1 /*
   2  * Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "gc/shared/collectedHeap.inline.hpp"
  34 #include "gc/shared/collectorCounters.hpp"
  35 #include "gc/shared/gcId.hpp"
  36 #include "gc/shared/gcLocker.inline.hpp"
  37 #include "gc/shared/gcTrace.hpp"
  38 #include "gc/shared/gcTraceTime.inline.hpp"
  39 #include "gc/shared/genCollectedHeap.hpp"
  40 #include "gc/shared/genOopClosures.inline.hpp"
  41 #include "gc/shared/generationSpec.hpp"
  42 #include "gc/shared/space.hpp"
  43 #include "gc/shared/strongRootsScope.hpp"
  44 #include "gc/shared/vmGCOperations.hpp"
  45 #include "gc/shared/weakProcessor.hpp"
  46 #include "gc/shared/workgroup.hpp"
  47 #include "memory/filemap.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "oops/oop.inline.hpp"
  50 #include "runtime/biasedLocking.hpp"
  51 #include "runtime/handles.hpp"
  52 #include "runtime/handles.inline.hpp"
  53 #include "runtime/java.hpp"
  54 #include "runtime/vmThread.hpp"
  55 #include "services/management.hpp"
  56 #include "services/memoryService.hpp"
  57 #include "utilities/debug.hpp"
  58 #include "utilities/formatBuffer.hpp"
  59 #include "utilities/macros.hpp"
  60 #include "utilities/stack.inline.hpp"
  61 #include "utilities/vmError.hpp"
  62 
  63 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
  64   CollectedHeap(),
  65   _rem_set(NULL),
  66   _gen_policy(policy),
  67   _process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
  68   _full_collections_completed(0)
  69 {
  70   assert(policy != NULL, "Sanity check");
  71 }
  72 
  73 jint GenCollectedHeap::initialize() {
  74   // While there are no constraints in the GC code that HeapWordSize
  75   // be any particular value, there are multiple other areas in the
  76   // system which believe this to be true (e.g. oop->object_size in some
  77   // cases incorrectly returns the size in wordSize units rather than
  78   // HeapWordSize).
  79   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  80 
  81   // Allocate space for the heap.
  82 
  83   char* heap_address;
  84   ReservedSpace heap_rs;
  85 
  86   size_t heap_alignment = collector_policy()->heap_alignment();
  87 
  88   heap_address = allocate(heap_alignment, &heap_rs);
  89 
  90   if (!heap_rs.is_reserved()) {
  91     vm_shutdown_during_initialization(
  92       "Could not reserve enough space for object heap");
  93     return JNI_ENOMEM;
  94   }
  95 
  96   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
  97 
  98   _rem_set = collector_policy()->create_rem_set(reserved_region());
  99   set_barrier_set(rem_set()->bs());
 100 
 101   ReservedSpace young_rs = heap_rs.first_part(gen_policy()->young_gen_spec()->max_size(), false, false);
 102   _young_gen = gen_policy()->young_gen_spec()->init(young_rs, rem_set());
 103   heap_rs = heap_rs.last_part(gen_policy()->young_gen_spec()->max_size());
 104 
 105   ReservedSpace old_rs = heap_rs.first_part(gen_policy()->old_gen_spec()->max_size(), false, false);
 106   _old_gen = gen_policy()->old_gen_spec()->init(old_rs, rem_set());
 107   clear_incremental_collection_failed();
 108 
 109   return JNI_OK;
 110 }
 111 
 112 char* GenCollectedHeap::allocate(size_t alignment,
 113                                  ReservedSpace* heap_rs){
 114   // Now figure out the total size.
 115   const size_t pageSize = UseLargePages ? os::large_page_size() : os::vm_page_size();
 116   assert(alignment % pageSize == 0, "Must be");
 117 
 118   GenerationSpec* young_spec = gen_policy()->young_gen_spec();
 119   GenerationSpec* old_spec = gen_policy()->old_gen_spec();
 120 
 121   // Check for overflow.
 122   size_t total_reserved = young_spec->max_size() + old_spec->max_size();
 123   if (total_reserved < young_spec->max_size()) {
 124     vm_exit_during_initialization("The size of the object heap + VM data exceeds "
 125                                   "the maximum representable size");
 126   }
 127   assert(total_reserved % alignment == 0,
 128          "Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 129          SIZE_FORMAT, total_reserved, alignment);
 130 
 131   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
 132 
 133   os::trace_page_sizes("Heap",
 134                        collector_policy()->min_heap_byte_size(),
 135                        total_reserved,
 136                        alignment,
 137                        heap_rs->base(),
 138                        heap_rs->size());
 139 
 140   return heap_rs->base();
 141 }
 142 
 143 void GenCollectedHeap::post_initialize() {
 144   CollectedHeap::post_initialize();
 145   ref_processing_init();
 146   check_gen_kinds();
 147   DefNewGeneration* def_new_gen = (DefNewGeneration*)_young_gen;
 148 
 149   _gen_policy->initialize_size_policy(def_new_gen->eden()->capacity(),
 150                                       _old_gen->capacity(),
 151                                       def_new_gen->from()->capacity());
 152   _gen_policy->initialize_gc_policy_counters();
 153 }
 154 
 155 void GenCollectedHeap::ref_processing_init() {
 156   _young_gen->ref_processor_init();
 157   _old_gen->ref_processor_init();
 158 }
 159 
 160 size_t GenCollectedHeap::capacity() const {
 161   return _young_gen->capacity() + _old_gen->capacity();
 162 }
 163 
 164 size_t GenCollectedHeap::used() const {
 165   return _young_gen->used() + _old_gen->used();
 166 }
 167 
 168 void GenCollectedHeap::save_used_regions() {
 169   _old_gen->save_used_region();
 170   _young_gen->save_used_region();
 171 }
 172 
 173 size_t GenCollectedHeap::max_capacity() const {
 174   return _young_gen->max_capacity() + _old_gen->max_capacity();
 175 }
 176 
 177 // Update the _full_collections_completed counter
 178 // at the end of a stop-world full GC.
