1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "code/codeBlob.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledIC.hpp"
  30 #include "code/dependencies.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "code/nmethod.hpp"
  33 #include "code/pcDesc.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "gc/shared/gcLocker.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/iterator.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "oops/method.hpp"
  40 #include "oops/objArrayOop.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "oops/verifyOopClosure.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/compilationPolicy.hpp"
  45 #include "runtime/deoptimization.hpp"
  46 #include "runtime/handles.inline.hpp"
  47 #include "runtime/icache.hpp"
  48 #include "runtime/java.hpp"
  49 #include "runtime/mutexLocker.hpp"
  50 #include "runtime/sweeper.hpp"
  51 #include "services/memoryService.hpp"
  52 #include "trace/tracing.hpp"
  53 #include "utilities/align.hpp"
  54 #include "utilities/vmError.hpp"
  55 #include "utilities/xmlstream.hpp"
  56 #ifdef COMPILER1
  57 #include "c1/c1_Compilation.hpp"
  58 #include "c1/c1_Compiler.hpp"
  59 #endif
  60 #ifdef COMPILER2
  61 #include "opto/c2compiler.hpp"
  62 #include "opto/compile.hpp"
  63 #include "opto/node.hpp"
  64 #endif
  65 
  66 // Helper class for printing in CodeCache
  67 class CodeBlob_sizes {
  68  private:
  69   int count;
  70   int total_size;
  71   int header_size;
  72   int code_size;
  73   int stub_size;
  74   int relocation_size;
  75   int scopes_oop_size;
  76   int scopes_metadata_size;
  77   int scopes_data_size;
  78   int scopes_pcs_size;
  79 
  80  public:
  81   CodeBlob_sizes() {
  82     count            = 0;
  83     total_size       = 0;
  84     header_size      = 0;
  85     code_size        = 0;
  86     stub_size        = 0;
  87     relocation_size  = 0;
  88     scopes_oop_size  = 0;
  89     scopes_metadata_size  = 0;
  90     scopes_data_size = 0;
  91     scopes_pcs_size  = 0;
  92   }
  93 
  94   int total()                                    { return total_size; }
  95   bool is_empty()                                { return count == 0; }
  96 
  97   void print(const char* title) {
  98     tty->print_cr(" #%d %s = %dK (hdr %d%%,  loc %d%%, code %d%%, stub %d%%, [oops %d%%, metadata %d%%, data %d%%, pcs %d%%])",
  99                   count,
 100                   title,
 101                   (int)(total() / K),
 102                   header_size             * 100 / total_size,
 103                   relocation_size         * 100 / total_size,
 104                   code_size               * 100 / total_size,
 105                   stub_size               * 100 / total_size,
 106                   scopes_oop_size         * 100 / total_size,
 107                   scopes_metadata_size    * 100 / total_size,
 108                   scopes_data_size        * 100 / total_size,
 109                   scopes_pcs_size         * 100 / total_size);
 110   }
 111 
 112   void add(CodeBlob* cb) {
 113     count++;
 114     total_size       += cb->size();
 115     header_size      += cb->header_size();
 116     relocation_size  += cb->relocation_size();
 117     if (cb->is_nmethod()) {
 118       nmethod* nm = cb->as_nmethod_or_null();
 119       code_size        += nm->insts_size();
 120       stub_size        += nm->stub_size();
 121 
 122       scopes_oop_size  += nm->oops_size();
 123       scopes_metadata_size  += nm->metadata_size();
 124       scopes_data_size += nm->scopes_data_size();
 125       scopes_pcs_size  += nm->scopes_pcs_size();
 126     } else {
 127       code_size        += cb->code_size();
 128     }
 129   }
 130 };
 131 
 132 // Iterate over all CodeHeaps
 133 #define FOR_ALL_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _heaps->begin(); heap != _heaps->end(); ++heap)
 134 #define FOR_ALL_NMETHOD_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _nmethod_heaps->begin(); heap != _nmethod_heaps->end(); ++heap)
 135 #define FOR_ALL_ALLOCABLE_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _allocable_heaps->begin(); heap != _allocable_heaps->end(); ++heap)
 136 
 137 // Iterate over all CodeBlobs (cb) on the given CodeHeap
 138 #define FOR_ALL_BLOBS(cb, heap) for (CodeBlob* cb = first_blob(heap); cb != NULL; cb = next_blob(heap, cb))
 139 
 140 address CodeCache::_low_bound = 0;
 141 address CodeCache::_high_bound = 0;
 142 int CodeCache::_number_of_nmethods_with_dependencies = 0;
 143 bool CodeCache::_needs_cache_clean = false;
 144 nmethod* CodeCache::_scavenge_root_nmethods = NULL;
 145 
 146 // Initialize arrays of CodeHeap subsets
 147 GrowableArray<CodeHeap*>* CodeCache::_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
 148 GrowableArray<CodeHeap*>* CodeCache::_compiled_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
 149 GrowableArray<CodeHeap*>* CodeCache::_nmethod_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
 150 GrowableArray<CodeHeap*>* CodeCache::_allocable_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
 151 
 152 void CodeCache::check_heap_sizes(size_t non_nmethod_size, size_t profiled_size, size_t non_profiled_size, size_t cache_size, bool all_set) {
 153   size_t total_size = non_nmethod_size + profiled_size + non_profiled_size;
 154   // Prepare error message
 155   const char* error = "Invalid code heap sizes";
 156   err_msg message("NonNMethodCodeHeapSize (" SIZE_FORMAT "K) + ProfiledCodeHeapSize (" SIZE_FORMAT "K)"
 157                   " + NonProfiledCodeHeapSize (" SIZE_FORMAT "K) = " SIZE_FORMAT "K",
 158           non_nmethod_size/K, profiled_size/K, non_profiled_size/K, total_size/K);
 159 
 160   if (total_size > cache_size) {
 161     // Some code heap sizes were explicitly set: total_size must be <= cache_size
 162     message.append(" is greater than ReservedCodeCacheSize (" SIZE_FORMAT "K).", cache_size/K);
 163     vm_exit_during_initialization(error, message);
 164   } else if (all_set && total_size != cache_size) {
 165     // All code heap sizes were explicitly set: total_size must equal cache_size
 166     message.append(" is not equal to ReservedCodeCacheSize (" SIZE_FORMAT "K).", cache_size/K);
 167     vm_exit_during_initialization(error, message);
 168   }
 169 }
 170 
 171 void CodeCache::initialize_heaps() {
 172   bool non_nmethod_set      = FLAG_IS_CMDLINE(NonNMethodCodeHeapSize);
 173   bool profiled_set         = FLAG_IS_CMDLINE(ProfiledCodeHeapSize);
 174   bool non_profiled_set     = FLAG_IS_CMDLINE(NonProfiledCodeHeapSize);
 175   size_t min_size           = os::vm_page_size();
 176   size_t cache_size         = ReservedCodeCacheSize;
 177   size_t non_nmethod_size   = NonNMethodCodeHeapSize;
 178   size_t profiled_size      = ProfiledCodeHeapSize;
 179   size_t non_profiled_size  = NonProfiledCodeHeapSize;
 180   // Check if total size set via command line flags exceeds the reserved size
 181   check_heap_sizes((non_nmethod_set  ? non_nmethod_size  : min_size),
 182                    (profiled_set     ? profiled_size     : min_size),
 183                    (non_profiled_set ? non_profiled_size : min_size),
 184                    cache_size,
 185                    non_nmethod_set && profiled_set && non_profiled_set);
 186 
 187   // Determine size of compiler buffers
 188   size_t code_buffers_size = 0;
 189 #ifdef COMPILER1
 190   // C1 temporary code buffers (see Compiler::init_buffer_blob())
 191   const int c1_count = CompilationPolicy::policy()->compiler_count(CompLevel_simple);
 192   code_buffers_size += c1_count * Compiler::code_buffer_size();
 193 #endif
 194 #ifdef COMPILER2
 195   // C2 scratch buffers (see Compile::init_scratch_buffer_blob())
 196   const int c2_count = CompilationPolicy::policy()->compiler_count(CompLevel_full_optimization);
 197   // Initial size of constant table (this may be increased if a compiled method needs more space)
 198   code_buffers_size += c2_count * C2Compiler::initial_code_buffer_size();
 199 #endif
 200 
 201   // Increase default non_nmethod_size to account for compiler buffers
 202   if (!non_nmethod_set) {
 203     non_nmethod_size += code_buffers_size;
 204   }
 205   // Calculate default CodeHeap sizes if not set by user
 206   if (!non_nmethod_set && !profiled_set && !non_profiled_set) {
 207     // Check if we have enough space for the non-nmethod code heap
 208     if (cache_size > non_nmethod_size) {
 209       // Use the default value for non_nmethod_size and one half of the
 210       // remaining size for non-profiled and one half for profiled methods
 211       size_t remaining_size = cache_size - non_nmethod_size;
 212       profiled_size = remaining_size / 2;
 213       non_profiled_size = remaining_size - profiled_size;
 214     } else {
 215       // Use all space for the non-nmethod heap and set other heaps to minimal size
 216       non_nmethod_size = cache_size - 2 * min_size;
 217       profiled_size = min_size;
 218       non_profiled_size = min_size;
 219     }
 220   } else if (!non_nmethod_set || !profiled_set || !non_profiled_set) {
 221     // The user explicitly set some code heap sizes. Increase or decrease the (default)
 222     // sizes of the other code heaps accordingly. First adapt non-profiled and profiled
 223     // code heap sizes and then only change non-nmethod code heap size if still necessary.
