                                is_alive, keep_alive, complete_gc, task_executor);
 219   }
 220 
 221   // Final references
 222   {
 223     TraceTime tt("FinalReference", trace_time, false, gclog_or_tty);
 224     process_discovered_reflist(_discoveredFinalRefs, NULL, false,
 225                                is_alive, keep_alive, complete_gc, task_executor);
 226   }
 227 
 228   // Phantom references
 229   {
 230     TraceTime tt("PhantomReference", trace_time, false, gclog_or_tty);
 231     process_discovered_reflist(_discoveredPhantomRefs, NULL, false,
 232                                is_alive, keep_alive, complete_gc, task_executor);
 233   }
 234 
 235   // Weak global JNI references. It would make more sense (semantically) to
 236   // traverse these simultaneously with the regular weak references above, but
 237   // that is not how the JDK1.2 specification is. See #4126360. Native code can
 238   // thus use JNI weak references to circumvent the phantom references and
 239   // resurrect a "post-mortem" object.
 240   {
 241     TraceTime tt("JNI Weak Reference", trace_time, false, gclog_or_tty);
 242     if (task_executor != NULL) {
 243       task_executor->set_single_threaded_mode();
 244     }
 245     process_phaseJNI(is_alive, keep_alive, complete_gc);
 246   }
 247 }
 248 
 249 #ifndef PRODUCT
 250 // Calculate the number of jni handles.
 251 uint ReferenceProcessor::count_jni_refs() {
 252   class AlwaysAliveClosure: public BoolObjectClosure {
 253   public:
 254     virtual bool do_object_b(oop obj) { return true; }
 255   };
 256 
 257   class CountHandleClosure: public OopClosure {
 258   private:
 259     int _count;
 260   public:
 261     CountHandleClosure(): _count(0) {}
 262     void do_oop(oop* unused)       { _count++; }
 263     void do_oop(narrowOop* unused) { ShouldNotReachHere(); }
 264     int count() { return _count; }
 265   };
 266   CountHandleClosure global_handle_count;
 267   AlwaysAliveClosure always_alive;
 268   JNIHandles::weak_oops_do(&always_alive, &global_handle_count);
 269   return global_handle_count.count();
 270 }
 271 #endif
 272 
 273 void ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive,
 274                                           OopClosure*        keep_alive,
 275                                           VoidClosure*       complete_gc) {
 276 #ifndef PRODUCT
 277   if (PrintGCDetails && PrintReferenceGC) {
 278     unsigned int count = count_jni_refs();
 279     gclog_or_tty->print(", %u refs", count);
 280   }
 281 #endif
 282   JNIHandles::weak_oops_do(is_alive, keep_alive);
 283   complete_gc->do_void();
 284 }
 285 
 286 
 287 template <class T>
 288 bool enqueue_discovered_ref_helper(ReferenceProcessor* ref,
 289                                    AbstractRefProcTaskExecutor* task_executor) {
 290 
 291   // Remember old value of pending references list
 292   T* pending_list_addr = (T*)java_lang_ref_Reference::pending_list_addr();
 293   T old_pending_list_value = *pending_list_addr;
 294 
 295   // Enqueue references that are not made active again, and
 296   // clear the decks for the next collection (cycle).
 297   ref->enqueue_discovered_reflists((HeapWord*)pending_list_addr, task_executor);
 298   // Do the oop-check on pending_list_addr missed in
 299   // enqueue_discovered_reflist. We should probably
 300   // do a raw oop_check so that future such idempotent
 301   // oop_stores relying on the oop-check side-effect
 302   // may be elided automatically and safely without
 303   // affecting correctness.
 304   oop_store(pending_list_addr, oopDesc::load_decode_heap_oop(pending_list_addr));
 305 
 306   // Stop treating discovered references specially.
 307   ref->disable_discovery();
 308 
 309   // Return true if new pending references were added
 310   return old_pending_list_value != *pending_list_addr;
 311 }
 312 
 313 bool ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor) {
 314   NOT_PRODUCT(verify_ok_to_handle_reflists());
 315   if (UseCompressedOops) {
 316     return enqueue_discovered_ref_helper<narrowOop>(this, task_executor);
 317   } else {
 318     return enqueue_discovered_ref_helper<oop>(this, task_executor);
 319   }
 320 }
 321 
 322 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list,
 323                                                     HeapWord* pending_list_addr) {
 324   // Given a list of refs linked through the "discovered" field
 325   // (java.lang.ref.Reference.discovered), self-loop their "next" field
 326   // thus distinguishing them from active References, then
 327   // prepend them to the pending list.
 328   // BKWRD COMPATIBILITY NOTE: For older JDKs (prior to the fix for 4956777),
 329   // the "next" field is used to chain the pending list, not the discovered
 330   // field.
 331 
 332   if (TraceReferenceGC && PrintGCDetails) {
 333     gclog_or_tty->print_cr("ReferenceProcessor::enqueue_discovered_reflist list "
 334                            INTPTR_FORMAT, (address)refs_list.head());
 335   }
 336 
 337   oop obj = NULL;
 338   oop next_d = refs_list.head();
 339   if (pending_list_uses_discovered_field()) { // New behaviour
 340     // Walk down the list, self-looping the next field
 341     // so that the References are not considered active.
 342     while (obj != next_d) {
 343       obj = next_d;
 344       assert(obj->is_instanceRef(), "should be reference object");
 345       next_d = java_lang_ref_Reference::discovered(obj);
 346       if (TraceReferenceGC && PrintGCDetails) {
 347         gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
 348                                obj, next_d);
 349       }
 350       assert(java_lang_ref_Reference::next(obj) == NULL,
 351              "Reference not active; should not be discovered");
 352       // Self-loop next, so as to make Ref not active.
