/* * Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_RUNTIME_ACCESS_HPP #define SHARE_VM_RUNTIME_ACCESS_HPP #include "memory/allocation.hpp" #include "metaprogramming/decay.hpp" #include "metaprogramming/integralConstant.hpp" #include "oops/oopsHierarchy.hpp" #include "utilities/debug.hpp" #include "utilities/globalDefinitions.hpp" // = GENERAL = // Access is an API for performing accesses with declarative semantics. Each access can have a number of "decorators". // A decorator is an attribute or property that affects the way a memory access is performed in some way. // There are different groups of decorators. Some have to do with memory ordering, others to do with, // e.g. strength of references, strength of GC barriers, or whether compression should be applied or not. // Some decorators are set at buildtime, such as whether primitives require GC barriers or not, others // at callsites such as whether an access is in the heap or not, and others are resolved at runtime // such as GC-specific barriers and encoding/decoding compressed oops. // By pipelining handling of these decorators, the design of the Access API allows separation of concern // over the different orthogonal concerns of decorators, while providing a powerful way of // expressing these orthogonal semantic properties in a unified way. // == OPERATIONS == // * load: Load a value from an address. // * load_at: Load a value from an internal pointer relative to a base object. // * store: Store a value at an address. // * store_at: Store a value in an internal pointer relative to a base object. // * atomic_cmpxchg: Atomically compare-and-swap a new value at an address if previous value matched the compared value. // * atomic_cmpxchg_at: Atomically compare-and-swap a new value at an internal pointer address if previous value matched the compared value. // * atomic_xchg: Atomically swap a new value at an address if previous value matched the compared value. // * atomic_xchg_at: Atomically swap a new value at an internal pointer address if previous value matched the compared value. // * arraycopy: Copy data from one heap array to another heap array. // * clone: Clone the contents of an object to a newly allocated object. typedef uint64_t DecoratorSet; // == Internal Decorators - do not use == // * INTERNAL_EMPTY: This is the name for the empty decorator set (in absence of other decorators). // * INTERNAL_CONVERT_COMPRESSED_OOPS: This is an oop access that will require converting an oop // to a narrowOop or vice versa, if UseCompressedOops is known to be set. // * INTERNAL_VALUE_IS_OOP: Remember that the involved access is on oop rather than primitive. const DecoratorSet INTERNAL_EMPTY = UCONST64(0); const DecoratorSet INTERNAL_CONVERT_COMPRESSED_OOP = UCONST64(1) << 1; const DecoratorSet INTERNAL_VALUE_IS_OOP = UCONST64(1) << 2; // == Internal build-time Decorators == // * INTERNAL_BT_BARRIER_ON_PRIMITIVES: This is set in the barrierSetConfig.hpp file. const DecoratorSet INTERNAL_BT_BARRIER_ON_PRIMITIVES = UCONST64(1) << 3; // == Internal run-time Decorators == // * INTERNAL_RT_USE_COMPRESSED_OOPS: This decorator will be set in runtime resolved // access backends iff UseCompressedOops is true. const DecoratorSet INTERNAL_RT_USE_COMPRESSED_OOPS = UCONST64(1) << 4; const DecoratorSet INTERNAL_DECORATOR_MASK = INTERNAL_CONVERT_COMPRESSED_OOP | INTERNAL_VALUE_IS_OOP | INTERNAL_BT_BARRIER_ON_PRIMITIVES | INTERNAL_RT_USE_COMPRESSED_OOPS; // == Memory Ordering Decorators == // The memory ordering decorators can be described in the following way: // === Decorator Rules === // The different types of memory ordering guarantees have a strict order of strength. // Explicitly specifying the stronger ordering implies that the guarantees of the weaker // property holds too. The names come from the C++11 atomic operations, and typically // have a JMM equivalent property. // The equivalence may be viewed like this: // MO_UNORDERED is equivalent to JMM plain. // MO_VOLATILE has no equivalence in JMM, because it's a C++ thing. // MO_RELAXED is equivalent to JMM opaque. // MO_ACQUIRE is equivalent to JMM acquire. // MO_RELEASE is equivalent to JMM release. // MO_SEQ_CST is equivalent to JMM volatile. // // === Stores === // * MO_UNORDERED (Default): No guarantees. // - The compiler and hardware are free to reorder aggressively. And they will. // * MO_VOLATILE: Volatile stores (in the C++ sense). // - The stores are not reordered by the compiler (but possibly the HW) w.r.t. other // volatile accesses in program order (but possibly non-volatile accesses). // * MO_RELAXED: Relaxed atomic stores. // - The stores are atomic. // - Guarantees from volatile stores hold. // * MO_RELEASE: Releasing stores. // - The releasing store will make its preceding memory accesses observable to memory accesses // subsequent to an acquiring load observing this releasing store. // - Guarantees from relaxed stores hold. // * MO_SEQ_CST: Sequentially consistent stores. // - The stores are observed in the same order by MO_SEQ_CST loads on other processors // - Preceding loads and stores in program order are not reordered with subsequent loads and stores in program order. // - Guarantees from releasing stores hold. // === Loads === // * MO_UNORDERED (Default): No guarantees // - The compiler and hardware are free to reorder aggressively. And they will. // * MO_VOLATILE: Volatile loads (in the C++ sense). // - The loads are not reordered by the compiler (but possibly the HW) w.r.t. other // volatile accesses in program order (but possibly non-volatile accesses). // * MO_RELAXED: Relaxed atomic loads. // - The stores are atomic. // - Guarantees from volatile loads hold. // * MO_ACQUIRE: Acquiring loads. // - An acquiring load will make subsequent memory accesses observe the memory accesses // preceding the releasing store that the acquiring load observed. // - Guarantees from relaxed loads hold. // * MO_SEQ_CST: Sequentially consistent loads. // - These loads observe MO_SEQ_CST stores in the same order on other processors // - Preceding loads and stores in program order are not reordered with subsequent loads and stores in program order. // - Guarantees from acquiring loads hold. // === Atomic Cmpxchg === // * MO_RELAXED: Atomic but relaxed cmpxchg. // - Guarantees from MO_RELAXED loads and MO_RELAXED stores hold unconditionally. // * MO_SEQ_CST: Sequentially consistent cmpxchg. // - Guarantees from MO_SEQ_CST loads and MO_SEQ_CST stores hold unconditionally. // === Atomic Xchg === // * MO_RELAXED: Atomic but relaxed atomic xchg. // - Guarantees from MO_RELAXED loads and MO_RELAXED stores hold. // * MO_SEQ_CST: Sequentially consistent xchg. // - Guarantees from MO_SEQ_CST loads and MO_SEQ_CST stores hold. const DecoratorSet MO_UNORDERED = UCONST64(1) << 5; const DecoratorSet MO_VOLATILE = UCONST64(1) << 6; const DecoratorSet MO_RELAXED = UCONST64(1) << 7; const DecoratorSet MO_ACQUIRE = UCONST64(1) << 8; const DecoratorSet MO_RELEASE = UCONST64(1) << 9; const DecoratorSet MO_SEQ_CST = UCONST64(1) << 10; const DecoratorSet MO_DECORATOR_MASK = MO_UNORDERED | MO_VOLATILE | MO_RELAXED | MO_ACQUIRE | MO_RELEASE | MO_SEQ_CST; // === Barrier Strength Decorators === // * AS_RAW: The access will translate into a raw memory access, hence ignoring all semantic concerns // except memory ordering and compressed oops. This will bypass runtime function pointer dispatching // in the pipeline and hardwire to raw accesses without going trough the GC access barriers. // - Accesses on oop* translate to raw memory accesses without runtime checks // - Accesses on narrowOop* translate to encoded/decoded memory accesses without runtime checks // - Accesses on HeapWord* translate to a runtime check choosing one of the above // - Accesses on other types translate to raw memory accesses without runtime checks // * AS_NO_KEEPALIVE: The barrier is used only on oop references and will not keep any involved objects // alive, regardless of the type of reference being accessed. It will however perform the memory access // in a consistent way w.r.t. e.g. concurrent compaction, so that the right field is being accessed, // or maintain, e.g. intergenerational or interregional pointers if applicable. This should be used with // extreme caution in isolated scopes. // * AS_NORMAL: The accesses will be resolved to an accessor on the BarrierSet class, giving the // responsibility of performing the access and what barriers to be performed to the GC. This is the default. // Note that primitive accesses will only be resolved on the barrier set if the appropriate build-time // decorator for enabling primitive barriers is enabled for the build. const DecoratorSet AS_RAW = UCONST64(1) << 11; const DecoratorSet AS_NO_KEEPALIVE = UCONST64(1) << 12; const DecoratorSet AS_NORMAL = UCONST64(1) << 13; const DecoratorSet AS_DECORATOR_MASK = AS_RAW | AS_NO_KEEPALIVE | AS_NORMAL; // === Reference Strength Decorators === // These decorators only apply to accesses on oop-like types (oop/narrowOop). // * ON_STRONG_OOP_REF: Memory access is performed on a strongly reachable reference. // * ON_WEAK_OOP_REF: The memory access is performed on a weakly reachable reference. // * ON_PHANTOM_OOP_REF: The memory access is performed on a phantomly reachable reference. // This is the same ring of strength as jweak and weak oops in the VM. // * ON_UNKNOWN_OOP_REF: The memory access is performed on a reference of unknown strength. // This could for example come from the unsafe API. // * Default (no explicit reference strength specified): ON_STRONG_OOP_REF const DecoratorSet ON_STRONG_OOP_REF = UCONST64(1) << 14; const DecoratorSet ON_WEAK_OOP_REF = UCONST64(1) << 15; const DecoratorSet ON_PHANTOM_OOP_REF = UCONST64(1) << 16; const DecoratorSet ON_UNKNOWN_OOP_REF = UCONST64(1) << 17; const DecoratorSet ON_DECORATOR_MASK = ON_STRONG_OOP_REF | ON_WEAK_OOP_REF | ON_PHANTOM_OOP_REF | ON_UNKNOWN_OOP_REF; // === Access Location === // Accesses can take place in, e.g. the heap, old or young generation and different native roots. // The location is important to the GC as it may imply different actions. The following decorators are used: // * IN_HEAP: The access is performed in the heap. Many barriers such as card marking will // be omitted if this decorator is not set. // * IN_HEAP_ARRAY: The access is performed on a heap allocated array. This is sometimes a special case // for some GCs, and implies that it is an IN_HEAP. // * IN_ROOT: The access is performed in an off-heap data structure pointing into the Java heap. // * IN_CONCURRENT_ROOT: The access is performed in an off-heap data structure pointing into the Java heap, // but is notably not scanned during safepoints. This is sometimes a special case for some GCs and // implies that it is also an IN_ROOT. const DecoratorSet IN_HEAP = UCONST64(1) << 18; const DecoratorSet IN_HEAP_ARRAY = UCONST64(1) << 19; const DecoratorSet IN_ROOT = UCONST64(1) << 20; const DecoratorSet IN_CONCURRENT_ROOT = UCONST64(1) << 21; const DecoratorSet IN_ARCHIVE_ROOT = UCONST64(1) << 22; const DecoratorSet IN_DECORATOR_MASK = IN_HEAP | IN_HEAP_ARRAY | IN_ROOT | IN_CONCURRENT_ROOT | IN_ARCHIVE_ROOT; // == Value Decorators == // * OOP_NOT_NULL: This property can make certain barriers faster such as compressing oops. const DecoratorSet OOP_NOT_NULL = UCONST64(1) << 23; const DecoratorSet OOP_DECORATOR_MASK = OOP_NOT_NULL; // == Arraycopy Decorators == // * ARRAYCOPY_DEST_NOT_INITIALIZED: This property can be important to e.g. SATB barriers by // marking that the previous value uninitialized nonsense rather than a real value. // * ARRAYCOPY_CHECKCAST: This property means that the class of the objects in source // are not guaranteed to be subclasses of the class of the destination array. This requires // a check-cast barrier during the copying operation. If this is not set, it is assumed // that the array is covariant: (the source array type is-a destination array type) // * ARRAYCOPY_DISJOINT: This property means that it is known that the two array ranges // are disjoint. // * ARRAYCOPY_ARRAYOF: The copy is in the arrayof form. // * ARRAYCOPY_ATOMIC: The accesses have to be atomic over the size of its elements. // * ARRAYCOPY_ALIGNED: The accesses have to be aligned on a HeapWord. const DecoratorSet ARRAYCOPY_DEST_NOT_INITIALIZED = UCONST64(1) << 24; const DecoratorSet ARRAYCOPY_CHECKCAST = UCONST64(1) << 25; const DecoratorSet ARRAYCOPY_DISJOINT = UCONST64(1) << 26; const DecoratorSet ARRAYCOPY_ARRAYOF = UCONST64(1) << 27; const DecoratorSet ARRAYCOPY_ATOMIC = UCONST64(1) << 28; const DecoratorSet ARRAYCOPY_ALIGNED = UCONST64(1) << 29; const DecoratorSet ARRAYCOPY_DECORATOR_MASK = ARRAYCOPY_DEST_NOT_INITIALIZED | ARRAYCOPY_CHECKCAST | ARRAYCOPY_DISJOINT | ARRAYCOPY_DISJOINT | ARRAYCOPY_ARRAYOF | ARRAYCOPY_ATOMIC | ARRAYCOPY_ALIGNED; // The HasDecorator trait can help at compile-time determining whether a decorator set // has an intersection with a certain other decorator set template struct HasDecorator: public IntegralConstant {}; namespace AccessInternal { template struct OopOrNarrowOopInternal: AllStatic { typedef oop type; }; template <> struct OopOrNarrowOopInternal: AllStatic { typedef narrowOop type; }; // This metafunction returns a canonicalized oop/narrowOop type for a passed // in oop-like types passed in from oop_* overloads where the user has sworn // that the passed in values should be oop-like (e.g. oop, oopDesc*, arrayOop, // narrowOoop, instanceOopDesc*, and random other things). // In the oop_* overloads, it must hold that if the passed in type T is not // narrowOop, then it by contract has to be one of many oop-like types implicitly // convertible to oop, and hence returns oop as the canonical oop type. // If it turns out it was not, then the implicit conversion to oop will fail // to compile, as desired. template struct OopOrNarrowOop: AllStatic { typedef typename OopOrNarrowOopInternal::type>::type type; }; inline void* field_addr(oop base, ptrdiff_t byte_offset) { return reinterpret_cast(reinterpret_cast((void*)base) + byte_offset); } template void store_at(oop base, ptrdiff_t offset, T value); template T load_at(oop base, ptrdiff_t offset); template T atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value); template T atomic_xchg_at(T new_value, oop base, ptrdiff_t offset); template void store(P* addr, T value); template T load(P* addr); template T atomic_cmpxchg(T new_value, P* addr, T compare_value); template T atomic_xchg(T new_value, P* addr); template bool arraycopy(arrayOop src_obj, arrayOop dst_obj, T *src, T *dst, size_t length); template void clone(oop src, oop dst, size_t size); // Infer the type that should be returned from a load. template class LoadProxy: public StackObj { private: P *const _addr; public: LoadProxy(P* addr) : _addr(addr) {} template inline operator T() { return load(_addr); } inline operator P() { return load(_addr); } }; // Infer the type that should be returned from a load_at. template class LoadAtProxy: public StackObj { private: const oop _base; const ptrdiff_t _offset; public: LoadAtProxy(oop base, ptrdiff_t offset) : _base(base), _offset(offset) {} template inline operator T() const { return load_at(_base, _offset); } }; } template class Access: public AllStatic { // This function asserts that if an access gets passed in a decorator outside // of the expected_decorators, then something is wrong. It additionally checks // the consistency of the decorators so that supposedly disjoint decorators are indeed // disjoint. For example, an access can not be both in heap and on root at the // same time. template static void verify_decorators(); template static void verify_primitive_decorators() { const DecoratorSet primitive_decorators = (AS_DECORATOR_MASK ^ AS_NO_KEEPALIVE) | IN_HEAP | IN_HEAP_ARRAY | MO_DECORATOR_MASK; verify_decorators(); } template static void verify_oop_decorators() { const DecoratorSet oop_decorators = AS_DECORATOR_MASK | IN_DECORATOR_MASK | (ON_DECORATOR_MASK ^ ON_UNKNOWN_OOP_REF) | // no unknown oop refs outside of the heap OOP_DECORATOR_MASK | MO_DECORATOR_MASK; verify_decorators(); } template static void verify_heap_oop_decorators() { const DecoratorSet heap_oop_decorators = AS_DECORATOR_MASK | ON_DECORATOR_MASK | OOP_DECORATOR_MASK | (IN_DECORATOR_MASK ^ (IN_ROOT ^ IN_CONCURRENT_ROOT)) | // no root accesses in the heap MO_DECORATOR_MASK; verify_decorators(); } static const DecoratorSet load_mo_decorators = MO_UNORDERED | MO_VOLATILE | MO_RELAXED | MO_ACQUIRE | MO_SEQ_CST; static const DecoratorSet store_mo_decorators = MO_UNORDERED | MO_VOLATILE | MO_RELAXED | MO_RELEASE | MO_SEQ_CST; static const DecoratorSet atomic_xchg_mo_decorators = MO_SEQ_CST; static const DecoratorSet atomic_cmpxchg_mo_decorators = MO_RELAXED | MO_SEQ_CST; public: // Primitive heap accesses static inline AccessInternal::LoadAtProxy load_at(oop base, ptrdiff_t offset) { verify_primitive_decorators(); return AccessInternal::LoadAtProxy(base, offset); } template