1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "code/codeBlob.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledIC.hpp"
  30 #include "code/dependencies.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "code/nmethod.hpp"
  33 #include "code/pcDesc.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "gc/shared/gcLocker.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/iterator.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "oops/method.hpp"
  40 #include "oops/objArrayOop.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "oops/verifyOopClosure.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/compilationPolicy.hpp"
  45 #include "runtime/deoptimization.hpp"
  46 #include "runtime/handles.inline.hpp"
  47 #include "runtime/icache.hpp"
  48 #include "runtime/java.hpp"
  49 #include "runtime/mutexLocker.hpp"
  50 #include "runtime/sweeper.hpp"
  51 #include "services/memoryService.hpp"
  52 #include "trace/tracing.hpp"
  53 #include "utilities/align.hpp"
  54 #include "utilities/vmError.hpp"
  55 #include "utilities/xmlstream.hpp"
  56 #ifdef COMPILER1
  57 #include "c1/c1_Compilation.hpp"
  58 #include "c1/c1_Compiler.hpp"
  59 #endif
  60 #ifdef COMPILER2
  61 #include "opto/c2compiler.hpp"
  62 #include "opto/compile.hpp"
  63 #include "opto/node.hpp"
  64 #endif
  65 
  66 // Helper class for printing in CodeCache
  67 class CodeBlob_sizes {
  68  private:
  69   int count;
  70   int total_size;
  71   int header_size;
  72   int code_size;
  73   int stub_size;
  74   int relocation_size;
  75   int scopes_oop_size;
  76   int scopes_metadata_size;
  77   int scopes_data_size;
  78   int scopes_pcs_size;
  79 
  80  public:
  81   CodeBlob_sizes() {
  82     count            = 0;
  83     total_size       = 0;
  84     header_size      = 0;
  85     code_size        = 0;
  86     stub_size        = 0;
  87     relocation_size  = 0;
  88     scopes_oop_size  = 0;
  89     scopes_metadata_size  = 0;
  90     scopes_data_size = 0;
  91     scopes_pcs_size  = 0;
  92   }
  93 
  94   int total()                                    { return total_size; }
  95   bool is_empty()                                { return count == 0; }
  96 
  97   void print(const char* title) {
  98     tty->print_cr(" #%d %s = %dK (hdr %d%%,  loc %d%%, code %d%%, stub %d%%, [oops %d%%, metadata %d%%, data %d%%, pcs %d%%])",
  99                   count,
 100                   title,
 101                   (int)(total() / K),
 102                   header_size             * 100 / total_size,
 103                   relocation_size         * 100 / total_size,
 104                   code_size               * 100 / total_size,
 105                   stub_size               * 100 / total_size,
 106                   scopes_oop_size         * 100 / total_size,
 107                   scopes_metadata_size    * 100 / total_size,
 108                   scopes_data_size        * 100 / total_size,
 109                   scopes_pcs_size         * 100 / total_size);
 110   }
 111 
 112   void add(CodeBlob* cb) {
 113     count++;
 114     total_size       += cb->size();
 115     header_size      += cb->header_size();
 116     relocation_size  += cb->relocation_size();
 117     if (cb->is_nmethod()) {
 118       nmethod* nm = cb->as_nmethod_or_null();
 119       code_size        += nm->insts_size();
 120       stub_size        += nm->stub_size();
 121 
 122       scopes_oop_size  += nm->oops_size();
 123       scopes_metadata_size  += nm->metadata_size();
 124       scopes_data_size += nm->scopes_data_size();
 125       scopes_pcs_size  += nm->scopes_pcs_size();
 126     } else {
 127       code_size        += cb->code_size();
 128     }
 129   }
 130 };
 131 
 132 // Iterate over all CodeHeaps
 133 #define FOR_ALL_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _heaps->begin(); heap != _heaps->end(); ++heap)
 134 #define FOR_ALL_NMETHOD_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _nmethod_heaps->begin(); heap != _nmethod_heaps->end(); ++heap)
 135 #define FOR_ALL_ALLOCABLE_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _allocable_heaps->begin(); heap != _allocable_heaps->end(); ++heap)
 136 
 137 // Iterate over all CodeBlobs (cb) on the given CodeHeap
 138 #define FOR_ALL_BLOBS(cb, heap) for (CodeBlob* cb = first_blob(heap); cb != NULL; cb = next_blob(heap, cb))
 139 
 140 address CodeCache::_low_bound = 0;
 141 address CodeCache::_high_bound = 0;
 142 int CodeCache::_number_of_nmethods_with_dependencies = 0;
 143 bool CodeCache::_needs_cache_clean = false;
 144 nmethod* CodeCache::_scavenge_root_nmethods = NULL;
 145 
 146 // Initialize arrays of CodeHeap subsets
 147 GrowableArray<CodeHeap*>* CodeCache::_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
 148 GrowableArray<CodeHeap*>* CodeCache::_compiled_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
 149 GrowableArray<CodeHeap*>* CodeCache::_nmethod_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
 150 GrowableArray<CodeHeap*>* CodeCache::_allocable_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
 151 
 152 void CodeCache::check_heap_sizes(size_t non_nmethod_size, size_t profiled_size, size_t non_profiled_size, size_t cache_size, bool all_set) {
 153   size_t total_size = non_nmethod_size + profiled_size + non_profiled_size;
 154   // Prepare error message
 155   const char* error = "Invalid code heap sizes";
 156   err_msg message("NonNMethodCodeHeapSize (" SIZE_FORMAT "K) + ProfiledCodeHeapSize (" SIZE_FORMAT "K)"
 157                   " + NonProfiledCodeHeapSize (" SIZE_FORMAT "K) = " SIZE_FORMAT "K",
 158           non_nmethod_size/K, profiled_size/K, non_profiled_size/K, total_size/K);
 159 
 160   if (total_size > cache_size) {
 161     // Some code heap sizes were explicitly set: total_size must be <= cache_size
 162     message.append(" is greater than ReservedCodeCacheSize (" SIZE_FORMAT "K).", cache_size/K);
 163     vm_exit_during_initialization(error, message);
 164   } else if (all_set && total_size != cache_size) {
 165     // All code heap sizes were explicitly set: total_size must equal cache_size
 166     message.append(" is not equal to ReservedCodeCacheSize (" SIZE_FORMAT "K).", cache_size/K);
 167     vm_exit_during_initialization(error, message);
 168   }
 169 }
 170 
 171 void CodeCache::initialize_heaps() {
 172   bool non_nmethod_set      = FLAG_IS_CMDLINE(NonNMethodCodeHeapSize);
 173   bool profiled_set         = FLAG_IS_CMDLINE(ProfiledCodeHeapSize);
 174   bool non_profiled_set     = FLAG_IS_CMDLINE(NonProfiledCodeHeapSize);
 175   size_t min_size           = os::vm_page_size();
 176   size_t cache_size         = ReservedCodeCacheSize;
 177   size_t non_nmethod_size   = NonNMethodCodeHeapSize;
 178   size_t profiled_size      = ProfiledCodeHeapSize;
 179   size_t non_profiled_size  = NonProfiledCodeHeapSize;
 180   // Check if total size set via command line flags exceeds the reserved size
 181   check_heap_sizes((non_nmethod_set  ? non_nmethod_size  : min_size),
 182                    (profiled_set     ? profiled_size     : min_size),
 183                    (non_profiled_set ? non_profiled_size : min_size),
 184                    cache_size,
 185                    non_nmethod_set && profiled_set && non_profiled_set);
 186 
 187   // Determine size of compiler buffers
 188   size_t code_buffers_size = 0;
 189 #ifdef COMPILER1
 190   // C1 temporary code buffers (see Compiler::init_buffer_blob())
 191   const int c1_count = CompilationPolicy::policy()->compiler_count(CompLevel_simple);
 192   code_buffers_size += c1_count * Compiler::code_buffer_size();
 193 #endif
 194 #ifdef COMPILER2
 195   // C2 scratch buffers (see Compile::init_scratch_buffer_blob())
 196   const int c2_count = CompilationPolicy::policy()->compiler_count(CompLevel_full_optimization);
 197   // Initial size of constant table (this may be increased if a compiled method needs more space)
 198   code_buffers_size += c2_count * C2Compiler::initial_code_buffer_size();
 199 #endif
 200 
 201   // Increase default non_nmethod_size to account for compiler buffers
 202   if (!non_nmethod_set) {
 203     non_nmethod_size += code_buffers_size;
 204   }
 205   // Calculate default CodeHeap sizes if not set by user
 206   if (!non_nmethod_set && !profiled_set && !non_profiled_set) {
 207     // Check if we have enough space for the non-nmethod code heap
 208     if (cache_size > non_nmethod_size) {
 209       // Use the default value for non_nmethod_size and one half of the
 210       // remaining size for non-profiled and one half for profiled methods
 211       size_t remaining_size = cache_size - non_nmethod_size;
 212       profiled_size = remaining_size / 2;
 213       non_profiled_size = remaining_size - profiled_size;
 214     } else {
 215       // Use all space for the non-nmethod heap and set other heaps to minimal size
 216       non_nmethod_size = cache_size - 2 * min_size;
 217       profiled_size = min_size;
 218       non_profiled_size = min_size;
 219     }
 220   } else if (!non_nmethod_set || !profiled_set || !non_profiled_set) {
 221     // The user explicitly set some code heap sizes. Increase or decrease the (default)
 222     // sizes of the other code heaps accordingly. First adapt non-profiled and profiled
 223     // code heap sizes and then only change non-nmethod code heap size if still necessary.
