1 /*
  2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
 26 #define SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
 27 
 28 #include "gc/shared/gcCause.hpp"
 29 #include "gc/shared/gcWhen.hpp"
 30 #include "memory/allocation.hpp"
 31 #include "runtime/handles.hpp"
 32 #include "runtime/perfData.hpp"
 33 #include "runtime/safepoint.hpp"
 34 #include "utilities/debug.hpp"
 35 #include "utilities/events.hpp"
 36 #include "utilities/formatBuffer.hpp"
 37 #include "utilities/growableArray.hpp"
 38 
 39 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
 40 // is an abstract class: there may be many different kinds of heaps.  This
 41 // class defines the functions that a heap must implement, and contains
 42 // infrastructure common to all heaps.
 43 
 44 class AdaptiveSizePolicy;
 45 class BarrierSet;
 46 class CollectorPolicy;
 47 class GCHeapSummary;
 48 class GCTimer;
 49 class GCTracer;
 50 class GCMemoryManager;
 51 class MemoryPool;
 52 class MetaspaceSummary;
 53 class Thread;
 54 class ThreadClosure;
 55 class VirtualSpaceSummary;
 56 class WorkGang;
 57 class nmethod;
 58 
 59 class GCMessage : public FormatBuffer<1024> {
 60  public:
 61   bool is_before;
 62 
 63  public:
 64   GCMessage() {}
 65 };
 66 
 67 class CollectedHeap;
 68 
 69 class GCHeapLog : public EventLogBase<GCMessage> {
 70  private:
 71   void log_heap(CollectedHeap* heap, bool before);
 72 
 73  public:
 74   GCHeapLog() : EventLogBase<GCMessage>("GC Heap History") {}
 75 
 76   void log_heap_before(CollectedHeap* heap) {
 77     log_heap(heap, true);
 78   }
 79   void log_heap_after(CollectedHeap* heap) {
 80     log_heap(heap, false);
 81   }
 82 };
 83 
 84 //
 85 // CollectedHeap
 86 //   GenCollectedHeap
 87 //     SerialHeap
 88 //     CMSHeap
 89 //   G1CollectedHeap
 90 //   ParallelScavengeHeap
 91 //
 92 class CollectedHeap : public CHeapObj<mtInternal> {
 93   friend class VMStructs;
 94   friend class JVMCIVMStructs;
 95   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
 96 
 97  private:
 98 #ifdef ASSERT
 99   static int       _fire_out_of_memory_count;
100 #endif
101 
102   GCHeapLog* _gc_heap_log;
103 
104   // Used in support of ReduceInitialCardMarks; only consulted if COMPILER2
105   // or INCLUDE_JVMCI is being used
106   bool _defer_initial_card_mark;
107 
108   MemRegion _reserved;
109 
110  protected:
111   BarrierSet* _barrier_set;
112   bool _is_gc_active;
113 
114   // Used for filler objects (static, but initialized in ctor).
115   static size_t _filler_array_max_size;
116 
117   unsigned int _total_collections;          // ... started
118   unsigned int _total_full_collections;     // ... started
119   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
120   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
121 
122   // Reason for current garbage collection.  Should be set to
123   // a value reflecting no collection between collections.
124   GCCause::Cause _gc_cause;
125   GCCause::Cause _gc_lastcause;
126   PerfStringVariable* _perf_gc_cause;
127   PerfStringVariable* _perf_gc_lastcause;
128 
129   // Constructor
130   CollectedHeap();
131 
132   // Do common initializations that must follow instance construction,
133   // for example, those needing virtual calls.
134   // This code could perhaps be moved into initialize() but would
135   // be slightly more awkward because we want the latter to be a
136   // pure virtual.
137   void pre_initialize();
138 
139   // Create a new tlab. All TLAB allocations must go through this.
140   virtual HeapWord* allocate_new_tlab(size_t size);
141 
142   // Accumulate statistics on all tlabs.
143   virtual void accumulate_statistics_all_tlabs();
144 
145   // Reinitialize tlabs before resuming mutators.
146   virtual void resize_all_tlabs();
147 
148   // Allocate from the current thread's TLAB, with broken-out slow path.
149   inline static HeapWord* allocate_from_tlab(Klass* klass, Thread* thread, size_t size);
150   static HeapWord* allocate_from_tlab_slow(Klass* klass, Thread* thread, size_t size);
151 
152   // Allocate an uninitialized block of the given size, or returns NULL if
153   // this is impossible.