static inline void store_at(oop base, ptrdiff_t offset, T value) { verify_primitive_decorators(); AccessInternal::store_at(base, offset, value); } template static inline T atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value) { verify_primitive_decorators(); return AccessInternal::atomic_cmpxchg_at(new_value, base, offset, compare_value); } template static inline T atomic_xchg_at(T new_value, oop base, ptrdiff_t offset) { verify_primitive_decorators(); return AccessInternal::atomic_xchg_at(new_value, base, offset); } template static inline bool arraycopy(arrayOop src_obj, arrayOop dst_obj, T *src, T *dst, size_t length) { verify_decorators(); return AccessInternal::arraycopy(src_obj, dst_obj, src, dst, length); } // Oop heap accesses static inline AccessInternal::LoadAtProxy oop_load_at(oop base, ptrdiff_t offset) { verify_heap_oop_decorators(); return AccessInternal::LoadAtProxy(base, offset); } template static inline void oop_store_at(oop base, ptrdiff_t offset, T value) { verify_heap_oop_decorators(); typedef typename AccessInternal::OopOrNarrowOop::type OopType; OopType oop_value = value; AccessInternal::store_at(base, offset, oop_value); } template static inline T oop_atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value) { verify_heap_oop_decorators(); typedef typename AccessInternal::OopOrNarrowOop::type OopType; OopType new_oop_value = new_value; OopType compare_oop_value = compare_value; return AccessInternal::atomic_cmpxchg_at(new_oop_value, base, offset, compare_oop_value); } template static inline T oop_atomic_xchg_at(T new_value, oop base, ptrdiff_t offset) { verify_heap_oop_decorators(); typedef typename AccessInternal::OopOrNarrowOop::type OopType; OopType new_oop_value = new_value; return AccessInternal::atomic_xchg_at(new_oop_value, base, offset); } template static inline bool oop_arraycopy(arrayOop src_obj, arrayOop dst_obj, T *src, T *dst, size_t length) { verify_decorators(); return AccessInternal::arraycopy(src_obj, dst_obj, src, dst, length); } // Clone an object from src to dst static inline void clone(oop src, oop dst, size_t size) { verify_decorators(); AccessInternal::clone(src, dst, size); } // Primitive accesses template static inline P load(P* addr) { verify_primitive_decorators(); return AccessInternal::load(addr); } template static inline void store(P* addr, T value) { verify_primitive_decorators(); AccessInternal::store(addr, value); } template static inline T atomic_cmpxchg(T new_value, P* addr, T compare_value) { verify_primitive_decorators(); return AccessInternal::atomic_cmpxchg(new_value, addr, compare_value); } template static inline T atomic_xchg(T new_value, P* addr) { verify_primitive_decorators(); return AccessInternal::atomic_xchg(new_value, addr); } // Oop accesses template static inline AccessInternal::LoadProxy oop_load(P* addr) { verify_oop_decorators(); return AccessInternal::LoadProxy(addr); } template static inline void oop_store(P* addr, T value) { verify_oop_decorators(); typedef typename AccessInternal::OopOrNarrowOop::type OopType; OopType oop_value = value; AccessInternal::store(addr, oop_value); } template static inline T oop_atomic_cmpxchg(T new_value, P* addr, T compare_value) { verify_oop_decorators(); typedef typename AccessInternal::OopOrNarrowOop::type OopType; OopType new_oop_value = new_value; OopType compare_oop_value = compare_value; return AccessInternal::atomic_cmpxchg(new_oop_value, addr, compare_oop_value); } template static inline T oop_atomic_xchg(T new_value, P* addr) { verify_oop_decorators(); typedef typename AccessInternal::OopOrNarrowOop::type OopType; OopType new_oop_value = new_value; return AccessInternal::atomic_xchg(new_oop_value, addr); } }; // Helper for performing raw accesses (knows only of memory ordering // atomicity decorators as well as compressed oops) template class RawAccess: public Access {}; // Helper for performing normal accesses on the heap. These accesses // may resolve an accessor on a GC barrier set template class HeapAccess: public Access {}; // Helper for performing normal accesses in roots. These accesses // may resolve an accessor on a GC barrier set template class RootAccess: public Access {}; #endif // SHARE_VM_RUNTIME_ACCESS_HPP