 224     intx diff_size = cache_size - (non_nmethod_size + profiled_size + non_profiled_size);
 225     if (non_profiled_set) {
 226       if (!profiled_set) {
 227         // Adapt size of profiled code heap
 228         if (diff_size < 0 && ((intx)profiled_size + diff_size) <= 0) {
 229           // Not enough space available, set to minimum size
 230           diff_size += profiled_size - min_size;
 231           profiled_size = min_size;
 232         } else {
 233           profiled_size += diff_size;
 234           diff_size = 0;
 235         }
 236       }
 237     } else if (profiled_set) {
 238       // Adapt size of non-profiled code heap
 239       if (diff_size < 0 && ((intx)non_profiled_size + diff_size) <= 0) {
 240         // Not enough space available, set to minimum size
 241         diff_size += non_profiled_size - min_size;
 242         non_profiled_size = min_size;
 243       } else {
 244         non_profiled_size += diff_size;
 245         diff_size = 0;
 246       }
 247     } else if (non_nmethod_set) {
 248       // Distribute remaining size between profiled and non-profiled code heaps
 249       diff_size = cache_size - non_nmethod_size;
 250       profiled_size = diff_size / 2;
 251       non_profiled_size = diff_size - profiled_size;
 252       diff_size = 0;
 253     }
 254     if (diff_size != 0) {
 255       // Use non-nmethod code heap for remaining space requirements
 256       assert(!non_nmethod_set && ((intx)non_nmethod_size + diff_size) > 0, "sanity");
 257       non_nmethod_size += diff_size;
 258     }
 259   }
 260 
 261   // We do not need the profiled CodeHeap, use all space for the non-profiled CodeHeap
 262   if(!heap_available(CodeBlobType::MethodProfiled)) {
 263     non_profiled_size += profiled_size;
 264     profiled_size = 0;
 265   }
 266   // We do not need the non-profiled CodeHeap, use all space for the non-nmethod CodeHeap
 267   if(!heap_available(CodeBlobType::MethodNonProfiled)) {
 268     non_nmethod_size += non_profiled_size;
 269     non_profiled_size = 0;
 270   }
 271   // Make sure we have enough space for VM internal code
 272   uint min_code_cache_size = CodeCacheMinimumUseSpace DEBUG_ONLY(* 3);
 273   if (non_nmethod_size < (min_code_cache_size + code_buffers_size)) {
 274     vm_exit_during_initialization(err_msg(
 275         "Not enough space in non-nmethod code heap to run VM: " SIZE_FORMAT "K < " SIZE_FORMAT "K",
 276         non_nmethod_size/K, (min_code_cache_size + code_buffers_size)/K));
 277   }
 278 
 279   // Verify sizes and update flag values
 280   assert(non_profiled_size + profiled_size + non_nmethod_size == cache_size, "Invalid code heap sizes");
 281   FLAG_SET_ERGO(uintx, NonNMethodCodeHeapSize, non_nmethod_size);
 282   FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, profiled_size);
 283   FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, non_profiled_size);
 284 
 285   // Align CodeHeaps
 286   size_t alignment = heap_alignment();
 287   non_nmethod_size = align_up(non_nmethod_size, alignment);
 288   profiled_size   = align_down(profiled_size, alignment);
 289 
 290   // Reserve one continuous chunk of memory for CodeHeaps and split it into
 291   // parts for the individual heaps. The memory layout looks like this:
 292   // ---------- high -----------
 293   //    Non-profiled nmethods
 294   //      Profiled nmethods
 295   //         Non-nmethods
 296   // ---------- low ------------
 297   ReservedCodeSpace rs = reserve_heap_memory(cache_size);
 298   ReservedSpace non_method_space    = rs.first_part(non_nmethod_size);
 299   ReservedSpace rest                = rs.last_part(non_nmethod_size);
 300   ReservedSpace profiled_space      = rest.first_part(profiled_size);
 301   ReservedSpace non_profiled_space  = rest.last_part(profiled_size);
 302 
 303   // Non-nmethods (stubs, adapters, ...)
 304   add_heap(non_method_space, "CodeHeap 'non-nmethods'", CodeBlobType::NonNMethod);
 305   // Tier 2 and tier 3 (profiled) methods
 306   add_heap(profiled_space, "CodeHeap 'profiled nmethods'", CodeBlobType::MethodProfiled);
 307   // Tier 1 and tier 4 (non-profiled) methods and native methods
 308   add_heap(non_profiled_space, "CodeHeap 'non-profiled nmethods'", CodeBlobType::MethodNonProfiled);
 309 }
 310 
 311 size_t CodeCache::heap_alignment() {
 312   // If large page support is enabled, align code heaps according to large
 313   // page size to make sure that code cache is covered by large pages.
 314   const size_t page_size = os::can_execute_large_page_memory() ?
 315              os::page_size_for_region_unaligned(ReservedCodeCacheSize, 8) :
 316              os::vm_page_size();
 317   return MAX2(page_size, (size_t) os::vm_allocation_granularity());
 318 }
 319 
 320 ReservedCodeSpace CodeCache::reserve_heap_memory(size_t size) {
 321   // Determine alignment
 322   const size_t page_size = os::can_execute_large_page_memory() ?