 224     intx diff_size = cache_size - (non_nmethod_size + profiled_size + non_profiled_size);
 225     if (non_profiled_set) {
 226       if (!profiled_set) {
 227         // Adapt size of profiled code heap
 228         if (diff_size < 0 && ((intx)profiled_size + diff_size) <= 0) {
 229           // Not enough space available, set to minimum size
 230           diff_size += profiled_size - min_size;
 231           profiled_size = min_size;
 232         } else {
 233           profiled_size += diff_size;
 234           diff_size = 0;
 235         }
 236       }
 237     } else if (profiled_set) {
 238       // Adapt size of non-profiled code heap
 239       if (diff_size < 0 && ((intx)non_profiled_size + diff_size) <= 0) {
 240         // Not enough space available, set to minimum size
 241         diff_size += non_profiled_size - min_size;
 242         non_profiled_size = min_size;
 243       } else {
 244         non_profiled_size += diff_size;
 245         diff_size = 0;
 246       }
 247     } else if (non_nmethod_set) {
 248       // Distribute remaining size between profiled and non-profiled code heaps
 249       diff_size = cache_size - non_nmethod_size;
 250       profiled_size = diff_size / 2;
 251       non_profiled_size = diff_size - profiled_size;
 252       diff_size = 0;
 253     }
 254     if (diff_size != 0) {
 255       // Use non-nmethod code heap for remaining space requirements
 256       assert(!non_nmethod_set && ((intx)non_nmethod_size + diff_size) > 0, "sanity");
 257       non_nmethod_size += diff_size;
 258     }
 259   }
 260 
 261   // We do not need the profiled CodeHeap, use all space for the non-profiled CodeHeap
 262   if(!heap_available(CodeBlobType::MethodProfiled)) {
 263     non_profiled_size += profiled_size;
 264     profiled_size = 0;
 265   }
 266   // We do not need the non-profiled CodeHeap, use all space for the non-nmethod CodeHeap
 267   if(!heap_available(CodeBlobType::MethodNonProfiled)) {
 268     non_nmethod_size += non_profiled_size;
 269     non_profiled_size = 0;
 270   }
 271   // Make sure we have enough space for VM internal code
 272   uint min_code_cache_size = CodeCacheMinimumUseSpace DEBUG_ONLY(* 3);
 273   if (non_nmethod_size < (min_code_cache_size + code_buffers_size)) {
 274     vm_exit_during_initialization(err_msg(
 275         "Not enough space in non-nmethod code heap to run VM: " SIZE_FORMAT "K < " SIZE_FORMAT "K",
 276         non_nmethod_size/K, (min_code_cache_size + code_buffers_size)/K));
 277   }
 278 
 279   // Verify sizes and update flag values
 280   assert(non_profiled_size + profiled_size + non_nmethod_size == cache_size, "Invalid code heap sizes");
 281   FLAG_SET_ERGO(uintx, NonNMethodCodeHeapSize, non_nmethod_size);
 282   FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, profiled_size);
 283   FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, non_profiled_size);
 284 
 285   // Align CodeHeaps
 286   size_t alignment = heap_alignment();
 287   non_nmethod_size = align_up(non_nmethod_size, alignment);
 288   profiled_size   = align_down(profiled_size, alignment);
 289 
 290   // Reserve one continuous chunk of memory for CodeHeaps and split it into
 291   // parts for the individual heaps. The memory layout looks like this:
 292   // ---------- high -----------
 293   //    Non-profiled nmethods
 294   //      Profiled nmethods
 295   //         Non-nmethods
 296   // ---------- low ------------
 297   ReservedCodeSpace rs = reserve_heap_memory(cache_size);
 298   ReservedSpace non_method_space    = rs.first_part(non_nmethod_size);
 299   ReservedSpace rest                = rs.last_part(non_nmethod_size);
 300   ReservedSpace profiled_space      = rest.first_part(profiled_size);
 301   ReservedSpace non_profiled_space  = rest.last_part(profiled_size);
 302 
 303   // Non-nmethods (stubs, adapters, ...)
 304   add_heap(non_method_space, "CodeHeap 'non-nmethods'", CodeBlobType::NonNMethod);
 305   // Tier 2 and tier 3 (profiled) methods
 306   add_heap(profiled_space, "CodeHeap 'profiled nmethods'", CodeBlobType::MethodProfiled);
 307   // Tier 1 and tier 4 (non-profiled) methods and native methods
 308   add_heap(non_profiled_space, "CodeHeap 'non-profiled nmethods'", CodeBlobType::MethodNonProfiled);
 309 }
 310 
 311 size_t CodeCache::heap_alignment() {
 312   // If large page support is enabled, align code heaps according to large
 313   // page size to make sure that code cache is covered by large pages.
 314   const size_t page_size = os::can_execute_large_page_memory() ?
 315              os::page_size_for_region_unaligned(ReservedCodeCacheSize, 8) :
 316              os::vm_page_size();
 317   return MAX2(page_size, (size_t) os::vm_allocation_granularity());
 318 }
 319 
 320 ReservedCodeSpace CodeCache::reserve_heap_memory(size_t size) {
 321   // Determine alignment
 322   const size_t page_size = os::can_execute_large_page_memory() ?
