1 /*
  2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_VM_GC_PARALLEL_PARALLELSCAVENGEHEAP_HPP
 26 #define SHARE_VM_GC_PARALLEL_PARALLELSCAVENGEHEAP_HPP
 27 
 28 #include "gc/parallel/generationSizer.hpp"
 29 #include "gc/parallel/objectStartArray.hpp"
 30 #include "gc/parallel/psGCAdaptivePolicyCounters.hpp"
 31 #include "gc/parallel/psOldGen.hpp"
 32 #include "gc/parallel/psYoungGen.hpp"
 33 #include "gc/shared/collectedHeap.hpp"
 34 #include "gc/shared/collectorPolicy.hpp"
 35 #include "gc/shared/gcPolicyCounters.hpp"
 36 #include "gc/shared/gcWhen.hpp"
 37 #include "gc/shared/strongRootsScope.hpp"
 38 #include "memory/metaspace.hpp"
 39 #include "utilities/growableArray.hpp"
 40 #include "utilities/ostream.hpp"
 41 
 42 class AdjoiningGenerations;
 43 class GCHeapSummary;
 44 class GCTaskManager;
 45 class MemoryManager;
 46 class MemoryPool;
 47 class PSAdaptiveSizePolicy;
 48 class PSHeapSummary;
 49 
 50 class ParallelScavengeHeap : public CollectedHeap {
 51   friend class VMStructs;
 52  private:
 53   static PSYoungGen* _young_gen;
 54   static PSOldGen*   _old_gen;
 55 
 56   // Sizing policy for entire heap
 57   static PSAdaptiveSizePolicy*       _size_policy;
 58   static PSGCAdaptivePolicyCounters* _gc_policy_counters;
 59 
 60   GenerationSizer* _collector_policy;
 61 
 62   // Collection of generations that are adjacent in the
 63   // space reserved for the heap.
 64   AdjoiningGenerations* _gens;
 65   unsigned int _death_march_count;
 66 
 67   // The task manager
 68   static GCTaskManager* _gc_task_manager;
 69 
 70   GCMemoryManager* _young_manager;
 71   GCMemoryManager* _old_manager;
 72 
 73   MemoryPool* _eden_pool;
 74   MemoryPool* _survivor_pool;
 75   MemoryPool* _old_pool;
 76 
 77   virtual void initialize_serviceability();
 78 
 79   void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 80 
 81  protected:
 82   static inline size_t total_invocations();
 83   HeapWord* allocate_new_tlab(size_t size);
 84 
 85   inline bool should_alloc_in_eden(size_t size) const;
 86   inline void death_march_check(HeapWord* const result, size_t size);
 87   HeapWord* mem_allocate_old_gen(size_t size);
 88 
 89  public:
 90   ParallelScavengeHeap(GenerationSizer* policy) :
 91     CollectedHeap(), _collector_policy(policy), _death_march_count(0) { }
 92 
 93   // For use by VM operations
 94   enum CollectionType {
 95     Scavenge,
 96     MarkSweep
 97   };
 98 
 99   virtual Name kind() const {
100     return CollectedHeap::ParallelScavengeHeap;
101   }
102 
103   virtual const char* name() const {
104     return "Parallel";
105   }
106 
107   virtual CollectorPolicy* collector_policy() const { return _collector_policy; }
108 
109   virtual GrowableArray<GCMemoryManager*> memory_managers();
110   virtual GrowableArray<MemoryPool*> memory_pools();
111 
112   static PSYoungGen* young_gen() { return _young_gen; }
113   static PSOldGen* old_gen()     { return _old_gen; }
114 
115   virtual PSAdaptiveSizePolicy* size_policy() { return _size_policy; }
116 
117   static PSGCAdaptivePolicyCounters* gc_policy_counters() { return _gc_policy_counters; }
118 
119   static ParallelScavengeHeap* heap();
120 
121   static GCTaskManager* const gc_task_manager() { return _gc_task_manager; }
122 
123   AdjoiningGenerations* gens() { return _gens; }
124 
125   // Returns JNI_OK on success
126   virtual jint initialize();
127 
128   void post_initialize();
129   void update_counters();
130 
131   // The alignment used for the various areas
132   size_t space_alignment()      { return _collector_policy->space_alignment(); }
133   size_t generation_alignment() { return _collector_policy->gen_alignment(); }
134 
135   // Return the (conservative) maximum heap alignment
136   static size_t conservative_max_heap_alignment() {
137     return CollectorPolicy::compute_heap_alignment();
138   }
139 
140   size_t capacity() const;
141   size_t used() const;
142 
143   // Return "true" if all generations have reached the
144   // maximal committed limit that they can reach, without a garbage
145   // collection.
