1 /*
  2  * Copyright (c) 2017, 2018, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_VM_RUNTIME_ACCESS_HPP
 26 #define SHARE_VM_RUNTIME_ACCESS_HPP
 27 
 28 #include "memory/allocation.hpp"
 29 #include "metaprogramming/decay.hpp"
 30 #include "metaprogramming/integralConstant.hpp"
 31 #include "oops/oopsHierarchy.hpp"
 32 #include "utilities/debug.hpp"
 33 #include "utilities/globalDefinitions.hpp"
 34 
 35 // = GENERAL =
 36 // Access is an API for performing accesses with declarative semantics. Each access can have a number of "decorators".
 37 // A decorator is an attribute or property that affects the way a memory access is performed in some way.
 38 // There are different groups of decorators. Some have to do with memory ordering, others to do with,
 39 // e.g. strength of references, strength of GC barriers, or whether compression should be applied or not.
 40 // Some decorators are set at buildtime, such as whether primitives require GC barriers or not, others
 41 // at callsites such as whether an access is in the heap or not, and others are resolved at runtime
 42 // such as GC-specific barriers and encoding/decoding compressed oops.
 43 // By pipelining handling of these decorators, the design of the Access API allows separation of concern
 44 // over the different orthogonal concerns of decorators, while providing a powerful way of
 45 // expressing these orthogonal semantic properties in a unified way.
 46 
 47 // == OPERATIONS ==
 48 // * load: Load a value from an address.
 49 // * load_at: Load a value from an internal pointer relative to a base object.
 50 // * store: Store a value at an address.
 51 // * store_at: Store a value in an internal pointer relative to a base object.
 52 // * atomic_cmpxchg: Atomically compare-and-swap a new value at an address if previous value matched the compared value.
 53 // * atomic_cmpxchg_at: Atomically compare-and-swap a new value at an internal pointer address if previous value matched the compared value.
 54 // * atomic_xchg: Atomically swap a new value at an address if previous value matched the compared value.
 55 // * atomic_xchg_at: Atomically swap a new value at an internal pointer address if previous value matched the compared value.
 56 // * arraycopy: Copy data from one heap array to another heap array.
 57 // * clone: Clone the contents of an object to a newly allocated object.
 58 // * resolve: Resolve a stable to-space invariant oop that is guaranteed not to relocate its payload until a subsequent thread transition.
 59 // * equals: Object equality, e.g. when different copies of the same objects are in use (from-space vs. to-space)
 60 typedef uint64_t DecoratorSet;
 61 
 62 // == Internal Decorators - do not use ==
 63 // * INTERNAL_EMPTY: This is the name for the empty decorator set (in absence of other decorators).
 64 // * INTERNAL_CONVERT_COMPRESSED_OOPS: This is an oop access that will require converting an oop
 65 //   to a narrowOop or vice versa, if UseCompressedOops is known to be set.
 66 // * INTERNAL_VALUE_IS_OOP: Remember that the involved access is on oop rather than primitive.
 67 const DecoratorSet INTERNAL_EMPTY                    = UCONST64(0);
 68 const DecoratorSet INTERNAL_CONVERT_COMPRESSED_OOP   = UCONST64(1) << 1;
 69 const DecoratorSet INTERNAL_VALUE_IS_OOP             = UCONST64(1) << 2;
 70 
 71 // == Internal build-time Decorators ==
 72 // * INTERNAL_BT_BARRIER_ON_PRIMITIVES: This is set in the barrierSetConfig.hpp file.
 73 // * INTERNAL_BT_TO_SPACE_INVARIANT: This is set in the barrierSetConfig.hpp file iff
 74 //   no GC is bundled in the build that is to-space invariant.
 75 const DecoratorSet INTERNAL_BT_BARRIER_ON_PRIMITIVES = UCONST64(1) << 3;
 76 const DecoratorSet INTERNAL_BT_TO_SPACE_INVARIANT    = UCONST64(1) << 4;
 77 
 78 // == Internal run-time Decorators ==
 79 // * INTERNAL_RT_USE_COMPRESSED_OOPS: This decorator will be set in runtime resolved
 80 //   access backends iff UseCompressedOops is true.