 323           MIN2(os::page_size_for_region_aligned(InitialCodeCacheSize, 8),
 324                os::page_size_for_region_aligned(size, 8)) :
 325           os::vm_page_size();
 326   const size_t granularity = os::vm_allocation_granularity();
 327   const size_t r_align = MAX2(page_size, granularity);
 328   const size_t r_size = align_up(size, r_align);
 329   const size_t rs_align = page_size == (size_t) os::vm_page_size() ? 0 :
 330     MAX2(page_size, granularity);
 331 
 332   ReservedCodeSpace rs(r_size, rs_align, rs_align > 0);
 333 
 334   if (!rs.is_reserved()) {
 335     vm_exit_during_initialization("Could not reserve enough space for code cache");
 336   }
 337 
 338   // Initialize bounds
 339   _low_bound = (address)rs.base();
 340   _high_bound = _low_bound + rs.size();
 341 
 342   return rs;
 343 }
 344 
 345 // Heaps available for allocation
 346 bool CodeCache::heap_available(int code_blob_type) {
 347   if (!SegmentedCodeCache) {
 348     // No segmentation: use a single code heap
 349     return (code_blob_type == CodeBlobType::All);
 350   } else if (Arguments::is_interpreter_only()) {
 351     // Interpreter only: we don't need any method code heaps
 352     return (code_blob_type == CodeBlobType::NonNMethod);
 353   } else if (TieredCompilation && (TieredStopAtLevel > CompLevel_simple)) {
 354     // Tiered compilation: use all code heaps
 355     return (code_blob_type < CodeBlobType::All);
 356   } else {
 357     // No TieredCompilation: we only need the non-nmethod and non-profiled code heap
 358     return (code_blob_type == CodeBlobType::NonNMethod) ||
 359            (code_blob_type == CodeBlobType::MethodNonProfiled);
 360   }
 361 }
 362 
 363 const char* CodeCache::get_code_heap_flag_name(int code_blob_type) {
 364   switch(code_blob_type) {
 365   case CodeBlobType::NonNMethod:
 366     return "NonNMethodCodeHeapSize";
 367     break;
 368   case CodeBlobType::MethodNonProfiled:
 369     return "NonProfiledCodeHeapSize";
 370     break;
 371   case CodeBlobType::MethodProfiled:
 372     return "ProfiledCodeHeapSize";
 373     break;
 374   }
 375   ShouldNotReachHere();
 376   return NULL;
 377 }
 378 
 379 int CodeCache::code_heap_compare(CodeHeap* const &lhs, CodeHeap* const &rhs) {
 380   if (lhs->code_blob_type() == rhs->code_blob_type()) {
 381     return (lhs > rhs) ? 1 : ((lhs < rhs) ? -1 : 0);
 382   } else {
 383     return lhs->code_blob_type() - rhs->code_blob_type();
 384   }
 385 }
 386 
 387 void CodeCache::add_heap(CodeHeap* heap) {
 388   assert(!Universe::is_fully_initialized(), "late heap addition?");
 389 
 390   _heaps->insert_sorted<code_heap_compare>(heap);
 391 
 392   int type = heap->code_blob_type();
 393   if (code_blob_type_accepts_compiled(type)) {
 394     _compiled_heaps->insert_sorted<code_heap_compare>(heap);
 395   }
 396   if (code_blob_type_accepts_nmethod(type)) {
 397     _nmethod_heaps->insert_sorted<code_heap_compare>(heap);
 398   }
 399   if (code_blob_type_accepts_allocable(type)) {
 400     _allocable_heaps->insert_sorted<code_heap_compare>(heap);
 401   }
 402 }
 403 
 404 void CodeCache::add_heap(ReservedSpace rs, const char* name, int code_blob_type) {
 405   // Check if heap is needed
 406   if (!heap_available(code_blob_type)) {
 407     return;
 408   }
 409 
 410   // Create CodeHeap
 411   CodeHeap* heap = new CodeHeap(name, code_blob_type);
 412   add_heap(heap);
 413 
 414   // Reserve Space
 415   size_t size_initial = MIN2(InitialCodeCacheSize, rs.size());
 416   size_initial = align_up(size_initial, os::vm_page_size());
 417   if (!heap->reserve(rs, size_initial, CodeCacheSegmentSize)) {
 418     vm_exit_during_initialization("Could not reserve enough space for code cache");
 419   }
 420 
 421   // Register the CodeHeap
 422   MemoryService::add_code_heap_memory_pool(heap, name);
 423 }
 424 
 425 CodeHeap* CodeCache::get_code_heap_containing(void* start) {
 426   FOR_ALL_HEAPS(heap) {
 427     if ((*heap)->contains(start)) {
 428       return *heap;
 429     }
 430   }
 431   return NULL;
 432 }
 433 
 434 CodeHeap* CodeCache::get_code_heap(const CodeBlob* cb) {
 435   assert(cb != NULL, "CodeBlob is null");
 436   FOR_ALL_HEAPS(heap) {
 437     if ((*heap)->contains_blob(cb)) {
 438       return *heap;
 439     }
 440   }
 441   ShouldNotReachHere();
 442   return NULL;
 443 }
 444 
 445 CodeHeap* CodeCache::get_code_heap(int code_blob_type) {
 446   FOR_ALL_HEAPS(heap) {
 447     if ((*heap)->accepts(code_blob_type)) {
 448       return *heap;
 449     }
 450   }
 451   return NULL;
 452 }
 453 
 454 CodeBlob* CodeCache::first_blob(CodeHeap* heap) {
 455   assert_locked_or_safepoint(CodeCache_lock);
 456   assert(heap != NULL, "heap is null");
 457   return (CodeBlob*)heap->first();
 458 }
 459 
 460 CodeBlob* CodeCache::first_blob(int code_blob_type) {
 461   if (heap_available(code_blob_type)) {
 462     return first_blob(get_code_heap(code_blob_type));
 463   } else {
 464     return NULL;
 465   }
 466 }
 467 
 468 CodeBlob* CodeCache::next_blob(CodeHeap* heap, CodeBlob* cb) {
 469   assert_locked_or_safepoint(CodeCache_lock);
 470   assert(heap != NULL, "heap is null");
 471   return (CodeBlob*)heap->next(cb);
 472 }
 473 
 474 /**
 475  * Do not seize the CodeCache lock here--if the caller has not
 476  * already done so, we are going to lose bigtime, since the code
 477  * cache will contain a garbage CodeBlob until the caller can
 478  * run the constructor for the CodeBlob subclass he is busy
 479  * instantiating.
 480  */
 481 CodeBlob* CodeCache::allocate(int size, int code_blob_type, int orig_code_blob_type) {
 482   // Possibly wakes up the sweeper thread.
 483   NMethodSweeper::notify(code_blob_type);
 484   assert_locked_or_safepoint(CodeCache_lock);
 485   assert(size > 0, "Code cache allocation request must be > 0 but is %d", size);
 486   if (size <= 0) {
 487     return NULL;
 488   }
 489   CodeBlob* cb = NULL;
 490 
 491   // Get CodeHeap for the given CodeBlobType
 492   CodeHeap* heap = get_code_heap(code_blob_type);
 493   assert(heap != NULL, "heap is null");
 494 
 495   while (true) {
 496     cb = (CodeBlob*)heap->allocate(size);
 497     if (cb != NULL) break;
 498     if (!heap->expand_by(CodeCacheExpansionSize)) {
 499       // Save original type for error reporting
 500       if (orig_code_blob_type == CodeBlobType::All) {
 501         orig_code_blob_type = code_blob_type;
 502       }
 503       // Expansion failed
 504       if (SegmentedCodeCache) {
 505         // Fallback solution: Try to store code in another code heap.
 506         // NonNMethod -> MethodNonProfiled -> MethodProfiled (-> MethodNonProfiled)
 507         // Note that in the sweeper, we check the reverse_free_ratio of the code heap
 508         // and force stack scanning if less than 10% of the code heap are free.
 509         int type = code_blob_type;
 510         switch (type) {
 511         case CodeBlobType::NonNMethod:
 512           type = CodeBlobType::MethodNonProfiled;
 513           break;
 514         case CodeBlobType::MethodNonProfiled:
 515           type = CodeBlobType::MethodProfiled;
 516           break;
 517         case CodeBlobType::MethodProfiled:
 518           // Avoid loop if we already tried that code heap
 519           if (type == orig_code_blob_type) {
 520             type = CodeBlobType::MethodNonProfiled;
 521           }
 522           break;
 523         }
 524         if (type != code_blob_type && type != orig_code_blob_type && heap_available(type)) {
 525           if (PrintCodeCacheExtension) {
 526             tty->print_cr("Extension of %s failed. Trying to allocate in %s.",
 527                           heap->name(), get_code_heap(type)->name());
 528           }
 529           return allocate(size, type, orig_code_blob_type);
 530         }
 531       }
 532       MutexUnlockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 533       CompileBroker::handle_full_code_cache(orig_code_blob_type);
 534       return NULL;
 535     }
 536     if (PrintCodeCacheExtension) {
 537       ResourceMark rm;
 538       if (_nmethod_heaps->length() >= 1) {
 539         tty->print("%s", heap->name());
 540       } else {
 541         tty->print("CodeCache");
 542       }
 543       tty->print_cr(" extended to [" INTPTR_FORMAT ", " INTPTR_FORMAT "] (" SSIZE_FORMAT " bytes)",
 544                     (intptr_t)heap->low_boundary(), (intptr_t)heap->high(),
 545                     (address)heap->high() - (address)heap->low_boundary());
 546     }
 547   }
 548   print_trace("allocation", cb, size);
 549   return cb;
 550 }
 551 
 552 void CodeCache::free(CodeBlob* cb) {
 553   assert_locked_or_safepoint(CodeCache_lock);
 554   CodeHeap* heap = get_code_heap(cb);
 555   print_trace("free", cb);
 556   if (cb->is_nmethod()) {
 557     heap->set_nmethod_count(heap->nmethod_count() - 1);
 558     if (((nmethod *)cb)->has_dependencies()) {
 559       _number_of_nmethods_with_dependencies--;
 560     }
 561   }
 562   if (cb->is_adapter_blob()) {
 563     heap->set_adapter_count(heap->adapter_count() - 1);
 564   }
 565 
 566   // Get heap for given CodeBlob and deallocate
 567   get_code_heap(cb)->deallocate(cb);
 568 
 569   assert(heap->blob_count() >= 0, "sanity check");
 570 }
 571 
 572 void CodeCache::commit(CodeBlob* cb) {
 573   // this is called by nmethod::nmethod, which must already own CodeCache_lock
 574   assert_locked_or_safepoint(CodeCache_lock);
 575   CodeHeap* heap = get_code_heap(cb);
 576   if (cb->is_nmethod()) {
 577     heap->set_nmethod_count(heap->nmethod_count() + 1);
 578     if (((nmethod *)cb)->has_dependencies()) {
 579       _number_of_nmethods_with_dependencies++;
 580     }
 581   }
 582   if (cb->is_adapter_blob()) {
 583     heap->set_adapter_count(heap->adapter_count() + 1);
 584   }
 585 
 586   // flush the hardware I-cache
 587   ICache::invalidate_range(cb->content_begin(), cb->content_size());
 588 }
 589 
 590 bool CodeCache::contains(void *p) {
 591   // S390 uses contains() in current_frame(), which is used before
 592   // code cache initialization if NativeMemoryTracking=detail is set.
