1 /*
   2  * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_CodeStubs.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "c1/c1_ValueStack.hpp"
  34 #include "ci/ciArrayKlass.hpp"
  35 #include "ci/ciInstance.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/cardTableModRefBS.hpp"
  38 #include "gc/shared/collectedHeap.hpp"
  39 #include "nativeInst_x86.hpp"
  40 #include "oops/objArrayKlass.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "vmreg_x86.inline.hpp"
  43 
  44 
  45 // These masks are used to provide 128-bit aligned bitmasks to the XMM
  46 // instructions, to allow sign-masking or sign-bit flipping.  They allow
  47 // fast versions of NegF/NegD and AbsF/AbsD.
  48 
  49 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  50 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  51   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  52   // of 128-bits operands for SSE instructions.
  53   jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
  54   // Store the value to a 128-bits operand.
  55   operand[0] = lo;
  56   operand[1] = hi;
  57   return operand;
  58 }
  59 
  60 // Buffer for 128-bits masks used by SSE instructions.
  61 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
  62 
  63 // Static initialization during VM startup.
  64 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2],         CONST64(0x7FFFFFFF7FFFFFFF),         CONST64(0x7FFFFFFF7FFFFFFF));
  65 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2],         CONST64(0x7FFFFFFFFFFFFFFF),         CONST64(0x7FFFFFFFFFFFFFFF));
  66 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000));
  67 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000));
  68 
  69 
  70 
  71 NEEDS_CLEANUP // remove this definitions ?
  72 const Register IC_Klass    = rax;   // where the IC klass is cached
  73 const Register SYNC_header = rax;   // synchronization header
  74 const Register SHIFT_count = rcx;   // where count for shift operations must be
  75 
  76 #define __ _masm->
  77 
  78 
  79 static void select_different_registers(Register preserve,
  80                                        Register extra,
  81                                        Register &tmp1,
  82                                        Register &tmp2) {
  83   if (tmp1 == preserve) {
  84     assert_different_registers(tmp1, tmp2, extra);
  85     tmp1 = extra;
  86   } else if (tmp2 == preserve) {
  87     assert_different_registers(tmp1, tmp2, extra);
  88     tmp2 = extra;
  89   }
  90   assert_different_registers(preserve, tmp1, tmp2);
  91 }
  92 
  93 
  94 
  95 static void select_different_registers(Register preserve,
  96                                        Register extra,
  97                                        Register &tmp1,
  98                                        Register &tmp2,
  99                                        Register &tmp3) {
 100   if (tmp1 == preserve) {
 101     assert_different_registers(tmp1, tmp2, tmp3, extra);
 102     tmp1 = extra;
 103   } else if (tmp2 == preserve) {
 104     assert_different_registers(tmp1, tmp2, tmp3, extra);
 105     tmp2 = extra;
 106   } else if (tmp3 == preserve) {
 107     assert_different_registers(tmp1, tmp2, tmp3, extra);
 108     tmp3 = extra;
 109   }
 110   assert_different_registers(preserve, tmp1, tmp2, tmp3);
 111 }
 112 
 113 
 114 
 115 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
 116   if (opr->is_constant()) {
 117     LIR_Const* constant = opr->as_constant_ptr();
 118     switch (constant->type()) {
 119       case T_INT: {
 120         return true;
 121       }
 122 
 123       default:
 124         return false;
 125     }
 126   }
 127   return false;
 128 }
 129 
 130 
 131 LIR_Opr LIR_Assembler::receiverOpr() {
 132   return FrameMap::receiver_opr;
 133 }
 134 
 135 LIR_Opr LIR_Assembler::osrBufferPointer() {
 136   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 137 }
 138 
 139 //--------------fpu register translations-----------------------
 140 
 141 
 142 address LIR_Assembler::float_constant(float f) {
 143   address const_addr = __ float_constant(f);
 144   if (const_addr == NULL) {
 145     bailout("const section overflow");
 146     return __ code()->consts()->start();
 147   } else {
 148     return const_addr;
 149   }
 150 }
 151 
 152 
 153 address LIR_Assembler::double_constant(double d) {
 154   address const_addr = __ double_constant(d);
 155   if (const_addr == NULL) {
 156     bailout("const section overflow");
 157     return __ code()->consts()->start();
 158   } else {
 159     return const_addr;
 160   }
 161 }
 162 
 163 
 164 void LIR_Assembler::set_24bit_FPU() {
 165   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 166 }
 167 
 168 void LIR_Assembler::reset_FPU() {
 169   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 170 }
 171 
 172 void LIR_Assembler::fpop() {
 173   __ fpop();
 174 }
 175 
 176 void LIR_Assembler::fxch(int i) {
 177   __ fxch(i);
 178 }
 179 
 180 void LIR_Assembler::fld(int i) {
 181   __ fld_s(i);
 182 }
 183 
 184 void LIR_Assembler::ffree(int i) {
 185   __ ffree(i);
 186 }
 187 
 188 void LIR_Assembler::breakpoint() {
 189   __ int3();
 190 }
 191 
 192 void LIR_Assembler::push(LIR_Opr opr) {
 193   if (opr->is_single_cpu()) {
 194     __ push_reg(opr->as_register());
 195   } else if (opr->is_double_cpu()) {
 196     NOT_LP64(__ push_reg(opr->as_register_hi()));
 197     __ push_reg(opr->as_register_lo());
 198   } else if (opr->is_stack()) {
 199     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
 200   } else if (opr->is_constant()) {
 201     LIR_Const* const_opr = opr->as_constant_ptr();
 202     if (const_opr->type() == T_OBJECT) {
 203       __ push_oop(const_opr->as_jobject());
 204     } else if (const_opr->type() == T_INT) {
 205       __ push_jint(const_opr->as_jint());
 206     } else {
 207       ShouldNotReachHere();
 208     }
 209 
 210   } else {
 211     ShouldNotReachHere();
 212   }
 213 }
 214 
 215 void LIR_Assembler::pop(LIR_Opr opr) {
 216   if (opr->is_single_cpu()) {
 217     __ pop_reg(opr->as_register());
 218   } else {
 219     ShouldNotReachHere();
 220   }
 221 }
 222 
 223 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
 224   return addr->base()->is_illegal() && addr->index()->is_illegal();
 225 }
 226 
 227 //-------------------------------------------
 228 
 229 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 230   return as_Address(addr, rscratch1);
 231 }
 232 
 233 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 234   if (addr->base()->is_illegal()) {
 235     assert(addr->index()->is_illegal(), "must be illegal too");
 236     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
 237     if (! __ reachable(laddr)) {
 238       __ movptr(tmp, laddr.addr());
 239       Address res(tmp, 0);
 240       return res;
 241     } else {
 242       return __ as_Address(laddr);
 243     }
 244   }
 245 
 246   Register base = addr->base()->as_pointer_register();
 247 
 248   if (addr->index()->is_illegal()) {
 249     return Address( base, addr->disp());
 250   } else if (addr->index()->is_cpu_register()) {
 251     Register index = addr->index()->as_pointer_register();
 252     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
 253   } else if (addr->index()->is_constant()) {
 254     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
 255     assert(Assembler::is_simm32(addr_offset), "must be");
 256 
 257     return Address(base, addr_offset);
 258   } else {
 259     Unimplemented();
 260     return Address();
 261   }
 262 }
 263 
 264 
 265 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 266   Address base = as_Address(addr);
 267   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
 268 }
 269 
 270 
 271 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 272   return as_Address(addr);
 273 }
 274 
 275 
 276 void LIR_Assembler::osr_entry() {
 277   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 278   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 279   ValueStack* entry_state = osr_entry->state();
 280   int number_of_locks = entry_state->locks_size();
 281 
 282   // we jump here if osr happens with the interpreter
 283   // state set up to continue at the beginning of the
 284   // loop that triggered osr - in particular, we have
 285   // the following registers setup:
 286   //
 287   // rcx: osr buffer
 288   //
 289 
 290   // build frame
 291   ciMethod* m = compilation()->method();
 292   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 293 
 294   // OSR buffer is
 295   //
 296   // locals[nlocals-1..0]
 297   // monitors[0..number_of_locks]
 298   //
 299   // locals is a direct copy of the interpreter frame so in the osr buffer
 300   // so first slot in the local array is the last local from the interpreter
 301   // and last slot is local[0] (receiver) from the interpreter
 302   //
 303   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 304   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 305   // in the interpreter frame (the method lock if a sync method)
 306 
 307   // Initialize monitors in the compiled activation.
 308   //   rcx: pointer to osr buffer
 309   //
 310   // All other registers are dead at this point and the locals will be
 311   // copied into place by code emitted in the IR.
 312 
 313   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 314   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 315     int monitor_offset = BytesPerWord * method()->max_locals() +
 316       (2 * BytesPerWord) * (number_of_locks - 1);
 317     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 318     // the OSR buffer using 2 word entries: first the lock and then
 319     // the oop.
 320     for (int i = 0; i < number_of_locks; i++) {
 321       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 322 #ifdef ASSERT
 323       // verify the interpreter's monitor has a non-null object
 324       {
 325         Label L;
 326         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
 327         __ jcc(Assembler::notZero, L);
 328         __ stop("locked object is NULL");
 329         __ bind(L);
 330       }
 331 #endif
 332       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
 333       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
 334       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 335       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
 336     }
 337   }
 338 }
 339 
 340 
 341 // inline cache check; done before the frame is built.
 342 int LIR_Assembler::check_icache() {
 343   Register receiver = FrameMap::receiver_opr->as_register();
 344   Register ic_klass = IC_Klass;
 345   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
 346   const bool do_post_padding = VerifyOops || UseCompressedClassPointers;
 347   if (!do_post_padding) {
 348     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
 349     while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
 350       __ nop();
 351     }
 352   }
 353   int offset = __ offset();
 354   __ inline_cache_check(receiver, IC_Klass);
 355   assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
 356   if (do_post_padding) {
 357     // force alignment after the cache check.
 358     // It's been verified to be aligned if !VerifyOops
 359     __ align(CodeEntryAlignment);
 360   }
 361   return offset;
 362 }
 363 
 364 
 365 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
 366   jobject o = NULL;
 367   PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
 368   __ movoop(reg, o);
 369   patching_epilog(patch, lir_patch_normal, reg, info);
 370 }
 371 
 372 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
 373   Metadata* o = NULL;
 374   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
 375   __ mov_metadata(reg, o);
 376   patching_epilog(patch, lir_patch_normal, reg, info);
 377 }
 378 
 379 // This specifies the rsp decrement needed to build the frame
 380 int LIR_Assembler::initial_frame_size_in_bytes() const {
 381   // if rounding, must let FrameMap know!
 382 
 383   // The frame_map records size in slots (32bit word)
 384 
 385   // subtract two words to account for return address and link
 386   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
 387 }
 388 
 389 
 390 int LIR_Assembler::emit_exception_handler() {
 391   // if the last instruction is a call (typically to do a throw which
 392   // is coming at the end after block reordering) the return address
 393   // must still point into the code area in order to avoid assertion
 394   // failures when searching for the corresponding bci => add a nop
 395   // (was bug 5/14/1999 - gri)
 396   __ nop();
 397 
 398   // generate code for exception handler
 399   address handler_base = __ start_a_stub(exception_handler_size);
 400   if (handler_base == NULL) {
 401     // not enough space left for the handler
 402     bailout("exception handler overflow");
 403     return -1;
 404   }
 405 
 406   int offset = code_offset();
 407 
 408   // the exception oop and pc are in rax, and rdx
 409   // no other registers need to be preserved, so invalidate them
 410   __ invalidate_registers(false, true, true, false, true, true);
 411 
 412   // check that there is really an exception
 413   __ verify_not_null_oop(rax);
 414 
 415   // search an exception handler (rax: exception oop, rdx: throwing pc)
 416   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
 417   __ should_not_reach_here();
 418   guarantee(code_offset() - offset <= exception_handler_size, "overflow");
 419   __ end_a_stub();
 420 
 421   return offset;
 422 }
 423 
 424 
 425 // Emit the code to remove the frame from the stack in the exception
 426 // unwind path.
 427 int LIR_Assembler::emit_unwind_handler() {
 428 #ifndef PRODUCT
 429   if (CommentedAssembly) {
 430     _masm->block_comment("Unwind handler");
 431   }
 432 #endif
 433 
 434   int offset = code_offset();
 435 
 436   // Fetch the exception from TLS and clear out exception related thread state
 437   Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
 438   NOT_LP64(__ get_thread(rsi));
 439   __ movptr(rax, Address(thread, JavaThread::exception_oop_offset()));
 440   __ movptr(Address(thread, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
 441   __ movptr(Address(thread, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
 442 
 443   __ bind(_unwind_handler_entry);
 444   __ verify_not_null_oop(rax);
 445   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 446     __ mov(rbx, rax);  // Preserve the exception (rbx is always callee-saved)
 447   }
 448 
 449   // Preform needed unlocking
 450   MonitorExitStub* stub = NULL;
 451   if (method()->is_synchronized()) {
 452     monitor_address(0, FrameMap::rax_opr);
 453     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
 454     __ unlock_object(rdi, rsi, rax, *stub->entry());
 455     __ bind(*stub->continuation());
 456   }
 457 
 458   if (compilation()->env()->dtrace_method_probes()) {
 459 #ifdef _LP64
 460     __ mov(rdi, r15_thread);
 461     __ mov_metadata(rsi, method()->constant_encoding());
 462 #else
 463     __ get_thread(rax);
 464     __ movptr(Address(rsp, 0), rax);
 465     __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding());
 466 #endif
 467     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
 468   }
 469 
 470   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 471     __ mov(rax, rbx);  // Restore the exception
 472   }
 473 
 474   // remove the activation and dispatch to the unwind handler
 475   __ remove_frame(initial_frame_size_in_bytes());
 476   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
 477 
 478   // Emit the slow path assembly
 479   if (stub != NULL) {
 480     stub->emit_code(this);
 481   }
 482 
 483   return offset;
 484 }
 485 
 486 
 487 int LIR_Assembler::emit_deopt_handler() {
 488   // if the last instruction is a call (typically to do a throw which
 489   // is coming at the end after block reordering) the return address
 490   // must still point into the code area in order to avoid assertion
 491   // failures when searching for the corresponding bci => add a nop
 492   // (was bug 5/14/1999 - gri)
 493   __ nop();
 494 
 495   // generate code for exception handler
 496   address handler_base = __ start_a_stub(deopt_handler_size);
 497   if (handler_base == NULL) {
 498     // not enough space left for the handler
 499     bailout("deopt handler overflow");
 500     return -1;
 501   }
 502 
 503   int offset = code_offset();
 504   InternalAddress here(__ pc());
 505 
 506   __ pushptr(here.addr());
 507   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 508   guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
 509   __ end_a_stub();
 510 
 511   return offset;
 512 }
 513 
 514 
 515 // This is the fast version of java.lang.String.compare; it has not
 516 // OSR-entry and therefore, we generate a slow version for OSR's
 517 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, C1ThreadLocalSafepoint *tls_stub, CodeEmitInfo* info) {
 518   __ movptr (rbx, rcx); // receiver is in rcx
 519   __ movptr (rax, arg1->as_register());
 520 
 521   // Get addresses of first characters from both Strings
 522   __ load_heap_oop(rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
 523   if (java_lang_String::has_offset_field()) {
 524     __ movptr     (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
 525     __ movl       (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
 526     __ lea        (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 527   } else {
 528     __ movl       (rax, Address(rsi, arrayOopDesc::length_offset_in_bytes()));
 529     __ lea        (rsi, Address(rsi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 530   }
 531 
 532   // rbx, may be NULL
 533   add_debug_info_for_null_check_here(info);
 534   __ load_heap_oop(rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
 535   if (java_lang_String::has_offset_field()) {
 536     __ movptr     (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
 537     __ movl       (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
 538     __ lea        (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 539   } else {
 540     __ movl       (rbx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
 541     __ lea        (rdi, Address(rdi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 542   }
 543 
 544   // compute minimum length (in rax) and difference of lengths (on top of stack)
 545   __ mov   (rcx, rbx);
 546   __ subptr(rbx, rax); // subtract lengths
 547   __ push  (rbx);      // result
 548   __ cmov  (Assembler::lessEqual, rax, rcx);
 549 
 550   // is minimum length 0?