 353       java_lang_ref_Reference::set_next(obj, obj);
 354       if (next_d == obj) {  // obj is last
 355         // Swap refs_list into pendling_list_addr and
 356         // set obj's discovered to what we read from pending_list_addr.
 357         oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
 358         // Need oop_check on pending_list_addr above;
 359         // see special oop-check code at the end of
 360         // enqueue_discovered_reflists() further below.
 361         java_lang_ref_Reference::set_discovered(obj, old); // old may be NULL
 362       }
 363     }
 364   } else { // Old behaviour
 365     // Walk down the list, copying the discovered field into
 366     // the next field and clearing the discovered field.
 367     while (obj != next_d) {
 368       obj = next_d;
 369       assert(obj->is_instanceRef(), "should be reference object");
 370       next_d = java_lang_ref_Reference::discovered(obj);
 371       if (TraceReferenceGC && PrintGCDetails) {
 372         gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
 373                                obj, next_d);
 374       }
 375       assert(java_lang_ref_Reference::next(obj) == NULL,
 376              "The reference should not be enqueued");
 377       if (next_d == obj) {  // obj is last
 378         // Swap refs_list into pendling_list_addr and
 379         // set obj's next to what we read from pending_list_addr.
 380         oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
 381         // Need oop_check on pending_list_addr above;
 382         // see special oop-check code at the end of
 383         // enqueue_discovered_reflists() further below.
 384         if (old == NULL) {
 385           // obj should be made to point to itself, since
 386           // pending list was empty.
 387           java_lang_ref_Reference::set_next(obj, obj);
 388         } else {
 389           java_lang_ref_Reference::set_next(obj, old);
 390         }
 391       } else {
 392         java_lang_ref_Reference::set_next(obj, next_d);
 393       }
 394       java_lang_ref_Reference::set_discovered(obj, (oop) NULL);
 395     }
 396   }
 397 }
 398 
 399 // Parallel enqueue task
 400 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
 401 public:
 402   RefProcEnqueueTask(ReferenceProcessor& ref_processor,
 403                      DiscoveredList      discovered_refs[],
 404                      HeapWord*           pending_list_addr,
 405                      int                 n_queues)
 406     : EnqueueTask(ref_processor, discovered_refs,
 407                   pending_list_addr, n_queues)
 408   { }
 409 
 410   virtual void work(unsigned int work_id) {
 411     assert(work_id < (unsigned int)_ref_processor.max_num_q(), "Index out-of-bounds");
 412     // Simplest first cut: static partitioning.
 413     int index = work_id;
 414     // The increment on "index" must correspond to the maximum number of queues
 415     // (n_queues) with which that ReferenceProcessor was created.  That
 416     // is because of the "clever" way the discovered references lists were
 417     // allocated and are indexed into.
 418     assert(_n_queues == (int) _ref_processor.max_num_q(), "Different number not expected");
 419     for (int j = 0;
 420          j < ReferenceProcessor::number_of_subclasses_of_ref();
 421          j++, index += _n_queues) {
 422       _ref_processor.enqueue_discovered_reflist(
 423         _refs_lists[index], _pending_list_addr);
 424       _refs_lists[index].set_head(NULL);
 425       _refs_lists[index].set_length(0);
 426     }
 427   }
 428 };
 429 
 430 // Enqueue references that are not made active again
 431 void ReferenceProcessor::enqueue_discovered_reflists(HeapWord* pending_list_addr,
 432   AbstractRefProcTaskExecutor* task_executor) {
 433   if (_processing_is_mt && task_executor != NULL) {
 434     // Parallel code
 435     RefProcEnqueueTask tsk(*this, _discovered_refs,
 436                            pending_list_addr, _max_num_q);
 437     task_executor->execute(tsk);
 438   } else {
 439     // Serial code: call the parent class's implementation
 440     for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 441       enqueue_discovered_reflist(_discovered_refs[i], pending_list_addr);
 442       _discovered_refs[i].set_head(NULL);
 443       _discovered_refs[i].set_length(0);
 444     }
 445   }
 446 }
 447 
 448 void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
 449   _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref);
 450   oop discovered = java_lang_ref_Reference::discovered(_ref);
 451   assert(_discovered_addr && discovered->is_oop_or_null(),
 452          "discovered field is bad");
 453   _next = discovered;
 454   _referent_addr = java_lang_ref_Reference::referent_addr(_ref);
 455   _referent = java_lang_ref_Reference::referent(_ref);
 456   assert(Universe::heap()->is_in_reserved_or_null(_referent),
 457          "Wrong oop found in java.lang.Reference object");
 458   assert(allow_null_referent ?
 459              _referent->is_oop_or_null()
 460            : _referent->is_oop(),
 461          "bad referent");
 462 }
 463 
 464 void DiscoveredListIterator::remove() {
 465   assert(_ref->is_oop(), "Dropping a bad reference");
 466   oop_store_raw(_discovered_addr, NULL);
 467 
 468   // First _prev_next ref actually points into DiscoveredList (gross).
 469   oop new_next;
 470   if (_next == _ref) {
 471     // At the end of the list, we should make _prev point to itself.
 472     // If _ref is the first ref, then _prev_next will be in the DiscoveredList,
 473     // and _prev will be NULL.
 474     new_next = _prev;
 475   } else {
 476     new_next = _next;
 477   }
 478 
 479   if (UseCompressedOops) {
 480     // Remove Reference object from list.
 481     oopDesc::encode_store_heap_oop((narrowOop*)_prev_next, new_next);
 482   } else {
 483     // Remove Reference object from list.
 484     oopDesc::store_heap_oop((oop*)_prev_next, new_next);
 485   }
 486   NOT_PRODUCT(_removed++);
 487   _refs_list.dec_length(1);
 488 }
 489 
 490 // Make the Reference object active again.
 491 void DiscoveredListIterator::make_active() {
 492   // For G1 we don't want to use set_next - it
 493   // will dirty the card for the next field of
 494   // the reference object and will fail
 495   // CT verification.