154   inline static HeapWord* common_mem_allocate_noinit(Klass* klass, size_t size, TRAPS);
155 
156   // Like allocate_init, but the block returned by a successful allocation
157   // is guaranteed initialized to zeros.
158   inline static HeapWord* common_mem_allocate_init(Klass* klass, size_t size, TRAPS);
159 
160   // Helper functions for (VM) allocation.
161   inline static void post_allocation_setup_common(Klass* klass, HeapWord* obj);
162   inline static void post_allocation_setup_no_klass_install(Klass* klass,
163                                                             HeapWord* objPtr);
164 
165   inline static void post_allocation_setup_obj(Klass* klass, HeapWord* obj, int size);
166 
167   inline static void post_allocation_setup_array(Klass* klass,
168                                                  HeapWord* obj, int length);
169 
170   inline static void post_allocation_setup_class(Klass* klass, HeapWord* obj, int size);
171 
172   // Clears an allocated object.
173   inline static void init_obj(HeapWord* obj, size_t size);
174 
175   // Filler object utilities.
176   static inline size_t filler_array_hdr_size();
177   static inline size_t filler_array_min_size();
178 
179   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
180   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
181 
182   // Fill with a single array; caller must ensure filler_array_min_size() <=
183   // words <= filler_array_max_size().
184   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
185 
186   // Fill with a single object (either an int array or a java.lang.Object).
187   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
188 
189   virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer);
190 
191   // Verification functions
192   virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
193     PRODUCT_RETURN;
194   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
195     PRODUCT_RETURN;
196   debug_only(static void check_for_valid_allocation_state();)
197 
198  public:
199   enum Name {
200     SerialHeap,
201     ParallelScavengeHeap,
202     G1CollectedHeap,
203     CMSHeap
204   };
205 
206   static inline size_t filler_array_max_size() {
207     return _filler_array_max_size;
208   }
209 
210   virtual Name kind() const = 0;
211 
212   virtual const char* name() const = 0;
213 
214   /**
215    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
216    * and JNI_OK on success.
217    */
218   virtual jint initialize() = 0;
219 
220   // In many heaps, there will be a need to perform some initialization activities
221   // after the Universe is fully formed, but before general heap allocation is allowed.
222   // This is the correct place to place such initialization methods.
223   virtual void post_initialize();
224 
225   // Stop any onging concurrent work and prepare for exit.
226   virtual void stop() {}
227 
228   // Stop and resume concurrent GC threads interfering with safepoint operations
229   virtual void safepoint_synchronize_begin() {}
230   virtual void safepoint_synchronize_end() {}
231 
232   void initialize_reserved_region(HeapWord *start, HeapWord *end);
233   MemRegion reserved_region() const { return _reserved; }
234   address base() const { return (address)reserved_region().start(); }
235 
236   virtual size_t capacity() const = 0;
237   virtual size_t used() const = 0;
238 
239   // Return "true" if the part of the heap that allocates Java
240   // objects has reached the maximal committed limit that it can
241   // reach, without a garbage collection.
242   virtual bool is_maximal_no_gc() const = 0;
243 
244   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
245   // memory that the vm could make available for storing 'normal' java objects.
246   // This is based on the reserved address space, but should not include space
247   // that the vm uses internally for bookkeeping or temporary storage
248   // (e.g., in the case of the young gen, one of the survivor
249   // spaces).
250   virtual size_t max_capacity() const = 0;
251 
252   // Returns "TRUE" if "p" points into the reserved area of the heap.
253   bool is_in_reserved(const void* p) const {
254     return _reserved.contains(p);
255   }
256 
257   bool is_in_reserved_or_null(const void* p) const {
258     return p == NULL || is_in_reserved(p);
259   }
260 
261   // Returns "TRUE" iff "p" points into the committed areas of the heap.
262   // This method can be expensive so avoid using it in performance critical
263   // code.
264   virtual bool is_in(const void* p) const = 0;
265 
266   DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == NULL || is_in(p); })
267 
268   // Let's define some terms: a "closed" subset of a heap is one that
269   //
270   // 1) contains all currently-allocated objects, and
271   //
272   // 2) is closed under reference: no object in the closed subset
273   //    references one outside the closed subset.
