/* * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ // no precompiled headers #include "asm/macroAssembler.hpp" #include "macroAssembler_sparc.hpp" #include "classfile/classLoader.hpp" #include "classfile/systemDictionary.hpp" #include "classfile/vmSymbols.hpp" #include "code/codeCache.hpp" #include "code/icBuffer.hpp" #include "code/vtableStubs.hpp" #include "interpreter/interpreter.hpp" #include "jvm_solaris.h" #include "memory/allocation.inline.hpp" #include "nativeInst_sparc.hpp" #include "os_share_solaris.hpp" #include "prims/jniFastGetField.hpp" #include "prims/jvm.h" #include "prims/jvm_misc.hpp" #include "runtime/arguments.hpp" #include "runtime/extendedPC.hpp" #include "runtime/frame.inline.hpp" #include "runtime/interfaceSupport.hpp" #include "runtime/java.hpp" #include "runtime/javaCalls.hpp" #include "runtime/mutexLocker.hpp" #include "runtime/osThread.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubRoutines.hpp" #include "runtime/thread.inline.hpp" #include "runtime/timer.hpp" #include "utilities/events.hpp" #include "utilities/vmError.hpp" # include // needed first to avoid name collision for "std" with SC 5.0 // put OS-includes here # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # define _STRUCTURED_PROC 1 // this gets us the new structured proc interfaces of 5.6 & later # include // see comment in #define MAX_PATH (2 * K) // Minimum usable stack sizes required to get to user code. Space for // HotSpot guard pages is added later. size_t os::Posix::_compiler_thread_min_stack_allowed = 104 * K; size_t os::Posix::_java_thread_min_stack_allowed = 86 * K; size_t os::Posix::_vm_internal_thread_min_stack_allowed = 128 * K; int os::Solaris::max_register_window_saves_before_flushing() { // We should detect this at run time. For now, filling // in with a constant. return 8; } static void handle_unflushed_register_windows(gwindows_t *win) { int restore_count = win->wbcnt; int i; for(i=0; ispbuf[i]) + STACK_BIAS; address reg_win = (address)&win->wbuf[i]; memcpy(sp,reg_win,sizeof(struct rwindow)); } } char* os::non_memory_address_word() { // Must never look like an address returned by reserve_memory, // even in its subfields (as defined by the CPU immediate fields, // if the CPU splits constants across multiple instructions). // On SPARC, 0 != %hi(any real address), because there is no // allocation in the first 1Kb of the virtual address space. return (char*) 0; } // Validate a ucontext retrieved from walking a uc_link of a ucontext. // There are issues with libthread giving out uc_links for different threads // on the same uc_link chain and bad or circular links. // bool os::Solaris::valid_ucontext(Thread* thread, const ucontext_t* valid, const ucontext_t* suspect) { if (valid >= suspect || valid->uc_stack.ss_flags != suspect->uc_stack.ss_flags || valid->uc_stack.ss_sp != suspect->uc_stack.ss_sp || valid->uc_stack.ss_size != suspect->uc_stack.ss_size) { DEBUG_ONLY(tty->print_cr("valid_ucontext: failed test 1");) return false; } if (thread->is_Java_thread()) { if (!valid_stack_address(thread, (address)suspect)) { DEBUG_ONLY(tty->print_cr("valid_ucontext: uc_link not in thread stack");) return false; } address _sp = (address)((intptr_t)suspect->uc_mcontext.gregs[REG_SP] + STACK_BIAS); if (!valid_stack_address(thread, _sp) || !frame::is_valid_stack_pointer(((JavaThread*)thread)->base_of_stack_pointer(), (intptr_t*)_sp)) { DEBUG_ONLY(tty->print_cr("valid_ucontext: stackpointer not in thread stack");) return false; } } return true; } // We will only follow one level of uc_link since there are libthread // issues with ucontext linking and it is better to be safe and just // let caller retry later. const ucontext_t* os::Solaris::get_valid_uc_in_signal_handler(Thread *thread, const ucontext_t *uc) { const ucontext_t *retuc = NULL; // Sometimes the topmost register windows are not properly