 179 unsigned int GenCollectedHeap::update_full_collections_completed() {
 180   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 181   assert(_full_collections_completed <= _total_full_collections,
 182          "Can't complete more collections than were started");
 183   _full_collections_completed = _total_full_collections;
 184   ml.notify_all();
 185   return _full_collections_completed;
 186 }
 187 
 188 // Update the _full_collections_completed counter, as appropriate,
 189 // at the end of a concurrent GC cycle. Note the conditional update
 190 // below to allow this method to be called by a concurrent collector
 191 // without synchronizing in any manner with the VM thread (which
 192 // may already have initiated a STW full collection "concurrently").
 193 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 194   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 195   assert((_full_collections_completed <= _total_full_collections) &&
 196          (count <= _total_full_collections),
 197          "Can't complete more collections than were started");
 198   if (count > _full_collections_completed) {
 199     _full_collections_completed = count;
 200     ml.notify_all();
 201   }
 202   return _full_collections_completed;
 203 }
 204 
 205 
 206 #ifndef PRODUCT
 207 // Override of memory state checking method in CollectedHeap:
 208 // Some collectors (CMS for example) can't have badHeapWordVal written
 209 // in the first two words of an object. (For instance , in the case of
 210 // CMS these words hold state used to synchronize between certain
 211 // (concurrent) GC steps and direct allocating mutators.)
 212 // The skip_header_HeapWords() method below, allows us to skip
 213 // over the requisite number of HeapWord's. Note that (for
 214 // generational collectors) this means that those many words are
 215 // skipped in each object, irrespective of the generation in which
 216 // that object lives. The resultant loss of precision seems to be
 217 // harmless and the pain of avoiding that imprecision appears somewhat
 218 // higher than we are prepared to pay for such rudimentary debugging
 219 // support.
 220 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 221                                                          size_t size) {
 222   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 223     // We are asked to check a size in HeapWords,
 224     // but the memory is mangled in juint words.
 225     juint* start = (juint*) (addr + skip_header_HeapWords());
 226     juint* end   = (juint*) (addr + size);
 227     for (juint* slot = start; slot < end; slot += 1) {
 228       assert(*slot == badHeapWordVal,
 229              "Found non badHeapWordValue in pre-allocation check");
 230     }
 231   }
 232 }
 233 #endif
 234 
 235 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 236                                                bool is_tlab,
 237                                                bool first_only) {
 238   HeapWord* res = NULL;
 239 
 240   if (_young_gen->should_allocate(size, is_tlab)) {
 241     res = _young_gen->allocate(size, is_tlab);
 242     if (res != NULL || first_only) {
 243       return res;
 244     }
 245   }
 246 
 247   if (_old_gen->should_allocate(size, is_tlab)) {
 248     res = _old_gen->allocate(size, is_tlab);
 249   }
 250 
 251   return res;
 252 }
 253 
 254 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 255                                          bool* gc_overhead_limit_was_exceeded) {
 256   return gen_policy()->mem_allocate_work(size,
 257                                          false /* is_tlab */,
 258                                          gc_overhead_limit_was_exceeded);
 259 }
 260 
 261 bool GenCollectedHeap::must_clear_all_soft_refs() {
 262   return _gc_cause == GCCause::_metadata_GC_clear_soft_refs ||
 263          _gc_cause == GCCause::_wb_full_gc;
 264 }
 265 
 266 void GenCollectedHeap::collect_generation(Generation* gen, bool full, size_t size,
 267                                           bool is_tlab, bool run_verification, bool clear_soft_refs,
 268                                           bool restore_marks_for_biased_locking) {
 269   FormatBuffer<> title("Collect gen: %s", gen->short_name());
 270   GCTraceTime(Trace, gc, phases) t1(title);
 271   TraceCollectorStats tcs(gen->counters());
 272   TraceMemoryManagerStats tmms(gen->gc_manager(), gc_cause());
 273 
 274   gen->stat_record()->invocations++;
 275   gen->stat_record()->accumulated_time.start();
 276 
 277   // Must be done anew before each collection because
 278   // a previous collection will do mangling and will
 279   // change top of some spaces.