 496   if (UseG1GC) {
 497     BarrierSet* bs = oopDesc::bs();
 498     HeapWord* next_addr = java_lang_ref_Reference::next_addr(_ref);
 499 
 500     if (UseCompressedOops) {
 501       bs->write_ref_field_pre((narrowOop*)next_addr, NULL);
 502     } else {
 503       bs->write_ref_field_pre((oop*)next_addr, NULL);
 504     }
 505     java_lang_ref_Reference::set_next_raw(_ref, NULL);
 506   } else {
 507     java_lang_ref_Reference::set_next(_ref, NULL);
 508   }
 509 }
 510 
 511 void DiscoveredListIterator::clear_referent() {
 512   oop_store_raw(_referent_addr, NULL);
 513 }
 514 
 515 // NOTE: process_phase*() are largely similar, and at a high level
 516 // merely iterate over the extant list applying a predicate to
 517 // each of its elements and possibly removing that element from the
 518 // list and applying some further closures to that element.
 519 // We should consider the possibility of replacing these
 520 // process_phase*() methods by abstracting them into
 521 // a single general iterator invocation that receives appropriate
 522 // closures that accomplish this work.
 523 
 524 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
 525 // referents are not alive, but that should be kept alive for policy reasons.
 526 // Keep alive the transitive closure of all such referents.
 527 void
 528 ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
 529                                    ReferencePolicy*   policy,
 530                                    BoolObjectClosure* is_alive,
 531                                    OopClosure*        keep_alive,
 532                                    VoidClosure*       complete_gc) {
 533   assert(policy != NULL, "Must have a non-NULL policy");
 534   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 535   // Decide which softly reachable refs should be kept alive.
 536   while (iter.has_next()) {
 537     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
 538     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
 539     if (referent_is_dead &&
 540         !policy->should_clear_reference(iter.obj(), _soft_ref_timestamp_clock)) {
 541       if (TraceReferenceGC) {
 542         gclog_or_tty->print_cr("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
 543                                iter.obj(), iter.obj()->klass()->internal_name());
 544       }
 545       // Remove Reference object from list
 546       iter.remove();
 547       // Make the Reference object active again
 548       iter.make_active();
 549       // keep the referent around
 550       iter.make_referent_alive();
 551       iter.move_to_next();
 552     } else {
 553       iter.next();
 554     }
 555   }
 556   // Close the reachable set
 557   complete_gc->do_void();
 558   NOT_PRODUCT(
 559     if (PrintGCDetails && TraceReferenceGC) {
 560       gclog_or_tty->print_cr(" Dropped %d dead Refs out of %d "
 561         "discovered Refs by policy, from list " INTPTR_FORMAT,
 562         iter.removed(), iter.processed(), (address)refs_list.head());
 563     }
 564   )
 565 }
 566 
 567 // Traverse the list and remove any Refs that are not active, or
 568 // whose referents are either alive or NULL.
 569 void
 570 ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
 571                              BoolObjectClosure* is_alive,
 572                              OopClosure*        keep_alive) {
 573   assert(discovery_is_atomic(), "Error");
 574   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 575   while (iter.has_next()) {
 576     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 577     DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
 578     assert(next == NULL, "Should not discover inactive Reference");
 579     if (iter.is_referent_alive()) {
 580       if (TraceReferenceGC) {
 581         gclog_or_tty->print_cr("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
 582                                iter.obj(), iter.obj()->klass()->internal_name());
 583       }
 584       // The referent is reachable after all.
 585       // Remove Reference object from list.
 586       iter.remove();
 587       // Update the referent pointer as necessary: Note that this
 588       // should not entail any recursive marking because the
 589       // referent must already have been traversed.
 590       iter.make_referent_alive();
 591       iter.move_to_next();
 592     } else {
 593       iter.next();
 594     }
 595   }
 596   NOT_PRODUCT(
 597     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
 598       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
 599         "Refs in discovered list " INTPTR_FORMAT,
 600         iter.removed(), iter.processed(), (address)refs_list.head());
 601     }
 602   )
 603 }
 604 
 605 void
 606 ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
 607                                                   BoolObjectClosure* is_alive,
 608                                                   OopClosure*        keep_alive,
 609                                                   VoidClosure*       complete_gc) {
 610   assert(!discovery_is_atomic(), "Error");
 611   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 612   while (iter.has_next()) {
 613     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
 614     HeapWord* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
 615     oop next = java_lang_ref_Reference::next(iter.obj());
 616     if ((iter.referent() == NULL || iter.is_referent_alive() ||
 617          next != NULL)) {
 618       assert(next->is_oop_or_null(), "bad next field");
 619       // Remove Reference object from list
 620       iter.remove();
 621       // Trace the cohorts
 622       iter.make_referent_alive();
 623       if (UseCompressedOops) {
 624         keep_alive->do_oop((narrowOop*)next_addr);
 625       } else {
 626         keep_alive->do_oop((oop*)next_addr);
 627       }
 628       iter.move_to_next();
 629     } else {
 630       iter.next();
 631     }
 632   }
 633   // Now close the newly reachable set
 634   complete_gc->do_void();
 635   NOT_PRODUCT(
 636     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
 637       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
 638         "Refs in discovered list " INTPTR_FORMAT,
 639         iter.removed(), iter.processed(), (address)refs_list.head());
 640     }
 641   )
 642 }
 643 
 644 // Traverse the list and process the referents, by either
 645 // clearing them or keeping them (and their reachable
 646 // closure) alive.
