1 /*
  2  * Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_VM_GC_SHARED_CARDTABLEMODREFBS_HPP
 26 #define SHARE_VM_GC_SHARED_CARDTABLEMODREFBS_HPP
 27 
 28 #include "gc/shared/modRefBarrierSet.hpp"
 29 #include "utilities/align.hpp"
 30 
 31 // This kind of "BarrierSet" allows a "CollectedHeap" to detect and
 32 // enumerate ref fields that have been modified (since the last
 33 // enumeration.)
 34 
 35 // As it currently stands, this barrier is *imprecise*: when a ref field in
 36 // an object "o" is modified, the card table entry for the card containing
 37 // the head of "o" is dirtied, not necessarily the card containing the
 38 // modified field itself.  For object arrays, however, the barrier *is*
 39 // precise; only the card containing the modified element is dirtied.
 40 // Closures used to scan dirty cards should take these
 41 // considerations into account.
 42 
 43 class CardTableModRefBS: public ModRefBarrierSet {
 44   // Some classes get to look at some private stuff.
 45   friend class VMStructs;
 46  protected:
 47 
 48   enum CardValues {
 49     clean_card                  = -1,
 50     // The mask contains zeros in places for all other values.
 51     clean_card_mask             = clean_card - 31,
 52 
 53     dirty_card                  =  0,
 54     precleaned_card             =  1,
 55     claimed_card                =  2,
 56     deferred_card               =  4,
 57     last_card                   =  8,
 58     CT_MR_BS_last_reserved      = 16
 59   };
 60 
 61   // Used in support of ReduceInitialCardMarks; only consulted if COMPILER2
 62   // or INCLUDE_JVMCI is being used
 63   bool _defer_initial_card_mark;
 64 
 65   // a word's worth (row) of clean card values
 66   static const intptr_t clean_card_row = (intptr_t)(-1);
 67 
 68   // The declaration order of these const fields is important; see the
 69   // constructor before changing.
 70   const MemRegion _whole_heap;       // the region covered by the card table
 71   size_t          _guard_index;      // index of very last element in the card
 72                                      // table; it is set to a guard value
 73                                      // (last_card) and should never be modified
 74   size_t          _last_valid_index; // index of the last valid element
 75   const size_t    _page_size;        // page size used when mapping _byte_map
 76   size_t          _byte_map_size;    // in bytes
 77   jbyte*          _byte_map;         // the card marking array
 78 
 79   // Some barrier sets create tables whose elements correspond to parts of
 80   // the heap; the CardTableModRefBS is an example.  Such barrier sets will
 81   // normally reserve space for such tables, and commit parts of the table
 82   // "covering" parts of the heap that are committed. At most one covered
 83   // region per generation is needed.
 84   static const int _max_covered_regions = 2;
 85 
 86   int _cur_covered_regions;
 87 
 88   // The covered regions should be in address order.
 89   MemRegion* _covered;
 90   // The committed regions correspond one-to-one to the covered regions.
 91   // They represent the card-table memory that has been committed to service
 92   // the corresponding covered region.  It may be that committed region for
 93   // one covered region corresponds to a larger region because of page-size
 94   // roundings.  Thus, a committed region for one covered region may
 95   // actually extend onto the card-table space for the next covered region.
 96   MemRegion* _committed;
 97 
 98   // The last card is a guard card, and we commit the page for it so
 99   // we can use the card for verification purposes. We make sure we never
100   // uncommit the MemRegion for that page.
101   MemRegion _guard_region;
102 
103   inline size_t compute_byte_map_size();
104 
105   // Finds and return the index of the region, if any, to which the given
106   // region would be contiguous.  If none exists, assign a new region and
107   // returns its index.  Requires that no more than the maximum number of
108   // covered regions defined in the constructor are ever in use.
109   int find_covering_region_by_base(HeapWord* base);
110 
111   // Same as above, but finds the region containing the given address
112   // instead of starting at a given base address.
113   int find_covering_region_containing(HeapWord* addr);
114 
115   // Resize one of the regions covered by the remembered set.
116   virtual void resize_covered_region(MemRegion new_region);
117 
118   // Returns the leftmost end of a committed region corresponding to a
119   // covered region before covered region "ind", or else "NULL" if "ind" is
120   // the first covered region.
121   HeapWord* largest_prev_committed_end(int ind) const;
122 
123   // Returns the part of the region mr that doesn't intersect with
124   // any committed region other than self.  Used to prevent uncommitting
125   // regions that are also committed by other regions.  Also protects
126   // against uncommitting the guard region.
127   MemRegion committed_unique_to_self(int self, MemRegion mr) const;
128 
129   // Mapping from address to card marking array entry
130   jbyte* byte_for(const void* p) const {
131     assert(_whole_heap.contains(p),
132            "Attempt to access p = " PTR_FORMAT " out of bounds of "
133            " card marking array's _whole_heap = [" PTR_FORMAT "," PTR_FORMAT ")",
134            p2i(p), p2i(_whole_heap.start()), p2i(_whole_heap.end()));
135     jbyte* result = &byte_map_base[uintptr_t(p) >> card_shift];
136     assert(result >= _byte_map && result < _byte_map + _byte_map_size,
137            "out of bounds accessor for card marking array");
138     return result;
139   }
140 
141   // The card table byte one after the card marking array
142   // entry for argument address. Typically used for higher bounds
143   // for loops iterating through the card table.