 280   record_gen_tops_before_GC();
 281 
 282   log_trace(gc)("%s invoke=%d size=" SIZE_FORMAT, heap()->is_young_gen(gen) ? "Young" : "Old", gen->stat_record()->invocations, size * HeapWordSize);
 283 
 284   if (run_verification && VerifyBeforeGC) {
 285     HandleMark hm;  // Discard invalid handles created during verification
 286     Universe::verify("Before GC");
 287   }
 288   COMPILER2_PRESENT(DerivedPointerTable::clear());
 289 
 290   if (restore_marks_for_biased_locking) {
 291     // We perform this mark word preservation work lazily
 292     // because it's only at this point that we know whether we
 293     // absolutely have to do it; we want to avoid doing it for
 294     // scavenge-only collections where it's unnecessary
 295     BiasedLocking::preserve_marks();
 296   }
 297 
 298   // Do collection work
 299   {
 300     // Note on ref discovery: For what appear to be historical reasons,
 301     // GCH enables and disabled (by enqueing) refs discovery.
 302     // In the future this should be moved into the generation's
 303     // collect method so that ref discovery and enqueueing concerns
 304     // are local to a generation. The collect method could return
 305     // an appropriate indication in the case that notification on
 306     // the ref lock was needed. This will make the treatment of
 307     // weak refs more uniform (and indeed remove such concerns
 308     // from GCH). XXX
 309 
 310     HandleMark hm;  // Discard invalid handles created during gc
 311     save_marks();   // save marks for all gens
 312     // We want to discover references, but not process them yet.
 313     // This mode is disabled in process_discovered_references if the
 314     // generation does some collection work, or in
 315     // enqueue_discovered_references if the generation returns
 316     // without doing any work.
 317     ReferenceProcessor* rp = gen->ref_processor();
 318     // If the discovery of ("weak") refs in this generation is
 319     // atomic wrt other collectors in this configuration, we
 320     // are guaranteed to have empty discovered ref lists.
 321     if (rp->discovery_is_atomic()) {
 322       rp->enable_discovery();
 323       rp->setup_policy(clear_soft_refs);
 324     } else {
 325       // collect() below will enable discovery as appropriate
 326     }
 327     gen->collect(full, clear_soft_refs, size, is_tlab);
 328     if (!rp->enqueuing_is_done()) {
 329       ReferenceProcessorPhaseTimes pt(NULL, rp->num_q());
 330       rp->enqueue_discovered_references(NULL, &pt);
 331       pt.print_enqueue_phase();
 332     } else {
 333       rp->set_enqueuing_is_done(false);
 334     }
 335     rp->verify_no_references_recorded();
 336   }
 337 
 338   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 339 
 340   gen->stat_record()->accumulated_time.stop();
 341 
 342   update_gc_stats(gen, full);
 343 
 344   if (run_verification && VerifyAfterGC) {
 345     HandleMark hm;  // Discard invalid handles created during verification
 346     Universe::verify("After GC");
 347   }
 348 }
 349 
 350 void GenCollectedHeap::do_collection(bool           full,
 351                                      bool           clear_all_soft_refs,
 352                                      size_t         size,
 353                                      bool           is_tlab,
 354                                      GenerationType max_generation) {
 355   ResourceMark rm;
 356   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 357 
 358   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 359   assert(my_thread->is_VM_thread() ||
 360          my_thread->is_ConcurrentGC_thread(),
 361          "incorrect thread type capability");
 362   assert(Heap_lock->is_locked(),
 363          "the requesting thread should have the Heap_lock");
 364   guarantee(!is_gc_active(), "collection is not reentrant");
 365 
 366   if (GCLocker::check_active_before_gc()) {
 367     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 368   }
 369 
 370   GCIdMarkAndRestore gc_id_mark;
 371 
 372   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 373                           collector_policy()->should_clear_all_soft_refs();
 374 
 375   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
 376 
 377   const size_t metadata_prev_used = MetaspaceAux::used_bytes();
 378 
 379   print_heap_before_gc();
 380 
 381   {
 382     FlagSetting fl(_is_gc_active, true);
 383 
 384     bool complete = full && (max_generation == OldGen);
 385     bool old_collects_young = complete && !ScavengeBeforeFullGC;
 386     bool do_young_collection = !old_collects_young && _young_gen->should_collect(full, size, is_tlab);
 387 
 388     FormatBuffer<> gc_string("%s", "Pause ");
 389     if (do_young_collection) {
 390       gc_string.append("Young");
 391     } else {
 392       gc_string.append("Full");
 393     }
 394 
 395     GCTraceCPUTime tcpu;
 396     GCTraceTime(Info, gc) t(gc_string, NULL, gc_cause(), true);
 397 
 398     gc_prologue(complete);
 399     increment_total_collections(complete);
 400 
 401     size_t young_prev_used = _young_gen->used();
 402     size_t old_prev_used = _old_gen->used();
 403 
 404     bool run_verification = total_collections() >= VerifyGCStartAt;
 405 
 406     bool prepared_for_verification = false;
 407     bool collected_old = false;
 408 
 409     if (do_young_collection) {
 410       if (run_verification && VerifyGCLevel <= 0 && VerifyBeforeGC) {
 411         prepare_for_verify();
 412         prepared_for_verification = true;
 413       }
 414 
 415       collect_generation(_young_gen,
 416                          full,
 417                          size,
 418                          is_tlab,
 419                          run_verification && VerifyGCLevel <= 0,
 420                          do_clear_all_soft_refs,
 421                          false);
 422 
 423       if (size > 0 && (!is_tlab || _young_gen->supports_tlab_allocation()) &&
 424           size * HeapWordSize <= _young_gen->unsafe_max_alloc_nogc()) {
 425         // Allocation request was met by young GC.