274   //
275   // Membership in a heap's closed subset is useful for assertions.
276   // Clearly, the entire heap is a closed subset, so the default
277   // implementation is to use "is_in_reserved".  But this may not be too
278   // liberal to perform useful checking.  Also, the "is_in" predicate
279   // defines a closed subset, but may be too expensive, since "is_in"
280   // verifies that its argument points to an object head.  The
281   // "closed_subset" method allows a heap to define an intermediate
282   // predicate, allowing more precise checking than "is_in_reserved" at
283   // lower cost than "is_in."
284 
285   // One important case is a heap composed of disjoint contiguous spaces,
286   // such as the Garbage-First collector.  Such heaps have a convenient
287   // closed subset consisting of the allocated portions of those
288   // contiguous spaces.
289 
290   // Return "TRUE" iff the given pointer points into the heap's defined
291   // closed subset (which defaults to the entire heap).
292   virtual bool is_in_closed_subset(const void* p) const {
293     return is_in_reserved(p);
294   }
295 
296   bool is_in_closed_subset_or_null(const void* p) const {
297     return p == NULL || is_in_closed_subset(p);
298   }
299 
300   void set_gc_cause(GCCause::Cause v) {
301      if (UsePerfData) {
302        _gc_lastcause = _gc_cause;
303        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
304        _perf_gc_cause->set_value(GCCause::to_string(v));
305      }
306     _gc_cause = v;
307   }
308   GCCause::Cause gc_cause() { return _gc_cause; }
309 
310   // General obj/array allocation facilities.
311   inline static oop obj_allocate(Klass* klass, int size, TRAPS);
312   inline static oop array_allocate(Klass* klass, int size, int length, TRAPS);
313   inline static oop array_allocate_nozero(Klass* klass, int size, int length, TRAPS);
314   inline static oop class_allocate(Klass* klass, int size, TRAPS);
315 
316   // Raw memory allocation facilities
317   // The obj and array allocate methods are covers for these methods.
318   // mem_allocate() should never be
319   // called to allocate TLABs, only individual objects.
320   virtual HeapWord* mem_allocate(size_t size,
321                                  bool* gc_overhead_limit_was_exceeded) = 0;
322 
323   // Utilities for turning raw memory into filler objects.
324   //
325   // min_fill_size() is the smallest region that can be filled.
326   // fill_with_objects() can fill arbitrary-sized regions of the heap using
327   // multiple objects.  fill_with_object() is for regions known to be smaller
328   // than the largest array of integers; it uses a single object to fill the
329   // region and has slightly less overhead.
330   static size_t min_fill_size() {
331     return size_t(align_object_size(oopDesc::header_size()));
332   }
333 
334   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
335 
336   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
337   static void fill_with_object(MemRegion region, bool zap = true) {
338     fill_with_object(region.start(), region.word_size(), zap);
339   }
340   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
341     fill_with_object(start, pointer_delta(end, start), zap);
342   }
343 
344   // Return the address "addr" aligned by "alignment_in_bytes" if such
345   // an address is below "end".  Return NULL otherwise.
346   inline static HeapWord* align_allocation_or_fail(HeapWord* addr,
347                                                    HeapWord* end,
348                                                    unsigned short alignment_in_bytes);
349 
350   // Some heaps may offer a contiguous region for shared non-blocking
351   // allocation, via inlined code (by exporting the address of the top and
352   // end fields defining the extent of the contiguous allocation region.)
353 
354   // This function returns "true" iff the heap supports this kind of
355   // allocation.  (Default is "no".)
356   virtual bool supports_inline_contig_alloc() const {
357     return false;
358   }
359   // These functions return the addresses of the fields that define the
360   // boundaries of the contiguous allocation area.  (These fields should be
361   // physically near to one another.)
362   virtual HeapWord* volatile* top_addr() const {
363     guarantee(false, "inline contiguous allocation not supported");
364     return NULL;
365   }
366   virtual HeapWord** end_addr() const {
367     guarantee(false, "inline contiguous allocation not supported");
368     return NULL;
369   }
370 
371   // Some heaps may be in an unparseable state at certain times between
372   // collections. This may be necessary for efficient implementation of
373   // certain allocation-related activities. Calling this function before
374   // attempting to parse a heap ensures that the heap is in a parsable
375   // state (provided other concurrent activity does not introduce
376   // unparsability). It is normally expected, therefore, that this
377   // method is invoked with the world stopped.