 593   S390_ONLY(if (_heaps == NULL) return false;)
 594   // It should be ok to call contains without holding a lock.
 595   FOR_ALL_HEAPS(heap) {
 596     if ((*heap)->contains(p)) {
 597       return true;
 598     }
 599   }
 600   return false;
 601 }
 602 
 603 bool CodeCache::contains(nmethod *nm) {
 604   return contains((void *)nm);
 605 }
 606 
 607 // This method is safe to call without holding the CodeCache_lock, as long as a dead CodeBlob is not
 608 // looked up (i.e., one that has been marked for deletion). It only depends on the _segmap to contain
 609 // valid indices, which it will always do, as long as the CodeBlob is not in the process of being recycled.
 610 CodeBlob* CodeCache::find_blob(void* start) {
 611   CodeBlob* result = find_blob_unsafe(start);
 612   // We could potentially look up non_entrant methods
 613   guarantee(result == NULL || !result->is_zombie() || result->is_locked_by_vm() || VMError::is_error_reported(), "unsafe access to zombie method");
 614   return result;
 615 }
 616 
 617 // Lookup that does not fail if you lookup a zombie method (if you call this, be sure to know
 618 // what you are doing)
 619 CodeBlob* CodeCache::find_blob_unsafe(void* start) {
 620   // NMT can walk the stack before code cache is created
 621   if (_heaps != NULL) {
 622     CodeHeap* heap = get_code_heap_containing(start);
 623     if (heap != NULL) {
 624       return heap->find_blob_unsafe(start);
 625     }
 626   }
 627   return NULL;
 628 }
 629 
 630 nmethod* CodeCache::find_nmethod(void* start) {
 631   CodeBlob* cb = find_blob(start);
 632   assert(cb->is_nmethod(), "did not find an nmethod");
 633   return (nmethod*)cb;
 634 }
 635 
 636 void CodeCache::blobs_do(void f(CodeBlob* nm)) {
 637   assert_locked_or_safepoint(CodeCache_lock);
 638   FOR_ALL_HEAPS(heap) {
 639     FOR_ALL_BLOBS(cb, *heap) {
 640       f(cb);
 641     }
 642   }
 643 }
 644 
 645 void CodeCache::nmethods_do(void f(nmethod* nm)) {
 646   assert_locked_or_safepoint(CodeCache_lock);
 647   NMethodIterator iter;
 648   while(iter.next()) {
 649     f(iter.method());
 650   }
 651 }
 652 
 653 void CodeCache::metadata_do(void f(Metadata* m)) {
 654   assert_locked_or_safepoint(CodeCache_lock);
 655   NMethodIterator iter;
 656   while(iter.next_alive()) {
 657     iter.method()->metadata_do(f);
 658   }
 659   AOTLoader::metadata_do(f);
 660 }
 661 
 662 int CodeCache::alignment_unit() {
 663   return (int)_heaps->first()->alignment_unit();
 664 }
 665 
 666 int CodeCache::alignment_offset() {
 667   return (int)_heaps->first()->alignment_offset();
 668 }
 669 
 670 // Mark nmethods for unloading if they contain otherwise unreachable oops.
 671 void CodeCache::do_unloading(BoolObjectClosure* is_alive, bool unloading_occurred) {
 672   assert_locked_or_safepoint(CodeCache_lock);
 673   CompiledMethodIterator iter;
 674   while(iter.next_alive()) {
 675     iter.method()->do_unloading(is_alive, unloading_occurred);
 676   }
 677 }
 678 
 679 void CodeCache::blobs_do(CodeBlobClosure* f) {
 680   assert_locked_or_safepoint(CodeCache_lock);
 681   FOR_ALL_ALLOCABLE_HEAPS(heap) {
 682     FOR_ALL_BLOBS(cb, *heap) {
 683       if (cb->is_alive()) {
 684         f->do_code_blob(cb);
 685 #ifdef ASSERT
 686         if (cb->is_nmethod()) {
 687           Universe::heap()->verify_nmethod_roots((nmethod*)cb);
 688         }
 689 #endif //ASSERT
 690       }
 691     }
 692   }
 693 }
 694 
 695 // Walk the list of methods which might contain non-perm oops.
 696 void CodeCache::scavenge_root_nmethods_do(CodeBlobToOopClosure* f) {
 697   assert_locked_or_safepoint(CodeCache_lock);
 698 
 699   const bool fix_relocations = f->fix_relocations();
 700   debug_only(mark_scavenge_root_nmethods());
 701 
 702   nmethod* prev = NULL;
 703   nmethod* cur = scavenge_root_nmethods();
 704   while (cur != NULL) {
 705     debug_only(cur->clear_scavenge_root_marked());
 706     assert(cur->scavenge_root_not_marked(), "");
 707     assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
 708 
 709     bool is_live = (!cur->is_zombie() && !cur->is_unloaded());
 710     if (TraceScavenge) {
 711       cur->print_on(tty, is_live ? "scavenge root" : "dead scavenge root"); tty->cr();
 712     }
 713     if (is_live) {
 714       // Perform cur->oops_do(f), maybe just once per nmethod.
 715       f->do_code_blob(cur);
 716     }
 717     nmethod* const next = cur->scavenge_root_link();
 718     // The scavengable nmethod list must contain all methods with scavengable
 719     // oops. It is safe to include more nmethod on the list, but we do not
 720     // expect any live non-scavengable nmethods on the list.
 721     if (fix_relocations) {
 722       if (!is_live || !cur->detect_scavenge_root_oops()) {
 723         unlink_scavenge_root_nmethod(cur, prev);
 724       } else {
 725         prev = cur;
 726       }
 727     }
 728     cur = next;
 729   }
 730 
 731   // Check for stray marks.
 732   debug_only(verify_perm_nmethods(NULL));
 733 }
 734 
 735 void CodeCache::register_scavenge_root_nmethod(nmethod* nm) {
 736   assert_locked_or_safepoint(CodeCache_lock);
 737   if (!nm->on_scavenge_root_list() && nm->detect_scavenge_root_oops()) {
 738     add_scavenge_root_nmethod(nm);
 739   }
 740 }
 741 
 742 void CodeCache::add_scavenge_root_nmethod(nmethod* nm) {
 743   assert_locked_or_safepoint(CodeCache_lock);
 744 
 745   nm->set_on_scavenge_root_list();
 746   nm->set_scavenge_root_link(_scavenge_root_nmethods);
 747   set_scavenge_root_nmethods(nm);
 748   print_trace("add_scavenge_root", nm);
 749 }
 750 
 751 void CodeCache::unlink_scavenge_root_nmethod(nmethod* nm, nmethod* prev) {
 752   assert_locked_or_safepoint(CodeCache_lock);
 753 
 754   assert((prev == NULL && scavenge_root_nmethods() == nm) ||
 755          (prev != NULL && prev->scavenge_root_link() == nm), "precondition");
 756 
 757   print_trace("unlink_scavenge_root", nm);
 758   if (prev == NULL) {
 759     set_scavenge_root_nmethods(nm->scavenge_root_link());
 760   } else {
 761     prev->set_scavenge_root_link(nm->scavenge_root_link());
 762   }
 763   nm->set_scavenge_root_link(NULL);
 764   nm->clear_on_scavenge_root_list();
 765 }
 766 
 767 void CodeCache::drop_scavenge_root_nmethod(nmethod* nm) {
 768   assert_locked_or_safepoint(CodeCache_lock);
 769 
 770   print_trace("drop_scavenge_root", nm);
 771   nmethod* prev = NULL;
 772   for (nmethod* cur = scavenge_root_nmethods(); cur != NULL; cur = cur->scavenge_root_link()) {
 773     if (cur == nm) {
 774       unlink_scavenge_root_nmethod(cur, prev);
 775       return;
 776     }
 777     prev = cur;
 778   }
 779   assert(false, "should have been on list");
 780 }
 781 
 782 void CodeCache::prune_scavenge_root_nmethods() {
 783   assert_locked_or_safepoint(CodeCache_lock);
 784 
 785   debug_only(mark_scavenge_root_nmethods());
 786 
 787   nmethod* last = NULL;
 788   nmethod* cur = scavenge_root_nmethods();
 789   while (cur != NULL) {
 790     nmethod* next = cur->scavenge_root_link();
 791     debug_only(cur->clear_scavenge_root_marked());
 792     assert(cur->scavenge_root_not_marked(), "");
 793     assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
 794 
 795     if (!cur->is_zombie() && !cur->is_unloaded()
 796         && cur->detect_scavenge_root_oops()) {
 797       // Keep it.  Advance 'last' to prevent deletion.