 81 const DecoratorSet INTERNAL_RT_USE_COMPRESSED_OOPS   = UCONST64(1) << 5;
 82 
 83 const DecoratorSet INTERNAL_DECORATOR_MASK           = INTERNAL_CONVERT_COMPRESSED_OOP | INTERNAL_VALUE_IS_OOP |
 84                                                        INTERNAL_BT_BARRIER_ON_PRIMITIVES | INTERNAL_RT_USE_COMPRESSED_OOPS;
 85 
 86 // == Memory Ordering Decorators ==
 87 // The memory ordering decorators can be described in the following way:
 88 // === Decorator Rules ===
 89 // The different types of memory ordering guarantees have a strict order of strength.
 90 // Explicitly specifying the stronger ordering implies that the guarantees of the weaker
 91 // property holds too. The names come from the C++11 atomic operations, and typically
 92 // have a JMM equivalent property.
 93 // The equivalence may be viewed like this:
 94 // MO_UNORDERED is equivalent to JMM plain.
 95 // MO_VOLATILE has no equivalence in JMM, because it's a C++ thing.
 96 // MO_RELAXED is equivalent to JMM opaque.
 97 // MO_ACQUIRE is equivalent to JMM acquire.
 98 // MO_RELEASE is equivalent to JMM release.
 99 // MO_SEQ_CST is equivalent to JMM volatile.
100 //
101 // === Stores ===
102 //  * MO_UNORDERED (Default): No guarantees.
103 //    - The compiler and hardware are free to reorder aggressively. And they will.
104 //  * MO_VOLATILE: Volatile stores (in the C++ sense).
105 //    - The stores are not reordered by the compiler (but possibly the HW) w.r.t. other
106 //      volatile accesses in program order (but possibly non-volatile accesses).
107 //  * MO_RELAXED: Relaxed atomic stores.
108 //    - The stores are atomic.
109 //    - Guarantees from volatile stores hold.
110 //  * MO_RELEASE: Releasing stores.
111 //    - The releasing store will make its preceding memory accesses observable to memory accesses
112 //      subsequent to an acquiring load observing this releasing store.
113 //    - Guarantees from relaxed stores hold.
114 //  * MO_SEQ_CST: Sequentially consistent stores.
115 //    - The stores are observed in the same order by MO_SEQ_CST loads on other processors
116 //    - Preceding loads and stores in program order are not reordered with subsequent loads and stores in program order.
117 //    - Guarantees from releasing stores hold.
118 // === Loads ===
119 //  * MO_UNORDERED (Default): No guarantees
120 //    - The compiler and hardware are free to reorder aggressively. And they will.
121 //  * MO_VOLATILE: Volatile loads (in the C++ sense).
122 //    - The loads are not reordered by the compiler (but possibly the HW) w.r.t. other
123 //      volatile accesses in program order (but possibly non-volatile accesses).
124 //  * MO_RELAXED: Relaxed atomic loads.
125 //    - The stores are atomic.
126 //    - Guarantees from volatile loads hold.
127 //  * MO_ACQUIRE: Acquiring loads.
128 //    - An acquiring load will make subsequent memory accesses observe the memory accesses
129 //      preceding the releasing store that the acquiring load observed.
130 //    - Guarantees from relaxed loads hold.
131 //  * MO_SEQ_CST: Sequentially consistent loads.
132 //    - These loads observe MO_SEQ_CST stores in the same order on other processors
133 //    - Preceding loads and stores in program order are not reordered with subsequent loads and stores in program order.
134 //    - Guarantees from acquiring loads hold.
135 // === Atomic Cmpxchg ===
136 //  * MO_RELAXED: Atomic but relaxed cmpxchg.
137 //    - Guarantees from MO_RELAXED loads and MO_RELAXED stores hold unconditionally.
138 //  * MO_SEQ_CST: Sequentially consistent cmpxchg.