 647 void
 648 ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
 649                                    bool               clear_referent,
 650                                    BoolObjectClosure* is_alive,
 651                                    OopClosure*        keep_alive,
 652                                    VoidClosure*       complete_gc) {
 653   ResourceMark rm;
 654   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 655   while (iter.has_next()) {
 656     iter.update_discovered();
 657     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 658     if (clear_referent) {
 659       // NULL out referent pointer
 660       iter.clear_referent();
 661     } else {
 662       // keep the referent around
 663       iter.make_referent_alive();
 664     }
 665     if (TraceReferenceGC) {
 666       gclog_or_tty->print_cr("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
 667                              clear_referent ? "cleared " : "",
 668                              iter.obj(), iter.obj()->klass()->internal_name());
 669     }
 670     assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
 671     iter.next();
 672   }
 673   // Remember to update the next pointer of the last ref.
 674   iter.update_discovered();
 675   // Close the reachable set
 676   complete_gc->do_void();
 677 }
 678 
 679 void
 680 ReferenceProcessor::clear_discovered_references(DiscoveredList& refs_list) {
 681   oop obj = NULL;
 682   oop next = refs_list.head();
 683   while (next != obj) {
 684     obj = next;
 685     next = java_lang_ref_Reference::discovered(obj);
 686     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
 687   }
 688   refs_list.set_head(NULL);
 689   refs_list.set_length(0);
 690 }
 691 
 692 void
 693 ReferenceProcessor::abandon_partial_discovered_list(DiscoveredList& refs_list) {
 694   clear_discovered_references(refs_list);
 695 }
 696 
 697 void ReferenceProcessor::abandon_partial_discovery() {
 698   // loop over the lists
 699   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 700     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
 701       gclog_or_tty->print_cr("\nAbandoning %s discovered list", list_name(i));
 702     }
 703     abandon_partial_discovered_list(_discovered_refs[i]);
 704   }
 705 }
 706 
 707 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
 708 public:
 709   RefProcPhase1Task(ReferenceProcessor& ref_processor,
 710                     DiscoveredList      refs_lists[],
 711                     ReferencePolicy*    policy,
 712                     bool                marks_oops_alive)
 713     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
 714       _policy(policy)
 715   { }
 716   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 717                     OopClosure& keep_alive,
 718                     VoidClosure& complete_gc)
 719   {
 720     Thread* thr = Thread::current();
 721     int refs_list_index = ((WorkerThread*)thr)->id();
 722     _ref_processor.process_phase1(_refs_lists[refs_list_index], _policy,
 723                                   &is_alive, &keep_alive, &complete_gc);
 724   }
 725 private:
 726   ReferencePolicy* _policy;
 727 };
 728 
 729 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
 730 public:
 731   RefProcPhase2Task(ReferenceProcessor& ref_processor,
 732                     DiscoveredList      refs_lists[],
 733                     bool                marks_oops_alive)
 734     : ProcessTask(ref_processor, refs_lists, marks_oops_alive)
 735   { }
 736   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 737                     OopClosure& keep_alive,
 738                     VoidClosure& complete_gc)
 739   {
 740     _ref_processor.process_phase2(_refs_lists[i],
 741                                   &is_alive, &keep_alive, &complete_gc);
 742   }
 743 };
 744 
 745 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
 746 public:
 747   RefProcPhase3Task(ReferenceProcessor& ref_processor,
 748                     DiscoveredList      refs_lists[],
 749                     bool                clear_referent,
 750                     bool                marks_oops_alive)
 751     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
 752       _clear_referent(clear_referent)
 753   { }
 754   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 755                     OopClosure& keep_alive,
 756                     VoidClosure& complete_gc)
 757   {
 758     // Don't use "refs_list_index" calculated in this way because
 759     // balance_queues() has moved the Ref's into the first n queues.
 760     // Thread* thr = Thread::current();
 761     // int refs_list_index = ((WorkerThread*)thr)->id();
 762     // _ref_processor.process_phase3(_refs_lists[refs_list_index], _clear_referent,
 763     _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
 764                                   &is_alive, &keep_alive, &complete_gc);
 765   }
 766 private:
 767   bool _clear_referent;
 768 };
 769 
 770 void ReferenceProcessor::set_discovered(oop ref, oop value) {
 771   if (_discovered_list_needs_barrier) {
 772     java_lang_ref_Reference::set_discovered(ref, value);
 773   } else {
 774     java_lang_ref_Reference::set_discovered_raw(ref, value);
 775   }
 776 }
 777 
 778 // Balances reference queues.
 779 // Move entries from all queues[0, 1, ..., _max_num_q-1] to
 780 // queues[0, 1, ..., _num_q-1] because only the first _num_q
 781 // corresponding to the active workers will be processed.
 782 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
 783 {
 784   // calculate total length
 785   size_t total_refs = 0;
 786   if (TraceReferenceGC && PrintGCDetails) {
 787     gclog_or_tty->print_cr("\nBalance ref_lists ");
 788   }
 789 
 790   for (uint i = 0; i < _max_num_q; ++i) {
 791     total_refs += ref_lists[i].length();
 792     if (TraceReferenceGC && PrintGCDetails) {
 793       gclog_or_tty->print("%d ", ref_lists[i].length());
 794     }
 795   }
 796   if (TraceReferenceGC && PrintGCDetails) {
 797     gclog_or_tty->print_cr(" = %d", total_refs);
 798   }
 799   size_t avg_refs = total_refs / _num_q + 1;
 800   uint to_idx = 0;
 801   for (uint from_idx = 0; from_idx < _max_num_q; from_idx++) {
 802     bool move_all = false;
 803     if (from_idx >= _num_q) {
 804       move_all = ref_lists[from_idx].length() > 0;
 805     }
 806     while ((ref_lists[from_idx].length() > avg_refs) ||
 807            move_all) {
 808       assert(to_idx < _num_q, "Sanity Check!");
 809       if (ref_lists[to_idx].length() < avg_refs) {
 810         // move superfluous refs
 811         size_t refs_to_move;
 812         // Move all the Ref's if the from queue will not be processed.