144   jbyte* byte_after(const void* p) const {
145     return byte_for(p) + 1;
146   }
147 
148   // Dirty the bytes corresponding to "mr" (not all of which must be
149   // covered.)
150   void dirty_MemRegion(MemRegion mr);
151 
152   // Clear (to clean_card) the bytes entirely contained within "mr" (not
153   // all of which must be covered.)
154   void clear_MemRegion(MemRegion mr);
155 
156  public:
157   // Constants
158   enum SomePublicConstants {
159     card_shift                  = 9,
160     card_size                   = 1 << card_shift,
161     card_size_in_words          = card_size / sizeof(HeapWord)
162   };
163 
164   static int clean_card_val()      { return clean_card; }
165   static int clean_card_mask_val() { return clean_card_mask; }
166   static int dirty_card_val()      { return dirty_card; }
167   static int claimed_card_val()    { return claimed_card; }
168   static int precleaned_card_val() { return precleaned_card; }
169   static int deferred_card_val()   { return deferred_card; }
170 
171   virtual void initialize();
172 
173   // *** Barrier set functions.
174 
175   // Initialization utilities; covered_words is the size of the covered region
176   // in, um, words.
177   inline size_t cards_required(size_t covered_words) {
178     // Add one for a guard card, used to detect errors.
179     const size_t words = align_up(covered_words, card_size_in_words);
180     return words / card_size_in_words + 1;
181   }
182 
183  protected:
184   CardTableModRefBS(MemRegion whole_heap, const BarrierSet::FakeRtti& fake_rtti);
185   ~CardTableModRefBS();
186 
187  public:
188   void write_region(MemRegion mr) {
189     dirty_MemRegion(mr);
190   }
191 
192  protected:
193   void write_ref_array_work(MemRegion mr) {
194     dirty_MemRegion(mr);
195   }
196 
197  public:
198   bool is_aligned(HeapWord* addr) {
199     return is_card_aligned(addr);
200   }
201 
202   // *** Card-table-barrier-specific things.
203 
204   // Record a reference update. Note that these versions are precise!
205   // The scanning code has to handle the fact that the write barrier may be
206   // either precise or imprecise. We make non-virtual inline variants of
207   // these functions here for performance.
208   template <DecoratorSet decorators, typename T>
209   void write_ref_field_post(T* field, oop newVal);
210 
211   // These are used by G1, when it uses the card table as a temporary data
212   // structure for card claiming.
213   bool is_card_dirty(size_t card_index) {
214     return _byte_map[card_index] == dirty_card_val();
215   }
216 
217   void mark_card_dirty(size_t card_index) {
218     _byte_map[card_index] = dirty_card_val();
219   }
220 
221   bool is_card_clean(size_t card_index) {
222     return _byte_map[card_index] == clean_card_val();
223   }
224 
225   // Card marking array base (adjusted for heap low boundary)
226   // This would be the 0th element of _byte_map, if the heap started at 0x0.
227   // But since the heap starts at some higher address, this points to somewhere
228   // before the beginning of the actual _byte_map.
229   jbyte* byte_map_base;
230 
231   // Return true if "p" is at the start of a card.
232   bool is_card_aligned(HeapWord* p) {
233     jbyte* pcard = byte_for(p);
234     return (addr_for(pcard) == p);
235   }
236 
237   HeapWord* align_to_card_boundary(HeapWord* p) {
238     jbyte* pcard = byte_for(p + card_size_in_words - 1);
239     return addr_for(pcard);
240   }
241 
242   // The kinds of precision a CardTableModRefBS may offer.
243   enum PrecisionStyle {
244     Precise,
245     ObjHeadPreciseArray
246   };
247 
248   // Tells what style of precision this card table offers.
249   PrecisionStyle precision() {
250     return ObjHeadPreciseArray; // Only one supported for now.
251   }
252 
253   // ModRefBS functions.
254   virtual void invalidate(MemRegion mr);
255   void clear(MemRegion mr);
256   void dirty(MemRegion mr);
257 
258   // *** Card-table-RemSet-specific things.
259 
260   static uintx ct_max_alignment_constraint();
261 
262   // Apply closure "cl" to the dirty cards containing some part of
263   // MemRegion "mr".
264   void dirty_card_iterate(MemRegion mr, MemRegionClosure* cl);
265 
266   // Return the MemRegion corresponding to the first maximal run
267   // of dirty cards lying completely within MemRegion mr.
268   // If reset is "true", then sets those card table entries to the given
269   // value.
270   MemRegion dirty_card_range_after_reset(MemRegion mr, bool reset,
271                                          int reset_val);
272 
273   // Provide read-only access to the card table array.