 323           MIN2(os::page_size_for_region_aligned(InitialCodeCacheSize, 8),
 324                os::page_size_for_region_aligned(size, 8)) :
 325           os::vm_page_size();
 326   const size_t granularity = os::vm_allocation_granularity();
 327   const size_t r_align = MAX2(page_size, granularity);
 328   const size_t r_size = align_up(size, r_align);
 329   const size_t rs_align = page_size == (size_t) os::vm_page_size() ? 0 :
 330     MAX2(page_size, granularity);
 331 
 332   ReservedCodeSpace rs(r_size, rs_align, rs_align > 0);
 333 
 334   if (!rs.is_reserved()) {
 335     vm_exit_during_initialization("Could not reserve enough space for code cache");
 336   }
 337 
 338   // Initialize bounds
 339   _low_bound = (address)rs.base();
 340   _high_bound = _low_bound + rs.size();
 341 
 342   return rs;
 343 }
 344 
 345 // Heaps available for allocation
 346 bool CodeCache::heap_available(int code_blob_type) {
 347   if (!SegmentedCodeCache) {
 348     // No segmentation: use a single code heap
 349     return (code_blob_type == CodeBlobType::All);
 350   } else if (Arguments::is_interpreter_only()) {
 351     // Interpreter only: we don't need any method code heaps
 352     return (code_blob_type == CodeBlobType::NonNMethod);
 353   } else if (TieredCompilation && (TieredStopAtLevel > CompLevel_simple)) {
 354     // Tiered compilation: use all code heaps
 355     return (code_blob_type < CodeBlobType::All);
 356   } else {
 357     // No TieredCompilation: we only need the non-nmethod and non-profiled code heap
 358     return (code_blob_type == CodeBlobType::NonNMethod) ||
 359            (code_blob_type == CodeBlobType::MethodNonProfiled);
 360   }
 361 }
 362 
 363 const char* CodeCache::get_code_heap_flag_name(int code_blob_type) {
 364   switch(code_blob_type) {
 365   case CodeBlobType::NonNMethod:
 366     return "NonNMethodCodeHeapSize";
 367     break;
 368   case CodeBlobType::MethodNonProfiled:
 369     return "NonProfiledCodeHeapSize";
 370     break;
 371   case CodeBlobType::MethodProfiled:
 372     return "ProfiledCodeHeapSize";
 373     break;
 374   }
 375   ShouldNotReachHere();
 376   return NULL;
 377 }
 378 
 379 int CodeCache::code_heap_compare(CodeHeap* const &lhs, CodeHeap* const &rhs) {
 380   if (lhs->code_blob_type() == rhs->code_blob_type()) {
 381     return (lhs > rhs) ? 1 : ((lhs < rhs) ? -1 : 0);
 382   } else {
 383     return lhs->code_blob_type() - rhs->code_blob_type();
 384   }
 385 }
 386 
 387 void CodeCache::add_heap(CodeHeap* heap) {
 388   assert(!Universe::is_fully_initialized(), "late heap addition?");
 389 
 390   _heaps->insert_sorted<code_heap_compare>(heap);
 391 
 392   int type = heap->code_blob_type();
 393   if (code_blob_type_accepts_compiled(type)) {
 394     _compiled_heaps->insert_sorted<code_heap_compare>(heap);
 395   }
 396   if (code_blob_type_accepts_nmethod(type)) {
 397     _nmethod_heaps->insert_sorted<code_heap_compare>(heap);
 398   }
 399   if (code_blob_type_accepts_allocable(type)) {
 400     _allocable_heaps->insert_sorted<code_heap_compare>(heap);
 401   }
 402 }
 403 
 404 void CodeCache::add_heap(ReservedSpace rs, const char* name, int code_blob_type) {
 405   // Check if heap is needed
 406   if (!heap_available(code_blob_type)) {
 407     return;
 408   }
 409 
 410   // Create CodeHeap
 411   CodeHeap* heap = new CodeHeap(name, code_blob_type);
 412   add_heap(heap);
 413 
 414   // Reserve Space
 415   size_t size_initial = MIN2(InitialCodeCacheSize, rs.size());
 416   size_initial = align_up(size_initial, os::vm_page_size());
 417   if (!heap->reserve(rs, size_initial, CodeCacheSegmentSize)) {
 418     vm_exit_during_initialization("Could not reserve enough space for code cache");
 419   }
 420 
 421   // Register the CodeHeap
 422   MemoryService::add_code_heap_memory_pool(heap, name);
 423 }
 424 
 425 CodeHeap* CodeCache::get_code_heap_containing(void* start) {
 426   FOR_ALL_HEAPS(heap) {
 427     if ((*heap)->contains(start)) {
 428       return *heap;
 429     }
 430   }
 431   return NULL;
 432 }
 433 
 434 CodeHeap* CodeCache::get_code_heap(const CodeBlob* cb) {
 435   assert(cb != NULL, "CodeBlob is null");
 436   FOR_ALL_HEAPS(heap) {
 437     if ((*heap)->contains_blob(cb)) {
 438       return *heap;
 439     }
 440   }
 441   ShouldNotReachHere();
 442   return NULL;
 443 }
 444 
 445 CodeHeap* CodeCache::get_code_heap(int code_blob_type) {
 446   FOR_ALL_HEAPS(heap) {
 447     if ((*heap)->accepts(code_blob_type)) {
 448       return *heap;
 449     }
 450   }
 451   return NULL;
 452 }
 453 
 454 CodeBlob* CodeCache::first_blob(CodeHeap* heap) {
 455   assert_locked_or_safepoint(CodeCache_lock);
 456   assert(heap != NULL, "heap is null");
 457   return (CodeBlob*)heap->first();
 458 }
 459 
 460 CodeBlob* CodeCache::first_blob(int code_blob_type) {
 461   if (heap_available(code_blob_type)) {
 462     return first_blob(get_code_heap(code_blob_type));
 463   } else {
 464     return NULL;
 465   }
 466 }
 467 
 468 CodeBlob* CodeCache::next_blob(CodeHeap* heap, CodeBlob* cb) {
 469   assert_locked_or_safepoint(CodeCache_lock);
 470   assert(heap != NULL, "heap is null");
 471   return (CodeBlob*)heap->next(cb);
 472 }
 473 
 474 /**
 475  * Do not seize the CodeCache lock here--if the caller has not
 476  * already done so, we are going to lose bigtime, since the code
 477  * cache will contain a garbage CodeBlob until the caller can
 478  * run the constructor for the CodeBlob subclass he is busy
 479  * instantiating.
 480  */
 481 CodeBlob* CodeCache::allocate(int size, int code_blob_type, int orig_code_blob_type) {
 482   // Possibly wakes up the sweeper thread.
 483   NMethodSweeper::notify(code_blob_type);
 484   assert_locked_or_safepoint(CodeCache_lock);
 485   assert(size > 0, "Code cache allocation request must be > 0 but is %d", size);
 486   if (size <= 0) {
 487     return NULL;
 488   }
 489   CodeBlob* cb = NULL;
 490 
 491   // Get CodeHeap for the given CodeBlobType
 492   CodeHeap* heap = get_code_heap(code_blob_type);
 493   assert(heap != NULL, "heap is null");
 494 
 495   while (true) {
 496     cb = (CodeBlob*)heap->allocate(size);
 497     if (cb != NULL) break;
 498     if (!heap->expand_by(CodeCacheExpansionSize)) {
 499       // Save original type for error reporting
 500       if (orig_code_blob_type == CodeBlobType::All) {
 501         orig_code_blob_type = code_blob_type;
 502       }
 503       // Expansion failed
 504       if (SegmentedCodeCache) {
 505         // Fallback solution: Try to store code in another code heap.
 506         // NonNMethod -> MethodNonProfiled -> MethodProfiled (-> MethodNonProfiled)
 507         // Note that in the sweeper, we check the reverse_free_ratio of the code heap
 508         // and force stack scanning if less than 10% of the code heap are free.
 509         int type = code_blob_type;
 510         switch (type) {
 511         case CodeBlobType::NonNMethod:
 512           type = CodeBlobType::MethodNonProfiled;
 513           break;
 514         case CodeBlobType::MethodNonProfiled:
 515           type = CodeBlobType::MethodProfiled;
 516           break;
 517         case CodeBlobType::MethodProfiled:
 518           // Avoid loop if we already tried that code heap
 519           if (type == orig_code_blob_type) {
 520             type = CodeBlobType::MethodNonProfiled;
 521           }
 522           break;
 523         }
 524         if (type != code_blob_type && type != orig_code_blob_type && heap_available(type)) {
 525           if (PrintCodeCacheExtension) {
 526             tty->print_cr("Extension of %s failed. Trying to allocate in %s.",
 527                           heap->name(), get_code_heap(type)->name());
 528           }
 529           return allocate(size, type, orig_code_blob_type);
 530         }
 531       }
 532       MutexUnlockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 533       CompileBroker::handle_full_code_cache(orig_code_blob_type);
 534       return NULL;
 535     }
 536     if (PrintCodeCacheExtension) {
 537       ResourceMark rm;
 538       if (_nmethod_heaps->length() >= 1) {
 539         tty->print("%s", heap->name());
 540       } else {
 541         tty->print("CodeCache");
 542       }
 543       tty->print_cr(" extended to [" INTPTR_FORMAT ", " INTPTR_FORMAT "] (" SSIZE_FORMAT " bytes)",
 544                     (intptr_t)heap->low_boundary(), (intptr_t)heap->high(),
 545                     (address)heap->high() - (address)heap->low_boundary());
 546     }
 547   }
 548   print_trace("allocation", cb, size);
 549   return cb;
 550 }
 551 
 552 void CodeCache::free(CodeBlob* cb) {
 553   assert_locked_or_safepoint(CodeCache_lock);
 554   CodeHeap* heap = get_code_heap(cb);
 555   print_trace("free", cb);
 556   if (cb->is_nmethod()) {
 557     heap->set_nmethod_count(heap->nmethod_count() - 1);
 558     if (((nmethod *)cb)->has_dependencies()) {
 559       _number_of_nmethods_with_dependencies--;
 560     }
 561   }
 562   if (cb->is_adapter_blob()) {
 563     heap->set_adapter_count(heap->adapter_count() - 1);
 564   }
 565 
 566   // Get heap for given CodeBlob and deallocate
 567   get_code_heap(cb)->deallocate(cb);
 568 
 569   assert(heap->blob_count() >= 0, "sanity check");
 570 }
 571 
 572 void CodeCache::commit(CodeBlob* cb) {
 573   // this is called by nmethod::nmethod, which must already own CodeCache_lock
 574   assert_locked_or_safepoint(CodeCache_lock);
 575   CodeHeap* heap = get_code_heap(cb);
 576   if (cb->is_nmethod()) {
 577     heap->set_nmethod_count(heap->nmethod_count() + 1);
 578     if (((nmethod *)cb)->has_dependencies()) {
 579       _number_of_nmethods_with_dependencies++;
 580     }
 581   }
 582   if (cb->is_adapter_blob()) {
 583     heap->set_adapter_count(heap->adapter_count() + 1);
 584   }
 585 
 586   // flush the hardware I-cache
 587   ICache::invalidate_range(cb->content_begin(), cb->content_size());
 588 }
 589 
 590 bool CodeCache::contains(void *p) {
 591   // S390 uses contains() in current_frame(), which is used before
 592   // code cache initialization if NativeMemoryTracking=detail is set.