 551   Label noLoop, haveResult;
 552   __ testptr (rax, rax);
 553   __ jcc (Assembler::zero, noLoop);
 554 
 555   // compare first characters
 556   __ load_unsigned_short(rcx, Address(rdi, 0));
 557   __ load_unsigned_short(rbx, Address(rsi, 0));
 558   __ subl(rcx, rbx);
 559   __ jcc(Assembler::notZero, haveResult);
 560   // starting loop
 561   __ decrement(rax); // we already tested index: skip one
 562   __ jcc(Assembler::zero, noLoop);
 563 
 564   // set rsi.edi to the end of the arrays (arrays have same length)
 565   // negate the index
 566 
 567   __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
 568   __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
 569   __ negptr(rax);
 570 
 571   // compare the strings in a loop
 572 
 573   Label loop;
 574   __ align(wordSize);
 575   __ bind(loop);
 576   __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
 577   __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
 578   __ subl(rcx, rbx);
 579   __ jcc(Assembler::notZero, haveResult);
 580   __ increment(rax);
 581   __ jcc(Assembler::notZero, loop);
 582 
 583   // strings are equal up to min length
 584 
 585   __ bind(noLoop);
 586   __ pop(rax);
 587   return_op(LIR_OprFact::illegalOpr, tls_stub);
 588 
 589   __ bind(haveResult);
 590   // leave instruction is going to discard the TOS value
 591   __ mov (rax, rcx); // result of call is in rax,
 592 }
 593 
 594 
 595 void LIR_Assembler::return_op(LIR_Opr result, C1ThreadLocalSafepoint *code_stub) {
 596   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
 597   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
 598     assert(result->fpu() == 0, "result must already be on TOS");
 599   }
 600 
 601   // Pop the stack before the safepoint code
 602   __ remove_frame(initial_frame_size_in_bytes());
 603 
 604   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
 605 
 606   // Note: we do not need to round double result; float result has the right precision
 607   // the poll sets the condition code, but no data registers
 608 
 609   if (!ThreadLocalSafepoints) {
 610     AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_return_type);
 611 
 612     if (Assembler::is_polling_page_far()) {
 613       __ lea(rscratch1, polling_page);
 614       __ relocate(relocInfo::poll_return_type);
 615       __ testl(rax, Address(rscratch1, 0));
 616     } else {
 617       __ testl(rax, polling_page);
 618     }
 619   } else {
 620 #ifdef _LP64
 621     code_stub->set_safepoint_pc(__ pc());
 622     __ relocate(relocInfo::poll_return_type);
 623     __ testb(Address(r15_thread, Thread::yieldpoint_offset()), 2);
 624     __ jcc(Assembler::equal, *code_stub->entry());
 625 #else
 626     ShouldNotReachHere();
 627 #endif
 628   }
 629   __ ret(0);
 630 }
 631 
 632 
 633 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, C1ThreadLocalSafepoint *code_stub, CodeEmitInfo* info) {
 634   AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_type);
 635   guarantee(info != NULL, "Shouldn't be NULL");
 636   int offset = __ offset();
 637   if (!ThreadLocalSafepoints) {
 638     if (Assembler::is_polling_page_far()) {
 639       __ lea(rscratch1, polling_page);
 640       offset = __ offset();
 641       add_debug_info_for_branch(info);
 642       __ relocate(relocInfo::poll_type);
 643       __ testl(rax, Address(rscratch1, 0));
 644     } else {
 645       add_debug_info_for_branch(info);
 646       __ testl(rax, polling_page);
 647     }
 648   } else {
 649 #ifdef _LP64
 650     add_debug_info_for_branch(info);
 651     code_stub->set_safepoint_pc(__ pc());
 652     __ relocate(relocInfo::poll_type);
 653     __ testb(Address(r15_thread, Thread::yieldpoint_offset()), 1);
 654     __ jcc(Assembler::equal, *code_stub->entry());
 655 #else
 656     ShouldNotReachHere();
 657 #endif
 658   }
 659 
 660   return offset;
 661 }
 662 
 663 
 664 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 665   if (from_reg != to_reg) __ mov(to_reg, from_reg);
 666 }
 667 
 668 void LIR_Assembler::swap_reg(Register a, Register b) {
 669   __ xchgptr(a, b);
 670 }
 671 
 672 
 673 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 674   assert(src->is_constant(), "should not call otherwise");
 675   assert(dest->is_register(), "should not call otherwise");
 676   LIR_Const* c = src->as_constant_ptr();
 677 
 678   switch (c->type()) {
 679     case T_INT: {
 680       assert(patch_code == lir_patch_none, "no patching handled here");
 681       __ movl(dest->as_register(), c->as_jint());
 682       break;
 683     }
 684 
 685     case T_ADDRESS: {
 686       assert(patch_code == lir_patch_none, "no patching handled here");
 687       __ movptr(dest->as_register(), c->as_jint());
 688       break;
 689     }
 690 
 691     case T_LONG: {
 692       assert(patch_code == lir_patch_none, "no patching handled here");
 693 #ifdef _LP64
 694       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
 695 #else
 696       __ movptr(dest->as_register_lo(), c->as_jint_lo());
 697       __ movptr(dest->as_register_hi(), c->as_jint_hi());
 698 #endif // _LP64
 699       break;
 700     }
 701 
 702     case T_OBJECT: {
 703       if (patch_code != lir_patch_none) {
 704         jobject2reg_with_patching(dest->as_register(), info);
 705       } else {
 706         __ movoop(dest->as_register(), c->as_jobject());
 707       }
 708       break;
 709     }
 710 
 711     case T_METADATA: {
 712       if (patch_code != lir_patch_none) {
 713         klass2reg_with_patching(dest->as_register(), info);
 714       } else {
 715         __ mov_metadata(dest->as_register(), c->as_metadata());
 716       }
 717       break;
 718     }
 719 
 720     case T_FLOAT: {
 721       if (dest->is_single_xmm()) {
 722         if (c->is_zero_float()) {
 723           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
 724         } else {
 725           __ movflt(dest->as_xmm_float_reg(),
 726                    InternalAddress(float_constant(c->as_jfloat())));
 727         }
 728       } else {
 729         assert(dest->is_single_fpu(), "must be");
 730         assert(dest->fpu_regnr() == 0, "dest must be TOS");
 731         if (c->is_zero_float()) {
 732           __ fldz();
 733         } else if (c->is_one_float()) {
 734           __ fld1();
 735         } else {
 736           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
 737         }
 738       }
 739       break;
 740     }
 741 
 742     case T_DOUBLE: {
 743       if (dest->is_double_xmm()) {
 744         if (c->is_zero_double()) {
 745           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
 746         } else {
 747           __ movdbl(dest->as_xmm_double_reg(),
 748                     InternalAddress(double_constant(c->as_jdouble())));
 749         }
 750       } else {
 751         assert(dest->is_double_fpu(), "must be");
 752         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
 753         if (c->is_zero_double()) {
 754           __ fldz();
 755         } else if (c->is_one_double()) {
 756           __ fld1();
 757         } else {
 758           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
 759         }
 760       }
 761       break;
 762     }
 763 
 764     default:
 765       ShouldNotReachHere();
 766   }
 767 }
 768 
 769 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 770   assert(src->is_constant(), "should not call otherwise");
 771   assert(dest->is_stack(), "should not call otherwise");
 772   LIR_Const* c = src->as_constant_ptr();
 773 
 774   switch (c->type()) {
 775     case T_INT:  // fall through
 776     case T_FLOAT:
 777       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 778       break;
 779 
 780     case T_ADDRESS:
 781       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 782       break;
 783 
 784     case T_OBJECT:
 785       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
 786       break;
 787 
 788     case T_LONG:  // fall through
 789     case T_DOUBLE:
 790 #ifdef _LP64
 791       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 792                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
 793 #else
 794       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 795                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
 796       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 797                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
 798 #endif // _LP64
 799       break;
 800 
 801     default:
 802       ShouldNotReachHere();
 803   }
 804 }
 805 
 806 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 807   assert(src->is_constant(), "should not call otherwise");
 808   assert(dest->is_address(), "should not call otherwise");
 809   LIR_Const* c = src->as_constant_ptr();
 810   LIR_Address* addr = dest->as_address_ptr();
 811 
 812   int null_check_here = code_offset();
 813   switch (type) {
 814     case T_INT:    // fall through
 815     case T_FLOAT:
 816       __ movl(as_Address(addr), c->as_jint_bits());
 817       break;
 818 
 819     case T_ADDRESS:
 820       __ movptr(as_Address(addr), c->as_jint_bits());
 821       break;
 822 
 823     case T_OBJECT:  // fall through
 824     case T_ARRAY:
 825       if (c->as_jobject() == NULL) {
 826         if (UseCompressedOops && !wide) {
 827           __ movl(as_Address(addr), (int32_t)NULL_WORD);
 828         } else {
 829 #ifdef _LP64
 830           __ xorptr(rscratch1, rscratch1);
 831           null_check_here = code_offset();
 832           __ movptr(as_Address(addr), rscratch1);
 833 #else
 834           __ movptr(as_Address(addr), NULL_WORD);
 835 #endif
 836         }
 837       } else {
 838         if (is_literal_address(addr)) {
 839           ShouldNotReachHere();
 840           __ movoop(as_Address(addr, noreg), c->as_jobject());
 841         } else {
 842 #ifdef _LP64
 843           __ movoop(rscratch1, c->as_jobject());
 844           if (UseCompressedOops && !wide) {
 845             __ encode_heap_oop(rscratch1);
 846             null_check_here = code_offset();
 847             __ movl(as_Address_lo(addr), rscratch1);
 848           } else {
 849             null_check_here = code_offset();
 850             __ movptr(as_Address_lo(addr), rscratch1);
 851           }
 852 #else
 853           __ movoop(as_Address(addr), c->as_jobject());
 854 #endif
 855         }
 856       }
 857       break;
 858 
 859     case T_LONG:    // fall through
 860     case T_DOUBLE:
 861 #ifdef _LP64
 862       if (is_literal_address(addr)) {
 863         ShouldNotReachHere();
 864         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
 865       } else {
 866         __ movptr(r10, (intptr_t)c->as_jlong_bits());
 867         null_check_here = code_offset();
 868         __ movptr(as_Address_lo(addr), r10);
 869       }
 870 #else
 871       // Always reachable in 32bit so this doesn't produce useless move literal
 872       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
 873       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
 874 #endif // _LP64
 875       break;
 876 
 877     case T_BOOLEAN: // fall through
 878     case T_BYTE:
 879       __ movb(as_Address(addr), c->as_jint() & 0xFF);
 880       break;
 881 
 882     case T_CHAR:    // fall through
 883     case T_SHORT:
 884       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
 885       break;
 886 
 887     default:
 888       ShouldNotReachHere();
 889   };
 890 
 891   if (info != NULL) {
 892     add_debug_info_for_null_check(null_check_here, info);
 893   }
 894 }
 895 
 896 
 897 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 898   assert(src->is_register(), "should not call otherwise");
 899   assert(dest->is_register(), "should not call otherwise");
 900 
 901   // move between cpu-registers
 902   if (dest->is_single_cpu()) {
 903 #ifdef _LP64
 904     if (src->type() == T_LONG) {
 905       // Can do LONG -> OBJECT
 906       move_regs(src->as_register_lo(), dest->as_register());
 907       return;
 908     }
 909 #endif
 910     assert(src->is_single_cpu(), "must match");
 911     if (src->type() == T_OBJECT) {
 912       __ verify_oop(src->as_register());
 913     }
 914     move_regs(src->as_register(), dest->as_register());
 915 
 916   } else if (dest->is_double_cpu()) {
 917 #ifdef _LP64
 918     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
 919       // Surprising to me but we can see move of a long to t_object
 920       __ verify_oop(src->as_register());
 921       move_regs(src->as_register(), dest->as_register_lo());
 922       return;
 923     }
 924 #endif
 925     assert(src->is_double_cpu(), "must match");
 926     Register f_lo = src->as_register_lo();
 927     Register f_hi = src->as_register_hi();
 928     Register t_lo = dest->as_register_lo();
 929     Register t_hi = dest->as_register_hi();
 930 #ifdef _LP64
 931     assert(f_hi == f_lo, "must be same");
 932     assert(t_hi == t_lo, "must be same");
 933     move_regs(f_lo, t_lo);
 934 #else
 935     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
 936 
 937 
 938     if (f_lo == t_hi && f_hi == t_lo) {
 939       swap_reg(f_lo, f_hi);
 940     } else if (f_hi == t_lo) {
 941       assert(f_lo != t_hi, "overwriting register");
 942       move_regs(f_hi, t_hi);
 943       move_regs(f_lo, t_lo);
 944     } else {
 945       assert(f_hi != t_lo, "overwriting register");
 946       move_regs(f_lo, t_lo);
 947       move_regs(f_hi, t_hi);
 948     }
 949 #endif // LP64
 950 
 951     // special moves from fpu-register to xmm-register
 952     // necessary for method results
 953   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
 954     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
 955     __ fld_s(Address(rsp, 0));
 956   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
 957     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
 958     __ fld_d(Address(rsp, 0));
 959   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
 960     __ fstp_s(Address(rsp, 0));
 961     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
 962   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
 963     __ fstp_d(Address(rsp, 0));
 964     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
 965 
 966     // move between xmm-registers
 967   } else if (dest->is_single_xmm()) {
 968     assert(src->is_single_xmm(), "must match");
 969     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
 970   } else if (dest->is_double_xmm()) {
 971     assert(src->is_double_xmm(), "must match");
 972     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
 973 
 974     // move between fpu-registers (no instruction necessary because of fpu-stack)
 975   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
 976     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
 977     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
 978   } else {
 979     ShouldNotReachHere();
 980   }
 981 }
 982 
 983 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 984   assert(src->is_register(), "should not call otherwise");
 985   assert(dest->is_stack(), "should not call otherwise");
 986 
 987   if (src->is_single_cpu()) {
 988     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
 989     if (type == T_OBJECT || type == T_ARRAY) {
 990       __ verify_oop(src->as_register());
 991       __ movptr (dst, src->as_register());
 992     } else if (type == T_METADATA) {
 993       __ movptr (dst, src->as_register());
 994     } else {
 995       __ movl (dst, src->as_register());
 996     }
 997 
 998   } else if (src->is_double_cpu()) {
 999     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
1000     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
1001     __ movptr (dstLO, src->as_register_lo());
1002     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
1003 
1004   } else if (src->is_single_xmm()) {
1005     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
1006     __ movflt(dst_addr, src->as_xmm_float_reg());
1007 
1008   } else if (src->is_double_xmm()) {
1009     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
1010     __ movdbl(dst_addr, src->as_xmm_double_reg());
1011 
1012   } else if (src->is_single_fpu()) {
1013     assert(src->fpu_regnr() == 0, "argument must be on TOS");
1014     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
1015     if (pop_fpu_stack)     __ fstp_s (dst_addr);
1016     else                   __ fst_s  (dst_addr);
1017 
1018   } else if (src->is_double_fpu()) {
1019     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
1020     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
1021     if (pop_fpu_stack)     __ fstp_d (dst_addr);
1022     else                   __ fst_d  (dst_addr);
1023 
1024   } else {
1025     ShouldNotReachHere();
1026   }
1027 }
1028 
1029 
1030 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
1031   LIR_Address* to_addr = dest->as_address_ptr();
1032   PatchingStub* patch = NULL;
1033   Register compressed_src = rscratch1;
1034 
1035   if (type == T_ARRAY || type == T_OBJECT) {
1036     __ verify_oop(src->as_register());
1037 #ifdef _LP64
1038     if (UseCompressedOops && !wide) {
1039       __ movptr(compressed_src, src->as_register());
1040       __ encode_heap_oop(compressed_src);
1041       if (patch_code != lir_patch_none) {
1042         info->oop_map()->set_narrowoop(compressed_src->as_VMReg());
1043       }
1044     }
1045 #endif
1046   }
1047 
1048   if (patch_code != lir_patch_none) {
1049     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1050     Address toa = as_Address(to_addr);
1051     assert(toa.disp() != 0, "must have");
1052   }
1053 
1054   int null_check_here = code_offset();
1055   switch (type) {
1056     case T_FLOAT: {
1057       if (src->is_single_xmm()) {
1058         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
1059       } else {
1060         assert(src->is_single_fpu(), "must be");
1061         assert(src->fpu_regnr() == 0, "argument must be on TOS");
1062         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
1063         else                    __ fst_s (as_Address(to_addr));
1064       }
1065       break;
1066     }
1067 
1068     case T_DOUBLE: {
1069       if (src->is_double_xmm()) {
1070         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
1071       } else {
1072         assert(src->is_double_fpu(), "must be");
1073         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
1074         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
1075         else                    __ fst_d (as_Address(to_addr));
1076       }
1077       break;
1078     }
1079 
1080     case T_ARRAY:   // fall through
1081     case T_OBJECT:  // fall through
1082       if (UseCompressedOops && !wide) {
1083         __ movl(as_Address(to_addr), compressed_src);
1084       } else {
1085         __ movptr(as_Address(to_addr), src->as_register());
1086       }
1087       break;
1088     case T_METADATA:
1089       // We get here to store a method pointer to the stack to pass to
1090       // a dtrace runtime call. This can't work on 64 bit with
1091       // compressed klass ptrs: T_METADATA can be a compressed klass
1092       // ptr or a 64 bit method pointer.
