1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/concurrentG1Refine.hpp"
  27 #include "gc/g1/dirtyCardQueue.hpp"
  28 #include "gc/g1/g1BlockOffsetTable.inline.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1FromCardCache.hpp"
  31 #include "gc/g1/g1GCPhaseTimes.hpp"
  32 #include "gc/g1/g1HotCardCache.hpp"
  33 #include "gc/g1/g1OopClosures.inline.hpp"
  34 #include "gc/g1/g1RemSet.inline.hpp"
  35 #include "gc/g1/g1SATBCardTableModRefBS.inline.hpp"
  36 #include "gc/g1/heapRegion.inline.hpp"
  37 #include "gc/g1/heapRegionManager.inline.hpp"
  38 #include "gc/g1/heapRegionRemSet.hpp"
  39 #include "gc/shared/gcTraceTime.inline.hpp"
  40 #include "memory/iterator.hpp"
  41 #include "memory/resourceArea.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "utilities/globalDefinitions.hpp"
  44 #include "utilities/intHisto.hpp"
  45 #include "utilities/stack.inline.hpp"
  46 
  47 // Collects information about the overall remembered set scan progress during an evacuation.
  48 class G1RemSetScanState : public CHeapObj<mtGC> {
  49 private:
  50   class G1ClearCardTableTask : public AbstractGangTask {
  51     G1CollectedHeap* _g1h;
  52     uint* _dirty_region_list;
  53     size_t _num_dirty_regions;
  54     size_t _chunk_length;
  55 
  56     size_t volatile _cur_dirty_regions;
  57   public:
  58     G1ClearCardTableTask(G1CollectedHeap* g1h,
  59                          uint* dirty_region_list,
  60                          size_t num_dirty_regions,
  61                          size_t chunk_length) :
  62       AbstractGangTask("G1 Clear Card Table Task"),
  63       _g1h(g1h),
  64       _dirty_region_list(dirty_region_list),
  65       _num_dirty_regions(num_dirty_regions),
  66       _chunk_length(chunk_length),
  67       _cur_dirty_regions(0) {
  68 
  69       assert(chunk_length > 0, "must be");
  70     }
  71 
  72     static size_t chunk_size() { return M; }
  73 
  74     void work(uint worker_id) {
  75       G1SATBCardTableModRefBS* ct_bs = _g1h->g1_barrier_set();
  76 
  77       while (_cur_dirty_regions < _num_dirty_regions) {
  78         size_t next = Atomic::add(_chunk_length, &_cur_dirty_regions) - _chunk_length;
  79         size_t max = MIN2(next + _chunk_length, _num_dirty_regions);
  80 
  81         for (size_t i = next; i < max; i++) {
  82           HeapRegion* r = _g1h->region_at(_dirty_region_list[i]);
  83           if (!r->is_survivor()) {
  84             ct_bs->clear(MemRegion(r->bottom(), r->end()));
  85           }
  86         }
  87       }
  88     }
  89   };
  90 
  91   size_t _max_regions;
  92 
  93   // Scan progress for the remembered set of a single region. Transitions from
  94   // Unclaimed -> Claimed -> Complete.
  95   // At each of the transitions the thread that does the transition needs to perform
  96   // some special action once. This is the reason for the extra "Claimed" state.
  97   typedef jint G1RemsetIterState;
  98 
  99   static const G1RemsetIterState Unclaimed = 0; // The remembered set has not been scanned yet.
 100   static const G1RemsetIterState Claimed = 1;   // The remembered set is currently being scanned.
 101   static const G1RemsetIterState Complete = 2;  // The remembered set has been completely scanned.
 102 
 103   G1RemsetIterState volatile* _iter_states;
 104   // The current location where the next thread should continue scanning in a region's
 105   // remembered set.
 106   size_t volatile* _iter_claims;
 107 
 108   // Temporary buffer holding the regions we used to store remembered set scan duplicate
 109   // information. These are also called "dirty". Valid entries are from [0.._cur_dirty_region)
 110   uint* _dirty_region_buffer;
 111 
 112   typedef jbyte IsDirtyRegionState;
 113   static const IsDirtyRegionState Clean = 0;
 114   static const IsDirtyRegionState Dirty = 1;
 115   // Holds a flag for every region whether it is in the _dirty_region_buffer already
 116   // to avoid duplicates. Uses jbyte since there are no atomic instructions for bools.