 798       last = cur;
 799     } else {
 800       // Prune it from the list, so we don't have to look at it any more.
 801       print_trace("prune_scavenge_root", cur);
 802       unlink_scavenge_root_nmethod(cur, last);
 803     }
 804     cur = next;
 805   }
 806 
 807   // Check for stray marks.
 808   debug_only(verify_perm_nmethods(NULL));
 809 }
 810 
 811 #ifndef PRODUCT
 812 void CodeCache::asserted_non_scavengable_nmethods_do(CodeBlobClosure* f) {
 813   // While we are here, verify the integrity of the list.
 814   mark_scavenge_root_nmethods();
 815   for (nmethod* cur = scavenge_root_nmethods(); cur != NULL; cur = cur->scavenge_root_link()) {
 816     assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
 817     cur->clear_scavenge_root_marked();
 818   }
 819   verify_perm_nmethods(f);
 820 }
 821 
 822 // Temporarily mark nmethods that are claimed to be on the non-perm list.
 823 void CodeCache::mark_scavenge_root_nmethods() {
 824   NMethodIterator iter;
 825   while(iter.next_alive()) {
 826     nmethod* nm = iter.method();
 827     assert(nm->scavenge_root_not_marked(), "clean state");
 828     if (nm->on_scavenge_root_list())
 829       nm->set_scavenge_root_marked();
 830   }
 831 }
 832 
 833 // If the closure is given, run it on the unlisted nmethods.
 834 // Also make sure that the effects of mark_scavenge_root_nmethods is gone.
 835 void CodeCache::verify_perm_nmethods(CodeBlobClosure* f_or_null) {
 836   NMethodIterator iter;
 837   while(iter.next_alive()) {
 838     nmethod* nm = iter.method();
 839     bool call_f = (f_or_null != NULL);
 840     assert(nm->scavenge_root_not_marked(), "must be already processed");
 841     if (nm->on_scavenge_root_list())
 842       call_f = false;  // don't show this one to the client
 843     Universe::heap()->verify_nmethod_roots(nm);
 844     if (call_f)  f_or_null->do_code_blob(nm);
 845   }
 846 }
 847 #endif //PRODUCT
 848 
 849 void CodeCache::verify_clean_inline_caches() {
 850 #ifdef ASSERT
 851   NMethodIterator iter;
 852   while(iter.next_alive()) {
 853     nmethod* nm = iter.method();
 854     assert(!nm->is_unloaded(), "Tautology");
 855     nm->verify_clean_inline_caches();
 856     nm->verify();
 857   }
 858 #endif
 859 }
 860 
 861 void CodeCache::verify_icholder_relocations() {
 862 #ifdef ASSERT
 863   // make sure that we aren't leaking icholders
 864   int count = 0;
 865   FOR_ALL_HEAPS(heap) {
 866     FOR_ALL_BLOBS(cb, *heap) {
 867       CompiledMethod *nm = cb->as_compiled_method_or_null();
 868       if (nm != NULL) {
 869         count += nm->verify_icholder_relocations();
 870       }
 871     }
 872   }
 873   assert(count + InlineCacheBuffer::pending_icholder_count() + CompiledICHolder::live_not_claimed_count() ==
 874          CompiledICHolder::live_count(), "must agree");
 875 #endif
 876 }
 877 
 878 void CodeCache::gc_prologue() {
 879 }
 880 
 881 void CodeCache::gc_epilogue() {
 882   assert_locked_or_safepoint(CodeCache_lock);
 883   NOT_DEBUG(if (needs_cache_clean())) {
 884     CompiledMethodIterator iter;
 885     while(iter.next_alive()) {
 886       CompiledMethod* cm = iter.method();
 887       assert(!cm->is_unloaded(), "Tautology");
 888       DEBUG_ONLY(if (needs_cache_clean())) {
 889         cm->cleanup_inline_caches();
 890       }
 891       DEBUG_ONLY(cm->verify());
 892       DEBUG_ONLY(cm->verify_oop_relocations());
 893     }
 894   }
 895 
 896   set_needs_cache_clean(false);
 897   prune_scavenge_root_nmethods();
 898 
 899   verify_icholder_relocations();
 900 }
 901 
 902 void CodeCache::verify_oops() {
 903   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 904   VerifyOopClosure voc;
 905   NMethodIterator iter;
 906   while(iter.next_alive()) {
 907     nmethod* nm = iter.method();
 908     nm->oops_do(&voc);
 909     nm->verify_oop_relocations();
 910   }
 911 }
 912 
 913 int CodeCache::blob_count(int code_blob_type) {
 914   CodeHeap* heap = get_code_heap(code_blob_type);
 915   return (heap != NULL) ? heap->blob_count() : 0;
 916 }
 917 
 918 int CodeCache::blob_count() {
 919   int count = 0;
 920   FOR_ALL_HEAPS(heap) {
 921     count += (*heap)->blob_count();
 922   }
 923   return count;
 924 }
 925 
 926 int CodeCache::nmethod_count(int code_blob_type) {
 927   CodeHeap* heap = get_code_heap(code_blob_type);
 928   return (heap != NULL) ? heap->nmethod_count() : 0;
 929 }
 930 
 931 int CodeCache::nmethod_count() {
 932   int count = 0;
 933   FOR_ALL_NMETHOD_HEAPS(heap) {
 934     count += (*heap)->nmethod_count();
 935   }
 936   return count;
 937 }
 938 
 939 int CodeCache::adapter_count(int code_blob_type) {
 940   CodeHeap* heap = get_code_heap(code_blob_type);
 941   return (heap != NULL) ? heap->adapter_count() : 0;
 942 }
 943 
 944 int CodeCache::adapter_count() {
 945   int count = 0;
 946   FOR_ALL_HEAPS(heap) {
 947     count += (*heap)->adapter_count();
 948   }
 949   return count;
 950 }
 951 
 952 address CodeCache::low_bound(int code_blob_type) {
 953   CodeHeap* heap = get_code_heap(code_blob_type);
 954   return (heap != NULL) ? (address)heap->low_boundary() : NULL;
 955 }
 956 
 957 address CodeCache::high_bound(int code_blob_type) {
 958   CodeHeap* heap = get_code_heap(code_blob_type);
 959   return (heap != NULL) ? (address)heap->high_boundary() : NULL;
 960 }
 961 
 962 size_t CodeCache::capacity() {
 963   size_t cap = 0;
 964   FOR_ALL_ALLOCABLE_HEAPS(heap) {
 965     cap += (*heap)->capacity();
 966   }
 967   return cap;
 968 }
 969 
 970 size_t CodeCache::unallocated_capacity(int code_blob_type) {
 971   CodeHeap* heap = get_code_heap(code_blob_type);
 972   return (heap != NULL) ? heap->unallocated_capacity() : 0;
 973 }
 974 
 975 size_t CodeCache::unallocated_capacity() {
 976   size_t unallocated_cap = 0;
 977   FOR_ALL_ALLOCABLE_HEAPS(heap) {
 978     unallocated_cap += (*heap)->unallocated_capacity();
 979   }
 980   return unallocated_cap;
 981 }
 982 
 983 size_t CodeCache::max_capacity() {
 984   size_t max_cap = 0;
 985   FOR_ALL_ALLOCABLE_HEAPS(heap) {
 986     max_cap += (*heap)->max_capacity();
 987   }
 988   return max_cap;
 989 }
 990 
 991 /**
 992  * Returns the reverse free ratio. E.g., if 25% (1/4) of the code heap
 993  * is free, reverse_free_ratio() returns 4.