1093       LP64_ONLY(ShouldNotReachHere());
1094       __ movptr(as_Address(to_addr), src->as_register());
1095       break;
1096     case T_ADDRESS:
1097       __ movptr(as_Address(to_addr), src->as_register());
1098       break;
1099     case T_INT:
1100       __ movl(as_Address(to_addr), src->as_register());
1101       break;
1102 
1103     case T_LONG: {
1104       Register from_lo = src->as_register_lo();
1105       Register from_hi = src->as_register_hi();
1106 #ifdef _LP64
1107       __ movptr(as_Address_lo(to_addr), from_lo);
1108 #else
1109       Register base = to_addr->base()->as_register();
1110       Register index = noreg;
1111       if (to_addr->index()->is_register()) {
1112         index = to_addr->index()->as_register();
1113       }
1114       if (base == from_lo || index == from_lo) {
1115         assert(base != from_hi, "can't be");
1116         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1117         __ movl(as_Address_hi(to_addr), from_hi);
1118         if (patch != NULL) {
1119           patching_epilog(patch, lir_patch_high, base, info);
1120           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1121           patch_code = lir_patch_low;
1122         }
1123         __ movl(as_Address_lo(to_addr), from_lo);
1124       } else {
1125         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1126         __ movl(as_Address_lo(to_addr), from_lo);
1127         if (patch != NULL) {
1128           patching_epilog(patch, lir_patch_low, base, info);
1129           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1130           patch_code = lir_patch_high;
1131         }
1132         __ movl(as_Address_hi(to_addr), from_hi);
1133       }
1134 #endif // _LP64
1135       break;
1136     }
1137 
1138     case T_BYTE:    // fall through
1139     case T_BOOLEAN: {
1140       Register src_reg = src->as_register();
1141       Address dst_addr = as_Address(to_addr);
1142       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1143       __ movb(dst_addr, src_reg);
1144       break;
1145     }
1146 
1147     case T_CHAR:    // fall through
1148     case T_SHORT:
1149       __ movw(as_Address(to_addr), src->as_register());
1150       break;
1151 
1152     default:
1153       ShouldNotReachHere();
1154   }
1155   if (info != NULL) {
1156     add_debug_info_for_null_check(null_check_here, info);
1157   }
1158 
1159   if (patch_code != lir_patch_none) {
1160     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1161   }
1162 }
1163 
1164 
1165 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1166   assert(src->is_stack(), "should not call otherwise");
1167   assert(dest->is_register(), "should not call otherwise");
1168 
1169   if (dest->is_single_cpu()) {
1170     if (type == T_ARRAY || type == T_OBJECT) {
1171       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1172       __ verify_oop(dest->as_register());
1173     } else if (type == T_METADATA) {
1174       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1175     } else {
1176       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1177     }
1178 
1179   } else if (dest->is_double_cpu()) {
1180     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1181     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1182     __ movptr(dest->as_register_lo(), src_addr_LO);
1183     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1184 
1185   } else if (dest->is_single_xmm()) {
1186     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1187     __ movflt(dest->as_xmm_float_reg(), src_addr);
1188 
1189   } else if (dest->is_double_xmm()) {
1190     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1191     __ movdbl(dest->as_xmm_double_reg(), src_addr);
1192 
1193   } else if (dest->is_single_fpu()) {
1194     assert(dest->fpu_regnr() == 0, "dest must be TOS");
1195     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1196     __ fld_s(src_addr);
1197 
1198   } else if (dest->is_double_fpu()) {
1199     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1200     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1201     __ fld_d(src_addr);
1202 
1203   } else {
1204     ShouldNotReachHere();
1205   }
1206 }
1207 
1208 
1209 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1210   if (src->is_single_stack()) {
1211     if (type == T_OBJECT || type == T_ARRAY) {
1212       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1213       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1214     } else {
1215 #ifndef _LP64
1216       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1217       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1218 #else
1219       //no pushl on 64bits
1220       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1221       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1222 #endif
1223     }
1224 
1225   } else if (src->is_double_stack()) {
1226 #ifdef _LP64
1227     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1228     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1229 #else
1230     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1231     // push and pop the part at src + wordSize, adding wordSize for the previous push
1232     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1233     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1234     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1235 #endif // _LP64
1236 
1237   } else {
1238     ShouldNotReachHere();
1239   }
1240 }
1241 
1242 
1243 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
1244   assert(src->is_address(), "should not call otherwise");
1245   assert(dest->is_register(), "should not call otherwise");
1246 
1247   LIR_Address* addr = src->as_address_ptr();
1248   Address from_addr = as_Address(addr);
1249 
1250   if (addr->base()->type() == T_OBJECT) {
1251     __ verify_oop(addr->base()->as_pointer_register());
1252   }
1253 
1254   switch (type) {
1255     case T_BOOLEAN: // fall through
1256     case T_BYTE:    // fall through
1257     case T_CHAR:    // fall through
1258     case T_SHORT:
1259       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1260         // on pre P6 processors we may get partial register stalls
1261         // so blow away the value of to_rinfo before loading a
1262         // partial word into it.  Do it here so that it precedes
1263         // the potential patch point below.
1264         __ xorptr(dest->as_register(), dest->as_register());
1265       }
1266       break;
1267   }
1268 
1269   PatchingStub* patch = NULL;
1270   if (patch_code != lir_patch_none) {
1271     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1272     assert(from_addr.disp() != 0, "must have");
1273   }
1274   if (info != NULL) {
1275     add_debug_info_for_null_check_here(info);
1276   }
1277 
1278   switch (type) {
1279     case T_FLOAT: {
1280       if (dest->is_single_xmm()) {
1281         __ movflt(dest->as_xmm_float_reg(), from_addr);
1282       } else {
1283         assert(dest->is_single_fpu(), "must be");
1284         assert(dest->fpu_regnr() == 0, "dest must be TOS");
1285         __ fld_s(from_addr);
1286       }
1287       break;
1288     }
1289 
1290     case T_DOUBLE: {
1291       if (dest->is_double_xmm()) {
1292         __ movdbl(dest->as_xmm_double_reg(), from_addr);
1293       } else {
1294         assert(dest->is_double_fpu(), "must be");
1295         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1296         __ fld_d(from_addr);
1297       }
1298       break;
1299     }
1300 
1301     case T_OBJECT:  // fall through
1302     case T_ARRAY:   // fall through
1303       if (UseCompressedOops && !wide) {
1304         __ movl(dest->as_register(), from_addr);
1305       } else {
1306         __ movptr(dest->as_register(), from_addr);
1307       }
1308       break;
1309 
1310     case T_ADDRESS:
1311       if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1312         __ movl(dest->as_register(), from_addr);
1313       } else {
1314         __ movptr(dest->as_register(), from_addr);
1315       }
1316       break;
1317     case T_INT:
1318       __ movl(dest->as_register(), from_addr);
1319       break;
1320 
1321     case T_LONG: {
1322       Register to_lo = dest->as_register_lo();
1323       Register to_hi = dest->as_register_hi();
1324 #ifdef _LP64
1325       __ movptr(to_lo, as_Address_lo(addr));
1326 #else
1327       Register base = addr->base()->as_register();
1328       Register index = noreg;
1329       if (addr->index()->is_register()) {
1330         index = addr->index()->as_register();
1331       }
1332       if ((base == to_lo && index == to_hi) ||
1333           (base == to_hi && index == to_lo)) {
1334         // addresses with 2 registers are only formed as a result of
1335         // array access so this code will never have to deal with
1336         // patches or null checks.
1337         assert(info == NULL && patch == NULL, "must be");
1338         __ lea(to_hi, as_Address(addr));
1339         __ movl(to_lo, Address(to_hi, 0));
1340         __ movl(to_hi, Address(to_hi, BytesPerWord));
1341       } else if (base == to_lo || index == to_lo) {
1342         assert(base != to_hi, "can't be");
1343         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1344         __ movl(to_hi, as_Address_hi(addr));
1345         if (patch != NULL) {
1346           patching_epilog(patch, lir_patch_high, base, info);
1347           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1348           patch_code = lir_patch_low;
1349         }
1350         __ movl(to_lo, as_Address_lo(addr));
1351       } else {
1352         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1353         __ movl(to_lo, as_Address_lo(addr));
1354         if (patch != NULL) {
1355           patching_epilog(patch, lir_patch_low, base, info);
1356           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1357           patch_code = lir_patch_high;
1358         }
1359         __ movl(to_hi, as_Address_hi(addr));
1360       }
1361 #endif // _LP64
1362       break;
1363     }
1364 
1365     case T_BOOLEAN: // fall through
1366     case T_BYTE: {
1367       Register dest_reg = dest->as_register();
1368       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1369       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1370         __ movsbl(dest_reg, from_addr);
1371       } else {
1372         __ movb(dest_reg, from_addr);
1373         __ shll(dest_reg, 24);
1374         __ sarl(dest_reg, 24);
1375       }
1376       break;
1377     }
1378 
1379     case T_CHAR: {
1380       Register dest_reg = dest->as_register();
1381       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1382       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1383         __ movzwl(dest_reg, from_addr);
1384       } else {
1385         __ movw(dest_reg, from_addr);
1386       }
1387       break;
1388     }
1389 
1390     case T_SHORT: {
1391       Register dest_reg = dest->as_register();
1392       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1393         __ movswl(dest_reg, from_addr);
1394       } else {
1395         __ movw(dest_reg, from_addr);
1396         __ shll(dest_reg, 16);
1397         __ sarl(dest_reg, 16);
1398       }
1399       break;
1400     }
1401 
1402     default:
1403       ShouldNotReachHere();
1404   }
1405 
1406   if (patch != NULL) {
1407     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1408   }
1409 
1410   if (type == T_ARRAY || type == T_OBJECT) {
1411 #ifdef _LP64
1412     if (UseCompressedOops && !wide) {
1413       __ decode_heap_oop(dest->as_register());
1414     }
1415 #endif
1416     __ verify_oop(dest->as_register());
1417   } else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1418 #ifdef _LP64
1419     if (UseCompressedClassPointers) {
1420       __ decode_klass_not_null(dest->as_register());