 117   IsDirtyRegionState* _in_dirty_region_buffer;
 118   size_t _cur_dirty_region;
 119 
 120   // Creates a snapshot of the current _top values at the start of collection to
 121   // filter out card marks that we do not want to scan.
 122   class G1ResetScanTopClosure : public HeapRegionClosure {
 123   private:
 124     HeapWord** _scan_top;
 125   public:
 126     G1ResetScanTopClosure(HeapWord** scan_top) : _scan_top(scan_top) { }
 127 
 128     virtual bool doHeapRegion(HeapRegion* r) {
 129       uint hrm_index = r->hrm_index();
 130       if (!r->in_collection_set() && r->is_old_or_humongous()) {
 131         _scan_top[hrm_index] = r->top();
 132       } else {
 133         _scan_top[hrm_index] = r->bottom();
 134       }
 135       return false;
 136     }
 137   };
 138 
 139   // For each region, contains the maximum top() value to be used during this garbage
 140   // collection. Subsumes common checks like filtering out everything but old and
 141   // humongous regions outside the collection set.
 142   // This is valid because we are not interested in scanning stray remembered set
 143   // entries from free or archive regions.
 144   HeapWord** _scan_top;
 145 public:
 146   G1RemSetScanState() :
 147     _max_regions(0),
 148     _iter_states(NULL),
 149     _iter_claims(NULL),
 150     _dirty_region_buffer(NULL),
 151     _in_dirty_region_buffer(NULL),
 152     _cur_dirty_region(0),
 153     _scan_top(NULL) {
 154   }
 155 
 156   ~G1RemSetScanState() {
 157     if (_iter_states != NULL) {
 158       FREE_C_HEAP_ARRAY(G1RemsetIterState, _iter_states);
 159     }
 160     if (_iter_claims != NULL) {
 161       FREE_C_HEAP_ARRAY(size_t, _iter_claims);
 162     }
 163     if (_dirty_region_buffer != NULL) {
 164       FREE_C_HEAP_ARRAY(uint, _dirty_region_buffer);
 165     }
 166     if (_in_dirty_region_buffer != NULL) {
 167       FREE_C_HEAP_ARRAY(IsDirtyRegionState, _in_dirty_region_buffer);
 168     }
 169     if (_scan_top != NULL) {
 170       FREE_C_HEAP_ARRAY(HeapWord*, _scan_top);
 171     }
 172   }
 173 
 174   void initialize(uint max_regions) {
 175     assert(_iter_states == NULL, "Must not be initialized twice");
 176     assert(_iter_claims == NULL, "Must not be initialized twice");
 177     _max_regions = max_regions;
 178     _iter_states = NEW_C_HEAP_ARRAY(G1RemsetIterState, max_regions, mtGC);
 179     _iter_claims = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 180     _dirty_region_buffer = NEW_C_HEAP_ARRAY(uint, max_regions, mtGC);
 181     _in_dirty_region_buffer = NEW_C_HEAP_ARRAY(IsDirtyRegionState, max_regions, mtGC);
 182     _scan_top = NEW_C_HEAP_ARRAY(HeapWord*, max_regions, mtGC);
 183   }
 184 
 185   void reset() {
 186     for (uint i = 0; i < _max_regions; i++) {
 187       _iter_states[i] = Unclaimed;
 188     }
 189 
 190     G1ResetScanTopClosure cl(_scan_top);
 191     G1CollectedHeap::heap()->heap_region_iterate(&cl);
 192 
 193     memset((void*)_iter_claims, 0, _max_regions * sizeof(size_t));
 194     memset(_in_dirty_region_buffer, Clean, _max_regions * sizeof(IsDirtyRegionState));
 195     _cur_dirty_region = 0;
 196   }
 197 
 198   // Attempt to claim the remembered set of the region for iteration. Returns true
 199   // if this call caused the transition from Unclaimed to Claimed.
 200   inline bool claim_iter(uint region) {
 201     assert(region < _max_regions, "Tried to access invalid region %u", region);
 202     if (_iter_states[region] != Unclaimed) {
 203       return false;
 204     }
 205     jint res = Atomic::cmpxchg(Claimed, (jint*)(&_iter_states[region]), Unclaimed);
 206     return (res == Unclaimed);
 207   }
 208 
 209   // Try to atomically sets the iteration state to "complete". Returns true for the
 210   // thread that caused the transition.