 593   S390_ONLY(if (_heaps == NULL) return false;)
 594   // It should be ok to call contains without holding a lock.
 595   FOR_ALL_HEAPS(heap) {
 596     if ((*heap)->contains(p)) {
 597       return true;
 598     }
 599   }
 600   return false;
 601 }
 602 
 603 bool CodeCache::contains(nmethod *nm) {
 604   return contains((void *)nm);
 605 }
 606 
 607 // This method is safe to call without holding the CodeCache_lock, as long as a dead CodeBlob is not
 608 // looked up (i.e., one that has been marked for deletion). It only depends on the _segmap to contain
 609 // valid indices, which it will always do, as long as the CodeBlob is not in the process of being recycled.
 610 CodeBlob* CodeCache::find_blob(void* start) {
 611   CodeBlob* result = find_blob_unsafe(start);
 612   // We could potentially look up non_entrant methods
 613   guarantee(result == NULL || !result->is_zombie() || result->is_locked_by_vm() || VMError::is_error_reported(), "unsafe access to zombie method");
 614   return result;
 615 }
 616 
 617 // Lookup that does not fail if you lookup a zombie method (if you call this, be sure to know
 618 // what you are doing)
 619 CodeBlob* CodeCache::find_blob_unsafe(void* start) {
 620   // NMT can walk the stack before code cache is created
 621   if (_heaps != NULL) {
 622     CodeHeap* heap = get_code_heap_containing(start);
 623     if (heap != NULL) {
 624       return heap->find_blob_unsafe(start);
 625     }
 626   }
 627   return NULL;
 628 }
 629 
 630 nmethod* CodeCache::find_nmethod(void* start) {
 631   CodeBlob* cb = find_blob(start);
 632   assert(cb->is_nmethod(), "did not find an nmethod");
 633   return (nmethod*)cb;
 634 }
 635 
 636 void CodeCache::blobs_do(void f(CodeBlob* nm)) {
 637   assert_locked_or_safepoint(CodeCache_lock);
 638   FOR_ALL_HEAPS(heap) {
 639     FOR_ALL_BLOBS(cb, *heap) {
 640       f(cb);
 641     }
 642   }
 643 }
 644 
 645 void CodeCache::nmethods_do(void f(nmethod* nm)) {
 646   assert_locked_or_safepoint(CodeCache_lock);
 647   NMethodIterator iter;
 648   while(iter.next()) {
 649     f(iter.method());
 650   }
 651 }
 652 
 653 void CodeCache::metadata_do(void f(Metadata* m)) {
 654   assert_locked_or_safepoint(CodeCache_lock);
 655   NMethodIterator iter;
 656   while(iter.next_alive()) {
 657     iter.method()->metadata_do(f);
 658   }
 659   AOTLoader::metadata_do(f);
 660 }
 661 
 662 int CodeCache::alignment_unit() {
 663   return (int)_heaps->first()->alignment_unit();
 664 }
 665 
 666 int CodeCache::alignment_offset() {
 667   return (int)_heaps->first()->alignment_offset();
 668 }
 669 
 670 // Mark nmethods for unloading if they contain otherwise unreachable oops.
 671 void CodeCache::do_unloading(BoolObjectClosure* is_alive, bool unloading_occurred) {
 672   assert_locked_or_safepoint(CodeCache_lock);
 673   CompiledMethodIterator iter;
 674   while(iter.next_alive()) {
 675     iter.method()->do_unloading(is_alive, unloading_occurred);
 676   }
 677 }
 678 
 679 void CodeCache::blobs_do(CodeBlobClosure* f) {
 680   assert_locked_or_safepoint(CodeCache_lock);
 681   FOR_ALL_ALLOCABLE_HEAPS(heap) {
 682     FOR_ALL_BLOBS(cb, *heap) {
 683       if (cb->is_alive()) {
 684         f->do_code_blob(cb);
 685 #ifdef ASSERT
 686         if (cb->is_nmethod())
 687         ((nmethod*)cb)->verify_scavenge_root_oops();
 688 #endif //ASSERT
 689       }
 690     }
 691   }
 692 }
 693 
 694 // Walk the list of methods which might contain non-perm oops.
 695 void CodeCache::scavenge_root_nmethods_do(CodeBlobToOopClosure* f) {
 696   assert_locked_or_safepoint(CodeCache_lock);
 697 
 698   if (UseG1GC) {
 699     return;
 700   }
 701 
 702   const bool fix_relocations = f->fix_relocations();
 703   debug_only(mark_scavenge_root_nmethods());
 704 
 705   nmethod* prev = NULL;
 706   nmethod* cur = scavenge_root_nmethods();
 707   while (cur != NULL) {
 708     debug_only(cur->clear_scavenge_root_marked());
 709     assert(cur->scavenge_root_not_marked(), "");
 710     assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
 711 
 712     bool is_live = (!cur->is_zombie() && !cur->is_unloaded());
 713     if (TraceScavenge) {
 714       cur->print_on(tty, is_live ? "scavenge root" : "dead scavenge root"); tty->cr();
 715     }
 716     if (is_live) {
 717       // Perform cur->oops_do(f), maybe just once per nmethod.
 718       f->do_code_blob(cur);
 719     }
 720     nmethod* const next = cur->scavenge_root_link();
 721     // The scavengable nmethod list must contain all methods with scavengable
 722     // oops. It is safe to include more nmethod on the list, but we do not
 723     // expect any live non-scavengable nmethods on the list.
 724     if (fix_relocations) {
 725       if (!is_live || !cur->detect_scavenge_root_oops()) {
 726         unlink_scavenge_root_nmethod(cur, prev);
 727       } else {
 728         prev = cur;
 729       }
 730     }
 731     cur = next;
 732   }
 733 
 734   // Check for stray marks.
 735   debug_only(verify_perm_nmethods(NULL));
 736 }
 737 
 738 void CodeCache::add_scavenge_root_nmethod(nmethod* nm) {
 739   assert_locked_or_safepoint(CodeCache_lock);
 740 
 741   if (UseG1GC) {
 742     return;
 743   }
 744 
 745   nm->set_on_scavenge_root_list();
 746   nm->set_scavenge_root_link(_scavenge_root_nmethods);
 747   set_scavenge_root_nmethods(nm);
 748   print_trace("add_scavenge_root", nm);
 749 }
 750 
 751 void CodeCache::unlink_scavenge_root_nmethod(nmethod* nm, nmethod* prev) {
 752   assert_locked_or_safepoint(CodeCache_lock);
 753 
 754   assert((prev == NULL && scavenge_root_nmethods() == nm) ||
 755          (prev != NULL && prev->scavenge_root_link() == nm), "precondition");
 756 
 757   assert(!UseG1GC, "G1 does not use the scavenge_root_nmethods list");
 758 
 759   print_trace("unlink_scavenge_root", nm);
 760   if (prev == NULL) {
 761     set_scavenge_root_nmethods(nm->scavenge_root_link());
 762   } else {
 763     prev->set_scavenge_root_link(nm->scavenge_root_link());
 764   }
 765   nm->set_scavenge_root_link(NULL);
 766   nm->clear_on_scavenge_root_list();
 767 }
 768 
 769 void CodeCache::drop_scavenge_root_nmethod(nmethod* nm) {
 770   assert_locked_or_safepoint(CodeCache_lock);
 771 
 772   if (UseG1GC) {
 773     return;
 774   }
 775 
 776   print_trace("drop_scavenge_root", nm);
 777   nmethod* prev = NULL;
 778   for (nmethod* cur = scavenge_root_nmethods(); cur != NULL; cur = cur->scavenge_root_link()) {
 779     if (cur == nm) {
 780       unlink_scavenge_root_nmethod(cur, prev);
 781       return;
 782     }
 783     prev = cur;
 784   }
 785   assert(false, "should have been on list");
 786 }
 787 
 788 void CodeCache::prune_scavenge_root_nmethods() {
 789   assert_locked_or_safepoint(CodeCache_lock);
 790 
 791   if (UseG1GC) {
 792     return;
 793   }
 794 
 795   debug_only(mark_scavenge_root_nmethods());
 796 
 797   nmethod* last = NULL;
 798   nmethod* cur = scavenge_root_nmethods();
 799   while (cur != NULL) {
 800     nmethod* next = cur->scavenge_root_link();
 801     debug_only(cur->clear_scavenge_root_marked());
 802     assert(cur->scavenge_root_not_marked(), "");
 803     assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
 804 
 805     if (!cur->is_zombie() && !cur->is_unloaded()
 806         && cur->detect_scavenge_root_oops()) {
 807       // Keep it.  Advance 'last' to prevent deletion.
