1 /*
  2  * Copyright (c) 2017, 2018, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_OOPS_ACCESS_HPP
 26 #define SHARE_OOPS_ACCESS_HPP
 27 
 28 #include "memory/allocation.hpp"
 29 #include "oops/accessBackend.hpp"
 30 #include "oops/accessDecorators.hpp"
 31 #include "oops/oopsHierarchy.hpp"
 32 #include "utilities/debug.hpp"
 33 #include "utilities/globalDefinitions.hpp"
 34 
 35 
 36 // = GENERAL =
 37 // Access is an API for performing accesses with declarative semantics. Each access can have a number of "decorators".
 38 // A decorator is an attribute or property that affects the way a memory access is performed in some way.
 39 // There are different groups of decorators. Some have to do with memory ordering, others to do with,
 40 // e.g. strength of references, strength of GC barriers, or whether compression should be applied or not.
 41 // Some decorators are set at buildtime, such as whether primitives require GC barriers or not, others
 42 // at callsites such as whether an access is in the heap or not, and others are resolved at runtime
 43 // such as GC-specific barriers and encoding/decoding compressed oops. For more information about what
 44 // decorators are available, cf. oops/accessDecorators.hpp.
 45 // By pipelining handling of these decorators, the design of the Access API allows separation of concern
 46 // over the different orthogonal concerns of decorators, while providing a powerful way of
 47 // expressing these orthogonal semantic properties in a unified way.
 48 //
 49 // == OPERATIONS ==
 50 // * load: Load a value from an address.
 51 // * load_at: Load a value from an internal pointer relative to a base object.
 52 // * store: Store a value at an address.
 53 // * store_at: Store a value in an internal pointer relative to a base object.
 54 // * atomic_cmpxchg: Atomically compare-and-swap a new value at an address if previous value matched the compared value.
 55 // * atomic_cmpxchg_at: Atomically compare-and-swap a new value at an internal pointer address if previous value matched the compared value.
 56 // * atomic_xchg: Atomically swap a new value at an address if previous value matched the compared value.
 57 // * atomic_xchg_at: Atomically swap a new value at an internal pointer address if previous value matched the compared value.
 58 // * arraycopy: Copy data from one heap array to another heap array.
 59 // * clone: Clone the contents of an object to a newly allocated object.
 60 // * resolve: Resolve a stable to-space invariant oop that is guaranteed not to relocate its payload until a subsequent thread transition.
 61 // * equals: Object equality, e.g. when different copies of the same objects are in use (from-space vs. to-space)
 62 //
 63 // == IMPLEMENTATION ==
 64 // Each access goes through the following steps in a template pipeline.
 65 // There are essentially 5 steps for each access:
 66 // * Step 1:   Set default decorators and decay types. This step gets rid of CV qualifiers
 67 //             and sets default decorators to sensible values.
 68 // * Step 2:   Reduce types. This step makes sure there is only a single T type and not
 69 //             multiple types. The P type of the address and T type of the value must
 70 //             match.
 71 // * Step 3:   Pre-runtime dispatch. This step checks whether a runtime call can be
 72 //             avoided, and in that case avoids it (calling raw accesses or
 73 //             primitive accesses in a build that does not require primitive GC barriers)
 74 // * Step 4:   Runtime-dispatch. This step performs a runtime dispatch to the corresponding
 75 //             BarrierSet::AccessBarrier accessor that attaches GC-required barriers
 76 //             to the access.
 77 // * Step 5.a: Barrier resolution. This step is invoked the first time a runtime-dispatch
 78 //             happens for an access. The appropriate BarrierSet::AccessBarrier accessor
 79 //             is resolved, then the function pointer is updated to that accessor for
 80 //             future invocations.
 81 // * Step 5.b: Post-runtime dispatch. This step now casts previously unknown types such
 82 //             as the address type of an oop on the heap (is it oop* or narrowOop*) to
 83 //             the appropriate type. It also splits sufficiently orthogonal accesses into
 84 //             different functions, such as whether the access involves oops or primitives
 85 //             and whether the access is performed on the heap or outside. Then the
 86 //             appropriate BarrierSet::AccessBarrier is called to perform the access.
 87 //
 88 // The implementation of step 1-4 resides in in accessBackend.hpp, to allow selected
 89 // accesses to be accessible from only access.hpp, as opposed to access.inline.hpp.