146   virtual bool is_maximal_no_gc() const;
147 
148   // Return true if the reference points to an object that
149   // can be moved in a partial collection.  For currently implemented
150   // generational collectors that means during a collection of
151   // the young gen.
152   virtual bool is_scavengable(oop obj);
153   virtual void register_nmethod(nmethod* nm);
154   virtual void verify_nmethod(nmethod* nmethod);
155 
156   size_t max_capacity() const;
157 
158   // Whether p is in the allocated part of the heap
159   bool is_in(const void* p) const;
160 
161   bool is_in_reserved(const void* p) const;
162 
163   bool is_in_young(oop p);  // reserved part
164   bool is_in_old(oop p);    // reserved part
165 
166   // Memory allocation.   "gc_time_limit_was_exceeded" will
167   // be set to true if the adaptive size policy determine that
168   // an excessive amount of time is being spent doing collections
169   // and caused a NULL to be returned.  If a NULL is not returned,
170   // "gc_time_limit_was_exceeded" has an undefined meaning.
171   HeapWord* mem_allocate(size_t size, bool* gc_overhead_limit_was_exceeded);
172 
173   // Allocation attempt(s) during a safepoint. It should never be called
174   // to allocate a new TLAB as this allocation might be satisfied out
175   // of the old generation.
176   HeapWord* failed_mem_allocate(size_t size);
177 
178   // Support for System.gc()
179   void collect(GCCause::Cause cause);
180 
181   // These also should be called by the vm thread at a safepoint (e.g., from a
182   // VM operation).
183   //
184   // The first collects the young generation only, unless the scavenge fails; it
185   // will then attempt a full gc.  The second collects the entire heap; if
186   // maximum_compaction is true, it will compact everything and clear all soft
187   // references.
188   inline void invoke_scavenge();
189 
190   // Perform a full collection
191   virtual void do_full_collection(bool clear_all_soft_refs);
192 
193   bool supports_inline_contig_alloc() const { return !UseNUMA; }
194 
195   HeapWord* volatile* top_addr() const { return !UseNUMA ? young_gen()->top_addr() : (HeapWord* volatile*)-1; }
196   HeapWord** end_addr() const { return !UseNUMA ? young_gen()->end_addr() : (HeapWord**)-1; }
197 
198   void ensure_parsability(bool retire_tlabs);
199   void accumulate_statistics_all_tlabs();
200   void resize_all_tlabs();
201 
202   bool supports_tlab_allocation() const { return true; }
203 
204   size_t tlab_capacity(Thread* thr) const;
205   size_t tlab_used(Thread* thr) const;
206   size_t unsafe_max_tlab_alloc(Thread* thr) const;
207 
208   // Can a compiler initialize a new object without store barriers?
209   // This permission only extends from the creation of a new object
210   // via a TLAB up to the first subsequent safepoint.
211   virtual bool can_elide_tlab_store_barriers() const {
212     return true;
213   }
214 
215   virtual bool card_mark_must_follow_store() const {
216     return false;
217   }
218 
219   // Return true if we don't we need a store barrier for
220   // initializing stores to an object at this address.