139 //    - Guarantees from MO_SEQ_CST loads and MO_SEQ_CST stores hold unconditionally.
140 // === Atomic Xchg ===
141 //  * MO_RELAXED: Atomic but relaxed atomic xchg.
142 //    - Guarantees from MO_RELAXED loads and MO_RELAXED stores hold.
143 //  * MO_SEQ_CST: Sequentially consistent xchg.
144 //    - Guarantees from MO_SEQ_CST loads and MO_SEQ_CST stores hold.
145 const DecoratorSet MO_UNORDERED      = UCONST64(1) << 6;
146 const DecoratorSet MO_VOLATILE       = UCONST64(1) << 7;
147 const DecoratorSet MO_RELAXED        = UCONST64(1) << 8;
148 const DecoratorSet MO_ACQUIRE        = UCONST64(1) << 9;
149 const DecoratorSet MO_RELEASE        = UCONST64(1) << 10;
150 const DecoratorSet MO_SEQ_CST        = UCONST64(1) << 11;
151 const DecoratorSet MO_DECORATOR_MASK = MO_UNORDERED | MO_VOLATILE | MO_RELAXED |
152                                        MO_ACQUIRE | MO_RELEASE | MO_SEQ_CST;
153 
154 // === Barrier Strength Decorators ===
155 // * AS_RAW: The access will translate into a raw memory access, hence ignoring all semantic concerns
156 //   except memory ordering and compressed oops. This will bypass runtime function pointer dispatching
157 //   in the pipeline and hardwire to raw accesses without going trough the GC access barriers.
158 //  - Accesses on oop* translate to raw memory accesses without runtime checks
159 //  - Accesses on narrowOop* translate to encoded/decoded memory accesses without runtime checks
160 //  - Accesses on HeapWord* translate to a runtime check choosing one of the above
161 //  - Accesses on other types translate to raw memory accesses without runtime checks
162 // * AS_DEST_NOT_INITIALIZED: This property can be important to e.g. SATB barriers by
163 //   marking that the previous value is uninitialized nonsense rather than a real value.
164 // * AS_NO_KEEPALIVE: The barrier is used only on oop references and will not keep any involved objects
165 //   alive, regardless of the type of reference being accessed. It will however perform the memory access
166 //   in a consistent way w.r.t. e.g. concurrent compaction, so that the right field is being accessed,
167 //   or maintain, e.g. intergenerational or interregional pointers if applicable. This should be used with
168 //   extreme caution in isolated scopes.
169 // * AS_NORMAL: The accesses will be resolved to an accessor on the BarrierSet class, giving the
170 //   responsibility of performing the access and what barriers to be performed to the GC. This is the default.
171 //   Note that primitive accesses will only be resolved on the barrier set if the appropriate build-time
172 //   decorator for enabling primitive barriers is enabled for the build.
173 const DecoratorSet AS_RAW                  = UCONST64(1) << 12;
174 const DecoratorSet AS_DEST_NOT_INITIALIZED = UCONST64(1) << 13;
175 const DecoratorSet AS_NO_KEEPALIVE         = UCONST64(1) << 14;
176 const DecoratorSet AS_NORMAL               = UCONST64(1) << 15;
177 const DecoratorSet AS_DECORATOR_MASK       = AS_RAW | AS_DEST_NOT_INITIALIZED |
178                                              AS_NO_KEEPALIVE | AS_NORMAL;
179 
180 // === Reference Strength Decorators ===
181 // These decorators only apply to accesses on oop-like types (oop/narrowOop).
182 // * ON_STRONG_OOP_REF: Memory access is performed on a strongly reachable reference.
183 // * ON_WEAK_OOP_REF: The memory access is performed on a weakly reachable reference.
184 // * ON_PHANTOM_OOP_REF: The memory access is performed on a phantomly reachable reference.
185 //   This is the same ring of strength as jweak and weak oops in the VM.
186 // * ON_UNKNOWN_OOP_REF: The memory access is performed on a reference of unknown strength.