 90 // Steps 5.a and 5.b require knowledge about the GC backends, and therefore needs to
 91 // include the various GC backend .inline.hpp headers. Their implementation resides in
 92 // access.inline.hpp. The accesses that are allowed through the access.hpp file
 93 // must be instantiated in access.cpp using the INSTANTIATE_HPP_ACCESS macro.
 94 
 95 template <DecoratorSet decorators = INTERNAL_EMPTY>
 96 class Access: public AllStatic {
 97   // This function asserts that if an access gets passed in a decorator outside
 98   // of the expected_decorators, then something is wrong. It additionally checks
 99   // the consistency of the decorators so that supposedly disjoint decorators are indeed
100   // disjoint. For example, an access can not be both in heap and on root at the
101   // same time.
102   template <DecoratorSet expected_decorators>
103   static void verify_decorators();
104 
105   template <DecoratorSet expected_mo_decorators>
106   static void verify_primitive_decorators() {
107     const DecoratorSet primitive_decorators = (AS_DECORATOR_MASK ^ AS_NO_KEEPALIVE ^ AS_DEST_NOT_INITIALIZED) |
108                                               IN_HEAP | IN_HEAP_ARRAY;
109     verify_decorators<expected_mo_decorators | primitive_decorators>();
110   }
111 
112   template <DecoratorSet expected_mo_decorators>
113   static void verify_oop_decorators() {
114     const DecoratorSet oop_decorators = AS_DECORATOR_MASK | IN_DECORATOR_MASK |
115                                         (ON_DECORATOR_MASK ^ ON_UNKNOWN_OOP_REF) | // no unknown oop refs outside of the heap
116                                         OOP_DECORATOR_MASK;
117     verify_decorators<expected_mo_decorators | oop_decorators>();
118   }
119 
120   template <DecoratorSet expected_mo_decorators>
121   static void verify_heap_oop_decorators() {
122     const DecoratorSet heap_oop_decorators = AS_DECORATOR_MASK | ON_DECORATOR_MASK |
123                                              OOP_DECORATOR_MASK | (IN_DECORATOR_MASK ^
124                                                                    (IN_ROOT | IN_CONCURRENT_ROOT)); // no root accesses in the heap
125     verify_decorators<expected_mo_decorators | heap_oop_decorators>();
126   }
127 
128   static const DecoratorSet load_mo_decorators = MO_UNORDERED | MO_VOLATILE | MO_RELAXED | MO_ACQUIRE | MO_SEQ_CST;
129   static const DecoratorSet store_mo_decorators = MO_UNORDERED | MO_VOLATILE | MO_RELAXED | MO_RELEASE | MO_SEQ_CST;
130   static const DecoratorSet atomic_xchg_mo_decorators = MO_SEQ_CST;
131   static const DecoratorSet atomic_cmpxchg_mo_decorators = MO_RELAXED | MO_SEQ_CST;
132 
133 public:
134   // Primitive heap accesses
135   static inline AccessInternal::LoadAtProxy<decorators> load_at(oop base, ptrdiff_t offset) {
136     verify_primitive_decorators<load_mo_decorators>();
137     return AccessInternal::LoadAtProxy<decorators>(base, offset);
138   }
139 
140   template <typename T>
141   static inline void store_at(oop base, ptrdiff_t offset, T value) {
142     verify_primitive_decorators<store_mo_decorators>();
143     AccessInternal::store_at<decorators>(base, offset, value);
144   }
145 
146   template <typename T>
147   static inline T atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value) {
148     verify_primitive_decorators<atomic_cmpxchg_mo_decorators>();
149     return AccessInternal::atomic_cmpxchg_at<decorators>(new_value, base, offset, compare_value);
150   }
151 
152   template <typename T>
153   static inline T atomic_xchg_at(T new_value, oop base, ptrdiff_t offset) {
154     verify_primitive_decorators<atomic_xchg_mo_decorators>();
155     return AccessInternal::atomic_xchg_at<decorators>(new_value, base, offset);
156   }
157 
158   template <typename T>
159   static inline void arraycopy(arrayOop src_obj, arrayOop dst_obj, T *src, T *dst, size_t length) {
160     verify_decorators<ARRAYCOPY_DECORATOR_MASK | IN_HEAP |
161                       AS_DECORATOR_MASK>();
