1 /*
  2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_GC_SHARED_COLLECTEDHEAP_HPP
 26 #define SHARE_GC_SHARED_COLLECTEDHEAP_HPP
 27 
 28 #include "gc/shared/gcCause.hpp"
 29 #include "gc/shared/gcWhen.hpp"
 30 #include "memory/allocation.hpp"
 31 #include "runtime/handles.hpp"
 32 #include "runtime/perfData.hpp"
 33 #include "runtime/safepoint.hpp"
 34 #include "services/memoryUsage.hpp"
 35 #include "utilities/debug.hpp"
 36 #include "utilities/events.hpp"
 37 #include "utilities/formatBuffer.hpp"
 38 #include "utilities/growableArray.hpp"
 39 
 40 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
 41 // is an abstract class: there may be many different kinds of heaps.  This
 42 // class defines the functions that a heap must implement, and contains
 43 // infrastructure common to all heaps.
 44 
 45 class AdaptiveSizePolicy;
 46 class BarrierSet;
 47 class CollectorPolicy;
 48 class GCHeapSummary;
 49 class GCTimer;
 50 class GCTracer;
 51 class GCMemoryManager;
 52 class MemoryPool;
 53 class MetaspaceSummary;
 54 class SoftRefPolicy;
 55 class Thread;
 56 class ThreadClosure;
 57 class VirtualSpaceSummary;
 58 class WorkGang;
 59 class nmethod;
 60 
 61 class GCMessage : public FormatBuffer<1024> {
 62  public:
 63   bool is_before;
 64 
 65  public:
 66   GCMessage() {}
 67 };
 68 
 69 class CollectedHeap;
 70 
 71 class GCHeapLog : public EventLogBase<GCMessage> {
 72  private:
 73   void log_heap(CollectedHeap* heap, bool before);
 74 
 75  public:
 76   GCHeapLog() : EventLogBase<GCMessage>("GC Heap History") {}
 77 
 78   void log_heap_before(CollectedHeap* heap) {
 79     log_heap(heap, true);
 80   }
 81   void log_heap_after(CollectedHeap* heap) {
 82     log_heap(heap, false);
 83   }
 84 };
 85 
 86 //
 87 // CollectedHeap
 88 //   GenCollectedHeap
 89 //     SerialHeap
 90 //     CMSHeap
 91 //   G1CollectedHeap
 92 //   ParallelScavengeHeap
 93 //   ShenandoahHeap
 94 //   ZCollectedHeap
 95 //
 96 class CollectedHeap : public CHeapObj<mtInternal> {
 97   friend class VMStructs;
 98   friend class JVMCIVMStructs;
 99   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
100   friend class MemAllocator;
101 
102  private:
103   GCHeapLog* _gc_heap_log;
104 
105   MemRegion _reserved;
106 
107  protected:
108   bool _is_gc_active;
109 
110   // Used for filler objects (static, but initialized in ctor).
111   static size_t _filler_array_max_size;
112 
113   unsigned int _total_collections;          // ... started
114   unsigned int _total_full_collections;     // ... started
115   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
116   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
117 
118   // Reason for current garbage collection.  Should be set to
119   // a value reflecting no collection between collections.
120   GCCause::Cause _gc_cause;
121   GCCause::Cause _gc_lastcause;
122   PerfStringVariable* _perf_gc_cause;
123   PerfStringVariable* _perf_gc_lastcause;
124 
125   // Constructor
126   CollectedHeap();
127 
128   // Create a new tlab. All TLAB allocations must go through this.
129   // To allow more flexible TLAB allocations min_size specifies
130   // the minimum size needed, while requested_size is the requested
131   // size based on ergonomics. The actually allocated size will be
132   // returned in actual_size.
133   virtual HeapWord* allocate_new_tlab(size_t min_size,
134                                       size_t requested_size,
135                                       size_t* actual_size);
136 
137   // Reinitialize tlabs before resuming mutators.
138   virtual void resize_all_tlabs();
139 
140   // Raw memory allocation facilities
141   // The obj and array allocate methods are covers for these methods.
142   // mem_allocate() should never be
143   // called to allocate TLABs, only individual objects.
144   virtual HeapWord* mem_allocate(size_t size,
145                                  bool* gc_overhead_limit_was_exceeded) = 0;
146 
147   // Filler object utilities.
148   static inline size_t filler_array_hdr_size();
149   static inline size_t filler_array_min_size();
150 
151   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
152   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
153 
154   // Fill with a single array; caller must ensure filler_array_min_size() <=
155   // words <= filler_array_max_size().