1421     }
1422 #endif
1423   }
1424 }
1425 
1426 
1427 NEEDS_CLEANUP; // This could be static?
1428 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1429   int elem_size = type2aelembytes(type);
1430   switch (elem_size) {
1431     case 1: return Address::times_1;
1432     case 2: return Address::times_2;
1433     case 4: return Address::times_4;
1434     case 8: return Address::times_8;
1435   }
1436   ShouldNotReachHere();
1437   return Address::no_scale;
1438 }
1439 
1440 
1441 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1442   switch (op->code()) {
1443     case lir_idiv:
1444     case lir_irem:
1445       arithmetic_idiv(op->code(),
1446                       op->in_opr1(),
1447                       op->in_opr2(),
1448                       op->in_opr3(),
1449                       op->result_opr(),
1450                       op->info());
1451       break;
1452     default:      ShouldNotReachHere(); break;
1453   }
1454 }
1455 
1456 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1457 #ifdef ASSERT
1458   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1459   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
1460   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1461 #endif
1462 
1463   if (op->cond() == lir_cond_always) {
1464     if (op->info() != NULL) add_debug_info_for_branch(op->info());
1465     __ jmp (*(op->label()));
1466   } else {
1467     Assembler::Condition acond = Assembler::zero;
1468     if (op->code() == lir_cond_float_branch) {
1469       assert(op->ublock() != NULL, "must have unordered successor");
1470       __ jcc(Assembler::parity, *(op->ublock()->label()));
1471       switch(op->cond()) {
1472         case lir_cond_equal:        acond = Assembler::equal;      break;
1473         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1474         case lir_cond_less:         acond = Assembler::below;      break;
1475         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1476         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1477         case lir_cond_greater:      acond = Assembler::above;      break;
1478         default:                         ShouldNotReachHere();
1479       }
1480     } else {
1481       switch (op->cond()) {
1482         case lir_cond_equal:        acond = Assembler::equal;       break;
1483         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1484         case lir_cond_less:         acond = Assembler::less;        break;
1485         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1486         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1487         case lir_cond_greater:      acond = Assembler::greater;     break;
1488         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1489         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1490         default:                         ShouldNotReachHere();
1491       }
1492     }
1493     __ jcc(acond,*(op->label()));
1494   }
1495 }
1496 
1497 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1498   LIR_Opr src  = op->in_opr();
1499   LIR_Opr dest = op->result_opr();
1500 
1501   switch (op->bytecode()) {
1502     case Bytecodes::_i2l:
1503 #ifdef _LP64
1504       __ movl2ptr(dest->as_register_lo(), src->as_register());
1505 #else
1506       move_regs(src->as_register(), dest->as_register_lo());
1507       move_regs(src->as_register(), dest->as_register_hi());
1508       __ sarl(dest->as_register_hi(), 31);
1509 #endif // LP64
1510       break;
1511 
1512     case Bytecodes::_l2i:
1513 #ifdef _LP64
1514       __ movl(dest->as_register(), src->as_register_lo());
1515 #else
1516       move_regs(src->as_register_lo(), dest->as_register());
1517 #endif
1518       break;
1519 
1520     case Bytecodes::_i2b:
1521       move_regs(src->as_register(), dest->as_register());
1522       __ sign_extend_byte(dest->as_register());
1523       break;
1524 
1525     case Bytecodes::_i2c:
1526       move_regs(src->as_register(), dest->as_register());
1527       __ andl(dest->as_register(), 0xFFFF);
1528       break;
1529 
1530     case Bytecodes::_i2s:
1531       move_regs(src->as_register(), dest->as_register());
1532       __ sign_extend_short(dest->as_register());
1533       break;
1534 
1535 
1536     case Bytecodes::_f2d:
1537     case Bytecodes::_d2f:
1538       if (dest->is_single_xmm()) {
1539         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1540       } else if (dest->is_double_xmm()) {
1541         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1542       } else {
1543         assert(src->fpu() == dest->fpu(), "register must be equal");
1544         // do nothing (float result is rounded later through spilling)
1545       }
1546       break;
1547 
1548     case Bytecodes::_i2f:
1549     case Bytecodes::_i2d:
1550       if (dest->is_single_xmm()) {
1551         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1552       } else if (dest->is_double_xmm()) {
1553         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1554       } else {
1555         assert(dest->fpu() == 0, "result must be on TOS");
1556         __ movl(Address(rsp, 0), src->as_register());
1557         __ fild_s(Address(rsp, 0));
1558       }
1559       break;
1560 
1561     case Bytecodes::_f2i:
1562     case Bytecodes::_d2i:
1563       if (src->is_single_xmm()) {
1564         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1565       } else if (src->is_double_xmm()) {
1566         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1567       } else {
1568         assert(src->fpu() == 0, "input must be on TOS");
1569         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
1570         __ fist_s(Address(rsp, 0));
1571         __ movl(dest->as_register(), Address(rsp, 0));
1572         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1573       }
1574 
1575       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1576       assert(op->stub() != NULL, "stub required");
1577       __ cmpl(dest->as_register(), 0x80000000);
1578       __ jcc(Assembler::equal, *op->stub()->entry());
1579       __ bind(*op->stub()->continuation());
1580       break;
1581 
1582     case Bytecodes::_l2f:
1583     case Bytecodes::_l2d:
1584       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1585       assert(dest->fpu() == 0, "result must be on TOS");
1586 
1587       __ movptr(Address(rsp, 0),            src->as_register_lo());
1588       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
1589       __ fild_d(Address(rsp, 0));
1590       // float result is rounded later through spilling
1591       break;
1592 
1593     case Bytecodes::_f2l:
1594     case Bytecodes::_d2l:
1595       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1596       assert(src->fpu() == 0, "input must be on TOS");
1597       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1598 
1599       // instruction sequence too long to inline it here
1600       {
1601         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1602       }
1603       break;
1604 
1605     default: ShouldNotReachHere();
1606   }
1607 }
1608 
1609 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1610   if (op->init_check()) {
1611     __ cmpb(Address(op->klass()->as_register(),
1612                     InstanceKlass::init_state_offset()),
1613                     InstanceKlass::fully_initialized);
1614     add_debug_info_for_null_check_here(op->stub()->info());
1615     __ jcc(Assembler::notEqual, *op->stub()->entry());
1616   }
1617   __ allocate_object(op->obj()->as_register(),
1618                      op->tmp1()->as_register(),
1619                      op->tmp2()->as_register(),
1620                      op->header_size(),
1621                      op->object_size(),
1622                      op->klass()->as_register(),
1623                      *op->stub()->entry());
1624   __ bind(*op->stub()->continuation());
1625 }
1626 
1627 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1628   Register len =  op->len()->as_register();
1629   LP64_ONLY( __ movslq(len, len); )
1630 
1631   if (UseSlowPath ||
1632       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
1633       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
1634     __ jmp(*op->stub()->entry());
1635   } else {
1636     Register tmp1 = op->tmp1()->as_register();
1637     Register tmp2 = op->tmp2()->as_register();
1638     Register tmp3 = op->tmp3()->as_register();
1639     if (len == tmp1) {
1640       tmp1 = tmp3;
1641     } else if (len == tmp2) {
1642       tmp2 = tmp3;
1643     } else if (len == tmp3) {
1644       // everything is ok
1645     } else {
1646       __ mov(tmp3, len);
1647     }
1648     __ allocate_array(op->obj()->as_register(),
1649                       len,
1650                       tmp1,
1651                       tmp2,
1652                       arrayOopDesc::header_size(op->type()),
1653                       array_element_size(op->type()),
1654                       op->klass()->as_register(),
1655                       *op->stub()->entry());
1656   }
1657   __ bind(*op->stub()->continuation());
1658 }
1659 
1660 void LIR_Assembler::type_profile_helper(Register mdo,
1661                                         ciMethodData *md, ciProfileData *data,
1662                                         Register recv, Label* update_done) {
1663   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1664     Label next_test;
1665     // See if the receiver is receiver[n].
1666     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1667     __ jccb(Assembler::notEqual, next_test);
1668     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1669     __ addptr(data_addr, DataLayout::counter_increment);
1670     __ jmp(*update_done);
1671     __ bind(next_test);
1672   }
1673 
1674   // Didn't find receiver; find next empty slot and fill it in
1675   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1676     Label next_test;
1677     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1678     __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
1679     __ jccb(Assembler::notEqual, next_test);
1680     __ movptr(recv_addr, recv);
1681     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1682     __ jmp(*update_done);
1683     __ bind(next_test);
1684   }
1685 }
1686 
1687 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1688   // we always need a stub for the failure case.
1689   CodeStub* stub = op->stub();
1690   Register obj = op->object()->as_register();
1691   Register k_RInfo = op->tmp1()->as_register();
1692   Register klass_RInfo = op->tmp2()->as_register();
1693   Register dst = op->result_opr()->as_register();
1694   ciKlass* k = op->klass();
1695   Register Rtmp1 = noreg;
1696 
1697   // check if it needs to be profiled
1698   ciMethodData* md;
1699   ciProfileData* data;
1700 
1701   if (op->should_profile()) {
1702     ciMethod* method = op->profiled_method();
1703     assert(method != NULL, "Should have method");
1704     int bci = op->profiled_bci();
1705     md = method->method_data_or_null();
1706     assert(md != NULL, "Sanity");
1707     data = md->bci_to_data(bci);
1708     assert(data != NULL,                "need data for type check");
1709     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1710   }
1711   Label profile_cast_success, profile_cast_failure;
1712   Label *success_target = op->should_profile() ? &profile_cast_success : success;
1713   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
1714 
1715   if (obj == k_RInfo) {
1716     k_RInfo = dst;
1717   } else if (obj == klass_RInfo) {
1718     klass_RInfo = dst;
1719   }
1720   if (k->is_loaded() && !UseCompressedClassPointers) {
1721     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1722   } else {
1723     Rtmp1 = op->tmp3()->as_register();
1724     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1725   }
1726 
1727   assert_different_registers(obj, k_RInfo, klass_RInfo);
1728 
1729   __ cmpptr(obj, (int32_t)NULL_WORD);
1730   if (op->should_profile()) {
1731     Label not_null;
1732     __ jccb(Assembler::notEqual, not_null);
1733     // Object is null; update MDO and exit
1734     Register mdo  = klass_RInfo;
1735     __ mov_metadata(mdo, md->constant_encoding());
1736     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1737     int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1738     __ orl(data_addr, header_bits);
1739     __ jmp(*obj_is_null);
1740     __ bind(not_null);
1741   } else {
1742     __ jcc(Assembler::equal, *obj_is_null);
1743   }
1744 
1745   if (!k->is_loaded()) {
1746     klass2reg_with_patching(k_RInfo, op->info_for_patch());
1747   } else {
1748 #ifdef _LP64
1749     __ mov_metadata(k_RInfo, k->constant_encoding());
1750 #endif // _LP64
1751   }
1752   __ verify_oop(obj);
1753 
1754   if (op->fast_check()) {
1755     // get object class
1756     // not a safepoint as obj null check happens earlier
1757 #ifdef _LP64
1758     if (UseCompressedClassPointers) {
1759       __ load_klass(Rtmp1, obj);
1760       __ cmpptr(k_RInfo, Rtmp1);
1761     } else {
1762       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1763     }
1764 #else
1765     if (k->is_loaded()) {
1766       __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1767     } else {
1768       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1769     }
1770 #endif
1771     __ jcc(Assembler::notEqual, *failure_target);
1772     // successful cast, fall through to profile or jump
1773   } else {
1774     // get object class
1775     // not a safepoint as obj null check happens earlier
1776     __ load_klass(klass_RInfo, obj);
1777     if (k->is_loaded()) {
1778       // See if we get an immediate positive hit
1779 #ifdef _LP64
1780       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1781 #else
1782       __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1783 #endif // _LP64
1784       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1785         __ jcc(Assembler::notEqual, *failure_target);
1786         // successful cast, fall through to profile or jump
1787       } else {
1788         // See if we get an immediate positive hit
1789         __ jcc(Assembler::equal, *success_target);
1790         // check for self
1791 #ifdef _LP64
1792         __ cmpptr(klass_RInfo, k_RInfo);
1793 #else
1794         __ cmpklass(klass_RInfo, k->constant_encoding());
1795 #endif // _LP64
1796         __ jcc(Assembler::equal, *success_target);
1797 
1798         __ push(klass_RInfo);
1799 #ifdef _LP64
1800         __ push(k_RInfo);
1801 #else
1802         __ pushklass(k->constant_encoding());
1803 #endif // _LP64
1804         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1805         __ pop(klass_RInfo);
1806         __ pop(klass_RInfo);
1807         // result is a boolean
1808         __ cmpl(klass_RInfo, 0);
1809         __ jcc(Assembler::equal, *failure_target);
1810         // successful cast, fall through to profile or jump
1811       }
1812     } else {
1813       // perform the fast part of the checking logic
1814       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1815       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1816       __ push(klass_RInfo);
1817       __ push(k_RInfo);
1818       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1819       __ pop(klass_RInfo);
1820       __ pop(k_RInfo);
1821       // result is a boolean
1822       __ cmpl(k_RInfo, 0);
1823       __ jcc(Assembler::equal, *failure_target);
1824       // successful cast, fall through to profile or jump
1825     }
1826   }
1827   if (op->should_profile()) {
1828     Register mdo  = klass_RInfo, recv = k_RInfo;
1829     __ bind(profile_cast_success);
1830     __ mov_metadata(mdo, md->constant_encoding());
1831     __ load_klass(recv, obj);
1832     Label update_done;
1833     type_profile_helper(mdo, md, data, recv, success);
1834     __ jmp(*success);
1835 
1836     __ bind(profile_cast_failure);
1837     __ mov_metadata(mdo, md->constant_encoding());
1838     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1839     __ subptr(counter_addr, DataLayout::counter_increment);
1840     __ jmp(*failure);
1841   }
1842   __ jmp(*success);
1843 }
1844 
1845 
1846 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1847   LIR_Code code = op->code();
1848   if (code == lir_store_check) {
1849     Register value = op->object()->as_register();
1850     Register array = op->array()->as_register();
1851     Register k_RInfo = op->tmp1()->as_register();
1852     Register klass_RInfo = op->tmp2()->as_register();
1853     Register Rtmp1 = op->tmp3()->as_register();
1854 
1855     CodeStub* stub = op->stub();
1856 
1857     // check if it needs to be profiled
1858     ciMethodData* md;
1859     ciProfileData* data;
1860 
1861     if (op->should_profile()) {
1862       ciMethod* method = op->profiled_method();
1863       assert(method != NULL, "Should have method");
1864       int bci = op->profiled_bci();
1865       md = method->method_data_or_null();
1866       assert(md != NULL, "Sanity");
1867       data = md->bci_to_data(bci);
1868       assert(data != NULL,                "need data for type check");
1869       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1870     }
1871     Label profile_cast_success, profile_cast_failure, done;
1872     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1873     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
1874 
1875     __ cmpptr(value, (int32_t)NULL_WORD);
1876     if (op->should_profile()) {
1877       Label not_null;
1878       __ jccb(Assembler::notEqual, not_null);
1879       // Object is null; update MDO and exit
1880       Register mdo  = klass_RInfo;
1881       __ mov_metadata(mdo, md->constant_encoding());
1882       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1883       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1884       __ orl(data_addr, header_bits);
1885       __ jmp(done);
1886       __ bind(not_null);
1887     } else {
1888       __ jcc(Assembler::equal, done);
1889     }
1890 
1891     add_debug_info_for_null_check_here(op->info_for_exception());
1892     __ load_klass(k_RInfo, array);
1893     __ load_klass(klass_RInfo, value);
1894 
1895     // get instance klass (it's already uncompressed)
1896     __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1897     // perform the fast part of the checking logic
1898     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1899     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1900     __ push(klass_RInfo);
1901     __ push(k_RInfo);
1902     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1903     __ pop(klass_RInfo);
1904     __ pop(k_RInfo);
1905     // result is a boolean
1906     __ cmpl(k_RInfo, 0);
1907     __ jcc(Assembler::equal, *failure_target);
1908     // fall through to the success case
1909 
1910     if (op->should_profile()) {
1911       Register mdo  = klass_RInfo, recv = k_RInfo;
1912       __ bind(profile_cast_success);
1913       __ mov_metadata(mdo, md->constant_encoding());
1914       __ load_klass(recv, value);
1915       Label update_done;
1916       type_profile_helper(mdo, md, data, recv, &done);
1917       __ jmpb(done);
1918 
1919       __ bind(profile_cast_failure);
1920       __ mov_metadata(mdo, md->constant_encoding());
1921       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1922       __ subptr(counter_addr, DataLayout::counter_increment);
1923       __ jmp(*stub->entry());
1924     }
1925 
1926     __ bind(done);
1927   } else
1928     if (code == lir_checkcast) {
1929       Register obj = op->object()->as_register();
1930       Register dst = op->result_opr()->as_register();
1931       Label success;
1932       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1933       __ bind(success);
1934       if (dst != obj) {
1935         __ mov(dst, obj);
1936       }
1937     } else
1938       if (code == lir_instanceof) {
1939         Register obj = op->object()->as_register();
1940         Register dst = op->result_opr()->as_register();
1941         Label success, failure, done;
1942         emit_typecheck_helper(op, &success, &failure, &failure);
1943         __ bind(failure);
1944         __ xorptr(dst, dst);
1945         __ jmpb(done);
1946         __ bind(success);
1947         __ movptr(dst, 1);
1948         __ bind(done);
1949       } else {
1950         ShouldNotReachHere();
1951       }
1952 
1953 }
1954 
1955 
1956 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1957   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
1958     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1959     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1960     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1961     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1962     Register addr = op->addr()->as_register();
1963     if (os::is_MP()) {
1964       __ lock();
1965     }
1966     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1967 
1968   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1969     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1970     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1971     Register newval = op->new_value()->as_register();