 994  */
 995 double CodeCache::reverse_free_ratio(int code_blob_type) {
 996   CodeHeap* heap = get_code_heap(code_blob_type);
 997   if (heap == NULL) {
 998     return 0;
 999   }
1000 
1001   double unallocated_capacity = MAX2((double)heap->unallocated_capacity(), 1.0); // Avoid division by 0;
1002   double max_capacity = (double)heap->max_capacity();
1003   double result = max_capacity / unallocated_capacity;
1004   assert (max_capacity >= unallocated_capacity, "Must be");
1005   assert (result >= 1.0, "reverse_free_ratio must be at least 1. It is %f", result);
1006   return result;
1007 }
1008 
1009 size_t CodeCache::bytes_allocated_in_freelists() {
1010   size_t allocated_bytes = 0;
1011   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1012     allocated_bytes += (*heap)->allocated_in_freelist();
1013   }
1014   return allocated_bytes;
1015 }
1016 
1017 int CodeCache::allocated_segments() {
1018   int number_of_segments = 0;
1019   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1020     number_of_segments += (*heap)->allocated_segments();
1021   }
1022   return number_of_segments;
1023 }
1024 
1025 size_t CodeCache::freelists_length() {
1026   size_t length = 0;
1027   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1028     length += (*heap)->freelist_length();
1029   }
1030   return length;
1031 }
1032 
1033 void icache_init();
1034 
1035 void CodeCache::initialize() {
1036   assert(CodeCacheSegmentSize >= (uintx)CodeEntryAlignment, "CodeCacheSegmentSize must be large enough to align entry points");
1037 #ifdef COMPILER2
1038   assert(CodeCacheSegmentSize >= (uintx)OptoLoopAlignment,  "CodeCacheSegmentSize must be large enough to align inner loops");
1039 #endif
1040   assert(CodeCacheSegmentSize >= sizeof(jdouble),    "CodeCacheSegmentSize must be large enough to align constants");
1041   // This was originally just a check of the alignment, causing failure, instead, round
1042   // the code cache to the page size.  In particular, Solaris is moving to a larger
1043   // default page size.
1044   CodeCacheExpansionSize = align_up(CodeCacheExpansionSize, os::vm_page_size());
1045 
1046   if (SegmentedCodeCache) {
1047     // Use multiple code heaps
1048     initialize_heaps();
1049   } else {
1050     // Use a single code heap
1051     FLAG_SET_ERGO(uintx, NonNMethodCodeHeapSize, 0);
1052     FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, 0);
1053     FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, 0);
1054     ReservedCodeSpace rs = reserve_heap_memory(ReservedCodeCacheSize);
1055     add_heap(rs, "CodeCache", CodeBlobType::All);
1056   }
1057 
1058   // Initialize ICache flush mechanism
1059   // This service is needed for os::register_code_area
1060   icache_init();
1061 
1062   // Give OS a chance to register generated code area.
1063   // This is used on Windows 64 bit platforms to register
1064   // Structured Exception Handlers for our generated code.
1065   os::register_code_area((char*)low_bound(), (char*)high_bound());
1066 }
1067 
1068 void codeCache_init() {
1069   CodeCache::initialize();
1070   // Load AOT libraries and add AOT code heaps.
1071   AOTLoader::initialize();
1072 }
1073 
1074 //------------------------------------------------------------------------------------------------
1075 
1076 int CodeCache::number_of_nmethods_with_dependencies() {
1077   return _number_of_nmethods_with_dependencies;
1078 }
1079 
1080 void CodeCache::clear_inline_caches() {
1081   assert_locked_or_safepoint(CodeCache_lock);
1082   CompiledMethodIterator iter;
1083   while(iter.next_alive()) {
1084     iter.method()->clear_inline_caches();
1085   }
1086 }
1087 
1088 void CodeCache::cleanup_inline_caches() {
1089   assert_locked_or_safepoint(CodeCache_lock);
1090   NMethodIterator iter;
1091   while(iter.next_alive()) {
1092     iter.method()->cleanup_inline_caches(/*clean_all=*/true);
1093   }
1094 }
1095 
1096 // Keeps track of time spent for checking dependencies
1097 NOT_PRODUCT(static elapsedTimer dependentCheckTime;)
1098 
1099 int CodeCache::mark_for_deoptimization(KlassDepChange& changes) {
1100   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1101   int number_of_marked_CodeBlobs = 0;
1102 
1103   // search the hierarchy looking for nmethods which are affected by the loading of this class
1104 
1105   // then search the interfaces this class implements looking for nmethods
1106   // which might be dependent of the fact that an interface only had one
1107   // implementor.
1108   // nmethod::check_all_dependencies works only correctly, if no safepoint
1109   // can happen
1110   NoSafepointVerifier nsv;
1111   for (DepChange::ContextStream str(changes, nsv); str.next(); ) {
1112     Klass* d = str.klass();
1113     number_of_marked_CodeBlobs += InstanceKlass::cast(d)->mark_dependent_nmethods(changes);
1114   }
1115 
1116 #ifndef PRODUCT
1117   if (VerifyDependencies) {
1118     // Object pointers are used as unique identifiers for dependency arguments. This
1119     // is only possible if no safepoint, i.e., GC occurs during the verification code.
1120     dependentCheckTime.start();
1121     nmethod::check_all_dependencies(changes);
1122     dependentCheckTime.stop();
1123   }
1124 #endif
1125 
1126   return number_of_marked_CodeBlobs;
1127 }
1128 
1129 CompiledMethod* CodeCache::find_compiled(void* start) {
1130   CodeBlob *cb = find_blob(start);
1131   assert(cb == NULL || cb->is_compiled(), "did not find an compiled_method");
1132   return (CompiledMethod*)cb;
1133 }
1134 
1135 bool CodeCache::is_far_target(address target) {
1136 #if INCLUDE_AOT
1137   return NativeCall::is_far_call(_low_bound,  target) ||
1138          NativeCall::is_far_call(_high_bound, target);
1139 #else
1140   return false;
1141 #endif
1142 }
1143 
1144 #ifdef HOTSWAP
1145 int CodeCache::mark_for_evol_deoptimization(InstanceKlass* dependee) {
1146   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1147   int number_of_marked_CodeBlobs = 0;
1148 
1149   // Deoptimize all methods of the evolving class itself
1150   Array<Method*>* old_methods = dependee->methods();
1151   for (int i = 0; i < old_methods->length(); i++) {
1152     ResourceMark rm;
1153     Method* old_method = old_methods->at(i);
1154     CompiledMethod* nm = old_method->code();
1155     if (nm != NULL) {
1156       nm->mark_for_deoptimization();
1157       number_of_marked_CodeBlobs++;
1158     }
1159   }
1160 
1161   CompiledMethodIterator iter;
1162   while(iter.next_alive()) {
1163     CompiledMethod* nm = iter.method();
1164     if (nm->is_marked_for_deoptimization()) {
1165       // ...Already marked in the previous pass; don't count it again.
1166     } else if (nm->is_evol_dependent_on(dependee)) {
1167       ResourceMark rm;
1168       nm->mark_for_deoptimization();
1169       number_of_marked_CodeBlobs++;
1170     } else  {
1171       // flush caches in case they refer to a redefined Method*
1172       nm->clear_inline_caches();
1173     }
1174   }
1175 
1176   return number_of_marked_CodeBlobs;
1177 }
1178 #endif // HOTSWAP
1179 
1180 
1181 // Deoptimize all methods
1182 void CodeCache::mark_all_nmethods_for_deoptimization() {
1183   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1184   CompiledMethodIterator iter;
1185   while(iter.next_alive()) {
1186     CompiledMethod* nm = iter.method();
1187     if (!nm->method()->is_method_handle_intrinsic()) {
1188       nm->mark_for_deoptimization();
1189     }
1190   }
1191 }
1192 
1193 int CodeCache::mark_for_deoptimization(Method* dependee) {
1194   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1195   int number_of_marked_CodeBlobs = 0;
1196 
1197   CompiledMethodIterator iter;
1198   while(iter.next_alive()) {
1199     CompiledMethod* nm = iter.method();
1200     if (nm->is_dependent_on_method(dependee)) {
1201       ResourceMark rm;
1202       nm->mark_for_deoptimization();
1203       number_of_marked_CodeBlobs++;
1204     }
1205   }
1206 
1207   return number_of_marked_CodeBlobs;
1208 }
1209 
1210 void CodeCache::make_marked_nmethods_not_entrant() {
1211   assert_locked_or_safepoint(CodeCache_lock);
1212   CompiledMethodIterator iter;
1213   while(iter.next_alive()) {
1214     CompiledMethod* nm = iter.method();
1215     if (nm->is_marked_for_deoptimization() && !nm->is_not_entrant()) {
1216       nm->make_not_entrant();
1217     }
1218   }
1219 }
1220 
1221 // Flushes compiled methods dependent on dependee.
1222 void CodeCache::flush_dependents_on(InstanceKlass* dependee) {
1223   assert_lock_strong(Compile_lock);
1224 
1225   if (number_of_nmethods_with_dependencies() == 0) return;
1226 
1227   // CodeCache can only be updated by a thread_in_VM and they will all be
1228   // stopped during the safepoint so CodeCache will be safe to update without
1229   // holding the CodeCache_lock.