162     AccessInternal::arraycopy<decorators>(src_obj, dst_obj, src, dst, length);
163   }
164 
165   // Oop heap accesses
166   static inline AccessInternal::OopLoadAtProxy<decorators> oop_load_at(oop base, ptrdiff_t offset) {
167     verify_heap_oop_decorators<load_mo_decorators>();
168     return AccessInternal::OopLoadAtProxy<decorators>(base, offset);
169   }
170 
171   template <typename T>
172   static inline void oop_store_at(oop base, ptrdiff_t offset, T value) {
173     verify_heap_oop_decorators<store_mo_decorators>();
174     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
175     OopType oop_value = value;
176     AccessInternal::store_at<decorators | INTERNAL_VALUE_IS_OOP>(base, offset, oop_value);
177   }
178 
179   template <typename T>
180   static inline T oop_atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value) {
181     verify_heap_oop_decorators<atomic_cmpxchg_mo_decorators>();
182     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
183     OopType new_oop_value = new_value;
184     OopType compare_oop_value = compare_value;
185     return AccessInternal::atomic_cmpxchg_at<decorators | INTERNAL_VALUE_IS_OOP>(new_oop_value, base, offset, compare_oop_value);
186   }
187 
188   template <typename T>
189   static inline T oop_atomic_xchg_at(T new_value, oop base, ptrdiff_t offset) {
190     verify_heap_oop_decorators<atomic_xchg_mo_decorators>();
191     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
192     OopType new_oop_value = new_value;
193     return AccessInternal::atomic_xchg_at<decorators | INTERNAL_VALUE_IS_OOP>(new_oop_value, base, offset);
194   }
195 
196   template <typename T>
197   static inline bool oop_arraycopy(arrayOop src_obj, arrayOop dst_obj, T *src, T *dst, size_t length) {
198     verify_decorators<ARRAYCOPY_DECORATOR_MASK | IN_HEAP | AS_DECORATOR_MASK>();
199     return AccessInternal::arraycopy<decorators | INTERNAL_VALUE_IS_OOP>(src_obj, dst_obj, src, dst, length);
200   }
201 
202   // Clone an object from src to dst
203   static inline void clone(oop src, oop dst, size_t size) {
204     verify_decorators<IN_HEAP>();
205     AccessInternal::clone<decorators>(src, dst, size);
206   }
207 
208   // Primitive accesses
209   template <typename P>
210   static inline P load(P* addr) {
211     verify_primitive_decorators<load_mo_decorators>();
212     return AccessInternal::load<decorators, P, P>(addr);
213   }
214 
215   template <typename P, typename T>
216   static inline void store(P* addr, T value) {
217     verify_primitive_decorators<store_mo_decorators>();
218     AccessInternal::store<decorators>(addr, value);
219   }
220 
221   template <typename P, typename T>
222   static inline T atomic_cmpxchg(T new_value, P* addr, T compare_value) {
223     verify_primitive_decorators<atomic_cmpxchg_mo_decorators>();
224     return AccessInternal::atomic_cmpxchg<decorators>(new_value, addr, compare_value);
225   }
226 
227   template <typename P, typename T>
228   static inline T atomic_xchg(T new_value, P* addr) {
229     verify_primitive_decorators<atomic_xchg_mo_decorators>();
230     return AccessInternal::atomic_xchg<decorators>(new_value, addr);
231   }
232 
233   // Oop accesses
234   template <typename P>
235   static inline AccessInternal::OopLoadProxy<P, decorators> oop_load(P* addr) {
236     verify_oop_decorators<load_mo_decorators>();
237     return AccessInternal::OopLoadProxy<P, decorators>(addr);
238   }
239 
240   template <typename P, typename T>
241   static inline void oop_store(P* addr, T value) {
242     verify_oop_decorators<store_mo_decorators>();
243     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
244     OopType oop_value = value;
245     AccessInternal::store<decorators | INTERNAL_VALUE_IS_OOP>(addr, oop_value);
246   }
247 
248   template <typename P, typename T>
249   static inline T oop_atomic_cmpxchg(T new_value, P* addr, T compare_value) {
250     verify_oop_decorators<atomic_cmpxchg_mo_decorators>();