156   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
157 
158   // Fill with a single object (either an int array or a java.lang.Object).
159   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
160 
161   virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer);
162 
163   // Verification functions
164   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
165     PRODUCT_RETURN;
166   debug_only(static void check_for_valid_allocation_state();)
167 
168  public:
169   enum Name {
170     None,
171     Serial,
172     Parallel,
173     CMS,
174     G1,
175     Epsilon,
176     Z,
177     Shenandoah
178   };
179 
180   static inline size_t filler_array_max_size() {
181     return _filler_array_max_size;
182   }
183 
184   virtual Name kind() const = 0;
185 
186   virtual const char* name() const = 0;
187 
188   /**
189    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
190    * and JNI_OK on success.
191    */
192   virtual jint initialize() = 0;
193 
194   // In many heaps, there will be a need to perform some initialization activities
195   // after the Universe is fully formed, but before general heap allocation is allowed.
196   // This is the correct place to place such initialization methods.
197   virtual void post_initialize();
198 
199   // Stop any onging concurrent work and prepare for exit.
200   virtual void stop() {}
201 
202   // Stop and resume concurrent GC threads interfering with safepoint operations
203   virtual void safepoint_synchronize_begin() {}
204   virtual void safepoint_synchronize_end() {}
205 
206   void initialize_reserved_region(HeapWord *start, HeapWord *end);
207   MemRegion reserved_region() const { return _reserved; }
208   address base() const { return (address)reserved_region().start(); }
209 
210   virtual size_t capacity() const = 0;
211   virtual size_t used() const = 0;
212 
213   // Return "true" if the part of the heap that allocates Java
214   // objects has reached the maximal committed limit that it can
215   // reach, without a garbage collection.
216   virtual bool is_maximal_no_gc() const = 0;
217 
218   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
219   // memory that the vm could make available for storing 'normal' java objects.
220   // This is based on the reserved address space, but should not include space
221   // that the vm uses internally for bookkeeping or temporary storage
222   // (e.g., in the case of the young gen, one of the survivor
223   // spaces).
224   virtual size_t max_capacity() const = 0;
225 
226   // Returns "TRUE" if "p" points into the reserved area of the heap.
227   bool is_in_reserved(const void* p) const {
228     return _reserved.contains(p);
229   }
230 
231   bool is_in_reserved_or_null(const void* p) const {
232     return p == NULL || is_in_reserved(p);
233   }
234 
235   // Returns "TRUE" iff "p" points into the committed areas of the heap.
236   // This method can be expensive so avoid using it in performance critical
237   // code.
238   virtual bool is_in(const void* p) const = 0;
239 
240   DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == NULL || is_in(p); })
241 
242   // Let's define some terms: a "closed" subset of a heap is one that
243   //
244   // 1) contains all currently-allocated objects, and
245   //
246   // 2) is closed under reference: no object in the closed subset
247   //    references one outside the closed subset.
248   //
249   // Membership in a heap's closed subset is useful for assertions.
250   // Clearly, the entire heap is a closed subset, so the default
251   // implementation is to use "is_in_reserved".  But this may not be too
252   // liberal to perform useful checking.  Also, the "is_in" predicate
253   // defines a closed subset, but may be too expensive, since "is_in"
254   // verifies that its argument points to an object head.  The
255   // "closed_subset" method allows a heap to define an intermediate
256   // predicate, allowing more precise checking than "is_in_reserved" at
257   // lower cost than "is_in."
258 
259   // One important case is a heap composed of disjoint contiguous spaces,
260   // such as the Garbage-First collector.  Such heaps have a convenient
261   // closed subset consisting of the allocated portions of those
262   // contiguous spaces.
263 
264   // Return "TRUE" iff the given pointer points into the heap's defined
265   // closed subset (which defaults to the entire heap).
266   virtual bool is_in_closed_subset(const void* p) const {
267     return is_in_reserved(p);
268   }
269 
270   bool is_in_closed_subset_or_null(const void* p) const {
271     return p == NULL || is_in_closed_subset(p);
272   }
273 
274   void set_gc_cause(GCCause::Cause v) {
275      if (UsePerfData) {
276        _gc_lastcause = _gc_cause;
277        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
278        _perf_gc_cause->set_value(GCCause::to_string(v));
279      }
280     _gc_cause = v;
281   }
282   GCCause::Cause gc_cause() { return _gc_cause; }
283 
284   virtual oop obj_allocate(Klass* klass, int size, TRAPS);
285   virtual oop array_allocate(Klass* klass, int size, int length, bool do_zero, TRAPS);
286   virtual oop class_allocate(Klass* klass, int size, TRAPS);
287 
288   // Utilities for turning raw memory into filler objects.