378   // NOTE: if you override this method, make sure you call
379   // super::ensure_parsability so that the non-generational
380   // part of the work gets done. See implementation of
381   // CollectedHeap::ensure_parsability and, for instance,
382   // that of GenCollectedHeap::ensure_parsability().
383   // The argument "retire_tlabs" controls whether existing TLABs
384   // are merely filled or also retired, thus preventing further
385   // allocation from them and necessitating allocation of new TLABs.
386   virtual void ensure_parsability(bool retire_tlabs);
387 
388   // Section on thread-local allocation buffers (TLABs)
389   // If the heap supports thread-local allocation buffers, it should override
390   // the following methods:
391   // Returns "true" iff the heap supports thread-local allocation buffers.
392   // The default is "no".
393   virtual bool supports_tlab_allocation() const = 0;
394 
395   // The amount of space available for thread-local allocation buffers.
396   virtual size_t tlab_capacity(Thread *thr) const = 0;
397 
398   // The amount of used space for thread-local allocation buffers for the given thread.
399   virtual size_t tlab_used(Thread *thr) const = 0;
400 
401   virtual size_t max_tlab_size() const;
402 
403   // An estimate of the maximum allocation that could be performed
404   // for thread-local allocation buffers without triggering any
405   // collection or expansion activity.
406   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
407     guarantee(false, "thread-local allocation buffers not supported");
408     return 0;
409   }
410 
411   // Can a compiler initialize a new object without store barriers?
412   // This permission only extends from the creation of a new object
413   // via a TLAB up to the first subsequent safepoint. If such permission
414   // is granted for this heap type, the compiler promises to call
415   // defer_store_barrier() below on any slow path allocation of
416   // a new object for which such initializing store barriers will
417   // have been elided.
418   virtual bool can_elide_tlab_store_barriers() const = 0;
419 
420   // If a compiler is eliding store barriers for TLAB-allocated objects,
421   // there is probably a corresponding slow path which can produce
422   // an object allocated anywhere.  The compiler's runtime support
423   // promises to call this function on such a slow-path-allocated
424   // object before performing initializations that have elided
425   // store barriers. Returns new_obj, or maybe a safer copy thereof.
426   virtual oop new_store_pre_barrier(JavaThread* thread, oop new_obj);
427 
428   // Answers whether an initializing store to a new object currently
429   // allocated at the given address doesn't need a store
430   // barrier. Returns "true" if it doesn't need an initializing
431   // store barrier; answers "false" if it does.
432   virtual bool can_elide_initializing_store_barrier(oop new_obj) = 0;
433 
434   // If a compiler is eliding store barriers for TLAB-allocated objects,
435   // we will be informed of a slow-path allocation by a call
436   // to new_store_pre_barrier() above. Such a call precedes the
437   // initialization of the object itself, and no post-store-barriers will
438   // be issued. Some heap types require that the barrier strictly follows
439   // the initializing stores. (This is currently implemented by deferring the
440   // barrier until the next slow-path allocation or gc-related safepoint.)
441   // This interface answers whether a particular heap type needs the card
442   // mark to be thus strictly sequenced after the stores.
443   virtual bool card_mark_must_follow_store() const = 0;
444 
445   // If the CollectedHeap was asked to defer a store barrier above,
446   // this informs it to flush such a deferred store barrier to the
447   // remembered set.
448   virtual void flush_deferred_store_barrier(JavaThread* thread);
449 
450   // Perform a collection of the heap; intended for use in implementing
451   // "System.gc".  This probably implies as full a collection as the
452   // "CollectedHeap" supports.
453   virtual void collect(GCCause::Cause cause) = 0;
454 
455   // Perform a full collection
456   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
457 
458   // This interface assumes that it's being called by the
459   // vm thread. It collects the heap assuming that the
460   // heap lock is already held and that we are executing in
461   // the context of the vm thread.
462   virtual void collect_as_vm_thread(GCCause::Cause cause);
463 
464   // Returns the barrier set for this heap
465   BarrierSet* barrier_set() { return _barrier_set; }
466   void set_barrier_set(BarrierSet* barrier_set);
467 
468   // Returns "true" iff there is a stop-world GC in progress.  (I assume
469   // that it should answer "false" for the concurrent part of a concurrent
470   // collector -- dld).