1972     Register cmpval = op->cmp_value()->as_register();
1973     assert(cmpval == rax, "wrong register");
1974     assert(newval != NULL, "new val must be register");
1975     assert(cmpval != newval, "cmp and new values must be in different registers");
1976     assert(cmpval != addr, "cmp and addr must be in different registers");
1977     assert(newval != addr, "new value and addr must be in different registers");
1978 
1979     if ( op->code() == lir_cas_obj) {
1980 #ifdef _LP64
1981       if (UseCompressedOops) {
1982         __ encode_heap_oop(cmpval);
1983         __ mov(rscratch1, newval);
1984         __ encode_heap_oop(rscratch1);
1985         if (os::is_MP()) {
1986           __ lock();
1987         }
1988         // cmpval (rax) is implicitly used by this instruction
1989         __ cmpxchgl(rscratch1, Address(addr, 0));
1990       } else
1991 #endif
1992       {
1993         if (os::is_MP()) {
1994           __ lock();
1995         }
1996         __ cmpxchgptr(newval, Address(addr, 0));
1997       }
1998     } else {
1999       assert(op->code() == lir_cas_int, "lir_cas_int expected");
2000       if (os::is_MP()) {
2001         __ lock();
2002       }
2003       __ cmpxchgl(newval, Address(addr, 0));
2004     }
2005 #ifdef _LP64
2006   } else if (op->code() == lir_cas_long) {
2007     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
2008     Register newval = op->new_value()->as_register_lo();
2009     Register cmpval = op->cmp_value()->as_register_lo();
2010     assert(cmpval == rax, "wrong register");
2011     assert(newval != NULL, "new val must be register");
2012     assert(cmpval != newval, "cmp and new values must be in different registers");
2013     assert(cmpval != addr, "cmp and addr must be in different registers");
2014     assert(newval != addr, "new value and addr must be in different registers");
2015     if (os::is_MP()) {
2016       __ lock();
2017     }
2018     __ cmpxchgq(newval, Address(addr, 0));
2019 #endif // _LP64
2020   } else {
2021     Unimplemented();
2022   }
2023 }
2024 
2025 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
2026   Assembler::Condition acond, ncond;
2027   switch (condition) {
2028     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
2029     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
2030     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
2031     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
2032     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
2033     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
2034     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
2035     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
2036     default:                    ShouldNotReachHere();
2037   }
2038 
2039   if (opr1->is_cpu_register()) {
2040     reg2reg(opr1, result);
2041   } else if (opr1->is_stack()) {
2042     stack2reg(opr1, result, result->type());
2043   } else if (opr1->is_constant()) {
2044     const2reg(opr1, result, lir_patch_none, NULL);
2045   } else {
2046     ShouldNotReachHere();
2047   }
2048 
2049   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
2050     // optimized version that does not require a branch
2051     if (opr2->is_single_cpu()) {
2052       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
2053       __ cmov(ncond, result->as_register(), opr2->as_register());
2054     } else if (opr2->is_double_cpu()) {
2055       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2056       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2057       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
2058       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
2059     } else if (opr2->is_single_stack()) {
2060       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
2061     } else if (opr2->is_double_stack()) {
2062       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
2063       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
2064     } else {
2065       ShouldNotReachHere();
2066     }
2067 
2068   } else {
2069     Label skip;
2070     __ jcc (acond, skip);
2071     if (opr2->is_cpu_register()) {
2072       reg2reg(opr2, result);
2073     } else if (opr2->is_stack()) {
2074       stack2reg(opr2, result, result->type());
2075     } else if (opr2->is_constant()) {
2076       const2reg(opr2, result, lir_patch_none, NULL);
2077     } else {
2078       ShouldNotReachHere();
2079     }
2080     __ bind(skip);
2081   }
2082 }
2083 
2084 
2085 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
2086   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
2087 
2088   if (left->is_single_cpu()) {
2089     assert(left == dest, "left and dest must be equal");
2090     Register lreg = left->as_register();
2091 
2092     if (right->is_single_cpu()) {
2093       // cpu register - cpu register
2094       Register rreg = right->as_register();
2095       switch (code) {
2096         case lir_add: __ addl (lreg, rreg); break;
2097         case lir_sub: __ subl (lreg, rreg); break;
2098         case lir_mul: __ imull(lreg, rreg); break;
2099         default:      ShouldNotReachHere();
2100       }
2101 
2102     } else if (right->is_stack()) {
2103       // cpu register - stack
2104       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2105       switch (code) {
2106         case lir_add: __ addl(lreg, raddr); break;
2107         case lir_sub: __ subl(lreg, raddr); break;
2108         default:      ShouldNotReachHere();
2109       }
2110 
2111     } else if (right->is_constant()) {
2112       // cpu register - constant
2113       jint c = right->as_constant_ptr()->as_jint();
2114       switch (code) {
2115         case lir_add: {
2116           __ incrementl(lreg, c);
2117           break;
2118         }
2119         case lir_sub: {
2120           __ decrementl(lreg, c);
2121           break;
2122         }
2123         default: ShouldNotReachHere();
2124       }
2125 
2126     } else {
2127       ShouldNotReachHere();
2128     }
2129 
2130   } else if (left->is_double_cpu()) {
2131     assert(left == dest, "left and dest must be equal");
2132     Register lreg_lo = left->as_register_lo();
2133     Register lreg_hi = left->as_register_hi();
2134 
2135     if (right->is_double_cpu()) {
2136       // cpu register - cpu register
2137       Register rreg_lo = right->as_register_lo();
2138       Register rreg_hi = right->as_register_hi();
2139       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2140       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2141       switch (code) {
2142         case lir_add:
2143           __ addptr(lreg_lo, rreg_lo);
2144           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2145           break;
2146         case lir_sub:
2147           __ subptr(lreg_lo, rreg_lo);
2148           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2149           break;
2150         case lir_mul:
2151 #ifdef _LP64
2152           __ imulq(lreg_lo, rreg_lo);
2153 #else
2154           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2155           __ imull(lreg_hi, rreg_lo);
2156           __ imull(rreg_hi, lreg_lo);
2157           __ addl (rreg_hi, lreg_hi);
2158           __ mull (rreg_lo);
2159           __ addl (lreg_hi, rreg_hi);
2160 #endif // _LP64
2161           break;
2162         default:
2163           ShouldNotReachHere();
2164       }
2165 
2166     } else if (right->is_constant()) {
2167       // cpu register - constant
2168 #ifdef _LP64
2169       jlong c = right->as_constant_ptr()->as_jlong_bits();
2170       __ movptr(r10, (intptr_t) c);
2171       switch (code) {
2172         case lir_add:
2173           __ addptr(lreg_lo, r10);
2174           break;
2175         case lir_sub:
2176           __ subptr(lreg_lo, r10);
2177           break;
2178         default:
2179           ShouldNotReachHere();
2180       }
2181 #else
2182       jint c_lo = right->as_constant_ptr()->as_jint_lo();
2183       jint c_hi = right->as_constant_ptr()->as_jint_hi();
2184       switch (code) {
2185         case lir_add:
2186           __ addptr(lreg_lo, c_lo);
2187           __ adcl(lreg_hi, c_hi);
2188           break;
2189         case lir_sub:
2190           __ subptr(lreg_lo, c_lo);
2191           __ sbbl(lreg_hi, c_hi);
2192           break;
2193         default:
2194           ShouldNotReachHere();
2195       }
2196 #endif // _LP64
2197 
2198     } else {
2199       ShouldNotReachHere();
2200     }
2201 
2202   } else if (left->is_single_xmm()) {
2203     assert(left == dest, "left and dest must be equal");
2204     XMMRegister lreg = left->as_xmm_float_reg();
2205 
2206     if (right->is_single_xmm()) {
2207       XMMRegister rreg = right->as_xmm_float_reg();
2208       switch (code) {
2209         case lir_add: __ addss(lreg, rreg);  break;
2210         case lir_sub: __ subss(lreg, rreg);  break;
2211         case lir_mul_strictfp: // fall through
2212         case lir_mul: __ mulss(lreg, rreg);  break;
2213         case lir_div_strictfp: // fall through
2214         case lir_div: __ divss(lreg, rreg);  break;
2215         default: ShouldNotReachHere();
2216       }
2217     } else {
2218       Address raddr;
2219       if (right->is_single_stack()) {
2220         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2221       } else if (right->is_constant()) {
2222         // hack for now
2223         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2224       } else {
2225         ShouldNotReachHere();
2226       }
2227       switch (code) {
2228         case lir_add: __ addss(lreg, raddr);  break;
2229         case lir_sub: __ subss(lreg, raddr);  break;
2230         case lir_mul_strictfp: // fall through
2231         case lir_mul: __ mulss(lreg, raddr);  break;
2232         case lir_div_strictfp: // fall through
2233         case lir_div: __ divss(lreg, raddr);  break;
2234         default: ShouldNotReachHere();
2235       }
2236     }
2237 
2238   } else if (left->is_double_xmm()) {
2239     assert(left == dest, "left and dest must be equal");
2240 
2241     XMMRegister lreg = left->as_xmm_double_reg();
2242     if (right->is_double_xmm()) {
2243       XMMRegister rreg = right->as_xmm_double_reg();
2244       switch (code) {
2245         case lir_add: __ addsd(lreg, rreg);  break;
2246         case lir_sub: __ subsd(lreg, rreg);  break;
2247         case lir_mul_strictfp: // fall through
2248         case lir_mul: __ mulsd(lreg, rreg);  break;
2249         case lir_div_strictfp: // fall through
2250         case lir_div: __ divsd(lreg, rreg);  break;
2251         default: ShouldNotReachHere();
2252       }
2253     } else {
2254       Address raddr;
2255       if (right->is_double_stack()) {
2256         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2257       } else if (right->is_constant()) {
2258         // hack for now
2259         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2260       } else {
2261         ShouldNotReachHere();
2262       }
2263       switch (code) {
2264         case lir_add: __ addsd(lreg, raddr);  break;
2265         case lir_sub: __ subsd(lreg, raddr);  break;
2266         case lir_mul_strictfp: // fall through
2267         case lir_mul: __ mulsd(lreg, raddr);  break;
2268         case lir_div_strictfp: // fall through
2269         case lir_div: __ divsd(lreg, raddr);  break;
2270         default: ShouldNotReachHere();
2271       }
2272     }
2273 
2274   } else if (left->is_single_fpu()) {
2275     assert(dest->is_single_fpu(),  "fpu stack allocation required");
2276 
2277     if (right->is_single_fpu()) {
2278       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2279 
2280     } else {
2281       assert(left->fpu_regnr() == 0, "left must be on TOS");
2282       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2283 
2284       Address raddr;
2285       if (right->is_single_stack()) {
2286         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2287       } else if (right->is_constant()) {
2288         address const_addr = float_constant(right->as_jfloat());
2289         assert(const_addr != NULL, "incorrect float/double constant maintainance");
2290         // hack for now
2291         raddr = __ as_Address(InternalAddress(const_addr));
2292       } else {
2293         ShouldNotReachHere();
2294       }
2295 
2296       switch (code) {
2297         case lir_add: __ fadd_s(raddr); break;
2298         case lir_sub: __ fsub_s(raddr); break;
2299         case lir_mul_strictfp: // fall through
2300         case lir_mul: __ fmul_s(raddr); break;
2301         case lir_div_strictfp: // fall through
2302         case lir_div: __ fdiv_s(raddr); break;
2303         default:      ShouldNotReachHere();
2304       }
2305     }
2306 
2307   } else if (left->is_double_fpu()) {
2308     assert(dest->is_double_fpu(),  "fpu stack allocation required");
2309 
2310     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2311       // Double values require special handling for strictfp mul/div on x86
2312       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
2313       __ fmulp(left->fpu_regnrLo() + 1);
2314     }
2315 
2316     if (right->is_double_fpu()) {
2317       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2318 
2319     } else {
2320       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2321       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2322 
2323       Address raddr;
2324       if (right->is_double_stack()) {
2325         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2326       } else if (right->is_constant()) {
2327         // hack for now
2328         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2329       } else {
2330         ShouldNotReachHere();
2331       }
2332 
2333       switch (code) {
2334         case lir_add: __ fadd_d(raddr); break;
2335         case lir_sub: __ fsub_d(raddr); break;
2336         case lir_mul_strictfp: // fall through
2337         case lir_mul: __ fmul_d(raddr); break;
2338         case lir_div_strictfp: // fall through
2339         case lir_div: __ fdiv_d(raddr); break;
2340         default: ShouldNotReachHere();
2341       }
2342     }
2343 
2344     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2345       // Double values require special handling for strictfp mul/div on x86
2346       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
2347       __ fmulp(dest->fpu_regnrLo() + 1);
2348     }
2349 
2350   } else if (left->is_single_stack() || left->is_address()) {
2351     assert(left == dest, "left and dest must be equal");
2352 
2353     Address laddr;
2354     if (left->is_single_stack()) {
2355       laddr = frame_map()->address_for_slot(left->single_stack_ix());
2356     } else if (left->is_address()) {
2357       laddr = as_Address(left->as_address_ptr());
2358     } else {
2359       ShouldNotReachHere();
2360     }
2361 
2362     if (right->is_single_cpu()) {
2363       Register rreg = right->as_register();
2364       switch (code) {
2365         case lir_add: __ addl(laddr, rreg); break;
2366         case lir_sub: __ subl(laddr, rreg); break;
2367         default:      ShouldNotReachHere();
2368       }
2369     } else if (right->is_constant()) {
2370       jint c = right->as_constant_ptr()->as_jint();
2371       switch (code) {
2372         case lir_add: {
2373           __ incrementl(laddr, c);
2374           break;
2375         }
2376         case lir_sub: {
2377           __ decrementl(laddr, c);
2378           break;
2379         }
2380         default: ShouldNotReachHere();
2381       }
2382     } else {
2383       ShouldNotReachHere();
2384     }
2385 
2386   } else {
2387     ShouldNotReachHere();
2388   }
2389 }
2390 
2391 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2392   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2393   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2394   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2395 
2396   bool left_is_tos = (left_index == 0);
2397   bool dest_is_tos = (dest_index == 0);
2398   int non_tos_index = (left_is_tos ? right_index : left_index);
2399 
2400   switch (code) {
2401     case lir_add:
2402       if (pop_fpu_stack)       __ faddp(non_tos_index);
2403       else if (dest_is_tos)    __ fadd (non_tos_index);
2404       else                     __ fadda(non_tos_index);
2405       break;
2406 
2407     case lir_sub:
2408       if (left_is_tos) {
2409         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2410         else if (dest_is_tos)  __ fsub  (non_tos_index);
2411         else                   __ fsubra(non_tos_index);
2412       } else {
2413         if (pop_fpu_stack)     __ fsubp (non_tos_index);
2414         else if (dest_is_tos)  __ fsubr (non_tos_index);
2415         else                   __ fsuba (non_tos_index);
2416       }
2417       break;
2418 
2419     case lir_mul_strictfp: // fall through
2420     case lir_mul:
2421       if (pop_fpu_stack)       __ fmulp(non_tos_index);
2422       else if (dest_is_tos)    __ fmul (non_tos_index);
2423       else                     __ fmula(non_tos_index);
2424       break;
2425 
2426     case lir_div_strictfp: // fall through
2427     case lir_div:
2428       if (left_is_tos) {
2429         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2430         else if (dest_is_tos)  __ fdiv  (non_tos_index);
2431         else                   __ fdivra(non_tos_index);
2432       } else {
2433         if (pop_fpu_stack)     __ fdivp (non_tos_index);
2434         else if (dest_is_tos)  __ fdivr (non_tos_index);
2435         else                   __ fdiva (non_tos_index);
2436       }
2437       break;
2438 
2439     case lir_rem:
2440       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2441       __ fremr(noreg);
2442       break;
2443 
2444     default:
2445       ShouldNotReachHere();
2446   }
2447 }
2448 
2449 
2450 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
2451   if (value->is_double_xmm()) {
2452     switch(code) {
2453       case lir_abs :
2454         {
2455           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2456             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2457           }
2458           __ andpd(dest->as_xmm_double_reg(),
2459                     ExternalAddress((address)double_signmask_pool));
2460         }
2461         break;
2462 
2463       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2464       // all other intrinsics are not available in the SSE instruction set, so FPU is used
2465       default      : ShouldNotReachHere();
2466     }
2467 
2468   } else if (value->is_double_fpu()) {
2469     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2470     switch(code) {
2471       case lir_log   : __ flog() ; break;
2472       case lir_log10 : __ flog10() ; break;
2473       case lir_abs   : __ fabs() ; break;
2474       case lir_sqrt  : __ fsqrt(); break;
2475       case lir_sin   :
2476         // Should consider not saving rbx, if not necessary
2477         __ trigfunc('s', op->as_Op2()->fpu_stack_size());
2478         break;
2479       case lir_cos :
2480         // Should consider not saving rbx, if not necessary
2481         assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
2482         __ trigfunc('c', op->as_Op2()->fpu_stack_size());
2483         break;
2484       case lir_tan :
2485         // Should consider not saving rbx, if not necessary
2486         __ trigfunc('t', op->as_Op2()->fpu_stack_size());
2487         break;
2488       case lir_exp :
2489         __ exp_with_fallback(op->as_Op2()->fpu_stack_size());
2490         break;
2491       case lir_pow :
2492         __ pow_with_fallback(op->as_Op2()->fpu_stack_size());
2493         break;
2494       default      : ShouldNotReachHere();
2495     }
2496   } else {
2497     Unimplemented();
2498   }
2499 }
2500 
2501 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2502   // assert(left->destroys_register(), "check");
2503   if (left->is_single_cpu()) {
2504     Register reg = left->as_register();
2505     if (right->is_constant()) {
2506       int val = right->as_constant_ptr()->as_jint();
2507       switch (code) {
2508         case lir_logic_and: __ andl (reg, val); break;
2509         case lir_logic_or:  __ orl  (reg, val); break;
2510         case lir_logic_xor: __ xorl (reg, val); break;
2511         default: ShouldNotReachHere();
2512       }
2513     } else if (right->is_stack()) {
2514       // added support for stack operands
2515       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2516       switch (code) {
2517         case lir_logic_and: __ andl (reg, raddr); break;
2518         case lir_logic_or:  __ orl  (reg, raddr); break;
2519         case lir_logic_xor: __ xorl (reg, raddr); break;
2520         default: ShouldNotReachHere();
2521       }
2522     } else {
2523       Register rright = right->as_register();
2524       switch (code) {
2525         case lir_logic_and: __ andptr (reg, rright); break;
2526         case lir_logic_or : __ orptr  (reg, rright); break;
2527         case lir_logic_xor: __ xorptr (reg, rright); break;
2528         default: ShouldNotReachHere();
2529       }
2530     }
2531     move_regs(reg, dst->as_register());
2532   } else {