1230 
1231   KlassDepChange changes(dependee);
1232 
1233   // Compute the dependent nmethods
1234   if (mark_for_deoptimization(changes) > 0) {
1235     // At least one nmethod has been marked for deoptimization
1236     VM_Deoptimize op;
1237     VMThread::execute(&op);
1238   }
1239 }
1240 
1241 #ifdef HOTSWAP
1242 // Flushes compiled methods dependent on dependee in the evolutionary sense
1243 void CodeCache::flush_evol_dependents_on(InstanceKlass* ev_k) {
1244   // --- Compile_lock is not held. However we are at a safepoint.
1245   assert_locked_or_safepoint(Compile_lock);
1246   if (number_of_nmethods_with_dependencies() == 0 && !UseAOT) return;
1247 
1248   // CodeCache can only be updated by a thread_in_VM and they will all be
1249   // stopped during the safepoint so CodeCache will be safe to update without
1250   // holding the CodeCache_lock.
1251 
1252   // Compute the dependent nmethods
1253   if (mark_for_evol_deoptimization(ev_k) > 0) {
1254     // At least one nmethod has been marked for deoptimization
1255 
1256     // All this already happens inside a VM_Operation, so we'll do all the work here.
1257     // Stuff copied from VM_Deoptimize and modified slightly.
1258 
1259     // We do not want any GCs to happen while we are in the middle of this VM operation
1260     ResourceMark rm;
1261     DeoptimizationMarker dm;
1262 
1263     // Deoptimize all activations depending on marked nmethods
1264     Deoptimization::deoptimize_dependents();
1265 
1266     // Make the dependent methods not entrant
1267     make_marked_nmethods_not_entrant();
1268   }
1269 }
1270 #endif // HOTSWAP
1271 
1272 
1273 // Flushes compiled methods dependent on dependee
1274 void CodeCache::flush_dependents_on_method(methodHandle m_h) {
1275   // --- Compile_lock is not held. However we are at a safepoint.
1276   assert_locked_or_safepoint(Compile_lock);
1277 
1278   // CodeCache can only be updated by a thread_in_VM and they will all be
1279   // stopped dring the safepoint so CodeCache will be safe to update without
1280   // holding the CodeCache_lock.
1281 
1282   // Compute the dependent nmethods
1283   if (mark_for_deoptimization(m_h()) > 0) {
1284     // At least one nmethod has been marked for deoptimization
1285 
1286     // All this already happens inside a VM_Operation, so we'll do all the work here.
1287     // Stuff copied from VM_Deoptimize and modified slightly.
1288 
1289     // We do not want any GCs to happen while we are in the middle of this VM operation
1290     ResourceMark rm;
1291     DeoptimizationMarker dm;
1292 
1293     // Deoptimize all activations depending on marked nmethods
1294     Deoptimization::deoptimize_dependents();
1295 
1296     // Make the dependent methods not entrant
1297     make_marked_nmethods_not_entrant();
1298   }
1299 }
1300 
1301 void CodeCache::verify() {
1302   assert_locked_or_safepoint(CodeCache_lock);
1303   FOR_ALL_HEAPS(heap) {
1304     (*heap)->verify();
1305     FOR_ALL_BLOBS(cb, *heap) {
1306       if (cb->is_alive()) {
1307         cb->verify();
1308       }
1309     }
1310   }
1311 }
1312 
1313 // A CodeHeap is full. Print out warning and report event.
1314 PRAGMA_DIAG_PUSH
1315 PRAGMA_FORMAT_NONLITERAL_IGNORED
1316 void CodeCache::report_codemem_full(int code_blob_type, bool print) {
1317   // Get nmethod heap for the given CodeBlobType and build CodeCacheFull event
1318   CodeHeap* heap = get_code_heap(code_blob_type);
1319   assert(heap != NULL, "heap is null");
1320 
1321   if ((heap->full_count() == 0) || print) {
1322     // Not yet reported for this heap, report
1323     if (SegmentedCodeCache) {
1324       ResourceMark rm;
1325       stringStream msg1_stream, msg2_stream;
1326       msg1_stream.print("%s is full. Compiler has been disabled.",
1327                         get_code_heap_name(code_blob_type));
1328       msg2_stream.print("Try increasing the code heap size using -XX:%s=",
1329                  get_code_heap_flag_name(code_blob_type));
1330       const char *msg1 = msg1_stream.as_string();
1331       const char *msg2 = msg2_stream.as_string();
1332 
1333       log_warning(codecache)(msg1);
1334       log_warning(codecache)(msg2);
1335       warning(msg1);
1336       warning(msg2);
1337     } else {
1338       const char *msg1 = "CodeCache is full. Compiler has been disabled.";
1339       const char *msg2 = "Try increasing the code cache size using -XX:ReservedCodeCacheSize=";
1340 
1341       log_warning(codecache)(msg1);
1342       log_warning(codecache)(msg2);
1343       warning(msg1);
1344       warning(msg2);
1345     }
1346     ResourceMark rm;
1347     stringStream s;
1348     // Dump code cache  into a buffer before locking the tty,
1349     {
1350       MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1351       print_summary(&s);
1352     }
1353     ttyLocker ttyl;
1354     tty->print("%s", s.as_string());
1355   }
1356 
1357   heap->report_full();
1358 
1359   EventCodeCacheFull event;
1360   if (event.should_commit()) {
1361     event.set_codeBlobType((u1)code_blob_type);
1362     event.set_startAddress((u8)heap->low_boundary());
1363     event.set_commitedTopAddress((u8)heap->high());
1364     event.set_reservedTopAddress((u8)heap->high_boundary());
1365     event.set_entryCount(heap->blob_count());
1366     event.set_methodCount(heap->nmethod_count());
1367     event.set_adaptorCount(heap->adapter_count());
1368     event.set_unallocatedCapacity(heap->unallocated_capacity());
1369     event.set_fullCount(heap->full_count());
1370     event.commit();
1371   }
1372 }
1373 PRAGMA_DIAG_POP
1374 
1375 void CodeCache::print_memory_overhead() {
1376   size_t wasted_bytes = 0;
1377   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1378       CodeHeap* curr_heap = *heap;
1379       for (CodeBlob* cb = (CodeBlob*)curr_heap->first(); cb != NULL; cb = (CodeBlob*)curr_heap->next(cb)) {
1380         HeapBlock* heap_block = ((HeapBlock*)cb) - 1;
1381         wasted_bytes += heap_block->length() * CodeCacheSegmentSize - cb->size();
1382       }
1383   }
1384   // Print bytes that are allocated in the freelist
1385   ttyLocker ttl;
1386   tty->print_cr("Number of elements in freelist: " SSIZE_FORMAT,       freelists_length());
1387   tty->print_cr("Allocated in freelist:          " SSIZE_FORMAT "kB",  bytes_allocated_in_freelists()/K);
1388   tty->print_cr("Unused bytes in CodeBlobs:      " SSIZE_FORMAT "kB",  (wasted_bytes/K));
1389   tty->print_cr("Segment map size:               " SSIZE_FORMAT "kB",  allocated_segments()/K); // 1 byte per segment
1390 }
1391 
1392 //------------------------------------------------------------------------------------------------
1393 // Non-product version
1394 
1395 #ifndef PRODUCT
1396 
1397 void CodeCache::print_trace(const char* event, CodeBlob* cb, int size) {
1398   if (PrintCodeCache2) {  // Need to add a new flag
1399     ResourceMark rm;
1400     if (size == 0)  size = cb->size();
1401     tty->print_cr("CodeCache %s:  addr: " INTPTR_FORMAT ", size: 0x%x", event, p2i(cb), size);
1402   }
1403 }
1404 
1405 void CodeCache::print_internals() {
1406   int nmethodCount = 0;
1407   int runtimeStubCount = 0;
1408   int adapterCount = 0;
1409   int deoptimizationStubCount = 0;
1410   int uncommonTrapStubCount = 0;
1411   int bufferBlobCount = 0;
1412   int total = 0;
1413   int nmethodAlive = 0;
1414   int nmethodNotEntrant = 0;
1415   int nmethodZombie = 0;
1416   int nmethodUnloaded = 0;
1417   int nmethodJava = 0;
1418   int nmethodNative = 0;
1419   int max_nm_size = 0;
1420   ResourceMark rm;
1421 
1422   int i = 0;
1423   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1424     if ((_nmethod_heaps->length() >= 1) && Verbose) {