471   bool is_gc_active() const { return _is_gc_active; }
472 
473   // Total number of GC collections (started)
474   unsigned int total_collections() const { return _total_collections; }
475   unsigned int total_full_collections() const { return _total_full_collections;}
476 
477   // Increment total number of GC collections (started)
478   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
479   void increment_total_collections(bool full = false) {
480     _total_collections++;
481     if (full) {
482       increment_total_full_collections();
483     }
484   }
485 
486   void increment_total_full_collections() { _total_full_collections++; }
487 
488   // Return the CollectorPolicy for the heap
489   virtual CollectorPolicy* collector_policy() const = 0;
490 
491   virtual GrowableArray<GCMemoryManager*> memory_managers() = 0;
492   virtual GrowableArray<MemoryPool*> memory_pools() = 0;
493 
494   // Iterate over all objects, calling "cl.do_object" on each.
495   virtual void object_iterate(ObjectClosure* cl) = 0;
496 
497   // Similar to object_iterate() except iterates only
498   // over live objects.
499   virtual void safe_object_iterate(ObjectClosure* cl) = 0;
500 
501   // NOTE! There is no requirement that a collector implement these
502   // functions.
503   //
504   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
505   // each address in the (reserved) heap is a member of exactly
506   // one block.  The defining characteristic of a block is that it is
507   // possible to find its size, and thus to progress forward to the next
508   // block.  (Blocks may be of different sizes.)  Thus, blocks may
509   // represent Java objects, or they might be free blocks in a
510   // free-list-based heap (or subheap), as long as the two kinds are
511   // distinguishable and the size of each is determinable.
512 
513   // Returns the address of the start of the "block" that contains the
514   // address "addr".  We say "blocks" instead of "object" since some heaps
515   // may not pack objects densely; a chunk may either be an object or a
516   // non-object.
517   virtual HeapWord* block_start(const void* addr) const = 0;
518 
519   // Requires "addr" to be the start of a chunk, and returns its size.
520   // "addr + size" is required to be the start of a new chunk, or the end
521   // of the active area of the heap.
522   virtual size_t block_size(const HeapWord* addr) const = 0;
523 
524   // Requires "addr" to be the start of a block, and returns "TRUE" iff
525   // the block is an object.
526   virtual bool block_is_obj(const HeapWord* addr) const = 0;
527 
528   // Returns the longest time (in ms) that has elapsed since the last
529   // time that any part of the heap was examined by a garbage collection.
530   virtual jlong millis_since_last_gc() = 0;
531 
532   // Perform any cleanup actions necessary before allowing a verification.
533   virtual void prepare_for_verify() = 0;
534 
535   // Generate any dumps preceding or following a full gc
536  private:
537   void full_gc_dump(GCTimer* timer, bool before);
538 
539   virtual void initialize_serviceability() = 0;
540 
541  public:
542   void pre_full_gc_dump(GCTimer* timer);
543   void post_full_gc_dump(GCTimer* timer);
544 
545   VirtualSpaceSummary create_heap_space_summary();
546   GCHeapSummary create_heap_summary();
547 
548   MetaspaceSummary create_metaspace_summary();
549 
550   // Print heap information on the given outputStream.
551   virtual void print_on(outputStream* st) const = 0;
552   // The default behavior is to call print_on() on tty.
553   virtual void print() const {
554     print_on(tty);
555   }
556   // Print more detailed heap information on the given
557   // outputStream. The default behavior is to call print_on(). It is
558   // up to each subclass to override it and add any additional output
559   // it needs.
560   virtual void print_extended_on(outputStream* st) const {
561     print_on(st);
562   }
563 
564   virtual void print_on_error(outputStream* st) const;
565 
566   // Print all GC threads (other than the VM thread)
567   // used by this heap.
568   virtual void print_gc_threads_on(outputStream* st) const = 0;
569   // The default behavior is to call print_gc_threads_on() on tty.
570   void print_gc_threads() {
571     print_gc_threads_on(tty);
572   }
573   // Iterator for all GC threads (other than VM thread)
574   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
575 
576   // Print any relevant tracing info that flags imply.
577   // Default implementation does nothing.
578   virtual void print_tracing_info() const = 0;
579 
580   void print_heap_before_gc();
581   void print_heap_after_gc();
582 
583   // An object is scavengable if its location may move during a scavenge.