221   virtual bool can_elide_initializing_store_barrier(oop new_obj);
222 
223   void object_iterate(ObjectClosure* cl);
224   void safe_object_iterate(ObjectClosure* cl) { object_iterate(cl); }
225 
226   HeapWord* block_start(const void* addr) const;
227   size_t block_size(const HeapWord* addr) const;
228   bool block_is_obj(const HeapWord* addr) const;
229 
230   jlong millis_since_last_gc();
231 
232   void prepare_for_verify();
233   PSHeapSummary create_ps_heap_summary();
234   virtual void print_on(outputStream* st) const;
235   virtual void print_on_error(outputStream* st) const;
236   virtual void print_gc_threads_on(outputStream* st) const;
237   virtual void gc_threads_do(ThreadClosure* tc) const;
238   virtual void print_tracing_info() const;
239 
240   void verify(VerifyOption option /* ignored */);
241 
242   // Resize the young generation.  The reserved space for the
243   // generation may be expanded in preparation for the resize.
244   void resize_young_gen(size_t eden_size, size_t survivor_size);
245 
246   // Resize the old generation.  The reserved space for the
247   // generation may be expanded in preparation for the resize.
248   void resize_old_gen(size_t desired_free_space);
249 
250   // Save the tops of the spaces in all generations
251   void record_gen_tops_before_GC() PRODUCT_RETURN;
252 
253   // Mangle the unused parts of all spaces in the heap
254   void gen_mangle_unused_area() PRODUCT_RETURN;
255 
256   // Call these in sequential code around the processing of strong roots.
257   class ParStrongRootsScope : public MarkScope {
258    public:
259     ParStrongRootsScope();
260     ~ParStrongRootsScope();
261   };
262 
263   GCMemoryManager* old_gc_manager() const { return _old_manager; }
264   GCMemoryManager* young_gc_manager() const { return _young_manager; }
265 };
266 
267 // Simple class for storing info about the heap at the start of GC, to be used
268 // after GC for comparison/printing.
269 class PreGCValues {
270 public:
271   PreGCValues(ParallelScavengeHeap* heap) :
272       _heap_used(heap->used()),
273       _young_gen_used(heap->young_gen()->used_in_bytes()),
274       _old_gen_used(heap->old_gen()->used_in_bytes()),
275       _metadata_used(MetaspaceAux::used_bytes()) { };
276 
277   size_t heap_used() const      { return _heap_used; }
278   size_t young_gen_used() const { return _young_gen_used; }
279   size_t old_gen_used() const   { return _old_gen_used; }
280   size_t metadata_used() const  { return _metadata_used; }
281 
282 private:
283   size_t _heap_used;
284   size_t _young_gen_used;
285   size_t _old_gen_used;
286   size_t _metadata_used;
287 };
288 
289 // Class that can be used to print information about the
290 // adaptive size policy at intervals specified by
291 // AdaptiveSizePolicyOutputInterval.  Only print information
292 // if an adaptive size policy is in use.
293 class AdaptiveSizePolicyOutput : AllStatic {
294   static bool enabled() {
295     return UseParallelGC &&
296            UseAdaptiveSizePolicy &&
297            log_is_enabled(Debug, gc, ergo);
298   }
299  public:
300   static void print() {
301     if (enabled()) {
302       ParallelScavengeHeap::heap()->size_policy()->print();
303     }
304   }
305 
306   static void print(AdaptiveSizePolicy* size_policy, uint count) {
307     bool do_print =
308         enabled() &&
309         (AdaptiveSizePolicyOutputInterval > 0) &&
310         (count % AdaptiveSizePolicyOutputInterval) == 0;
311 
312     if (do_print) {
313       size_policy->print();
314     }
315   }
316 };
317 
318 #endif // SHARE_VM_GC_PARALLEL_PARALLELSCAVENGEHEAP_HPP