 426         size = 0;
 427       }
 428     }
 429 
 430     bool must_restore_marks_for_biased_locking = false;
 431 
 432     if (max_generation == OldGen && _old_gen->should_collect(full, size, is_tlab)) {
 433       if (!complete) {
 434         // The full_collections increment was missed above.
 435         increment_total_full_collections();
 436       }
 437 
 438       if (!prepared_for_verification && run_verification &&
 439           VerifyGCLevel <= 1 && VerifyBeforeGC) {
 440         prepare_for_verify();
 441       }
 442 
 443       if (do_young_collection) {
 444         // We did a young GC. Need a new GC id for the old GC.
 445         GCIdMarkAndRestore gc_id_mark;
 446         GCTraceTime(Info, gc) t("Pause Full", NULL, gc_cause(), true);
 447         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 448       } else {
 449         // No young GC done. Use the same GC id as was set up earlier in this method.
 450         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 451       }
 452 
 453       must_restore_marks_for_biased_locking = true;
 454       collected_old = true;
 455     }
 456 
 457     // Update "complete" boolean wrt what actually transpired --
 458     // for instance, a promotion failure could have led to
 459     // a whole heap collection.
 460     complete = complete || collected_old;
 461 
 462     print_heap_change(young_prev_used, old_prev_used);
 463     MetaspaceAux::print_metaspace_change(metadata_prev_used);
 464 
 465     // Adjust generation sizes.
 466     if (collected_old) {
 467       _old_gen->compute_new_size();
 468     }
 469     _young_gen->compute_new_size();
 470 
 471     if (complete) {
 472       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 473       ClassLoaderDataGraph::purge();
 474       MetaspaceAux::verify_metrics();
 475       // Resize the metaspace capacity after full collections
 476       MetaspaceGC::compute_new_size();
 477       update_full_collections_completed();
 478     }
 479 
 480     // Track memory usage and detect low memory after GC finishes
 481     MemoryService::track_memory_usage();
 482 
 483     gc_epilogue(complete);
 484 
 485     if (must_restore_marks_for_biased_locking) {
 486       BiasedLocking::restore_marks();
 487     }
 488   }
 489 
 490   print_heap_after_gc();
 491 
 492 #ifdef TRACESPINNING
 493   ParallelTaskTerminator::print_termination_counts();
 494 #endif
 495 }
 496 
 497 void GenCollectedHeap::register_nmethod(nmethod* nm) {
 498   CodeCache::register_scavenge_root_nmethod(nm);
 499 }
 500 
 501 void GenCollectedHeap::verify_nmethod(nmethod* nm) {
 502   CodeCache::verify_scavenge_root_nmethod(nm);
 503 }
 504 
 505 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 506   return gen_policy()->satisfy_failed_allocation(size, is_tlab);
 507 }
 508 
 509 #ifdef ASSERT
 510 class AssertNonScavengableClosure: public OopClosure {
 511 public:
 512   virtual void do_oop(oop* p) {
 513     assert(!GenCollectedHeap::heap()->is_in_partial_collection(*p),
 514       "Referent should not be scavengable.");  }
 515   virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
 516 };
 517 static AssertNonScavengableClosure assert_is_non_scavengable_closure;
 518 #endif
 519 
 520 void GenCollectedHeap::process_roots(StrongRootsScope* scope,
 521                                      ScanningOption so,
 522                                      OopClosure* strong_roots,
 523                                      OopClosure* weak_roots,
 524                                      CLDClosure* strong_cld_closure,
 525                                      CLDClosure* weak_cld_closure,
 526                                      CodeBlobToOopClosure* code_roots) {
 527   // General roots.
 528   assert(Threads::thread_claim_parity() != 0, "must have called prologue code");
 529   assert(code_roots != NULL, "code root closure should always be set");
 530   // _n_termination for _process_strong_tasks should be set up stream
 531   // in a method not running in a GC worker.  Otherwise the GC worker
 532   // could be trying to change the termination condition while the task
 533   // is executing in another GC worker.
 534 
 535   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ClassLoaderDataGraph_oops_do)) {
 536     ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure);
 537   }
 538 
 539   // Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway
 540   CodeBlobToOopClosure* roots_from_code_p = (so & SO_AllCodeCache) ? NULL : code_roots;
 541 
 542   bool is_par = scope->n_threads() > 1;
 543   Threads::possibly_parallel_oops_do(is_par, strong_roots, roots_from_code_p);
 544 
 545   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Universe_oops_do)) {
 546     Universe::oops_do(strong_roots);
 547   }
 548   // Global (strong) JNI handles
 549   if (!_process_strong_tasks->is_task_claimed(GCH_PS_JNIHandles_oops_do)) {
 550     JNIHandles::oops_do(strong_roots);
 551   }
 552 
 553   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ObjectSynchronizer_oops_do)) {
 554     ObjectSynchronizer::oops_do(strong_roots);
 555   }
 556   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Management_oops_do)) {
 557     Management::oops_do(strong_roots);
 558   }
 559   if (!_process_strong_tasks->is_task_claimed(GCH_PS_jvmti_oops_do)) {
 560     JvmtiExport::oops_do(strong_roots);
 561   }
 562   if (UseAOT && !_process_strong_tasks->is_task_claimed(GCH_PS_aot_oops_do)) {
 563     AOTLoader::oops_do(strong_roots);
 564   }
 565 
 566   if (!_process_strong_tasks->is_task_claimed(GCH_PS_SystemDictionary_oops_do)) {
 567     SystemDictionary::roots_oops_do(strong_roots, weak_roots);
 568   }
 569 
 570   if (!_process_strong_tasks->is_task_claimed(GCH_PS_CodeCache_oops_do)) {
 571     if (so & SO_ScavengeCodeCache) {
 572       assert(code_roots != NULL, "must supply closure for code cache");
 573 
 574       // We only visit parts of the CodeCache when scavenging.