 808       last = cur;
 809     } else {
 810       // Prune it from the list, so we don't have to look at it any more.
 811       print_trace("prune_scavenge_root", cur);
 812       unlink_scavenge_root_nmethod(cur, last);
 813     }
 814     cur = next;
 815   }
 816 
 817   // Check for stray marks.
 818   debug_only(verify_perm_nmethods(NULL));
 819 }
 820 
 821 #ifndef PRODUCT
 822 void CodeCache::asserted_non_scavengable_nmethods_do(CodeBlobClosure* f) {
 823   if (UseG1GC) {
 824     return;
 825   }
 826 
 827   // While we are here, verify the integrity of the list.
 828   mark_scavenge_root_nmethods();
 829   for (nmethod* cur = scavenge_root_nmethods(); cur != NULL; cur = cur->scavenge_root_link()) {
 830     assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
 831     cur->clear_scavenge_root_marked();
 832   }
 833   verify_perm_nmethods(f);
 834 }
 835 
 836 // Temporarily mark nmethods that are claimed to be on the non-perm list.
 837 void CodeCache::mark_scavenge_root_nmethods() {
 838   NMethodIterator iter;
 839   while(iter.next_alive()) {
 840     nmethod* nm = iter.method();
 841     assert(nm->scavenge_root_not_marked(), "clean state");
 842     if (nm->on_scavenge_root_list())
 843       nm->set_scavenge_root_marked();
 844   }
 845 }
 846 
 847 // If the closure is given, run it on the unlisted nmethods.
 848 // Also make sure that the effects of mark_scavenge_root_nmethods is gone.
 849 void CodeCache::verify_perm_nmethods(CodeBlobClosure* f_or_null) {
 850   NMethodIterator iter;
 851   while(iter.next_alive()) {
 852     nmethod* nm = iter.method();
 853     bool call_f = (f_or_null != NULL);
 854     assert(nm->scavenge_root_not_marked(), "must be already processed");
 855     if (nm->on_scavenge_root_list())
 856       call_f = false;  // don't show this one to the client
 857     nm->verify_scavenge_root_oops();
 858     if (call_f)  f_or_null->do_code_blob(nm);
 859   }
 860 }
 861 #endif //PRODUCT
 862 
 863 void CodeCache::verify_clean_inline_caches() {
 864 #ifdef ASSERT
 865   NMethodIterator iter;
 866   while(iter.next_alive()) {
 867     nmethod* nm = iter.method();
 868     assert(!nm->is_unloaded(), "Tautology");
 869     nm->verify_clean_inline_caches();
 870     nm->verify();
 871   }
 872 #endif
 873 }
 874 
 875 void CodeCache::verify_icholder_relocations() {
 876 #ifdef ASSERT
 877   // make sure that we aren't leaking icholders
 878   int count = 0;
 879   FOR_ALL_HEAPS(heap) {
 880     FOR_ALL_BLOBS(cb, *heap) {
 881       CompiledMethod *nm = cb->as_compiled_method_or_null();
 882       if (nm != NULL) {
 883         count += nm->verify_icholder_relocations();
 884       }
 885     }
 886   }
 887   assert(count + InlineCacheBuffer::pending_icholder_count() + CompiledICHolder::live_not_claimed_count() ==
 888          CompiledICHolder::live_count(), "must agree");
 889 #endif
 890 }
 891 
 892 void CodeCache::gc_prologue() {
 893 }
 894 
 895 void CodeCache::gc_epilogue() {
 896   assert_locked_or_safepoint(CodeCache_lock);
 897   NOT_DEBUG(if (needs_cache_clean())) {
 898     CompiledMethodIterator iter;
 899     while(iter.next_alive()) {
 900       CompiledMethod* cm = iter.method();
 901       assert(!cm->is_unloaded(), "Tautology");
 902       DEBUG_ONLY(if (needs_cache_clean())) {
 903         cm->cleanup_inline_caches();
 904       }
 905       DEBUG_ONLY(cm->verify());
 906       DEBUG_ONLY(cm->verify_oop_relocations());
 907     }
 908   }
 909 
 910   set_needs_cache_clean(false);
 911   prune_scavenge_root_nmethods();
 912 
 913   verify_icholder_relocations();
 914 }
 915 
 916 void CodeCache::verify_oops() {
 917   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 918   VerifyOopClosure voc;
 919   NMethodIterator iter;
 920   while(iter.next_alive()) {
 921     nmethod* nm = iter.method();
 922     nm->oops_do(&voc);
 923     nm->verify_oop_relocations();
 924   }
 925 }
 926 
 927 int CodeCache::blob_count(int code_blob_type) {
 928   CodeHeap* heap = get_code_heap(code_blob_type);
 929   return (heap != NULL) ? heap->blob_count() : 0;
 930 }
 931 
 932 int CodeCache::blob_count() {
 933   int count = 0;
 934   FOR_ALL_HEAPS(heap) {
 935     count += (*heap)->blob_count();
 936   }
 937   return count;
 938 }
 939 
 940 int CodeCache::nmethod_count(int code_blob_type) {
 941   CodeHeap* heap = get_code_heap(code_blob_type);
 942   return (heap != NULL) ? heap->nmethod_count() : 0;
 943 }
 944 
 945 int CodeCache::nmethod_count() {
 946   int count = 0;
 947   FOR_ALL_NMETHOD_HEAPS(heap) {
 948     count += (*heap)->nmethod_count();
 949   }
 950   return count;
 951 }
 952 
 953 int CodeCache::adapter_count(int code_blob_type) {
 954   CodeHeap* heap = get_code_heap(code_blob_type);
 955   return (heap != NULL) ? heap->adapter_count() : 0;
 956 }
 957 
 958 int CodeCache::adapter_count() {
 959   int count = 0;
 960   FOR_ALL_HEAPS(heap) {
 961     count += (*heap)->adapter_count();
 962   }
 963   return count;
 964 }
 965 
 966 address CodeCache::low_bound(int code_blob_type) {
 967   CodeHeap* heap = get_code_heap(code_blob_type);
 968   return (heap != NULL) ? (address)heap->low_boundary() : NULL;
 969 }
 970 
 971 address CodeCache::high_bound(int code_blob_type) {
 972   CodeHeap* heap = get_code_heap(code_blob_type);
 973   return (heap != NULL) ? (address)heap->high_boundary() : NULL;
 974 }
 975 
 976 size_t CodeCache::capacity() {
 977   size_t cap = 0;
 978   FOR_ALL_ALLOCABLE_HEAPS(heap) {
 979     cap += (*heap)->capacity();
 980   }
 981   return cap;
 982 }
 983 
 984 size_t CodeCache::unallocated_capacity(int code_blob_type) {
 985   CodeHeap* heap = get_code_heap(code_blob_type);
 986   return (heap != NULL) ? heap->unallocated_capacity() : 0;
 987 }
 988 
 989 size_t CodeCache::unallocated_capacity() {
 990   size_t unallocated_cap = 0;
 991   FOR_ALL_ALLOCABLE_HEAPS(heap) {
 992     unallocated_cap += (*heap)->unallocated_capacity();
 993   }
 994   return unallocated_cap;
 995 }
 996 
 997 size_t CodeCache::max_capacity() {
 998   size_t max_cap = 0;
 999   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1000     max_cap += (*heap)->max_capacity();
1001   }
1002   return max_cap;
1003 }
1004 
1005 /**
1006  * Returns the reverse free ratio. E.g., if 25% (1/4) of the code heap
1007  * is free, reverse_free_ratio() returns 4.