flushed. // i.e., if the kernel would have needed to take a page fault if (uc != NULL && uc->uc_mcontext.gwins != NULL) { ::handle_unflushed_register_windows(uc->uc_mcontext.gwins); } if (uc != NULL) { if (uc->uc_link == NULL) { // cannot validate without uc_link so accept current ucontext retuc = uc; } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) { // first ucontext is valid so try the next one uc = uc->uc_link; if (uc->uc_link == NULL) { // cannot validate without uc_link so accept current ucontext retuc = uc; } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) { // the ucontext one level down is also valid so return it retuc = uc; } } } return retuc; } // Assumes ucontext is valid ExtendedPC os::Solaris::ucontext_get_ExtendedPC(const ucontext_t *uc) { address pc = (address)uc->uc_mcontext.gregs[REG_PC]; // set npc to zero to avoid using it for safepoint, good for profiling only return ExtendedPC(pc); } void os::Solaris::ucontext_set_pc(ucontext_t* uc, address pc) { uc->uc_mcontext.gregs [REG_PC] = (greg_t) pc; uc->uc_mcontext.gregs [REG_nPC] = (greg_t) (pc + 4); } // Assumes ucontext is valid intptr_t* os::Solaris::ucontext_get_sp(const ucontext_t *uc) { return (intptr_t*)((intptr_t)uc->uc_mcontext.gregs[REG_SP] + STACK_BIAS); } // Solaris X86 only intptr_t* os::Solaris::ucontext_get_fp(const ucontext_t *uc) { ShouldNotReachHere(); return NULL; } address os::Solaris::ucontext_get_pc(const ucontext_t *uc) { return (address) uc->uc_mcontext.gregs[REG_PC]; } // For Forte Analyzer AsyncGetCallTrace profiling support - thread // is currently interrupted by SIGPROF. // // ret_fp parameter is only used by Solaris X86. // // The difference between this and os::fetch_frame_from_context() is that // here we try to skip nested signal frames. // This method is also used for stack overflow signal handling. ExtendedPC os::Solaris::fetch_frame_from_ucontext(Thread* thread, const ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) { assert(thread != NULL, "just checking"); assert(ret_sp != NULL, "just checking"); assert(ret_fp == NULL, "just checking"); const ucontext_t *luc = os::Solaris::get_valid_uc_in_signal_handler(thread, uc); return os::fetch_frame_from_context(luc, ret_sp, ret_fp); } // ret_fp parameter is only used by Solaris X86. ExtendedPC os::fetch_frame_from_context(const void* ucVoid, intptr_t** ret_sp, intptr_t** ret_fp) { ExtendedPC epc; const ucontext_t *uc = (const ucontext_t*)ucVoid; if (uc != NULL) { epc = os::Solaris::ucontext_get_ExtendedPC(uc); if (ret_sp) *ret_sp = os::Solaris::ucontext_get_sp(uc); } else { // construct empty ExtendedPC for return value checking epc = ExtendedPC(NULL); if (ret_sp) *ret_sp = (intptr_t *)NULL; } return epc; } frame os::fetch_frame_from_context(const void* ucVoid) { intptr_t* sp; intptr_t* fp; ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp); return frame(sp, frame::unpatchable, epc.pc()); } frame os::fetch_frame_from_ucontext(Thread* thread, void* ucVoid) { intptr_t* sp; ExtendedPC epc = os::Solaris::fetch_frame_from_ucontext(thread, (ucontext_t*)ucVoid, &sp, NULL); return frame(sp, frame::unpatchable, epc.pc()); } bool os::Solaris::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) { address pc = (address) os::Solaris::ucontext_get_pc(uc); if (Interpreter::contains(pc)) { *fr = os::fetch_frame_from_ucontext(thread, uc); if (!fr->is_first_java_frame()) { assert(fr->safe_for_sender(thread), "Safety check"); *fr = fr->java_sender(); } } else { // more complex code with compiled code assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above"); CodeBlob* cb = CodeCache::find_blob(pc); if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) { // Not sure where the pc points to, fallback to default // stack overflow handling return false; } else { // Returned frame will be the caller of the method that faults on the stack bang. // Register window not yet