2533     Register l_lo = left->as_register_lo();
2534     Register l_hi = left->as_register_hi();
2535     if (right->is_constant()) {
2536 #ifdef _LP64
2537       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2538       switch (code) {
2539         case lir_logic_and:
2540           __ andq(l_lo, rscratch1);
2541           break;
2542         case lir_logic_or:
2543           __ orq(l_lo, rscratch1);
2544           break;
2545         case lir_logic_xor:
2546           __ xorq(l_lo, rscratch1);
2547           break;
2548         default: ShouldNotReachHere();
2549       }
2550 #else
2551       int r_lo = right->as_constant_ptr()->as_jint_lo();
2552       int r_hi = right->as_constant_ptr()->as_jint_hi();
2553       switch (code) {
2554         case lir_logic_and:
2555           __ andl(l_lo, r_lo);
2556           __ andl(l_hi, r_hi);
2557           break;
2558         case lir_logic_or:
2559           __ orl(l_lo, r_lo);
2560           __ orl(l_hi, r_hi);
2561           break;
2562         case lir_logic_xor:
2563           __ xorl(l_lo, r_lo);
2564           __ xorl(l_hi, r_hi);
2565           break;
2566         default: ShouldNotReachHere();
2567       }
2568 #endif // _LP64
2569     } else {
2570 #ifdef _LP64
2571       Register r_lo;
2572       if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
2573         r_lo = right->as_register();
2574       } else {
2575         r_lo = right->as_register_lo();
2576       }
2577 #else
2578       Register r_lo = right->as_register_lo();
2579       Register r_hi = right->as_register_hi();
2580       assert(l_lo != r_hi, "overwriting registers");
2581 #endif
2582       switch (code) {
2583         case lir_logic_and:
2584           __ andptr(l_lo, r_lo);
2585           NOT_LP64(__ andptr(l_hi, r_hi);)
2586           break;
2587         case lir_logic_or:
2588           __ orptr(l_lo, r_lo);
2589           NOT_LP64(__ orptr(l_hi, r_hi);)
2590           break;
2591         case lir_logic_xor:
2592           __ xorptr(l_lo, r_lo);
2593           NOT_LP64(__ xorptr(l_hi, r_hi);)
2594           break;
2595         default: ShouldNotReachHere();
2596       }
2597     }
2598 
2599     Register dst_lo = dst->as_register_lo();
2600     Register dst_hi = dst->as_register_hi();
2601 
2602 #ifdef _LP64
2603     move_regs(l_lo, dst_lo);
2604 #else
2605     if (dst_lo == l_hi) {
2606       assert(dst_hi != l_lo, "overwriting registers");
2607       move_regs(l_hi, dst_hi);
2608       move_regs(l_lo, dst_lo);
2609     } else {
2610       assert(dst_lo != l_hi, "overwriting registers");
2611       move_regs(l_lo, dst_lo);
2612       move_regs(l_hi, dst_hi);
2613     }
2614 #endif // _LP64
2615   }
2616 }
2617 
2618 
2619 // we assume that rax, and rdx can be overwritten
2620 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2621 
2622   assert(left->is_single_cpu(),   "left must be register");
2623   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2624   assert(result->is_single_cpu(), "result must be register");
2625 
2626   //  assert(left->destroys_register(), "check");
2627   //  assert(right->destroys_register(), "check");
2628 
2629   Register lreg = left->as_register();
2630   Register dreg = result->as_register();
2631 
2632   if (right->is_constant()) {
2633     int divisor = right->as_constant_ptr()->as_jint();
2634     assert(divisor > 0 && is_power_of_2(divisor), "must be");
2635     if (code == lir_idiv) {
2636       assert(lreg == rax, "must be rax,");
2637       assert(temp->as_register() == rdx, "tmp register must be rdx");
2638       __ cdql(); // sign extend into rdx:rax
2639       if (divisor == 2) {
2640         __ subl(lreg, rdx);
2641       } else {
2642         __ andl(rdx, divisor - 1);
2643         __ addl(lreg, rdx);
2644       }
2645       __ sarl(lreg, log2_intptr(divisor));
2646       move_regs(lreg, dreg);
2647     } else if (code == lir_irem) {
2648       Label done;
2649       __ mov(dreg, lreg);
2650       __ andl(dreg, 0x80000000 | (divisor - 1));
2651       __ jcc(Assembler::positive, done);
2652       __ decrement(dreg);
2653       __ orl(dreg, ~(divisor - 1));
2654       __ increment(dreg);
2655       __ bind(done);
2656     } else {
2657       ShouldNotReachHere();
2658     }
2659   } else {
2660     Register rreg = right->as_register();
2661     assert(lreg == rax, "left register must be rax,");
2662     assert(rreg != rdx, "right register must not be rdx");
2663     assert(temp->as_register() == rdx, "tmp register must be rdx");
2664 
2665     move_regs(lreg, rax);
2666 
2667     int idivl_offset = __ corrected_idivl(rreg);
2668     add_debug_info_for_div0(idivl_offset, info);
2669     if (code == lir_irem) {
2670       move_regs(rdx, dreg); // result is in rdx
2671     } else {
2672       move_regs(rax, dreg);
2673     }
2674   }
2675 }
2676 
2677 
2678 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2679   if (opr1->is_single_cpu()) {
2680     Register reg1 = opr1->as_register();
2681     if (opr2->is_single_cpu()) {
2682       // cpu register - cpu register
2683       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2684         __ cmpptr(reg1, opr2->as_register());
2685       } else {
2686         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
2687         __ cmpl(reg1, opr2->as_register());
2688       }
2689     } else if (opr2->is_stack()) {
2690       // cpu register - stack
2691       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2692         __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2693       } else {
2694         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2695       }
2696     } else if (opr2->is_constant()) {
2697       // cpu register - constant
2698       LIR_Const* c = opr2->as_constant_ptr();
2699       if (c->type() == T_INT) {
2700         __ cmpl(reg1, c->as_jint());
2701       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2702         // In 64bit oops are single register
2703         jobject o = c->as_jobject();
2704         if (o == NULL) {
2705           __ cmpptr(reg1, (int32_t)NULL_WORD);
2706         } else {
2707 #ifdef _LP64
2708           __ movoop(rscratch1, o);
2709           __ cmpptr(reg1, rscratch1);
2710 #else
2711           __ cmpoop(reg1, c->as_jobject());
2712 #endif // _LP64
2713         }
2714       } else {
2715         fatal(err_msg("unexpected type: %s", basictype_to_str(c->type())));
2716       }
2717       // cpu register - address
2718     } else if (opr2->is_address()) {
2719       if (op->info() != NULL) {
2720         add_debug_info_for_null_check_here(op->info());
2721       }
2722       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2723     } else {
2724       ShouldNotReachHere();
2725     }
2726 
2727   } else if(opr1->is_double_cpu()) {
2728     Register xlo = opr1->as_register_lo();
2729     Register xhi = opr1->as_register_hi();
2730     if (opr2->is_double_cpu()) {
2731 #ifdef _LP64
2732       __ cmpptr(xlo, opr2->as_register_lo());
2733 #else
2734       // cpu register - cpu register
2735       Register ylo = opr2->as_register_lo();
2736       Register yhi = opr2->as_register_hi();
2737       __ subl(xlo, ylo);
2738       __ sbbl(xhi, yhi);
2739       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2740         __ orl(xhi, xlo);
2741       }
2742 #endif // _LP64
2743     } else if (opr2->is_constant()) {
2744       // cpu register - constant 0
2745       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2746 #ifdef _LP64
2747       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2748 #else
2749       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2750       __ orl(xhi, xlo);
2751 #endif // _LP64
2752     } else {
2753       ShouldNotReachHere();
2754     }
2755 
2756   } else if (opr1->is_single_xmm()) {
2757     XMMRegister reg1 = opr1->as_xmm_float_reg();
2758     if (opr2->is_single_xmm()) {
2759       // xmm register - xmm register
2760       __ ucomiss(reg1, opr2->as_xmm_float_reg());
2761     } else if (opr2->is_stack()) {
2762       // xmm register - stack
2763       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2764     } else if (opr2->is_constant()) {
2765       // xmm register - constant
2766       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2767     } else if (opr2->is_address()) {
2768       // xmm register - address
2769       if (op->info() != NULL) {
2770         add_debug_info_for_null_check_here(op->info());
2771       }
2772       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2773     } else {
2774       ShouldNotReachHere();
2775     }
2776 
2777   } else if (opr1->is_double_xmm()) {
2778     XMMRegister reg1 = opr1->as_xmm_double_reg();
2779     if (opr2->is_double_xmm()) {
2780       // xmm register - xmm register
2781       __ ucomisd(reg1, opr2->as_xmm_double_reg());
2782     } else if (opr2->is_stack()) {
2783       // xmm register - stack
2784       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2785     } else if (opr2->is_constant()) {
2786       // xmm register - constant
2787       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2788     } else if (opr2->is_address()) {
2789       // xmm register - address
2790       if (op->info() != NULL) {
2791         add_debug_info_for_null_check_here(op->info());
2792       }
2793       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2794     } else {
2795       ShouldNotReachHere();
2796     }
2797 
2798   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2799     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2800     assert(opr2->is_fpu_register(), "both must be registers");
2801     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2802 
2803   } else if (opr1->is_address() && opr2->is_constant()) {
2804     LIR_Const* c = opr2->as_constant_ptr();
2805 #ifdef _LP64
2806     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2807       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2808       __ movoop(rscratch1, c->as_jobject());
2809     }
2810 #endif // LP64
2811     if (op->info() != NULL) {
2812       add_debug_info_for_null_check_here(op->info());
2813     }
2814     // special case: address - constant
2815     LIR_Address* addr = opr1->as_address_ptr();
2816     if (c->type() == T_INT) {
2817       __ cmpl(as_Address(addr), c->as_jint());
2818     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2819 #ifdef _LP64
2820       // %%% Make this explode if addr isn't reachable until we figure out a
2821       // better strategy by giving noreg as the temp for as_Address
2822       __ cmpptr(rscratch1, as_Address(addr, noreg));
2823 #else
2824       __ cmpoop(as_Address(addr), c->as_jobject());
2825 #endif // _LP64
2826     } else {
2827       ShouldNotReachHere();
2828     }
2829 
2830   } else {
2831     ShouldNotReachHere();
2832   }
2833 }
2834 
2835 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2836   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2837     if (left->is_single_xmm()) {
2838       assert(right->is_single_xmm(), "must match");
2839       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2840     } else if (left->is_double_xmm()) {
2841       assert(right->is_double_xmm(), "must match");
2842       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2843 
2844     } else {
2845       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2846       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2847 
2848       assert(left->fpu() == 0, "left must be on TOS");
2849       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2850                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2851     }
2852   } else {
2853     assert(code == lir_cmp_l2i, "check");
2854 #ifdef _LP64
2855     Label done;
2856     Register dest = dst->as_register();
2857     __ cmpptr(left->as_register_lo(), right->as_register_lo());
2858     __ movl(dest, -1);
2859     __ jccb(Assembler::less, done);
2860     __ set_byte_if_not_zero(dest);
2861     __ movzbl(dest, dest);
2862     __ bind(done);
2863 #else
2864     __ lcmp2int(left->as_register_hi(),
2865                 left->as_register_lo(),
2866                 right->as_register_hi(),
2867                 right->as_register_lo());
2868     move_regs(left->as_register_hi(), dst->as_register());
2869 #endif // _LP64
2870   }
2871 }
2872 
2873 
2874 void LIR_Assembler::align_call(LIR_Code code) {
2875   if (os::is_MP()) {
2876     // make sure that the displacement word of the call ends up word aligned
2877     int offset = __ offset();
2878     switch (code) {
2879       case lir_static_call:
2880       case lir_optvirtual_call:
2881       case lir_dynamic_call:
2882         offset += NativeCall::displacement_offset;
2883         break;
2884       case lir_icvirtual_call:
2885         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2886       break;
2887       case lir_virtual_call:  // currently, sparc-specific for niagara
2888       default: ShouldNotReachHere();
2889     }
2890     while (offset++ % BytesPerWord != 0) {
2891       __ nop();
2892     }
2893   }
2894 }
2895 
2896 
2897 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2898   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2899          "must be aligned");
2900   __ call(AddressLiteral(op->addr(), rtype));
2901   add_call_info(code_offset(), op->info());
2902 }
2903 
2904 
2905 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2906   __ ic_call(op->addr());
2907   add_call_info(code_offset(), op->info());
2908   assert(!os::is_MP() ||
2909          (__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
2910          "must be aligned");
2911 }
2912 
2913 
2914 /* Currently, vtable-dispatch is only enabled for sparc platforms */
2915 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
2916   ShouldNotReachHere();
2917 }
2918 
2919 
2920 void LIR_Assembler::emit_static_call_stub() {
2921   address call_pc = __ pc();
2922   address stub = __ start_a_stub(call_stub_size);
2923   if (stub == NULL) {
2924     bailout("static call stub overflow");
2925     return;
2926   }
2927 
2928   int start = __ offset();
2929   if (os::is_MP()) {
2930     // make sure that the displacement word of the call ends up word aligned
2931     int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
2932     while (offset++ % BytesPerWord != 0) {
2933       __ nop();
2934     }
2935   }
2936   __ relocate(static_stub_Relocation::spec(call_pc));
2937   __ mov_metadata(rbx, (Metadata*)NULL);
2938   // must be set to -1 at code generation time
2939   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
2940   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2941   __ jump(RuntimeAddress(__ pc()));
2942 
2943   assert(__ offset() - start <= call_stub_size, "stub too big");
2944   __ end_a_stub();
2945 }
2946 
2947 
2948 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2949   assert(exceptionOop->as_register() == rax, "must match");
2950   assert(exceptionPC->as_register() == rdx, "must match");
2951 
2952   // exception object is not added to oop map by LinearScan
2953   // (LinearScan assumes that no oops are in fixed registers)
2954   info->add_register_oop(exceptionOop);
2955   Runtime1::StubID unwind_id;
2956 
2957   // get current pc information
2958   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2959   int pc_for_athrow_offset = __ offset();
2960   InternalAddress pc_for_athrow(__ pc());
2961   __ lea(exceptionPC->as_register(), pc_for_athrow);
2962   add_call_info(pc_for_athrow_offset, info); // for exception handler
2963 
2964   __ verify_not_null_oop(rax);
2965   // search an exception handler (rax: exception oop, rdx: throwing pc)
2966   if (compilation()->has_fpu_code()) {
2967     unwind_id = Runtime1::handle_exception_id;
2968   } else {
2969     unwind_id = Runtime1::handle_exception_nofpu_id;
2970   }
2971   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2972 
2973   // enough room for two byte trap
2974   __ nop();
2975 }
2976 
2977 
2978 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2979   assert(exceptionOop->as_register() == rax, "must match");
2980 
2981   __ jmp(_unwind_handler_entry);
2982 }
2983 
2984 
2985 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2986 
2987   // optimized version for linear scan:
2988   // * count must be already in ECX (guaranteed by LinearScan)
2989   // * left and dest must be equal
2990   // * tmp must be unused
2991   assert(count->as_register() == SHIFT_count, "count must be in ECX");
2992   assert(left == dest, "left and dest must be equal");
2993   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2994 
2995   if (left->is_single_cpu()) {
2996     Register value = left->as_register();
2997     assert(value != SHIFT_count, "left cannot be ECX");
2998 
2999     switch (code) {
3000       case lir_shl:  __ shll(value); break;
3001       case lir_shr:  __ sarl(value); break;
3002       case lir_ushr: __ shrl(value); break;
3003       default: ShouldNotReachHere();
3004     }
3005   } else if (left->is_double_cpu()) {
3006     Register lo = left->as_register_lo();
3007     Register hi = left->as_register_hi();
3008     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
3009 #ifdef _LP64
3010     switch (code) {
3011       case lir_shl:  __ shlptr(lo);        break;
3012       case lir_shr:  __ sarptr(lo);        break;
3013       case lir_ushr: __ shrptr(lo);        break;
3014       default: ShouldNotReachHere();
3015     }
3016 #else
3017 
3018     switch (code) {
3019       case lir_shl:  __ lshl(hi, lo);        break;
3020       case lir_shr:  __ lshr(hi, lo, true);  break;
3021       case lir_ushr: __ lshr(hi, lo, false); break;
3022       default: ShouldNotReachHere();
3023     }
3024 #endif // LP64
3025   } else {
3026     ShouldNotReachHere();
3027   }
3028 }
3029 
3030 
3031 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
3032   if (dest->is_single_cpu()) {
3033     // first move left into dest so that left is not destroyed by the shift
3034     Register value = dest->as_register();
3035     count = count & 0x1F; // Java spec
3036 
3037     move_regs(left->as_register(), value);
3038     switch (code) {
3039       case lir_shl:  __ shll(value, count); break;
3040       case lir_shr:  __ sarl(value, count); break;
3041       case lir_ushr: __ shrl(value, count); break;
3042       default: ShouldNotReachHere();
3043     }
3044   } else if (dest->is_double_cpu()) {
3045 #ifndef _LP64
3046     Unimplemented();
3047 #else
3048     // first move left into dest so that left is not destroyed by the shift
3049     Register value = dest->as_register_lo();
3050     count = count & 0x1F; // Java spec
3051 
3052     move_regs(left->as_register_lo(), value);
3053     switch (code) {
3054       case lir_shl:  __ shlptr(value, count); break;
3055       case lir_shr:  __ sarptr(value, count); break;
3056       case lir_ushr: __ shrptr(value, count); break;
3057       default: ShouldNotReachHere();
3058     }
3059 #endif // _LP64
3060   } else {
3061     ShouldNotReachHere();
3062   }
3063 }
3064 
3065 
3066 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
3067   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3068   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3069   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3070   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
3071 }
3072 
3073 
3074 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
3075   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3076   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3077   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3078   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
3079 }
3080 
3081 
3082 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
3083   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3084   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3085   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3086   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
3087 }
3088 
3089 
3090 // This code replaces a call to arraycopy; no exception may
3091 // be thrown in this code, they must be thrown in the System.arraycopy
3092 // activation frame; we could save some checks if this would not be the case
3093 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
3094   ciArrayKlass* default_type = op->expected_type();
3095   Register src = op->src()->as_register();
3096   Register dst = op->dst()->as_register();
3097   Register src_pos = op->src_pos()->as_register();
3098   Register dst_pos = op->dst_pos()->as_register();
3099   Register length  = op->length()->as_register();
3100   Register tmp = op->tmp()->as_register();
3101 
3102   CodeStub* stub = op->stub();
3103   int flags = op->flags();
3104   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
3105   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
3106 
3107   // if we don't know anything, just go through the generic arraycopy
3108   if (default_type == NULL) {
3109     Label done;
3110     // save outgoing arguments on stack in case call to System.arraycopy is needed
3111     // HACK ALERT. This code used to push the parameters in a hardwired fashion
3112     // for interpreter calling conventions. Now we have to do it in new style conventions.
3113     // For the moment until C1 gets the new register allocator I just force all the
3114     // args to the right place (except the register args) and then on the back side
3115     // reload the register args properly if we go slow path. Yuck
3116 
3117     // These are proper for the calling convention
3118     store_parameter(length, 2);
3119     store_parameter(dst_pos, 1);
3120     store_parameter(dst, 0);
3121 
3122     // these are just temporary placements until we need to reload
3123     store_parameter(src_pos, 3);
3124     store_parameter(src, 4);
3125     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3126 
3127     address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
3128 
3129     address copyfunc_addr = StubRoutines::generic_arraycopy();
3130 
3131     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3132 #ifdef _LP64
3133     // The arguments are in java calling convention so we can trivially shift them to C
3134     // convention
3135     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3136     __ mov(c_rarg0, j_rarg0);
3137     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3138     __ mov(c_rarg1, j_rarg1);
3139     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3140     __ mov(c_rarg2, j_rarg2);
3141     assert_different_registers(c_rarg3, j_rarg4);
3142     __ mov(c_rarg3, j_rarg3);
3143 #ifdef _WIN64
3144     // Allocate abi space for args but be sure to keep stack aligned
3145     __ subptr(rsp, 6*wordSize);
3146     store_parameter(j_rarg4, 4);
3147     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3148       __ call(RuntimeAddress(C_entry));
3149     } else {
3150 #ifndef PRODUCT
3151       if (PrintC1Statistics) {
3152         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3153       }
3154 #endif
3155       __ call(RuntimeAddress(copyfunc_addr));
3156     }
3157     __ addptr(rsp, 6*wordSize);
3158 #else
3159     __ mov(c_rarg4, j_rarg4);
3160     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3161       __ call(RuntimeAddress(C_entry));
3162     } else {
3163 #ifndef PRODUCT
3164       if (PrintC1Statistics) {
3165         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3166       }
3167 #endif
3168       __ call(RuntimeAddress(copyfunc_addr));
3169     }
3170 #endif // _WIN64
3171 #else
3172     __ push(length);
3173     __ push(dst_pos);
3174     __ push(dst);
3175     __ push(src_pos);
3176     __ push(src);
3177 
3178     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3179       __ call_VM_leaf(C_entry, 5); // removes pushed parameter from the stack
3180     } else {
3181 #ifndef PRODUCT
3182       if (PrintC1Statistics) {
3183         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3184       }
3185 #endif
3186       __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
3187     }
3188 
3189 #endif // _LP64
3190 
3191     __ cmpl(rax, 0);
3192     __ jcc(Assembler::equal, *stub->continuation());
3193 
3194     if (copyfunc_addr != NULL) {
3195       __ mov(tmp, rax);
3196       __ xorl(tmp, -1);
3197     }
3198 
3199     // Reload values from the stack so they are where the stub
3200     // expects them.
3201     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3202     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3203     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3204     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3205     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3206 
3207     if (copyfunc_addr != NULL) {
3208       __ subl(length, tmp);
3209       __ addl(src_pos, tmp);
3210       __ addl(dst_pos, tmp);
3211     }
3212     __ jmp(*stub->entry());
3213 
3214     __ bind(*stub->continuation());
3215     return;
3216   }
3217 
3218   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3219 
3220   int elem_size = type2aelembytes(basic_type);
3221   int shift_amount;
3222   Address::ScaleFactor scale;
3223 
3224   switch (elem_size) {
3225     case 1 :
3226       shift_amount = 0;
3227       scale = Address::times_1;
3228       break;
3229     case 2 :
3230       shift_amount = 1;
3231       scale = Address::times_2;
3232       break;
3233     case 4 :
3234       shift_amount = 2;
3235       scale = Address::times_4;
3236       break;
3237     case 8 :
3238       shift_amount = 3;
3239       scale = Address::times_8;
3240       break;
3241     default:
3242       ShouldNotReachHere();
3243   }
3244 
3245   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3246   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3247   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3248   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3249 
3250   // length and pos's are all sign extended at this point on 64bit
3251 
3252   // test for NULL
3253   if (flags & LIR_OpArrayCopy::src_null_check) {
3254     __ testptr(src, src);
3255     __ jcc(Assembler::zero, *stub->entry());
3256   }
3257   if (flags & LIR_OpArrayCopy::dst_null_check) {
3258     __ testptr(dst, dst);
3259     __ jcc(Assembler::zero, *stub->entry());
3260   }
3261 
3262   // check if negative
3263   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3264     __ testl(src_pos, src_pos);
3265     __ jcc(Assembler::less, *stub->entry());
3266   }
3267   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3268     __ testl(dst_pos, dst_pos);
3269     __ jcc(Assembler::less, *stub->entry());
3270   }
3271 
3272   if (flags & LIR_OpArrayCopy::src_range_check) {
3273     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3274     __ cmpl(tmp, src_length_addr);
3275     __ jcc(Assembler::above, *stub->entry());
3276   }
3277   if (flags & LIR_OpArrayCopy::dst_range_check) {
3278     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3279     __ cmpl(tmp, dst_length_addr);
3280     __ jcc(Assembler::above, *stub->entry());
3281   }
3282 
3283   if (flags & LIR_OpArrayCopy::length_positive_check) {
3284     __ testl(length, length);
3285     __ jcc(Assembler::less, *stub->entry());
3286     __ jcc(Assembler::zero, *stub->continuation());
3287   }
3288 
3289 #ifdef _LP64
3290   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3291   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3292 #endif
3293 
3294   if (flags & LIR_OpArrayCopy::type_check) {
3295     // We don't know the array types are compatible
3296     if (basic_type != T_OBJECT) {
3297       // Simple test for basic type arrays
3298       if (UseCompressedClassPointers) {
3299         __ movl(tmp, src_klass_addr);
3300         __ cmpl(tmp, dst_klass_addr);
3301       } else {
3302         __ movptr(tmp, src_klass_addr);
3303         __ cmpptr(tmp, dst_klass_addr);
3304       }
3305       __ jcc(Assembler::notEqual, *stub->entry());
3306     } else {
3307       // For object arrays, if src is a sub class of dst then we can
3308       // safely do the copy.
3309       Label cont, slow;
3310 
3311       __ push(src);
3312       __ push(dst);
3313 
3314       __ load_klass(src, src);
3315       __ load_klass(dst, dst);
3316 
3317       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
3318 
3319       __ push(src);
3320       __ push(dst);
3321       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
3322       __ pop(dst);
3323       __ pop(src);
3324 
3325       __ cmpl(src, 0);
3326       __ jcc(Assembler::notEqual, cont);
3327 
3328       __ bind(slow);
3329       __ pop(dst);
3330       __ pop(src);
3331 
3332       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
3333       if (copyfunc_addr != NULL) { // use stub if available
3334         // src is not a sub class of dst so we have to do a
3335         // per-element check.
3336 
3337         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
3338         if ((flags & mask) != mask) {
3339           // Check that at least both of them object arrays.
3340           assert(flags & mask, "one of the two should be known to be an object array");
3341 
3342           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3343             __ load_klass(tmp, src);
3344           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3345             __ load_klass(tmp, dst);
3346           }
3347           int lh_offset = in_bytes(Klass::layout_helper_offset());
3348           Address klass_lh_addr(tmp, lh_offset);
3349           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
3350           __ cmpl(klass_lh_addr, objArray_lh);
3351           __ jcc(Assembler::notEqual, *stub->entry());
3352         }
3353 
3354        // Spill because stubs can use any register they like and it's
3355        // easier to restore just those that we care about.
3356        store_parameter(dst, 0);
3357        store_parameter(dst_pos, 1);
3358        store_parameter(length, 2);
3359        store_parameter(src_pos, 3);
3360        store_parameter(src, 4);
3361 
3362 #ifndef _LP64
3363         __ movptr(tmp, dst_klass_addr);
3364         __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
3365         __ push(tmp);
3366         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
3367         __ push(tmp);
3368         __ push(length);
3369         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3370         __ push(tmp);
3371         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3372         __ push(tmp);
3373 
3374         __ call_VM_leaf(copyfunc_addr, 5);
3375 #else
3376         __ movl2ptr(length, length); //higher 32bits must be null
3377 
3378         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3379         assert_different_registers(c_rarg0, dst, dst_pos, length);
3380         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3381         assert_different_registers(c_rarg1, dst, length);
3382 
3383         __ mov(c_rarg2, length);
3384         assert_different_registers(c_rarg2, dst);
3385 
3386 #ifdef _WIN64
3387         // Allocate abi space for args but be sure to keep stack aligned
3388         __ subptr(rsp, 6*wordSize);
3389         __ load_klass(c_rarg3, dst);
3390         __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
3391         store_parameter(c_rarg3, 4);
3392         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
3393         __ call(RuntimeAddress(copyfunc_addr));
3394         __ addptr(rsp, 6*wordSize);
3395 #else
3396         __ load_klass(c_rarg4, dst);
3397         __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
3398         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
3399         __ call(RuntimeAddress(copyfunc_addr));
3400 #endif
3401 
3402 #endif
3403 
3404 #ifndef PRODUCT
3405         if (PrintC1Statistics) {
3406           Label failed;
3407           __ testl(rax, rax);
3408           __ jcc(Assembler::notZero, failed);
3409           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
3410           __ bind(failed);
3411         }
3412 #endif
3413 
3414         __ testl(rax, rax);
3415         __ jcc(Assembler::zero, *stub->continuation());
3416 
3417 #ifndef PRODUCT
3418         if (PrintC1Statistics) {
3419           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
3420         }
3421 #endif
3422 
3423         __ mov(tmp, rax);
3424 
3425         __ xorl(tmp, -1);
3426 
3427         // Restore previously spilled arguments
3428         __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3429         __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3430         __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3431         __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3432         __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3433 
3434 
3435         __ subl(length, tmp);
3436         __ addl(src_pos, tmp);
3437         __ addl(dst_pos, tmp);
3438       }
3439 
3440       __ jmp(*stub->entry());
3441 
3442       __ bind(cont);
3443       __ pop(dst);
3444       __ pop(src);
3445     }
3446   }
3447 
3448 #ifdef ASSERT
3449   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3450     // Sanity check the known type with the incoming class.  For the
3451     // primitive case the types must match exactly with src.klass and
3452     // dst.klass each exactly matching the default type.  For the
3453     // object array case, if no type check is needed then either the
3454     // dst type is exactly the expected type and the src type is a
3455     // subtype which we can't check or src is the same array as dst
3456     // but not necessarily exactly of type default_type.