289   //
290   // min_fill_size() is the smallest region that can be filled.
291   // fill_with_objects() can fill arbitrary-sized regions of the heap using
292   // multiple objects.  fill_with_object() is for regions known to be smaller
293   // than the largest array of integers; it uses a single object to fill the
294   // region and has slightly less overhead.
295   static size_t min_fill_size() {
296     return size_t(align_object_size(oopDesc::header_size()));
297   }
298 
299   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
300 
301   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
302   static void fill_with_object(MemRegion region, bool zap = true) {
303     fill_with_object(region.start(), region.word_size(), zap);
304   }
305   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
306     fill_with_object(start, pointer_delta(end, start), zap);
307   }
308 
309   virtual void fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap);
310   virtual size_t min_dummy_object_size() const;
311   size_t tlab_alloc_reserve() const;
312 
313   // Return the address "addr" aligned by "alignment_in_bytes" if such
314   // an address is below "end".  Return NULL otherwise.
315   inline static HeapWord* align_allocation_or_fail(HeapWord* addr,
316                                                    HeapWord* end,
317                                                    unsigned short alignment_in_bytes);
318 
319   // Some heaps may offer a contiguous region for shared non-blocking
320   // allocation, via inlined code (by exporting the address of the top and
321   // end fields defining the extent of the contiguous allocation region.)
322 
323   // This function returns "true" iff the heap supports this kind of
324   // allocation.  (Default is "no".)
325   virtual bool supports_inline_contig_alloc() const {
326     return false;
327   }
328   // These functions return the addresses of the fields that define the
329   // boundaries of the contiguous allocation area.  (These fields should be
330   // physically near to one another.)
331   virtual HeapWord* volatile* top_addr() const {
332     guarantee(false, "inline contiguous allocation not supported");
333     return NULL;
334   }
335   virtual HeapWord** end_addr() const {
336     guarantee(false, "inline contiguous allocation not supported");
337     return NULL;
338   }
339 
340   // Some heaps may be in an unparseable state at certain times between
341   // collections. This may be necessary for efficient implementation of
342   // certain allocation-related activities. Calling this function before
343   // attempting to parse a heap ensures that the heap is in a parsable
344   // state (provided other concurrent activity does not introduce
345   // unparsability). It is normally expected, therefore, that this
346   // method is invoked with the world stopped.
347   // NOTE: if you override this method, make sure you call
348   // super::ensure_parsability so that the non-generational
349   // part of the work gets done. See implementation of
350   // CollectedHeap::ensure_parsability and, for instance,
351   // that of GenCollectedHeap::ensure_parsability().
352   // The argument "retire_tlabs" controls whether existing TLABs
353   // are merely filled or also retired, thus preventing further
354   // allocation from them and necessitating allocation of new TLABs.
355   virtual void ensure_parsability(bool retire_tlabs);
356 
357   // Section on thread-local allocation buffers (TLABs)
358   // If the heap supports thread-local allocation buffers, it should override
359   // the following methods:
360   // Returns "true" iff the heap supports thread-local allocation buffers.
361   // The default is "no".
362   virtual bool supports_tlab_allocation() const = 0;
363 
364   // The amount of space available for thread-local allocation buffers.
365   virtual size_t tlab_capacity(Thread *thr) const = 0;
366 
367   // The amount of used space for thread-local allocation buffers for the given thread.
368   virtual size_t tlab_used(Thread *thr) const = 0;
369 
370   virtual size_t max_tlab_size() const;
371 
372   // An estimate of the maximum allocation that could be performed
373   // for thread-local allocation buffers without triggering any
374   // collection or expansion activity.
375   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
376     guarantee(false, "thread-local allocation buffers not supported");
377     return 0;
378   }
379 
380   // Perform a collection of the heap; intended for use in implementing
381   // "System.gc".  This probably implies as full a collection as the
382   // "CollectedHeap" supports.
383   virtual void collect(GCCause::Cause cause) = 0;
384 
385   // Perform a full collection
386   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
387 
388   // This interface assumes that it's being called by the
389   // vm thread. It collects the heap assuming that the
390   // heap lock is already held and that we are executing in
391   // the context of the vm thread.