 575       CodeCache::scavenge_root_nmethods_do(code_roots);
 576     }
 577     if (so & SO_AllCodeCache) {
 578       assert(code_roots != NULL, "must supply closure for code cache");
 579 
 580       // CMSCollector uses this to do intermediate-strength collections.
 581       // We scan the entire code cache, since CodeCache::do_unloading is not called.
 582       CodeCache::blobs_do(code_roots);
 583     }
 584     // Verify that the code cache contents are not subject to
 585     // movement by a scavenging collection.
 586     DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, !CodeBlobToOopClosure::FixRelocations));
 587     DEBUG_ONLY(CodeCache::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable));
 588   }
 589 }
 590 
 591 void GenCollectedHeap::process_string_table_roots(StrongRootsScope* scope,
 592                                                   OopClosure* root_closure) {
 593   assert(root_closure != NULL, "Must be set");
 594   // All threads execute the following. A specific chunk of buckets
 595   // from the StringTable are the individual tasks.
 596   if (scope->n_threads() > 1) {
 597     StringTable::possibly_parallel_oops_do(root_closure);
 598   } else {
 599     StringTable::oops_do(root_closure);
 600   }
 601 }
 602 
 603 void GenCollectedHeap::young_process_roots(StrongRootsScope* scope,
 604                                            OopsInGenClosure* root_closure,
 605                                            OopsInGenClosure* old_gen_closure,
 606                                            CLDClosure* cld_closure) {
 607   MarkingCodeBlobClosure mark_code_closure(root_closure, CodeBlobToOopClosure::FixRelocations);
 608 
 609   process_roots(scope, SO_ScavengeCodeCache, root_closure, root_closure,
 610                 cld_closure, cld_closure, &mark_code_closure);
 611   process_string_table_roots(scope, root_closure);
 612 
 613   if (!_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 614     root_closure->reset_generation();
 615   }
 616 
 617   // When collection is parallel, all threads get to cooperate to do
 618   // old generation scanning.
 619   old_gen_closure->set_generation(_old_gen);
 620   rem_set()->younger_refs_iterate(_old_gen, old_gen_closure, scope->n_threads());
 621   old_gen_closure->reset_generation();
 622 
 623   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 624 }
 625 
 626 void GenCollectedHeap::full_process_roots(StrongRootsScope* scope,
 627                                           bool is_adjust_phase,
 628                                           ScanningOption so,
 629                                           bool only_strong_roots,
 630                                           OopsInGenClosure* root_closure,
 631                                           CLDClosure* cld_closure) {
 632   MarkingCodeBlobClosure mark_code_closure(root_closure, is_adjust_phase);
 633   OopsInGenClosure* weak_roots = only_strong_roots ? NULL : root_closure;
 634   CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
 635 
 636   process_roots(scope, so, root_closure, weak_roots, cld_closure, weak_cld_closure, &mark_code_closure);
 637   if (is_adjust_phase) {
 638     // We never treat the string table as roots during marking
 639     // for the full gc, so we only need to process it during
 640     // the adjust phase.
 641     process_string_table_roots(scope, root_closure);
 642   }
 643 
 644   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 645 }
 646 
 647 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
 648   WeakProcessor::oops_do(root_closure);
 649   _young_gen->ref_processor()->weak_oops_do(root_closure);
 650   _old_gen->ref_processor()->weak_oops_do(root_closure);
 651 }
 652 
 653 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
 654 void GenCollectedHeap::                                                 \
 655 oop_since_save_marks_iterate(GenerationType gen,                        \
 656                              OopClosureType* cur,                       \
 657                              OopClosureType* older) {                   \
 658   if (gen == YoungGen) {                              \
 659     _young_gen->oop_since_save_marks_iterate##nv_suffix(cur);           \
 660     _old_gen->oop_since_save_marks_iterate##nv_suffix(older);           \
 661   } else {                                                              \
 662     _old_gen->oop_since_save_marks_iterate##nv_suffix(cur);             \
 663   }                                                                     \
 664 }
 665 
 666 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
 667 
 668 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
 669 
 670 bool GenCollectedHeap::no_allocs_since_save_marks() {
 671   return _young_gen->no_allocs_since_save_marks() &&
 672          _old_gen->no_allocs_since_save_marks();
 673 }
 674 
 675 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 676   return _young_gen->supports_inline_contig_alloc();
 677 }
 678 
 679 HeapWord* volatile* GenCollectedHeap::top_addr() const {
 680   return _young_gen->top_addr();
 681 }
 682 
 683 HeapWord** GenCollectedHeap::end_addr() const {
 684   return _young_gen->end_addr();
 685 }
 686 
 687 // public collection interfaces
 688 
 689 void GenCollectedHeap::collect(GCCause::Cause cause) {
 690   if (cause == GCCause::_wb_young_gc) {
 691     // Young collection for the WhiteBox API.