1008  */
1009 double CodeCache::reverse_free_ratio(int code_blob_type) {
1010   CodeHeap* heap = get_code_heap(code_blob_type);
1011   if (heap == NULL) {
1012     return 0;
1013   }
1014 
1015   double unallocated_capacity = MAX2((double)heap->unallocated_capacity(), 1.0); // Avoid division by 0;
1016   double max_capacity = (double)heap->max_capacity();
1017   double result = max_capacity / unallocated_capacity;
1018   assert (max_capacity >= unallocated_capacity, "Must be");
1019   assert (result >= 1.0, "reverse_free_ratio must be at least 1. It is %f", result);
1020   return result;
1021 }
1022 
1023 size_t CodeCache::bytes_allocated_in_freelists() {
1024   size_t allocated_bytes = 0;
1025   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1026     allocated_bytes += (*heap)->allocated_in_freelist();
1027   }
1028   return allocated_bytes;
1029 }
1030 
1031 int CodeCache::allocated_segments() {
1032   int number_of_segments = 0;
1033   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1034     number_of_segments += (*heap)->allocated_segments();
1035   }
1036   return number_of_segments;
1037 }
1038 
1039 size_t CodeCache::freelists_length() {
1040   size_t length = 0;
1041   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1042     length += (*heap)->freelist_length();
1043   }
1044   return length;
1045 }
1046 
1047 void icache_init();
1048 
1049 void CodeCache::initialize() {
1050   assert(CodeCacheSegmentSize >= (uintx)CodeEntryAlignment, "CodeCacheSegmentSize must be large enough to align entry points");
1051 #ifdef COMPILER2
1052   assert(CodeCacheSegmentSize >= (uintx)OptoLoopAlignment,  "CodeCacheSegmentSize must be large enough to align inner loops");
1053 #endif
1054   assert(CodeCacheSegmentSize >= sizeof(jdouble),    "CodeCacheSegmentSize must be large enough to align constants");
1055   // This was originally just a check of the alignment, causing failure, instead, round
1056   // the code cache to the page size.  In particular, Solaris is moving to a larger
1057   // default page size.
1058   CodeCacheExpansionSize = align_up(CodeCacheExpansionSize, os::vm_page_size());
1059 
1060   if (SegmentedCodeCache) {
1061     // Use multiple code heaps
1062     initialize_heaps();
1063   } else {
1064     // Use a single code heap
1065     FLAG_SET_ERGO(uintx, NonNMethodCodeHeapSize, 0);
1066     FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, 0);
1067     FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, 0);
1068     ReservedCodeSpace rs = reserve_heap_memory(ReservedCodeCacheSize);
1069     add_heap(rs, "CodeCache", CodeBlobType::All);
1070   }
1071 
1072   // Initialize ICache flush mechanism
1073   // This service is needed for os::register_code_area
1074   icache_init();
1075 
1076   // Give OS a chance to register generated code area.
1077   // This is used on Windows 64 bit platforms to register
1078   // Structured Exception Handlers for our generated code.
1079   os::register_code_area((char*)low_bound(), (char*)high_bound());
1080 }
1081 
1082 void codeCache_init() {
1083   CodeCache::initialize();
1084   // Load AOT libraries and add AOT code heaps.
1085   AOTLoader::initialize();
1086 }
1087 
1088 //------------------------------------------------------------------------------------------------
1089 
1090 int CodeCache::number_of_nmethods_with_dependencies() {
1091   return _number_of_nmethods_with_dependencies;
1092 }
1093 
1094 void CodeCache::clear_inline_caches() {
1095   assert_locked_or_safepoint(CodeCache_lock);
1096   CompiledMethodIterator iter;
1097   while(iter.next_alive()) {
1098     iter.method()->clear_inline_caches();
1099   }
1100 }
1101 
1102 void CodeCache::cleanup_inline_caches() {
1103   assert_locked_or_safepoint(CodeCache_lock);
1104   NMethodIterator iter;
1105   while(iter.next_alive()) {
1106     iter.method()->cleanup_inline_caches(/*clean_all=*/true);
1107   }
1108 }
1109 
1110 // Keeps track of time spent for checking dependencies
1111 NOT_PRODUCT(static elapsedTimer dependentCheckTime;)
1112 
1113 int CodeCache::mark_for_deoptimization(KlassDepChange& changes) {
1114   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1115   int number_of_marked_CodeBlobs = 0;
1116 
1117   // search the hierarchy looking for nmethods which are affected by the loading of this class
1118 
1119   // then search the interfaces this class implements looking for nmethods
1120   // which might be dependent of the fact that an interface only had one
1121   // implementor.
1122   // nmethod::check_all_dependencies works only correctly, if no safepoint
1123   // can happen
1124   NoSafepointVerifier nsv;
1125   for (DepChange::ContextStream str(changes, nsv); str.next(); ) {
1126     Klass* d = str.klass();
1127     number_of_marked_CodeBlobs += InstanceKlass::cast(d)->mark_dependent_nmethods(changes);
1128   }
1129 
1130 #ifndef PRODUCT
1131   if (VerifyDependencies) {
1132     // Object pointers are used as unique identifiers for dependency arguments. This
1133     // is only possible if no safepoint, i.e., GC occurs during the verification code.
1134     dependentCheckTime.start();
1135     nmethod::check_all_dependencies(changes);
1136     dependentCheckTime.stop();
1137   }
1138 #endif
1139 
1140   return number_of_marked_CodeBlobs;
1141 }
1142 
1143 CompiledMethod* CodeCache::find_compiled(void* start) {
1144   CodeBlob *cb = find_blob(start);
1145   assert(cb == NULL || cb->is_compiled(), "did not find an compiled_method");
1146   return (CompiledMethod*)cb;
1147 }
1148 
1149 bool CodeCache::is_far_target(address target) {
1150 #if INCLUDE_AOT
1151   return NativeCall::is_far_call(_low_bound,  target) ||
1152          NativeCall::is_far_call(_high_bound, target);
1153 #else
1154   return false;
1155 #endif
1156 }
1157 
1158 #ifdef HOTSWAP
1159 int CodeCache::mark_for_evol_deoptimization(InstanceKlass* dependee) {
1160   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1161   int number_of_marked_CodeBlobs = 0;
1162 
1163   // Deoptimize all methods of the evolving class itself
1164   Array<Method*>* old_methods = dependee->methods();
1165   for (int i = 0; i < old_methods->length(); i++) {
1166     ResourceMark rm;
1167     Method* old_method = old_methods->at(i);
1168     CompiledMethod* nm = old_method->code();
1169     if (nm != NULL) {
1170       nm->mark_for_deoptimization();
1171       number_of_marked_CodeBlobs++;
1172     }
1173   }
1174 
1175   CompiledMethodIterator iter;
1176   while(iter.next_alive()) {
1177     CompiledMethod* nm = iter.method();
1178     if (nm->is_marked_for_deoptimization()) {
1179       // ...Already marked in the previous pass; don't count it again.
1180     } else if (nm->is_evol_dependent_on(dependee)) {
1181       ResourceMark rm;
1182       nm->mark_for_deoptimization();
1183       number_of_marked_CodeBlobs++;
1184     } else  {
1185       // flush caches in case they refer to a redefined Method*
1186       nm->clear_inline_caches();
1187     }
1188   }
1189 
1190   return number_of_marked_CodeBlobs;
1191 }
1192 #endif // HOTSWAP
1193 
1194 
1195 // Deoptimize all methods
1196 void CodeCache::mark_all_nmethods_for_deoptimization() {
1197   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1198   CompiledMethodIterator iter;
1199   while(iter.next_alive()) {
1200     CompiledMethod* nm = iter.method();
1201     if (!nm->method()->is_method_handle_intrinsic()) {
1202       nm->mark_for_deoptimization();
1203     }
1204   }
1205 }
1206 
1207 int CodeCache::mark_for_deoptimization(Method* dependee) {
1208   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1209   int number_of_marked_CodeBlobs = 0;
1210 
1211   CompiledMethodIterator iter;
1212   while(iter.next_alive()) {
1213     CompiledMethod* nm = iter.method();
1214     if (nm->is_dependent_on_method(dependee)) {
1215       ResourceMark rm;
1216       nm->mark_for_deoptimization();
1217       number_of_marked_CodeBlobs++;
1218     }
1219   }
1220 
1221   return number_of_marked_CodeBlobs;
1222 }
1223 
1224 void CodeCache::make_marked_nmethods_not_entrant() {
1225   assert_locked_or_safepoint(CodeCache_lock);
1226   CompiledMethodIterator iter;
1227   while(iter.next_alive()) {
1228     CompiledMethod* nm = iter.method();
1229     if (nm->is_marked_for_deoptimization() && !nm->is_not_entrant()) {
1230       nm->make_not_entrant();
1231     }
1232   }
1233 }
1234 
1235 // Flushes compiled methods dependent on dependee.
1236 void CodeCache::flush_dependents_on(InstanceKlass* dependee) {
1237   assert_lock_strong(Compile_lock);
1238 
1239   if (number_of_nmethods_with_dependencies() == 0) return;
1240 
1241   // CodeCache can only be updated by a thread_in_VM and they will all be
1242   // stopped during the safepoint so CodeCache will be safe to update without
1243   // holding the CodeCache_lock.