187 //   This could for example come from the unsafe API.
188 // * Default (no explicit reference strength specified): ON_STRONG_OOP_REF
189 const DecoratorSet ON_STRONG_OOP_REF  = UCONST64(1) << 16;
190 const DecoratorSet ON_WEAK_OOP_REF    = UCONST64(1) << 17;
191 const DecoratorSet ON_PHANTOM_OOP_REF = UCONST64(1) << 18;
192 const DecoratorSet ON_UNKNOWN_OOP_REF = UCONST64(1) << 19;
193 const DecoratorSet ON_DECORATOR_MASK  = ON_STRONG_OOP_REF | ON_WEAK_OOP_REF |
194                                         ON_PHANTOM_OOP_REF | ON_UNKNOWN_OOP_REF;
195 
196 // === Access Location ===
197 // Accesses can take place in, e.g. the heap, old or young generation and different native roots.
198 // The location is important to the GC as it may imply different actions. The following decorators are used:
199 // * IN_HEAP: The access is performed in the heap. Many barriers such as card marking will
200 //   be omitted if this decorator is not set.
201 // * IN_HEAP_ARRAY: The access is performed on a heap allocated array. This is sometimes a special case
202 //   for some GCs, and implies that it is an IN_HEAP.
203 // * IN_ROOT: The access is performed in an off-heap data structure pointing into the Java heap.
204 // * IN_CONCURRENT_ROOT: The access is performed in an off-heap data structure pointing into the Java heap,
205 //   but is notably not scanned during safepoints. This is sometimes a special case for some GCs and
206 //   implies that it is also an IN_ROOT.
207 const DecoratorSet IN_HEAP            = UCONST64(1) << 20;
208 const DecoratorSet IN_HEAP_ARRAY      = UCONST64(1) << 21;
209 const DecoratorSet IN_ROOT            = UCONST64(1) << 22;
210 const DecoratorSet IN_CONCURRENT_ROOT = UCONST64(1) << 23;
211 const DecoratorSet IN_ARCHIVE_ROOT    = UCONST64(1) << 24;
212 const DecoratorSet IN_DECORATOR_MASK  = IN_HEAP | IN_HEAP_ARRAY |
213                                         IN_ROOT | IN_CONCURRENT_ROOT |
214                                         IN_ARCHIVE_ROOT;
215 
216 // == Value Decorators ==
217 // * OOP_NOT_NULL: This property can make certain barriers faster such as compressing oops.
218 const DecoratorSet OOP_NOT_NULL       = UCONST64(1) << 25;
219 const DecoratorSet OOP_DECORATOR_MASK = OOP_NOT_NULL;
220 
221 // == Arraycopy Decorators ==
222 // * ARRAYCOPY_CHECKCAST: This property means that the class of the objects in source
223 //   are not guaranteed to be subclasses of the class of the destination array. This requires
224 //   a check-cast barrier during the copying operation. If this is not set, it is assumed
225 //   that the array is covariant: (the source array type is-a destination array type)
226 // * ARRAYCOPY_DISJOINT: This property means that it is known that the two array ranges
227 //   are disjoint.
228 // * ARRAYCOPY_ARRAYOF: The copy is in the arrayof form.
229 // * ARRAYCOPY_ATOMIC: The accesses have to be atomic over the size of its elements.
230 // * ARRAYCOPY_ALIGNED: The accesses have to be aligned on a HeapWord.