rotated (happens at SAVE after stack bang), so there is no new // frame to go with the faulting PC. Using caller SP that is still in SP, and caller PC // that was written to O7 at call. intptr_t* sp = os::Solaris::ucontext_get_sp(uc); address pc = (address)uc->uc_mcontext.gregs[REG_O7]; *fr = frame(sp, frame::unpatchable, pc); if (!fr->is_java_frame()) { assert(fr->safe_for_sender(thread), "Safety check"); *fr = fr->java_sender(); } } } assert(fr->is_java_frame(), "Safety check"); return true; } frame os::get_sender_for_C_frame(frame* fr) { return frame(fr->sender_sp(), frame::unpatchable, fr->sender_pc()); } // Returns an estimate of the current stack pointer. Result must be guaranteed to // point into the calling threads stack, and be no lower than the current stack // pointer. address os::current_stack_pointer() { volatile int dummy; address sp = (address)&dummy + 8; // %%%% need to confirm if this is right return sp; } frame os::current_frame() { intptr_t* sp = StubRoutines::Sparc::flush_callers_register_windows_func()(); frame myframe(sp, frame::unpatchable, CAST_FROM_FN_PTR(address, os::current_frame)); if (os::is_first_C_frame(&myframe)) { // stack is not walkable return frame(NULL, NULL, false); } else { return os::get_sender_for_C_frame(&myframe); } } bool os::is_allocatable(size_t bytes) { return true; } extern "C" JNIEXPORT int JVM_handle_solaris_signal(int sig, siginfo_t* info, void* ucVoid, int abort_if_unrecognized) { ucontext_t* uc = (ucontext_t*) ucVoid; Thread* t = Thread::current_or_null_safe(); // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away // (no destructors can be run) os::WatcherThreadCrashProtection::check_crash_protection(sig, t); SignalHandlerMark shm(t); if(sig == SIGPIPE || sig == SIGXFSZ) { if (os::Solaris::chained_handler(sig, info, ucVoid)) { return true; } else { // Ignoring SIGPIPE/SIGXFSZ - see bugs 4229104 or 6499219 return true; } } JavaThread* thread = NULL; VMThread* vmthread = NULL; if (os::Solaris::signal_handlers_are_installed) { if (t != NULL ){ if(t->is_Java_thread()) { thread = (JavaThread*)t; } else if(t->is_VM_thread()){ vmthread = (VMThread *)t; } } } if (sig == ASYNC_SIGNAL) { if (thread || vmthread) { OSThread::SR_handler(t, uc); return true; } else if (os::Solaris::chained_handler(sig, info, ucVoid)) { return true; } else { // If ASYNC_SIGNAL not chained, and this is a non-vm and // non-java thread return true; } } if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) { // can't decode this kind of signal info = NULL; } else { assert(sig == info->si_signo, "bad siginfo"); } // decide if this trap can be handled by a stub address stub = NULL; address pc = NULL; address npc = NULL; //%note os_trap_1 if (info != NULL && uc != NULL && thread != NULL) { // factor me: getPCfromContext pc = (address) uc->uc_mcontext.gregs[REG_PC]; npc = (address) uc->uc_mcontext.gregs[REG_nPC]; // SafeFetch() support if (StubRoutines::is_safefetch_fault(pc)) { os::Solaris::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc)); return 1; } // Handle ALL stack overflow variations here if (sig == SIGSEGV && info->si_code == SEGV_ACCERR) { address addr = (address) info->si_addr; if (thread->in_stack_yellow_reserved_zone(addr)) { // Sometimes the register windows are not properly flushed. if(uc->uc_mcontext.gwins != NULL) { ::handle_unflushed_register_windows(uc->uc_mcontext.gwins); } if (thread->thread_state() == _thread_in_Java) { if (thread->in_stack_reserved_zone(addr)) { frame fr; if (os::Solaris::get_frame_at_stack_banging_point(thread, uc, &fr)) { assert(fr.is_java_frame(), "Must be a Java frame"); frame activation = SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr); if (activation.sp() != NULL) { thread->disable_stack_reserved_zone(); RegisterMap map(thread); int frame_size = activation.frame_size(&map); thread->set_reserved_stack_activation((address)(((address)activation.sp()) - STACK_BIAS)); return