392   virtual void collect_as_vm_thread(GCCause::Cause cause);
393 
394   virtual MetaWord* satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
395                                                        size_t size,
396                                                        Metaspace::MetadataType mdtype);
397 
398   // Returns "true" iff there is a stop-world GC in progress.  (I assume
399   // that it should answer "false" for the concurrent part of a concurrent
400   // collector -- dld).
401   bool is_gc_active() const { return _is_gc_active; }
402 
403   // Total number of GC collections (started)
404   unsigned int total_collections() const { return _total_collections; }
405   unsigned int total_full_collections() const { return _total_full_collections;}
406 
407   // Increment total number of GC collections (started)
408   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
409   void increment_total_collections(bool full = false) {
410     _total_collections++;
411     if (full) {
412       increment_total_full_collections();
413     }
414   }
415 
416   void increment_total_full_collections() { _total_full_collections++; }
417 
418   // Return the CollectorPolicy for the heap
419   virtual CollectorPolicy* collector_policy() const = 0;
420 
421   // Return the SoftRefPolicy for the heap;
422   virtual SoftRefPolicy* soft_ref_policy() = 0;
423 
424   virtual MemoryUsage memory_usage();
425   virtual GrowableArray<GCMemoryManager*> memory_managers() = 0;
426   virtual GrowableArray<MemoryPool*> memory_pools() = 0;
427 
428   // Iterate over all objects, calling "cl.do_object" on each.
429   virtual void object_iterate(ObjectClosure* cl) = 0;
430 
431   // Similar to object_iterate() except iterates only
432   // over live objects.
433   virtual void safe_object_iterate(ObjectClosure* cl) = 0;
434 
435   // NOTE! There is no requirement that a collector implement these
436   // functions.
437   //
438   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
439   // each address in the (reserved) heap is a member of exactly
440   // one block.  The defining characteristic of a block is that it is
441   // possible to find its size, and thus to progress forward to the next
442   // block.  (Blocks may be of different sizes.)  Thus, blocks may
443   // represent Java objects, or they might be free blocks in a
444   // free-list-based heap (or subheap), as long as the two kinds are
445   // distinguishable and the size of each is determinable.
446 
447   // Returns the address of the start of the "block" that contains the
448   // address "addr".  We say "blocks" instead of "object" since some heaps
449   // may not pack objects densely; a chunk may either be an object or a
450   // non-object.
451   virtual HeapWord* block_start(const void* addr) const = 0;
452 
453   // Requires "addr" to be the start of a chunk, and returns its size.
454   // "addr + size" is required to be the start of a new chunk, or the end
455   // of the active area of the heap.
456   virtual size_t block_size(const HeapWord* addr) const = 0;
457 
458   // Requires "addr" to be the start of a block, and returns "TRUE" iff
459   // the block is an object.
460   virtual bool block_is_obj(const HeapWord* addr) const = 0;
461 
462   // Returns the longest time (in ms) that has elapsed since the last
463   // time that any part of the heap was examined by a garbage collection.
464   virtual jlong millis_since_last_gc() = 0;
465 
466   // Perform any cleanup actions necessary before allowing a verification.
467   virtual void prepare_for_verify() = 0;
468 
469   // Generate any dumps preceding or following a full gc
470  private:
471   void full_gc_dump(GCTimer* timer, bool before);
472 
473   virtual void initialize_serviceability() = 0;
474 
475  public:
476   void pre_full_gc_dump(GCTimer* timer);
477   void post_full_gc_dump(GCTimer* timer);
478 
479   virtual VirtualSpaceSummary create_heap_space_summary();
480   GCHeapSummary create_heap_summary();
481 
482   MetaspaceSummary create_metaspace_summary();
483 
484   // Print heap information on the given outputStream.
485   virtual void print_on(outputStream* st) const = 0;
486   // The default behavior is to call print_on() on tty.
487   virtual void print() const {
488     print_on(tty);
489   }
490   // Print more detailed heap information on the given
491   // outputStream. The default behavior is to call print_on(). It is
492   // up to each subclass to override it and add any additional output
493   // it needs.
494   virtual void print_extended_on(outputStream* st) const {
495     print_on(st);
496   }
497 
498   virtual void print_on_error(outputStream* st) const;
499 
500   // Print all GC threads (other than the VM thread)
501   // used by this heap.
502   virtual void print_gc_threads_on(outputStream* st) const = 0;
503   // The default behavior is to call print_gc_threads_on() on tty.
504   void print_gc_threads() {
505     print_gc_threads_on(tty);
506   }
507   // Iterator for all GC threads (other than VM thread)
508   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
509 
510   // Print any relevant tracing info that flags imply.
511   // Default implementation does nothing.
512   virtual void print_tracing_info() const = 0;
513 
514   void print_heap_before_gc();
515   void print_heap_after_gc();
516 
517   // An object is scavengable if its location may move during a scavenge.
518   // (A scavenge is a GC which is not a full GC.)
519   virtual bool is_scavengable(oop obj) = 0;
520   // Registering and unregistering an nmethod (compiled code) with the heap.
521   // Override with specific mechanism for each specialized heap type.
522   virtual void register_nmethod(nmethod* nm) {}
523   virtual void unregister_nmethod(nmethod* nm) {}
524   virtual void flush_nmethod(nmethod* nm) {}
525   virtual void verify_nmethod(nmethod* nmethod) {}
526 
527   void trace_heap_before_gc(const GCTracer* gc_tracer);
528   void trace_heap_after_gc(const GCTracer* gc_tracer);
529 
530   // Heap verification
531   virtual void verify(VerifyOption option) = 0;
532 
533   // Return true if concurrent phase control (via
534   // request_concurrent_phase_control) is supported by this collector.
535   // The default implementation returns false.
536   virtual bool supports_concurrent_phase_control() const;
537 
538   // Request the collector enter the indicated concurrent phase, and
539   // wait until it does so.  Supports WhiteBox testing.  Only one
540   // request may be active at a time.  Phases are designated by name;
541   // the set of names and their meaning is GC-specific.  Once the
542   // requested phase has been reached, the collector will attempt to
543   // avoid transitioning to a new phase until a new request is made.
544   // [Note: A collector might not be able to remain in a given phase.
545   // For example, a full collection might cancel an in-progress
546   // concurrent collection.]
547   //
548   // Returns true when the phase is reached.  Returns false for an
549   // unknown phase.  The default implementation returns false.
550   virtual bool request_concurrent_phase(const char* phase);
551 
552   // Provides a thread pool to SafepointSynchronize to use
553   // for parallel safepoint cleanup.
554   // GCs that use a GC worker thread pool may want to share
555   // it for use during safepoint cleanup. This is only possible
556   // if the GC can pause and resume concurrent work (e.g. G1
557   // concurrent marking) for an intermittent non-GC safepoint.
558   // If this method returns NULL, SafepointSynchronize will
559   // perform cleanup tasks serially in the VMThread.
560   virtual WorkGang* get_safepoint_workers() { return NULL; }
561 
562   // Support for object pinning. This is used by JNI Get*Critical()
563   // and Release*Critical() family of functions. If supported, the GC
564   // must guarantee that pinned objects never move.
565   virtual bool supports_object_pinning() const;
566   virtual oop pin_object(JavaThread* thread, oop obj);
567   virtual void unpin_object(JavaThread* thread, oop obj);
568 
569   // Deduplicate the string, iff the GC supports string deduplication.
570   virtual void deduplicate_string(oop str);
571 
572   virtual bool is_oop(oop object) const;
573 
574   virtual size_t obj_size(oop obj) const;
575 
576   // Cells are memory slices allocated by the allocator. Objects are initialized
577   // in cells. The cell itself may have a header, found at a negative offset of
578   // oops. Usually, the size of the cell header is 0, but it may be larger.
579   virtual ptrdiff_t cell_header_size() const { return 0; }
580 
581   // Non product verification and debugging.
582 #ifndef PRODUCT
583   // Support for PromotionFailureALot.  Return true if it's time to cause a
584   // promotion failure.  The no-argument version uses
585   // this->_promotion_failure_alot_count as the counter.
586   bool promotion_should_fail(volatile size_t* count);
587   bool promotion_should_fail();
588 
589   // Reset the PromotionFailureALot counters.  Should be called at the end of a
590   // GC in which promotion failure occurred.
591   void reset_promotion_should_fail(volatile size_t* count);
592   void reset_promotion_should_fail();
593 #endif  // #ifndef PRODUCT
594 };
595 
596 // Class to set and reset the GC cause for a CollectedHeap.
597 
598 class GCCauseSetter : StackObj {
599   CollectedHeap* _heap;
600   GCCause::Cause _previous_cause;
601  public:
602   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
603     _heap = heap;
604     _previous_cause = _heap->gc_cause();
605     _heap->set_gc_cause(cause);
606   }
607 
608   ~GCCauseSetter() {
609     _heap->set_gc_cause(_previous_cause);
610   }
611 };
612 
613 #endif // SHARE_GC_SHARED_COLLECTEDHEAP_HPP