231 const DecoratorSet ARRAYCOPY_CHECKCAST            = UCONST64(1) << 26;
232 const DecoratorSet ARRAYCOPY_DISJOINT             = UCONST64(1) << 27;
233 const DecoratorSet ARRAYCOPY_ARRAYOF              = UCONST64(1) << 28;
234 const DecoratorSet ARRAYCOPY_ATOMIC               = UCONST64(1) << 29;
235 const DecoratorSet ARRAYCOPY_ALIGNED              = UCONST64(1) << 30;
236 const DecoratorSet ARRAYCOPY_DECORATOR_MASK       = ARRAYCOPY_CHECKCAST | ARRAYCOPY_DISJOINT |
237                                                     ARRAYCOPY_DISJOINT | ARRAYCOPY_ARRAYOF |
238                                                     ARRAYCOPY_ATOMIC | ARRAYCOPY_ALIGNED;
239 
240 // The HasDecorator trait can help at compile-time determining whether a decorator set
241 // has an intersection with a certain other decorator set
242 template <DecoratorSet decorators, DecoratorSet decorator>
243 struct HasDecorator: public IntegralConstant<bool, (decorators & decorator) != 0> {};
244 
245 namespace AccessInternal {
246   template <typename T>
247   struct OopOrNarrowOopInternal: AllStatic {
248     typedef oop type;
249   };
250 
251   template <>
252   struct OopOrNarrowOopInternal<narrowOop>: AllStatic {
253     typedef narrowOop type;
254   };
255 
256   // This metafunction returns a canonicalized oop/narrowOop type for a passed
257   // in oop-like types passed in from oop_* overloads where the user has sworn
258   // that the passed in values should be oop-like (e.g. oop, oopDesc*, arrayOop,
259   // narrowOoop, instanceOopDesc*, and random other things).
260   // In the oop_* overloads, it must hold that if the passed in type T is not
261   // narrowOop, then it by contract has to be one of many oop-like types implicitly
262   // convertible to oop, and hence returns oop as the canonical oop type.
263   // If it turns out it was not, then the implicit conversion to oop will fail
264   // to compile, as desired.
265   template <typename T>
266   struct OopOrNarrowOop: AllStatic {
267     typedef typename OopOrNarrowOopInternal<typename Decay<T>::type>::type type;
268   };
269 
270   inline void* field_addr(oop base, ptrdiff_t byte_offset) {
271     return reinterpret_cast<void*>(reinterpret_cast<intptr_t>((void*)base) + byte_offset);
272   }
273 
274   template <DecoratorSet decorators, typename T>
275   void store_at(oop base, ptrdiff_t offset, T value);
276 
277   template <DecoratorSet decorators, typename T>
278   T load_at(oop base, ptrdiff_t offset);
279 
280   template <DecoratorSet decorators, typename T>
281   T atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value);
282 
283   template <DecoratorSet decorators, typename T>
284   T atomic_xchg_at(T new_value, oop base, ptrdiff_t offset);
285 
286   template <DecoratorSet decorators, typename P, typename T>
287   void store(P* addr, T value);
288 
289   template <DecoratorSet decorators, typename P, typename T>
290   T load(P* addr);
291 
292   template <DecoratorSet decorators, typename P, typename T>
293   T atomic_cmpxchg(T new_value, P* addr, T compare_value);
294 
295   template <DecoratorSet decorators, typename P, typename T>
296   T atomic_xchg(T new_value, P* addr);
297 
298   template <DecoratorSet decorators, typename T>
299   bool arraycopy(arrayOop src_obj, arrayOop dst_obj, T *src, T *dst, size_t length);
300 
301   template <DecoratorSet decorators>
302   void clone(oop src, oop dst, size_t size);
303 
304   template <DecoratorSet decorators>
305   oop resolve(oop src);
306 
307   template <DecoratorSet decorators>
308   bool equals(oop o1, oop o2);
309 
310   // Infer the type that should be returned from a load.
311   template <typename P, DecoratorSet decorators>
312   class OopLoadProxy: public StackObj {
313   private:
314     P *const _addr;
315   public:
316     OopLoadProxy(P* addr) : _addr(addr) {}
317 
318     inline operator oop() {
319       return load<decorators | INTERNAL_VALUE_IS_OOP, P, oop>(_addr);
320     }
321 
322     inline operator narrowOop() {
323       return load<decorators | INTERNAL_VALUE_IS_OOP, P, narrowOop>(_addr);
324     }
325 
326     template <typename T>
327     inline bool operator ==(const T& other) const {
328       return load<decorators | INTERNAL_VALUE_IS_OOP, P, T>(_addr) == other;
329     }
330 
331     template <typename T>
332     inline bool operator !=(const T& other) const {
333       return load<decorators | INTERNAL_VALUE_IS_OOP, P, T>(_addr) != other;
334     }
335   };
336 
337   // Infer the type that should be returned from a load_at.