 813         if (move_all) {
 814           refs_to_move = MIN2(ref_lists[from_idx].length(),
 815                               avg_refs - ref_lists[to_idx].length());
 816         } else {
 817           refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs,
 818                               avg_refs - ref_lists[to_idx].length());
 819         }
 820 
 821         assert(refs_to_move > 0, "otherwise the code below will fail");
 822 
 823         oop move_head = ref_lists[from_idx].head();
 824         oop move_tail = move_head;
 825         oop new_head  = move_head;
 826         // find an element to split the list on
 827         for (size_t j = 0; j < refs_to_move; ++j) {
 828           move_tail = new_head;
 829           new_head = java_lang_ref_Reference::discovered(new_head);
 830         }
 831 
 832         // Add the chain to the to list.
 833         if (ref_lists[to_idx].head() == NULL) {
 834           // to list is empty. Make a loop at the end.
 835           set_discovered(move_tail, move_tail);
 836         } else {
 837           set_discovered(move_tail, ref_lists[to_idx].head());
 838         }
 839         ref_lists[to_idx].set_head(move_head);
 840         ref_lists[to_idx].inc_length(refs_to_move);
 841 
 842         // Remove the chain from the from list.
 843         if (move_tail == new_head) {
 844           // We found the end of the from list.
 845           ref_lists[from_idx].set_head(NULL);
 846         } else {
 847           ref_lists[from_idx].set_head(new_head);
 848         }
 849         ref_lists[from_idx].dec_length(refs_to_move);
 850         if (ref_lists[from_idx].length() == 0) {
 851           break;
 852         }
 853       } else {
 854         to_idx = (to_idx + 1) % _num_q;
 855       }
 856     }
 857   }
 858 #ifdef ASSERT
 859   size_t balanced_total_refs = 0;
 860   for (uint i = 0; i < _max_num_q; ++i) {
 861     balanced_total_refs += ref_lists[i].length();
 862     if (TraceReferenceGC && PrintGCDetails) {
 863       gclog_or_tty->print("%d ", ref_lists[i].length());
 864     }
 865   }
 866   if (TraceReferenceGC && PrintGCDetails) {
 867     gclog_or_tty->print_cr(" = %d", balanced_total_refs);
 868     gclog_or_tty->flush();
 869   }
 870   assert(total_refs == balanced_total_refs, "Balancing was incomplete");
 871 #endif
 872 }
 873 
 874 void ReferenceProcessor::balance_all_queues() {
 875   balance_queues(_discoveredSoftRefs);
 876   balance_queues(_discoveredWeakRefs);
 877   balance_queues(_discoveredFinalRefs);
 878   balance_queues(_discoveredPhantomRefs);
 879 }
 880 
 881 void
 882 ReferenceProcessor::process_discovered_reflist(
 883   DiscoveredList               refs_lists[],
 884   ReferencePolicy*             policy,
 885   bool                         clear_referent,
 886   BoolObjectClosure*           is_alive,
 887   OopClosure*                  keep_alive,
 888   VoidClosure*                 complete_gc,
 889   AbstractRefProcTaskExecutor* task_executor)
 890 {
 891   bool mt_processing = task_executor != NULL && _processing_is_mt;
 892   // If discovery used MT and a dynamic number of GC threads, then
 893   // the queues must be balanced for correctness if fewer than the
 894   // maximum number of queues were used.  The number of queue used
 895   // during discovery may be different than the number to be used
 896   // for processing so don't depend of _num_q < _max_num_q as part
 897   // of the test.
 898   bool must_balance = _discovery_is_mt;
 899 
 900   if ((mt_processing && ParallelRefProcBalancingEnabled) ||
 901       must_balance) {
 902     balance_queues(refs_lists);
 903   }
 904   if (PrintReferenceGC && PrintGCDetails) {
 905     size_t total = 0;
 906     for (uint i = 0; i < _max_num_q; ++i) {
 907       total += refs_lists[i].length();
 908     }
 909     gclog_or_tty->print(", %u refs", total);
 910   }
 911 
 912   // Phase 1 (soft refs only):
 913   // . Traverse the list and remove any SoftReferences whose
 914   //   referents are not alive, but that should be kept alive for
 915   //   policy reasons. Keep alive the transitive closure of all
 916   //   such referents.
 917   if (policy != NULL) {
 918     if (mt_processing) {
 919       RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/);
 920       task_executor->execute(phase1);
 921     } else {
 922       for (uint i = 0; i < _max_num_q; i++) {
 923         process_phase1(refs_lists[i], policy,
 924                        is_alive, keep_alive, complete_gc);
 925       }
 926     }
 927   } else { // policy == NULL
 928     assert(refs_lists != _discoveredSoftRefs,
 929            "Policy must be specified for soft references.");
 930   }
 931 
 932   // Phase 2:
 933   // . Traverse the list and remove any refs whose referents are alive.
 934   if (mt_processing) {
 935     RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/);
 936     task_executor->execute(phase2);
 937   } else {
 938     for (uint i = 0; i < _max_num_q; i++) {
 939       process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
 940     }
 941   }
 942 
 943   // Phase 3:
 944   // . Traverse the list and process referents as appropriate.
 945   if (mt_processing) {
 946     RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/);
 947     task_executor->execute(phase3);
 948   } else {
 949     for (uint i = 0; i < _max_num_q; i++) {
 950       process_phase3(refs_lists[i], clear_referent,
 951                      is_alive, keep_alive, complete_gc);
 952     }
 953   }
 954 }
 955 
 956 void ReferenceProcessor::clean_up_discovered_references() {
 957   // loop over the lists
 958   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 959     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
 960       gclog_or_tty->print_cr(
 961         "\nScrubbing %s discovered list of Null referents",
 962         list_name(i));
 963     }
 964     clean_up_discovered_reflist(_discovered_refs[i]);
 965   }
 966 }
 967 
 968 void ReferenceProcessor::clean_up_discovered_reflist(DiscoveredList& refs_list) {
 969   assert(!discovery_is_atomic(), "Else why call this method?");
 970   DiscoveredListIterator iter(refs_list, NULL, NULL);
 971   while (iter.has_next()) {
 972     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
 973     oop next = java_lang_ref_Reference::next(iter.obj());
 974     assert(next->is_oop_or_null(), "bad next field");
 975     // If referent has been cleared or Reference is not active,
 976     // drop it.
 977     if (iter.referent() == NULL || next != NULL) {
 978       debug_only(
 979         if (PrintGCDetails && TraceReferenceGC) {
 980           gclog_or_tty->print_cr("clean_up_discovered_list: Dropping Reference: "
 981             INTPTR_FORMAT " with next field: " INTPTR_FORMAT
 982             " and referent: " INTPTR_FORMAT,
 983             iter.obj(), next, iter.referent());
 984         }
 985       )
 986       // Remove Reference object from list
 987       iter.remove();
 988       iter.move_to_next();
 989     } else {
 990       iter.next();
 991     }
 992   }
 993   NOT_PRODUCT(
 994     if (PrintGCDetails && TraceReferenceGC) {
 995       gclog_or_tty->print(
 996         " Removed %d Refs with NULL referents out of %d discovered Refs",
 997         iter.removed(), iter.processed());
 998     }
 999   )
1000 }
1001 
1002 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
1003   uint id = 0;
1004   // Determine the queue index to use for this object.
1005   if (_discovery_is_mt) {
1006     // During a multi-threaded discovery phase,
1007     // each thread saves to its "own" list.
1008     Thread* thr = Thread::current();
1009     id = thr->as_Worker_thread()->id();
1010   } else {
1011     // single-threaded discovery, we save in round-robin
1012     // fashion to each of the lists.
1013     if (_processing_is_mt) {
1014       id = next_id();
1015     }
1016   }
1017   assert(0 <= id && id < _max_num_q, "Id is out-of-bounds (call Freud?)");
1018 
1019   // Get the discovered queue to which we will add
1020   DiscoveredList* list = NULL;
1021   switch (rt) {
1022     case REF_OTHER:
1023       // Unknown reference type, no special treatment
1024       break;
1025     case REF_SOFT:
1026       list = &_discoveredSoftRefs[id];
1027       break;
1028     case REF_WEAK:
1029       list = &_discoveredWeakRefs[id];
1030       break;
1031     case REF_FINAL:
1032       list = &_discoveredFinalRefs[id];
1033       break;
1034     case REF_PHANTOM:
1035       list = &_discoveredPhantomRefs[id];
1036       break;
1037     case REF_NONE:
1038       // we should not reach here if we are an InstanceRefKlass
1039     default:
1040       ShouldNotReachHere();
1041   }
1042   if (TraceReferenceGC && PrintGCDetails) {
1043     gclog_or_tty->print_cr("Thread %d gets list " INTPTR_FORMAT, id, list);
1044   }
1045   return list;
1046 }
1047 
1048 inline void
1049 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
1050                                               oop             obj,
1051                                               HeapWord*       discovered_addr) {
1052   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
1053   // First we must make sure this object is only enqueued once. CAS in a non null
1054   // discovered_addr.
1055   oop current_head = refs_list.head();
1056   // The last ref must have its discovered field pointing to itself.
1057   oop next_discovered = (current_head != NULL) ? current_head : obj;
1058 
1059   // Note: In the case of G1, this specific pre-barrier is strictly
1060   // not necessary because the only case we are interested in
1061   // here is when *discovered_addr is NULL (see the CAS further below),
1062   // so this will expand to nothing. As a result, we have manually
1063   // elided this out for G1, but left in the test for some future
1064   // collector that might have need for a pre-barrier here, e.g.:-
1065   // _bs->write_ref_field_pre((oop* or narrowOop*)discovered_addr, next_discovered);
1066   assert(!_discovered_list_needs_barrier || UseG1GC,
1067          "Need to check non-G1 collector: "
1068          "may need a pre-write-barrier for CAS from NULL below");
1069   oop retest = oopDesc::atomic_compare_exchange_oop(next_discovered, discovered_addr,
1070                                                     NULL);
1071   if (retest == NULL) {
1072     // This thread just won the right to enqueue the object.
1073     // We have separate lists for enqueueing, so no synchronization
1074     // is necessary.
1075     refs_list.set_head(obj);
1076     refs_list.inc_length(1);
1077     if (_discovered_list_needs_barrier) {
1078       _bs->write_ref_field((void*)discovered_addr, next_discovered);
1079     }
1080 
1081     if (TraceReferenceGC) {
1082       gclog_or_tty->print_cr("Discovered reference (mt) (" INTPTR_FORMAT ": %s)",
1083                              obj, obj->klass()->internal_name());
1084     }
1085   } else {
1086     // If retest was non NULL, another thread beat us to it:
1087     // The reference has already been discovered...
1088     if (TraceReferenceGC) {
1089       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
1090                              obj, obj->klass()->internal_name());
1091     }
1092   }
1093 }
1094 
1095 #ifndef PRODUCT
1096 // Non-atomic (i.e. concurrent) discovery might allow us
1097 // to observe j.l.References with NULL referents, being those
1098 // cleared concurrently by mutators during (or after) discovery.
1099 void ReferenceProcessor::verify_referent(oop obj) {
1100   bool da = discovery_is_atomic();
1101   oop referent = java_lang_ref_Reference::referent(obj);
1102   assert(da ? referent->is_oop() : referent->is_oop_or_null(),
1103          err_msg("Bad referent " INTPTR_FORMAT " found in Reference "
1104                  INTPTR_FORMAT " during %satomic discovery ",
1105                  (intptr_t)referent, (intptr_t)obj, da ? "" : "non-"));
1106 }
1107 #endif
1108 
1109 // We mention two of several possible choices here:
1110 // #0: if the reference object is not in the "originating generation"
1111 //     (or part of the heap being collected, indicated by our "span"
1112 //     we don't treat it specially (i.e. we scan it as we would
1113 //     a normal oop, treating its references as strong references).