1244 
1245   KlassDepChange changes(dependee);
1246 
1247   // Compute the dependent nmethods
1248   if (mark_for_deoptimization(changes) > 0) {
1249     // At least one nmethod has been marked for deoptimization
1250     VM_Deoptimize op;
1251     VMThread::execute(&op);
1252   }
1253 }
1254 
1255 #ifdef HOTSWAP
1256 // Flushes compiled methods dependent on dependee in the evolutionary sense
1257 void CodeCache::flush_evol_dependents_on(InstanceKlass* ev_k) {
1258   // --- Compile_lock is not held. However we are at a safepoint.
1259   assert_locked_or_safepoint(Compile_lock);
1260   if (number_of_nmethods_with_dependencies() == 0 && !UseAOT) return;
1261 
1262   // CodeCache can only be updated by a thread_in_VM and they will all be
1263   // stopped during the safepoint so CodeCache will be safe to update without
1264   // holding the CodeCache_lock.
1265 
1266   // Compute the dependent nmethods
1267   if (mark_for_evol_deoptimization(ev_k) > 0) {
1268     // At least one nmethod has been marked for deoptimization
1269 
1270     // All this already happens inside a VM_Operation, so we'll do all the work here.
1271     // Stuff copied from VM_Deoptimize and modified slightly.
1272 
1273     // We do not want any GCs to happen while we are in the middle of this VM operation
1274     ResourceMark rm;
1275     DeoptimizationMarker dm;
1276 
1277     // Deoptimize all activations depending on marked nmethods
1278     Deoptimization::deoptimize_dependents();
1279 
1280     // Make the dependent methods not entrant
1281     make_marked_nmethods_not_entrant();
1282   }
1283 }
1284 #endif // HOTSWAP
1285 
1286 
1287 // Flushes compiled methods dependent on dependee
1288 void CodeCache::flush_dependents_on_method(methodHandle m_h) {
1289   // --- Compile_lock is not held. However we are at a safepoint.
1290   assert_locked_or_safepoint(Compile_lock);
1291 
1292   // CodeCache can only be updated by a thread_in_VM and they will all be
1293   // stopped dring the safepoint so CodeCache will be safe to update without
1294   // holding the CodeCache_lock.
1295 
1296   // Compute the dependent nmethods
1297   if (mark_for_deoptimization(m_h()) > 0) {
1298     // At least one nmethod has been marked for deoptimization
1299 
1300     // All this already happens inside a VM_Operation, so we'll do all the work here.
1301     // Stuff copied from VM_Deoptimize and modified slightly.
1302 
1303     // We do not want any GCs to happen while we are in the middle of this VM operation
1304     ResourceMark rm;
1305     DeoptimizationMarker dm;
1306 
1307     // Deoptimize all activations depending on marked nmethods
1308     Deoptimization::deoptimize_dependents();
1309 
1310     // Make the dependent methods not entrant
1311     make_marked_nmethods_not_entrant();
1312   }
1313 }
1314 
1315 void CodeCache::verify() {
1316   assert_locked_or_safepoint(CodeCache_lock);
1317   FOR_ALL_HEAPS(heap) {
1318     (*heap)->verify();
1319     FOR_ALL_BLOBS(cb, *heap) {
1320       if (cb->is_alive()) {
1321         cb->verify();
1322       }
1323     }
1324   }
1325 }
1326 
1327 // A CodeHeap is full. Print out warning and report event.
1328 PRAGMA_DIAG_PUSH
1329 PRAGMA_FORMAT_NONLITERAL_IGNORED
1330 void CodeCache::report_codemem_full(int code_blob_type, bool print) {
1331   // Get nmethod heap for the given CodeBlobType and build CodeCacheFull event
1332   CodeHeap* heap = get_code_heap(code_blob_type);
1333   assert(heap != NULL, "heap is null");
1334 
1335   if ((heap->full_count() == 0) || print) {
1336     // Not yet reported for this heap, report
1337     if (SegmentedCodeCache) {
1338       ResourceMark rm;
1339       stringStream msg1_stream, msg2_stream;
1340       msg1_stream.print("%s is full. Compiler has been disabled.",
1341                         get_code_heap_name(code_blob_type));
1342       msg2_stream.print("Try increasing the code heap size using -XX:%s=",
1343                  get_code_heap_flag_name(code_blob_type));
1344       const char *msg1 = msg1_stream.as_string();
1345       const char *msg2 = msg2_stream.as_string();
1346 
1347       log_warning(codecache)(msg1);
1348       log_warning(codecache)(msg2);
1349       warning(msg1);
1350       warning(msg2);
1351     } else {
1352       const char *msg1 = "CodeCache is full. Compiler has been disabled.";
1353       const char *msg2 = "Try increasing the code cache size using -XX:ReservedCodeCacheSize=";
1354 
1355       log_warning(codecache)(msg1);
1356       log_warning(codecache)(msg2);
1357       warning(msg1);
1358       warning(msg2);
1359     }
1360     ResourceMark rm;
1361     stringStream s;
1362     // Dump code cache  into a buffer before locking the tty,
1363     {
1364       MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1365       print_summary(&s);
1366     }
1367     ttyLocker ttyl;
1368     tty->print("%s", s.as_string());
1369   }
1370 
1371   heap->report_full();
1372 
1373   EventCodeCacheFull event;
1374   if (event.should_commit()) {
1375     event.set_codeBlobType((u1)code_blob_type);
1376     event.set_startAddress((u8)heap->low_boundary());
1377     event.set_commitedTopAddress((u8)heap->high());
1378     event.set_reservedTopAddress((u8)heap->high_boundary());
1379     event.set_entryCount(heap->blob_count());
1380     event.set_methodCount(heap->nmethod_count());
1381     event.set_adaptorCount(heap->adapter_count());
1382     event.set_unallocatedCapacity(heap->unallocated_capacity());
1383     event.set_fullCount(heap->full_count());
1384     event.commit();
1385   }
1386 }
1387 PRAGMA_DIAG_POP
1388 
1389 void CodeCache::print_memory_overhead() {
1390   size_t wasted_bytes = 0;
1391   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1392       CodeHeap* curr_heap = *heap;
1393       for (CodeBlob* cb = (CodeBlob*)curr_heap->first(); cb != NULL; cb = (CodeBlob*)curr_heap->next(cb)) {
1394         HeapBlock* heap_block = ((HeapBlock*)cb) - 1;
1395         wasted_bytes += heap_block->length() * CodeCacheSegmentSize - cb->size();
1396       }
1397   }
1398   // Print bytes that are allocated in the freelist
1399   ttyLocker ttl;
1400   tty->print_cr("Number of elements in freelist: " SSIZE_FORMAT,       freelists_length());
1401   tty->print_cr("Allocated in freelist:          " SSIZE_FORMAT "kB",  bytes_allocated_in_freelists()/K);
1402   tty->print_cr("Unused bytes in CodeBlobs:      " SSIZE_FORMAT "kB",  (wasted_bytes/K));
1403   tty->print_cr("Segment map size:               " SSIZE_FORMAT "kB",  allocated_segments()/K); // 1 byte per segment
1404 }
1405 
1406 //------------------------------------------------------------------------------------------------
1407 // Non-product version
1408 
1409 #ifndef PRODUCT
1410 
1411 void CodeCache::print_trace(const char* event, CodeBlob* cb, int size) {
1412   if (PrintCodeCache2) {  // Need to add a new flag
1413     ResourceMark rm;
1414     if (size == 0)  size = cb->size();
1415     tty->print_cr("CodeCache %s:  addr: " INTPTR_FORMAT ", size: 0x%x", event, p2i(cb), size);
1416   }
1417 }
1418 
1419 void CodeCache::print_internals() {
1420   int nmethodCount = 0;
1421   int runtimeStubCount = 0;
1422   int adapterCount = 0;
1423   int deoptimizationStubCount = 0;
1424   int uncommonTrapStubCount = 0;
1425   int bufferBlobCount = 0;
1426   int total = 0;
1427   int nmethodAlive = 0;
1428   int nmethodNotEntrant = 0;
1429   int nmethodZombie = 0;
1430   int nmethodUnloaded = 0;
1431   int nmethodJava = 0;
1432   int nmethodNative = 0;
1433   int max_nm_size = 0;
1434   ResourceMark rm;
1435 
1436   int i = 0;
1437   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1438     if ((_nmethod_heaps->length() >= 1) && Verbose) {