338   template <DecoratorSet decorators>
339   class LoadAtProxy: public StackObj {
340   private:
341     const oop _base;
342     const ptrdiff_t _offset;
343   public:
344     LoadAtProxy(oop base, ptrdiff_t offset) : _base(base), _offset(offset) {}
345 
346     template <typename T>
347     inline operator T() const {
348       return load_at<decorators, T>(_base, _offset);
349     }
350 
351     template <typename T>
352     inline bool operator ==(const T& other) const { return load_at<decorators, T>(_base, _offset) == other; }
353 
354     template <typename T>
355     inline bool operator !=(const T& other) const { return load_at<decorators, T>(_base, _offset) != other; }
356   };
357 
358   template <DecoratorSet decorators>
359   class OopLoadAtProxy: public StackObj {
360   private:
361     const oop _base;
362     const ptrdiff_t _offset;
363   public:
364     OopLoadAtProxy(oop base, ptrdiff_t offset) : _base(base), _offset(offset) {}
365 
366     inline operator oop() const {
367       return load_at<decorators | INTERNAL_VALUE_IS_OOP, oop>(_base, _offset);
368     }
369 
370     inline operator narrowOop() const {
371       return load_at<decorators | INTERNAL_VALUE_IS_OOP, narrowOop>(_base, _offset);
372     }
373 
374     template <typename T>
375     inline bool operator ==(const T& other) const {
376       return load_at<decorators | INTERNAL_VALUE_IS_OOP, T>(_base, _offset) == other;
377     }
378 
379     template <typename T>
380     inline bool operator !=(const T& other) const {
381       return load_at<decorators | INTERNAL_VALUE_IS_OOP, T>(_base, _offset) != other;
382     }
383   };
384 }
385 
386 template <DecoratorSet decorators = INTERNAL_EMPTY>
387 class Access: public AllStatic {
388   // This function asserts that if an access gets passed in a decorator outside
389   // of the expected_decorators, then something is wrong. It additionally checks
390   // the consistency of the decorators so that supposedly disjoint decorators are indeed
391   // disjoint. For example, an access can not be both in heap and on root at the
392   // same time.
393   template <DecoratorSet expected_decorators>
394   static void verify_decorators();
395 
396   template <DecoratorSet expected_mo_decorators>
397   static void verify_primitive_decorators() {
398     const DecoratorSet primitive_decorators = (AS_DECORATOR_MASK ^ AS_NO_KEEPALIVE ^ AS_DEST_NOT_INITIALIZED) |
399                                               IN_HEAP | IN_HEAP_ARRAY;
400     verify_decorators<expected_mo_decorators | primitive_decorators>();
401   }
402 
403   template <DecoratorSet expected_mo_decorators>
404   static void verify_oop_decorators() {
405     const DecoratorSet oop_decorators = AS_DECORATOR_MASK | IN_DECORATOR_MASK |
406                                         (ON_DECORATOR_MASK ^ ON_UNKNOWN_OOP_REF) | // no unknown oop refs outside of the heap
407                                         OOP_DECORATOR_MASK;
408     verify_decorators<expected_mo_decorators | oop_decorators>();
409   }
410 
411   template <DecoratorSet expected_mo_decorators>
412   static void verify_heap_oop_decorators() {
413     const DecoratorSet heap_oop_decorators = AS_DECORATOR_MASK | ON_DECORATOR_MASK |
414                                              OOP_DECORATOR_MASK | (IN_DECORATOR_MASK ^
415                                                                    (IN_ROOT | IN_CONCURRENT_ROOT)); // no root accesses in the heap
416     verify_decorators<expected_mo_decorators | heap_oop_decorators>();
417   }
418 
419   static const DecoratorSet load_mo_decorators = MO_UNORDERED | MO_VOLATILE | MO_RELAXED | MO_ACQUIRE | MO_SEQ_CST;