1114 //     This means that references can't be discovered unless their
1115 //     referent is also in the same span. This is the simplest,
1116 //     most "local" and most conservative approach, albeit one
1117 //     that may cause weak references to be enqueued least promptly.
1118 //     We call this choice the "ReferenceBasedDiscovery" policy.
1119 // #1: the reference object may be in any generation (span), but if
1120 //     the referent is in the generation (span) being currently collected
1121 //     then we can discover the reference object, provided
1122 //     the object has not already been discovered by
1123 //     a different concurrently running collector (as may be the
1124 //     case, for instance, if the reference object is in CMS and
1125 //     the referent in DefNewGeneration), and provided the processing
1126 //     of this reference object by the current collector will
1127 //     appear atomic to every other collector in the system.
1128 //     (Thus, for instance, a concurrent collector may not
1129 //     discover references in other generations even if the
1130 //     referent is in its own generation). This policy may,
1131 //     in certain cases, enqueue references somewhat sooner than
1132 //     might Policy #0 above, but at marginally increased cost
1133 //     and complexity in processing these references.
1134 //     We call this choice the "RefeferentBasedDiscovery" policy.
1135 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
1136   // Make sure we are discovering refs (rather than processing discovered refs).
1137   if (!_discovering_refs || !RegisterReferences) {
1138     return false;
1139   }
1140   // We only discover active references.
1141   oop next = java_lang_ref_Reference::next(obj);
1142   if (next != NULL) {   // Ref is no longer active
1143     return false;
1144   }
1145 
1146   HeapWord* obj_addr = (HeapWord*)obj;
1147   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1148       !_span.contains(obj_addr)) {
1149     // Reference is not in the originating generation;
1150     // don't treat it specially (i.e. we want to scan it as a normal
1151     // object with strong references).
1152     return false;
1153   }
1154 
1155   // We only discover references whose referents are not (yet)
1156   // known to be strongly reachable.
1157   if (is_alive_non_header() != NULL) {
1158     verify_referent(obj);
1159     if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) {
1160       return false;  // referent is reachable
1161     }
1162   }
1163   if (rt == REF_SOFT) {
1164     // For soft refs we can decide now if these are not
1165     // current candidates for clearing, in which case we
1166     // can mark through them now, rather than delaying that
1167     // to the reference-processing phase. Since all current
1168     // time-stamp policies advance the soft-ref clock only
1169     // at a major collection cycle, this is always currently
1170     // accurate.
1171     if (!_current_soft_ref_policy->should_clear_reference(obj, _soft_ref_timestamp_clock)) {
1172       return false;
1173     }
1174   }
1175 
1176   ResourceMark rm;      // Needed for tracing.
1177 
1178   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
1179   const oop  discovered = java_lang_ref_Reference::discovered(obj);
1180   assert(discovered->is_oop_or_null(), "bad discovered field");
1181   if (discovered != NULL) {
1182     // The reference has already been discovered...
1183     if (TraceReferenceGC) {
1184       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
1185                              obj, obj->klass()->internal_name());
1186     }
1187     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1188       // assumes that an object is not processed twice;
1189       // if it's been already discovered it must be on another
1190       // generation's discovered list; so we won't discover it.
1191       return false;
1192     } else {
1193       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
1194              "Unrecognized policy");
1195       // Check assumption that an object is not potentially
1196       // discovered twice except by concurrent collectors that potentially
1197       // trace the same Reference object twice.
1198       assert(UseConcMarkSweepGC || UseG1GC,
1199              "Only possible with a concurrent marking collector");
1200       return true;
1201     }
1202   }
1203 
1204   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1205     verify_referent(obj);
1206     // Discover if and only if EITHER:
1207     // .. reference is in our span, OR
1208     // .. we are an atomic collector and referent is in our span
1209     if (_span.contains(obj_addr) ||
1210         (discovery_is_atomic() &&
1211          _span.contains(java_lang_ref_Reference::referent(obj)))) {
1212       // should_enqueue = true;
1213     } else {
1214       return false;
1215     }
1216   } else {
1217     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1218            _span.contains(obj_addr), "code inconsistency");
1219   }
1220 
1221   // Get the right type of discovered queue head.
1222   DiscoveredList* list = get_discovered_list(rt);
1223   if (list == NULL) {
1224     return false;   // nothing special needs to be done
1225   }
1226 
1227   if (_discovery_is_mt) {
1228     add_to_discovered_list_mt(*list, obj, discovered_addr);
1229   } else {
1230     // If "_discovered_list_needs_barrier", we do write barriers when
1231     // updating the discovered reference list.  Otherwise, we do a raw store
1232     // here: the field will be visited later when processing the discovered
1233     // references.
1234     oop current_head = list->head();
1235     // The last ref must have its discovered field pointing to itself.
1236     oop next_discovered = (current_head != NULL) ? current_head : obj;
1237 
1238     // As in the case further above, since we are over-writing a NULL
1239     // pre-value, we can safely elide the pre-barrier here for the case of G1.
1240     // e.g.:- _bs->write_ref_field_pre((oop* or narrowOop*)discovered_addr, next_discovered);
1241     assert(discovered == NULL, "control point invariant");
1242     assert(!_discovered_list_needs_barrier || UseG1GC,
1243            "For non-G1 collector, may need a pre-write-barrier for CAS from NULL below");
1244     oop_store_raw(discovered_addr, next_discovered);
1245     if (_discovered_list_needs_barrier) {
1246       _bs->write_ref_field((void*)discovered_addr, next_discovered);
1247     }
1248     list->set_head(obj);
1249     list->inc_length(1);
1250 
1251     if (TraceReferenceGC) {
1252       gclog_or_tty->print_cr("Discovered reference (" INTPTR_FORMAT ": %s)",
1253                                 obj, obj->klass()->internal_name());
1254     }
1255   }
1256   assert(obj->is_oop(), "Discovered a bad reference");
1257   verify_referent(obj);
1258   return true;
1259 }
1260 
1261 // Preclean the discovered references by removing those
1262 // whose referents are alive, and by marking from those that
1263 // are not active. These lists can be handled here
1264 // in any order and, indeed, concurrently.
1265 void ReferenceProcessor::preclean_discovered_references(
1266   BoolObjectClosure* is_alive,
1267   OopClosure* keep_alive,
1268   VoidClosure* complete_gc,
1269   YieldClosure* yield) {
1270 
1271   NOT_PRODUCT(verify_ok_to_handle_reflists());
1272 
1273   // Soft references
1274   {
1275     TraceTime tt("Preclean SoftReferences", PrintGCDetails && PrintReferenceGC,
1276               false, gclog_or_tty);
1277     for (uint i = 0; i < _max_num_q; i++) {
1278       if (yield->should_return()) {
1279         return;
1280       }
1281       preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
1282                                   keep_alive, complete_gc, yield);
1283     }
1284   }
1285 
1286   // Weak references
1287   {
1288     TraceTime tt("Preclean WeakReferences", PrintGCDetails && PrintReferenceGC,
1289               false, gclog_or_tty);
1290     for (uint i = 0; i < _max_num_q; i++) {
1291       if (yield->should_return()) {
1292         return;
1293       }
1294       preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
1295                                   keep_alive, complete_gc, yield);
1296     }
1297   }
1298 
1299   // Final references
1300   {
1301     TraceTime tt("Preclean FinalReferences", PrintGCDetails && PrintReferenceGC,
1302               false, gclog_or_tty);
1303     for (uint i = 0; i < _max_num_q; i++) {
1304       if (yield->should_return()) {
1305         return;
1306       }
1307       preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
1308                                   keep_alive, complete_gc, yield);
1309     }
1310   }
1311 
1312   // Phantom references
1313   {
1314     TraceTime tt("Preclean PhantomReferences", PrintGCDetails && PrintReferenceGC,
1315               false, gclog_or_tty);
1316     for (uint i = 0; i < _max_num_q; i++) {
1317       if (yield->should_return()) {
1318         return;
1319       }
1320       preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
1321                                   keep_alive, complete_gc, yield);
1322     }
1323   }
1324 }
1325 
1326 // Walk the given discovered ref list, and remove all reference objects
1327 // whose referents are still alive, whose referents are NULL or which
1328 // are not active (have a non-NULL next field). NOTE: When we are
1329 // thus precleaning the ref lists (which happens single-threaded today),
1330 // we do not disable refs discovery to honour the correct semantics of
1331 // java.lang.Reference. As a result, we need to be careful below
1332 // that ref removal steps interleave safely with ref discovery steps
1333 // (in this thread).
1334 void
1335 ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
1336                                                 BoolObjectClosure* is_alive,
1337                                                 OopClosure*        keep_alive,
1338                                                 VoidClosure*       complete_gc,
1339                                                 YieldClosure*      yield) {
1340   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
1341   while (iter.has_next()) {
1342     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
1343     oop obj = iter.obj();
1344     oop next = java_lang_ref_Reference::next(obj);
1345     if (iter.referent() == NULL || iter.is_referent_alive() ||
1346         next != NULL) {
1347       // The referent has been cleared, or is alive, or the Reference is not
1348       // active; we need to trace and mark its cohort.
1349       if (TraceReferenceGC) {
1350         gclog_or_tty->print_cr("Precleaning Reference (" INTPTR_FORMAT ": %s)",
1351                                iter.obj(), iter.obj()->klass()->internal_name());
1352       }
1353       // Remove Reference object from list
1354       iter.remove();
1355       // Keep alive its cohort.
1356       iter.make_referent_alive();
1357       if (UseCompressedOops) {
1358         narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr(obj);
1359         keep_alive->do_oop(next_addr);
1360       } else {
1361         oop* next_addr = (oop*)java_lang_ref_Reference::next_addr(obj);
1362         keep_alive->do_oop(next_addr);
1363       }
1364       iter.move_to_next();
1365     } else {
1366       iter.next();
1367     }
1368   }
1369   // Close the reachable set
1370   complete_gc->do_void();
1371 
1372   NOT_PRODUCT(
1373     if (PrintGCDetails && PrintReferenceGC && (iter.processed() > 0)) {
1374       gclog_or_tty->print_cr(" Dropped %d Refs out of %d "
1375         "Refs in discovered list " INTPTR_FORMAT,
1376         iter.removed(), iter.processed(), (address)refs_list.head());
1377     }
1378   )
1379 }
1380 
1381 const char* ReferenceProcessor::list_name(uint i) {
1382    assert(i >= 0 && i <= _max_num_q * number_of_subclasses_of_ref(),
1383           "Out of bounds index");
1384 
1385    int j = i / _max_num_q;
1386    switch (j) {
1387      case 0: return "SoftRef";
1388      case 1: return "WeakRef";
1389      case 2: return "FinalRef";
1390      case 3: return "PhantomRef";
1391    }
1392    ShouldNotReachHere();
1393    return NULL;
1394 }
1395 
1396 #ifndef PRODUCT
1397 void ReferenceProcessor::verify_ok_to_handle_reflists() {
1398   // empty for now
1399 }
1400 #endif
1401 
1402 #ifndef PRODUCT
1403 void ReferenceProcessor::clear_discovered_references() {
1404   guarantee(!_discovering_refs, "Discovering refs?");
1405   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
1406     clear_discovered_references(_discovered_refs[i]);
1407   }
1408 }
1409 
1410 #endif // PRODUCT