 211   inline bool set_iter_complete(uint region) {
 212     if (iter_is_complete(region)) {
 213       return false;
 214     }
 215     jint res = Atomic::cmpxchg(Complete, (jint*)(&_iter_states[region]), Claimed);
 216     return (res == Claimed);
 217   }
 218 
 219   // Returns true if the region's iteration is complete.
 220   inline bool iter_is_complete(uint region) const {
 221     assert(region < _max_regions, "Tried to access invalid region %u", region);
 222     return _iter_states[region] == Complete;
 223   }
 224 
 225   // The current position within the remembered set of the given region.
 226   inline size_t iter_claimed(uint region) const {
 227     assert(region < _max_regions, "Tried to access invalid region %u", region);
 228     return _iter_claims[region];
 229   }
 230 
 231   // Claim the next block of cards within the remembered set of the region with
 232   // step size.
 233   inline size_t iter_claimed_next(uint region, size_t step) {
 234     return Atomic::add(step, &_iter_claims[region]) - step;
 235   }
 236 
 237   void add_dirty_region(uint region) {
 238     if (_in_dirty_region_buffer[region] == Dirty) {
 239       return;
 240     }
 241 
 242     bool marked_as_dirty = Atomic::cmpxchg(Dirty, &_in_dirty_region_buffer[region], Clean) == Clean;
 243     if (marked_as_dirty) {
 244       size_t allocated = Atomic::add(1, &_cur_dirty_region) - 1;
 245       _dirty_region_buffer[allocated] = region;
 246     }
 247   }
 248 
 249   HeapWord* scan_top(uint region_idx) const {
 250     return _scan_top[region_idx];
 251   }
 252 
 253   // Clear the card table of "dirty" regions.
 254   void clear_card_table(WorkGang* workers) {
 255     if (_cur_dirty_region == 0) {
 256       return;
 257     }
 258 
 259     size_t const num_chunks = align_size_up(_cur_dirty_region * HeapRegion::CardsPerRegion, G1ClearCardTableTask::chunk_size()) / G1ClearCardTableTask::chunk_size();
 260     uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
 261     size_t const chunk_length = G1ClearCardTableTask::chunk_size() / HeapRegion::CardsPerRegion;
 262 
 263     // Iterate over the dirty cards region list.
 264     G1ClearCardTableTask cl(G1CollectedHeap::heap(), _dirty_region_buffer, _cur_dirty_region, chunk_length);
 265 
 266     log_debug(gc, ergo)("Running %s using %u workers for " SIZE_FORMAT " "
 267                         "units of work for " SIZE_FORMAT " regions.",
 268                         cl.name(), num_workers, num_chunks, _cur_dirty_region);
 269     workers->run_task(&cl, num_workers);
 270 
 271 #ifndef PRODUCT
 272     // Need to synchronize with concurrent cleanup since it needs to
 273     // finish its card table clearing before we can verify.
 274     G1CollectedHeap::heap()->wait_while_free_regions_coming();
 275     G1CollectedHeap::heap()->verifier()->verify_card_table_cleanup();
 276 #endif
 277   }
 278 };
 279 
 280 G1RemSet::G1RemSet(G1CollectedHeap* g1,
 281                    CardTableModRefBS* ct_bs,
 282                    G1HotCardCache* hot_card_cache) :
 283   _g1(g1),
 284   _scan_state(new G1RemSetScanState()),
 285   _conc_refine_cards(0),
 286   _ct_bs(ct_bs),
 287   _g1p(_g1->g1_policy()),
 288   _hot_card_cache(hot_card_cache),
 289   _prev_period_summary()
 290 {
 291   if (log_is_enabled(Trace, gc, remset)) {
 292     _prev_period_summary.initialize(this);
 293   }
 294 }
 295 
 296 G1RemSet::~G1RemSet() {
 297   if (_scan_state != NULL) {
 298     delete _scan_state;
 299   }
 300 }
 301 
 302 uint G1RemSet::num_par_rem_sets() {
 303   return MAX2(DirtyCardQueueSet::num_par_ids() + ConcurrentG1Refine::thread_num(), ParallelGCThreads);
 304 }
 305 
 306 void G1RemSet::initialize(size_t capacity, uint max_regions) {
 307   G1FromCardCache::initialize(num_par_rem_sets(), max_regions);