 692     collect(cause, YoungGen);
 693   } else {
 694 #ifdef ASSERT
 695   if (cause == GCCause::_scavenge_alot) {
 696     // Young collection only.
 697     collect(cause, YoungGen);
 698   } else {
 699     // Stop-the-world full collection.
 700     collect(cause, OldGen);
 701   }
 702 #else
 703     // Stop-the-world full collection.
 704     collect(cause, OldGen);
 705 #endif
 706   }
 707 }
 708 
 709 void GenCollectedHeap::collect(GCCause::Cause cause, GenerationType max_generation) {
 710   // The caller doesn't have the Heap_lock
 711   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 712   MutexLocker ml(Heap_lock);
 713   collect_locked(cause, max_generation);
 714 }
 715 
 716 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 717   // The caller has the Heap_lock
 718   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 719   collect_locked(cause, OldGen);
 720 }
 721 
 722 // this is the private collection interface
 723 // The Heap_lock is expected to be held on entry.
 724 
 725 void GenCollectedHeap::collect_locked(GCCause::Cause cause, GenerationType max_generation) {
 726   // Read the GC count while holding the Heap_lock
 727   unsigned int gc_count_before      = total_collections();
 728   unsigned int full_gc_count_before = total_full_collections();
 729   {
 730     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 731     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 732                          cause, max_generation);
 733     VMThread::execute(&op);
 734   }
 735 }
 736 
 737 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 738    do_full_collection(clear_all_soft_refs, OldGen);
 739 }
 740 
 741 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 742                                           GenerationType last_generation) {
 743   GenerationType local_last_generation;
 744   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
 745       gc_cause() == GCCause::_gc_locker) {
 746     local_last_generation = YoungGen;
 747   } else {
 748     local_last_generation = last_generation;
 749   }
 750 
 751   do_collection(true,                   // full
 752                 clear_all_soft_refs,    // clear_all_soft_refs
 753                 0,                      // size
 754                 false,                  // is_tlab
 755                 local_last_generation); // last_generation
 756   // Hack XXX FIX ME !!!
 757   // A scavenge may not have been attempted, or may have
 758   // been attempted and failed, because the old gen was too full
 759   if (local_last_generation == YoungGen && gc_cause() == GCCause::_gc_locker &&
 760       incremental_collection_will_fail(false /* don't consult_young */)) {
 761     log_debug(gc, jni)("GC locker: Trying a full collection because scavenge failed");
 762     // This time allow the old gen to be collected as well
 763     do_collection(true,                // full
 764                   clear_all_soft_refs, // clear_all_soft_refs
 765                   0,                   // size
 766                   false,               // is_tlab
 767                   OldGen);             // last_generation
 768   }
 769 }
 770 
 771 bool GenCollectedHeap::is_in_young(oop p) {
 772   bool result = ((HeapWord*)p) < _old_gen->reserved().start();
 773   assert(result == _young_gen->is_in_reserved(p),
 774          "incorrect test - result=%d, p=" INTPTR_FORMAT, result, p2i((void*)p));
 775   return result;
 776 }
 777 
 778 // Returns "TRUE" iff "p" points into the committed areas of the heap.
 779 bool GenCollectedHeap::is_in(const void* p) const {
 780   return _young_gen->is_in(p) || _old_gen->is_in(p);
 781 }
 782 
 783 #ifdef ASSERT
 784 // Don't implement this by using is_in_young().  This method is used
 785 // in some cases to check that is_in_young() is correct.
 786 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
 787   assert(is_in_reserved(p) || p == NULL,
 788     "Does not work if address is non-null and outside of the heap");
 789   return p < _young_gen->reserved().end() && p != NULL;
 790 }
 791 #endif
 792 
 793 void GenCollectedHeap::oop_iterate_no_header(OopClosure* cl) {
 794   NoHeaderExtendedOopClosure no_header_cl(cl);
 795   oop_iterate(&no_header_cl);
 796 }
 797 
 798 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
 799   _young_gen->oop_iterate(cl);
 800   _old_gen->oop_iterate(cl);
 801 }
 802 
 803 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
 804   _young_gen->object_iterate(cl);
 805   _old_gen->object_iterate(cl);
 806 }
 807 
 808 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
 809   _young_gen->safe_object_iterate(cl);
 810   _old_gen->safe_object_iterate(cl);
 811 }
 812 
 813 Space* GenCollectedHeap::space_containing(const void* addr) const {
 814   Space* res = _young_gen->space_containing(addr);
 815   if (res != NULL) {
 816     return res;
 817   }
 818   res = _old_gen->space_containing(addr);
 819   assert(res != NULL, "Could not find containing space");
 820   return res;
 821 }
 822 
 823 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
 824   assert(is_in_reserved(addr), "block_start of address outside of heap");
 825   if (_young_gen->is_in_reserved(addr)) {
 826     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 827     return _young_gen->block_start(addr);
 828   }
 829 
 830   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 831   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 832   return _old_gen->block_start(addr);
