< prev index next >

src/hotspot/share/gc/shared/collectedHeap.hpp

RFE_8195103_reduce_initial_card_marks
 /*
- * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  *
  * This code is free software; you can redistribute it and/or modify it
  * under the terms of the GNU General Public License version 2 only, as
  * published by the Free Software Foundation.

@@ -99,14 +99,10 static int _fire_out_of_memory_count; #endif GCHeapLog* _gc_heap_log; - // Used in support of ReduceInitialCardMarks; only consulted if COMPILER2 - // or INCLUDE_JVMCI is being used - bool _defer_initial_card_mark; - MemRegion _reserved; protected: BarrierSet* _barrier_set; bool _is_gc_active;
@@ -127,17 +123,10 PerfStringVariable* _perf_gc_lastcause; // Constructor CollectedHeap(); - // Do common initializations that must follow instance construction, - // for example, those needing virtual calls. - // This code could perhaps be moved into initialize() but would - // be slightly more awkward because we want the latter to be a - // pure virtual. - void pre_initialize(); - // Create a new tlab. All TLAB allocations must go through this. virtual HeapWord* allocate_new_tlab(size_t size); // Accumulate statistics on all tlabs. virtual void accumulate_statistics_all_tlabs();
@@ -406,49 +395,10 virtual size_t unsafe_max_tlab_alloc(Thread *thr) const { guarantee(false, "thread-local allocation buffers not supported"); return 0; } - // Can a compiler initialize a new object without store barriers? - // This permission only extends from the creation of a new object - // via a TLAB up to the first subsequent safepoint. If such permission - // is granted for this heap type, the compiler promises to call - // defer_store_barrier() below on any slow path allocation of - // a new object for which such initializing store barriers will - // have been elided. - virtual bool can_elide_tlab_store_barriers() const = 0; - - // If a compiler is eliding store barriers for TLAB-allocated objects, - // there is probably a corresponding slow path which can produce - // an object allocated anywhere. The compiler's runtime support - // promises to call this function on such a slow-path-allocated - // object before performing initializations that have elided - // store barriers. Returns new_obj, or maybe a safer copy thereof. - virtual oop new_store_pre_barrier(JavaThread* thread, oop new_obj); - - // Answers whether an initializing store to a new object currently - // allocated at the given address doesn't need a store - // barrier. Returns "true" if it doesn't need an initializing - // store barrier; answers "false" if it does. - virtual bool can_elide_initializing_store_barrier(oop new_obj) = 0; - - // If a compiler is eliding store barriers for TLAB-allocated objects, - // we will be informed of a slow-path allocation by a call - // to new_store_pre_barrier() above. Such a call precedes the - // initialization of the object itself, and no post-store-barriers will - // be issued. Some heap types require that the barrier strictly follows - // the initializing stores. (This is currently implemented by deferring the - // barrier until the next slow-path allocation or gc-related safepoint.) - // This interface answers whether a particular heap type needs the card - // mark to be thus strictly sequenced after the stores. - virtual bool card_mark_must_follow_store() const = 0; - - // If the CollectedHeap was asked to defer a store barrier above, - // this informs it to flush such a deferred store barrier to the - // remembered set. - virtual void flush_deferred_store_barrier(JavaThread* thread); - // Perform a collection of the heap; intended for use in implementing // "System.gc". This probably implies as full a collection as the // "CollectedHeap" supports. virtual void collect(GCCause::Cause cause) = 0;
< prev index next >