1439       tty->print_cr("-- %s --", (*heap)->name());
1440     }
1441     FOR_ALL_BLOBS(cb, *heap) {
1442       total++;
1443       if (cb->is_nmethod()) {
1444         nmethod* nm = (nmethod*)cb;
1445 
1446         if (Verbose && nm->method() != NULL) {
1447           ResourceMark rm;
1448           char *method_name = nm->method()->name_and_sig_as_C_string();
1449           tty->print("%s", method_name);
1450           if(nm->is_alive()) { tty->print_cr(" alive"); }
1451           if(nm->is_not_entrant()) { tty->print_cr(" not-entrant"); }
1452           if(nm->is_zombie()) { tty->print_cr(" zombie"); }
1453         }
1454 
1455         nmethodCount++;
1456 
1457         if(nm->is_alive()) { nmethodAlive++; }
1458         if(nm->is_not_entrant()) { nmethodNotEntrant++; }
1459         if(nm->is_zombie()) { nmethodZombie++; }
1460         if(nm->is_unloaded()) { nmethodUnloaded++; }
1461         if(nm->method() != NULL && nm->is_native_method()) { nmethodNative++; }
1462 
1463         if(nm->method() != NULL && nm->is_java_method()) {
1464           nmethodJava++;
1465           max_nm_size = MAX2(max_nm_size, nm->size());
1466         }
1467       } else if (cb->is_runtime_stub()) {
1468         runtimeStubCount++;
1469       } else if (cb->is_deoptimization_stub()) {
1470         deoptimizationStubCount++;
1471       } else if (cb->is_uncommon_trap_stub()) {
1472         uncommonTrapStubCount++;
1473       } else if (cb->is_adapter_blob()) {
1474         adapterCount++;
1475       } else if (cb->is_buffer_blob()) {
1476         bufferBlobCount++;
1477       }
1478     }
1479   }
1480 
1481   int bucketSize = 512;
1482   int bucketLimit = max_nm_size / bucketSize + 1;
1483   int *buckets = NEW_C_HEAP_ARRAY(int, bucketLimit, mtCode);
1484   memset(buckets, 0, sizeof(int) * bucketLimit);
1485 
1486   NMethodIterator iter;
1487   while(iter.next()) {
1488     nmethod* nm = iter.method();
1489     if(nm->method() != NULL && nm->is_java_method()) {
1490       buckets[nm->size() / bucketSize]++;
1491     }
1492   }
1493 
1494   tty->print_cr("Code Cache Entries (total of %d)",total);
1495   tty->print_cr("-------------------------------------------------");
1496   tty->print_cr("nmethods: %d",nmethodCount);
1497   tty->print_cr("\talive: %d",nmethodAlive);
1498   tty->print_cr("\tnot_entrant: %d",nmethodNotEntrant);
1499   tty->print_cr("\tzombie: %d",nmethodZombie);
1500   tty->print_cr("\tunloaded: %d",nmethodUnloaded);
1501   tty->print_cr("\tjava: %d",nmethodJava);
1502   tty->print_cr("\tnative: %d",nmethodNative);
1503   tty->print_cr("runtime_stubs: %d",runtimeStubCount);
1504   tty->print_cr("adapters: %d",adapterCount);
1505   tty->print_cr("buffer blobs: %d",bufferBlobCount);
1506   tty->print_cr("deoptimization_stubs: %d",deoptimizationStubCount);
1507   tty->print_cr("uncommon_traps: %d",uncommonTrapStubCount);
1508   tty->print_cr("\nnmethod size distribution (non-zombie java)");
1509   tty->print_cr("-------------------------------------------------");
1510 
1511   for(int i=0; i<bucketLimit; i++) {
1512     if(buckets[i] != 0) {
1513       tty->print("%d - %d bytes",i*bucketSize,(i+1)*bucketSize);
1514       tty->fill_to(40);
1515       tty->print_cr("%d",buckets[i]);
1516     }
1517   }
1518 
1519   FREE_C_HEAP_ARRAY(int, buckets);
1520   print_memory_overhead();
1521 }
1522 
1523 #endif // !PRODUCT
1524 
1525 void CodeCache::print() {
1526   print_summary(tty);
1527 
1528 #ifndef PRODUCT
1529   if (!Verbose) return;
1530 
1531   CodeBlob_sizes live;
1532   CodeBlob_sizes dead;
1533 
1534   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1535     FOR_ALL_BLOBS(cb, *heap) {
1536       if (!cb->is_alive()) {
1537         dead.add(cb);
1538       } else {
1539         live.add(cb);
1540       }
1541     }
1542   }
1543 
1544   tty->print_cr("CodeCache:");
1545   tty->print_cr("nmethod dependency checking time %fs", dependentCheckTime.seconds());
1546 
1547   if (!live.is_empty()) {
1548     live.print("live");
1549   }
1550   if (!dead.is_empty()) {
1551     dead.print("dead");
1552   }
1553 
1554   if (WizardMode) {
1555      // print the oop_map usage
1556     int code_size = 0;
1557     int number_of_blobs = 0;
1558     int number_of_oop_maps = 0;
1559     int map_size = 0;
1560     FOR_ALL_ALLOCABLE_HEAPS(heap) {
1561       FOR_ALL_BLOBS(cb, *heap) {
1562         if (cb->is_alive()) {
1563           number_of_blobs++;
1564           code_size += cb->code_size();
1565           ImmutableOopMapSet* set = cb->oop_maps();
1566           if (set != NULL) {
1567             number_of_oop_maps += set->count();
1568             map_size           += set->nr_of_bytes();
1569           }
1570         }
1571       }
1572     }
1573     tty->print_cr("OopMaps");
1574     tty->print_cr("  #blobs    = %d", number_of_blobs);
1575     tty->print_cr("  code size = %d", code_size);
1576     tty->print_cr("  #oop_maps = %d", number_of_oop_maps);
1577     tty->print_cr("  map size  = %d", map_size);
1578   }
1579 
1580 #endif // !PRODUCT
1581 }
1582 
1583 void CodeCache::print_summary(outputStream* st, bool detailed) {
1584   FOR_ALL_HEAPS(heap_iterator) {
1585     CodeHeap* heap = (*heap_iterator);
1586     size_t total = (heap->high_boundary() - heap->low_boundary());
1587     if (_heaps->length() >= 1) {
1588       st->print("%s:", heap->name());
1589     } else {
1590       st->print("CodeCache:");
1591     }
1592     st->print_cr(" size=" SIZE_FORMAT "Kb used=" SIZE_FORMAT
1593                  "Kb max_used=" SIZE_FORMAT "Kb free=" SIZE_FORMAT "Kb",
1594                  total/K, (total - heap->unallocated_capacity())/K,
1595                  heap->max_allocated_capacity()/K, heap->unallocated_capacity()/K);
1596 
1597     if (detailed) {
1598       st->print_cr(" bounds [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT "]",
1599                    p2i(heap->low_boundary()),
1600                    p2i(heap->high()),
1601                    p2i(heap->high_boundary()));
1602     }
1603   }
1604 
1605   if (detailed) {
1606     st->print_cr(" total_blobs=" UINT32_FORMAT " nmethods=" UINT32_FORMAT
1607                        " adapters=" UINT32_FORMAT,
1608                        blob_count(), nmethod_count(), adapter_count());
1609     st->print_cr(" compilation: %s", CompileBroker::should_compile_new_jobs() ?
1610                  "enabled" : Arguments::mode() == Arguments::_int ?
1611                  "disabled (interpreter mode)" :
1612                  "disabled (not enough contiguous free space left)");
1613   }
1614 }
1615 
1616 void CodeCache::print_codelist(outputStream* st) {
1617   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1618 
1619   CompiledMethodIterator iter;
1620   while (iter.next_alive()) {
1621     CompiledMethod* cm = iter.method();
1622     ResourceMark rm;
1623     char* method_name = cm->method()->name_and_sig_as_C_string();
1624     st->print_cr("%d %d %d %s [" INTPTR_FORMAT ", " INTPTR_FORMAT " - " INTPTR_FORMAT "]",
1625                  cm->compile_id(), cm->comp_level(), cm->get_state(),
1626                  method_name,
1627                  (intptr_t)cm->header_begin(), (intptr_t)cm->code_begin(), (intptr_t)cm->code_end());
1628   }
1629 }
1630 
1631 void CodeCache::print_layout(outputStream* st) {
1632   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1633   ResourceMark rm;
1634   print_summary(st, true);
1635 }
1636 
1637 void CodeCache::log_state(outputStream* st) {
1638   st->print(" total_blobs='" UINT32_FORMAT "' nmethods='" UINT32_FORMAT "'"
1639             " adapters='" UINT32_FORMAT "' free_code_cache='" SIZE_FORMAT "'",
1640             blob_count(), nmethod_count(), adapter_count(),
1641             unallocated_capacity());
1642 }
1643