 833 }
 834 
 835 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
 836   assert(is_in_reserved(addr), "block_size of address outside of heap");
 837   if (_young_gen->is_in_reserved(addr)) {
 838     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 839     return _young_gen->block_size(addr);
 840   }
 841 
 842   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 843   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 844   return _old_gen->block_size(addr);
 845 }
 846 
 847 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
 848   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
 849   assert(block_start(addr) == addr, "addr must be a block start");
 850   if (_young_gen->is_in_reserved(addr)) {
 851     return _young_gen->block_is_obj(addr);
 852   }
 853 
 854   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 855   return _old_gen->block_is_obj(addr);
 856 }
 857 
 858 bool GenCollectedHeap::supports_tlab_allocation() const {
 859   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 860   return _young_gen->supports_tlab_allocation();
 861 }
 862 
 863 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
 864   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 865   if (_young_gen->supports_tlab_allocation()) {
 866     return _young_gen->tlab_capacity();
 867   }
 868   return 0;
 869 }
 870 
 871 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
 872   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 873   if (_young_gen->supports_tlab_allocation()) {
 874     return _young_gen->tlab_used();
 875   }
 876   return 0;
 877 }
 878 
 879 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 880   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 881   if (_young_gen->supports_tlab_allocation()) {
 882     return _young_gen->unsafe_max_tlab_alloc();
 883   }
 884   return 0;
 885 }
 886 
 887 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
 888   bool gc_overhead_limit_was_exceeded;
 889   return gen_policy()->mem_allocate_work(size /* size */,
 890                                          true /* is_tlab */,
 891                                          &gc_overhead_limit_was_exceeded);
 892 }
 893 
 894 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
 895 // from the list headed by "*prev_ptr".
 896 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
 897   bool first = true;
 898   size_t min_size = 0;   // "first" makes this conceptually infinite.
 899   ScratchBlock **smallest_ptr, *smallest;
 900   ScratchBlock  *cur = *prev_ptr;
 901   while (cur) {
 902     assert(*prev_ptr == cur, "just checking");
 903     if (first || cur->num_words < min_size) {
 904       smallest_ptr = prev_ptr;
 905       smallest     = cur;
 906       min_size     = smallest->num_words;
 907       first        = false;
 908     }
 909     prev_ptr = &cur->next;
 910     cur     =  cur->next;
 911   }
 912   smallest      = *smallest_ptr;
 913   *smallest_ptr = smallest->next;
 914   return smallest;
 915 }
 916 
 917 // Sort the scratch block list headed by res into decreasing size order,
 918 // and set "res" to the result.
 919 static void sort_scratch_list(ScratchBlock*& list) {
 920   ScratchBlock* sorted = NULL;
 921   ScratchBlock* unsorted = list;
 922   while (unsorted) {
 923     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
 924     smallest->next  = sorted;
 925     sorted          = smallest;
 926   }
 927   list = sorted;
 928 }
 929 
 930 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
 931                                                size_t max_alloc_words) {
 932   ScratchBlock* res = NULL;
 933   _young_gen->contribute_scratch(res, requestor, max_alloc_words);
 934   _old_gen->contribute_scratch(res, requestor, max_alloc_words);
 935   sort_scratch_list(res);
 936   return res;
 937 }
 938 
 939 void GenCollectedHeap::release_scratch() {
 940   _young_gen->reset_scratch();
 941   _old_gen->reset_scratch();
 942 }
 943 
 944 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
 945   void do_generation(Generation* gen) {
 946     gen->prepare_for_verify();
 947   }
 948 };
 949 
 950 void GenCollectedHeap::prepare_for_verify() {
 951   ensure_parsability(false);        // no need to retire TLABs
 952   GenPrepareForVerifyClosure blk;
 953   generation_iterate(&blk, false);
 954 }
 955 
 956 void GenCollectedHeap::generation_iterate(GenClosure* cl,
 957                                           bool old_to_young) {
 958   if (old_to_young) {
 959     cl->do_generation(_old_gen);
 960     cl->do_generation(_young_gen);
 961   } else {
 962     cl->do_generation(_young_gen);
 963     cl->do_generation(_old_gen);
 964   }
 965 }
 966 
 967 bool GenCollectedHeap::is_maximal_no_gc() const {
 968   return _young_gen->is_maximal_no_gc() && _old_gen->is_maximal_no_gc();
 969 }
 970 
 971 void GenCollectedHeap::save_marks() {
 972   _young_gen->save_marks();
 973   _old_gen->save_marks();
 974 }
 975 
 976 GenCollectedHeap* GenCollectedHeap::heap() {
 977   CollectedHeap* heap = Universe::heap();
 978   assert(heap != NULL, "Uninitialized access to GenCollectedHeap::heap()");
 979   assert(heap->kind() == CollectedHeap::SerialHeap ||
 980          heap->kind() == CollectedHeap::CMSHeap, "Not a GenCollectedHeap");
 981   return (GenCollectedHeap*) heap;
 982 }
 983 
 984 void GenCollectedHeap::prepare_for_compaction() {
 985   // Start by compacting into same gen.