420   static const DecoratorSet store_mo_decorators = MO_UNORDERED | MO_VOLATILE | MO_RELAXED | MO_RELEASE | MO_SEQ_CST;
421   static const DecoratorSet atomic_xchg_mo_decorators = MO_SEQ_CST;
422   static const DecoratorSet atomic_cmpxchg_mo_decorators = MO_RELAXED | MO_SEQ_CST;
423 
424 public:
425   // Primitive heap accesses
426   static inline AccessInternal::LoadAtProxy<decorators> load_at(oop base, ptrdiff_t offset) {
427     verify_primitive_decorators<load_mo_decorators>();
428     return AccessInternal::LoadAtProxy<decorators>(base, offset);
429   }
430 
431   template <typename T>
432   static inline void store_at(oop base, ptrdiff_t offset, T value) {
433     verify_primitive_decorators<store_mo_decorators>();
434     AccessInternal::store_at<decorators>(base, offset, value);
435   }
436 
437   template <typename T>
438   static inline T atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value) {
439     verify_primitive_decorators<atomic_cmpxchg_mo_decorators>();
440     return AccessInternal::atomic_cmpxchg_at<decorators>(new_value, base, offset, compare_value);
441   }
442 
443   template <typename T>
444   static inline T atomic_xchg_at(T new_value, oop base, ptrdiff_t offset) {
445     verify_primitive_decorators<atomic_xchg_mo_decorators>();
446     return AccessInternal::atomic_xchg_at<decorators>(new_value, base, offset);
447   }
448 
449   template <typename T>
450   static inline void arraycopy(arrayOop src_obj, arrayOop dst_obj, T *src, T *dst, size_t length) {
451     verify_decorators<ARRAYCOPY_DECORATOR_MASK | IN_HEAP |
452                       AS_DECORATOR_MASK>();
453     AccessInternal::arraycopy<decorators>(src_obj, dst_obj, src, dst, length);
454   }
455 
456   // Oop heap accesses
457   static inline AccessInternal::OopLoadAtProxy<decorators> oop_load_at(oop base, ptrdiff_t offset) {
458     verify_heap_oop_decorators<load_mo_decorators>();
459     return AccessInternal::OopLoadAtProxy<decorators>(base, offset);
460   }
461 
462   template <typename T>
463   static inline void oop_store_at(oop base, ptrdiff_t offset, T value) {
464     verify_heap_oop_decorators<store_mo_decorators>();
465     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
466     OopType oop_value = value;
467     AccessInternal::store_at<decorators | INTERNAL_VALUE_IS_OOP>(base, offset, oop_value);
468   }
469 
470   template <typename T>
471   static inline T oop_atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value) {
472     verify_heap_oop_decorators<atomic_cmpxchg_mo_decorators>();
473     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
474     OopType new_oop_value = new_value;
475     OopType compare_oop_value = compare_value;
476     return AccessInternal::atomic_cmpxchg_at<decorators | INTERNAL_VALUE_IS_OOP>(new_oop_value, base, offset, compare_oop_value);
477   }
478 
479   template <typename T>
480   static inline T oop_atomic_xchg_at(T new_value, oop base, ptrdiff_t offset) {
481     verify_heap_oop_decorators<atomic_xchg_mo_decorators>();
482     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
483     OopType new_oop_value = new_value;
484     return AccessInternal::atomic_xchg_at<decorators | INTERNAL_VALUE_IS_OOP>(new_oop_value, base, offset);
485   }
486 
487   template <typename T>
488   static inline bool oop_arraycopy(arrayOop src_obj, arrayOop dst_obj, T *src, T *dst, size_t length) {
489     verify_decorators<ARRAYCOPY_DECORATOR_MASK | IN_HEAP | AS_DECORATOR_MASK>();
490     return AccessInternal::arraycopy<decorators | INTERNAL_VALUE_IS_OOP>(src_obj, dst_obj, src, dst, length);
491   }
492 
493   // Clone an object from src to dst
494   static inline void clone(oop src, oop dst, size_t size) {