251     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
252     OopType new_oop_value = new_value;
253     OopType compare_oop_value = compare_value;
254     return AccessInternal::atomic_cmpxchg<decorators | INTERNAL_VALUE_IS_OOP>(new_oop_value, addr, compare_oop_value);
255   }
256 
257   template <typename P, typename T>
258   static inline T oop_atomic_xchg(T new_value, P* addr) {
259     verify_oop_decorators<atomic_xchg_mo_decorators>();
260     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
261     OopType new_oop_value = new_value;
262     return AccessInternal::atomic_xchg<decorators | INTERNAL_VALUE_IS_OOP>(new_oop_value, addr);
263   }
264 
265   static oop resolve(oop obj) {
266     verify_decorators<INTERNAL_EMPTY>();
267     return AccessInternal::resolve<decorators>(obj);
268   }
269 
270   static bool equals(oop o1, oop o2) {
271     verify_decorators<INTERNAL_EMPTY>();
272     return AccessInternal::equals<decorators>(o1, o2);
273   }
274 };
275 
276 // Helper for performing raw accesses (knows only of memory ordering
277 // atomicity decorators as well as compressed oops)
278 template <DecoratorSet decorators = INTERNAL_EMPTY>
279 class RawAccess: public Access<AS_RAW | decorators> {};
280 
281 // Helper for performing normal accesses on the heap. These accesses
282 // may resolve an accessor on a GC barrier set
283 template <DecoratorSet decorators = INTERNAL_EMPTY>
284 class HeapAccess: public Access<IN_HEAP | decorators> {};
285 
286 // Helper for performing normal accesses in roots. These accesses
287 // may resolve an accessor on a GC barrier set
288 template <DecoratorSet decorators = INTERNAL_EMPTY>
289 class RootAccess: public Access<IN_ROOT | decorators> {};
290 
291 template <DecoratorSet decorators>
292 template <DecoratorSet expected_decorators>
293 void Access<decorators>::verify_decorators() {
294   STATIC_ASSERT((~expected_decorators & decorators) == 0); // unexpected decorator used
295   const DecoratorSet barrier_strength_decorators = decorators & AS_DECORATOR_MASK;
296   STATIC_ASSERT(barrier_strength_decorators == 0 || ( // make sure barrier strength decorators are disjoint if set
297     (barrier_strength_decorators ^ AS_NO_KEEPALIVE) == 0 ||
298     (barrier_strength_decorators ^ AS_DEST_NOT_INITIALIZED) == 0 ||
299     (barrier_strength_decorators ^ AS_RAW) == 0 ||
300     (barrier_strength_decorators ^ AS_NORMAL) == 0
301   ));
302   const DecoratorSet ref_strength_decorators = decorators & ON_DECORATOR_MASK;
303   STATIC_ASSERT(ref_strength_decorators == 0 || ( // make sure ref strength decorators are disjoint if set
304     (ref_strength_decorators ^ ON_STRONG_OOP_REF) == 0 ||
305     (ref_strength_decorators ^ ON_WEAK_OOP_REF) == 0 ||
306     (ref_strength_decorators ^ ON_PHANTOM_OOP_REF) == 0 ||
307     (ref_strength_decorators ^ ON_UNKNOWN_OOP_REF) == 0
308   ));
309   const DecoratorSet memory_ordering_decorators = decorators & MO_DECORATOR_MASK;
310   STATIC_ASSERT(memory_ordering_decorators == 0 || ( // make sure memory ordering decorators are disjoint if set
311     (memory_ordering_decorators ^ MO_UNORDERED) == 0 ||
312     (memory_ordering_decorators ^ MO_VOLATILE) == 0 ||
313     (memory_ordering_decorators ^ MO_RELAXED) == 0 ||
314     (memory_ordering_decorators ^ MO_ACQUIRE) == 0 ||
315     (memory_ordering_decorators ^ MO_RELEASE) == 0 ||
316     (memory_ordering_decorators ^ MO_SEQ_CST) == 0
317   ));
318   const DecoratorSet location_decorators = decorators & IN_DECORATOR_MASK;
319   STATIC_ASSERT(location_decorators == 0 || ( // make sure location decorators are disjoint if set
320     (location_decorators ^ IN_ROOT) == 0 ||
321     (location_decorators ^ IN_HEAP) == 0 ||
322     (location_decorators ^ (IN_HEAP | IN_HEAP_ARRAY)) == 0 ||
323     (location_decorators ^ (IN_ROOT | IN_CONCURRENT_ROOT)) == 0 ||
324     (location_decorators ^ (IN_ROOT | IN_ARCHIVE_ROOT)) == 0
325   ));
326 }
327 
328 #endif // SHARE_OOPS_ACCESS_HPP