274   const jbyte* byte_for_const(const void* p) const {
275     return byte_for(p);
276   }
277   const jbyte* byte_after_const(const void* p) const {
278     return byte_after(p);
279   }
280 
281   // Mapping from card marking array entry to address of first word
282   HeapWord* addr_for(const jbyte* p) const {
283     assert(p >= _byte_map && p < _byte_map + _byte_map_size,
284            "out of bounds access to card marking array. p: " PTR_FORMAT
285            " _byte_map: " PTR_FORMAT " _byte_map + _byte_map_size: " PTR_FORMAT,
286            p2i(p), p2i(_byte_map), p2i(_byte_map + _byte_map_size));
287     size_t delta = pointer_delta(p, byte_map_base, sizeof(jbyte));
288     HeapWord* result = (HeapWord*) (delta << card_shift);
289     assert(_whole_heap.contains(result),
290            "Returning result = " PTR_FORMAT " out of bounds of "
291            " card marking array's _whole_heap = [" PTR_FORMAT "," PTR_FORMAT ")",
292            p2i(result), p2i(_whole_heap.start()), p2i(_whole_heap.end()));
293     return result;
294   }
295 
296   // Mapping from address to card marking array index.
297   size_t index_for(void* p) {
298     assert(_whole_heap.contains(p),
299            "Attempt to access p = " PTR_FORMAT " out of bounds of "
300            " card marking array's _whole_heap = [" PTR_FORMAT "," PTR_FORMAT ")",
301            p2i(p), p2i(_whole_heap.start()), p2i(_whole_heap.end()));
302     return byte_for(p) - _byte_map;
303   }
304 
305   const jbyte* byte_for_index(const size_t card_index) const {
306     return _byte_map + card_index;
307   }
308 
309   // Print a description of the memory for the barrier set
310   virtual void print_on(outputStream* st) const;
311 
312   void verify();
313   void verify_guard();
314 
315   // val_equals -> it will check that all cards covered by mr equal val
316   // !val_equals -> it will check that all cards covered by mr do not equal val
317   void verify_region(MemRegion mr, jbyte val, bool val_equals) PRODUCT_RETURN;
318   void verify_not_dirty_region(MemRegion mr) PRODUCT_RETURN;
319   void verify_dirty_region(MemRegion mr) PRODUCT_RETURN;
320 
321   // ReduceInitialCardMarks
322   void initialize_deferred_card_mark_barriers();
323 
324   // If the CollectedHeap was asked to defer a store barrier above,
325   // this informs it to flush such a deferred store barrier to the
326   // remembered set.
327   void flush_deferred_card_mark_barrier(JavaThread* thread);
328 
329   // Can a compiler initialize a new object without store barriers?
330   // This permission only extends from the creation of a new object
331   // via a TLAB up to the first subsequent safepoint. If such permission
332   // is granted for this heap type, the compiler promises to call
333   // defer_store_barrier() below on any slow path allocation of
334   // a new object for which such initializing store barriers will
335   // have been elided. G1, like CMS, allows this, but should be
336   // ready to provide a compensating write barrier as necessary
337   // if that storage came out of a non-young region. The efficiency
338   // of this implementation depends crucially on being able to
339   // answer very efficiently in constant time whether a piece of
340   // storage in the heap comes from a young region or not.
341   // See ReduceInitialCardMarks.
342   virtual bool can_elide_tlab_store_barriers() const {
343     return true;
344   }
345 
346   // If a compiler is eliding store barriers for TLAB-allocated objects,
347   // we will be informed of a slow-path allocation by a call
348   // to on_slowpath_allocation_exit() below. Such a call precedes the
349   // initialization of the object itself, and no post-store-barriers will
350   // be issued. Some heap types require that the barrier strictly follows
351   // the initializing stores. (This is currently implemented by deferring the
352   // barrier until the next slow-path allocation or gc-related safepoint.)
353   // This interface answers whether a particular barrier type needs the card
354   // mark to be thus strictly sequenced after the stores.
355   virtual bool card_mark_must_follow_store() const = 0;
356 
357   virtual bool is_in_young(oop obj) const = 0;
358 
359   virtual void on_slowpath_allocation_exit(JavaThread* thread, oop new_obj);
360   virtual void flush_deferred_barriers(JavaThread* thread);
361 
362   virtual void make_parsable(JavaThread* thread) { flush_deferred_card_mark_barrier(thread); }
363 
364   template <DecoratorSet decorators, typename BarrierSetT = CardTableModRefBS>
365   class AccessBarrier: public ModRefBarrierSet::AccessBarrier<decorators, BarrierSetT> {};
366 };
367 
368 template<>
369 struct BarrierSet::GetName<CardTableModRefBS> {
370   static const BarrierSet::Name value = BarrierSet::CardTableModRef;
371 };
372 
373 template<>
374 struct BarrierSet::GetType<BarrierSet::CardTableModRef> {
375   typedef CardTableModRefBS type;
376 };
377 
378 #endif // SHARE_VM_GC_SHARED_CARDTABLEMODREFBS_HPP