495     verify_decorators<IN_HEAP>();
496     AccessInternal::clone<decorators>(src, dst, size);
497   }
498 
499   // Primitive accesses
500   template <typename P>
501   static inline P load(P* addr) {
502     verify_primitive_decorators<load_mo_decorators>();
503     return AccessInternal::load<decorators, P, P>(addr);
504   }
505 
506   template <typename P, typename T>
507   static inline void store(P* addr, T value) {
508     verify_primitive_decorators<store_mo_decorators>();
509     AccessInternal::store<decorators>(addr, value);
510   }
511 
512   template <typename P, typename T>
513   static inline T atomic_cmpxchg(T new_value, P* addr, T compare_value) {
514     verify_primitive_decorators<atomic_cmpxchg_mo_decorators>();
515     return AccessInternal::atomic_cmpxchg<decorators>(new_value, addr, compare_value);
516   }
517 
518   template <typename P, typename T>
519   static inline T atomic_xchg(T new_value, P* addr) {
520     verify_primitive_decorators<atomic_xchg_mo_decorators>();
521     return AccessInternal::atomic_xchg<decorators>(new_value, addr);
522   }
523 
524   // Oop accesses
525   template <typename P>
526   static inline AccessInternal::OopLoadProxy<P, decorators> oop_load(P* addr) {
527     verify_oop_decorators<load_mo_decorators>();
528     return AccessInternal::OopLoadProxy<P, decorators>(addr);
529   }
530 
531   template <typename P, typename T>
532   static inline void oop_store(P* addr, T value) {
533     verify_oop_decorators<store_mo_decorators>();
534     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
535     OopType oop_value = value;
536     AccessInternal::store<decorators | INTERNAL_VALUE_IS_OOP>(addr, oop_value);
537   }
538 
539   template <typename P, typename T>
540   static inline T oop_atomic_cmpxchg(T new_value, P* addr, T compare_value) {
541     verify_oop_decorators<atomic_cmpxchg_mo_decorators>();
542     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
543     OopType new_oop_value = new_value;
544     OopType compare_oop_value = compare_value;
545     return AccessInternal::atomic_cmpxchg<decorators | INTERNAL_VALUE_IS_OOP>(new_oop_value, addr, compare_oop_value);
546   }
547 
548   template <typename P, typename T>
549   static inline T oop_atomic_xchg(T new_value, P* addr) {
550     verify_oop_decorators<atomic_xchg_mo_decorators>();
551     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
552     OopType new_oop_value = new_value;
553     return AccessInternal::atomic_xchg<decorators | INTERNAL_VALUE_IS_OOP>(new_oop_value, addr);
554   }
555 
556   static oop resolve(oop obj) {
557     verify_decorators<INTERNAL_EMPTY>();
558     return AccessInternal::resolve<decorators>(obj);
559   }
560 
561   static bool equals(oop o1, oop o2) {
562     verify_decorators<INTERNAL_EMPTY>();
563     return AccessInternal::equals<decorators>(o1, o2);
564   }
565 };
566 
567 // Helper for performing raw accesses (knows only of memory ordering
568 // atomicity decorators as well as compressed oops)
569 template <DecoratorSet decorators = INTERNAL_EMPTY>
570 class RawAccess: public Access<AS_RAW | decorators> {};
571 
572 // Helper for performing normal accesses on the heap. These accesses
573 // may resolve an accessor on a GC barrier set
574 template <DecoratorSet decorators = INTERNAL_EMPTY>
575 class HeapAccess: public Access<IN_HEAP | decorators> {};
576 
577 // Helper for performing normal accesses in roots. These accesses
578 // may resolve an accessor on a GC barrier set
579 template <DecoratorSet decorators = INTERNAL_EMPTY>
580 class RootAccess: public Access<IN_ROOT | decorators> {};
581 
582 #endif // SHARE_VM_RUNTIME_ACCESS_HPP