1425       tty->print_cr("-- %s --", (*heap)->name());
1426     }
1427     FOR_ALL_BLOBS(cb, *heap) {
1428       total++;
1429       if (cb->is_nmethod()) {
1430         nmethod* nm = (nmethod*)cb;
1431 
1432         if (Verbose && nm->method() != NULL) {
1433           ResourceMark rm;
1434           char *method_name = nm->method()->name_and_sig_as_C_string();
1435           tty->print("%s", method_name);
1436           if(nm->is_alive()) { tty->print_cr(" alive"); }
1437           if(nm->is_not_entrant()) { tty->print_cr(" not-entrant"); }
1438           if(nm->is_zombie()) { tty->print_cr(" zombie"); }
1439         }
1440 
1441         nmethodCount++;
1442 
1443         if(nm->is_alive()) { nmethodAlive++; }
1444         if(nm->is_not_entrant()) { nmethodNotEntrant++; }
1445         if(nm->is_zombie()) { nmethodZombie++; }
1446         if(nm->is_unloaded()) { nmethodUnloaded++; }
1447         if(nm->method() != NULL && nm->is_native_method()) { nmethodNative++; }
1448 
1449         if(nm->method() != NULL && nm->is_java_method()) {
1450           nmethodJava++;
1451           max_nm_size = MAX2(max_nm_size, nm->size());
1452         }
1453       } else if (cb->is_runtime_stub()) {
1454         runtimeStubCount++;
1455       } else if (cb->is_deoptimization_stub()) {
1456         deoptimizationStubCount++;
1457       } else if (cb->is_uncommon_trap_stub()) {
1458         uncommonTrapStubCount++;
1459       } else if (cb->is_adapter_blob()) {
1460         adapterCount++;
1461       } else if (cb->is_buffer_blob()) {
1462         bufferBlobCount++;
1463       }
1464     }
1465   }
1466 
1467   int bucketSize = 512;
1468   int bucketLimit = max_nm_size / bucketSize + 1;
1469   int *buckets = NEW_C_HEAP_ARRAY(int, bucketLimit, mtCode);
1470   memset(buckets, 0, sizeof(int) * bucketLimit);
1471 
1472   NMethodIterator iter;
1473   while(iter.next()) {
1474     nmethod* nm = iter.method();
1475     if(nm->method() != NULL && nm->is_java_method()) {
1476       buckets[nm->size() / bucketSize]++;
1477     }
1478   }
1479 
1480   tty->print_cr("Code Cache Entries (total of %d)",total);
1481   tty->print_cr("-------------------------------------------------");
1482   tty->print_cr("nmethods: %d",nmethodCount);
1483   tty->print_cr("\talive: %d",nmethodAlive);
1484   tty->print_cr("\tnot_entrant: %d",nmethodNotEntrant);
1485   tty->print_cr("\tzombie: %d",nmethodZombie);
1486   tty->print_cr("\tunloaded: %d",nmethodUnloaded);
1487   tty->print_cr("\tjava: %d",nmethodJava);
1488   tty->print_cr("\tnative: %d",nmethodNative);
1489   tty->print_cr("runtime_stubs: %d",runtimeStubCount);
1490   tty->print_cr("adapters: %d",adapterCount);
1491   tty->print_cr("buffer blobs: %d",bufferBlobCount);
1492   tty->print_cr("deoptimization_stubs: %d",deoptimizationStubCount);
1493   tty->print_cr("uncommon_traps: %d",uncommonTrapStubCount);
1494   tty->print_cr("\nnmethod size distribution (non-zombie java)");
1495   tty->print_cr("-------------------------------------------------");
1496 
1497   for(int i=0; i<bucketLimit; i++) {
1498     if(buckets[i] != 0) {
1499       tty->print("%d - %d bytes",i*bucketSize,(i+1)*bucketSize);
1500       tty->fill_to(40);
1501       tty->print_cr("%d",buckets[i]);
1502     }
1503   }
1504 
1505   FREE_C_HEAP_ARRAY(int, buckets);
1506   print_memory_overhead();
1507 }
1508 
1509 #endif // !PRODUCT
1510 
1511 void CodeCache::print() {
1512   print_summary(tty);
1513 
1514 #ifndef PRODUCT
1515   if (!Verbose) return;
1516 
1517   CodeBlob_sizes live;
1518   CodeBlob_sizes dead;
1519 
1520   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1521     FOR_ALL_BLOBS(cb, *heap) {
1522       if (!cb->is_alive()) {
1523         dead.add(cb);
1524       } else {
1525         live.add(cb);
1526       }
1527     }
1528   }
1529 
1530   tty->print_cr("CodeCache:");
1531   tty->print_cr("nmethod dependency checking time %fs", dependentCheckTime.seconds());
1532 
1533   if (!live.is_empty()) {
1534     live.print("live");
1535   }
1536   if (!dead.is_empty()) {
1537     dead.print("dead");
1538   }
1539 
1540   if (WizardMode) {
1541      // print the oop_map usage
1542     int code_size = 0;
1543     int number_of_blobs = 0;
1544     int number_of_oop_maps = 0;
1545     int map_size = 0;
1546     FOR_ALL_ALLOCABLE_HEAPS(heap) {
1547       FOR_ALL_BLOBS(cb, *heap) {
1548         if (cb->is_alive()) {
1549           number_of_blobs++;
1550           code_size += cb->code_size();
1551           ImmutableOopMapSet* set = cb->oop_maps();
1552           if (set != NULL) {
1553             number_of_oop_maps += set->count();
1554             map_size           += set->nr_of_bytes();
1555           }
1556         }
1557       }
1558     }
1559     tty->print_cr("OopMaps");
1560     tty->print_cr("  #blobs    = %d", number_of_blobs);
1561     tty->print_cr("  code size = %d", code_size);
1562     tty->print_cr("  #oop_maps = %d", number_of_oop_maps);
1563     tty->print_cr("  map size  = %d", map_size);
1564   }
1565 
1566 #endif // !PRODUCT
1567 }
1568 
1569 void CodeCache::print_summary(outputStream* st, bool detailed) {
1570   FOR_ALL_HEAPS(heap_iterator) {
1571     CodeHeap* heap = (*heap_iterator);
1572     size_t total = (heap->high_boundary() - heap->low_boundary());
1573     if (_heaps->length() >= 1) {
1574       st->print("%s:", heap->name());
1575     } else {
1576       st->print("CodeCache:");
1577     }
1578     st->print_cr(" size=" SIZE_FORMAT "Kb used=" SIZE_FORMAT
1579                  "Kb max_used=" SIZE_FORMAT "Kb free=" SIZE_FORMAT "Kb",
1580                  total/K, (total - heap->unallocated_capacity())/K,
1581                  heap->max_allocated_capacity()/K, heap->unallocated_capacity()/K);
1582 
1583     if (detailed) {
1584       st->print_cr(" bounds [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT "]",
1585                    p2i(heap->low_boundary()),
1586                    p2i(heap->high()),
1587                    p2i(heap->high_boundary()));
1588     }
1589   }
1590 
1591   if (detailed) {
1592     st->print_cr(" total_blobs=" UINT32_FORMAT " nmethods=" UINT32_FORMAT
1593                        " adapters=" UINT32_FORMAT,
1594                        blob_count(), nmethod_count(), adapter_count());
1595     st->print_cr(" compilation: %s", CompileBroker::should_compile_new_jobs() ?
1596                  "enabled" : Arguments::mode() == Arguments::_int ?
1597                  "disabled (interpreter mode)" :
1598                  "disabled (not enough contiguous free space left)");
1599   }
1600 }
1601 
1602 void CodeCache::print_codelist(outputStream* st) {
1603   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1604 
1605   CompiledMethodIterator iter;
1606   while (iter.next_alive()) {
1607     CompiledMethod* cm = iter.method();
1608     ResourceMark rm;
1609     char* method_name = cm->method()->name_and_sig_as_C_string();
1610     st->print_cr("%d %d %d %s [" INTPTR_FORMAT ", " INTPTR_FORMAT " - " INTPTR_FORMAT "]",
1611                  cm->compile_id(), cm->comp_level(), cm->get_state(),
1612                  method_name,
1613                  (intptr_t)cm->header_begin(), (intptr_t)cm->code_begin(), (intptr_t)cm->code_end());
1614   }
1615 }
1616 
1617 void CodeCache::print_layout(outputStream* st) {
1618   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1619   ResourceMark rm;
1620   print_summary(st, true);
1621 }
1622 
1623 void CodeCache::log_state(outputStream* st) {
1624   st->print(" total_blobs='" UINT32_FORMAT "' nmethods='" UINT32_FORMAT "'"
1625             " adapters='" UINT32_FORMAT "' free_code_cache='" SIZE_FORMAT "'",
1626             blob_count(), nmethod_count(), adapter_count(),
1627             unallocated_capacity());
1628 }