true; } } } // Throw a stack overflow exception. Guard pages will be reenabled // while unwinding the stack. thread->disable_stack_yellow_reserved_zone(); stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW); } else { // Thread was in the vm or native code. Return and try to finish. thread->disable_stack_yellow_reserved_zone(); return true; } } else if (thread->in_stack_red_zone(addr)) { // Fatal red zone violation. Disable the guard pages and fall through // to handle_unexpected_exception way down below. thread->disable_stack_red_zone(); tty->print_raw_cr("An irrecoverable stack overflow has occurred."); // Sometimes the register windows are not properly flushed. if(uc->uc_mcontext.gwins != NULL) { ::handle_unflushed_register_windows(uc->uc_mcontext.gwins); } } } if (thread->thread_state() == _thread_in_vm) { if (sig == SIGBUS && thread->doing_unsafe_access()) { stub = SharedRuntime::handle_unsafe_access(thread, npc); } } else if (thread->thread_state() == _thread_in_Java) { // Java thread running in Java code => find exception handler if any // a fault inside compiled code, the interpreter, or a stub // Support Safepoint Polling if ( sig == SIGSEGV && (address)info->si_addr == os::get_polling_page() ) { stub = SharedRuntime::get_poll_stub(pc); } // Not needed on x86 solaris because verify_oops doesn't generate // SEGV/BUS like sparc does. if ( (sig == SIGSEGV || sig == SIGBUS) && pc >= MacroAssembler::_verify_oop_implicit_branch[0] && pc < MacroAssembler::_verify_oop_implicit_branch[1] ) { stub = MacroAssembler::_verify_oop_implicit_branch[2]; warning("fixed up memory fault in +VerifyOops at address " INTPTR_FORMAT, info->si_addr); } // This is not factored because on x86 solaris the patching for // zombies does not generate a SEGV. else if (sig == SIGSEGV && nativeInstruction_at(pc)->is_zombie()) { // zombie method (ld [%g0],%o7 instruction) stub = SharedRuntime::get_handle_wrong_method_stub(); // At the stub it needs to look like a call from the caller of this // method (not a call from the segv site). pc = (address)uc->uc_mcontext.gregs[REG_O7]; } else if (sig == SIGBUS && info->si_code == BUS_OBJERR) { // BugId 4454115: A read from a MappedByteBuffer can fault // here if the underlying file has been truncated. // Do not crash the VM in such a case. CodeBlob* cb = CodeCache::find_blob_unsafe(pc); CompiledMethod* nm = cb->as_compiled_method_or_null(); if (nm != NULL && nm->has_unsafe_access()) { stub = SharedRuntime::handle_unsafe_access(thread, npc); } } else if (sig == SIGFPE && info->si_code == FPE_INTDIV) { // integer divide by zero stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO); } else if (sig == SIGFPE && info->si_code == FPE_FLTDIV) { // floating-point divide by zero stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO); } #ifdef COMPILER2 else if (sig == SIGILL && nativeInstruction_at(pc)->is_ic_miss_trap()) { #ifdef ASSERT #ifdef TIERED CodeBlob* cb = CodeCache::find_blob_unsafe(pc); assert(cb->is_compiled_by_c2(), "Wrong compiler"); #endif // TIERED #endif // ASSERT // Inline cache missed and user trap "Tne G0+ST_RESERVED_FOR_USER_0+2" taken. stub = SharedRuntime::get_ic_miss_stub(); // At the stub it needs to look like a call from the caller of this // method (not a call from the segv site). pc = (address)uc->uc_mcontext.gregs[REG_O7]; } #endif // COMPILER2 else if (sig == SIGSEGV && info->si_code > 0 && !