584   // (A scavenge is a GC which is not a full GC.)
585   virtual bool is_scavengable(oop obj) = 0;
586   // Registering and unregistering an nmethod (compiled code) with the heap.
587   // Override with specific mechanism for each specialized heap type.
588   virtual void register_nmethod(nmethod* nm) {}
589   virtual void unregister_nmethod(nmethod* nm) {}
590   virtual void verify_nmethod(nmethod* nmethod) {}
591 
592   void trace_heap_before_gc(const GCTracer* gc_tracer);
593   void trace_heap_after_gc(const GCTracer* gc_tracer);
594 
595   // Heap verification
596   virtual void verify(VerifyOption option) = 0;
597 
598   // Return true if concurrent phase control (via
599   // request_concurrent_phase_control) is supported by this collector.
600   // The default implementation returns false.
601   virtual bool supports_concurrent_phase_control() const;
602 
603   // Return a NULL terminated array of concurrent phase names provided
604   // by this collector.  Supports Whitebox testing.  These are the
605   // names recognized by request_concurrent_phase(). The default
606   // implementation returns an array of one NULL element.
607   virtual const char* const* concurrent_phases() const;
608 
609   // Request the collector enter the indicated concurrent phase, and
610   // wait until it does so.  Supports WhiteBox testing.  Only one
611   // request may be active at a time.  Phases are designated by name;
612   // the set of names and their meaning is GC-specific.  Once the
613   // requested phase has been reached, the collector will attempt to
614   // avoid transitioning to a new phase until a new request is made.
615   // [Note: A collector might not be able to remain in a given phase.
616   // For example, a full collection might cancel an in-progress
617   // concurrent collection.]
618   //
619   // Returns true when the phase is reached.  Returns false for an
620   // unknown phase.  The default implementation returns false.
621   virtual bool request_concurrent_phase(const char* phase);
622 
623   // Provides a thread pool to SafepointSynchronize to use
624   // for parallel safepoint cleanup.
625   // GCs that use a GC worker thread pool may want to share
626   // it for use during safepoint cleanup. This is only possible
627   // if the GC can pause and resume concurrent work (e.g. G1
628   // concurrent marking) for an intermittent non-GC safepoint.
629   // If this method returns NULL, SafepointSynchronize will
630   // perform cleanup tasks serially in the VMThread.
631   virtual WorkGang* get_safepoint_workers() { return NULL; }
632 
633   // Non product verification and debugging.
634 #ifndef PRODUCT
635   // Support for PromotionFailureALot.  Return true if it's time to cause a
636   // promotion failure.  The no-argument version uses
637   // this->_promotion_failure_alot_count as the counter.
638   inline bool promotion_should_fail(volatile size_t* count);
639   inline bool promotion_should_fail();
640 
641   // Reset the PromotionFailureALot counters.  Should be called at the end of a
642   // GC in which promotion failure occurred.
643   inline void reset_promotion_should_fail(volatile size_t* count);
644   inline void reset_promotion_should_fail();
645 #endif  // #ifndef PRODUCT
646 
647 #ifdef ASSERT
648   static int fired_fake_oom() {
649     return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
650   }
651 #endif
652 
653  public:
654   // Copy the current allocation context statistics for the specified contexts.
655   // For each context in contexts, set the corresponding entries in the totals
656   // and accuracy arrays to the current values held by the statistics.  Each
657   // array should be of length len.
658   // Returns true if there are more stats available.
659   virtual bool copy_allocation_context_stats(const jint* contexts,
660                                              jlong* totals,
661                                              jbyte* accuracy,
662                                              jint len) {
663     return false;
664   }
665 
666 };
667 
668 // Class to set and reset the GC cause for a CollectedHeap.
669 
670 class GCCauseSetter : StackObj {
671   CollectedHeap* _heap;
672   GCCause::Cause _previous_cause;
673  public:
674   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
675     assert(SafepointSynchronize::is_at_safepoint(),
676            "This method manipulates heap state without locking");
677     _heap = heap;
678     _previous_cause = _heap->gc_cause();
679     _heap->set_gc_cause(cause);
680   }
681 
682   ~GCCauseSetter() {
683     assert(SafepointSynchronize::is_at_safepoint(),
684           "This method manipulates heap state without locking");
685     _heap->set_gc_cause(_previous_cause);
686   }
687 };
688 
689 #endif // SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP