1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc/shared/cardTableModRefBS.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/interfaceSupport.hpp"
  35 #include "runtime/objectMonitor.hpp"
  36 #include "runtime/os.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "utilities/macros.hpp"
  40 #if INCLUDE_ALL_GCS
  41 #include "gc/g1/g1CollectedHeap.inline.hpp"
  42 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc/g1/heapRegion.hpp"
  44 #endif // INCLUDE_ALL_GCS
  45 
  46 #ifdef PRODUCT
  47 #define BLOCK_COMMENT(str) /* nothing */
  48 #define STOP(error) stop(error)
  49 #else
  50 #define BLOCK_COMMENT(str) block_comment(str)
  51 #define STOP(error) block_comment(error); stop(error)
  52 #endif
  53 
  54 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  55 // Implementation of AddressLiteral
  56 
  57 // A 2-D table for managing compressed displacement(disp8) on EVEX enabled platforms.
  58 unsigned char tuple_table[Assembler::EVEX_ETUP + 1][Assembler::AVX_512bit + 1] = {
  59   // -----------------Table 4.5 -------------------- //
  60   16, 32, 64,  // EVEX_FV(0)
  61   4,  4,  4,   // EVEX_FV(1) - with Evex.b
  62   16, 32, 64,  // EVEX_FV(2) - with Evex.w
  63   8,  8,  8,   // EVEX_FV(3) - with Evex.w and Evex.b
  64   8,  16, 32,  // EVEX_HV(0)
  65   4,  4,  4,   // EVEX_HV(1) - with Evex.b
  66   // -----------------Table 4.6 -------------------- //
  67   16, 32, 64,  // EVEX_FVM(0)
  68   1,  1,  1,   // EVEX_T1S(0)
  69   2,  2,  2,   // EVEX_T1S(1)
  70   4,  4,  4,   // EVEX_T1S(2)
  71   8,  8,  8,   // EVEX_T1S(3)
  72   4,  4,  4,   // EVEX_T1F(0)
  73   8,  8,  8,   // EVEX_T1F(1)
  74   8,  8,  8,   // EVEX_T2(0)
  75   0,  16, 16,  // EVEX_T2(1)
  76   0,  16, 16,  // EVEX_T4(0)
  77   0,  0,  32,  // EVEX_T4(1)
  78   0,  0,  32,  // EVEX_T8(0)
  79   8,  16, 32,  // EVEX_HVM(0)
  80   4,  8,  16,  // EVEX_QVM(0)
  81   2,  4,  8,   // EVEX_OVM(0)
  82   16, 16, 16,  // EVEX_M128(0)
  83   8,  32, 64,  // EVEX_DUP(0)
  84   0,  0,  0    // EVEX_NTUP
  85 };
  86 
  87 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  88   _is_lval = false;
  89   _target = target;
  90   switch (rtype) {
  91   case relocInfo::oop_type:
  92   case relocInfo::metadata_type:
  93     // Oops are a special case. Normally they would be their own section
  94     // but in cases like icBuffer they are literals in the code stream that
  95     // we don't have a section for. We use none so that we get a literal address
  96     // which is always patchable.
  97     break;
  98   case relocInfo::external_word_type:
  99     _rspec = external_word_Relocation::spec(target);
 100     break;
 101   case relocInfo::internal_word_type:
 102     _rspec = internal_word_Relocation::spec(target);
 103     break;
 104   case relocInfo::opt_virtual_call_type:
 105     _rspec = opt_virtual_call_Relocation::spec();
 106     break;
 107   case relocInfo::static_call_type:
 108     _rspec = static_call_Relocation::spec();
 109     break;
 110   case relocInfo::runtime_call_type:
 111     _rspec = runtime_call_Relocation::spec();
 112     break;
 113   case relocInfo::poll_type:
 114   case relocInfo::poll_return_type:
 115     _rspec = Relocation::spec_simple(rtype);
 116     break;
 117   case relocInfo::none:
 118     break;
 119   default:
 120     ShouldNotReachHere();
 121     break;
 122   }
 123 }
 124 
 125 // Implementation of Address
 126 
 127 #ifdef _LP64
 128 
 129 Address Address::make_array(ArrayAddress adr) {
 130   // Not implementable on 64bit machines
 131   // Should have been handled higher up the call chain.
 132   ShouldNotReachHere();
 133   return Address();
 134 }
 135 
 136 // exceedingly dangerous constructor
 137 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 138   _base  = noreg;
 139   _index = noreg;
 140   _scale = no_scale;
 141   _disp  = disp;
 142   switch (rtype) {
 143     case relocInfo::external_word_type:
 144       _rspec = external_word_Relocation::spec(loc);
 145       break;
 146     case relocInfo::internal_word_type:
 147       _rspec = internal_word_Relocation::spec(loc);
 148       break;
 149     case relocInfo::runtime_call_type:
 150       // HMM
 151       _rspec = runtime_call_Relocation::spec();
 152       break;
 153     case relocInfo::poll_type:
 154     case relocInfo::poll_return_type:
 155       _rspec = Relocation::spec_simple(rtype);
 156       break;
 157     case relocInfo::none:
 158       break;
 159     default:
 160       ShouldNotReachHere();
 161   }
 162 }
 163 #else // LP64
 164 
 165 Address Address::make_array(ArrayAddress adr) {
 166   AddressLiteral base = adr.base();
 167   Address index = adr.index();
 168   assert(index._disp == 0, "must not have disp"); // maybe it can?
 169   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 170   array._rspec = base._rspec;
 171   return array;
 172 }
 173 
 174 // exceedingly dangerous constructor
 175 Address::Address(address loc, RelocationHolder spec) {
 176   _base  = noreg;
 177   _index = noreg;
 178   _scale = no_scale;
 179   _disp  = (intptr_t) loc;
 180   _rspec = spec;
 181 }
 182 
 183 #endif // _LP64
 184 
 185 
 186 
 187 // Convert the raw encoding form into the form expected by the constructor for
 188 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 189 // that to noreg for the Address constructor.
 190 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 191   RelocationHolder rspec;
 192   if (disp_reloc != relocInfo::none) {
 193     rspec = Relocation::spec_simple(disp_reloc);
 194   }
 195   bool valid_index = index != rsp->encoding();
 196   if (valid_index) {
 197     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 198     madr._rspec = rspec;
 199     return madr;
 200   } else {
 201     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 202     madr._rspec = rspec;
 203     return madr;
 204   }
 205 }
 206 
 207 // Implementation of Assembler
 208 
 209 int AbstractAssembler::code_fill_byte() {
 210   return (u_char)'\xF4'; // hlt
 211 }
 212 
 213 // make this go away someday
 214 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 215   if (rtype == relocInfo::none)
 216     emit_int32(data);
 217   else
 218     emit_data(data, Relocation::spec_simple(rtype), format);
 219 }
 220 
 221 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 222   assert(imm_operand == 0, "default format must be immediate in this file");
 223   assert(inst_mark() != NULL, "must be inside InstructionMark");
 224   if (rspec.type() !=  relocInfo::none) {
 225     #ifdef ASSERT
 226       check_relocation(rspec, format);
 227     #endif
 228     // Do not use AbstractAssembler::relocate, which is not intended for
 229     // embedded words.  Instead, relocate to the enclosing instruction.
 230 
 231     // hack. call32 is too wide for mask so use disp32
 232     if (format == call32_operand)
 233       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 234     else
 235       code_section()->relocate(inst_mark(), rspec, format);
 236   }
 237   emit_int32(data);
 238 }
 239 
 240 static int encode(Register r) {
 241   int enc = r->encoding();
 242   if (enc >= 8) {
 243     enc -= 8;
 244   }
 245   return enc;
 246 }
 247 
 248 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 249   assert(dst->has_byte_register(), "must have byte register");
 250   assert(isByte(op1) && isByte(op2), "wrong opcode");
 251   assert(isByte(imm8), "not a byte");
 252   assert((op1 & 0x01) == 0, "should be 8bit operation");
 253   emit_int8(op1);
 254   emit_int8(op2 | encode(dst));
 255   emit_int8(imm8);
 256 }
 257 
 258 
 259 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 260   assert(isByte(op1) && isByte(op2), "wrong opcode");
 261   assert((op1 & 0x01) == 1, "should be 32bit operation");
 262   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 263   if (is8bit(imm32)) {
 264     emit_int8(op1 | 0x02); // set sign bit
 265     emit_int8(op2 | encode(dst));
 266     emit_int8(imm32 & 0xFF);
 267   } else {
 268     emit_int8(op1);
 269     emit_int8(op2 | encode(dst));
 270     emit_int32(imm32);
 271   }
 272 }
 273 
 274 // Force generation of a 4 byte immediate value even if it fits into 8bit
 275 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 276   assert(isByte(op1) && isByte(op2), "wrong opcode");
 277   assert((op1 & 0x01) == 1, "should be 32bit operation");
 278   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 279   emit_int8(op1);
 280   emit_int8(op2 | encode(dst));
 281   emit_int32(imm32);
 282 }
 283 
 284 // immediate-to-memory forms
 285 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 286   assert((op1 & 0x01) == 1, "should be 32bit operation");
 287   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 288   if (is8bit(imm32)) {
 289     emit_int8(op1 | 0x02); // set sign bit
 290     emit_operand(rm, adr, 1);
 291     emit_int8(imm32 & 0xFF);
 292   } else {
 293     emit_int8(op1);
 294     emit_operand(rm, adr, 4);
 295     emit_int32(imm32);
 296   }
 297 }
 298 
 299 
 300 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 301   assert(isByte(op1) && isByte(op2), "wrong opcode");
 302   emit_int8(op1);
 303   emit_int8(op2 | encode(dst) << 3 | encode(src));
 304 }
 305 
 306 
 307 bool Assembler::query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
 308                                            int cur_tuple_type, int in_size_in_bits, int cur_encoding) {
 309   int mod_idx = 0;
 310   // We will test if the displacement fits the compressed format and if so
 311   // apply the compression to the displacment iff the result is8bit.
 312   if (VM_Version::supports_evex() && is_evex_inst) {
 313     switch (cur_tuple_type) {
 314     case EVEX_FV:
 315       if ((cur_encoding & VEX_W) == VEX_W) {
 316         mod_idx += 2 + ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 317       } else {
 318         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 319       }
 320       break;
 321 
 322     case EVEX_HV:
 323       mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 324       break;
 325 
 326     case EVEX_FVM:
 327       break;
 328 
 329     case EVEX_T1S:
 330       switch (in_size_in_bits) {
 331       case EVEX_8bit:
 332         break;
 333 
 334       case EVEX_16bit:
 335         mod_idx = 1;
 336         break;
 337 
 338       case EVEX_32bit:
 339         mod_idx = 2;
 340         break;
 341 
 342       case EVEX_64bit:
 343         mod_idx = 3;
 344         break;
 345       }
 346       break;
 347 
 348     case EVEX_T1F:
 349     case EVEX_T2:
 350     case EVEX_T4:
 351       mod_idx = (in_size_in_bits == EVEX_64bit) ? 1 : 0;
 352       break;
 353 
 354     case EVEX_T8:
 355       break;
 356 
 357     case EVEX_HVM:
 358       break;
 359 
 360     case EVEX_QVM:
 361       break;
 362 
 363     case EVEX_OVM:
 364       break;
 365 
 366     case EVEX_M128:
 367       break;
 368 
 369     case EVEX_DUP:
 370       break;
 371 
 372     default:
 373       assert(0, "no valid evex tuple_table entry");
 374       break;
 375     }
 376 
 377     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 378       int disp_factor = tuple_table[cur_tuple_type + mod_idx][vector_len];
 379       if ((disp % disp_factor) == 0) {
 380         int new_disp = disp / disp_factor;
 381         if ((-0x80 <= new_disp && new_disp < 0x80)) {
 382           disp = new_disp;
 383         }
 384       } else {
 385         return false;
 386       }
 387     }
 388   }
 389   return (-0x80 <= disp && disp < 0x80);
 390 }
 391 
 392 
 393 bool Assembler::emit_compressed_disp_byte(int &disp) {
 394   int mod_idx = 0;
 395   // We will test if the displacement fits the compressed format and if so
 396   // apply the compression to the displacment iff the result is8bit.
 397   if (VM_Version::supports_evex() && is_evex_instruction) {
 398     switch (tuple_type) {
 399     case EVEX_FV:
 400       if ((evex_encoding & VEX_W) == VEX_W) {
 401         mod_idx += 2 + ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 402       } else {
 403         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 404       }
 405       break;
 406 
 407     case EVEX_HV:
 408       mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 409       break;
 410 
 411     case EVEX_FVM:
 412       break;
 413 
 414     case EVEX_T1S:
 415       switch (input_size_in_bits) {
 416       case EVEX_8bit:
 417         break;
 418 
 419       case EVEX_16bit:
 420         mod_idx = 1;
 421         break;
 422 
 423       case EVEX_32bit:
 424         mod_idx = 2;
 425         break;
 426 
 427       case EVEX_64bit:
 428         mod_idx = 3;
 429         break;
 430       }
 431       break;
 432 
 433     case EVEX_T1F:
 434     case EVEX_T2:
 435     case EVEX_T4:
 436       mod_idx = (input_size_in_bits == EVEX_64bit) ? 1 : 0;
 437       break;
 438 
 439     case EVEX_T8:
 440       break;
 441 
 442     case EVEX_HVM:
 443       break;
 444 
 445     case EVEX_QVM:
 446       break;
 447 
 448     case EVEX_OVM:
 449       break;
 450 
 451     case EVEX_M128:
 452       break;
 453 
 454     case EVEX_DUP:
 455       break;
 456 
 457     default:
 458       assert(0, "no valid evex tuple_table entry");
 459       break;
 460     }
 461 
 462     if (avx_vector_len >= AVX_128bit && avx_vector_len <= AVX_512bit) {
 463       int disp_factor = tuple_table[tuple_type + mod_idx][avx_vector_len];
 464       if ((disp % disp_factor) == 0) {
 465         int new_disp = disp / disp_factor;
 466         if (is8bit(new_disp)) {
 467           disp = new_disp;
 468         }
 469       } else {
 470         return false;
 471       }
 472     }
 473   }
 474   return is8bit(disp);
 475 }
 476 
 477 
 478 void Assembler::emit_operand(Register reg, Register base, Register index,
 479                              Address::ScaleFactor scale, int disp,
 480                              RelocationHolder const& rspec,
 481                              int rip_relative_correction) {
 482   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 483 
 484   // Encode the registers as needed in the fields they are used in
 485 
 486   int regenc = encode(reg) << 3;
 487   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 488   int baseenc = base->is_valid() ? encode(base) : 0;
 489 
 490   if (base->is_valid()) {
 491     if (index->is_valid()) {
 492       assert(scale != Address::no_scale, "inconsistent address");
 493       // [base + index*scale + disp]
 494       if (disp == 0 && rtype == relocInfo::none  &&
 495           base != rbp LP64_ONLY(&& base != r13)) {
 496         // [base + index*scale]
 497         // [00 reg 100][ss index base]
 498         assert(index != rsp, "illegal addressing mode");
 499         emit_int8(0x04 | regenc);
 500         emit_int8(scale << 6 | indexenc | baseenc);
 501       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 502         // [base + index*scale + imm8]
 503         // [01 reg 100][ss index base] imm8
 504         assert(index != rsp, "illegal addressing mode");
 505         emit_int8(0x44 | regenc);
 506         emit_int8(scale << 6 | indexenc | baseenc);
 507         emit_int8(disp & 0xFF);
 508       } else {
 509         // [base + index*scale + disp32]
 510         // [10 reg 100][ss index base] disp32
 511         assert(index != rsp, "illegal addressing mode");
 512         emit_int8(0x84 | regenc);
 513         emit_int8(scale << 6 | indexenc | baseenc);
 514         emit_data(disp, rspec, disp32_operand);
 515       }
 516     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 517       // [rsp + disp]
 518       if (disp == 0 && rtype == relocInfo::none) {
 519         // [rsp]
 520         // [00 reg 100][00 100 100]
 521         emit_int8(0x04 | regenc);
 522         emit_int8(0x24);
 523       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 524         // [rsp + imm8]
 525         // [01 reg 100][00 100 100] disp8
 526         emit_int8(0x44 | regenc);
 527         emit_int8(0x24);
 528         emit_int8(disp & 0xFF);
 529       } else {
 530         // [rsp + imm32]
 531         // [10 reg 100][00 100 100] disp32
 532         emit_int8(0x84 | regenc);
 533         emit_int8(0x24);
 534         emit_data(disp, rspec, disp32_operand);
 535       }
 536     } else {
 537       // [base + disp]
 538       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 539       if (disp == 0 && rtype == relocInfo::none &&
 540           base != rbp LP64_ONLY(&& base != r13)) {
 541         // [base]
 542         // [00 reg base]
 543         emit_int8(0x00 | regenc | baseenc);
 544       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 545         // [base + disp8]
 546         // [01 reg base] disp8
 547         emit_int8(0x40 | regenc | baseenc);
 548         emit_int8(disp & 0xFF);
 549       } else {
 550         // [base + disp32]
 551         // [10 reg base] disp32
 552         emit_int8(0x80 | regenc | baseenc);
 553         emit_data(disp, rspec, disp32_operand);
 554       }
 555     }
 556   } else {
 557     if (index->is_valid()) {
 558       assert(scale != Address::no_scale, "inconsistent address");
 559       // [index*scale + disp]
 560       // [00 reg 100][ss index 101] disp32
 561       assert(index != rsp, "illegal addressing mode");
 562       emit_int8(0x04 | regenc);
 563       emit_int8(scale << 6 | indexenc | 0x05);
 564       emit_data(disp, rspec, disp32_operand);
 565     } else if (rtype != relocInfo::none ) {
 566       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 567       // [00 000 101] disp32
 568 
 569       emit_int8(0x05 | regenc);
 570       // Note that the RIP-rel. correction applies to the generated
 571       // disp field, but _not_ to the target address in the rspec.
 572 
 573       // disp was created by converting the target address minus the pc
 574       // at the start of the instruction. That needs more correction here.
 575       // intptr_t disp = target - next_ip;
 576       assert(inst_mark() != NULL, "must be inside InstructionMark");
 577       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 578       int64_t adjusted = disp;
 579       // Do rip-rel adjustment for 64bit
 580       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 581       assert(is_simm32(adjusted),
 582              "must be 32bit offset (RIP relative address)");
 583       emit_data((int32_t) adjusted, rspec, disp32_operand);
 584 
 585     } else {
 586       // 32bit never did this, did everything as the rip-rel/disp code above
 587       // [disp] ABSOLUTE
 588       // [00 reg 100][00 100 101] disp32
 589       emit_int8(0x04 | regenc);
 590       emit_int8(0x25);
 591       emit_data(disp, rspec, disp32_operand);
 592     }
 593   }
 594   is_evex_instruction = false;
 595 }
 596 
 597 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 598                              Address::ScaleFactor scale, int disp,
 599                              RelocationHolder const& rspec) {
 600   if (UseAVX > 2) {
 601     int xreg_enc = reg->encoding();
 602     if (xreg_enc > 15) {
 603       XMMRegister new_reg = as_XMMRegister(xreg_enc & 0xf);
 604       emit_operand((Register)new_reg, base, index, scale, disp, rspec);
 605       return;
 606     }
 607   }
 608   emit_operand((Register)reg, base, index, scale, disp, rspec);
 609 }
 610 
 611 // Secret local extension to Assembler::WhichOperand:
 612 #define end_pc_operand (_WhichOperand_limit)
 613 
 614 address Assembler::locate_operand(address inst, WhichOperand which) {
 615   // Decode the given instruction, and return the address of
 616   // an embedded 32-bit operand word.
 617 
 618   // If "which" is disp32_operand, selects the displacement portion
 619   // of an effective address specifier.
 620   // If "which" is imm64_operand, selects the trailing immediate constant.
 621   // If "which" is call32_operand, selects the displacement of a call or jump.
 622   // Caller is responsible for ensuring that there is such an operand,
 623   // and that it is 32/64 bits wide.
 624 
 625   // If "which" is end_pc_operand, find the end of the instruction.
 626 
 627   address ip = inst;
 628   bool is_64bit = false;
 629 
 630   debug_only(bool has_disp32 = false);
 631   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 632 
 633   again_after_prefix:
 634   switch (0xFF & *ip++) {
 635 
 636   // These convenience macros generate groups of "case" labels for the switch.
 637 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 638 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 639              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 640 #define REP16(x) REP8((x)+0): \
 641               case REP8((x)+8)
 642 
 643   case CS_segment:
 644   case SS_segment:
 645   case DS_segment:
 646   case ES_segment:
 647   case FS_segment:
 648   case GS_segment:
 649     // Seems dubious
 650     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 651     assert(ip == inst+1, "only one prefix allowed");
 652     goto again_after_prefix;
 653 
 654   case 0x67:
 655   case REX:
 656   case REX_B:
 657   case REX_X:
 658   case REX_XB:
 659   case REX_R:
 660   case REX_RB:
 661   case REX_RX:
 662   case REX_RXB:
 663     NOT_LP64(assert(false, "64bit prefixes"));
 664     goto again_after_prefix;
 665 
 666   case REX_W:
 667   case REX_WB:
 668   case REX_WX:
 669   case REX_WXB:
 670   case REX_WR:
 671   case REX_WRB:
 672   case REX_WRX:
 673   case REX_WRXB:
 674     NOT_LP64(assert(false, "64bit prefixes"));
 675     is_64bit = true;
 676     goto again_after_prefix;
 677 
 678   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 679   case 0x88: // movb a, r
 680   case 0x89: // movl a, r
 681   case 0x8A: // movb r, a
 682   case 0x8B: // movl r, a
 683   case 0x8F: // popl a
 684     debug_only(has_disp32 = true);
 685     break;
 686 
 687   case 0x68: // pushq #32
 688     if (which == end_pc_operand) {
 689       return ip + 4;
 690     }
 691     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 692     return ip;                  // not produced by emit_operand
 693 
 694   case 0x66: // movw ... (size prefix)
 695     again_after_size_prefix2:
 696     switch (0xFF & *ip++) {
 697     case REX:
 698     case REX_B:
 699     case REX_X:
 700     case REX_XB:
 701     case REX_R:
 702     case REX_RB:
 703     case REX_RX:
 704     case REX_RXB:
 705     case REX_W:
 706     case REX_WB:
 707     case REX_WX:
 708     case REX_WXB:
 709     case REX_WR:
 710     case REX_WRB:
 711     case REX_WRX:
 712     case REX_WRXB:
 713       NOT_LP64(assert(false, "64bit prefix found"));
 714       goto again_after_size_prefix2;
 715     case 0x8B: // movw r, a
 716     case 0x89: // movw a, r
 717       debug_only(has_disp32 = true);
 718       break;
 719     case 0xC7: // movw a, #16
 720       debug_only(has_disp32 = true);
 721       tail_size = 2;  // the imm16
 722       break;
 723     case 0x0F: // several SSE/SSE2 variants
 724       ip--;    // reparse the 0x0F
 725       goto again_after_prefix;
 726     default:
 727       ShouldNotReachHere();
 728     }
 729     break;
 730 
 731   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 732     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 733     // these asserts are somewhat nonsensical
 734 #ifndef _LP64
 735     assert(which == imm_operand || which == disp32_operand,
 736            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip)));
 737 #else
 738     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 739            which == narrow_oop_operand && !is_64bit,
 740            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip)));
 741 #endif // _LP64
 742     return ip;
 743 
 744   case 0x69: // imul r, a, #32
 745   case 0xC7: // movl a, #32(oop?)
 746     tail_size = 4;
 747     debug_only(has_disp32 = true); // has both kinds of operands!
 748     break;
 749 
 750   case 0x0F: // movx..., etc.
 751     switch (0xFF & *ip++) {
 752     case 0x3A: // pcmpestri
 753       tail_size = 1;
 754     case 0x38: // ptest, pmovzxbw
 755       ip++; // skip opcode
 756       debug_only(has_disp32 = true); // has both kinds of operands!
 757       break;
 758 
 759     case 0x70: // pshufd r, r/a, #8
 760       debug_only(has_disp32 = true); // has both kinds of operands!
 761     case 0x73: // psrldq r, #8
 762       tail_size = 1;
 763       break;
 764 
 765     case 0x12: // movlps
 766     case 0x28: // movaps
 767     case 0x2E: // ucomiss
 768     case 0x2F: // comiss
 769     case 0x54: // andps
 770     case 0x55: // andnps
 771     case 0x56: // orps
 772     case 0x57: // xorps
 773     case 0x6E: // movd
 774     case 0x7E: // movd
 775     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 776       debug_only(has_disp32 = true);
 777       break;
 778 
 779     case 0xAD: // shrd r, a, %cl
 780     case 0xAF: // imul r, a
 781     case 0xBE: // movsbl r, a (movsxb)
 782     case 0xBF: // movswl r, a (movsxw)
 783     case 0xB6: // movzbl r, a (movzxb)
 784     case 0xB7: // movzwl r, a (movzxw)
 785     case REP16(0x40): // cmovl cc, r, a
 786     case 0xB0: // cmpxchgb
 787     case 0xB1: // cmpxchg
 788     case 0xC1: // xaddl
 789     case 0xC7: // cmpxchg8
 790     case REP16(0x90): // setcc a
 791       debug_only(has_disp32 = true);
 792       // fall out of the switch to decode the address
 793       break;
 794 
 795     case 0xC4: // pinsrw r, a, #8
 796       debug_only(has_disp32 = true);
 797     case 0xC5: // pextrw r, r, #8
 798       tail_size = 1;  // the imm8
 799       break;
 800 
 801     case 0xAC: // shrd r, a, #8
 802       debug_only(has_disp32 = true);
 803       tail_size = 1;  // the imm8
 804       break;
 805 
 806     case REP16(0x80): // jcc rdisp32
 807       if (which == end_pc_operand)  return ip + 4;
 808       assert(which == call32_operand, "jcc has no disp32 or imm");
 809       return ip;
 810     default:
 811       ShouldNotReachHere();
 812     }
 813     break;
 814 
 815   case 0x81: // addl a, #32; addl r, #32
 816     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 817     // on 32bit in the case of cmpl, the imm might be an oop
 818     tail_size = 4;
 819     debug_only(has_disp32 = true); // has both kinds of operands!
 820     break;
 821 
 822   case 0x83: // addl a, #8; addl r, #8
 823     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 824     debug_only(has_disp32 = true); // has both kinds of operands!
 825     tail_size = 1;
 826     break;
 827 
 828   case 0x9B:
 829     switch (0xFF & *ip++) {
 830     case 0xD9: // fnstcw a
 831       debug_only(has_disp32 = true);
 832       break;
 833     default:
 834       ShouldNotReachHere();
 835     }
 836     break;
 837 
 838   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 839   case REP4(0x10): // adc...
 840   case REP4(0x20): // and...
 841   case REP4(0x30): // xor...
 842   case REP4(0x08): // or...
 843   case REP4(0x18): // sbb...
 844   case REP4(0x28): // sub...
 845   case 0xF7: // mull a
 846   case 0x8D: // lea r, a
 847   case 0x87: // xchg r, a
 848   case REP4(0x38): // cmp...
 849   case 0x85: // test r, a
 850     debug_only(has_disp32 = true); // has both kinds of operands!
 851     break;
 852 
 853   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 854   case 0xC6: // movb a, #8
 855   case 0x80: // cmpb a, #8
 856   case 0x6B: // imul r, a, #8
 857     debug_only(has_disp32 = true); // has both kinds of operands!
 858     tail_size = 1; // the imm8
 859     break;
 860 
 861   case 0xC4: // VEX_3bytes
 862   case 0xC5: // VEX_2bytes
 863     assert((UseAVX > 0), "shouldn't have VEX prefix");
 864     assert(ip == inst+1, "no prefixes allowed");
 865     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 866     // but they have prefix 0x0F and processed when 0x0F processed above.
 867     //
 868     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 869     // instructions (these instructions are not supported in 64-bit mode).
 870     // To distinguish them bits [7:6] are set in the VEX second byte since
 871     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 872     // those VEX bits REX and vvvv bits are inverted.
 873     //
 874     // Fortunately C2 doesn't generate these instructions so we don't need
 875     // to check for them in product version.
 876 
 877     // Check second byte
 878     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 879 
 880     // First byte
 881     if ((0xFF & *inst) == VEX_3bytes) {
 882       ip++; // third byte
 883       is_64bit = ((VEX_W & *ip) == VEX_W);
 884     }
 885     ip++; // opcode
 886     // To find the end of instruction (which == end_pc_operand).
 887     switch (0xFF & *ip) {
 888     case 0x61: // pcmpestri r, r/a, #8
 889     case 0x70: // pshufd r, r/a, #8
 890     case 0x73: // psrldq r, #8
 891       tail_size = 1;  // the imm8
 892       break;
 893     default:
 894       break;
 895     }
 896     ip++; // skip opcode
 897     debug_only(has_disp32 = true); // has both kinds of operands!
 898     break;
 899 
 900   case 0x62: // EVEX_4bytes
 901     assert((UseAVX > 0), "shouldn't have EVEX prefix");
 902     assert(ip == inst+1, "no prefixes allowed");
 903     // no EVEX collisions, all instructions that have 0x62 opcodes
 904     // have EVEX versions and are subopcodes of 0x66
 905     ip++; // skip P0 and exmaine W in P1
 906     is_64bit = ((VEX_W & *ip) == VEX_W);
 907     ip++; // move to P2
 908     ip++; // skip P2, move to opcode
 909     // To find the end of instruction (which == end_pc_operand).
 910     switch (0xFF & *ip) {
 911     case 0x61: // pcmpestri r, r/a, #8
 912     case 0x70: // pshufd r, r/a, #8
 913     case 0x73: // psrldq r, #8
 914       tail_size = 1;  // the imm8
 915       break;
 916     default:
 917       break;
 918     }
 919     ip++; // skip opcode
 920     debug_only(has_disp32 = true); // has both kinds of operands!
 921     break;
 922 
 923   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 924   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 925   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 926   case 0xDD: // fld_d a; fst_d a; fstp_d a
 927   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 928   case 0xDF: // fild_d a; fistp_d a
 929   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 930   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 931   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 932     debug_only(has_disp32 = true);
 933     break;
 934 
 935   case 0xE8: // call rdisp32
 936   case 0xE9: // jmp  rdisp32
 937     if (which == end_pc_operand)  return ip + 4;
 938     assert(which == call32_operand, "call has no disp32 or imm");
 939     return ip;
 940 
 941   case 0xF0:                    // Lock
 942     assert(os::is_MP(), "only on MP");
 943     goto again_after_prefix;
 944 
 945   case 0xF3:                    // For SSE
 946   case 0xF2:                    // For SSE2
 947     switch (0xFF & *ip++) {
 948     case REX:
 949     case REX_B:
 950     case REX_X:
 951     case REX_XB:
 952     case REX_R:
 953     case REX_RB:
 954     case REX_RX:
 955     case REX_RXB:
 956     case REX_W:
 957     case REX_WB:
 958     case REX_WX:
 959     case REX_WXB:
 960     case REX_WR:
 961     case REX_WRB:
 962     case REX_WRX:
 963     case REX_WRXB:
 964       NOT_LP64(assert(false, "found 64bit prefix"));
 965       ip++;
 966     default:
 967       ip++;
 968     }
 969     debug_only(has_disp32 = true); // has both kinds of operands!
 970     break;
 971 
 972   default:
 973     ShouldNotReachHere();
 974 
 975 #undef REP8
 976 #undef REP16
 977   }
 978 
 979   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
 980 #ifdef _LP64
 981   assert(which != imm_operand, "instruction is not a movq reg, imm64");
 982 #else
 983   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
 984   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
 985 #endif // LP64
 986   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
 987 
 988   // parse the output of emit_operand
 989   int op2 = 0xFF & *ip++;
 990   int base = op2 & 0x07;
 991   int op3 = -1;
 992   const int b100 = 4;
 993   const int b101 = 5;
 994   if (base == b100 && (op2 >> 6) != 3) {
 995     op3 = 0xFF & *ip++;
 996     base = op3 & 0x07;   // refetch the base
 997   }
 998   // now ip points at the disp (if any)
 999 
1000   switch (op2 >> 6) {
1001   case 0:
1002     // [00 reg  100][ss index base]
1003     // [00 reg  100][00   100  esp]
1004     // [00 reg base]
1005     // [00 reg  100][ss index  101][disp32]
1006     // [00 reg  101]               [disp32]
1007 
1008     if (base == b101) {
1009       if (which == disp32_operand)
1010         return ip;              // caller wants the disp32
1011       ip += 4;                  // skip the disp32
1012     }
1013     break;
1014 
1015   case 1:
1016     // [01 reg  100][ss index base][disp8]
1017     // [01 reg  100][00   100  esp][disp8]
1018     // [01 reg base]               [disp8]
1019     ip += 1;                    // skip the disp8
1020     break;
1021 
1022   case 2:
1023     // [10 reg  100][ss index base][disp32]
1024     // [10 reg  100][00   100  esp][disp32]
1025     // [10 reg base]               [disp32]
1026     if (which == disp32_operand)
1027       return ip;                // caller wants the disp32
1028     ip += 4;                    // skip the disp32
1029     break;
1030 
1031   case 3:
1032     // [11 reg base]  (not a memory addressing mode)
1033     break;
1034   }
1035 
1036   if (which == end_pc_operand) {
1037     return ip + tail_size;
1038   }
1039 
1040 #ifdef _LP64
1041   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
1042 #else
1043   assert(which == imm_operand, "instruction has only an imm field");
1044 #endif // LP64
1045   return ip;
1046 }
1047 
1048 address Assembler::locate_next_instruction(address inst) {
1049   // Secretly share code with locate_operand:
1050   return locate_operand(inst, end_pc_operand);
1051 }
1052 
1053 
1054 #ifdef ASSERT
1055 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
1056   address inst = inst_mark();
1057   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
1058   address opnd;
1059 
1060   Relocation* r = rspec.reloc();
1061   if (r->type() == relocInfo::none) {
1062     return;
1063   } else if (r->is_call() || format == call32_operand) {
1064     // assert(format == imm32_operand, "cannot specify a nonzero format");
1065     opnd = locate_operand(inst, call32_operand);
1066   } else if (r->is_data()) {
1067     assert(format == imm_operand || format == disp32_operand
1068            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
1069     opnd = locate_operand(inst, (WhichOperand)format);
1070   } else {
1071     assert(format == imm_operand, "cannot specify a format");
1072     return;
1073   }
1074   assert(opnd == pc(), "must put operand where relocs can find it");
1075 }
1076 #endif // ASSERT
1077 
1078 void Assembler::emit_operand32(Register reg, Address adr) {
1079   assert(reg->encoding() < 8, "no extended registers");
1080   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1081   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1082                adr._rspec);
1083 }
1084 
1085 void Assembler::emit_operand(Register reg, Address adr,
1086                              int rip_relative_correction) {
1087   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1088                adr._rspec,
1089                rip_relative_correction);
1090 }
1091 
1092 void Assembler::emit_operand(XMMRegister reg, Address adr) {
1093   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1094                adr._rspec);
1095 }
1096 
1097 // MMX operations
1098 void Assembler::emit_operand(MMXRegister reg, Address adr) {
1099   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1100   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1101 }
1102 
1103 // work around gcc (3.2.1-7a) bug
1104 void Assembler::emit_operand(Address adr, MMXRegister reg) {
1105   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1106   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1107 }
1108 
1109 
1110 void Assembler::emit_farith(int b1, int b2, int i) {
1111   assert(isByte(b1) && isByte(b2), "wrong opcode");
1112   assert(0 <= i &&  i < 8, "illegal stack offset");
1113   emit_int8(b1);
1114   emit_int8(b2 + i);
1115 }
1116 
1117 
1118 // Now the Assembler instructions (identical for 32/64 bits)
1119 
1120 void Assembler::adcl(Address dst, int32_t imm32) {
1121   InstructionMark im(this);
1122   prefix(dst);
1123   emit_arith_operand(0x81, rdx, dst, imm32);
1124 }
1125 
1126 void Assembler::adcl(Address dst, Register src) {
1127   InstructionMark im(this);
1128   prefix(dst, src);
1129   emit_int8(0x11);
1130   emit_operand(src, dst);
1131 }
1132 
1133 void Assembler::adcl(Register dst, int32_t imm32) {
1134   prefix(dst);
1135   emit_arith(0x81, 0xD0, dst, imm32);
1136 }
1137 
1138 void Assembler::adcl(Register dst, Address src) {
1139   InstructionMark im(this);
1140   prefix(src, dst);
1141   emit_int8(0x13);
1142   emit_operand(dst, src);
1143 }
1144 
1145 void Assembler::adcl(Register dst, Register src) {
1146   (void) prefix_and_encode(dst->encoding(), src->encoding());
1147   emit_arith(0x13, 0xC0, dst, src);
1148 }
1149 
1150 void Assembler::addl(Address dst, int32_t imm32) {
1151   InstructionMark im(this);
1152   prefix(dst);
1153   emit_arith_operand(0x81, rax, dst, imm32);
1154 }
1155 
1156 void Assembler::addl(Address dst, Register src) {
1157   InstructionMark im(this);
1158   prefix(dst, src);
1159   emit_int8(0x01);
1160   emit_operand(src, dst);
1161 }
1162 
1163 void Assembler::addl(Register dst, int32_t imm32) {
1164   prefix(dst);
1165   emit_arith(0x81, 0xC0, dst, imm32);
1166 }
1167 
1168 void Assembler::addl(Register dst, Address src) {
1169   InstructionMark im(this);
1170   prefix(src, dst);
1171   emit_int8(0x03);
1172   emit_operand(dst, src);
1173 }
1174 
1175 void Assembler::addl(Register dst, Register src) {
1176   (void) prefix_and_encode(dst->encoding(), src->encoding());
1177   emit_arith(0x03, 0xC0, dst, src);
1178 }
1179 
1180 void Assembler::addr_nop_4() {
1181   assert(UseAddressNop, "no CPU support");
1182   // 4 bytes: NOP DWORD PTR [EAX+0]
1183   emit_int8(0x0F);
1184   emit_int8(0x1F);
1185   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
1186   emit_int8(0);    // 8-bits offset (1 byte)
1187 }
1188 
1189 void Assembler::addr_nop_5() {
1190   assert(UseAddressNop, "no CPU support");
1191   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
1192   emit_int8(0x0F);
1193   emit_int8(0x1F);
1194   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
1195   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1196   emit_int8(0);    // 8-bits offset (1 byte)
1197 }
1198 
1199 void Assembler::addr_nop_7() {
1200   assert(UseAddressNop, "no CPU support");
1201   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
1202   emit_int8(0x0F);
1203   emit_int8(0x1F);
1204   emit_int8((unsigned char)0x80);
1205                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
1206   emit_int32(0);   // 32-bits offset (4 bytes)
1207 }
1208 
1209 void Assembler::addr_nop_8() {
1210   assert(UseAddressNop, "no CPU support");
1211   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
1212   emit_int8(0x0F);
1213   emit_int8(0x1F);
1214   emit_int8((unsigned char)0x84);
1215                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
1216   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1217   emit_int32(0);   // 32-bits offset (4 bytes)
1218 }
1219 
1220 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
1221   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1222   if (VM_Version::supports_evex()) {
1223     emit_simd_arith_q(0x58, dst, src, VEX_SIMD_F2);
1224   } else {
1225     emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
1226   }
1227 }
1228 
1229 void Assembler::addsd(XMMRegister dst, Address src) {
1230   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1231   if (VM_Version::supports_evex()) {
1232     tuple_type = EVEX_T1S;
1233     input_size_in_bits = EVEX_64bit;
1234     emit_simd_arith_q(0x58, dst, src, VEX_SIMD_F2);
1235   } else {
1236     emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
1237   }
1238 }
1239 
1240 void Assembler::addss(XMMRegister dst, XMMRegister src) {
1241   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1242   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
1243 }
1244 
1245 void Assembler::addss(XMMRegister dst, Address src) {
1246   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1247   if (VM_Version::supports_evex()) {
1248     tuple_type = EVEX_T1S;
1249     input_size_in_bits = EVEX_32bit;
1250   }
1251   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
1252 }
1253 
1254 void Assembler::aesdec(XMMRegister dst, Address src) {
1255   assert(VM_Version::supports_aes(), "");
1256   InstructionMark im(this);
1257   simd_prefix(dst, dst, src, VEX_SIMD_66, false,
1258               VEX_OPCODE_0F_38, false, AVX_128bit, true);
1259   emit_int8((unsigned char)0xDE);
1260   emit_operand(dst, src);
1261 }
1262 
1263 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1264   assert(VM_Version::supports_aes(), "");
1265   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
1266                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
1267   emit_int8((unsigned char)0xDE);
1268   emit_int8(0xC0 | encode);
1269 }
1270 
1271 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1272   assert(VM_Version::supports_aes(), "");
1273   InstructionMark im(this);
1274   simd_prefix(dst, dst, src, VEX_SIMD_66, false,
1275               VEX_OPCODE_0F_38, false, AVX_128bit, true);
1276   emit_int8((unsigned char)0xDF);
1277   emit_operand(dst, src);
1278 }
1279 
1280 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1281   assert(VM_Version::supports_aes(), "");
1282   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
1283                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
1284   emit_int8((unsigned char)0xDF);
1285   emit_int8((unsigned char)(0xC0 | encode));
1286 }
1287 
1288 void Assembler::aesenc(XMMRegister dst, Address src) {
1289   assert(VM_Version::supports_aes(), "");
1290   InstructionMark im(this);
1291   simd_prefix(dst, dst, src, VEX_SIMD_66, false,
1292               VEX_OPCODE_0F_38, false, AVX_128bit, true);
1293   emit_int8((unsigned char)0xDC);
1294   emit_operand(dst, src);
1295 }
1296 
1297 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1298   assert(VM_Version::supports_aes(), "");
1299   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
1300                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
1301   emit_int8((unsigned char)0xDC);
1302   emit_int8(0xC0 | encode);
1303 }
1304 
1305 void Assembler::aesenclast(XMMRegister dst, Address src) {
1306   assert(VM_Version::supports_aes(), "");
1307   InstructionMark im(this);
1308   simd_prefix(dst, dst, src, VEX_SIMD_66, false,
1309               VEX_OPCODE_0F_38, false, AVX_128bit, true);
1310   emit_int8((unsigned char)0xDD);
1311   emit_operand(dst, src);
1312 }
1313 
1314 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1315   assert(VM_Version::supports_aes(), "");
1316   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
1317                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
1318   emit_int8((unsigned char)0xDD);
1319   emit_int8((unsigned char)(0xC0 | encode));
1320 }
1321 
1322 
1323 void Assembler::andl(Address dst, int32_t imm32) {
1324   InstructionMark im(this);
1325   prefix(dst);
1326   emit_int8((unsigned char)0x81);
1327   emit_operand(rsp, dst, 4);
1328   emit_int32(imm32);
1329 }
1330 
1331 void Assembler::andl(Register dst, int32_t imm32) {
1332   prefix(dst);
1333   emit_arith(0x81, 0xE0, dst, imm32);
1334 }
1335 
1336 void Assembler::andl(Register dst, Address src) {
1337   InstructionMark im(this);
1338   prefix(src, dst);
1339   emit_int8(0x23);
1340   emit_operand(dst, src);
1341 }
1342 
1343 void Assembler::andl(Register dst, Register src) {
1344   (void) prefix_and_encode(dst->encoding(), src->encoding());
1345   emit_arith(0x23, 0xC0, dst, src);
1346 }
1347 
1348 void Assembler::andnl(Register dst, Register src1, Register src2) {
1349   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1350   int encode = vex_prefix_0F38_and_encode_legacy(dst, src1, src2, false);
1351   emit_int8((unsigned char)0xF2);
1352   emit_int8((unsigned char)(0xC0 | encode));
1353 }
1354 
1355 void Assembler::andnl(Register dst, Register src1, Address src2) {
1356   InstructionMark im(this);
1357   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1358   vex_prefix_0F38_legacy(dst, src1, src2, false);
1359   emit_int8((unsigned char)0xF2);
1360   emit_operand(dst, src2);
1361 }
1362 
1363 void Assembler::bsfl(Register dst, Register src) {
1364   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1365   emit_int8(0x0F);
1366   emit_int8((unsigned char)0xBC);
1367   emit_int8((unsigned char)(0xC0 | encode));
1368 }
1369 
1370 void Assembler::bsrl(Register dst, Register src) {
1371   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1372   emit_int8(0x0F);
1373   emit_int8((unsigned char)0xBD);
1374   emit_int8((unsigned char)(0xC0 | encode));
1375 }
1376 
1377 void Assembler::bswapl(Register reg) { // bswap
1378   int encode = prefix_and_encode(reg->encoding());
1379   emit_int8(0x0F);
1380   emit_int8((unsigned char)(0xC8 | encode));
1381 }
1382 
1383 void Assembler::blsil(Register dst, Register src) {
1384   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1385   int encode = vex_prefix_0F38_and_encode_legacy(rbx, dst, src, false);
1386   emit_int8((unsigned char)0xF3);
1387   emit_int8((unsigned char)(0xC0 | encode));
1388 }
1389 
1390 void Assembler::blsil(Register dst, Address src) {
1391   InstructionMark im(this);
1392   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1393   vex_prefix_0F38_legacy(rbx, dst, src, false);
1394   emit_int8((unsigned char)0xF3);
1395   emit_operand(rbx, src);
1396 }
1397 
1398 void Assembler::blsmskl(Register dst, Register src) {
1399   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1400   int encode = vex_prefix_0F38_and_encode_legacy(rdx, dst, src, false);
1401   emit_int8((unsigned char)0xF3);
1402   emit_int8((unsigned char)(0xC0 | encode));
1403 }
1404 
1405 void Assembler::blsmskl(Register dst, Address src) {
1406   InstructionMark im(this);
1407   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1408   vex_prefix_0F38(rdx, dst, src, false);
1409   emit_int8((unsigned char)0xF3);
1410   emit_operand(rdx, src);
1411 }
1412 
1413 void Assembler::blsrl(Register dst, Register src) {
1414   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1415   int encode = vex_prefix_0F38_and_encode_legacy(rcx, dst, src, false);
1416   emit_int8((unsigned char)0xF3);
1417   emit_int8((unsigned char)(0xC0 | encode));
1418 }
1419 
1420 void Assembler::blsrl(Register dst, Address src) {
1421   InstructionMark im(this);
1422   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1423   vex_prefix_0F38_legacy(rcx, dst, src, false);
1424   emit_int8((unsigned char)0xF3);
1425   emit_operand(rcx, src);
1426 }
1427 
1428 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1429   // suspect disp32 is always good
1430   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1431 
1432   if (L.is_bound()) {
1433     const int long_size = 5;
1434     int offs = (int)( target(L) - pc() );
1435     assert(offs <= 0, "assembler error");
1436     InstructionMark im(this);
1437     // 1110 1000 #32-bit disp
1438     emit_int8((unsigned char)0xE8);
1439     emit_data(offs - long_size, rtype, operand);
1440   } else {
1441     InstructionMark im(this);
1442     // 1110 1000 #32-bit disp
1443     L.add_patch_at(code(), locator());
1444 
1445     emit_int8((unsigned char)0xE8);
1446     emit_data(int(0), rtype, operand);
1447   }
1448 }
1449 
1450 void Assembler::call(Register dst) {
1451   int encode = prefix_and_encode(dst->encoding());
1452   emit_int8((unsigned char)0xFF);
1453   emit_int8((unsigned char)(0xD0 | encode));
1454 }
1455 
1456 
1457 void Assembler::call(Address adr) {
1458   InstructionMark im(this);
1459   prefix(adr);
1460   emit_int8((unsigned char)0xFF);
1461   emit_operand(rdx, adr);
1462 }
1463 
1464 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1465   assert(entry != NULL, "call most probably wrong");
1466   InstructionMark im(this);
1467   emit_int8((unsigned char)0xE8);
1468   intptr_t disp = entry - (pc() + sizeof(int32_t));
1469   assert(is_simm32(disp), "must be 32bit offset (call2)");
1470   // Technically, should use call32_operand, but this format is
1471   // implied by the fact that we're emitting a call instruction.
1472 
1473   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1474   emit_data((int) disp, rspec, operand);
1475 }
1476 
1477 void Assembler::cdql() {
1478   emit_int8((unsigned char)0x99);
1479 }
1480 
1481 void Assembler::cld() {
1482   emit_int8((unsigned char)0xFC);
1483 }
1484 
1485 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1486   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1487   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1488   emit_int8(0x0F);
1489   emit_int8(0x40 | cc);
1490   emit_int8((unsigned char)(0xC0 | encode));
1491 }
1492 
1493 
1494 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1495   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1496   prefix(src, dst);
1497   emit_int8(0x0F);
1498   emit_int8(0x40 | cc);
1499   emit_operand(dst, src);
1500 }
1501 
1502 void Assembler::cmpb(Address dst, int imm8) {
1503   InstructionMark im(this);
1504   prefix(dst);
1505   emit_int8((unsigned char)0x80);
1506   emit_operand(rdi, dst, 1);
1507   emit_int8(imm8);
1508 }
1509 
1510 void Assembler::cmpl(Address dst, int32_t imm32) {
1511   InstructionMark im(this);
1512   prefix(dst);
1513   emit_int8((unsigned char)0x81);
1514   emit_operand(rdi, dst, 4);
1515   emit_int32(imm32);
1516 }
1517 
1518 void Assembler::cmpl(Register dst, int32_t imm32) {
1519   prefix(dst);
1520   emit_arith(0x81, 0xF8, dst, imm32);
1521 }
1522 
1523 void Assembler::cmpl(Register dst, Register src) {
1524   (void) prefix_and_encode(dst->encoding(), src->encoding());
1525   emit_arith(0x3B, 0xC0, dst, src);
1526 }
1527 
1528 
1529 void Assembler::cmpl(Register dst, Address  src) {
1530   InstructionMark im(this);
1531   prefix(src, dst);
1532   emit_int8((unsigned char)0x3B);
1533   emit_operand(dst, src);
1534 }
1535 
1536 void Assembler::cmpw(Address dst, int imm16) {
1537   InstructionMark im(this);
1538   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1539   emit_int8(0x66);
1540   emit_int8((unsigned char)0x81);
1541   emit_operand(rdi, dst, 2);
1542   emit_int16(imm16);
1543 }
1544 
1545 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1546 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1547 // The ZF is set if the compared values were equal, and cleared otherwise.
1548 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1549   InstructionMark im(this);
1550   prefix(adr, reg);
1551   emit_int8(0x0F);
1552   emit_int8((unsigned char)0xB1);
1553   emit_operand(reg, adr);
1554 }
1555 
1556 // The 8-bit cmpxchg compares the value at adr with the contents of rax,
1557 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1558 // The ZF is set if the compared values were equal, and cleared otherwise.
1559 void Assembler::cmpxchgb(Register reg, Address adr) { // cmpxchg
1560   InstructionMark im(this);
1561   prefix(adr, reg, true);
1562   emit_int8(0x0F);
1563   emit_int8((unsigned char)0xB0);
1564   emit_operand(reg, adr);
1565 }
1566 
1567 void Assembler::comisd(XMMRegister dst, Address src) {
1568   // NOTE: dbx seems to decode this as comiss even though the
1569   // 0x66 is there. Strangly ucomisd comes out correct
1570   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1571   if (VM_Version::supports_evex()) {
1572     tuple_type = EVEX_T1S;
1573     input_size_in_bits = EVEX_64bit;
1574     emit_simd_arith_nonds_q(0x2F, dst, src, VEX_SIMD_66, true);
1575   } else {
1576     emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
1577   }
1578 }
1579 
1580 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1581   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1582   if (VM_Version::supports_evex()) {
1583     emit_simd_arith_nonds_q(0x2F, dst, src, VEX_SIMD_66, true);
1584   } else {
1585     emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
1586   }
1587 }
1588 
1589 void Assembler::comiss(XMMRegister dst, Address src) {
1590   if (VM_Version::supports_evex()) {
1591     tuple_type = EVEX_T1S;
1592     input_size_in_bits = EVEX_32bit;
1593   }
1594   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1595   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE, true);
1596 }
1597 
1598 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1599   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1600   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE, true);
1601 }
1602 
1603 void Assembler::cpuid() {
1604   emit_int8(0x0F);
1605   emit_int8((unsigned char)0xA2);
1606 }
1607 
1608 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1609   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1610   emit_simd_arith_nonds(0xE6, dst, src, VEX_SIMD_F3);
1611 }
1612 
1613 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1614   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1615   emit_simd_arith_nonds(0x5B, dst, src, VEX_SIMD_NONE);
1616 }
1617 
1618 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1619   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1620   if (VM_Version::supports_evex()) {
1621     emit_simd_arith_q(0x5A, dst, src, VEX_SIMD_F2);
1622   } else {
1623     emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
1624   }
1625 }
1626 
1627 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1628   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1629   if (VM_Version::supports_evex()) {
1630     tuple_type = EVEX_T1F;
1631     input_size_in_bits = EVEX_64bit;
1632     emit_simd_arith_q(0x5A, dst, src, VEX_SIMD_F2);
1633   } else {
1634     emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
1635   }
1636 }
1637 
1638 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1639   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1640   int encode = 0;
1641   if (VM_Version::supports_evex()) {
1642     encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2, true);
1643   } else {
1644     encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, false);
1645   }
1646   emit_int8(0x2A);
1647   emit_int8((unsigned char)(0xC0 | encode));
1648 }
1649 
1650 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1651   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1652   if (VM_Version::supports_evex()) {
1653     tuple_type = EVEX_T1S;
1654     input_size_in_bits = EVEX_32bit;
1655     emit_simd_arith_q(0x2A, dst, src, VEX_SIMD_F2, true);
1656   } else {
1657     emit_simd_arith(0x2A, dst, src, VEX_SIMD_F2);
1658   }
1659 }
1660 
1661 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1662   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1663   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, true);
1664   emit_int8(0x2A);
1665   emit_int8((unsigned char)(0xC0 | encode));
1666 }
1667 
1668 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1669   if (VM_Version::supports_evex()) {
1670     tuple_type = EVEX_T1S;
1671     input_size_in_bits = EVEX_32bit;
1672   }
1673   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1674   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F3, true);
1675 }
1676 
1677 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1678   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1679   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
1680 }
1681 
1682 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1683   if (VM_Version::supports_evex()) {
1684     tuple_type = EVEX_T1S;
1685     input_size_in_bits = EVEX_32bit;
1686   }
1687   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1688   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
1689 }
1690 
1691 
1692 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1693   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1694   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, true);
1695   emit_int8(0x2C);
1696   emit_int8((unsigned char)(0xC0 | encode));
1697 }
1698 
1699 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1700   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1701   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, true);
1702   emit_int8(0x2C);
1703   emit_int8((unsigned char)(0xC0 | encode));
1704 }
1705 
1706 void Assembler::decl(Address dst) {
1707   // Don't use it directly. Use MacroAssembler::decrement() instead.
1708   InstructionMark im(this);
1709   prefix(dst);
1710   emit_int8((unsigned char)0xFF);
1711   emit_operand(rcx, dst);
1712 }
1713 
1714 void Assembler::divsd(XMMRegister dst, Address src) {
1715   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1716   if (VM_Version::supports_evex()) {
1717     tuple_type = EVEX_T1S;
1718     input_size_in_bits = EVEX_64bit;
1719     emit_simd_arith_q(0x5E, dst, src, VEX_SIMD_F2);
1720   } else {
1721     emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
1722   }
1723 }
1724 
1725 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1726   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1727   if (VM_Version::supports_evex()) {
1728     emit_simd_arith_q(0x5E, dst, src, VEX_SIMD_F2);
1729   } else {
1730     emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
1731   }
1732 }
1733 
1734 void Assembler::divss(XMMRegister dst, Address src) {
1735   if (VM_Version::supports_evex()) {
1736     tuple_type = EVEX_T1S;
1737     input_size_in_bits = EVEX_32bit;
1738   }
1739   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1740   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
1741 }
1742 
1743 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1744   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1745   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
1746 }
1747 
1748 void Assembler::emms() {
1749   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1750   emit_int8(0x0F);
1751   emit_int8(0x77);
1752 }
1753 
1754 void Assembler::hlt() {
1755   emit_int8((unsigned char)0xF4);
1756 }
1757 
1758 void Assembler::idivl(Register src) {
1759   int encode = prefix_and_encode(src->encoding());
1760   emit_int8((unsigned char)0xF7);
1761   emit_int8((unsigned char)(0xF8 | encode));
1762 }
1763 
1764 void Assembler::divl(Register src) { // Unsigned
1765   int encode = prefix_and_encode(src->encoding());
1766   emit_int8((unsigned char)0xF7);
1767   emit_int8((unsigned char)(0xF0 | encode));
1768 }
1769 
1770 void Assembler::imull(Register dst, Register src) {
1771   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1772   emit_int8(0x0F);
1773   emit_int8((unsigned char)0xAF);
1774   emit_int8((unsigned char)(0xC0 | encode));
1775 }
1776 
1777 
1778 void Assembler::imull(Register dst, Register src, int value) {
1779   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1780   if (is8bit(value)) {
1781     emit_int8(0x6B);
1782     emit_int8((unsigned char)(0xC0 | encode));
1783     emit_int8(value & 0xFF);
1784   } else {
1785     emit_int8(0x69);
1786     emit_int8((unsigned char)(0xC0 | encode));
1787     emit_int32(value);
1788   }
1789 }
1790 
1791 void Assembler::imull(Register dst, Address src) {
1792   InstructionMark im(this);
1793   prefix(src, dst);
1794   emit_int8(0x0F);
1795   emit_int8((unsigned char) 0xAF);
1796   emit_operand(dst, src);
1797 }
1798 
1799 
1800 void Assembler::incl(Address dst) {
1801   // Don't use it directly. Use MacroAssembler::increment() instead.
1802   InstructionMark im(this);
1803   prefix(dst);
1804   emit_int8((unsigned char)0xFF);
1805   emit_operand(rax, dst);
1806 }
1807 
1808 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
1809   InstructionMark im(this);
1810   assert((0 <= cc) && (cc < 16), "illegal cc");
1811   if (L.is_bound()) {
1812     address dst = target(L);
1813     assert(dst != NULL, "jcc most probably wrong");
1814 
1815     const int short_size = 2;
1816     const int long_size = 6;
1817     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
1818     if (maybe_short && is8bit(offs - short_size)) {
1819       // 0111 tttn #8-bit disp
1820       emit_int8(0x70 | cc);
1821       emit_int8((offs - short_size) & 0xFF);
1822     } else {
1823       // 0000 1111 1000 tttn #32-bit disp
1824       assert(is_simm32(offs - long_size),
1825              "must be 32bit offset (call4)");
1826       emit_int8(0x0F);
1827       emit_int8((unsigned char)(0x80 | cc));
1828       emit_int32(offs - long_size);
1829     }
1830   } else {
1831     // Note: could eliminate cond. jumps to this jump if condition
1832     //       is the same however, seems to be rather unlikely case.
1833     // Note: use jccb() if label to be bound is very close to get
1834     //       an 8-bit displacement
1835     L.add_patch_at(code(), locator());
1836     emit_int8(0x0F);
1837     emit_int8((unsigned char)(0x80 | cc));
1838     emit_int32(0);
1839   }
1840 }
1841 
1842 void Assembler::jccb(Condition cc, Label& L) {
1843   if (L.is_bound()) {
1844     const int short_size = 2;
1845     address entry = target(L);
1846 #ifdef ASSERT
1847     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1848     intptr_t delta = short_branch_delta();
1849     if (delta != 0) {
1850       dist += (dist < 0 ? (-delta) :delta);
1851     }
1852     assert(is8bit(dist), "Dispacement too large for a short jmp");
1853 #endif
1854     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
1855     // 0111 tttn #8-bit disp
1856     emit_int8(0x70 | cc);
1857     emit_int8((offs - short_size) & 0xFF);
1858   } else {
1859     InstructionMark im(this);
1860     L.add_patch_at(code(), locator());
1861     emit_int8(0x70 | cc);
1862     emit_int8(0);
1863   }
1864 }
1865 
1866 void Assembler::jmp(Address adr) {
1867   InstructionMark im(this);
1868   prefix(adr);
1869   emit_int8((unsigned char)0xFF);
1870   emit_operand(rsp, adr);
1871 }
1872 
1873 void Assembler::jmp(Label& L, bool maybe_short) {
1874   if (L.is_bound()) {
1875     address entry = target(L);
1876     assert(entry != NULL, "jmp most probably wrong");
1877     InstructionMark im(this);
1878     const int short_size = 2;
1879     const int long_size = 5;
1880     intptr_t offs = entry - pc();
1881     if (maybe_short && is8bit(offs - short_size)) {
1882       emit_int8((unsigned char)0xEB);
1883       emit_int8((offs - short_size) & 0xFF);
1884     } else {
1885       emit_int8((unsigned char)0xE9);
1886       emit_int32(offs - long_size);
1887     }
1888   } else {
1889     // By default, forward jumps are always 32-bit displacements, since
1890     // we can't yet know where the label will be bound.  If you're sure that
1891     // the forward jump will not run beyond 256 bytes, use jmpb to
1892     // force an 8-bit displacement.
1893     InstructionMark im(this);
1894     L.add_patch_at(code(), locator());
1895     emit_int8((unsigned char)0xE9);
1896     emit_int32(0);
1897   }
1898 }
1899 
1900 void Assembler::jmp(Register entry) {
1901   int encode = prefix_and_encode(entry->encoding());
1902   emit_int8((unsigned char)0xFF);
1903   emit_int8((unsigned char)(0xE0 | encode));
1904 }
1905 
1906 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
1907   InstructionMark im(this);
1908   emit_int8((unsigned char)0xE9);
1909   assert(dest != NULL, "must have a target");
1910   intptr_t disp = dest - (pc() + sizeof(int32_t));
1911   assert(is_simm32(disp), "must be 32bit offset (jmp)");
1912   emit_data(disp, rspec.reloc(), call32_operand);
1913 }
1914 
1915 void Assembler::jmpb(Label& L) {
1916   if (L.is_bound()) {
1917     const int short_size = 2;
1918     address entry = target(L);
1919     assert(entry != NULL, "jmp most probably wrong");
1920 #ifdef ASSERT
1921     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1922     intptr_t delta = short_branch_delta();
1923     if (delta != 0) {
1924       dist += (dist < 0 ? (-delta) :delta);
1925     }
1926     assert(is8bit(dist), "Dispacement too large for a short jmp");
1927 #endif
1928     intptr_t offs = entry - pc();
1929     emit_int8((unsigned char)0xEB);
1930     emit_int8((offs - short_size) & 0xFF);
1931   } else {
1932     InstructionMark im(this);
1933     L.add_patch_at(code(), locator());
1934     emit_int8((unsigned char)0xEB);
1935     emit_int8(0);
1936   }
1937 }
1938 
1939 void Assembler::ldmxcsr( Address src) {
1940   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1941   InstructionMark im(this);
1942   prefix(src);
1943   emit_int8(0x0F);
1944   emit_int8((unsigned char)0xAE);
1945   emit_operand(as_Register(2), src);
1946 }
1947 
1948 void Assembler::leal(Register dst, Address src) {
1949   InstructionMark im(this);
1950 #ifdef _LP64
1951   emit_int8(0x67); // addr32
1952   prefix(src, dst);
1953 #endif // LP64
1954   emit_int8((unsigned char)0x8D);
1955   emit_operand(dst, src);
1956 }
1957 
1958 void Assembler::lfence() {
1959   emit_int8(0x0F);
1960   emit_int8((unsigned char)0xAE);
1961   emit_int8((unsigned char)0xE8);
1962 }
1963 
1964 void Assembler::lock() {
1965   emit_int8((unsigned char)0xF0);
1966 }
1967 
1968 void Assembler::lzcntl(Register dst, Register src) {
1969   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
1970   emit_int8((unsigned char)0xF3);
1971   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1972   emit_int8(0x0F);
1973   emit_int8((unsigned char)0xBD);
1974   emit_int8((unsigned char)(0xC0 | encode));
1975 }
1976 
1977 // Emit mfence instruction
1978 void Assembler::mfence() {
1979   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
1980   emit_int8(0x0F);
1981   emit_int8((unsigned char)0xAE);
1982   emit_int8((unsigned char)0xF0);
1983 }
1984 
1985 void Assembler::mov(Register dst, Register src) {
1986   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
1987 }
1988 
1989 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
1990   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1991   if (VM_Version::supports_evex()) {
1992     emit_simd_arith_nonds_q(0x28, dst, src, VEX_SIMD_66, true);
1993   } else {
1994     emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_66);
1995   }
1996 }
1997 
1998 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
1999   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2000   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_NONE);
2001 }
2002 
2003 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
2004   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2005   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE, true, VEX_OPCODE_0F,
2006                                       false, AVX_128bit);
2007   emit_int8(0x16);
2008   emit_int8((unsigned char)(0xC0 | encode));
2009 }
2010 
2011 void Assembler::movb(Register dst, Address src) {
2012   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2013   InstructionMark im(this);
2014   prefix(src, dst, true);
2015   emit_int8((unsigned char)0x8A);
2016   emit_operand(dst, src);
2017 }
2018 
2019 void Assembler::kmovq(KRegister dst, KRegister src) {
2020   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2021   int encode = kreg_prefix_and_encode(dst, knoreg, src, VEX_SIMD_NONE,
2022                                       true, VEX_OPCODE_0F, true);
2023   emit_int8((unsigned char)0x90);
2024   emit_int8((unsigned char)(0xC0 | encode));
2025 }
2026 
2027 void Assembler::kmovq(KRegister dst, Address src) {
2028   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2029   int dst_enc = dst->encoding();
2030   int nds_enc = 0;
2031   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_NONE,
2032              VEX_OPCODE_0F, true, AVX_128bit, true, true);
2033   emit_int8((unsigned char)0x90);
2034   emit_operand((Register)dst, src);
2035 }
2036 
2037 void Assembler::kmovq(Address dst, KRegister src) {
2038   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2039   int src_enc = src->encoding();
2040   int nds_enc = 0;
2041   vex_prefix(dst, nds_enc, src_enc, VEX_SIMD_NONE,
2042              VEX_OPCODE_0F, true, AVX_128bit, true, true);
2043   emit_int8((unsigned char)0x90);
2044   emit_operand((Register)src, dst);
2045 }
2046 
2047 void Assembler::kmovql(KRegister dst, Register src) {
2048   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2049   bool supports_bw = VM_Version::supports_avx512bw();
2050   VexSimdPrefix pre = supports_bw ? VEX_SIMD_F2 : VEX_SIMD_NONE;
2051   int encode = kreg_prefix_and_encode(dst, knoreg, src, pre, true,
2052                                       VEX_OPCODE_0F, supports_bw);
2053   emit_int8((unsigned char)0x92);
2054   emit_int8((unsigned char)(0xC0 | encode));
2055 }
2056 
2057 void Assembler::kmovdl(KRegister dst, Register src) {
2058   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2059   VexSimdPrefix pre = VM_Version::supports_avx512bw() ? VEX_SIMD_F2 : VEX_SIMD_NONE;
2060   int encode = kreg_prefix_and_encode(dst, knoreg, src, pre, true, VEX_OPCODE_0F, false);
2061   emit_int8((unsigned char)0x92);
2062   emit_int8((unsigned char)(0xC0 | encode));
2063 }
2064 
2065 void Assembler::movb(Address dst, int imm8) {
2066   InstructionMark im(this);
2067    prefix(dst);
2068   emit_int8((unsigned char)0xC6);
2069   emit_operand(rax, dst, 1);
2070   emit_int8(imm8);
2071 }
2072 
2073 
2074 void Assembler::movb(Address dst, Register src) {
2075   assert(src->has_byte_register(), "must have byte register");
2076   InstructionMark im(this);
2077   prefix(dst, src, true);
2078   emit_int8((unsigned char)0x88);
2079   emit_operand(src, dst);
2080 }
2081 
2082 void Assembler::movdl(XMMRegister dst, Register src) {
2083   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2084   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66, true);
2085   emit_int8(0x6E);
2086   emit_int8((unsigned char)(0xC0 | encode));
2087 }
2088 
2089 void Assembler::movdl(Register dst, XMMRegister src) {
2090   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2091   // swap src/dst to get correct prefix
2092   int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66, true);
2093   emit_int8(0x7E);
2094   emit_int8((unsigned char)(0xC0 | encode));
2095 }
2096 
2097 void Assembler::movdl(XMMRegister dst, Address src) {
2098   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2099   if (VM_Version::supports_evex()) {
2100     tuple_type = EVEX_T1S;
2101     input_size_in_bits = EVEX_32bit;
2102   }
2103   InstructionMark im(this);
2104   simd_prefix(dst, src, VEX_SIMD_66, true, VEX_OPCODE_0F);
2105   emit_int8(0x6E);
2106   emit_operand(dst, src);
2107 }
2108 
2109 void Assembler::movdl(Address dst, XMMRegister src) {
2110   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2111   if (VM_Version::supports_evex()) {
2112     tuple_type = EVEX_T1S;
2113     input_size_in_bits = EVEX_32bit;
2114   }
2115   InstructionMark im(this);
2116   simd_prefix(dst, src, VEX_SIMD_66, true);
2117   emit_int8(0x7E);
2118   emit_operand(src, dst);
2119 }
2120 
2121 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
2122   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2123   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
2124 }
2125 
2126 void Assembler::movdqa(XMMRegister dst, Address src) {
2127   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2128   if (VM_Version::supports_evex()) {
2129     tuple_type = EVEX_FVM;
2130   }
2131   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
2132 }
2133 
2134 void Assembler::movdqu(XMMRegister dst, Address src) {
2135   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2136   if (VM_Version::supports_evex()) {
2137     tuple_type = EVEX_FVM;
2138   }
2139   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
2140 }
2141 
2142 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
2143   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2144   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
2145 }
2146 
2147 void Assembler::movdqu(Address dst, XMMRegister src) {
2148   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2149   if (VM_Version::supports_evex()) {
2150     tuple_type = EVEX_FVM;
2151   }
2152   InstructionMark im(this);
2153   simd_prefix(dst, src, VEX_SIMD_F3, false);
2154   emit_int8(0x7F);
2155   emit_operand(src, dst);
2156 }
2157 
2158 // Move Unaligned 256bit Vector
2159 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
2160   assert(UseAVX > 0, "");
2161   if (VM_Version::supports_evex()) {
2162     tuple_type = EVEX_FVM;
2163   }
2164   int vector_len = AVX_256bit;
2165   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, vector_len);
2166   emit_int8(0x6F);
2167   emit_int8((unsigned char)(0xC0 | encode));
2168 }
2169 
2170 void Assembler::vmovdqu(XMMRegister dst, Address src) {
2171   assert(UseAVX > 0, "");
2172   if (VM_Version::supports_evex()) {
2173     tuple_type = EVEX_FVM;
2174   }
2175   InstructionMark im(this);
2176   int vector_len = AVX_256bit;
2177   vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector_len, false);
2178   emit_int8(0x6F);
2179   emit_operand(dst, src);
2180 }
2181 
2182 void Assembler::vmovdqu(Address dst, XMMRegister src) {
2183   assert(UseAVX > 0, "");
2184   if (VM_Version::supports_evex()) {
2185     tuple_type = EVEX_FVM;
2186   }
2187   InstructionMark im(this);
2188   int vector_len = AVX_256bit;
2189   // swap src<->dst for encoding
2190   assert(src != xnoreg, "sanity");
2191   vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector_len, false);
2192   emit_int8(0x7F);
2193   emit_operand(src, dst);
2194 }
2195 
2196 // Move Unaligned EVEX enabled Vector (programmable : 8,16,32,64)
2197 void Assembler::evmovdqu(XMMRegister dst, XMMRegister src, int vector_len) {
2198   assert(UseAVX > 0, "");
2199   int src_enc = src->encoding();
2200   int dst_enc = dst->encoding();
2201   int encode = vex_prefix_and_encode(dst_enc, 0, src_enc, VEX_SIMD_F3, VEX_OPCODE_0F,
2202                                      true, vector_len, false, false);
2203   emit_int8(0x6F);
2204   emit_int8((unsigned char)(0xC0 | encode));
2205 }
2206 
2207 void Assembler::evmovdqu(XMMRegister dst, Address src, int vector_len) {
2208   assert(UseAVX > 0, "");
2209   InstructionMark im(this);
2210   if (VM_Version::supports_evex()) {
2211     tuple_type = EVEX_FVM;
2212     vex_prefix_q(dst, xnoreg, src, VEX_SIMD_F3, vector_len, false);
2213   } else {
2214     vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector_len, false);
2215   }
2216   emit_int8(0x6F);
2217   emit_operand(dst, src);
2218 }
2219 
2220 void Assembler::evmovdqu(Address dst, XMMRegister src, int vector_len) {
2221   assert(UseAVX > 0, "");
2222   InstructionMark im(this);
2223   assert(src != xnoreg, "sanity");
2224   if (VM_Version::supports_evex()) {
2225     tuple_type = EVEX_FVM;
2226     // swap src<->dst for encoding
2227     vex_prefix_q(src, xnoreg, dst, VEX_SIMD_F3, vector_len, false);
2228   } else {
2229     // swap src<->dst for encoding
2230     vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector_len, false);
2231   }
2232   emit_int8(0x7F);
2233   emit_operand(src, dst);
2234 }
2235 
2236 // Uses zero extension on 64bit
2237 
2238 void Assembler::movl(Register dst, int32_t imm32) {
2239   int encode = prefix_and_encode(dst->encoding());
2240   emit_int8((unsigned char)(0xB8 | encode));
2241   emit_int32(imm32);
2242 }
2243 
2244 void Assembler::movl(Register dst, Register src) {
2245   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2246   emit_int8((unsigned char)0x8B);
2247   emit_int8((unsigned char)(0xC0 | encode));
2248 }
2249 
2250 void Assembler::movl(Register dst, Address src) {
2251   InstructionMark im(this);
2252   prefix(src, dst);
2253   emit_int8((unsigned char)0x8B);
2254   emit_operand(dst, src);
2255 }
2256 
2257 void Assembler::movl(Address dst, int32_t imm32) {
2258   InstructionMark im(this);
2259   prefix(dst);
2260   emit_int8((unsigned char)0xC7);
2261   emit_operand(rax, dst, 4);
2262   emit_int32(imm32);
2263 }
2264 
2265 void Assembler::movl(Address dst, Register src) {
2266   InstructionMark im(this);
2267   prefix(dst, src);
2268   emit_int8((unsigned char)0x89);
2269   emit_operand(src, dst);
2270 }
2271 
2272 // New cpus require to use movsd and movss to avoid partial register stall
2273 // when loading from memory. But for old Opteron use movlpd instead of movsd.
2274 // The selection is done in MacroAssembler::movdbl() and movflt().
2275 void Assembler::movlpd(XMMRegister dst, Address src) {
2276   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2277   if (VM_Version::supports_evex()) {
2278     tuple_type = EVEX_T1S;
2279     input_size_in_bits = EVEX_32bit;
2280   }
2281   emit_simd_arith(0x12, dst, src, VEX_SIMD_66, true);
2282 }
2283 
2284 void Assembler::movq( MMXRegister dst, Address src ) {
2285   assert( VM_Version::supports_mmx(), "" );
2286   emit_int8(0x0F);
2287   emit_int8(0x6F);
2288   emit_operand(dst, src);
2289 }
2290 
2291 void Assembler::movq( Address dst, MMXRegister src ) {
2292   assert( VM_Version::supports_mmx(), "" );
2293   emit_int8(0x0F);
2294   emit_int8(0x7F);
2295   // workaround gcc (3.2.1-7a) bug
2296   // In that version of gcc with only an emit_operand(MMX, Address)
2297   // gcc will tail jump and try and reverse the parameters completely
2298   // obliterating dst in the process. By having a version available
2299   // that doesn't need to swap the args at the tail jump the bug is
2300   // avoided.
2301   emit_operand(dst, src);
2302 }
2303 
2304 void Assembler::movq(XMMRegister dst, Address src) {
2305   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2306   InstructionMark im(this);
2307   if (VM_Version::supports_evex()) {
2308     tuple_type = EVEX_T1S;
2309     input_size_in_bits = EVEX_64bit;
2310     simd_prefix_q(dst, xnoreg, src, VEX_SIMD_F3, true);
2311   } else {
2312     simd_prefix(dst, src, VEX_SIMD_F3, true, VEX_OPCODE_0F);
2313   }
2314   emit_int8(0x7E);
2315   emit_operand(dst, src);
2316 }
2317 
2318 void Assembler::movq(Address dst, XMMRegister src) {
2319   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2320   InstructionMark im(this);
2321   if (VM_Version::supports_evex()) {
2322     tuple_type = EVEX_T1S;
2323     input_size_in_bits = EVEX_64bit;
2324     simd_prefix(src, xnoreg, dst, VEX_SIMD_66, true,
2325                 VEX_OPCODE_0F, true, AVX_128bit);
2326   } else {
2327     simd_prefix(dst, src, VEX_SIMD_66, true);
2328   }
2329   emit_int8((unsigned char)0xD6);
2330   emit_operand(src, dst);
2331 }
2332 
2333 void Assembler::movsbl(Register dst, Address src) { // movsxb
2334   InstructionMark im(this);
2335   prefix(src, dst);
2336   emit_int8(0x0F);
2337   emit_int8((unsigned char)0xBE);
2338   emit_operand(dst, src);
2339 }
2340 
2341 void Assembler::movsbl(Register dst, Register src) { // movsxb
2342   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2343   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
2344   emit_int8(0x0F);
2345   emit_int8((unsigned char)0xBE);
2346   emit_int8((unsigned char)(0xC0 | encode));
2347 }
2348 
2349 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
2350   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2351   if (VM_Version::supports_evex()) {
2352     emit_simd_arith_q(0x10, dst, src, VEX_SIMD_F2, true);
2353   } else {
2354     emit_simd_arith(0x10, dst, src, VEX_SIMD_F2);
2355   }
2356 }
2357 
2358 void Assembler::movsd(XMMRegister dst, Address src) {
2359   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2360   if (VM_Version::supports_evex()) {
2361     tuple_type = EVEX_T1S;
2362     input_size_in_bits = EVEX_64bit;
2363     emit_simd_arith_nonds_q(0x10, dst, src, VEX_SIMD_F2, true);
2364   } else {
2365     emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F2);
2366   }
2367 }
2368 
2369 void Assembler::movsd(Address dst, XMMRegister src) {
2370   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2371   InstructionMark im(this);
2372   if (VM_Version::supports_evex()) {
2373     tuple_type = EVEX_T1S;
2374     input_size_in_bits = EVEX_64bit;
2375     simd_prefix_q(src, xnoreg, dst, VEX_SIMD_F2);
2376   } else {
2377     simd_prefix(src, xnoreg, dst, VEX_SIMD_F2, false);
2378   }
2379   emit_int8(0x11);
2380   emit_operand(src, dst);
2381 }
2382 
2383 void Assembler::movss(XMMRegister dst, XMMRegister src) {
2384   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2385   emit_simd_arith(0x10, dst, src, VEX_SIMD_F3, true);
2386 }
2387 
2388 void Assembler::movss(XMMRegister dst, Address src) {
2389   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2390   if (VM_Version::supports_evex()) {
2391     tuple_type = EVEX_T1S;
2392     input_size_in_bits = EVEX_32bit;
2393   }
2394   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F3, true);
2395 }
2396 
2397 void Assembler::movss(Address dst, XMMRegister src) {
2398   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2399   if (VM_Version::supports_evex()) {
2400     tuple_type = EVEX_T1S;
2401     input_size_in_bits = EVEX_32bit;
2402   }
2403   InstructionMark im(this);
2404   simd_prefix(dst, src, VEX_SIMD_F3, false);
2405   emit_int8(0x11);
2406   emit_operand(src, dst);
2407 }
2408 
2409 void Assembler::movswl(Register dst, Address src) { // movsxw
2410   InstructionMark im(this);
2411   prefix(src, dst);
2412   emit_int8(0x0F);
2413   emit_int8((unsigned char)0xBF);
2414   emit_operand(dst, src);
2415 }
2416 
2417 void Assembler::movswl(Register dst, Register src) { // movsxw
2418   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2419   emit_int8(0x0F);
2420   emit_int8((unsigned char)0xBF);
2421   emit_int8((unsigned char)(0xC0 | encode));
2422 }
2423 
2424 void Assembler::movw(Address dst, int imm16) {
2425   InstructionMark im(this);
2426 
2427   emit_int8(0x66); // switch to 16-bit mode
2428   prefix(dst);
2429   emit_int8((unsigned char)0xC7);
2430   emit_operand(rax, dst, 2);
2431   emit_int16(imm16);
2432 }
2433 
2434 void Assembler::movw(Register dst, Address src) {
2435   InstructionMark im(this);
2436   emit_int8(0x66);
2437   prefix(src, dst);
2438   emit_int8((unsigned char)0x8B);
2439   emit_operand(dst, src);
2440 }
2441 
2442 void Assembler::movw(Address dst, Register src) {
2443   InstructionMark im(this);
2444   emit_int8(0x66);
2445   prefix(dst, src);
2446   emit_int8((unsigned char)0x89);
2447   emit_operand(src, dst);
2448 }
2449 
2450 void Assembler::movzbl(Register dst, Address src) { // movzxb
2451   InstructionMark im(this);
2452   prefix(src, dst);
2453   emit_int8(0x0F);
2454   emit_int8((unsigned char)0xB6);
2455   emit_operand(dst, src);
2456 }
2457 
2458 void Assembler::movzbl(Register dst, Register src) { // movzxb
2459   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2460   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
2461   emit_int8(0x0F);
2462   emit_int8((unsigned char)0xB6);
2463   emit_int8(0xC0 | encode);
2464 }
2465 
2466 void Assembler::movzwl(Register dst, Address src) { // movzxw
2467   InstructionMark im(this);
2468   prefix(src, dst);
2469   emit_int8(0x0F);
2470   emit_int8((unsigned char)0xB7);
2471   emit_operand(dst, src);
2472 }
2473 
2474 void Assembler::movzwl(Register dst, Register src) { // movzxw
2475   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2476   emit_int8(0x0F);
2477   emit_int8((unsigned char)0xB7);
2478   emit_int8(0xC0 | encode);
2479 }
2480 
2481 void Assembler::mull(Address src) {
2482   InstructionMark im(this);
2483   prefix(src);
2484   emit_int8((unsigned char)0xF7);
2485   emit_operand(rsp, src);
2486 }
2487 
2488 void Assembler::mull(Register src) {
2489   int encode = prefix_and_encode(src->encoding());
2490   emit_int8((unsigned char)0xF7);
2491   emit_int8((unsigned char)(0xE0 | encode));
2492 }
2493 
2494 void Assembler::mulsd(XMMRegister dst, Address src) {
2495   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2496   if (VM_Version::supports_evex()) {
2497     tuple_type = EVEX_T1S;
2498     input_size_in_bits = EVEX_64bit;
2499     emit_simd_arith_q(0x59, dst, src, VEX_SIMD_F2);
2500   } else {
2501     emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
2502   }
2503 }
2504 
2505 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
2506   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2507   if (VM_Version::supports_evex()) {
2508     emit_simd_arith_q(0x59, dst, src, VEX_SIMD_F2);
2509   } else {
2510     emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
2511   }
2512 }
2513 
2514 void Assembler::mulss(XMMRegister dst, Address src) {
2515   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2516   if (VM_Version::supports_evex()) {
2517     tuple_type = EVEX_T1S;
2518     input_size_in_bits = EVEX_32bit;
2519   }
2520   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
2521 }
2522 
2523 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
2524   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2525   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
2526 }
2527 
2528 void Assembler::negl(Register dst) {
2529   int encode = prefix_and_encode(dst->encoding());
2530   emit_int8((unsigned char)0xF7);
2531   emit_int8((unsigned char)(0xD8 | encode));
2532 }
2533 
2534 void Assembler::nop(int i) {
2535 #ifdef ASSERT
2536   assert(i > 0, " ");
2537   // The fancy nops aren't currently recognized by debuggers making it a
2538   // pain to disassemble code while debugging. If asserts are on clearly
2539   // speed is not an issue so simply use the single byte traditional nop
2540   // to do alignment.
2541 
2542   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
2543   return;
2544 
2545 #endif // ASSERT
2546 
2547   if (UseAddressNop && VM_Version::is_intel()) {
2548     //
2549     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
2550     //  1: 0x90
2551     //  2: 0x66 0x90
2552     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2553     //  4: 0x0F 0x1F 0x40 0x00
2554     //  5: 0x0F 0x1F 0x44 0x00 0x00
2555     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2556     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2557     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2558     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2559     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2560     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2561 
2562     // The rest coding is Intel specific - don't use consecutive address nops
2563 
2564     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2565     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2566     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2567     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2568 
2569     while(i >= 15) {
2570       // For Intel don't generate consecutive addess nops (mix with regular nops)
2571       i -= 15;
2572       emit_int8(0x66);   // size prefix
2573       emit_int8(0x66);   // size prefix
2574       emit_int8(0x66);   // size prefix
2575       addr_nop_8();
2576       emit_int8(0x66);   // size prefix
2577       emit_int8(0x66);   // size prefix
2578       emit_int8(0x66);   // size prefix
2579       emit_int8((unsigned char)0x90);
2580                          // nop
2581     }
2582     switch (i) {
2583       case 14:
2584         emit_int8(0x66); // size prefix
2585       case 13:
2586         emit_int8(0x66); // size prefix
2587       case 12:
2588         addr_nop_8();
2589         emit_int8(0x66); // size prefix
2590         emit_int8(0x66); // size prefix
2591         emit_int8(0x66); // size prefix
2592         emit_int8((unsigned char)0x90);
2593                          // nop
2594         break;
2595       case 11:
2596         emit_int8(0x66); // size prefix
2597       case 10:
2598         emit_int8(0x66); // size prefix
2599       case 9:
2600         emit_int8(0x66); // size prefix
2601       case 8:
2602         addr_nop_8();
2603         break;
2604       case 7:
2605         addr_nop_7();
2606         break;
2607       case 6:
2608         emit_int8(0x66); // size prefix
2609       case 5:
2610         addr_nop_5();
2611         break;
2612       case 4:
2613         addr_nop_4();
2614         break;
2615       case 3:
2616         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2617         emit_int8(0x66); // size prefix
2618       case 2:
2619         emit_int8(0x66); // size prefix
2620       case 1:
2621         emit_int8((unsigned char)0x90);
2622                          // nop
2623         break;
2624       default:
2625         assert(i == 0, " ");
2626     }
2627     return;
2628   }
2629   if (UseAddressNop && VM_Version::is_amd()) {
2630     //
2631     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
2632     //  1: 0x90
2633     //  2: 0x66 0x90
2634     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2635     //  4: 0x0F 0x1F 0x40 0x00
2636     //  5: 0x0F 0x1F 0x44 0x00 0x00
2637     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2638     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2639     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2640     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2641     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2642     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2643 
2644     // The rest coding is AMD specific - use consecutive address nops
2645 
2646     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2647     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2648     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2649     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2650     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2651     //     Size prefixes (0x66) are added for larger sizes
2652 
2653     while(i >= 22) {
2654       i -= 11;
2655       emit_int8(0x66); // size prefix
2656       emit_int8(0x66); // size prefix
2657       emit_int8(0x66); // size prefix
2658       addr_nop_8();
2659     }
2660     // Generate first nop for size between 21-12
2661     switch (i) {
2662       case 21:
2663         i -= 1;
2664         emit_int8(0x66); // size prefix
2665       case 20:
2666       case 19:
2667         i -= 1;
2668         emit_int8(0x66); // size prefix
2669       case 18:
2670       case 17:
2671         i -= 1;
2672         emit_int8(0x66); // size prefix
2673       case 16:
2674       case 15:
2675         i -= 8;
2676         addr_nop_8();
2677         break;
2678       case 14:
2679       case 13:
2680         i -= 7;
2681         addr_nop_7();
2682         break;
2683       case 12:
2684         i -= 6;
2685         emit_int8(0x66); // size prefix
2686         addr_nop_5();
2687         break;
2688       default:
2689         assert(i < 12, " ");
2690     }
2691 
2692     // Generate second nop for size between 11-1
2693     switch (i) {
2694       case 11:
2695         emit_int8(0x66); // size prefix
2696       case 10:
2697         emit_int8(0x66); // size prefix
2698       case 9:
2699         emit_int8(0x66); // size prefix
2700       case 8:
2701         addr_nop_8();
2702         break;
2703       case 7:
2704         addr_nop_7();
2705         break;
2706       case 6:
2707         emit_int8(0x66); // size prefix
2708       case 5:
2709         addr_nop_5();
2710         break;
2711       case 4:
2712         addr_nop_4();
2713         break;
2714       case 3:
2715         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2716         emit_int8(0x66); // size prefix
2717       case 2:
2718         emit_int8(0x66); // size prefix
2719       case 1:
2720         emit_int8((unsigned char)0x90);
2721                          // nop
2722         break;
2723       default:
2724         assert(i == 0, " ");
2725     }
2726     return;
2727   }
2728 
2729   // Using nops with size prefixes "0x66 0x90".
2730   // From AMD Optimization Guide:
2731   //  1: 0x90
2732   //  2: 0x66 0x90
2733   //  3: 0x66 0x66 0x90
2734   //  4: 0x66 0x66 0x66 0x90
2735   //  5: 0x66 0x66 0x90 0x66 0x90
2736   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
2737   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
2738   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
2739   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2740   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2741   //
2742   while(i > 12) {
2743     i -= 4;
2744     emit_int8(0x66); // size prefix
2745     emit_int8(0x66);
2746     emit_int8(0x66);
2747     emit_int8((unsigned char)0x90);
2748                      // nop
2749   }
2750   // 1 - 12 nops
2751   if(i > 8) {
2752     if(i > 9) {
2753       i -= 1;
2754       emit_int8(0x66);
2755     }
2756     i -= 3;
2757     emit_int8(0x66);
2758     emit_int8(0x66);
2759     emit_int8((unsigned char)0x90);
2760   }
2761   // 1 - 8 nops
2762   if(i > 4) {
2763     if(i > 6) {
2764       i -= 1;
2765       emit_int8(0x66);
2766     }
2767     i -= 3;
2768     emit_int8(0x66);
2769     emit_int8(0x66);
2770     emit_int8((unsigned char)0x90);
2771   }
2772   switch (i) {
2773     case 4:
2774       emit_int8(0x66);
2775     case 3:
2776       emit_int8(0x66);
2777     case 2:
2778       emit_int8(0x66);
2779     case 1:
2780       emit_int8((unsigned char)0x90);
2781       break;
2782     default:
2783       assert(i == 0, " ");
2784   }
2785 }
2786 
2787 void Assembler::notl(Register dst) {
2788   int encode = prefix_and_encode(dst->encoding());
2789   emit_int8((unsigned char)0xF7);
2790   emit_int8((unsigned char)(0xD0 | encode));
2791 }
2792 
2793 void Assembler::orl(Address dst, int32_t imm32) {
2794   InstructionMark im(this);
2795   prefix(dst);
2796   emit_arith_operand(0x81, rcx, dst, imm32);
2797 }
2798 
2799 void Assembler::orl(Register dst, int32_t imm32) {
2800   prefix(dst);
2801   emit_arith(0x81, 0xC8, dst, imm32);
2802 }
2803 
2804 void Assembler::orl(Register dst, Address src) {
2805   InstructionMark im(this);
2806   prefix(src, dst);
2807   emit_int8(0x0B);
2808   emit_operand(dst, src);
2809 }
2810 
2811 void Assembler::orl(Register dst, Register src) {
2812   (void) prefix_and_encode(dst->encoding(), src->encoding());
2813   emit_arith(0x0B, 0xC0, dst, src);
2814 }
2815 
2816 void Assembler::orl(Address dst, Register src) {
2817   InstructionMark im(this);
2818   prefix(dst, src);
2819   emit_int8(0x09);
2820   emit_operand(src, dst);
2821 }
2822 
2823 void Assembler::packuswb(XMMRegister dst, Address src) {
2824   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2825   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2826   if (VM_Version::supports_evex()) {
2827     tuple_type = EVEX_FV;
2828     input_size_in_bits = EVEX_32bit;
2829   }
2830   emit_simd_arith(0x67, dst, src, VEX_SIMD_66,
2831                   false, (VM_Version::supports_avx512dq() == false));
2832 }
2833 
2834 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
2835   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2836   emit_simd_arith(0x67, dst, src, VEX_SIMD_66,
2837                   false, (VM_Version::supports_avx512dq() == false));
2838 }
2839 
2840 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
2841   assert(UseAVX > 0, "some form of AVX must be enabled");
2842   emit_vex_arith(0x67, dst, nds, src, VEX_SIMD_66, vector_len,
2843                  false, (VM_Version::supports_avx512dq() == false));
2844 }
2845 
2846 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len) {
2847   assert(VM_Version::supports_avx2(), "");
2848   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, false,
2849                                       VEX_OPCODE_0F_3A, true, vector_len);
2850   emit_int8(0x00);
2851   emit_int8(0xC0 | encode);
2852   emit_int8(imm8);
2853 }
2854 
2855 void Assembler::pause() {
2856   emit_int8((unsigned char)0xF3);
2857   emit_int8((unsigned char)0x90);
2858 }
2859 
2860 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
2861   assert(VM_Version::supports_sse4_2(), "");
2862   InstructionMark im(this);
2863   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, false, VEX_OPCODE_0F_3A,
2864               false, AVX_128bit, true);
2865   emit_int8(0x61);
2866   emit_operand(dst, src);
2867   emit_int8(imm8);
2868 }
2869 
2870 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
2871   assert(VM_Version::supports_sse4_2(), "");
2872   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, false,
2873                                       VEX_OPCODE_0F_3A, false, AVX_128bit, true);
2874   emit_int8(0x61);
2875   emit_int8((unsigned char)(0xC0 | encode));
2876   emit_int8(imm8);
2877 }
2878 
2879 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
2880   assert(VM_Version::supports_sse4_1(), "");
2881   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
2882                                       false, AVX_128bit, (VM_Version::supports_avx512dq() == false));
2883   emit_int8(0x16);
2884   emit_int8((unsigned char)(0xC0 | encode));
2885   emit_int8(imm8);
2886 }
2887 
2888 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
2889   assert(VM_Version::supports_sse4_1(), "");
2890   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
2891                                       false, AVX_128bit, (VM_Version::supports_avx512dq() == false));
2892   emit_int8(0x16);
2893   emit_int8((unsigned char)(0xC0 | encode));
2894   emit_int8(imm8);
2895 }
2896 
2897 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
2898   assert(VM_Version::supports_sse4_1(), "");
2899   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
2900                                       false, AVX_128bit, (VM_Version::supports_avx512dq() == false));
2901   emit_int8(0x22);
2902   emit_int8((unsigned char)(0xC0 | encode));
2903   emit_int8(imm8);
2904 }
2905 
2906 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
2907   assert(VM_Version::supports_sse4_1(), "");
2908   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
2909                                       false, AVX_128bit, (VM_Version::supports_avx512dq() == false));
2910   emit_int8(0x22);
2911   emit_int8((unsigned char)(0xC0 | encode));
2912   emit_int8(imm8);
2913 }
2914 
2915 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
2916   assert(VM_Version::supports_sse4_1(), "");
2917   if (VM_Version::supports_evex()) {
2918     tuple_type = EVEX_HVM;
2919   }
2920   InstructionMark im(this);
2921   simd_prefix(dst, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38);
2922   emit_int8(0x30);
2923   emit_operand(dst, src);
2924 }
2925 
2926 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
2927   assert(VM_Version::supports_sse4_1(), "");
2928   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38);
2929   emit_int8(0x30);
2930   emit_int8((unsigned char)(0xC0 | encode));
2931 }
2932 
2933 // generic
2934 void Assembler::pop(Register dst) {
2935   int encode = prefix_and_encode(dst->encoding());
2936   emit_int8(0x58 | encode);
2937 }
2938 
2939 void Assembler::popcntl(Register dst, Address src) {
2940   assert(VM_Version::supports_popcnt(), "must support");
2941   InstructionMark im(this);
2942   emit_int8((unsigned char)0xF3);
2943   prefix(src, dst);
2944   emit_int8(0x0F);
2945   emit_int8((unsigned char)0xB8);
2946   emit_operand(dst, src);
2947 }
2948 
2949 void Assembler::popcntl(Register dst, Register src) {
2950   assert(VM_Version::supports_popcnt(), "must support");
2951   emit_int8((unsigned char)0xF3);
2952   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2953   emit_int8(0x0F);
2954   emit_int8((unsigned char)0xB8);
2955   emit_int8((unsigned char)(0xC0 | encode));
2956 }
2957 
2958 void Assembler::popf() {
2959   emit_int8((unsigned char)0x9D);
2960 }
2961 
2962 #ifndef _LP64 // no 32bit push/pop on amd64
2963 void Assembler::popl(Address dst) {
2964   // NOTE: this will adjust stack by 8byte on 64bits
2965   InstructionMark im(this);
2966   prefix(dst);
2967   emit_int8((unsigned char)0x8F);
2968   emit_operand(rax, dst);
2969 }
2970 #endif
2971 
2972 void Assembler::prefetch_prefix(Address src) {
2973   prefix(src);
2974   emit_int8(0x0F);
2975 }
2976 
2977 void Assembler::prefetchnta(Address src) {
2978   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2979   InstructionMark im(this);
2980   prefetch_prefix(src);
2981   emit_int8(0x18);
2982   emit_operand(rax, src); // 0, src
2983 }
2984 
2985 void Assembler::prefetchr(Address src) {
2986   assert(VM_Version::supports_3dnow_prefetch(), "must support");
2987   InstructionMark im(this);
2988   prefetch_prefix(src);
2989   emit_int8(0x0D);
2990   emit_operand(rax, src); // 0, src
2991 }
2992 
2993 void Assembler::prefetcht0(Address src) {
2994   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2995   InstructionMark im(this);
2996   prefetch_prefix(src);
2997   emit_int8(0x18);
2998   emit_operand(rcx, src); // 1, src
2999 }
3000 
3001 void Assembler::prefetcht1(Address src) {
3002   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3003   InstructionMark im(this);
3004   prefetch_prefix(src);
3005   emit_int8(0x18);
3006   emit_operand(rdx, src); // 2, src
3007 }
3008 
3009 void Assembler::prefetcht2(Address src) {
3010   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3011   InstructionMark im(this);
3012   prefetch_prefix(src);
3013   emit_int8(0x18);
3014   emit_operand(rbx, src); // 3, src
3015 }
3016 
3017 void Assembler::prefetchw(Address src) {
3018   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3019   InstructionMark im(this);
3020   prefetch_prefix(src);
3021   emit_int8(0x0D);
3022   emit_operand(rcx, src); // 1, src
3023 }
3024 
3025 void Assembler::prefix(Prefix p) {
3026   emit_int8(p);
3027 }
3028 
3029 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
3030   assert(VM_Version::supports_ssse3(), "");
3031   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38,
3032                                       false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3033   emit_int8(0x00);
3034   emit_int8((unsigned char)(0xC0 | encode));
3035 }
3036 
3037 void Assembler::pshufb(XMMRegister dst, Address src) {
3038   assert(VM_Version::supports_ssse3(), "");
3039   if (VM_Version::supports_evex()) {
3040     tuple_type = EVEX_FVM;
3041   }
3042   InstructionMark im(this);
3043   simd_prefix(dst, dst, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38,
3044               false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3045   emit_int8(0x00);
3046   emit_operand(dst, src);
3047 }
3048 
3049 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
3050   assert(isByte(mode), "invalid value");
3051   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3052   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_66);
3053   emit_int8(mode & 0xFF);
3054 
3055 }
3056 
3057 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
3058   assert(isByte(mode), "invalid value");
3059   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3060   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3061   if (VM_Version::supports_evex()) {
3062     tuple_type = EVEX_FV;
3063     input_size_in_bits = EVEX_32bit;
3064   }
3065   InstructionMark im(this);
3066   simd_prefix(dst, src, VEX_SIMD_66, false);
3067   emit_int8(0x70);
3068   emit_operand(dst, src);
3069   emit_int8(mode & 0xFF);
3070 }
3071 
3072 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
3073   assert(isByte(mode), "invalid value");
3074   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3075   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_F2, false,
3076                         (VM_Version::supports_avx512bw() == false));
3077   emit_int8(mode & 0xFF);
3078 }
3079 
3080 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
3081   assert(isByte(mode), "invalid value");
3082   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3083   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3084   if (VM_Version::supports_evex()) {
3085     tuple_type = EVEX_FVM;
3086   }
3087   InstructionMark im(this);
3088   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, false, VEX_OPCODE_0F,
3089               false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3090   emit_int8(0x70);
3091   emit_operand(dst, src);
3092   emit_int8(mode & 0xFF);
3093 }
3094 
3095 void Assembler::psrldq(XMMRegister dst, int shift) {
3096   // Shift 128 bit value in xmm register by number of bytes.
3097   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3098   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66, true, VEX_OPCODE_0F, false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3099   emit_int8(0x73);
3100   emit_int8((unsigned char)(0xC0 | encode));
3101   emit_int8(shift);
3102 }
3103 
3104 void Assembler::pslldq(XMMRegister dst, int shift) {
3105   // Shift left 128 bit value in xmm register by number of bytes.
3106   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3107   int encode = simd_prefix_and_encode(xmm7, dst, dst, VEX_SIMD_66, true, VEX_OPCODE_0F, false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3108   emit_int8(0x73);
3109   emit_int8((unsigned char)(0xC0 | encode));
3110   emit_int8(shift);
3111 }
3112 
3113 void Assembler::ptest(XMMRegister dst, Address src) {
3114   assert(VM_Version::supports_sse4_1(), "");
3115   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3116   InstructionMark im(this);
3117   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, false,
3118               VEX_OPCODE_0F_38, false, AVX_128bit, true);
3119   emit_int8(0x17);
3120   emit_operand(dst, src);
3121 }
3122 
3123 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
3124   assert(VM_Version::supports_sse4_1(), "");
3125   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, false,
3126                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
3127   emit_int8(0x17);
3128   emit_int8((unsigned char)(0xC0 | encode));
3129 }
3130 
3131 void Assembler::vptest(XMMRegister dst, Address src) {
3132   assert(VM_Version::supports_avx(), "");
3133   InstructionMark im(this);
3134   int vector_len = AVX_256bit;
3135   assert(dst != xnoreg, "sanity");
3136   int dst_enc = dst->encoding();
3137   // swap src<->dst for encoding
3138   vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector_len, true, false);
3139   emit_int8(0x17);
3140   emit_operand(dst, src);
3141 }
3142 
3143 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
3144   assert(VM_Version::supports_avx(), "");
3145   int vector_len = AVX_256bit;
3146   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
3147                                      vector_len, VEX_OPCODE_0F_38, true, false);
3148   emit_int8(0x17);
3149   emit_int8((unsigned char)(0xC0 | encode));
3150 }
3151 
3152 void Assembler::punpcklbw(XMMRegister dst, Address src) {
3153   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3154   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3155   if (VM_Version::supports_evex()) {
3156     tuple_type = EVEX_FVM;
3157   }
3158   emit_simd_arith(0x60, dst, src, VEX_SIMD_66, false, (VM_Version::supports_avx512vlbw() == false));
3159 }
3160 
3161 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
3162   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3163   emit_simd_arith(0x60, dst, src, VEX_SIMD_66, false, (VM_Version::supports_avx512vlbw() == false));
3164 }
3165 
3166 void Assembler::punpckldq(XMMRegister dst, Address src) {
3167   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3168   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3169   if (VM_Version::supports_evex()) {
3170     tuple_type = EVEX_FV;
3171     input_size_in_bits = EVEX_32bit;
3172   }
3173   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
3174 }
3175 
3176 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
3177   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3178   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
3179 }
3180 
3181 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
3182   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3183   emit_simd_arith(0x6C, dst, src, VEX_SIMD_66);
3184 }
3185 
3186 void Assembler::push(int32_t imm32) {
3187   // in 64bits we push 64bits onto the stack but only
3188   // take a 32bit immediate
3189   emit_int8(0x68);
3190   emit_int32(imm32);
3191 }
3192 
3193 void Assembler::push(Register src) {
3194   int encode = prefix_and_encode(src->encoding());
3195 
3196   emit_int8(0x50 | encode);
3197 }
3198 
3199 void Assembler::pushf() {
3200   emit_int8((unsigned char)0x9C);
3201 }
3202 
3203 #ifndef _LP64 // no 32bit push/pop on amd64
3204 void Assembler::pushl(Address src) {
3205   // Note this will push 64bit on 64bit
3206   InstructionMark im(this);
3207   prefix(src);
3208   emit_int8((unsigned char)0xFF);
3209   emit_operand(rsi, src);
3210 }
3211 #endif
3212 
3213 void Assembler::rcll(Register dst, int imm8) {
3214   assert(isShiftCount(imm8), "illegal shift count");
3215   int encode = prefix_and_encode(dst->encoding());
3216   if (imm8 == 1) {
3217     emit_int8((unsigned char)0xD1);
3218     emit_int8((unsigned char)(0xD0 | encode));
3219   } else {
3220     emit_int8((unsigned char)0xC1);
3221     emit_int8((unsigned char)0xD0 | encode);
3222     emit_int8(imm8);
3223   }
3224 }
3225 
3226 void Assembler::rdtsc() {
3227   emit_int8((unsigned char)0x0F);
3228   emit_int8((unsigned char)0x31);
3229 }
3230 
3231 // copies data from [esi] to [edi] using rcx pointer sized words
3232 // generic
3233 void Assembler::rep_mov() {
3234   emit_int8((unsigned char)0xF3);
3235   // MOVSQ
3236   LP64_ONLY(prefix(REX_W));
3237   emit_int8((unsigned char)0xA5);
3238 }
3239 
3240 // sets rcx bytes with rax, value at [edi]
3241 void Assembler::rep_stosb() {
3242   emit_int8((unsigned char)0xF3); // REP
3243   LP64_ONLY(prefix(REX_W));
3244   emit_int8((unsigned char)0xAA); // STOSB
3245 }
3246 
3247 // sets rcx pointer sized words with rax, value at [edi]
3248 // generic
3249 void Assembler::rep_stos() {
3250   emit_int8((unsigned char)0xF3); // REP
3251   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
3252   emit_int8((unsigned char)0xAB);
3253 }
3254 
3255 // scans rcx pointer sized words at [edi] for occurance of rax,
3256 // generic
3257 void Assembler::repne_scan() { // repne_scan
3258   emit_int8((unsigned char)0xF2);
3259   // SCASQ
3260   LP64_ONLY(prefix(REX_W));
3261   emit_int8((unsigned char)0xAF);
3262 }
3263 
3264 #ifdef _LP64
3265 // scans rcx 4 byte words at [edi] for occurance of rax,
3266 // generic
3267 void Assembler::repne_scanl() { // repne_scan
3268   emit_int8((unsigned char)0xF2);
3269   // SCASL
3270   emit_int8((unsigned char)0xAF);
3271 }
3272 #endif
3273 
3274 void Assembler::ret(int imm16) {
3275   if (imm16 == 0) {
3276     emit_int8((unsigned char)0xC3);
3277   } else {
3278     emit_int8((unsigned char)0xC2);
3279     emit_int16(imm16);
3280   }
3281 }
3282 
3283 void Assembler::sahf() {
3284 #ifdef _LP64
3285   // Not supported in 64bit mode
3286   ShouldNotReachHere();
3287 #endif
3288   emit_int8((unsigned char)0x9E);
3289 }
3290 
3291 void Assembler::sarl(Register dst, int imm8) {
3292   int encode = prefix_and_encode(dst->encoding());
3293   assert(isShiftCount(imm8), "illegal shift count");
3294   if (imm8 == 1) {
3295     emit_int8((unsigned char)0xD1);
3296     emit_int8((unsigned char)(0xF8 | encode));
3297   } else {
3298     emit_int8((unsigned char)0xC1);
3299     emit_int8((unsigned char)(0xF8 | encode));
3300     emit_int8(imm8);
3301   }
3302 }
3303 
3304 void Assembler::sarl(Register dst) {
3305   int encode = prefix_and_encode(dst->encoding());
3306   emit_int8((unsigned char)0xD3);
3307   emit_int8((unsigned char)(0xF8 | encode));
3308 }
3309 
3310 void Assembler::sbbl(Address dst, int32_t imm32) {
3311   InstructionMark im(this);
3312   prefix(dst);
3313   emit_arith_operand(0x81, rbx, dst, imm32);
3314 }
3315 
3316 void Assembler::sbbl(Register dst, int32_t imm32) {
3317   prefix(dst);
3318   emit_arith(0x81, 0xD8, dst, imm32);
3319 }
3320 
3321 
3322 void Assembler::sbbl(Register dst, Address src) {
3323   InstructionMark im(this);
3324   prefix(src, dst);
3325   emit_int8(0x1B);
3326   emit_operand(dst, src);
3327 }
3328 
3329 void Assembler::sbbl(Register dst, Register src) {
3330   (void) prefix_and_encode(dst->encoding(), src->encoding());
3331   emit_arith(0x1B, 0xC0, dst, src);
3332 }
3333 
3334 void Assembler::setb(Condition cc, Register dst) {
3335   assert(0 <= cc && cc < 16, "illegal cc");
3336   int encode = prefix_and_encode(dst->encoding(), true);
3337   emit_int8(0x0F);
3338   emit_int8((unsigned char)0x90 | cc);
3339   emit_int8((unsigned char)(0xC0 | encode));
3340 }
3341 
3342 void Assembler::shll(Register dst, int imm8) {
3343   assert(isShiftCount(imm8), "illegal shift count");
3344   int encode = prefix_and_encode(dst->encoding());
3345   if (imm8 == 1 ) {
3346     emit_int8((unsigned char)0xD1);
3347     emit_int8((unsigned char)(0xE0 | encode));
3348   } else {
3349     emit_int8((unsigned char)0xC1);
3350     emit_int8((unsigned char)(0xE0 | encode));
3351     emit_int8(imm8);
3352   }
3353 }
3354 
3355 void Assembler::shll(Register dst) {
3356   int encode = prefix_and_encode(dst->encoding());
3357   emit_int8((unsigned char)0xD3);
3358   emit_int8((unsigned char)(0xE0 | encode));
3359 }
3360 
3361 void Assembler::shrl(Register dst, int imm8) {
3362   assert(isShiftCount(imm8), "illegal shift count");
3363   int encode = prefix_and_encode(dst->encoding());
3364   emit_int8((unsigned char)0xC1);
3365   emit_int8((unsigned char)(0xE8 | encode));
3366   emit_int8(imm8);
3367 }
3368 
3369 void Assembler::shrl(Register dst) {
3370   int encode = prefix_and_encode(dst->encoding());
3371   emit_int8((unsigned char)0xD3);
3372   emit_int8((unsigned char)(0xE8 | encode));
3373 }
3374 
3375 // copies a single word from [esi] to [edi]
3376 void Assembler::smovl() {
3377   emit_int8((unsigned char)0xA5);
3378 }
3379 
3380 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
3381   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3382   if (VM_Version::supports_evex()) {
3383     emit_simd_arith_q(0x51, dst, src, VEX_SIMD_F2);
3384   } else {
3385     emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
3386   }
3387 }
3388 
3389 void Assembler::sqrtsd(XMMRegister dst, Address src) {
3390   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3391   if (VM_Version::supports_evex()) {
3392     tuple_type = EVEX_T1S;
3393     input_size_in_bits = EVEX_64bit;
3394     emit_simd_arith_q(0x51, dst, src, VEX_SIMD_F2);
3395   } else {
3396     emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
3397   }
3398 }
3399 
3400 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
3401   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3402   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
3403 }
3404 
3405 void Assembler::std() {
3406   emit_int8((unsigned char)0xFD);
3407 }
3408 
3409 void Assembler::sqrtss(XMMRegister dst, Address src) {
3410   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3411   if (VM_Version::supports_evex()) {
3412     tuple_type = EVEX_T1S;
3413     input_size_in_bits = EVEX_32bit;
3414   }
3415   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
3416 }
3417 
3418 void Assembler::stmxcsr( Address dst) {
3419   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3420   InstructionMark im(this);
3421   prefix(dst);
3422   emit_int8(0x0F);
3423   emit_int8((unsigned char)0xAE);
3424   emit_operand(as_Register(3), dst);
3425 }
3426 
3427 void Assembler::subl(Address dst, int32_t imm32) {
3428   InstructionMark im(this);
3429   prefix(dst);
3430   emit_arith_operand(0x81, rbp, dst, imm32);
3431 }
3432 
3433 void Assembler::subl(Address dst, Register src) {
3434   InstructionMark im(this);
3435   prefix(dst, src);
3436   emit_int8(0x29);
3437   emit_operand(src, dst);
3438 }
3439 
3440 void Assembler::subl(Register dst, int32_t imm32) {
3441   prefix(dst);
3442   emit_arith(0x81, 0xE8, dst, imm32);
3443 }
3444 
3445 // Force generation of a 4 byte immediate value even if it fits into 8bit
3446 void Assembler::subl_imm32(Register dst, int32_t imm32) {
3447   prefix(dst);
3448   emit_arith_imm32(0x81, 0xE8, dst, imm32);
3449 }
3450 
3451 void Assembler::subl(Register dst, Address src) {
3452   InstructionMark im(this);
3453   prefix(src, dst);
3454   emit_int8(0x2B);
3455   emit_operand(dst, src);
3456 }
3457 
3458 void Assembler::subl(Register dst, Register src) {
3459   (void) prefix_and_encode(dst->encoding(), src->encoding());
3460   emit_arith(0x2B, 0xC0, dst, src);
3461 }
3462 
3463 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
3464   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3465   if (VM_Version::supports_evex()) {
3466     emit_simd_arith_q(0x5C, dst, src, VEX_SIMD_F2);
3467   } else {
3468     emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
3469   }
3470 }
3471 
3472 void Assembler::subsd(XMMRegister dst, Address src) {
3473   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3474   if (VM_Version::supports_evex()) {
3475     tuple_type = EVEX_T1S;
3476     input_size_in_bits = EVEX_64bit;
3477   }
3478   emit_simd_arith_q(0x5C, dst, src, VEX_SIMD_F2);
3479 }
3480 
3481 void Assembler::subss(XMMRegister dst, XMMRegister src) {
3482   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3483   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
3484 }
3485 
3486 void Assembler::subss(XMMRegister dst, Address src) {
3487   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3488   if (VM_Version::supports_evex()) {
3489     tuple_type = EVEX_T1S;
3490     input_size_in_bits = EVEX_32bit;
3491   }
3492   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
3493 }
3494 
3495 void Assembler::testb(Register dst, int imm8) {
3496   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
3497   (void) prefix_and_encode(dst->encoding(), true);
3498   emit_arith_b(0xF6, 0xC0, dst, imm8);
3499 }
3500 
3501 void Assembler::testb(Address dst, int8_t imm8) {
3502   InstructionMark im(this);
3503   prefix(dst);
3504   emit_int8((unsigned char)0xF6);
3505   emit_operand(rax, dst, 1);
3506   emit_int8((unsigned char)imm8);
3507 }
3508 
3509 void Assembler::testl(Register dst, int32_t imm32) {
3510   // not using emit_arith because test
3511   // doesn't support sign-extension of
3512   // 8bit operands
3513   int encode = dst->encoding();
3514   if (encode == 0) {
3515     emit_int8((unsigned char)0xA9);
3516   } else {
3517     encode = prefix_and_encode(encode);
3518     emit_int8((unsigned char)0xF7);
3519     emit_int8((unsigned char)(0xC0 | encode));
3520   }
3521   emit_int32(imm32);
3522 }
3523 
3524 void Assembler::testl(Register dst, Register src) {
3525   (void) prefix_and_encode(dst->encoding(), src->encoding());
3526   emit_arith(0x85, 0xC0, dst, src);
3527 }
3528 
3529 void Assembler::testl(Register dst, Address  src) {
3530   InstructionMark im(this);
3531   prefix(src, dst);
3532   emit_int8((unsigned char)0x85);
3533   emit_operand(dst, src);
3534 }
3535 
3536 void Assembler::tzcntl(Register dst, Register src) {
3537   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
3538   emit_int8((unsigned char)0xF3);
3539   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3540   emit_int8(0x0F);
3541   emit_int8((unsigned char)0xBC);
3542   emit_int8((unsigned char)0xC0 | encode);
3543 }
3544 
3545 void Assembler::tzcntq(Register dst, Register src) {
3546   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
3547   emit_int8((unsigned char)0xF3);
3548   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3549   emit_int8(0x0F);
3550   emit_int8((unsigned char)0xBC);
3551   emit_int8((unsigned char)(0xC0 | encode));
3552 }
3553 
3554 void Assembler::ucomisd(XMMRegister dst, Address src) {
3555   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3556   if (VM_Version::supports_evex()) {
3557     tuple_type = EVEX_T1S;
3558     input_size_in_bits = EVEX_64bit;
3559     emit_simd_arith_nonds_q(0x2E, dst, src, VEX_SIMD_66, true);
3560   } else {
3561     emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
3562   }
3563 }
3564 
3565 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
3566   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3567   if (VM_Version::supports_evex()) {
3568     emit_simd_arith_nonds_q(0x2E, dst, src, VEX_SIMD_66, true);
3569   } else {
3570     emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
3571   }
3572 }
3573 
3574 void Assembler::ucomiss(XMMRegister dst, Address src) {
3575   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3576   if (VM_Version::supports_evex()) {
3577     tuple_type = EVEX_T1S;
3578     input_size_in_bits = EVEX_32bit;
3579   }
3580   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE, true);
3581 }
3582 
3583 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
3584   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3585   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE, true);
3586 }
3587 
3588 void Assembler::xabort(int8_t imm8) {
3589   emit_int8((unsigned char)0xC6);
3590   emit_int8((unsigned char)0xF8);
3591   emit_int8((unsigned char)(imm8 & 0xFF));
3592 }
3593 
3594 void Assembler::xaddl(Address dst, Register src) {
3595   InstructionMark im(this);
3596   prefix(dst, src);
3597   emit_int8(0x0F);
3598   emit_int8((unsigned char)0xC1);
3599   emit_operand(src, dst);
3600 }
3601 
3602 void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
3603   InstructionMark im(this);
3604   relocate(rtype);
3605   if (abort.is_bound()) {
3606     address entry = target(abort);
3607     assert(entry != NULL, "abort entry NULL");
3608     intptr_t offset = entry - pc();
3609     emit_int8((unsigned char)0xC7);
3610     emit_int8((unsigned char)0xF8);
3611     emit_int32(offset - 6); // 2 opcode + 4 address
3612   } else {
3613     abort.add_patch_at(code(), locator());
3614     emit_int8((unsigned char)0xC7);
3615     emit_int8((unsigned char)0xF8);
3616     emit_int32(0);
3617   }
3618 }
3619 
3620 void Assembler::xchgl(Register dst, Address src) { // xchg
3621   InstructionMark im(this);
3622   prefix(src, dst);
3623   emit_int8((unsigned char)0x87);
3624   emit_operand(dst, src);
3625 }
3626 
3627 void Assembler::xchgl(Register dst, Register src) {
3628   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3629   emit_int8((unsigned char)0x87);
3630   emit_int8((unsigned char)(0xC0 | encode));
3631 }
3632 
3633 void Assembler::xend() {
3634   emit_int8((unsigned char)0x0F);
3635   emit_int8((unsigned char)0x01);
3636   emit_int8((unsigned char)0xD5);
3637 }
3638 
3639 void Assembler::xgetbv() {
3640   emit_int8(0x0F);
3641   emit_int8(0x01);
3642   emit_int8((unsigned char)0xD0);
3643 }
3644 
3645 void Assembler::xorl(Register dst, int32_t imm32) {
3646   prefix(dst);
3647   emit_arith(0x81, 0xF0, dst, imm32);
3648 }
3649 
3650 void Assembler::xorl(Register dst, Address src) {
3651   InstructionMark im(this);
3652   prefix(src, dst);
3653   emit_int8(0x33);
3654   emit_operand(dst, src);
3655 }
3656 
3657 void Assembler::xorl(Register dst, Register src) {
3658   (void) prefix_and_encode(dst->encoding(), src->encoding());
3659   emit_arith(0x33, 0xC0, dst, src);
3660 }
3661 
3662 
3663 // AVX 3-operands scalar float-point arithmetic instructions
3664 
3665 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
3666   assert(VM_Version::supports_avx(), "");
3667   if (VM_Version::supports_evex()) {
3668     tuple_type = EVEX_T1S;
3669     input_size_in_bits = EVEX_64bit;
3670     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3671   } else {
3672     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3673   }
3674 }
3675 
3676 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3677   assert(VM_Version::supports_avx(), "");
3678   if (VM_Version::supports_evex()) {
3679     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3680   } else {
3681     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3682   }
3683 }
3684 
3685 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
3686   assert(VM_Version::supports_avx(), "");
3687   if (VM_Version::supports_evex()) {
3688     tuple_type = EVEX_T1S;
3689     input_size_in_bits = EVEX_32bit;
3690   }
3691   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3692 }
3693 
3694 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3695   assert(VM_Version::supports_avx(), "");
3696   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3697 }
3698 
3699 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
3700   assert(VM_Version::supports_avx(), "");
3701   if (VM_Version::supports_evex()) {
3702     tuple_type = EVEX_T1S;
3703     input_size_in_bits = EVEX_64bit;
3704     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3705   } else {
3706     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3707   }
3708 }
3709 
3710 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3711   assert(VM_Version::supports_avx(), "");
3712   if (VM_Version::supports_evex()) {
3713     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3714   } else {
3715     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3716   }
3717 }
3718 
3719 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
3720   assert(VM_Version::supports_avx(), "");
3721   if (VM_Version::supports_evex()) {
3722     tuple_type = EVEX_T1S;
3723     input_size_in_bits = EVEX_32bit;
3724   }
3725   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3726 }
3727 
3728 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3729   assert(VM_Version::supports_avx(), "");
3730   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3731 }
3732 
3733 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
3734   assert(VM_Version::supports_avx(), "");
3735   if (VM_Version::supports_evex()) {
3736     tuple_type = EVEX_T1S;
3737     input_size_in_bits = EVEX_64bit;
3738     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3739   } else {
3740     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3741   }
3742 }
3743 
3744 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3745   assert(VM_Version::supports_avx(), "");
3746   if (VM_Version::supports_evex()) {
3747     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3748   } else {
3749     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3750   }
3751 }
3752 
3753 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
3754   assert(VM_Version::supports_avx(), "");
3755   if (VM_Version::supports_evex()) {
3756     tuple_type = EVEX_T1S;
3757     input_size_in_bits = EVEX_32bit;
3758   }
3759   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3760 }
3761 
3762 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3763   assert(VM_Version::supports_avx(), "");
3764   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3765 }
3766 
3767 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
3768   assert(VM_Version::supports_avx(), "");
3769   if (VM_Version::supports_evex()) {
3770     tuple_type = EVEX_T1S;
3771     input_size_in_bits = EVEX_64bit;
3772     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3773   } else {
3774     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3775   }
3776 }
3777 
3778 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3779   assert(VM_Version::supports_avx(), "");
3780   if (VM_Version::supports_evex()) {
3781     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3782   } else {
3783     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3784   }
3785 }
3786 
3787 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
3788   assert(VM_Version::supports_avx(), "");
3789   if (VM_Version::supports_evex()) {
3790     tuple_type = EVEX_T1S;
3791     input_size_in_bits = EVEX_32bit;
3792   }
3793   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3794 }
3795 
3796 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3797   assert(VM_Version::supports_avx(), "");
3798   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3799 }
3800 
3801 //====================VECTOR ARITHMETIC=====================================
3802 
3803 // Float-point vector arithmetic
3804 
3805 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
3806   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3807   if (VM_Version::supports_evex()) {
3808     emit_simd_arith_q(0x58, dst, src, VEX_SIMD_66);
3809   } else {
3810     emit_simd_arith(0x58, dst, src, VEX_SIMD_66);
3811   }
3812 }
3813 
3814 void Assembler::addps(XMMRegister dst, XMMRegister src) {
3815   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3816   emit_simd_arith(0x58, dst, src, VEX_SIMD_NONE);
3817 }
3818 
3819 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3820   assert(VM_Version::supports_avx(), "");
3821   if (VM_Version::supports_evex()) {
3822     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
3823   } else {
3824     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
3825   }
3826 }
3827 
3828 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3829   assert(VM_Version::supports_avx(), "");
3830   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector_len);
3831 }
3832 
3833 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3834   assert(VM_Version::supports_avx(), "");
3835   if (VM_Version::supports_evex()) {
3836     tuple_type = EVEX_FV;
3837     input_size_in_bits = EVEX_64bit;
3838     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
3839   } else {
3840     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
3841   }
3842 }
3843 
3844 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3845   assert(VM_Version::supports_avx(), "");
3846   if (VM_Version::supports_evex()) {
3847     tuple_type = EVEX_FV;
3848     input_size_in_bits = EVEX_32bit;
3849   }
3850   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector_len);
3851 }
3852 
3853 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
3854   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3855   if (VM_Version::supports_evex()) {
3856     emit_simd_arith_q(0x5C, dst, src, VEX_SIMD_66);
3857   } else {
3858     emit_simd_arith(0x5C, dst, src, VEX_SIMD_66);
3859   }
3860 }
3861 
3862 void Assembler::subps(XMMRegister dst, XMMRegister src) {
3863   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3864   emit_simd_arith(0x5C, dst, src, VEX_SIMD_NONE);
3865 }
3866 
3867 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3868   assert(VM_Version::supports_avx(), "");
3869   if (VM_Version::supports_evex()) {
3870     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
3871   } else {
3872     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
3873   }
3874 }
3875 
3876 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3877   assert(VM_Version::supports_avx(), "");
3878   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector_len);
3879 }
3880 
3881 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3882   assert(VM_Version::supports_avx(), "");
3883   if (VM_Version::supports_evex()) {
3884     tuple_type = EVEX_FV;
3885     input_size_in_bits = EVEX_64bit;
3886     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
3887   } else {
3888     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
3889   }
3890 }
3891 
3892 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3893   assert(VM_Version::supports_avx(), "");
3894   if (VM_Version::supports_evex()) {
3895     tuple_type = EVEX_FV;
3896     input_size_in_bits = EVEX_32bit;
3897   }
3898   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector_len);
3899 }
3900 
3901 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
3902   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3903   if (VM_Version::supports_evex()) {
3904     emit_simd_arith_q(0x59, dst, src, VEX_SIMD_66);
3905   } else {
3906     emit_simd_arith(0x59, dst, src, VEX_SIMD_66);
3907   }
3908 }
3909 
3910 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
3911   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3912   emit_simd_arith(0x59, dst, src, VEX_SIMD_NONE);
3913 }
3914 
3915 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3916   assert(VM_Version::supports_avx(), "");
3917   if (VM_Version::supports_evex()) {
3918     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
3919   } else {
3920     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
3921   }
3922 }
3923 
3924 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3925   assert(VM_Version::supports_avx(), "");
3926   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector_len);
3927 }
3928 
3929 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3930   assert(VM_Version::supports_avx(), "");
3931   if (VM_Version::supports_evex()) {
3932     tuple_type = EVEX_FV;
3933     input_size_in_bits = EVEX_64bit;
3934     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
3935   } else {
3936     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
3937   }
3938 }
3939 
3940 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3941   assert(VM_Version::supports_avx(), "");
3942   if (VM_Version::supports_evex()) {
3943     tuple_type = EVEX_FV;
3944     input_size_in_bits = EVEX_32bit;
3945   }
3946   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector_len);
3947 }
3948 
3949 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
3950   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3951   if (VM_Version::supports_evex()) {
3952     emit_simd_arith_q(0x5E, dst, src, VEX_SIMD_66);
3953   } else {
3954     emit_simd_arith(0x5E, dst, src, VEX_SIMD_66);
3955   }
3956 }
3957 
3958 void Assembler::divps(XMMRegister dst, XMMRegister src) {
3959   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3960   emit_simd_arith(0x5E, dst, src, VEX_SIMD_NONE);
3961 }
3962 
3963 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3964   assert(VM_Version::supports_avx(), "");
3965   if (VM_Version::supports_evex()) {
3966     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
3967   } else {
3968     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
3969   }
3970 }
3971 
3972 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3973   assert(VM_Version::supports_avx(), "");
3974   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector_len);
3975 }
3976 
3977 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3978   assert(VM_Version::supports_avx(), "");
3979   if (VM_Version::supports_evex()) {
3980     tuple_type = EVEX_FV;
3981     input_size_in_bits = EVEX_64bit;
3982     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
3983   } else {
3984     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
3985   }
3986 }
3987 
3988 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3989   assert(VM_Version::supports_avx(), "");
3990   if (VM_Version::supports_evex()) {
3991     tuple_type = EVEX_FV;
3992     input_size_in_bits = EVEX_32bit;
3993   }
3994   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector_len);
3995 }
3996 
3997 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
3998   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3999   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4000     emit_simd_arith_q(0x54, dst, src, VEX_SIMD_66);
4001   } else {
4002     emit_simd_arith(0x54, dst, src, VEX_SIMD_66, false, true);
4003   }
4004 }
4005 
4006 void Assembler::andps(XMMRegister dst, XMMRegister src) {
4007   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4008   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE, false,
4009                   (VM_Version::supports_avx512dq() == false));
4010 }
4011 
4012 void Assembler::andps(XMMRegister dst, Address src) {
4013   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4014   if (VM_Version::supports_evex()) {
4015     tuple_type = EVEX_FV;
4016     input_size_in_bits = EVEX_32bit;
4017   }
4018   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE,
4019                   false, (VM_Version::supports_avx512dq() == false));
4020 }
4021 
4022 void Assembler::andpd(XMMRegister dst, Address src) {
4023   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4024   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4025     tuple_type = EVEX_FV;
4026     input_size_in_bits = EVEX_64bit;
4027     emit_simd_arith_q(0x54, dst, src, VEX_SIMD_66);
4028   } else {
4029     emit_simd_arith(0x54, dst, src, VEX_SIMD_66, false, true);
4030   }
4031 }
4032 
4033 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4034   assert(VM_Version::supports_avx(), "");
4035   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4036     emit_vex_arith_q(0x54, dst, nds, src, VEX_SIMD_66, vector_len);
4037   } else {
4038     emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector_len, true);
4039   }
4040 }
4041 
4042 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4043   assert(VM_Version::supports_avx(), "");
4044   bool legacy_mode = (VM_Version::supports_avx512dq() == false);
4045   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector_len, legacy_mode);
4046 }
4047 
4048 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4049   assert(VM_Version::supports_avx(), "");
4050   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4051     tuple_type = EVEX_FV;
4052     input_size_in_bits = EVEX_64bit;
4053     emit_vex_arith_q(0x54, dst, nds, src, VEX_SIMD_66, vector_len);
4054   } else {
4055     emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector_len, true);
4056   }
4057 }
4058 
4059 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4060   assert(VM_Version::supports_avx(), "");
4061   if (VM_Version::supports_evex()) {
4062     tuple_type = EVEX_FV;
4063     input_size_in_bits = EVEX_32bit;
4064   }
4065   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector_len,
4066                  (VM_Version::supports_avx512dq() == false));
4067 }
4068 
4069 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
4070   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4071   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4072     emit_simd_arith_q(0x57, dst, src, VEX_SIMD_66);
4073   } else {
4074     emit_simd_arith(0x57, dst, src, VEX_SIMD_66, false, true);
4075   }
4076 }
4077 
4078 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
4079   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4080   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE,
4081                   false, (VM_Version::supports_avx512dq() == false));
4082 }
4083 
4084 void Assembler::xorpd(XMMRegister dst, Address src) {
4085   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4086   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4087     tuple_type = EVEX_FV;
4088     input_size_in_bits = EVEX_64bit;
4089     emit_simd_arith_q(0x57, dst, src, VEX_SIMD_66);
4090   } else {
4091     emit_simd_arith(0x57, dst, src, VEX_SIMD_66, false, true);
4092   }
4093 }
4094 
4095 void Assembler::xorps(XMMRegister dst, Address src) {
4096   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4097   if (VM_Version::supports_evex()) {
4098     tuple_type = EVEX_FV;
4099     input_size_in_bits = EVEX_32bit;
4100   }
4101   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE, false,
4102                   (VM_Version::supports_avx512dq() == false));
4103 }
4104 
4105 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4106   assert(VM_Version::supports_avx(), "");
4107   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4108     emit_vex_arith_q(0x57, dst, nds, src, VEX_SIMD_66, vector_len);
4109   } else {
4110     emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector_len, true);
4111   }
4112 }
4113 
4114 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4115   assert(VM_Version::supports_avx(), "");
4116   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector_len,
4117                  (VM_Version::supports_avx512dq() == false));
4118 }
4119 
4120 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4121   assert(VM_Version::supports_avx(), "");
4122   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4123     tuple_type = EVEX_FV;
4124     input_size_in_bits = EVEX_64bit;
4125     emit_vex_arith_q(0x57, dst, nds, src, VEX_SIMD_66, vector_len);
4126   } else {
4127     emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector_len, true);
4128   }
4129 }
4130 
4131 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4132   assert(VM_Version::supports_avx(), "");
4133   if (VM_Version::supports_evex()) {
4134     tuple_type = EVEX_FV;
4135     input_size_in_bits = EVEX_32bit;
4136   }
4137   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector_len,
4138                  (VM_Version::supports_avx512dq() == false));
4139 }
4140 
4141 // Integer vector arithmetic
4142 void Assembler::vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4143   assert(VM_Version::supports_avx() && (vector_len == 0) ||
4144          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
4145   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len,
4146                                      VEX_OPCODE_0F_38, true, false);
4147   emit_int8(0x01);
4148   emit_int8((unsigned char)(0xC0 | encode));
4149 }
4150 
4151 void Assembler::vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4152   assert(VM_Version::supports_avx() && (vector_len == 0) ||
4153          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
4154   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len,
4155                                      VEX_OPCODE_0F_38, true, false);
4156   emit_int8(0x02);
4157   emit_int8((unsigned char)(0xC0 | encode));
4158 }
4159 
4160 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
4161   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4162   emit_simd_arith(0xFC, dst, src, VEX_SIMD_66);
4163 }
4164 
4165 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
4166   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4167   emit_simd_arith(0xFD, dst, src, VEX_SIMD_66);
4168 }
4169 
4170 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
4171   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4172   emit_simd_arith(0xFE, dst, src, VEX_SIMD_66);
4173 }
4174 
4175 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
4176   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4177   if (VM_Version::supports_evex()) {
4178     emit_simd_arith_q(0xD4, dst, src, VEX_SIMD_66);
4179   } else {
4180     emit_simd_arith(0xD4, dst, src, VEX_SIMD_66);
4181   }
4182 }
4183 
4184 void Assembler::phaddw(XMMRegister dst, XMMRegister src) {
4185   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
4186   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
4187                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
4188   emit_int8(0x01);
4189   emit_int8((unsigned char)(0xC0 | encode));
4190 }
4191 
4192 void Assembler::phaddd(XMMRegister dst, XMMRegister src) {
4193   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
4194   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
4195                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
4196   emit_int8(0x02);
4197   emit_int8((unsigned char)(0xC0 | encode));
4198 }
4199 
4200 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4201   assert(UseAVX > 0, "requires some form of AVX");
4202   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector_len,
4203                  (VM_Version::supports_avx512bw() == false));
4204 }
4205 
4206 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4207   assert(UseAVX > 0, "requires some form of AVX");
4208   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector_len,
4209                  (VM_Version::supports_avx512bw() == false));
4210 }
4211 
4212 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4213   assert(UseAVX > 0, "requires some form of AVX");
4214   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector_len);
4215 }
4216 
4217 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4218   assert(UseAVX > 0, "requires some form of AVX");
4219   if (VM_Version::supports_evex()) {
4220     emit_vex_arith_q(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4221   } else {
4222     emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4223   }
4224 }
4225 
4226 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4227   assert(UseAVX > 0, "requires some form of AVX");
4228   if (VM_Version::supports_evex()) {
4229     tuple_type = EVEX_FVM;
4230   }
4231   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector_len);
4232 }
4233 
4234 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4235   assert(UseAVX > 0, "requires some form of AVX");
4236   if (VM_Version::supports_evex()) {
4237     tuple_type = EVEX_FVM;
4238   }
4239   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector_len);
4240 }
4241 
4242 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4243   assert(UseAVX > 0, "requires some form of AVX");
4244   if (VM_Version::supports_evex()) {
4245     tuple_type = EVEX_FV;
4246     input_size_in_bits = EVEX_32bit;
4247   }
4248   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector_len);
4249 }
4250 
4251 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4252   assert(UseAVX > 0, "requires some form of AVX");
4253   if (VM_Version::supports_evex()) {
4254     tuple_type = EVEX_FV;
4255     input_size_in_bits = EVEX_64bit;
4256     emit_vex_arith_q(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4257   } else {
4258     emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4259   }
4260 }
4261 
4262 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
4263   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4264   emit_simd_arith(0xF8, dst, src, VEX_SIMD_66);
4265 }
4266 
4267 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
4268   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4269   emit_simd_arith(0xF9, dst, src, VEX_SIMD_66);
4270 }
4271 
4272 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
4273   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4274   emit_simd_arith(0xFA, dst, src, VEX_SIMD_66);
4275 }
4276 
4277 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
4278   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4279   if (VM_Version::supports_evex()) {
4280     emit_simd_arith_q(0xFB, dst, src, VEX_SIMD_66);
4281   } else {
4282     emit_simd_arith(0xFB, dst, src, VEX_SIMD_66);
4283   }
4284 }
4285 
4286 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4287   assert(UseAVX > 0, "requires some form of AVX");
4288   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector_len,
4289                  (VM_Version::supports_avx512bw() == false));
4290 }
4291 
4292 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4293   assert(UseAVX > 0, "requires some form of AVX");
4294   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector_len,
4295                  (VM_Version::supports_avx512bw() == false));
4296 }
4297 
4298 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4299   assert(UseAVX > 0, "requires some form of AVX");
4300   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector_len);
4301 }
4302 
4303 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4304   assert(UseAVX > 0, "requires some form of AVX");
4305   if (VM_Version::supports_evex()) {
4306     emit_vex_arith_q(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4307   } else {
4308     emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4309   }
4310 }
4311 
4312 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4313   assert(UseAVX > 0, "requires some form of AVX");
4314   if (VM_Version::supports_evex()) {
4315     tuple_type = EVEX_FVM;
4316   }
4317   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector_len,
4318                  (VM_Version::supports_avx512bw() == false));
4319 }
4320 
4321 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4322   assert(UseAVX > 0, "requires some form of AVX");
4323   if (VM_Version::supports_evex()) {
4324     tuple_type = EVEX_FVM;
4325   }
4326   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector_len,
4327                  (VM_Version::supports_avx512bw() == false));
4328 }
4329 
4330 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4331   assert(UseAVX > 0, "requires some form of AVX");
4332   if (VM_Version::supports_evex()) {
4333     tuple_type = EVEX_FV;
4334     input_size_in_bits = EVEX_32bit;
4335   }
4336   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector_len);
4337 }
4338 
4339 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4340   assert(UseAVX > 0, "requires some form of AVX");
4341   if (VM_Version::supports_evex()) {
4342     tuple_type = EVEX_FV;
4343     input_size_in_bits = EVEX_64bit;
4344     emit_vex_arith_q(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4345   } else {
4346     emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4347   }
4348 }
4349 
4350 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
4351   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4352   emit_simd_arith(0xD5, dst, src, VEX_SIMD_66,
4353                   (VM_Version::supports_avx512bw() == false));
4354 }
4355 
4356 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
4357   assert(VM_Version::supports_sse4_1(), "");
4358   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66,
4359                                       false, VEX_OPCODE_0F_38);
4360   emit_int8(0x40);
4361   emit_int8((unsigned char)(0xC0 | encode));
4362 }
4363 
4364 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4365   assert(UseAVX > 0, "requires some form of AVX");
4366   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector_len,
4367                  (VM_Version::supports_avx512bw() == false));
4368 }
4369 
4370 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4371   assert(UseAVX > 0, "requires some form of AVX");
4372   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66,
4373                                      vector_len, VEX_OPCODE_0F_38);
4374   emit_int8(0x40);
4375   emit_int8((unsigned char)(0xC0 | encode));
4376 }
4377 
4378 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4379   assert(UseAVX > 2, "requires some form of AVX");
4380   int src_enc = src->encoding();
4381   int dst_enc = dst->encoding();
4382   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4383   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66,
4384                                      VEX_OPCODE_0F_38, true, vector_len, false, false);
4385   emit_int8(0x40);
4386   emit_int8((unsigned char)(0xC0 | encode));
4387 }
4388 
4389 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4390   assert(UseAVX > 0, "requires some form of AVX");
4391   if (VM_Version::supports_evex()) {
4392     tuple_type = EVEX_FVM;
4393   }
4394   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector_len);
4395 }
4396 
4397 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4398   assert(UseAVX > 0, "requires some form of AVX");
4399   if (VM_Version::supports_evex()) {
4400     tuple_type = EVEX_FV;
4401     input_size_in_bits = EVEX_32bit;
4402   }
4403   InstructionMark im(this);
4404   int dst_enc = dst->encoding();
4405   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4406   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66,
4407              VEX_OPCODE_0F_38, false, vector_len);
4408   emit_int8(0x40);
4409   emit_operand(dst, src);
4410 }
4411 
4412 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4413   assert(UseAVX > 0, "requires some form of AVX");
4414   if (VM_Version::supports_evex()) {
4415     tuple_type = EVEX_FV;
4416     input_size_in_bits = EVEX_64bit;
4417   }
4418   InstructionMark im(this);
4419   int dst_enc = dst->encoding();
4420   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4421   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, true, vector_len);
4422   emit_int8(0x40);
4423   emit_operand(dst, src);
4424 }
4425 
4426 // Shift packed integers left by specified number of bits.
4427 void Assembler::psllw(XMMRegister dst, int shift) {
4428   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4429   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
4430   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F,
4431                                       false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
4432   emit_int8(0x71);
4433   emit_int8((unsigned char)(0xC0 | encode));
4434   emit_int8(shift & 0xFF);
4435 }
4436 
4437 void Assembler::pslld(XMMRegister dst, int shift) {
4438   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4439   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
4440   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, false);
4441   emit_int8(0x72);
4442   emit_int8((unsigned char)(0xC0 | encode));
4443   emit_int8(shift & 0xFF);
4444 }
4445 
4446 void Assembler::psllq(XMMRegister dst, int shift) {
4447   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4448   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
4449   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F, true);
4450   emit_int8(0x73);
4451   emit_int8((unsigned char)(0xC0 | encode));
4452   emit_int8(shift & 0xFF);
4453 }
4454 
4455 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
4456   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4457   emit_simd_arith(0xF1, dst, shift, VEX_SIMD_66, false,
4458                   (VM_Version::supports_avx512bw() == false));
4459 }
4460 
4461 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
4462   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4463   emit_simd_arith(0xF2, dst, shift, VEX_SIMD_66);
4464 }
4465 
4466 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
4467   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4468   if (VM_Version::supports_evex()) {
4469     emit_simd_arith_q(0xF3, dst, shift, VEX_SIMD_66);
4470   } else {
4471     emit_simd_arith(0xF3, dst, shift, VEX_SIMD_66);
4472   }
4473 }
4474 
4475 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4476   assert(UseAVX > 0, "requires some form of AVX");
4477   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
4478   emit_vex_arith(0x71, xmm6, dst, src, VEX_SIMD_66, vector_len,
4479                  (VM_Version::supports_avx512bw() == false));
4480   emit_int8(shift & 0xFF);
4481 }
4482 
4483 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4484   assert(UseAVX > 0, "requires some form of AVX");
4485   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
4486   emit_vex_arith(0x72, xmm6, dst, src, VEX_SIMD_66, vector_len);
4487   emit_int8(shift & 0xFF);
4488 }
4489 
4490 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4491   assert(UseAVX > 0, "requires some form of AVX");
4492   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
4493   if (VM_Version::supports_evex()) {
4494     emit_vex_arith_q(0x73, xmm6, dst, src, VEX_SIMD_66, vector_len);
4495   } else {
4496     emit_vex_arith(0x73, xmm6, dst, src, VEX_SIMD_66, vector_len);
4497   }
4498   emit_int8(shift & 0xFF);
4499 }
4500 
4501 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4502   assert(UseAVX > 0, "requires some form of AVX");
4503   emit_vex_arith(0xF1, dst, src, shift, VEX_SIMD_66, vector_len,
4504                  (VM_Version::supports_avx512bw() == false));
4505 }
4506 
4507 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4508   assert(UseAVX > 0, "requires some form of AVX");
4509   emit_vex_arith(0xF2, dst, src, shift, VEX_SIMD_66, vector_len);
4510 }
4511 
4512 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4513   assert(UseAVX > 0, "requires some form of AVX");
4514   if (VM_Version::supports_evex()) {
4515     emit_vex_arith_q(0xF3, dst, src, shift, VEX_SIMD_66, vector_len);
4516   } else {
4517     emit_vex_arith(0xF3, dst, src, shift, VEX_SIMD_66, vector_len);
4518   }
4519 }
4520 
4521 // Shift packed integers logically right by specified number of bits.
4522 void Assembler::psrlw(XMMRegister dst, int shift) {
4523   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4524   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
4525   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F,
4526                                       (VM_Version::supports_avx512bw() == false));
4527   emit_int8(0x71);
4528   emit_int8((unsigned char)(0xC0 | encode));
4529   emit_int8(shift & 0xFF);
4530 }
4531 
4532 void Assembler::psrld(XMMRegister dst, int shift) {
4533   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4534   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
4535   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, false);
4536   emit_int8(0x72);
4537   emit_int8((unsigned char)(0xC0 | encode));
4538   emit_int8(shift & 0xFF);
4539 }
4540 
4541 void Assembler::psrlq(XMMRegister dst, int shift) {
4542   // Do not confuse it with psrldq SSE2 instruction which
4543   // shifts 128 bit value in xmm register by number of bytes.
4544   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4545   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4546   int encode = 0;
4547   if (VM_Version::supports_evex() && VM_Version::supports_avx512bw()) {
4548     encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, true, VEX_OPCODE_0F, false);
4549   } else {
4550     encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F, true);
4551   }
4552   emit_int8(0x73);
4553   emit_int8((unsigned char)(0xC0 | encode));
4554   emit_int8(shift & 0xFF);
4555 }
4556 
4557 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
4558   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4559   emit_simd_arith(0xD1, dst, shift, VEX_SIMD_66, false,
4560                   (VM_Version::supports_avx512bw() == false));
4561 }
4562 
4563 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
4564   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4565   emit_simd_arith(0xD2, dst, shift, VEX_SIMD_66);
4566 }
4567 
4568 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
4569   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4570   if (VM_Version::supports_evex()) {
4571     emit_simd_arith_q(0xD3, dst, shift, VEX_SIMD_66);
4572   } else {
4573     emit_simd_arith(0xD3, dst, shift, VEX_SIMD_66);
4574   }
4575 }
4576 
4577 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4578   assert(UseAVX > 0, "requires some form of AVX");
4579   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4580   emit_vex_arith(0x71, xmm2, dst, src, VEX_SIMD_66, vector_len,
4581                  (VM_Version::supports_avx512bw() == false));
4582   emit_int8(shift & 0xFF);
4583 }
4584 
4585 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4586   assert(UseAVX > 0, "requires some form of AVX");
4587   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4588   emit_vex_arith(0x72, xmm2, dst, src, VEX_SIMD_66, vector_len);
4589   emit_int8(shift & 0xFF);
4590 }
4591 
4592 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4593   assert(UseAVX > 0, "requires some form of AVX");
4594   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4595   if (VM_Version::supports_evex()) {
4596     emit_vex_arith_q(0x73, xmm2, dst, src, VEX_SIMD_66, vector_len);
4597   } else {
4598     emit_vex_arith(0x73, xmm2, dst, src, VEX_SIMD_66, vector_len);
4599   }
4600   emit_int8(shift & 0xFF);
4601 }
4602 
4603 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4604   assert(UseAVX > 0, "requires some form of AVX");
4605   emit_vex_arith(0xD1, dst, src, shift, VEX_SIMD_66, vector_len,
4606                  (VM_Version::supports_avx512bw() == false));
4607 }
4608 
4609 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4610   assert(UseAVX > 0, "requires some form of AVX");
4611   emit_vex_arith(0xD2, dst, src, shift, VEX_SIMD_66, vector_len);
4612 }
4613 
4614 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4615   assert(UseAVX > 0, "requires some form of AVX");
4616   if (VM_Version::supports_evex()) {
4617     emit_vex_arith_q(0xD3, dst, src, shift, VEX_SIMD_66, vector_len);
4618   } else {
4619     emit_vex_arith(0xD3, dst, src, shift, VEX_SIMD_66, vector_len);
4620   }
4621 }
4622 
4623 // Shift packed integers arithmetically right by specified number of bits.
4624 void Assembler::psraw(XMMRegister dst, int shift) {
4625   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4626   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
4627   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F,
4628                                       (VM_Version::supports_avx512bw() == false));
4629   emit_int8(0x71);
4630   emit_int8((unsigned char)(0xC0 | encode));
4631   emit_int8(shift & 0xFF);
4632 }
4633 
4634 void Assembler::psrad(XMMRegister dst, int shift) {
4635   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4636   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
4637   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, false);
4638   emit_int8(0x72);
4639   emit_int8((unsigned char)(0xC0 | encode));
4640   emit_int8(shift & 0xFF);
4641 }
4642 
4643 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
4644   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4645   emit_simd_arith(0xE1, dst, shift, VEX_SIMD_66,
4646                   (VM_Version::supports_avx512bw() == false));
4647 }
4648 
4649 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
4650   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4651   emit_simd_arith(0xE2, dst, shift, VEX_SIMD_66);
4652 }
4653 
4654 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4655   assert(UseAVX > 0, "requires some form of AVX");
4656   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
4657   emit_vex_arith(0x71, xmm4, dst, src, VEX_SIMD_66, vector_len,
4658                  (VM_Version::supports_avx512bw() == false));
4659   emit_int8(shift & 0xFF);
4660 }
4661 
4662 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4663   assert(UseAVX > 0, "requires some form of AVX");
4664   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
4665   emit_vex_arith(0x72, xmm4, dst, src, VEX_SIMD_66, vector_len);
4666   emit_int8(shift & 0xFF);
4667 }
4668 
4669 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4670   assert(UseAVX > 0, "requires some form of AVX");
4671   emit_vex_arith(0xE1, dst, src, shift, VEX_SIMD_66, vector_len,
4672                  (VM_Version::supports_avx512bw() == false));
4673 }
4674 
4675 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4676   assert(UseAVX > 0, "requires some form of AVX");
4677   emit_vex_arith(0xE2, dst, src, shift, VEX_SIMD_66, vector_len);
4678 }
4679 
4680 
4681 // AND packed integers
4682 void Assembler::pand(XMMRegister dst, XMMRegister src) {
4683   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4684   emit_simd_arith(0xDB, dst, src, VEX_SIMD_66);
4685 }
4686 
4687 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4688   assert(UseAVX > 0, "requires some form of AVX");
4689   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector_len);
4690 }
4691 
4692 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4693   assert(UseAVX > 0, "requires some form of AVX");
4694   if (VM_Version::supports_evex()) {
4695     tuple_type = EVEX_FV;
4696     input_size_in_bits = EVEX_32bit;
4697   }
4698   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector_len);
4699 }
4700 
4701 void Assembler::por(XMMRegister dst, XMMRegister src) {
4702   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4703   emit_simd_arith(0xEB, dst, src, VEX_SIMD_66);
4704 }
4705 
4706 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4707   assert(UseAVX > 0, "requires some form of AVX");
4708   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector_len);
4709 }
4710 
4711 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4712   assert(UseAVX > 0, "requires some form of AVX");
4713   if (VM_Version::supports_evex()) {
4714     tuple_type = EVEX_FV;
4715     input_size_in_bits = EVEX_32bit;
4716   }
4717   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector_len);
4718 }
4719 
4720 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
4721   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4722   emit_simd_arith(0xEF, dst, src, VEX_SIMD_66);
4723 }
4724 
4725 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4726   assert(UseAVX > 0, "requires some form of AVX");
4727   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector_len);
4728 }
4729 
4730 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4731   assert(UseAVX > 0, "requires some form of AVX");
4732   if (VM_Version::supports_evex()) {
4733     tuple_type = EVEX_FV;
4734     input_size_in_bits = EVEX_32bit;
4735   }
4736   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector_len);
4737 }
4738 
4739 
4740 void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4741   assert(VM_Version::supports_avx(), "");
4742   int vector_len = AVX_256bit;
4743   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
4744   emit_int8(0x18);
4745   emit_int8((unsigned char)(0xC0 | encode));
4746   // 0x00 - insert into lower 128 bits
4747   // 0x01 - insert into upper 128 bits
4748   emit_int8(0x01);
4749 }
4750 
4751 void Assembler::vinsertf64x4h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4752   assert(VM_Version::supports_evex(), "");
4753   int vector_len = AVX_512bit;
4754   int src_enc = src->encoding();
4755   int dst_enc = dst->encoding();
4756   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4757   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66,
4758                                      VEX_OPCODE_0F_3A, true, vector_len, false, false);
4759   emit_int8(0x1A);
4760   emit_int8((unsigned char)(0xC0 | encode));
4761   // 0x00 - insert into lower 256 bits
4762   // 0x01 - insert into upper 256 bits
4763   emit_int8(0x01);
4764 }
4765 
4766 void Assembler::vinsertf64x4h(XMMRegister dst, Address src) {
4767   assert(VM_Version::supports_avx(), "");
4768   if (VM_Version::supports_evex()) {
4769     tuple_type = EVEX_T4;
4770     input_size_in_bits = EVEX_64bit;
4771   }
4772   InstructionMark im(this);
4773   int vector_len = AVX_512bit;
4774   assert(dst != xnoreg, "sanity");
4775   int dst_enc = dst->encoding();
4776   // swap src<->dst for encoding
4777   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, true, vector_len);
4778   emit_int8(0x1A);
4779   emit_operand(dst, src);
4780   // 0x01 - insert into upper 128 bits
4781   emit_int8(0x01);
4782 }
4783 
4784 void Assembler::vinsertf128h(XMMRegister dst, Address src) {
4785   assert(VM_Version::supports_avx(), "");
4786   if (VM_Version::supports_evex()) {
4787     tuple_type = EVEX_T4;
4788     input_size_in_bits = EVEX_32bit;
4789   }
4790   InstructionMark im(this);
4791   int vector_len = AVX_256bit;
4792   assert(dst != xnoreg, "sanity");
4793   int dst_enc = dst->encoding();
4794   // swap src<->dst for encoding
4795   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector_len);
4796   emit_int8(0x18);
4797   emit_operand(dst, src);
4798   // 0x01 - insert into upper 128 bits
4799   emit_int8(0x01);
4800 }
4801 
4802 void Assembler::vextractf128h(XMMRegister dst, XMMRegister src) {
4803   assert(VM_Version::supports_avx(), "");
4804   int vector_len = AVX_256bit;
4805   int encode = vex_prefix_and_encode(src, xnoreg, dst, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
4806   emit_int8(0x19);
4807   emit_int8((unsigned char)(0xC0 | encode));
4808   // 0x00 - insert into lower 128 bits
4809   // 0x01 - insert into upper 128 bits
4810   emit_int8(0x01);
4811 }
4812 
4813 void Assembler::vextractf128h(Address dst, XMMRegister src) {
4814   assert(VM_Version::supports_avx(), "");
4815   if (VM_Version::supports_evex()) {
4816     tuple_type = EVEX_T4;
4817     input_size_in_bits = EVEX_32bit;
4818   }
4819   InstructionMark im(this);
4820   int vector_len = AVX_256bit;
4821   assert(src != xnoreg, "sanity");
4822   int src_enc = src->encoding();
4823   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector_len);
4824   emit_int8(0x19);
4825   emit_operand(src, dst);
4826   // 0x01 - extract from upper 128 bits
4827   emit_int8(0x01);
4828 }
4829 
4830 void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4831   assert(VM_Version::supports_avx2(), "");
4832   int vector_len = AVX_256bit;
4833   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
4834   emit_int8(0x38);
4835   emit_int8((unsigned char)(0xC0 | encode));
4836   // 0x00 - insert into lower 128 bits
4837   // 0x01 - insert into upper 128 bits
4838   emit_int8(0x01);
4839 }
4840 
4841 void Assembler::vinserti64x4h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4842   assert(VM_Version::supports_evex(), "");
4843   int vector_len = AVX_512bit;
4844   int src_enc = src->encoding();
4845   int dst_enc = dst->encoding();
4846   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4847   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4848                                      VM_Version::supports_avx512dq(), vector_len, false, false);
4849   emit_int8(0x38);
4850   emit_int8((unsigned char)(0xC0 | encode));
4851   // 0x00 - insert into lower 256 bits
4852   // 0x01 - insert into upper 256 bits
4853   emit_int8(0x01);
4854 }
4855 
4856 void Assembler::vinserti128h(XMMRegister dst, Address src) {
4857   assert(VM_Version::supports_avx2(), "");
4858   if (VM_Version::supports_evex()) {
4859     tuple_type = EVEX_T4;
4860     input_size_in_bits = EVEX_32bit;
4861   }
4862   InstructionMark im(this);
4863   int vector_len = AVX_256bit;
4864   assert(dst != xnoreg, "sanity");
4865   int dst_enc = dst->encoding();
4866   // swap src<->dst for encoding
4867   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector_len);
4868   emit_int8(0x38);
4869   emit_operand(dst, src);
4870   // 0x01 - insert into upper 128 bits
4871   emit_int8(0x01);
4872 }
4873 
4874 void Assembler::vextracti128h(XMMRegister dst, XMMRegister src) {
4875   assert(VM_Version::supports_avx(), "");
4876   int vector_len = AVX_256bit;
4877   int encode = vex_prefix_and_encode(src, xnoreg, dst, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
4878   emit_int8(0x39);
4879   emit_int8((unsigned char)(0xC0 | encode));
4880   // 0x00 - insert into lower 128 bits
4881   // 0x01 - insert into upper 128 bits
4882   emit_int8(0x01);
4883 }
4884 
4885 void Assembler::vextracti128h(Address dst, XMMRegister src) {
4886   assert(VM_Version::supports_avx2(), "");
4887   if (VM_Version::supports_evex()) {
4888     tuple_type = EVEX_T4;
4889     input_size_in_bits = EVEX_32bit;
4890   }
4891   InstructionMark im(this);
4892   int vector_len = AVX_256bit;
4893   assert(src != xnoreg, "sanity");
4894   int src_enc = src->encoding();
4895   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector_len);
4896   emit_int8(0x39);
4897   emit_operand(src, dst);
4898   // 0x01 - extract from upper 128 bits
4899   emit_int8(0x01);
4900 }
4901 
4902 void Assembler::vextracti64x4h(XMMRegister dst, XMMRegister src) {
4903   assert(VM_Version::supports_evex(), "");
4904   int vector_len = AVX_512bit;
4905   int src_enc = src->encoding();
4906   int dst_enc = dst->encoding();
4907   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4908                                      true, vector_len, false, false);
4909   emit_int8(0x3B);
4910   emit_int8((unsigned char)(0xC0 | encode));
4911   // 0x01 - extract from upper 256 bits
4912   emit_int8(0x01);
4913 }
4914 
4915 void Assembler::vextracti64x2h(XMMRegister dst, XMMRegister src, int value) {
4916   assert(VM_Version::supports_evex(), "");
4917   int vector_len = AVX_512bit;
4918   int src_enc = src->encoding();
4919   int dst_enc = dst->encoding();
4920   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4921                                      VM_Version::supports_avx512dq(), vector_len, false, false);
4922   emit_int8(0x39);
4923   emit_int8((unsigned char)(0xC0 | encode));
4924   // 0x01 - extract from bits 255:128
4925   // 0x02 - extract from bits 383:256
4926   // 0x03 - extract from bits 511:384
4927   emit_int8(value & 0x3);
4928 }
4929 
4930 void Assembler::vextractf64x4h(XMMRegister dst, XMMRegister src) {
4931   assert(VM_Version::supports_evex(), "");
4932   int vector_len = AVX_512bit;
4933   int src_enc = src->encoding();
4934   int dst_enc = dst->encoding();
4935   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4936                                      VM_Version::supports_avx512dq(), vector_len, false, false);
4937   emit_int8(0x1B);
4938   emit_int8((unsigned char)(0xC0 | encode));
4939   // 0x01 - extract from upper 256 bits
4940   emit_int8(0x01);
4941 }
4942 
4943 void Assembler::vextractf64x4h(Address dst, XMMRegister src) {
4944   assert(VM_Version::supports_avx2(), "");
4945   tuple_type = EVEX_T4;
4946   input_size_in_bits = EVEX_64bit;
4947   InstructionMark im(this);
4948   int vector_len = AVX_512bit;
4949   assert(src != xnoreg, "sanity");
4950   int src_enc = src->encoding();
4951   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4952              VM_Version::supports_avx512dq(), vector_len);
4953   emit_int8(0x1B);
4954   emit_operand(src, dst);
4955   // 0x01 - extract from upper 128 bits
4956   emit_int8(0x01);
4957 }
4958 
4959 void Assembler::vextractf32x4h(XMMRegister dst, XMMRegister src, int value) {
4960   assert(VM_Version::supports_evex(), "");
4961   int vector_len = AVX_512bit;
4962   int src_enc = src->encoding();
4963   int dst_enc = dst->encoding();
4964   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66,
4965                                      VEX_OPCODE_0F_3A, false, vector_len, false, false);
4966   emit_int8(0x19);
4967   emit_int8((unsigned char)(0xC0 | encode));
4968   // 0x01 - extract from bits 255:128
4969   // 0x02 - extract from bits 383:256
4970   // 0x03 - extract from bits 511:384
4971   emit_int8(value & 0x3);
4972 }
4973 
4974 void Assembler::vextractf64x2h(XMMRegister dst, XMMRegister src, int value) {
4975   assert(VM_Version::supports_evex(), "");
4976   int vector_len = AVX_512bit;
4977   int src_enc = src->encoding();
4978   int dst_enc = dst->encoding();
4979   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4980                                      VM_Version::supports_avx512dq(), vector_len, false, false);
4981   emit_int8(0x19);
4982   emit_int8((unsigned char)(0xC0 | encode));
4983   // 0x01 - extract from bits 255:128
4984   // 0x02 - extract from bits 383:256
4985   // 0x03 - extract from bits 511:384
4986   emit_int8(value & 0x3);
4987 }
4988 
4989 // duplicate 4-bytes integer data from src into 8 locations in dest
4990 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
4991   assert(VM_Version::supports_avx2(), "");
4992   int vector_len = AVX_256bit;
4993   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
4994                                      vector_len, VEX_OPCODE_0F_38, false);
4995   emit_int8(0x58);
4996   emit_int8((unsigned char)(0xC0 | encode));
4997 }
4998 
4999 // duplicate 1-byte integer data from src into 16||32|64 locations in dest : requires AVX512BW and AVX512VL
5000 void Assembler::evpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len) {
5001   assert(VM_Version::supports_evex(), "");
5002   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
5003                                      vector_len, VEX_OPCODE_0F_38, false);
5004   emit_int8(0x78);
5005   emit_int8((unsigned char)(0xC0 | encode));
5006 }
5007 
5008 void Assembler::evpbroadcastb(XMMRegister dst, Address src, int vector_len) {
5009   assert(VM_Version::supports_evex(), "");
5010   tuple_type = EVEX_T1S;
5011   input_size_in_bits = EVEX_8bit;
5012   InstructionMark im(this);
5013   assert(dst != xnoreg, "sanity");
5014   int dst_enc = dst->encoding();
5015   // swap src<->dst for encoding
5016   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector_len);
5017   emit_int8(0x78);
5018   emit_operand(dst, src);
5019 }
5020 
5021 // duplicate 2-byte integer data from src into 8|16||32 locations in dest : requires AVX512BW and AVX512VL
5022 void Assembler::evpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
5023   assert(VM_Version::supports_evex(), "");
5024   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
5025                                      vector_len, VEX_OPCODE_0F_38, false);
5026   emit_int8(0x79);
5027   emit_int8((unsigned char)(0xC0 | encode));
5028 }
5029 
5030 void Assembler::evpbroadcastw(XMMRegister dst, Address src, int vector_len) {
5031   assert(VM_Version::supports_evex(), "");
5032   tuple_type = EVEX_T1S;
5033   input_size_in_bits = EVEX_16bit;
5034   InstructionMark im(this);
5035   assert(dst != xnoreg, "sanity");
5036   int dst_enc = dst->encoding();
5037   // swap src<->dst for encoding
5038   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector_len);
5039   emit_int8(0x79);
5040   emit_operand(dst, src);
5041 }
5042 
5043 // duplicate 4-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5044 void Assembler::evpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len) {
5045   assert(VM_Version::supports_evex(), "");
5046   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
5047                                      vector_len, VEX_OPCODE_0F_38, false);
5048   emit_int8(0x58);
5049   emit_int8((unsigned char)(0xC0 | encode));
5050 }
5051 
5052 void Assembler::evpbroadcastd(XMMRegister dst, Address src, int vector_len) {
5053   assert(VM_Version::supports_evex(), "");
5054   tuple_type = EVEX_T1S;
5055   input_size_in_bits = EVEX_32bit;
5056   InstructionMark im(this);
5057   assert(dst != xnoreg, "sanity");
5058   int dst_enc = dst->encoding();
5059   // swap src<->dst for encoding
5060   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector_len);
5061   emit_int8(0x58);
5062   emit_operand(dst, src);
5063 }
5064 
5065 // duplicate 8-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5066 void Assembler::evpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len) {
5067   assert(VM_Version::supports_evex(), "");
5068   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
5069                                      VEX_OPCODE_0F_38, true, vector_len, false, false);
5070   emit_int8(0x59);
5071   emit_int8((unsigned char)(0xC0 | encode));
5072 }
5073 
5074 void Assembler::evpbroadcastq(XMMRegister dst, Address src, int vector_len) {
5075   assert(VM_Version::supports_evex(), "");
5076   tuple_type = EVEX_T1S;
5077   input_size_in_bits = EVEX_64bit;
5078   InstructionMark im(this);
5079   assert(dst != xnoreg, "sanity");
5080   int dst_enc = dst->encoding();
5081   // swap src<->dst for encoding
5082   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, true, vector_len);
5083   emit_int8(0x59);
5084   emit_operand(dst, src);
5085 }
5086 
5087 // duplicate single precision fp from src into 4|8|16 locations in dest : requires AVX512VL
5088 void Assembler::evpbroadcastss(XMMRegister dst, XMMRegister src, int vector_len) {
5089   assert(VM_Version::supports_evex(), "");
5090   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
5091                                      VEX_OPCODE_0F_38, false, vector_len, false, false);
5092   emit_int8(0x18);
5093   emit_int8((unsigned char)(0xC0 | encode));
5094 }
5095 
5096 void Assembler::evpbroadcastss(XMMRegister dst, Address src, int vector_len) {
5097   assert(VM_Version::supports_evex(), "");
5098   tuple_type = EVEX_T1S;
5099   input_size_in_bits = EVEX_32bit;
5100   InstructionMark im(this);
5101   assert(dst != xnoreg, "sanity");
5102   int dst_enc = dst->encoding();
5103   // swap src<->dst for encoding
5104   vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector_len);
5105   emit_int8(0x18);
5106   emit_operand(dst, src);
5107 }
5108 
5109 // duplicate double precision fp from src into 2|4|8 locations in dest : requires AVX512VL
5110 void Assembler::evpbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len) {
5111   assert(VM_Version::supports_evex(), "");
5112   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
5113                                      VEX_OPCODE_0F_38, true, vector_len, false, false);
5114   emit_int8(0x19);
5115   emit_int8((unsigned char)(0xC0 | encode));
5116 }
5117 
5118 void Assembler::evpbroadcastsd(XMMRegister dst, Address src, int vector_len) {
5119   assert(VM_Version::supports_evex(), "");
5120   tuple_type = EVEX_T1S;
5121   input_size_in_bits = EVEX_64bit;
5122   InstructionMark im(this);
5123   assert(dst != xnoreg, "sanity");
5124   int dst_enc = dst->encoding();
5125   // swap src<->dst for encoding
5126   vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, true, vector_len);
5127   emit_int8(0x19);
5128   emit_operand(dst, src);
5129 }
5130 
5131 // duplicate 1-byte integer data from src into 16||32|64 locations in dest : requires AVX512BW and AVX512VL
5132 void Assembler::evpbroadcastb(XMMRegister dst, Register src, int vector_len) {
5133   assert(VM_Version::supports_evex(), "");
5134   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
5135                                      VEX_OPCODE_0F_38, false, vector_len, false, false);
5136   emit_int8(0x7A);
5137   emit_int8((unsigned char)(0xC0 | encode));
5138 }
5139 
5140 // duplicate 2-byte integer data from src into 8|16||32 locations in dest : requires AVX512BW and AVX512VL
5141 void Assembler::evpbroadcastw(XMMRegister dst, Register src, int vector_len) {
5142   assert(VM_Version::supports_evex(), "");
5143   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
5144                                      VEX_OPCODE_0F_38, false, vector_len, false, false);
5145   emit_int8(0x7B);
5146   emit_int8((unsigned char)(0xC0 | encode));
5147 }
5148 
5149 // duplicate 4-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5150 void Assembler::evpbroadcastd(XMMRegister dst, Register src, int vector_len) {
5151   assert(VM_Version::supports_evex(), "");
5152   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
5153                                      VEX_OPCODE_0F_38, false, vector_len, false, false);
5154   emit_int8(0x7C);
5155   emit_int8((unsigned char)(0xC0 | encode));
5156 }
5157 
5158 // duplicate 8-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5159 void Assembler::evpbroadcastq(XMMRegister dst, Register src, int vector_len) {
5160   assert(VM_Version::supports_evex(), "");
5161   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
5162                                      VEX_OPCODE_0F_38, true, vector_len, false, false);
5163   emit_int8(0x7C);
5164   emit_int8((unsigned char)(0xC0 | encode));
5165 }
5166 
5167 // Carry-Less Multiplication Quadword
5168 void Assembler::pclmulqdq(XMMRegister dst, XMMRegister src, int mask) {
5169   assert(VM_Version::supports_clmul(), "");
5170   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
5171                                       VEX_OPCODE_0F_3A, false, AVX_128bit, true);
5172   emit_int8(0x44);
5173   emit_int8((unsigned char)(0xC0 | encode));
5174   emit_int8((unsigned char)mask);
5175 }
5176 
5177 // Carry-Less Multiplication Quadword
5178 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
5179   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
5180   int vector_len = AVX_128bit;
5181   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66,
5182                                      vector_len, VEX_OPCODE_0F_3A, true);
5183   emit_int8(0x44);
5184   emit_int8((unsigned char)(0xC0 | encode));
5185   emit_int8((unsigned char)mask);
5186 }
5187 
5188 void Assembler::vzeroupper() {
5189   assert(VM_Version::supports_avx(), "");
5190   if (UseAVX < 3)
5191   {
5192     (void)vex_prefix_and_encode(xmm0, xmm0, xmm0, VEX_SIMD_NONE);
5193     emit_int8(0x77);
5194   }
5195 }
5196 
5197 
5198 #ifndef _LP64
5199 // 32bit only pieces of the assembler
5200 
5201 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
5202   // NO PREFIX AS NEVER 64BIT
5203   InstructionMark im(this);
5204   emit_int8((unsigned char)0x81);
5205   emit_int8((unsigned char)(0xF8 | src1->encoding()));
5206   emit_data(imm32, rspec, 0);
5207 }
5208 
5209 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
5210   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
5211   InstructionMark im(this);
5212   emit_int8((unsigned char)0x81);
5213   emit_operand(rdi, src1);
5214   emit_data(imm32, rspec, 0);
5215 }
5216 
5217 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
5218 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
5219 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
5220 void Assembler::cmpxchg8(Address adr) {
5221   InstructionMark im(this);
5222   emit_int8(0x0F);
5223   emit_int8((unsigned char)0xC7);
5224   emit_operand(rcx, adr);
5225 }
5226 
5227 void Assembler::decl(Register dst) {
5228   // Don't use it directly. Use MacroAssembler::decrementl() instead.
5229  emit_int8(0x48 | dst->encoding());
5230 }
5231 
5232 #endif // _LP64
5233 
5234 // 64bit typically doesn't use the x87 but needs to for the trig funcs
5235 
5236 void Assembler::fabs() {
5237   emit_int8((unsigned char)0xD9);
5238   emit_int8((unsigned char)0xE1);
5239 }
5240 
5241 void Assembler::fadd(int i) {
5242   emit_farith(0xD8, 0xC0, i);
5243 }
5244 
5245 void Assembler::fadd_d(Address src) {
5246   InstructionMark im(this);
5247   emit_int8((unsigned char)0xDC);
5248   emit_operand32(rax, src);
5249 }
5250 
5251 void Assembler::fadd_s(Address src) {
5252   InstructionMark im(this);
5253   emit_int8((unsigned char)0xD8);
5254   emit_operand32(rax, src);
5255 }
5256 
5257 void Assembler::fadda(int i) {
5258   emit_farith(0xDC, 0xC0, i);
5259 }
5260 
5261 void Assembler::faddp(int i) {
5262   emit_farith(0xDE, 0xC0, i);
5263 }
5264 
5265 void Assembler::fchs() {
5266   emit_int8((unsigned char)0xD9);
5267   emit_int8((unsigned char)0xE0);
5268 }
5269 
5270 void Assembler::fcom(int i) {
5271   emit_farith(0xD8, 0xD0, i);
5272 }
5273 
5274 void Assembler::fcomp(int i) {
5275   emit_farith(0xD8, 0xD8, i);
5276 }
5277 
5278 void Assembler::fcomp_d(Address src) {
5279   InstructionMark im(this);
5280   emit_int8((unsigned char)0xDC);
5281   emit_operand32(rbx, src);
5282 }
5283 
5284 void Assembler::fcomp_s(Address src) {
5285   InstructionMark im(this);
5286   emit_int8((unsigned char)0xD8);
5287   emit_operand32(rbx, src);
5288 }
5289 
5290 void Assembler::fcompp() {
5291   emit_int8((unsigned char)0xDE);
5292   emit_int8((unsigned char)0xD9);
5293 }
5294 
5295 void Assembler::fcos() {
5296   emit_int8((unsigned char)0xD9);
5297   emit_int8((unsigned char)0xFF);
5298 }
5299 
5300 void Assembler::fdecstp() {
5301   emit_int8((unsigned char)0xD9);
5302   emit_int8((unsigned char)0xF6);
5303 }
5304 
5305 void Assembler::fdiv(int i) {
5306   emit_farith(0xD8, 0xF0, i);
5307 }
5308 
5309 void Assembler::fdiv_d(Address src) {
5310   InstructionMark im(this);
5311   emit_int8((unsigned char)0xDC);
5312   emit_operand32(rsi, src);
5313 }
5314 
5315 void Assembler::fdiv_s(Address src) {
5316   InstructionMark im(this);
5317   emit_int8((unsigned char)0xD8);
5318   emit_operand32(rsi, src);
5319 }
5320 
5321 void Assembler::fdiva(int i) {
5322   emit_farith(0xDC, 0xF8, i);
5323 }
5324 
5325 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
5326 //       is erroneous for some of the floating-point instructions below.
5327 
5328 void Assembler::fdivp(int i) {
5329   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
5330 }
5331 
5332 void Assembler::fdivr(int i) {
5333   emit_farith(0xD8, 0xF8, i);
5334 }
5335 
5336 void Assembler::fdivr_d(Address src) {
5337   InstructionMark im(this);
5338   emit_int8((unsigned char)0xDC);
5339   emit_operand32(rdi, src);
5340 }
5341 
5342 void Assembler::fdivr_s(Address src) {
5343   InstructionMark im(this);
5344   emit_int8((unsigned char)0xD8);
5345   emit_operand32(rdi, src);
5346 }
5347 
5348 void Assembler::fdivra(int i) {
5349   emit_farith(0xDC, 0xF0, i);
5350 }
5351 
5352 void Assembler::fdivrp(int i) {
5353   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
5354 }
5355 
5356 void Assembler::ffree(int i) {
5357   emit_farith(0xDD, 0xC0, i);
5358 }
5359 
5360 void Assembler::fild_d(Address adr) {
5361   InstructionMark im(this);
5362   emit_int8((unsigned char)0xDF);
5363   emit_operand32(rbp, adr);
5364 }
5365 
5366 void Assembler::fild_s(Address adr) {
5367   InstructionMark im(this);
5368   emit_int8((unsigned char)0xDB);
5369   emit_operand32(rax, adr);
5370 }
5371 
5372 void Assembler::fincstp() {
5373   emit_int8((unsigned char)0xD9);
5374   emit_int8((unsigned char)0xF7);
5375 }
5376 
5377 void Assembler::finit() {
5378   emit_int8((unsigned char)0x9B);
5379   emit_int8((unsigned char)0xDB);
5380   emit_int8((unsigned char)0xE3);
5381 }
5382 
5383 void Assembler::fist_s(Address adr) {
5384   InstructionMark im(this);
5385   emit_int8((unsigned char)0xDB);
5386   emit_operand32(rdx, adr);
5387 }
5388 
5389 void Assembler::fistp_d(Address adr) {
5390   InstructionMark im(this);
5391   emit_int8((unsigned char)0xDF);
5392   emit_operand32(rdi, adr);
5393 }
5394 
5395 void Assembler::fistp_s(Address adr) {
5396   InstructionMark im(this);
5397   emit_int8((unsigned char)0xDB);
5398   emit_operand32(rbx, adr);
5399 }
5400 
5401 void Assembler::fld1() {
5402   emit_int8((unsigned char)0xD9);
5403   emit_int8((unsigned char)0xE8);
5404 }
5405 
5406 void Assembler::fld_d(Address adr) {
5407   InstructionMark im(this);
5408   emit_int8((unsigned char)0xDD);
5409   emit_operand32(rax, adr);
5410 }
5411 
5412 void Assembler::fld_s(Address adr) {
5413   InstructionMark im(this);
5414   emit_int8((unsigned char)0xD9);
5415   emit_operand32(rax, adr);
5416 }
5417 
5418 
5419 void Assembler::fld_s(int index) {
5420   emit_farith(0xD9, 0xC0, index);
5421 }
5422 
5423 void Assembler::fld_x(Address adr) {
5424   InstructionMark im(this);
5425   emit_int8((unsigned char)0xDB);
5426   emit_operand32(rbp, adr);
5427 }
5428 
5429 void Assembler::fldcw(Address src) {
5430   InstructionMark im(this);
5431   emit_int8((unsigned char)0xD9);
5432   emit_operand32(rbp, src);
5433 }
5434 
5435 void Assembler::fldenv(Address src) {
5436   InstructionMark im(this);
5437   emit_int8((unsigned char)0xD9);
5438   emit_operand32(rsp, src);
5439 }
5440 
5441 void Assembler::fldlg2() {
5442   emit_int8((unsigned char)0xD9);
5443   emit_int8((unsigned char)0xEC);
5444 }
5445 
5446 void Assembler::fldln2() {
5447   emit_int8((unsigned char)0xD9);
5448   emit_int8((unsigned char)0xED);
5449 }
5450 
5451 void Assembler::fldz() {
5452   emit_int8((unsigned char)0xD9);
5453   emit_int8((unsigned char)0xEE);
5454 }
5455 
5456 void Assembler::flog() {
5457   fldln2();
5458   fxch();
5459   fyl2x();
5460 }
5461 
5462 void Assembler::flog10() {
5463   fldlg2();
5464   fxch();
5465   fyl2x();
5466 }
5467 
5468 void Assembler::fmul(int i) {
5469   emit_farith(0xD8, 0xC8, i);
5470 }
5471 
5472 void Assembler::fmul_d(Address src) {
5473   InstructionMark im(this);
5474   emit_int8((unsigned char)0xDC);
5475   emit_operand32(rcx, src);
5476 }
5477 
5478 void Assembler::fmul_s(Address src) {
5479   InstructionMark im(this);
5480   emit_int8((unsigned char)0xD8);
5481   emit_operand32(rcx, src);
5482 }
5483 
5484 void Assembler::fmula(int i) {
5485   emit_farith(0xDC, 0xC8, i);
5486 }
5487 
5488 void Assembler::fmulp(int i) {
5489   emit_farith(0xDE, 0xC8, i);
5490 }
5491 
5492 void Assembler::fnsave(Address dst) {
5493   InstructionMark im(this);
5494   emit_int8((unsigned char)0xDD);
5495   emit_operand32(rsi, dst);
5496 }
5497 
5498 void Assembler::fnstcw(Address src) {
5499   InstructionMark im(this);
5500   emit_int8((unsigned char)0x9B);
5501   emit_int8((unsigned char)0xD9);
5502   emit_operand32(rdi, src);
5503 }
5504 
5505 void Assembler::fnstsw_ax() {
5506   emit_int8((unsigned char)0xDF);
5507   emit_int8((unsigned char)0xE0);
5508 }
5509 
5510 void Assembler::fprem() {
5511   emit_int8((unsigned char)0xD9);
5512   emit_int8((unsigned char)0xF8);
5513 }
5514 
5515 void Assembler::fprem1() {
5516   emit_int8((unsigned char)0xD9);
5517   emit_int8((unsigned char)0xF5);
5518 }
5519 
5520 void Assembler::frstor(Address src) {
5521   InstructionMark im(this);
5522   emit_int8((unsigned char)0xDD);
5523   emit_operand32(rsp, src);
5524 }
5525 
5526 void Assembler::fsin() {
5527   emit_int8((unsigned char)0xD9);
5528   emit_int8((unsigned char)0xFE);
5529 }
5530 
5531 void Assembler::fsqrt() {
5532   emit_int8((unsigned char)0xD9);
5533   emit_int8((unsigned char)0xFA);
5534 }
5535 
5536 void Assembler::fst_d(Address adr) {
5537   InstructionMark im(this);
5538   emit_int8((unsigned char)0xDD);
5539   emit_operand32(rdx, adr);
5540 }
5541 
5542 void Assembler::fst_s(Address adr) {
5543   InstructionMark im(this);
5544   emit_int8((unsigned char)0xD9);
5545   emit_operand32(rdx, adr);
5546 }
5547 
5548 void Assembler::fstp_d(Address adr) {
5549   InstructionMark im(this);
5550   emit_int8((unsigned char)0xDD);
5551   emit_operand32(rbx, adr);
5552 }
5553 
5554 void Assembler::fstp_d(int index) {
5555   emit_farith(0xDD, 0xD8, index);
5556 }
5557 
5558 void Assembler::fstp_s(Address adr) {
5559   InstructionMark im(this);
5560   emit_int8((unsigned char)0xD9);
5561   emit_operand32(rbx, adr);
5562 }
5563 
5564 void Assembler::fstp_x(Address adr) {
5565   InstructionMark im(this);
5566   emit_int8((unsigned char)0xDB);
5567   emit_operand32(rdi, adr);
5568 }
5569 
5570 void Assembler::fsub(int i) {
5571   emit_farith(0xD8, 0xE0, i);
5572 }
5573 
5574 void Assembler::fsub_d(Address src) {
5575   InstructionMark im(this);
5576   emit_int8((unsigned char)0xDC);
5577   emit_operand32(rsp, src);
5578 }
5579 
5580 void Assembler::fsub_s(Address src) {
5581   InstructionMark im(this);
5582   emit_int8((unsigned char)0xD8);
5583   emit_operand32(rsp, src);
5584 }
5585 
5586 void Assembler::fsuba(int i) {
5587   emit_farith(0xDC, 0xE8, i);
5588 }
5589 
5590 void Assembler::fsubp(int i) {
5591   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
5592 }
5593 
5594 void Assembler::fsubr(int i) {
5595   emit_farith(0xD8, 0xE8, i);
5596 }
5597 
5598 void Assembler::fsubr_d(Address src) {
5599   InstructionMark im(this);
5600   emit_int8((unsigned char)0xDC);
5601   emit_operand32(rbp, src);
5602 }
5603 
5604 void Assembler::fsubr_s(Address src) {
5605   InstructionMark im(this);
5606   emit_int8((unsigned char)0xD8);
5607   emit_operand32(rbp, src);
5608 }
5609 
5610 void Assembler::fsubra(int i) {
5611   emit_farith(0xDC, 0xE0, i);
5612 }
5613 
5614 void Assembler::fsubrp(int i) {
5615   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
5616 }
5617 
5618 void Assembler::ftan() {
5619   emit_int8((unsigned char)0xD9);
5620   emit_int8((unsigned char)0xF2);
5621   emit_int8((unsigned char)0xDD);
5622   emit_int8((unsigned char)0xD8);
5623 }
5624 
5625 void Assembler::ftst() {
5626   emit_int8((unsigned char)0xD9);
5627   emit_int8((unsigned char)0xE4);
5628 }
5629 
5630 void Assembler::fucomi(int i) {
5631   // make sure the instruction is supported (introduced for P6, together with cmov)
5632   guarantee(VM_Version::supports_cmov(), "illegal instruction");
5633   emit_farith(0xDB, 0xE8, i);
5634 }
5635 
5636 void Assembler::fucomip(int i) {
5637   // make sure the instruction is supported (introduced for P6, together with cmov)
5638   guarantee(VM_Version::supports_cmov(), "illegal instruction");
5639   emit_farith(0xDF, 0xE8, i);
5640 }
5641 
5642 void Assembler::fwait() {
5643   emit_int8((unsigned char)0x9B);
5644 }
5645 
5646 void Assembler::fxch(int i) {
5647   emit_farith(0xD9, 0xC8, i);
5648 }
5649 
5650 void Assembler::fyl2x() {
5651   emit_int8((unsigned char)0xD9);
5652   emit_int8((unsigned char)0xF1);
5653 }
5654 
5655 void Assembler::frndint() {
5656   emit_int8((unsigned char)0xD9);
5657   emit_int8((unsigned char)0xFC);
5658 }
5659 
5660 void Assembler::f2xm1() {
5661   emit_int8((unsigned char)0xD9);
5662   emit_int8((unsigned char)0xF0);
5663 }
5664 
5665 void Assembler::fldl2e() {
5666   emit_int8((unsigned char)0xD9);
5667   emit_int8((unsigned char)0xEA);
5668 }
5669 
5670 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
5671 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
5672 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
5673 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
5674 
5675 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
5676 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
5677   if (pre > 0) {
5678     emit_int8(simd_pre[pre]);
5679   }
5680   if (rex_w) {
5681     prefixq(adr, xreg);
5682   } else {
5683     prefix(adr, xreg);
5684   }
5685   if (opc > 0) {
5686     emit_int8(0x0F);
5687     int opc2 = simd_opc[opc];
5688     if (opc2 > 0) {
5689       emit_int8(opc2);
5690     }
5691   }
5692 }
5693 
5694 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
5695   if (pre > 0) {
5696     emit_int8(simd_pre[pre]);
5697   }
5698   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
5699                           prefix_and_encode(dst_enc, src_enc);
5700   if (opc > 0) {
5701     emit_int8(0x0F);
5702     int opc2 = simd_opc[opc];
5703     if (opc2 > 0) {
5704       emit_int8(opc2);
5705     }
5706   }
5707   return encode;
5708 }
5709 
5710 
5711 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, int vector_len) {
5712   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
5713     prefix(VEX_3bytes);
5714 
5715     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
5716     byte1 = (~byte1) & 0xE0;
5717     byte1 |= opc;
5718     emit_int8(byte1);
5719 
5720     int byte2 = ((~nds_enc) & 0xf) << 3;
5721     byte2 |= (vex_w ? VEX_W : 0) | ((vector_len > 0) ? 4 : 0) | pre;
5722     emit_int8(byte2);
5723   } else {
5724     prefix(VEX_2bytes);
5725 
5726     int byte1 = vex_r ? VEX_R : 0;
5727     byte1 = (~byte1) & 0x80;
5728     byte1 |= ((~nds_enc) & 0xf) << 3;
5729     byte1 |= ((vector_len > 0 ) ? 4 : 0) | pre;
5730     emit_int8(byte1);
5731   }
5732 }
5733 
5734 // This is a 4 byte encoding
5735 void Assembler::evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, bool evex_r, bool evex_v,
5736                             int nds_enc, VexSimdPrefix pre, VexOpcode opc,
5737                             bool is_extended_context, bool is_merge_context,
5738                             int vector_len, bool no_mask_reg ){
5739   // EVEX 0x62 prefix
5740   prefix(EVEX_4bytes);
5741   evex_encoding = (vex_w ? VEX_W : 0) | (evex_r ? EVEX_Rb : 0);
5742 
5743   // P0: byte 2, initialized to RXBR`00mm
5744   // instead of not'd
5745   int byte2 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0) | (evex_r ? EVEX_Rb : 0);
5746   byte2 = (~byte2) & 0xF0;
5747   // confine opc opcode extensions in mm bits to lower two bits
5748   // of form {0F, 0F_38, 0F_3A}
5749   byte2 |= opc;
5750   emit_int8(byte2);
5751 
5752   // P1: byte 3 as Wvvvv1pp
5753   int byte3 = ((~nds_enc) & 0xf) << 3;
5754   // p[10] is always 1
5755   byte3 |= EVEX_F;
5756   byte3 |= (vex_w & 1) << 7;
5757   // confine pre opcode extensions in pp bits to lower two bits
5758   // of form {66, F3, F2}
5759   byte3 |= pre;
5760   emit_int8(byte3);
5761 
5762   // P2: byte 4 as zL'Lbv'aaa
5763   int byte4 = (no_mask_reg) ? 0 : 1; // kregs are implemented in the low 3 bits as aaa (hard code k1, it will be initialized for now)
5764   // EVEX.v` for extending EVEX.vvvv or VIDX
5765   byte4 |= (evex_v ? 0: EVEX_V);
5766   // third EXEC.b for broadcast actions
5767   byte4 |= (is_extended_context ? EVEX_Rb : 0);
5768   // fourth EVEX.L'L for vector length : 0 is 128, 1 is 256, 2 is 512, currently we do not support 1024
5769   byte4 |= ((vector_len) & 0x3) << 5;
5770   // last is EVEX.z for zero/merge actions
5771   byte4 |= (is_merge_context ? EVEX_Z : 0);
5772   emit_int8(byte4);
5773 }
5774 
5775 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre,
5776                            VexOpcode opc, bool vex_w, int vector_len, bool legacy_mode, bool no_mask_reg) {
5777   bool vex_r = ((xreg_enc & 8) == 8) ? 1 : 0;
5778   bool vex_b = adr.base_needs_rex();
5779   bool vex_x = adr.index_needs_rex();
5780   avx_vector_len = vector_len;
5781 
5782   // if vector length is turned off, revert to AVX for vectors smaller than AVX_512bit
5783   if (VM_Version::supports_avx512vl() == false) {
5784     switch (vector_len) {
5785     case AVX_128bit:
5786     case AVX_256bit:
5787       legacy_mode = true;
5788       break;
5789     }
5790   }
5791 
5792   if ((UseAVX > 2) && (legacy_mode == false))
5793   {
5794     bool evex_r = (xreg_enc >= 16);
5795     bool evex_v = (nds_enc >= 16);
5796     is_evex_instruction = true;
5797     evex_prefix(vex_r, vex_b, vex_x, vex_w, evex_r, evex_v, nds_enc, pre, opc, false, false, vector_len, no_mask_reg);
5798   } else {
5799     vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector_len);
5800   }
5801 }
5802 
5803 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc,
5804                                      bool vex_w, int vector_len, bool legacy_mode, bool no_mask_reg ) {
5805   bool vex_r = ((dst_enc & 8) == 8) ? 1 : 0;
5806   bool vex_b = ((src_enc & 8) == 8) ? 1 : 0;
5807   bool vex_x = false;
5808   avx_vector_len = vector_len;
5809 
5810   // if vector length is turned off, revert to AVX for vectors smaller than AVX_512bit
5811   if (VM_Version::supports_avx512vl() == false) {
5812     switch (vector_len) {
5813     case AVX_128bit:
5814     case AVX_256bit:
5815       legacy_mode = true;
5816       break;
5817     }
5818   }
5819 
5820   if ((UseAVX > 2) && (legacy_mode == false))
5821   {
5822     bool evex_r = (dst_enc >= 16);
5823     bool evex_v = (nds_enc >= 16);
5824     // can use vex_x as bank extender on rm encoding
5825     vex_x = (src_enc >= 16);
5826     evex_prefix(vex_r, vex_b, vex_x, vex_w, evex_r, evex_v, nds_enc, pre, opc, false, false, vector_len, no_mask_reg);
5827   } else {
5828     vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector_len);
5829   }
5830 
5831   // return modrm byte components for operands
5832   return (((dst_enc & 7) << 3) | (src_enc & 7));
5833 }
5834 
5835 
5836 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre,
5837                             bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len, bool legacy_mode) {
5838   if (UseAVX > 0) {
5839     int xreg_enc = xreg->encoding();
5840     int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
5841     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector_len, legacy_mode, no_mask_reg);
5842   } else {
5843     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
5844     rex_prefix(adr, xreg, pre, opc, rex_w);
5845   }
5846 }
5847 
5848 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre,
5849                                       bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len, bool legacy_mode) {
5850   int dst_enc = dst->encoding();
5851   int src_enc = src->encoding();
5852   if (UseAVX > 0) {
5853     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5854     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector_len, legacy_mode, no_mask_reg);
5855   } else {
5856     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
5857     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
5858   }
5859 }
5860 
5861 int Assembler::kreg_prefix_and_encode(KRegister dst, KRegister nds, KRegister src, VexSimdPrefix pre,
5862                                       bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len) {
5863   int dst_enc = dst->encoding();
5864   int src_enc = src->encoding();
5865   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5866   return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector_len, true, no_mask_reg);
5867 }
5868 
5869 int Assembler::kreg_prefix_and_encode(KRegister dst, KRegister nds, Register src, VexSimdPrefix pre,
5870                                       bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len) {
5871   int dst_enc = dst->encoding();
5872   int src_enc = src->encoding();
5873   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5874   return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector_len, true, no_mask_reg);
5875 }
5876 
5877 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool no_mask_reg, bool legacy_mode) {
5878   InstructionMark im(this);
5879   simd_prefix(dst, dst, src, pre, no_mask_reg, VEX_OPCODE_0F, false, AVX_128bit, legacy_mode);
5880   emit_int8(opcode);
5881   emit_operand(dst, src);
5882 }
5883 
5884 void Assembler::emit_simd_arith_q(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool no_mask_reg) {
5885   InstructionMark im(this);
5886   simd_prefix_q(dst, dst, src, pre, no_mask_reg);
5887   emit_int8(opcode);
5888   emit_operand(dst, src);
5889 }
5890 
5891 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg, bool legacy_mode) {
5892   int encode = simd_prefix_and_encode(dst, dst, src, pre, no_mask_reg, VEX_OPCODE_0F, false, AVX_128bit, legacy_mode);
5893   emit_int8(opcode);
5894   emit_int8((unsigned char)(0xC0 | encode));
5895 }
5896 
5897 void Assembler::emit_simd_arith_q(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg) {
5898   int encode = simd_prefix_and_encode(dst, dst, src, pre, no_mask_reg, VEX_OPCODE_0F, true, AVX_128bit);
5899   emit_int8(opcode);
5900   emit_int8((unsigned char)(0xC0 | encode));
5901 }
5902 
5903 // Versions with no second source register (non-destructive source).
5904 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool opNoRegMask) {
5905   InstructionMark im(this);
5906   simd_prefix(dst, xnoreg, src, pre, opNoRegMask);
5907   emit_int8(opcode);
5908   emit_operand(dst, src);
5909 }
5910 
5911 void Assembler::emit_simd_arith_nonds_q(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool opNoRegMask) {
5912   InstructionMark im(this);
5913   simd_prefix_q(dst, xnoreg, src, pre, opNoRegMask);
5914   emit_int8(opcode);
5915   emit_operand(dst, src);
5916 }
5917 
5918 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg, bool legacy_mode) {
5919   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre, no_mask_reg, VEX_OPCODE_0F, legacy_mode, AVX_128bit);
5920   emit_int8(opcode);
5921   emit_int8((unsigned char)(0xC0 | encode));
5922 }
5923 
5924 void Assembler::emit_simd_arith_nonds_q(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg) {
5925   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre, no_mask_reg, VEX_OPCODE_0F, true, AVX_128bit);
5926   emit_int8(opcode);
5927   emit_int8((unsigned char)(0xC0 | encode));
5928 }
5929 
5930 // 3-operands AVX instructions
5931 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds, Address src,
5932                                VexSimdPrefix pre, int vector_len, bool no_mask_reg, bool legacy_mode) {
5933   InstructionMark im(this);
5934   vex_prefix(dst, nds, src, pre, vector_len, no_mask_reg, legacy_mode);
5935   emit_int8(opcode);
5936   emit_operand(dst, src);
5937 }
5938 
5939 void Assembler::emit_vex_arith_q(int opcode, XMMRegister dst, XMMRegister nds,
5940                                  Address src, VexSimdPrefix pre, int vector_len, bool no_mask_reg) {
5941   InstructionMark im(this);
5942   vex_prefix_q(dst, nds, src, pre, vector_len, no_mask_reg);
5943   emit_int8(opcode);
5944   emit_operand(dst, src);
5945 }
5946 
5947 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src,
5948                                VexSimdPrefix pre, int vector_len, bool no_mask_reg, bool legacy_mode) {
5949   int encode = vex_prefix_and_encode(dst, nds, src, pre, vector_len, VEX_OPCODE_0F, false, no_mask_reg);
5950   emit_int8(opcode);
5951   emit_int8((unsigned char)(0xC0 | encode));
5952 }
5953 
5954 void Assembler::emit_vex_arith_q(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src,
5955                                  VexSimdPrefix pre, int vector_len, bool no_mask_reg) {
5956   int src_enc = src->encoding();
5957   int dst_enc = dst->encoding();
5958   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5959   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, VEX_OPCODE_0F, true, vector_len, false, no_mask_reg);
5960   emit_int8(opcode);
5961   emit_int8((unsigned char)(0xC0 | encode));
5962 }
5963 
5964 #ifndef _LP64
5965 
5966 void Assembler::incl(Register dst) {
5967   // Don't use it directly. Use MacroAssembler::incrementl() instead.
5968   emit_int8(0x40 | dst->encoding());
5969 }
5970 
5971 void Assembler::lea(Register dst, Address src) {
5972   leal(dst, src);
5973 }
5974 
5975 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
5976   InstructionMark im(this);
5977   emit_int8((unsigned char)0xC7);
5978   emit_operand(rax, dst);
5979   emit_data((int)imm32, rspec, 0);
5980 }
5981 
5982 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
5983   InstructionMark im(this);
5984   int encode = prefix_and_encode(dst->encoding());
5985   emit_int8((unsigned char)(0xB8 | encode));
5986   emit_data((int)imm32, rspec, 0);
5987 }
5988 
5989 void Assembler::popa() { // 32bit
5990   emit_int8(0x61);
5991 }
5992 
5993 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
5994   InstructionMark im(this);
5995   emit_int8(0x68);
5996   emit_data(imm32, rspec, 0);
5997 }
5998 
5999 void Assembler::pusha() { // 32bit
6000   emit_int8(0x60);
6001 }
6002 
6003 void Assembler::set_byte_if_not_zero(Register dst) {
6004   emit_int8(0x0F);
6005   emit_int8((unsigned char)0x95);
6006   emit_int8((unsigned char)(0xE0 | dst->encoding()));
6007 }
6008 
6009 void Assembler::shldl(Register dst, Register src) {
6010   emit_int8(0x0F);
6011   emit_int8((unsigned char)0xA5);
6012   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
6013 }
6014 
6015 void Assembler::shrdl(Register dst, Register src) {
6016   emit_int8(0x0F);
6017   emit_int8((unsigned char)0xAD);
6018   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
6019 }
6020 
6021 #else // LP64
6022 
6023 void Assembler::set_byte_if_not_zero(Register dst) {
6024   int enc = prefix_and_encode(dst->encoding(), true);
6025   emit_int8(0x0F);
6026   emit_int8((unsigned char)0x95);
6027   emit_int8((unsigned char)(0xE0 | enc));
6028 }
6029 
6030 // 64bit only pieces of the assembler
6031 // This should only be used by 64bit instructions that can use rip-relative
6032 // it cannot be used by instructions that want an immediate value.
6033 
6034 bool Assembler::reachable(AddressLiteral adr) {
6035   int64_t disp;
6036   // None will force a 64bit literal to the code stream. Likely a placeholder
6037   // for something that will be patched later and we need to certain it will
6038   // always be reachable.
6039   if (adr.reloc() == relocInfo::none) {
6040     return false;
6041   }
6042   if (adr.reloc() == relocInfo::internal_word_type) {
6043     // This should be rip relative and easily reachable.
6044     return true;
6045   }
6046   if (adr.reloc() == relocInfo::virtual_call_type ||
6047       adr.reloc() == relocInfo::opt_virtual_call_type ||
6048       adr.reloc() == relocInfo::static_call_type ||
6049       adr.reloc() == relocInfo::static_stub_type ) {
6050     // This should be rip relative within the code cache and easily
6051     // reachable until we get huge code caches. (At which point
6052     // ic code is going to have issues).
6053     return true;
6054   }
6055   if (adr.reloc() != relocInfo::external_word_type &&
6056       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
6057       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
6058       adr.reloc() != relocInfo::runtime_call_type ) {
6059     return false;
6060   }
6061 
6062   // Stress the correction code
6063   if (ForceUnreachable) {
6064     // Must be runtimecall reloc, see if it is in the codecache
6065     // Flipping stuff in the codecache to be unreachable causes issues
6066     // with things like inline caches where the additional instructions
6067     // are not handled.
6068     if (CodeCache::find_blob(adr._target) == NULL) {
6069       return false;
6070     }
6071   }
6072   // For external_word_type/runtime_call_type if it is reachable from where we
6073   // are now (possibly a temp buffer) and where we might end up
6074   // anywhere in the codeCache then we are always reachable.
6075   // This would have to change if we ever save/restore shared code
6076   // to be more pessimistic.
6077   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
6078   if (!is_simm32(disp)) return false;
6079   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
6080   if (!is_simm32(disp)) return false;
6081 
6082   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
6083 
6084   // Because rip relative is a disp + address_of_next_instruction and we
6085   // don't know the value of address_of_next_instruction we apply a fudge factor
6086   // to make sure we will be ok no matter the size of the instruction we get placed into.
6087   // We don't have to fudge the checks above here because they are already worst case.
6088 
6089   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
6090   // + 4 because better safe than sorry.
6091   const int fudge = 12 + 4;
6092   if (disp < 0) {
6093     disp -= fudge;
6094   } else {
6095     disp += fudge;
6096   }
6097   return is_simm32(disp);
6098 }
6099 
6100 // Check if the polling page is not reachable from the code cache using rip-relative
6101 // addressing.
6102 bool Assembler::is_polling_page_far() {
6103   intptr_t addr = (intptr_t)os::get_polling_page();
6104   return ForceUnreachable ||
6105          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
6106          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
6107 }
6108 
6109 void Assembler::emit_data64(jlong data,
6110                             relocInfo::relocType rtype,
6111                             int format) {
6112   if (rtype == relocInfo::none) {
6113     emit_int64(data);
6114   } else {
6115     emit_data64(data, Relocation::spec_simple(rtype), format);
6116   }
6117 }
6118 
6119 void Assembler::emit_data64(jlong data,
6120                             RelocationHolder const& rspec,
6121                             int format) {
6122   assert(imm_operand == 0, "default format must be immediate in this file");
6123   assert(imm_operand == format, "must be immediate");
6124   assert(inst_mark() != NULL, "must be inside InstructionMark");
6125   // Do not use AbstractAssembler::relocate, which is not intended for
6126   // embedded words.  Instead, relocate to the enclosing instruction.
6127   code_section()->relocate(inst_mark(), rspec, format);
6128 #ifdef ASSERT
6129   check_relocation(rspec, format);
6130 #endif
6131   emit_int64(data);
6132 }
6133 
6134 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
6135   if (reg_enc >= 8) {
6136     prefix(REX_B);
6137     reg_enc -= 8;
6138   } else if (byteinst && reg_enc >= 4) {
6139     prefix(REX);
6140   }
6141   return reg_enc;
6142 }
6143 
6144 int Assembler::prefixq_and_encode(int reg_enc) {
6145   if (reg_enc < 8) {
6146     prefix(REX_W);
6147   } else {
6148     prefix(REX_WB);
6149     reg_enc -= 8;
6150   }
6151   return reg_enc;
6152 }
6153 
6154 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
6155   if (dst_enc < 8) {
6156     if (src_enc >= 8) {
6157       prefix(REX_B);
6158       src_enc -= 8;
6159     } else if (byteinst && src_enc >= 4) {
6160       prefix(REX);
6161     }
6162   } else {
6163     if (src_enc < 8) {
6164       prefix(REX_R);
6165     } else {
6166       prefix(REX_RB);
6167       src_enc -= 8;
6168     }
6169     dst_enc -= 8;
6170   }
6171   return dst_enc << 3 | src_enc;
6172 }
6173 
6174 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
6175   if (dst_enc < 8) {
6176     if (src_enc < 8) {
6177       prefix(REX_W);
6178     } else {
6179       prefix(REX_WB);
6180       src_enc -= 8;
6181     }
6182   } else {
6183     if (src_enc < 8) {
6184       prefix(REX_WR);
6185     } else {
6186       prefix(REX_WRB);
6187       src_enc -= 8;
6188     }
6189     dst_enc -= 8;
6190   }
6191   return dst_enc << 3 | src_enc;
6192 }
6193 
6194 void Assembler::prefix(Register reg) {
6195   if (reg->encoding() >= 8) {
6196     prefix(REX_B);
6197   }
6198 }
6199 
6200 void Assembler::prefix(Address adr) {
6201   if (adr.base_needs_rex()) {
6202     if (adr.index_needs_rex()) {
6203       prefix(REX_XB);
6204     } else {
6205       prefix(REX_B);
6206     }
6207   } else {
6208     if (adr.index_needs_rex()) {
6209       prefix(REX_X);
6210     }
6211   }
6212 }
6213 
6214 void Assembler::prefixq(Address adr) {
6215   if (adr.base_needs_rex()) {
6216     if (adr.index_needs_rex()) {
6217       prefix(REX_WXB);
6218     } else {
6219       prefix(REX_WB);
6220     }
6221   } else {
6222     if (adr.index_needs_rex()) {
6223       prefix(REX_WX);
6224     } else {
6225       prefix(REX_W);
6226     }
6227   }
6228 }
6229 
6230 
6231 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
6232   if (reg->encoding() < 8) {
6233     if (adr.base_needs_rex()) {
6234       if (adr.index_needs_rex()) {
6235         prefix(REX_XB);
6236       } else {
6237         prefix(REX_B);
6238       }
6239     } else {
6240       if (adr.index_needs_rex()) {
6241         prefix(REX_X);
6242       } else if (byteinst && reg->encoding() >= 4 ) {
6243         prefix(REX);
6244       }
6245     }
6246   } else {
6247     if (adr.base_needs_rex()) {
6248       if (adr.index_needs_rex()) {
6249         prefix(REX_RXB);
6250       } else {
6251         prefix(REX_RB);
6252       }
6253     } else {
6254       if (adr.index_needs_rex()) {
6255         prefix(REX_RX);
6256       } else {
6257         prefix(REX_R);
6258       }
6259     }
6260   }
6261 }
6262 
6263 void Assembler::prefixq(Address adr, Register src) {
6264   if (src->encoding() < 8) {
6265     if (adr.base_needs_rex()) {
6266       if (adr.index_needs_rex()) {
6267         prefix(REX_WXB);
6268       } else {
6269         prefix(REX_WB);
6270       }
6271     } else {
6272       if (adr.index_needs_rex()) {
6273         prefix(REX_WX);
6274       } else {
6275         prefix(REX_W);
6276       }
6277     }
6278   } else {
6279     if (adr.base_needs_rex()) {
6280       if (adr.index_needs_rex()) {
6281         prefix(REX_WRXB);
6282       } else {
6283         prefix(REX_WRB);
6284       }
6285     } else {
6286       if (adr.index_needs_rex()) {
6287         prefix(REX_WRX);
6288       } else {
6289         prefix(REX_WR);
6290       }
6291     }
6292   }
6293 }
6294 
6295 void Assembler::prefix(Address adr, XMMRegister reg) {
6296   if (reg->encoding() < 8) {
6297     if (adr.base_needs_rex()) {
6298       if (adr.index_needs_rex()) {
6299         prefix(REX_XB);
6300       } else {
6301         prefix(REX_B);
6302       }
6303     } else {
6304       if (adr.index_needs_rex()) {
6305         prefix(REX_X);
6306       }
6307     }
6308   } else {
6309     if (adr.base_needs_rex()) {
6310       if (adr.index_needs_rex()) {
6311         prefix(REX_RXB);
6312       } else {
6313         prefix(REX_RB);
6314       }
6315     } else {
6316       if (adr.index_needs_rex()) {
6317         prefix(REX_RX);
6318       } else {
6319         prefix(REX_R);
6320       }
6321     }
6322   }
6323 }
6324 
6325 void Assembler::prefixq(Address adr, XMMRegister src) {
6326   if (src->encoding() < 8) {
6327     if (adr.base_needs_rex()) {
6328       if (adr.index_needs_rex()) {
6329         prefix(REX_WXB);
6330       } else {
6331         prefix(REX_WB);
6332       }
6333     } else {
6334       if (adr.index_needs_rex()) {
6335         prefix(REX_WX);
6336       } else {
6337         prefix(REX_W);
6338       }
6339     }
6340   } else {
6341     if (adr.base_needs_rex()) {
6342       if (adr.index_needs_rex()) {
6343         prefix(REX_WRXB);
6344       } else {
6345         prefix(REX_WRB);
6346       }
6347     } else {
6348       if (adr.index_needs_rex()) {
6349         prefix(REX_WRX);
6350       } else {
6351         prefix(REX_WR);
6352       }
6353     }
6354   }
6355 }
6356 
6357 void Assembler::adcq(Register dst, int32_t imm32) {
6358   (void) prefixq_and_encode(dst->encoding());
6359   emit_arith(0x81, 0xD0, dst, imm32);
6360 }
6361 
6362 void Assembler::adcq(Register dst, Address src) {
6363   InstructionMark im(this);
6364   prefixq(src, dst);
6365   emit_int8(0x13);
6366   emit_operand(dst, src);
6367 }
6368 
6369 void Assembler::adcq(Register dst, Register src) {
6370   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6371   emit_arith(0x13, 0xC0, dst, src);
6372 }
6373 
6374 void Assembler::addq(Address dst, int32_t imm32) {
6375   InstructionMark im(this);
6376   prefixq(dst);
6377   emit_arith_operand(0x81, rax, dst,imm32);
6378 }
6379 
6380 void Assembler::addq(Address dst, Register src) {
6381   InstructionMark im(this);
6382   prefixq(dst, src);
6383   emit_int8(0x01);
6384   emit_operand(src, dst);
6385 }
6386 
6387 void Assembler::addq(Register dst, int32_t imm32) {
6388   (void) prefixq_and_encode(dst->encoding());
6389   emit_arith(0x81, 0xC0, dst, imm32);
6390 }
6391 
6392 void Assembler::addq(Register dst, Address src) {
6393   InstructionMark im(this);
6394   prefixq(src, dst);
6395   emit_int8(0x03);
6396   emit_operand(dst, src);
6397 }
6398 
6399 void Assembler::addq(Register dst, Register src) {
6400   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6401   emit_arith(0x03, 0xC0, dst, src);
6402 }
6403 
6404 void Assembler::adcxq(Register dst, Register src) {
6405   //assert(VM_Version::supports_adx(), "adx instructions not supported");
6406   emit_int8((unsigned char)0x66);
6407   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6408   emit_int8(0x0F);
6409   emit_int8(0x38);
6410   emit_int8((unsigned char)0xF6);
6411   emit_int8((unsigned char)(0xC0 | encode));
6412 }
6413 
6414 void Assembler::adoxq(Register dst, Register src) {
6415   //assert(VM_Version::supports_adx(), "adx instructions not supported");
6416   emit_int8((unsigned char)0xF3);
6417   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6418   emit_int8(0x0F);
6419   emit_int8(0x38);
6420   emit_int8((unsigned char)0xF6);
6421   emit_int8((unsigned char)(0xC0 | encode));
6422 }
6423 
6424 void Assembler::andq(Address dst, int32_t imm32) {
6425   InstructionMark im(this);
6426   prefixq(dst);
6427   emit_int8((unsigned char)0x81);
6428   emit_operand(rsp, dst, 4);
6429   emit_int32(imm32);
6430 }
6431 
6432 void Assembler::andq(Register dst, int32_t imm32) {
6433   (void) prefixq_and_encode(dst->encoding());
6434   emit_arith(0x81, 0xE0, dst, imm32);
6435 }
6436 
6437 void Assembler::andq(Register dst, Address src) {
6438   InstructionMark im(this);
6439   prefixq(src, dst);
6440   emit_int8(0x23);
6441   emit_operand(dst, src);
6442 }
6443 
6444 void Assembler::andq(Register dst, Register src) {
6445   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6446   emit_arith(0x23, 0xC0, dst, src);
6447 }
6448 
6449 void Assembler::andnq(Register dst, Register src1, Register src2) {
6450   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6451   int encode = vex_prefix_0F38_and_encode_q_legacy(dst, src1, src2);
6452   emit_int8((unsigned char)0xF2);
6453   emit_int8((unsigned char)(0xC0 | encode));
6454 }
6455 
6456 void Assembler::andnq(Register dst, Register src1, Address src2) {
6457   InstructionMark im(this);
6458   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6459   vex_prefix_0F38_q_legacy(dst, src1, src2);
6460   emit_int8((unsigned char)0xF2);
6461   emit_operand(dst, src2);
6462 }
6463 
6464 void Assembler::bsfq(Register dst, Register src) {
6465   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6466   emit_int8(0x0F);
6467   emit_int8((unsigned char)0xBC);
6468   emit_int8((unsigned char)(0xC0 | encode));
6469 }
6470 
6471 void Assembler::bsrq(Register dst, Register src) {
6472   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6473   emit_int8(0x0F);
6474   emit_int8((unsigned char)0xBD);
6475   emit_int8((unsigned char)(0xC0 | encode));
6476 }
6477 
6478 void Assembler::bswapq(Register reg) {
6479   int encode = prefixq_and_encode(reg->encoding());
6480   emit_int8(0x0F);
6481   emit_int8((unsigned char)(0xC8 | encode));
6482 }
6483 
6484 void Assembler::blsiq(Register dst, Register src) {
6485   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6486   int encode = vex_prefix_0F38_and_encode_q_legacy(rbx, dst, src);
6487   emit_int8((unsigned char)0xF3);
6488   emit_int8((unsigned char)(0xC0 | encode));
6489 }
6490 
6491 void Assembler::blsiq(Register dst, Address src) {
6492   InstructionMark im(this);
6493   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6494   vex_prefix_0F38_q_legacy(rbx, dst, src);
6495   emit_int8((unsigned char)0xF3);
6496   emit_operand(rbx, src);
6497 }
6498 
6499 void Assembler::blsmskq(Register dst, Register src) {
6500   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6501   int encode = vex_prefix_0F38_and_encode_q_legacy(rdx, dst, src);
6502   emit_int8((unsigned char)0xF3);
6503   emit_int8((unsigned char)(0xC0 | encode));
6504 }
6505 
6506 void Assembler::blsmskq(Register dst, Address src) {
6507   InstructionMark im(this);
6508   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6509   vex_prefix_0F38_q_legacy(rdx, dst, src);
6510   emit_int8((unsigned char)0xF3);
6511   emit_operand(rdx, src);
6512 }
6513 
6514 void Assembler::blsrq(Register dst, Register src) {
6515   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6516   int encode = vex_prefix_0F38_and_encode_q_legacy(rcx, dst, src);
6517   emit_int8((unsigned char)0xF3);
6518   emit_int8((unsigned char)(0xC0 | encode));
6519 }
6520 
6521 void Assembler::blsrq(Register dst, Address src) {
6522   InstructionMark im(this);
6523   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6524   vex_prefix_0F38_q_legacy(rcx, dst, src);
6525   emit_int8((unsigned char)0xF3);
6526   emit_operand(rcx, src);
6527 }
6528 
6529 void Assembler::cdqq() {
6530   prefix(REX_W);
6531   emit_int8((unsigned char)0x99);
6532 }
6533 
6534 void Assembler::clflush(Address adr) {
6535   prefix(adr);
6536   emit_int8(0x0F);
6537   emit_int8((unsigned char)0xAE);
6538   emit_operand(rdi, adr);
6539 }
6540 
6541 void Assembler::cmovq(Condition cc, Register dst, Register src) {
6542   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6543   emit_int8(0x0F);
6544   emit_int8(0x40 | cc);
6545   emit_int8((unsigned char)(0xC0 | encode));
6546 }
6547 
6548 void Assembler::cmovq(Condition cc, Register dst, Address src) {
6549   InstructionMark im(this);
6550   prefixq(src, dst);
6551   emit_int8(0x0F);
6552   emit_int8(0x40 | cc);
6553   emit_operand(dst, src);
6554 }
6555 
6556 void Assembler::cmpq(Address dst, int32_t imm32) {
6557   InstructionMark im(this);
6558   prefixq(dst);
6559   emit_int8((unsigned char)0x81);
6560   emit_operand(rdi, dst, 4);
6561   emit_int32(imm32);
6562 }
6563 
6564 void Assembler::cmpq(Register dst, int32_t imm32) {
6565   (void) prefixq_and_encode(dst->encoding());
6566   emit_arith(0x81, 0xF8, dst, imm32);
6567 }
6568 
6569 void Assembler::cmpq(Address dst, Register src) {
6570   InstructionMark im(this);
6571   prefixq(dst, src);
6572   emit_int8(0x3B);
6573   emit_operand(src, dst);
6574 }
6575 
6576 void Assembler::cmpq(Register dst, Register src) {
6577   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6578   emit_arith(0x3B, 0xC0, dst, src);
6579 }
6580 
6581 void Assembler::cmpq(Register dst, Address  src) {
6582   InstructionMark im(this);
6583   prefixq(src, dst);
6584   emit_int8(0x3B);
6585   emit_operand(dst, src);
6586 }
6587 
6588 void Assembler::cmpxchgq(Register reg, Address adr) {
6589   InstructionMark im(this);
6590   prefixq(adr, reg);
6591   emit_int8(0x0F);
6592   emit_int8((unsigned char)0xB1);
6593   emit_operand(reg, adr);
6594 }
6595 
6596 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
6597   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6598   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2, true);
6599   emit_int8(0x2A);
6600   emit_int8((unsigned char)(0xC0 | encode));
6601 }
6602 
6603 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
6604   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6605   if (VM_Version::supports_evex()) {
6606     tuple_type = EVEX_T1S;
6607     input_size_in_bits = EVEX_32bit;
6608   }
6609   InstructionMark im(this);
6610   simd_prefix_q(dst, dst, src, VEX_SIMD_F2, true);
6611   emit_int8(0x2A);
6612   emit_operand(dst, src);
6613 }
6614 
6615 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
6616   NOT_LP64(assert(VM_Version::supports_sse(), ""));
6617   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3, true);
6618   emit_int8(0x2A);
6619   emit_int8((unsigned char)(0xC0 | encode));
6620 }
6621 
6622 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
6623   NOT_LP64(assert(VM_Version::supports_sse(), ""));
6624   if (VM_Version::supports_evex()) {
6625     tuple_type = EVEX_T1S;
6626     input_size_in_bits = EVEX_32bit;
6627   }
6628   InstructionMark im(this);
6629   simd_prefix_q(dst, dst, src, VEX_SIMD_F3, true);
6630   emit_int8(0x2A);
6631   emit_operand(dst, src);
6632 }
6633 
6634 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
6635   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6636   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, true);
6637   emit_int8(0x2C);
6638   emit_int8((unsigned char)(0xC0 | encode));
6639 }
6640 
6641 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
6642   NOT_LP64(assert(VM_Version::supports_sse(), ""));
6643   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, true);
6644   emit_int8(0x2C);
6645   emit_int8((unsigned char)(0xC0 | encode));
6646 }
6647 
6648 void Assembler::decl(Register dst) {
6649   // Don't use it directly. Use MacroAssembler::decrementl() instead.
6650   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
6651   int encode = prefix_and_encode(dst->encoding());
6652   emit_int8((unsigned char)0xFF);
6653   emit_int8((unsigned char)(0xC8 | encode));
6654 }
6655 
6656 void Assembler::decq(Register dst) {
6657   // Don't use it directly. Use MacroAssembler::decrementq() instead.
6658   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
6659   int encode = prefixq_and_encode(dst->encoding());
6660   emit_int8((unsigned char)0xFF);
6661   emit_int8(0xC8 | encode);
6662 }
6663 
6664 void Assembler::decq(Address dst) {
6665   // Don't use it directly. Use MacroAssembler::decrementq() instead.
6666   InstructionMark im(this);
6667   prefixq(dst);
6668   emit_int8((unsigned char)0xFF);
6669   emit_operand(rcx, dst);
6670 }
6671 
6672 void Assembler::fxrstor(Address src) {
6673   prefixq(src);
6674   emit_int8(0x0F);
6675   emit_int8((unsigned char)0xAE);
6676   emit_operand(as_Register(1), src);
6677 }
6678 
6679 void Assembler::fxsave(Address dst) {
6680   prefixq(dst);
6681   emit_int8(0x0F);
6682   emit_int8((unsigned char)0xAE);
6683   emit_operand(as_Register(0), dst);
6684 }
6685 
6686 void Assembler::idivq(Register src) {
6687   int encode = prefixq_and_encode(src->encoding());
6688   emit_int8((unsigned char)0xF7);
6689   emit_int8((unsigned char)(0xF8 | encode));
6690 }
6691 
6692 void Assembler::imulq(Register dst, Register src) {
6693   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6694   emit_int8(0x0F);
6695   emit_int8((unsigned char)0xAF);
6696   emit_int8((unsigned char)(0xC0 | encode));
6697 }
6698 
6699 void Assembler::imulq(Register dst, Register src, int value) {
6700   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6701   if (is8bit(value)) {
6702     emit_int8(0x6B);
6703     emit_int8((unsigned char)(0xC0 | encode));
6704     emit_int8(value & 0xFF);
6705   } else {
6706     emit_int8(0x69);
6707     emit_int8((unsigned char)(0xC0 | encode));
6708     emit_int32(value);
6709   }
6710 }
6711 
6712 void Assembler::imulq(Register dst, Address src) {
6713   InstructionMark im(this);
6714   prefixq(src, dst);
6715   emit_int8(0x0F);
6716   emit_int8((unsigned char) 0xAF);
6717   emit_operand(dst, src);
6718 }
6719 
6720 void Assembler::incl(Register dst) {
6721   // Don't use it directly. Use MacroAssembler::incrementl() instead.
6722   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
6723   int encode = prefix_and_encode(dst->encoding());
6724   emit_int8((unsigned char)0xFF);
6725   emit_int8((unsigned char)(0xC0 | encode));
6726 }
6727 
6728 void Assembler::incq(Register dst) {
6729   // Don't use it directly. Use MacroAssembler::incrementq() instead.
6730   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
6731   int encode = prefixq_and_encode(dst->encoding());
6732   emit_int8((unsigned char)0xFF);
6733   emit_int8((unsigned char)(0xC0 | encode));
6734 }
6735 
6736 void Assembler::incq(Address dst) {
6737   // Don't use it directly. Use MacroAssembler::incrementq() instead.
6738   InstructionMark im(this);
6739   prefixq(dst);
6740   emit_int8((unsigned char)0xFF);
6741   emit_operand(rax, dst);
6742 }
6743 
6744 void Assembler::lea(Register dst, Address src) {
6745   leaq(dst, src);
6746 }
6747 
6748 void Assembler::leaq(Register dst, Address src) {
6749   InstructionMark im(this);
6750   prefixq(src, dst);
6751   emit_int8((unsigned char)0x8D);
6752   emit_operand(dst, src);
6753 }
6754 
6755 void Assembler::mov64(Register dst, int64_t imm64) {
6756   InstructionMark im(this);
6757   int encode = prefixq_and_encode(dst->encoding());
6758   emit_int8((unsigned char)(0xB8 | encode));
6759   emit_int64(imm64);
6760 }
6761 
6762 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
6763   InstructionMark im(this);
6764   int encode = prefixq_and_encode(dst->encoding());
6765   emit_int8(0xB8 | encode);
6766   emit_data64(imm64, rspec);
6767 }
6768 
6769 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
6770   InstructionMark im(this);
6771   int encode = prefix_and_encode(dst->encoding());
6772   emit_int8((unsigned char)(0xB8 | encode));
6773   emit_data((int)imm32, rspec, narrow_oop_operand);
6774 }
6775 
6776 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
6777   InstructionMark im(this);
6778   prefix(dst);
6779   emit_int8((unsigned char)0xC7);
6780   emit_operand(rax, dst, 4);
6781   emit_data((int)imm32, rspec, narrow_oop_operand);
6782 }
6783 
6784 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
6785   InstructionMark im(this);
6786   int encode = prefix_and_encode(src1->encoding());
6787   emit_int8((unsigned char)0x81);
6788   emit_int8((unsigned char)(0xF8 | encode));
6789   emit_data((int)imm32, rspec, narrow_oop_operand);
6790 }
6791 
6792 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
6793   InstructionMark im(this);
6794   prefix(src1);
6795   emit_int8((unsigned char)0x81);
6796   emit_operand(rax, src1, 4);
6797   emit_data((int)imm32, rspec, narrow_oop_operand);
6798 }
6799 
6800 void Assembler::lzcntq(Register dst, Register src) {
6801   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
6802   emit_int8((unsigned char)0xF3);
6803   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6804   emit_int8(0x0F);
6805   emit_int8((unsigned char)0xBD);
6806   emit_int8((unsigned char)(0xC0 | encode));
6807 }
6808 
6809 void Assembler::movdq(XMMRegister dst, Register src) {
6810   // table D-1 says MMX/SSE2
6811   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6812   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66, true);
6813   emit_int8(0x6E);
6814   emit_int8((unsigned char)(0xC0 | encode));
6815 }
6816 
6817 void Assembler::movdq(Register dst, XMMRegister src) {
6818   // table D-1 says MMX/SSE2
6819   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6820   // swap src/dst to get correct prefix
6821   int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66, true);
6822   emit_int8(0x7E);
6823   emit_int8((unsigned char)(0xC0 | encode));
6824 }
6825 
6826 void Assembler::movq(Register dst, Register src) {
6827   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6828   emit_int8((unsigned char)0x8B);
6829   emit_int8((unsigned char)(0xC0 | encode));
6830 }
6831 
6832 void Assembler::movq(Register dst, Address src) {
6833   InstructionMark im(this);
6834   prefixq(src, dst);
6835   emit_int8((unsigned char)0x8B);
6836   emit_operand(dst, src);
6837 }
6838 
6839 void Assembler::movq(Address dst, Register src) {
6840   InstructionMark im(this);
6841   prefixq(dst, src);
6842   emit_int8((unsigned char)0x89);
6843   emit_operand(src, dst);
6844 }
6845 
6846 void Assembler::movsbq(Register dst, Address src) {
6847   InstructionMark im(this);
6848   prefixq(src, dst);
6849   emit_int8(0x0F);
6850   emit_int8((unsigned char)0xBE);
6851   emit_operand(dst, src);
6852 }
6853 
6854 void Assembler::movsbq(Register dst, Register src) {
6855   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6856   emit_int8(0x0F);
6857   emit_int8((unsigned char)0xBE);
6858   emit_int8((unsigned char)(0xC0 | encode));
6859 }
6860 
6861 void Assembler::movslq(Register dst, int32_t imm32) {
6862   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
6863   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
6864   // as a result we shouldn't use until tested at runtime...
6865   ShouldNotReachHere();
6866   InstructionMark im(this);
6867   int encode = prefixq_and_encode(dst->encoding());
6868   emit_int8((unsigned char)(0xC7 | encode));
6869   emit_int32(imm32);
6870 }
6871 
6872 void Assembler::movslq(Address dst, int32_t imm32) {
6873   assert(is_simm32(imm32), "lost bits");
6874   InstructionMark im(this);
6875   prefixq(dst);
6876   emit_int8((unsigned char)0xC7);
6877   emit_operand(rax, dst, 4);
6878   emit_int32(imm32);
6879 }
6880 
6881 void Assembler::movslq(Register dst, Address src) {
6882   InstructionMark im(this);
6883   prefixq(src, dst);
6884   emit_int8(0x63);
6885   emit_operand(dst, src);
6886 }
6887 
6888 void Assembler::movslq(Register dst, Register src) {
6889   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6890   emit_int8(0x63);
6891   emit_int8((unsigned char)(0xC0 | encode));
6892 }
6893 
6894 void Assembler::movswq(Register dst, Address src) {
6895   InstructionMark im(this);
6896   prefixq(src, dst);
6897   emit_int8(0x0F);
6898   emit_int8((unsigned char)0xBF);
6899   emit_operand(dst, src);
6900 }
6901 
6902 void Assembler::movswq(Register dst, Register src) {
6903   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6904   emit_int8((unsigned char)0x0F);
6905   emit_int8((unsigned char)0xBF);
6906   emit_int8((unsigned char)(0xC0 | encode));
6907 }
6908 
6909 void Assembler::movzbq(Register dst, Address src) {
6910   InstructionMark im(this);
6911   prefixq(src, dst);
6912   emit_int8((unsigned char)0x0F);
6913   emit_int8((unsigned char)0xB6);
6914   emit_operand(dst, src);
6915 }
6916 
6917 void Assembler::movzbq(Register dst, Register src) {
6918   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6919   emit_int8(0x0F);
6920   emit_int8((unsigned char)0xB6);
6921   emit_int8(0xC0 | encode);
6922 }
6923 
6924 void Assembler::movzwq(Register dst, Address src) {
6925   InstructionMark im(this);
6926   prefixq(src, dst);
6927   emit_int8((unsigned char)0x0F);
6928   emit_int8((unsigned char)0xB7);
6929   emit_operand(dst, src);
6930 }
6931 
6932 void Assembler::movzwq(Register dst, Register src) {
6933   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6934   emit_int8((unsigned char)0x0F);
6935   emit_int8((unsigned char)0xB7);
6936   emit_int8((unsigned char)(0xC0 | encode));
6937 }
6938 
6939 void Assembler::mulq(Address src) {
6940   InstructionMark im(this);
6941   prefixq(src);
6942   emit_int8((unsigned char)0xF7);
6943   emit_operand(rsp, src);
6944 }
6945 
6946 void Assembler::mulq(Register src) {
6947   int encode = prefixq_and_encode(src->encoding());
6948   emit_int8((unsigned char)0xF7);
6949   emit_int8((unsigned char)(0xE0 | encode));
6950 }
6951 
6952 void Assembler::mulxq(Register dst1, Register dst2, Register src) {
6953   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
6954   int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(),
6955                                      VEX_SIMD_F2, VEX_OPCODE_0F_38, true, AVX_128bit, true, false);
6956   emit_int8((unsigned char)0xF6);
6957   emit_int8((unsigned char)(0xC0 | encode));
6958 }
6959 
6960 void Assembler::negq(Register dst) {
6961   int encode = prefixq_and_encode(dst->encoding());
6962   emit_int8((unsigned char)0xF7);
6963   emit_int8((unsigned char)(0xD8 | encode));
6964 }
6965 
6966 void Assembler::notq(Register dst) {
6967   int encode = prefixq_and_encode(dst->encoding());
6968   emit_int8((unsigned char)0xF7);
6969   emit_int8((unsigned char)(0xD0 | encode));
6970 }
6971 
6972 void Assembler::orq(Address dst, int32_t imm32) {
6973   InstructionMark im(this);
6974   prefixq(dst);
6975   emit_int8((unsigned char)0x81);
6976   emit_operand(rcx, dst, 4);
6977   emit_int32(imm32);
6978 }
6979 
6980 void Assembler::orq(Register dst, int32_t imm32) {
6981   (void) prefixq_and_encode(dst->encoding());
6982   emit_arith(0x81, 0xC8, dst, imm32);
6983 }
6984 
6985 void Assembler::orq(Register dst, Address src) {
6986   InstructionMark im(this);
6987   prefixq(src, dst);
6988   emit_int8(0x0B);
6989   emit_operand(dst, src);
6990 }
6991 
6992 void Assembler::orq(Register dst, Register src) {
6993   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6994   emit_arith(0x0B, 0xC0, dst, src);
6995 }
6996 
6997 void Assembler::popa() { // 64bit
6998   movq(r15, Address(rsp, 0));
6999   movq(r14, Address(rsp, wordSize));
7000   movq(r13, Address(rsp, 2 * wordSize));
7001   movq(r12, Address(rsp, 3 * wordSize));
7002   movq(r11, Address(rsp, 4 * wordSize));
7003   movq(r10, Address(rsp, 5 * wordSize));
7004   movq(r9,  Address(rsp, 6 * wordSize));
7005   movq(r8,  Address(rsp, 7 * wordSize));
7006   movq(rdi, Address(rsp, 8 * wordSize));
7007   movq(rsi, Address(rsp, 9 * wordSize));
7008   movq(rbp, Address(rsp, 10 * wordSize));
7009   // skip rsp
7010   movq(rbx, Address(rsp, 12 * wordSize));
7011   movq(rdx, Address(rsp, 13 * wordSize));
7012   movq(rcx, Address(rsp, 14 * wordSize));
7013   movq(rax, Address(rsp, 15 * wordSize));
7014 
7015   addq(rsp, 16 * wordSize);
7016 }
7017 
7018 void Assembler::popcntq(Register dst, Address src) {
7019   assert(VM_Version::supports_popcnt(), "must support");
7020   InstructionMark im(this);
7021   emit_int8((unsigned char)0xF3);
7022   prefixq(src, dst);
7023   emit_int8((unsigned char)0x0F);
7024   emit_int8((unsigned char)0xB8);
7025   emit_operand(dst, src);
7026 }
7027 
7028 void Assembler::popcntq(Register dst, Register src) {
7029   assert(VM_Version::supports_popcnt(), "must support");
7030   emit_int8((unsigned char)0xF3);
7031   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7032   emit_int8((unsigned char)0x0F);
7033   emit_int8((unsigned char)0xB8);
7034   emit_int8((unsigned char)(0xC0 | encode));
7035 }
7036 
7037 void Assembler::popq(Address dst) {
7038   InstructionMark im(this);
7039   prefixq(dst);
7040   emit_int8((unsigned char)0x8F);
7041   emit_operand(rax, dst);
7042 }
7043 
7044 void Assembler::pusha() { // 64bit
7045   // we have to store original rsp.  ABI says that 128 bytes
7046   // below rsp are local scratch.
7047   movq(Address(rsp, -5 * wordSize), rsp);
7048 
7049   subq(rsp, 16 * wordSize);
7050 
7051   movq(Address(rsp, 15 * wordSize), rax);
7052   movq(Address(rsp, 14 * wordSize), rcx);
7053   movq(Address(rsp, 13 * wordSize), rdx);
7054   movq(Address(rsp, 12 * wordSize), rbx);
7055   // skip rsp
7056   movq(Address(rsp, 10 * wordSize), rbp);
7057   movq(Address(rsp, 9 * wordSize), rsi);
7058   movq(Address(rsp, 8 * wordSize), rdi);
7059   movq(Address(rsp, 7 * wordSize), r8);
7060   movq(Address(rsp, 6 * wordSize), r9);
7061   movq(Address(rsp, 5 * wordSize), r10);
7062   movq(Address(rsp, 4 * wordSize), r11);
7063   movq(Address(rsp, 3 * wordSize), r12);
7064   movq(Address(rsp, 2 * wordSize), r13);
7065   movq(Address(rsp, wordSize), r14);
7066   movq(Address(rsp, 0), r15);
7067 }
7068 
7069 void Assembler::pushq(Address src) {
7070   InstructionMark im(this);
7071   prefixq(src);
7072   emit_int8((unsigned char)0xFF);
7073   emit_operand(rsi, src);
7074 }
7075 
7076 void Assembler::rclq(Register dst, int imm8) {
7077   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7078   int encode = prefixq_and_encode(dst->encoding());
7079   if (imm8 == 1) {
7080     emit_int8((unsigned char)0xD1);
7081     emit_int8((unsigned char)(0xD0 | encode));
7082   } else {
7083     emit_int8((unsigned char)0xC1);
7084     emit_int8((unsigned char)(0xD0 | encode));
7085     emit_int8(imm8);
7086   }
7087 }
7088 
7089 void Assembler::rcrq(Register dst, int imm8) {
7090   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7091   int encode = prefixq_and_encode(dst->encoding());
7092   if (imm8 == 1) {
7093     emit_int8((unsigned char)0xD1);
7094     emit_int8((unsigned char)(0xD8 | encode));
7095   } else {
7096     emit_int8((unsigned char)0xC1);
7097     emit_int8((unsigned char)(0xD8 | encode));
7098     emit_int8(imm8);
7099   }
7100 }
7101 
7102 void Assembler::rorq(Register dst, int imm8) {
7103   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7104   int encode = prefixq_and_encode(dst->encoding());
7105   if (imm8 == 1) {
7106     emit_int8((unsigned char)0xD1);
7107     emit_int8((unsigned char)(0xC8 | encode));
7108   } else {
7109     emit_int8((unsigned char)0xC1);
7110     emit_int8((unsigned char)(0xc8 | encode));
7111     emit_int8(imm8);
7112   }
7113 }
7114 
7115 void Assembler::rorxq(Register dst, Register src, int imm8) {
7116   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
7117   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2,
7118                                      VEX_OPCODE_0F_3A, true, AVX_128bit, true, false);
7119   emit_int8((unsigned char)0xF0);
7120   emit_int8((unsigned char)(0xC0 | encode));
7121   emit_int8(imm8);
7122 }
7123 
7124 void Assembler::sarq(Register dst, int imm8) {
7125   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7126   int encode = prefixq_and_encode(dst->encoding());
7127   if (imm8 == 1) {
7128     emit_int8((unsigned char)0xD1);
7129     emit_int8((unsigned char)(0xF8 | encode));
7130   } else {
7131     emit_int8((unsigned char)0xC1);
7132     emit_int8((unsigned char)(0xF8 | encode));
7133     emit_int8(imm8);
7134   }
7135 }
7136 
7137 void Assembler::sarq(Register dst) {
7138   int encode = prefixq_and_encode(dst->encoding());
7139   emit_int8((unsigned char)0xD3);
7140   emit_int8((unsigned char)(0xF8 | encode));
7141 }
7142 
7143 void Assembler::sbbq(Address dst, int32_t imm32) {
7144   InstructionMark im(this);
7145   prefixq(dst);
7146   emit_arith_operand(0x81, rbx, dst, imm32);
7147 }
7148 
7149 void Assembler::sbbq(Register dst, int32_t imm32) {
7150   (void) prefixq_and_encode(dst->encoding());
7151   emit_arith(0x81, 0xD8, dst, imm32);
7152 }
7153 
7154 void Assembler::sbbq(Register dst, Address src) {
7155   InstructionMark im(this);
7156   prefixq(src, dst);
7157   emit_int8(0x1B);
7158   emit_operand(dst, src);
7159 }
7160 
7161 void Assembler::sbbq(Register dst, Register src) {
7162   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7163   emit_arith(0x1B, 0xC0, dst, src);
7164 }
7165 
7166 void Assembler::shlq(Register dst, int imm8) {
7167   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7168   int encode = prefixq_and_encode(dst->encoding());
7169   if (imm8 == 1) {
7170     emit_int8((unsigned char)0xD1);
7171     emit_int8((unsigned char)(0xE0 | encode));
7172   } else {
7173     emit_int8((unsigned char)0xC1);
7174     emit_int8((unsigned char)(0xE0 | encode));
7175     emit_int8(imm8);
7176   }
7177 }
7178 
7179 void Assembler::shlq(Register dst) {
7180   int encode = prefixq_and_encode(dst->encoding());
7181   emit_int8((unsigned char)0xD3);
7182   emit_int8((unsigned char)(0xE0 | encode));
7183 }
7184 
7185 void Assembler::shrq(Register dst, int imm8) {
7186   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7187   int encode = prefixq_and_encode(dst->encoding());
7188   emit_int8((unsigned char)0xC1);
7189   emit_int8((unsigned char)(0xE8 | encode));
7190   emit_int8(imm8);
7191 }
7192 
7193 void Assembler::shrq(Register dst) {
7194   int encode = prefixq_and_encode(dst->encoding());
7195   emit_int8((unsigned char)0xD3);
7196   emit_int8(0xE8 | encode);
7197 }
7198 
7199 void Assembler::subq(Address dst, int32_t imm32) {
7200   InstructionMark im(this);
7201   prefixq(dst);
7202   emit_arith_operand(0x81, rbp, dst, imm32);
7203 }
7204 
7205 void Assembler::subq(Address dst, Register src) {
7206   InstructionMark im(this);
7207   prefixq(dst, src);
7208   emit_int8(0x29);
7209   emit_operand(src, dst);
7210 }
7211 
7212 void Assembler::subq(Register dst, int32_t imm32) {
7213   (void) prefixq_and_encode(dst->encoding());
7214   emit_arith(0x81, 0xE8, dst, imm32);
7215 }
7216 
7217 // Force generation of a 4 byte immediate value even if it fits into 8bit
7218 void Assembler::subq_imm32(Register dst, int32_t imm32) {
7219   (void) prefixq_and_encode(dst->encoding());
7220   emit_arith_imm32(0x81, 0xE8, dst, imm32);
7221 }
7222 
7223 void Assembler::subq(Register dst, Address src) {
7224   InstructionMark im(this);
7225   prefixq(src, dst);
7226   emit_int8(0x2B);
7227   emit_operand(dst, src);
7228 }
7229 
7230 void Assembler::subq(Register dst, Register src) {
7231   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7232   emit_arith(0x2B, 0xC0, dst, src);
7233 }
7234 
7235 void Assembler::testq(Register dst, int32_t imm32) {
7236   // not using emit_arith because test
7237   // doesn't support sign-extension of
7238   // 8bit operands
7239   int encode = dst->encoding();
7240   if (encode == 0) {
7241     prefix(REX_W);
7242     emit_int8((unsigned char)0xA9);
7243   } else {
7244     encode = prefixq_and_encode(encode);
7245     emit_int8((unsigned char)0xF7);
7246     emit_int8((unsigned char)(0xC0 | encode));
7247   }
7248   emit_int32(imm32);
7249 }
7250 
7251 void Assembler::testq(Register dst, Register src) {
7252   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7253   emit_arith(0x85, 0xC0, dst, src);
7254 }
7255 
7256 void Assembler::xaddq(Address dst, Register src) {
7257   InstructionMark im(this);
7258   prefixq(dst, src);
7259   emit_int8(0x0F);
7260   emit_int8((unsigned char)0xC1);
7261   emit_operand(src, dst);
7262 }
7263 
7264 void Assembler::xchgq(Register dst, Address src) {
7265   InstructionMark im(this);
7266   prefixq(src, dst);
7267   emit_int8((unsigned char)0x87);
7268   emit_operand(dst, src);
7269 }
7270 
7271 void Assembler::xchgq(Register dst, Register src) {
7272   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7273   emit_int8((unsigned char)0x87);
7274   emit_int8((unsigned char)(0xc0 | encode));
7275 }
7276 
7277 void Assembler::xorq(Register dst, Register src) {
7278   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7279   emit_arith(0x33, 0xC0, dst, src);
7280 }
7281 
7282 void Assembler::xorq(Register dst, Address src) {
7283   InstructionMark im(this);
7284   prefixq(src, dst);
7285   emit_int8(0x33);
7286   emit_operand(dst, src);
7287 }
7288 
7289 #endif // !LP64