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) { // Determination of interpreter/vtable stub/compiled code null exception stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL); } } // jni_fast_GetField can trap at certain pc's if a GC kicks in // and the heap gets shrunk before the field access. if ((sig == SIGSEGV) || (sig == SIGBUS)) { address addr = JNI_FastGetField::find_slowcase_pc(pc); if (addr != (address)-1) { stub = addr; } } // Check to see if we caught the safepoint code in the // process of write protecting the memory serialization page. // It write enables the page immediately after protecting it // so just return. if ((sig == SIGSEGV) && os::is_memory_serialize_page(thread, (address)info->si_addr)) { // Block current thread until the memory serialize page permission restored. os::block_on_serialize_page_trap(); return true; } } if (stub != NULL) { // save all thread context in case we need to restore it thread->set_saved_exception_pc(pc); thread->set_saved_exception_npc(npc); // simulate a branch to the stub (a "call" in the safepoint stub case) // factor me: setPC os::Solaris::ucontext_set_pc(uc, stub); return true; } // signal-chaining if (os::Solaris::chained_handler(sig, info, ucVoid)) { return true; } if (!abort_if_unrecognized) { // caller wants another chance, so give it to him return false; } if (!os::Solaris::libjsig_is_loaded) { struct sigaction oldAct; sigaction(sig, (struct sigaction *)0, &oldAct); if (oldAct.sa_sigaction != signalHandler) { void* sighand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction) : CAST_FROM_FN_PTR(void*, oldAct.sa_handler); warning("Unexpected Signal %d occurred under user-defined signal handler " INTPTR_FORMAT, sig, (intptr_t)sighand); } } if (pc == NULL && uc != NULL) { pc = (address) uc->uc_mcontext.gregs[REG_PC]; } // Sometimes the register windows are not properly flushed. if(uc->uc_mcontext.gwins != NULL) { ::handle_unflushed_register_windows(uc->uc_mcontext.gwins); } // unmask current signal sigset_t newset; sigemptyset(&newset); sigaddset(&newset, sig); sigprocmask(SIG_UNBLOCK, &newset, NULL); // Determine which sort of error to throw. Out of swap may signal // on the thread stack, which could get a mapping error when touched. address addr = (address) info->si_addr; if (sig == SIGBUS && info->si_code == BUS_OBJERR && info->si_errno == ENOMEM) { vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "Out of swap space to map in thread stack."); } VMError::report_and_die(t, sig, pc, info, ucVoid); ShouldNotReachHere(); return false; } void os::print_context(outputStream *st, const void *context) { if (context == NULL) return; const ucontext_t *uc = (const ucontext_t*)context; st->print_cr("Registers:"); st->print_cr(" G1=" INTPTR_FORMAT " G2=" INTPTR_FORMAT " G3=" INTPTR_FORMAT " G4=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_G1], uc->uc_mcontext.gregs[REG_G2], uc->uc_mcontext.gregs[REG_G3], uc->uc_mcontext.gregs[REG_G4]); st->print_cr(" G5=" INTPTR_FORMAT " G6=" INTPTR_FORMAT " G7=" INTPTR_FORMAT " Y=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_G5], uc->uc_mcontext.gregs[REG_G6], uc->uc_mcontext.gregs[REG_G7], uc->uc_mcontext.gregs[REG_Y]); st->print_cr(" O0=" INTPTR_FORMAT " O1=" INTPTR_FORMAT " O2=" INTPTR_FORMAT " O3=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_O0], uc->uc_mcontext.gregs[REG_O1], uc->uc_mcontext.gregs[REG_O2], uc->uc_mcontext.gregs[REG_O3]); st->print_cr(" O4=" INTPTR_FORMAT " O5=" INTPTR_FORMAT " O6=" INTPTR_FORMAT " O7=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_O4], uc->uc_mcontext.gregs[REG_O5], uc->uc_mcontext.gregs[REG_O6], uc->uc_mcontext.gregs[REG_O7]); intptr_t *sp = (intptr_t *)os::Solaris::ucontext_get_sp(uc); st->print_cr(" L0=" INTPTR_FORMAT " L1=" INTPTR_FORMAT " L2=" INTPTR_FORMAT " L3=" INTPTR_FORMAT, sp[L0->sp_offset_in_saved_window()], sp[L1->sp_offset_in_saved_window()], sp[L2->sp_offset_in_saved_window()], sp[L3->sp_offset_in_saved_window()]); st->print_cr(" L4=" INTPTR_FORMAT " L5=" INTPTR_FORMAT " L6=" INTPTR_FORMAT " L7=" INTPTR_FORMAT, sp[L4->sp_offset_in_saved_window()], sp[L5->sp_offset_in_saved_window()], sp[L6->sp_offset_in_saved_window()], sp[L7->sp_offset_in_saved_window()]); st->print_cr(" I0=" INTPTR_FORMAT " I1=" INTPTR_FORMAT " I2=" INTPTR_FORMAT " I3=" INTPTR_FORMAT, sp[I0->sp_offset_in_saved_window()], sp[I1->sp_offset_in_saved_window()], sp[I2->sp_offset_in_saved_window()], sp[I3->sp_offset_in_saved_window()]); st->print_cr(" I4=" INTPTR_FORMAT " I5=" INTPTR_FORMAT " I6=" INTPTR_FORMAT " I7=" INTPTR_FORMAT, sp[I4->sp_offset_in_saved_window()], sp[I5->sp_offset_in_saved_window()], sp[I6->sp_offset_in_saved_window()], sp[I7->sp_offset_in_saved_window()]); st->print_cr(" PC=" INTPTR_FORMAT " nPC=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_PC], uc->uc_mcontext.gregs[REG_nPC]); st->cr(); st->cr(); st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp); print_hex_dump(st, (address)sp, (address)(sp + 32), sizeof(intptr_t)); st->cr(); // Note: it may be unsafe to inspect memory near pc. For example, pc may // point to garbage if entry point in an nmethod is corrupted. Leave // this at the end, and hope for the best. ExtendedPC epc = os::Solaris::ucontext_get_ExtendedPC(uc); address pc = epc.pc(); st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc); print_hex_dump(st, pc - 32, pc + 32, sizeof(char)); } void os::print_register_info(outputStream *st, const void *context) { if (context == NULL) return; const ucontext_t *uc = (const ucontext_t*)context; intptr_t *sp = (intptr_t *)os::Solaris::ucontext_get_sp(uc); st->print_cr("Register to memory mapping:"); st->cr(); // this is only for the "general purpose" registers st->print("G1="); print_location(st, uc->uc_mcontext.gregs[REG_G1]); st->print("G2="); print_location(st, uc->uc_mcontext.gregs[REG_G2]); st->print("G3="); print_location(st, uc->uc_mcontext.gregs[REG_G3]); st->print("G4="); print_location(st, uc->uc_mcontext.gregs[REG_G4]); st->print("G5="); print_location(st, uc->uc_mcontext.gregs[REG_G5]); st->print("G6="); print_location(st, uc->uc_mcontext.gregs[REG_G6]); st->print("G7="); print_location(st, uc->uc_mcontext.gregs[REG_G7]); st->cr(); st->print("O0="); print_location(st, uc->uc_mcontext.gregs[REG_O0]); st->print("O1="); print_location(st, uc->uc_mcontext.gregs[REG_O1]); st->print("O2="); print_location(st, uc->uc_mcontext.gregs[REG_O2]); st->print("O3="); print_location(st, uc->uc_mcontext.gregs[REG_O3]); st->print("O4="); print_location(st, uc->uc_mcontext.gregs[REG_O4]); st->print("O5="); print_location(st, uc->uc_mcontext.gregs[REG_O5]); st->print("O6="); print_location(st, uc->uc_mcontext.gregs[REG_O6]); st->print("O7="); print_location(st, uc->uc_mcontext.gregs[REG_O7]); st->cr(); st->print("L0="); print_location(st, sp[L0->sp_offset_in_saved_window()]); st->print("L1="); print_location(st, sp[L1->sp_offset_in_saved_window()]); st->print("L2="); print_location(st, sp[L2->sp_offset_in_saved_window()]); st->print("L3="); print_location(st, sp[L3->sp_offset_in_saved_window()]); st->print("L4="); print_location(st, sp[L4->sp_offset_in_saved_window()]); st->print("L5="); print_location(st, sp[L5->sp_offset_in_saved_window()]); st->print("L6="); print_location(st, sp[L6->sp_offset_in_saved_window()]); st->print("L7="); print_location(st, sp[L7->sp_offset_in_saved_window()]); st->cr(); st->print("I0="); print_location(st, sp[I0->sp_offset_in_saved_window()]); st->print("I1="); print_location(st, sp[I1->sp_offset_in_saved_window()]); st->print("I2="); print_location(st, sp[I2->sp_offset_in_saved_window()]); st->print("I3="); print_location(st, sp[I3->sp_offset_in_saved_window()]); st->print("I4="); print_location(st, sp[I4->sp_offset_in_saved_window()]); st->print("I5="); print_location(st, sp[I5->sp_offset_in_saved_window()]); st->print("I6="); print_location(st, sp[I6->sp_offset_in_saved_window()]); st->print("I7="); print_location(st, sp[I7->sp_offset_in_saved_window()]); st->cr(); } void os::Solaris::init_thread_fpu_state(void) { // Nothing needed on Sparc. } #ifndef PRODUCT void os::verify_stack_alignment() { } #endif int os::extra_bang_size_in_bytes() { // SPARC does not require an additional stack bang. return 0; }