 986   CompactPoint cp(_old_gen);
 987   _old_gen->prepare_for_compaction(&cp);
 988   _young_gen->prepare_for_compaction(&cp);
 989 }
 990 
 991 void GenCollectedHeap::verify(VerifyOption option /* ignored */) {
 992   log_debug(gc, verify)("%s", _old_gen->name());
 993   _old_gen->verify();
 994 
 995   log_debug(gc, verify)("%s", _old_gen->name());
 996   _young_gen->verify();
 997 
 998   log_debug(gc, verify)("RemSet");
 999   rem_set()->verify();
1000 }
1001 
1002 void GenCollectedHeap::print_on(outputStream* st) const {
1003   _young_gen->print_on(st);
1004   _old_gen->print_on(st);
1005   MetaspaceAux::print_on(st);
1006 }
1007 
1008 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1009 }
1010 
1011 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1012 }
1013 
1014 void GenCollectedHeap::print_tracing_info() const {
1015   if (log_is_enabled(Debug, gc, heap, exit)) {
1016     LogStreamHandle(Debug, gc, heap, exit) lsh;
1017     _young_gen->print_summary_info_on(&lsh);
1018     _old_gen->print_summary_info_on(&lsh);
1019   }
1020 }
1021 
1022 void GenCollectedHeap::print_heap_change(size_t young_prev_used, size_t old_prev_used) const {
1023   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1024                      _young_gen->short_name(), young_prev_used / K, _young_gen->used() /K, _young_gen->capacity() /K);
1025   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1026                      _old_gen->short_name(), old_prev_used / K, _old_gen->used() /K, _old_gen->capacity() /K);
1027 }
1028 
1029 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1030  private:
1031   bool _full;
1032  public:
1033   void do_generation(Generation* gen) {
1034     gen->gc_prologue(_full);
1035   }
1036   GenGCPrologueClosure(bool full) : _full(full) {};
1037 };
1038 
1039 void GenCollectedHeap::gc_prologue(bool full) {
1040   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1041 
1042   // Fill TLAB's and such
1043   CollectedHeap::accumulate_statistics_all_tlabs();
1044   ensure_parsability(true);   // retire TLABs
1045 
1046   // Walk generations
1047   GenGCPrologueClosure blk(full);
1048   generation_iterate(&blk, false);  // not old-to-young.
1049 };
1050 
1051 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1052  private:
1053   bool _full;
1054  public:
1055   void do_generation(Generation* gen) {
1056     gen->gc_epilogue(_full);
1057   }
1058   GenGCEpilogueClosure(bool full) : _full(full) {};
1059 };
1060 
1061 void GenCollectedHeap::gc_epilogue(bool full) {
1062 #if COMPILER2_OR_JVMCI
1063   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1064   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1065   guarantee(is_client_compilation_mode_vm() || actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1066 #endif // COMPILER2_OR_JVMCI
1067 
1068   resize_all_tlabs();
1069 
1070   GenGCEpilogueClosure blk(full);
1071   generation_iterate(&blk, false);  // not old-to-young.
1072 
1073   if (!CleanChunkPoolAsync) {
1074     Chunk::clean_chunk_pool();
1075   }
1076 
1077   MetaspaceCounters::update_performance_counters();
1078   CompressedClassSpaceCounters::update_performance_counters();
1079 };
1080 
1081 #ifndef PRODUCT
1082 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1083  private:
1084  public:
1085   void do_generation(Generation* gen) {
1086     gen->record_spaces_top();
1087   }
1088 };
1089 
1090 void GenCollectedHeap::record_gen_tops_before_GC() {
1091   if (ZapUnusedHeapArea) {
1092     GenGCSaveTopsBeforeGCClosure blk;
1093     generation_iterate(&blk, false);  // not old-to-young.
1094   }
1095 }
1096 #endif  // not PRODUCT
1097 
1098 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1099  public:
1100   void do_generation(Generation* gen) {
1101     gen->ensure_parsability();
1102   }
1103 };
1104 
1105 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1106   CollectedHeap::ensure_parsability(retire_tlabs);
1107   GenEnsureParsabilityClosure ep_cl;
1108   generation_iterate(&ep_cl, false);
1109 }
1110 
1111 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1112                                               oop obj,
1113                                               size_t obj_size) {
1114   guarantee(old_gen == _old_gen, "We only get here with an old generation");
1115   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1116   HeapWord* result = NULL;
1117 
1118   result = old_gen->expand_and_allocate(obj_size, false);
1119 
1120   if (result != NULL) {
1121     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1122   }
1123   return oop(result);
1124 }
1125 
1126 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1127   jlong _time;   // in ms
1128   jlong _now;    // in ms
1129 
1130  public:
1131   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1132 
1133   jlong time() { return _time; }
1134 
1135   void do_generation(Generation* gen) {
1136     _time = MIN2(_time, gen->time_of_last_gc(_now));
1137   }
1138 };
1139 
1140 jlong GenCollectedHeap::millis_since_last_gc() {
1141   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1142   // provided the underlying platform provides such a time source
1143   // (and it is bug free). So we still have to guard against getting
1144   // back a time later than 'now'.
1145   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1146   GenTimeOfLastGCClosure tolgc_cl(now);
1147   // iterate over generations getting the oldest
1148   // time that a generation was collected
1149   generation_iterate(&tolgc_cl, false);
1150 
1151   jlong retVal = now - tolgc_cl.time();
1152   if (retVal < 0) {
1153     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
1154        ". returning zero instead.", retVal);
1155     return 0;
1156   }
1157   return retVal;
1158 }