 308   _scan_state->initialize(max_regions);
 309   {
 310     GCTraceTime(Debug, gc, marking)("Initialize Card Live Data");
 311     _card_live_data.initialize(capacity, max_regions);
 312   }
 313   if (G1PretouchAuxiliaryMemory) {
 314     GCTraceTime(Debug, gc, marking)("Pre-Touch Card Live Data");
 315     _card_live_data.pretouch();
 316   }
 317 }
 318 
 319 G1ScanRSForRegionClosure::G1ScanRSForRegionClosure(G1RemSetScanState* scan_state,
 320                                                    G1ScanObjsDuringScanRSClosure* scan_obj_on_card,
 321                                                    CodeBlobClosure* code_root_cl,
 322                                                    uint worker_i) :
 323   _scan_state(scan_state),
 324   _scan_objs_on_card_cl(scan_obj_on_card),
 325   _code_root_cl(code_root_cl),
 326   _strong_code_root_scan_time_sec(0.0),
 327   _cards_claimed(0),
 328   _cards_scanned(0),
 329   _cards_skipped(0),
 330   _worker_i(worker_i) {
 331   _g1h = G1CollectedHeap::heap();
 332   _bot = _g1h->bot();
 333   _ct_bs = _g1h->g1_barrier_set();
 334 }
 335 
 336 void G1ScanRSForRegionClosure::scan_card(size_t index, HeapWord* card_start, HeapRegion *r) {
 337   MemRegion card_region(card_start, BOTConstants::N_words);
 338   MemRegion pre_gc_allocated(r->bottom(), _scan_state->scan_top(r->hrm_index()));
 339   MemRegion mr = pre_gc_allocated.intersection(card_region);
 340   if (!mr.is_empty() && !_ct_bs->is_card_claimed(index)) {
 341     // We make the card as "claimed" lazily (so races are possible
 342     // but they're benign), which reduces the number of duplicate
 343     // scans (the rsets of the regions in the cset can intersect).
 344     _ct_bs->set_card_claimed(index);
 345     _scan_objs_on_card_cl->set_region(r);
 346     r->oops_on_card_seq_iterate_careful<true>(mr, _scan_objs_on_card_cl);
 347     _cards_scanned++;
 348   }
 349 }
 350 
 351 void G1ScanRSForRegionClosure::scan_strong_code_roots(HeapRegion* r) {
 352   double scan_start = os::elapsedTime();
 353   r->strong_code_roots_do(_code_root_cl);
 354   _strong_code_root_scan_time_sec += (os::elapsedTime() - scan_start);
 355 }
 356 
 357 bool G1ScanRSForRegionClosure::doHeapRegion(HeapRegion* r) {
 358   assert(r->in_collection_set(), "should only be called on elements of CS.");
 359   uint region_idx = r->hrm_index();
 360 
 361   if (_scan_state->iter_is_complete(region_idx)) {
 362     return false;
 363   }
 364   if (_scan_state->claim_iter(region_idx)) {
 365     // If we ever free the collection set concurrently, we should also
 366     // clear the card table concurrently therefore we won't need to
 367     // add regions of the collection set to the dirty cards region.
 368     _scan_state->add_dirty_region(region_idx);
 369   }
 370 
 371   // We claim cards in blocks so as to reduce the contention.
 372   size_t const block_size = G1RSetScanBlockSize;
 373 
 374   HeapRegionRemSetIterator iter(r->rem_set());
 375   size_t card_index;
 376 
 377   size_t claimed_card_block = _scan_state->iter_claimed_next(region_idx, block_size);
 378   for (size_t current_card = 0; iter.has_next(card_index); current_card++) {
 379     if (current_card >= claimed_card_block + block_size) {
 380       claimed_card_block = _scan_state->iter_claimed_next(region_idx, block_size);
 381     }
 382     if (current_card < claimed_card_block) {
 383       _cards_skipped++;
 384       continue;
 385     }
 386     HeapWord* card_start = _g1h->bot()->address_for_index(card_index);
 387 
 388     HeapRegion* card_region = _g1h->heap_region_containing(card_start);
 389     _cards_claimed++;
 390 
 391     _scan_state->add_dirty_region(card_region->hrm_index());
 392 
 393     // If the card is dirty, then we will scan it during updateRS.
 394     if (!card_region->in_collection_set() &&
 395         !_ct_bs->is_card_dirty(card_index)) {
 396       scan_card(card_index, card_start, card_region);
 397     }
 398   }
 399   if (_scan_state->set_iter_complete(region_idx)) {
 400     // Scan the strong code root list attached to the current region
 401     scan_strong_code_roots(r);
 402   }
 403   return false;
 404 }
 405 
 406 void G1RemSet::scan_rem_set(G1ParScanThreadState* pss,
 407                             CodeBlobClosure* heap_region_codeblobs,
 408                             uint worker_i) {
 409   double rs_time_start = os::elapsedTime();
 410 
 411   G1ScanObjsDuringScanRSClosure scan_cl(_g1, pss);
 412   G1ScanRSForRegionClosure cl(_scan_state, &scan_cl, heap_region_codeblobs, worker_i);
 413   _g1->collection_set_iterate_from(&cl, worker_i);
 414 
 415   double scan_rs_time_sec = (os::elapsedTime() - rs_time_start) -
 416                              cl.strong_code_root_scan_time_sec();
 417 
 418   G1GCPhaseTimes* p = _g1p->phase_times();
 419 
 420   p->record_time_secs(G1GCPhaseTimes::ScanRS, worker_i, scan_rs_time_sec);
 421   p->record_thread_work_item(G1GCPhaseTimes::ScanRS, worker_i, cl.cards_scanned(), G1GCPhaseTimes::ScannedCards);
 422   p->record_thread_work_item(G1GCPhaseTimes::ScanRS, worker_i, cl.cards_claimed(), G1GCPhaseTimes::ClaimedCards);
 423   p->record_thread_work_item(G1GCPhaseTimes::ScanRS, worker_i, cl.cards_skipped(), G1GCPhaseTimes::SkippedCards);
 424 
 425   p->record_time_secs(G1GCPhaseTimes::CodeRoots, worker_i, cl.strong_code_root_scan_time_sec());
 426 }
 427 
 428 // Closure used for updating rem sets. Only called during an evacuation pause.
 429 class G1RefineCardClosure: public CardTableEntryClosure {
 430   G1RemSet* _g1rs;
 431   G1ScanObjsDuringUpdateRSClosure* _update_rs_cl;
 432 public:
 433   G1RefineCardClosure(G1CollectedHeap* g1h, G1ScanObjsDuringUpdateRSClosure* update_rs_cl) :
 434     _g1rs(g1h->g1_rem_set()), _update_rs_cl(update_rs_cl)
 435   {}
 436 
 437   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 438     assert(SafepointSynchronize::is_at_safepoint(), "not during an evacuation pause");
 439 
 440     _g1rs->refine_card_during_gc(card_ptr, _update_rs_cl);
 441     return true;
 442   }
 443 };
 444 
 445 void G1RemSet::update_rem_set(G1ParScanThreadState* pss, uint worker_i) {
 446   G1ScanObjsDuringUpdateRSClosure update_rs_cl(_g1, pss, worker_i);
 447   G1RefineCardClosure refine_card_cl(_g1, &update_rs_cl);
 448 
 449   G1GCParPhaseTimesTracker x(_g1p->phase_times(), G1GCPhaseTimes::UpdateRS, worker_i);
 450   if (G1HotCardCache::default_use_cache()) {
 451     // Apply the closure to the entries of the hot card cache.
 452     G1GCParPhaseTimesTracker y(_g1p->phase_times(), G1GCPhaseTimes::ScanHCC, worker_i);
 453     _g1->iterate_hcc_closure(&refine_card_cl, worker_i);
 454   }
 455   // Apply the closure to all remaining log entries.
 456   _g1->iterate_dirty_card_closure(&refine_card_cl, worker_i);
 457 }
 458 
 459 void G1RemSet::cleanupHRRS() {
 460   HeapRegionRemSet::cleanup();
 461 }
 462 
 463 void G1RemSet::oops_into_collection_set_do(G1ParScanThreadState* pss,
 464                                            CodeBlobClosure* heap_region_codeblobs,
 465                                            uint worker_i) {
 466   update_rem_set(pss, worker_i);
 467   scan_rem_set(pss, heap_region_codeblobs, worker_i);;
 468 }
 469 
 470 void G1RemSet::prepare_for_oops_into_collection_set_do() {
 471   _g1->set_refine_cte_cl_concurrency(false);
 472   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 473   dcqs.concatenate_logs();
 474 
 475   _scan_state->reset();
 476 }
 477 
 478 void G1RemSet::cleanup_after_oops_into_collection_set_do() {
 479   G1GCPhaseTimes* phase_times = _g1->g1_policy()->phase_times();
 480   // Cleanup after copy
 481   _g1->set_refine_cte_cl_concurrency(true);
 482 
 483   // Set all cards back to clean.
 484   double start = os::elapsedTime();
 485   _scan_state->clear_card_table(_g1->workers());
 486   phase_times->record_clear_ct_time((os::elapsedTime() - start) * 1000.0);
 487 }
 488 
 489 class G1ScrubRSClosure: public HeapRegionClosure {
 490   G1CollectedHeap* _g1h;
 491   G1CardLiveData* _live_data;
 492 public:
 493   G1ScrubRSClosure(G1CardLiveData* live_data) :
 494     _g1h(G1CollectedHeap::heap()),
 495     _live_data(live_data) { }
 496 
 497   bool doHeapRegion(HeapRegion* r) {
 498     if (!r->is_continues_humongous()) {
 499       r->rem_set()->scrub(_live_data);
 500     }
 501     return false;
 502   }
 503 };
 504 
 505 void G1RemSet::scrub(uint worker_num, HeapRegionClaimer *hrclaimer) {
 506   G1ScrubRSClosure scrub_cl(&_card_live_data);
 507   _g1->heap_region_par_iterate(&scrub_cl, worker_num, hrclaimer);
 508 }
 509 
 510 inline void check_card_ptr(jbyte* card_ptr, CardTableModRefBS* ct_bs) {
 511 #ifdef ASSERT
 512   G1CollectedHeap* g1 = G1CollectedHeap::heap();
 513   assert(g1->is_in_exact(ct_bs->addr_for(card_ptr)),
 514          "Card at " PTR_FORMAT " index " SIZE_FORMAT " representing heap at " PTR_FORMAT " (%u) must be in committed heap",
 515          p2i(card_ptr),
 516          ct_bs->index_for(ct_bs->addr_for(card_ptr)),
 517          p2i(ct_bs->addr_for(card_ptr)),
 518          g1->addr_to_region(ct_bs->addr_for(card_ptr)));
 519 #endif
 520 }
 521 
 522 void G1RemSet::refine_card_concurrently(jbyte* card_ptr,
 523                                         uint worker_i) {
 524   assert(!_g1->is_gc_active(), "Only call concurrently");
 525 
 526   check_card_ptr(card_ptr, _ct_bs);
 527 
 528   // If the card is no longer dirty, nothing to do.
 529   if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
 530     return;
 531   }
 532 
 533   // Construct the region representing the card.
 534   HeapWord* start = _ct_bs->addr_for(card_ptr);
 535   // And find the region containing it.
 536   HeapRegion* r = _g1->heap_region_containing(start);
 537 
 538   // This check is needed for some uncommon cases where we should
 539   // ignore the card.
 540   //
 541   // The region could be young.  Cards for young regions are
 542   // distinctly marked (set to g1_young_gen), so the post-barrier will
 543   // filter them out.  However, that marking is performed
 544   // concurrently.  A write to a young object could occur before the
 545   // card has been marked young, slipping past the filter.
 546   //
 547   // The card could be stale, because the region has been freed since
 548   // the card was recorded. In this case the region type could be
 549   // anything.  If (still) free or (reallocated) young, just ignore
 550   // it.  If (reallocated) old or humongous, the later card trimming
 551   // and additional checks in iteration may detect staleness.  At
 552   // worst, we end up processing a stale card unnecessarily.
 553   //
 554   // In the normal (non-stale) case, the synchronization between the
 555   // enqueueing of the card and processing it here will have ensured
 556   // we see the up-to-date region type here.
 557   if (!r->is_old_or_humongous()) {
 558     return;
 559   }
 560 
 561   // While we are processing RSet buffers during the collection, we
 562   // actually don't want to scan any cards on the collection set,
 563   // since we don't want to update remembered sets with entries that
 564   // point into the collection set, given that live objects from the
 565   // collection set are about to move and such entries will be stale
 566   // very soon. This change also deals with a reliability issue which
 567   // involves scanning a card in the collection set and coming across
 568   // an array that was being chunked and looking malformed. Note,
 569   // however, that if evacuation fails, we have to scan any objects
 570   // that were not moved and create any missing entries.
 571   if (r->in_collection_set()) {
 572     return;
 573   }
 574 
 575   // The result from the hot card cache insert call is either:
 576   //   * pointer to the current card
 577   //     (implying that the current card is not 'hot'),
 578   //   * null
 579   //     (meaning we had inserted the card ptr into the "hot" card cache,
 580   //     which had some headroom),
 581   //   * a pointer to a "hot" card that was evicted from the "hot" cache.
 582   //
 583 
 584   if (_hot_card_cache->use_cache()) {
 585     assert(!SafepointSynchronize::is_at_safepoint(), "sanity");
 586 
 587     const jbyte* orig_card_ptr = card_ptr;
 588     card_ptr = _hot_card_cache->insert(card_ptr);
 589     if (card_ptr == NULL) {
 590       // There was no eviction. Nothing to do.
 591       return;
 592     } else if (card_ptr != orig_card_ptr) {
 593       // Original card was inserted and an old card was evicted.
 594       start = _ct_bs->addr_for(card_ptr);
 595       r = _g1->heap_region_containing(start);
 596 
 597       // Check whether the region formerly in the cache should be
 598       // ignored, as discussed earlier for the original card.  The
 599       // region could have been freed while in the cache.  The cset is
 600       // not relevant here, since we're in concurrent phase.
 601       if (!r->is_old_or_humongous()) {
 602         return;
 603       }
 604     } // Else we still have the original card.
 605   }
 606 
 607   // Trim the region designated by the card to what's been allocated
 608   // in the region.  The card could be stale, or the card could cover
 609   // (part of) an object at the end of the allocated space and extend
 610   // beyond the end of allocation.
 611 
 612   // Non-humongous objects are only allocated in the old-gen during
 613   // GC, so if region is old then top is stable.  Humongous object
 614   // allocation sets top last; if top has not yet been set, this is
 615   // a stale card and we'll end up with an empty intersection.  If
 616   // this is not a stale card, the synchronization between the
 617   // enqueuing of the card and processing it here will have ensured
 618   // we see the up-to-date top here.
 619   HeapWord* scan_limit = r->top();
 620 
 621   if (scan_limit <= start) {
 622     // If the trimmed region is empty, the card must be stale.
 623     return;
 624   }
 625 
 626   // Okay to clean and process the card now.  There are still some
 627   // stale card cases that may be detected by iteration and dealt with
 628   // as iteration failure.
 629   *const_cast<volatile jbyte*>(card_ptr) = CardTableModRefBS::clean_card_val();
 630 
 631   // This fence serves two purposes.  First, the card must be cleaned
 632   // before processing the contents.  Second, we can't proceed with
 633   // processing until after the read of top, for synchronization with
 634   // possibly concurrent humongous object allocation.  It's okay that
 635   // reading top and reading type were racy wrto each other.  We need
 636   // both set, in any order, to proceed.
 637   OrderAccess::fence();
 638 
 639   // Don't use addr_for(card_ptr + 1) which can ask for
 640   // a card beyond the heap.
 641   HeapWord* end = start + CardTableModRefBS::card_size_in_words;
 642   MemRegion dirty_region(start, MIN2(scan_limit, end));
 643   assert(!dirty_region.is_empty(), "sanity");
 644 
 645   G1ConcurrentRefineOopClosure conc_refine_cl(_g1, worker_i);
 646 
 647   bool card_processed =
 648     r->oops_on_card_seq_iterate_careful<false>(dirty_region, &conc_refine_cl);
 649 
 650   // If unable to process the card then we encountered an unparsable
 651   // part of the heap (e.g. a partially allocated object) while
 652   // processing a stale card.  Despite the card being stale, redirty
 653   // and re-enqueue, because we've already cleaned the card.  Without
 654   // this we could incorrectly discard a non-stale card.
 655   if (!card_processed) {
 656     // The card might have gotten re-dirtied and re-enqueued while we
 657     // worked.  (In fact, it's pretty likely.)
 658     if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
 659       *card_ptr = CardTableModRefBS::dirty_card_val();
 660       MutexLockerEx x(Shared_DirtyCardQ_lock,
 661                       Mutex::_no_safepoint_check_flag);
 662       DirtyCardQueue* sdcq =
 663         JavaThread::dirty_card_queue_set().shared_dirty_card_queue();
 664       sdcq->enqueue(card_ptr);
 665     }
 666   } else {
 667     _conc_refine_cards++;
 668   }
 669 }
 670 
 671 void G1RemSet::refine_card_during_gc(jbyte* card_ptr,
 672                                      G1ScanObjsDuringUpdateRSClosure* update_rs_cl) {
 673   assert(_g1->is_gc_active(), "Only call during GC");
 674 
 675   check_card_ptr(card_ptr, _ct_bs);
 676 
 677   // If the card is no longer dirty, nothing to do. This covers cards that were already
 678   // scanned as parts of the remembered sets.
 679   if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
 680     return;
 681   }
 682 
 683   // During GC we can immediately clean the card since we will not re-enqueue stale
 684   // cards as we know they can be disregarded.
 685   *card_ptr = CardTableModRefBS::clean_card_val();
 686 
 687   // Construct the region representing the card.
 688   HeapWord* card_start = _ct_bs->addr_for(card_ptr);
 689   // And find the region containing it.
 690   HeapRegion* r = _g1->heap_region_containing(card_start);
 691 
 692   HeapWord* scan_limit = _scan_state->scan_top(r->hrm_index());
 693   if (scan_limit <= card_start) {
 694     // If the card starts above the area in the region containing objects to scan, skip it.
 695     return;
 696   }
 697 
 698   // Don't use addr_for(card_ptr + 1) which can ask for
 699   // a card beyond the heap.
 700   HeapWord* card_end = card_start + CardTableModRefBS::card_size_in_words;
 701   MemRegion dirty_region(card_start, MIN2(scan_limit, card_end));
 702   assert(!dirty_region.is_empty(), "sanity");
 703 
 704   update_rs_cl->set_region(r);
 705   bool card_processed = r->oops_on_card_seq_iterate_careful<true>(dirty_region, update_rs_cl);
 706   assert(card_processed, "must be");
 707 
 708   _conc_refine_cards++;
 709 
 710   return;
 711 }
 712 
 713 void G1RemSet::print_periodic_summary_info(const char* header, uint period_count) {
 714   if ((G1SummarizeRSetStatsPeriod > 0) && log_is_enabled(Trace, gc, remset) &&
 715       (period_count % G1SummarizeRSetStatsPeriod == 0)) {
 716 
 717     if (!_prev_period_summary.initialized()) {
 718       _prev_period_summary.initialize(this);
 719     }
 720 
 721     G1RemSetSummary current;
 722     current.initialize(this);
 723     _prev_period_summary.subtract_from(&current);
 724 
 725     Log(gc, remset) log;
 726     log.trace("%s", header);
 727     ResourceMark rm;
 728     _prev_period_summary.print_on(log.trace_stream());
 729 
 730     _prev_period_summary.set(&current);
 731   }
 732 }
 733 
 734 void G1RemSet::print_summary_info() {
 735   Log(gc, remset, exit) log;
 736   if (log.is_trace()) {
 737     log.trace(" Cumulative RS summary");
 738     G1RemSetSummary current;
 739     current.initialize(this);
 740     ResourceMark rm;
 741     current.print_on(log.trace_stream());
 742   }
 743 }
 744 
 745 void G1RemSet::create_card_live_data(WorkGang* workers, G1CMBitMap* mark_bitmap) {
 746   _card_live_data.create(workers, mark_bitmap);
 747 }
 748 
 749 void G1RemSet::finalize_card_live_data(WorkGang* workers, G1CMBitMap* mark_bitmap) {
 750   _card_live_data.finalize(workers, mark_bitmap);
 751 }
 752 
 753 void G1RemSet::verify_card_live_data(WorkGang* workers, G1CMBitMap* bitmap) {
 754   _card_live_data.verify(workers, bitmap);
 755 }
 756 
 757 void G1RemSet::clear_card_live_data(WorkGang* workers) {
 758   _card_live_data.clear(workers);
 759 }
 760 
 761 #ifdef ASSERT
 762 void G1RemSet::verify_card_live_data_is_clear() {
 763   _card_live_data.verify_is_clear();
 764 }
 765 #endif