3457     Label known_ok, halt;
3458     __ mov_metadata(tmp, default_type->constant_encoding());
3459 #ifdef _LP64
3460     if (UseCompressedClassPointers) {
3461       __ encode_klass_not_null(tmp);
3462     }
3463 #endif
3464 
3465     if (basic_type != T_OBJECT) {
3466 
3467       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3468       else                   __ cmpptr(tmp, dst_klass_addr);
3469       __ jcc(Assembler::notEqual, halt);
3470       if (UseCompressedClassPointers)          __ cmpl(tmp, src_klass_addr);
3471       else                   __ cmpptr(tmp, src_klass_addr);
3472       __ jcc(Assembler::equal, known_ok);
3473     } else {
3474       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3475       else                   __ cmpptr(tmp, dst_klass_addr);
3476       __ jcc(Assembler::equal, known_ok);
3477       __ cmpptr(src, dst);
3478       __ jcc(Assembler::equal, known_ok);
3479     }
3480     __ bind(halt);
3481     __ stop("incorrect type information in arraycopy");
3482     __ bind(known_ok);
3483   }
3484 #endif
3485 
3486 #ifndef PRODUCT
3487   if (PrintC1Statistics) {
3488     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
3489   }
3490 #endif
3491 
3492 #ifdef _LP64
3493   assert_different_registers(c_rarg0, dst, dst_pos, length);
3494   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3495   assert_different_registers(c_rarg1, length);
3496   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3497   __ mov(c_rarg2, length);
3498 
3499 #else
3500   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3501   store_parameter(tmp, 0);
3502   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3503   store_parameter(tmp, 1);
3504   store_parameter(length, 2);
3505 #endif // _LP64
3506 
3507   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
3508   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
3509   const char *name;
3510   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
3511   __ call_VM_leaf(entry, 0);
3512 
3513   __ bind(*stub->continuation());
3514 }
3515 
3516 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3517   assert(op->crc()->is_single_cpu(),  "crc must be register");
3518   assert(op->val()->is_single_cpu(),  "byte value must be register");
3519   assert(op->result_opr()->is_single_cpu(), "result must be register");
3520   Register crc = op->crc()->as_register();
3521   Register val = op->val()->as_register();
3522   Register res = op->result_opr()->as_register();
3523 
3524   assert_different_registers(val, crc, res);
3525 
3526   __ lea(res, ExternalAddress(StubRoutines::crc_table_addr()));
3527   __ notl(crc); // ~crc
3528   __ update_byte_crc32(crc, val, res);
3529   __ notl(crc); // ~crc
3530   __ mov(res, crc);
3531 }
3532 
3533 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3534   Register obj = op->obj_opr()->as_register();  // may not be an oop
3535   Register hdr = op->hdr_opr()->as_register();
3536   Register lock = op->lock_opr()->as_register();
3537   if (!UseFastLocking) {
3538     __ jmp(*op->stub()->entry());
3539   } else if (op->code() == lir_lock) {
3540     Register scratch = noreg;
3541     if (UseBiasedLocking) {
3542       scratch = op->scratch_opr()->as_register();
3543     }
3544     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3545     // add debug info for NullPointerException only if one is possible
3546     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
3547     if (op->info() != NULL) {
3548       add_debug_info_for_null_check(null_check_offset, op->info());
3549     }
3550     // done
3551   } else if (op->code() == lir_unlock) {
3552     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3553     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3554   } else {
3555     Unimplemented();
3556   }
3557   __ bind(*op->stub()->continuation());
3558 }
3559 
3560 
3561 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3562   ciMethod* method = op->profiled_method();
3563   int bci          = op->profiled_bci();
3564   ciMethod* callee = op->profiled_callee();
3565 
3566   // Update counter for all call types
3567   ciMethodData* md = method->method_data_or_null();
3568   assert(md != NULL, "Sanity");
3569   ciProfileData* data = md->bci_to_data(bci);
3570   assert(data->is_CounterData(), "need CounterData for calls");
3571   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3572   Register mdo  = op->mdo()->as_register();
3573   __ mov_metadata(mdo, md->constant_encoding());
3574   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3575   Bytecodes::Code bc = method->java_code_at_bci(bci);
3576   const bool callee_is_static = callee->is_loaded() && callee->is_static();
3577   // Perform additional virtual call profiling for invokevirtual and
3578   // invokeinterface bytecodes
3579   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
3580       !callee_is_static &&  // required for optimized MH invokes
3581       C1ProfileVirtualCalls) {
3582     assert(op->recv()->is_single_cpu(), "recv must be allocated");
3583     Register recv = op->recv()->as_register();
3584     assert_different_registers(mdo, recv);
3585     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3586     ciKlass* known_klass = op->known_holder();
3587     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
3588       // We know the type that will be seen at this call site; we can
3589       // statically update the MethodData* rather than needing to do
3590       // dynamic tests on the receiver type
3591 
3592       // NOTE: we should probably put a lock around this search to
3593       // avoid collisions by concurrent compilations
3594       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3595       uint i;
3596       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3597         ciKlass* receiver = vc_data->receiver(i);
3598         if (known_klass->equals(receiver)) {
3599           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3600           __ addptr(data_addr, DataLayout::counter_increment);
3601           return;
3602         }
3603       }
3604 
3605       // Receiver type not found in profile data; select an empty slot
3606 
3607       // Note that this is less efficient than it should be because it
3608       // always does a write to the receiver part of the
3609       // VirtualCallData rather than just the first time
3610       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3611         ciKlass* receiver = vc_data->receiver(i);
3612         if (receiver == NULL) {
3613           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3614           __ mov_metadata(recv_addr, known_klass->constant_encoding());
3615           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3616           __ addptr(data_addr, DataLayout::counter_increment);
3617           return;
3618         }
3619       }
3620     } else {
3621       __ load_klass(recv, recv);
3622       Label update_done;
3623       type_profile_helper(mdo, md, data, recv, &update_done);
3624       // Receiver did not match any saved receiver and there is no empty row for it.
3625       // Increment total counter to indicate polymorphic case.
3626       __ addptr(counter_addr, DataLayout::counter_increment);
3627 
3628       __ bind(update_done);
3629     }
3630   } else {
3631     // Static call
3632     __ addptr(counter_addr, DataLayout::counter_increment);
3633   }
3634 }
3635 
3636 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
3637   Register obj = op->obj()->as_register();
3638   Register tmp = op->tmp()->as_pointer_register();
3639   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
3640   ciKlass* exact_klass = op->exact_klass();
3641   intptr_t current_klass = op->current_klass();
3642   bool not_null = op->not_null();
3643   bool no_conflict = op->no_conflict();
3644 
3645   Label update, next, none;
3646 
3647   bool do_null = !not_null;
3648   bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
3649   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
3650 
3651   assert(do_null || do_update, "why are we here?");
3652   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
3653 
3654   __ verify_oop(obj);
3655 
3656   if (tmp != obj) {
3657     __ mov(tmp, obj);
3658   }
3659   if (do_null) {
3660     __ testptr(tmp, tmp);
3661     __ jccb(Assembler::notZero, update);
3662     if (!TypeEntries::was_null_seen(current_klass)) {
3663       __ orptr(mdo_addr, TypeEntries::null_seen);
3664     }
3665     if (do_update) {
3666 #ifndef ASSERT
3667       __ jmpb(next);
3668     }
3669 #else
3670       __ jmp(next);
3671     }
3672   } else {
3673     __ testptr(tmp, tmp);
3674     __ jccb(Assembler::notZero, update);
3675     __ stop("unexpect null obj");
3676 #endif
3677   }
3678 
3679   __ bind(update);
3680 
3681   if (do_update) {
3682 #ifdef ASSERT
3683     if (exact_klass != NULL) {
3684       Label ok;
3685       __ load_klass(tmp, tmp);
3686       __ push(tmp);
3687       __ mov_metadata(tmp, exact_klass->constant_encoding());
3688       __ cmpptr(tmp, Address(rsp, 0));
3689       __ jccb(Assembler::equal, ok);
3690       __ stop("exact klass and actual klass differ");
3691       __ bind(ok);
3692       __ pop(tmp);
3693     }
3694 #endif
3695     if (!no_conflict) {
3696       if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
3697         if (exact_klass != NULL) {
3698           __ mov_metadata(tmp, exact_klass->constant_encoding());
3699         } else {
3700           __ load_klass(tmp, tmp);
3701         }
3702 
3703         __ xorptr(tmp, mdo_addr);
3704         __ testptr(tmp, TypeEntries::type_klass_mask);
3705         // klass seen before, nothing to do. The unknown bit may have been
3706         // set already but no need to check.
3707         __ jccb(Assembler::zero, next);
3708 
3709         __ testptr(tmp, TypeEntries::type_unknown);
3710         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3711 
3712         if (TypeEntries::is_type_none(current_klass)) {
3713           __ cmpptr(mdo_addr, 0);
3714           __ jccb(Assembler::equal, none);
3715           __ cmpptr(mdo_addr, TypeEntries::null_seen);
3716           __ jccb(Assembler::equal, none);
3717           // There is a chance that the checks above (re-reading profiling
3718           // data from memory) fail if another thread has just set the
3719           // profiling to this obj's klass
3720           __ xorptr(tmp, mdo_addr);
3721           __ testptr(tmp, TypeEntries::type_klass_mask);
3722           __ jccb(Assembler::zero, next);
3723         }
3724       } else {
3725         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3726                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
3727 
3728         __ movptr(tmp, mdo_addr);
3729         __ testptr(tmp, TypeEntries::type_unknown);
3730         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3731       }
3732 
3733       // different than before. Cannot keep accurate profile.
3734       __ orptr(mdo_addr, TypeEntries::type_unknown);
3735 
3736       if (TypeEntries::is_type_none(current_klass)) {
3737         __ jmpb(next);
3738 
3739         __ bind(none);
3740         // first time here. Set profile type.
3741         __ movptr(mdo_addr, tmp);
3742       }
3743     } else {
3744       // There's a single possible klass at this profile point
3745       assert(exact_klass != NULL, "should be");
3746       if (TypeEntries::is_type_none(current_klass)) {
3747         __ mov_metadata(tmp, exact_klass->constant_encoding());
3748         __ xorptr(tmp, mdo_addr);
3749         __ testptr(tmp, TypeEntries::type_klass_mask);
3750 #ifdef ASSERT
3751         __ jcc(Assembler::zero, next);
3752 
3753         {
3754           Label ok;
3755           __ push(tmp);
3756           __ cmpptr(mdo_addr, 0);
3757           __ jcc(Assembler::equal, ok);
3758           __ cmpptr(mdo_addr, TypeEntries::null_seen);
3759           __ jcc(Assembler::equal, ok);
3760           // may have been set by another thread
3761           __ mov_metadata(tmp, exact_klass->constant_encoding());
3762           __ xorptr(tmp, mdo_addr);
3763           __ testptr(tmp, TypeEntries::type_mask);
3764           __ jcc(Assembler::zero, ok);
3765 
3766           __ stop("unexpected profiling mismatch");
3767           __ bind(ok);
3768           __ pop(tmp);
3769         }
3770 #else
3771         __ jccb(Assembler::zero, next);
3772 #endif
3773         // first time here. Set profile type.
3774         __ movptr(mdo_addr, tmp);
3775       } else {
3776         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3777                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3778 
3779         __ movptr(tmp, mdo_addr);
3780         __ testptr(tmp, TypeEntries::type_unknown);
3781         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3782 
3783         __ orptr(mdo_addr, TypeEntries::type_unknown);
3784       }
3785     }
3786 
3787     __ bind(next);
3788   }
3789 }
3790 
3791 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3792   Unimplemented();
3793 }
3794 
3795 
3796 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3797   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3798 }
3799 
3800 
3801 void LIR_Assembler::align_backward_branch_target() {
3802   __ align(BytesPerWord);
3803 }
3804 
3805 
3806 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3807   if (left->is_single_cpu()) {
3808     __ negl(left->as_register());
3809     move_regs(left->as_register(), dest->as_register());
3810 
3811   } else if (left->is_double_cpu()) {
3812     Register lo = left->as_register_lo();
3813 #ifdef _LP64
3814     Register dst = dest->as_register_lo();
3815     __ movptr(dst, lo);
3816     __ negptr(dst);
3817 #else
3818     Register hi = left->as_register_hi();
3819     __ lneg(hi, lo);
3820     if (dest->as_register_lo() == hi) {
3821       assert(dest->as_register_hi() != lo, "destroying register");
3822       move_regs(hi, dest->as_register_hi());
3823       move_regs(lo, dest->as_register_lo());
3824     } else {
3825       move_regs(lo, dest->as_register_lo());
3826       move_regs(hi, dest->as_register_hi());
3827     }
3828 #endif // _LP64
3829 
3830   } else if (dest->is_single_xmm()) {
3831     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3832       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3833     }
3834     __ xorps(dest->as_xmm_float_reg(),
3835              ExternalAddress((address)float_signflip_pool));
3836 
3837   } else if (dest->is_double_xmm()) {
3838     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3839       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3840     }
3841     __ xorpd(dest->as_xmm_double_reg(),
3842              ExternalAddress((address)double_signflip_pool));
3843 
3844   } else if (left->is_single_fpu() || left->is_double_fpu()) {
3845     assert(left->fpu() == 0, "arg must be on TOS");
3846     assert(dest->fpu() == 0, "dest must be TOS");
3847     __ fchs();
3848 
3849   } else {
3850     ShouldNotReachHere();
3851   }
3852 }
3853 
3854 
3855 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
3856   assert(addr->is_address() && dest->is_register(), "check");
3857   Register reg;
3858   reg = dest->as_pointer_register();
3859   __ lea(reg, as_Address(addr->as_address_ptr()));
3860 }
3861 
3862 
3863 
3864 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3865   assert(!tmp->is_valid(), "don't need temporary");
3866   __ call(RuntimeAddress(dest));
3867   if (info != NULL) {
3868     add_call_info_here(info);
3869   }
3870 }
3871 
3872 
3873 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3874   assert(type == T_LONG, "only for volatile long fields");
3875 
3876   if (info != NULL) {
3877     add_debug_info_for_null_check_here(info);
3878   }
3879 
3880   if (src->is_double_xmm()) {
3881     if (dest->is_double_cpu()) {
3882 #ifdef _LP64
3883       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3884 #else
3885       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3886       __ psrlq(src->as_xmm_double_reg(), 32);
3887       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3888 #endif // _LP64
3889     } else if (dest->is_double_stack()) {
3890       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3891     } else if (dest->is_address()) {
3892       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3893     } else {
3894       ShouldNotReachHere();
3895     }
3896 
3897   } else if (dest->is_double_xmm()) {
3898     if (src->is_double_stack()) {
3899       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3900     } else if (src->is_address()) {
3901       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3902     } else {
3903       ShouldNotReachHere();
3904     }
3905 
3906   } else if (src->is_double_fpu()) {
3907     assert(src->fpu_regnrLo() == 0, "must be TOS");
3908     if (dest->is_double_stack()) {
3909       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3910     } else if (dest->is_address()) {
3911       __ fistp_d(as_Address(dest->as_address_ptr()));
3912     } else {
3913       ShouldNotReachHere();
3914     }
3915 
3916   } else if (dest->is_double_fpu()) {
3917     assert(dest->fpu_regnrLo() == 0, "must be TOS");
3918     if (src->is_double_stack()) {
3919       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3920     } else if (src->is_address()) {
3921       __ fild_d(as_Address(src->as_address_ptr()));
3922     } else {
3923       ShouldNotReachHere();
3924     }
3925   } else {
3926     ShouldNotReachHere();
3927   }
3928 }
3929 
3930 #ifdef ASSERT
3931 // emit run-time assertion
3932 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3933   assert(op->code() == lir_assert, "must be");
3934 
3935   if (op->in_opr1()->is_valid()) {
3936     assert(op->in_opr2()->is_valid(), "both operands must be valid");
3937     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
3938   } else {
3939     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
3940     assert(op->condition() == lir_cond_always, "no other conditions allowed");
3941   }
3942 
3943   Label ok;
3944   if (op->condition() != lir_cond_always) {
3945     Assembler::Condition acond = Assembler::zero;
3946     switch (op->condition()) {
3947       case lir_cond_equal:        acond = Assembler::equal;       break;
3948       case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
3949       case lir_cond_less:         acond = Assembler::less;        break;
3950       case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
3951       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
3952       case lir_cond_greater:      acond = Assembler::greater;     break;
3953       case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
3954       case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
3955       default:                    ShouldNotReachHere();
3956     }
3957     __ jcc(acond, ok);
3958   }
3959   if (op->halt()) {
3960     const char* str = __ code_string(op->msg());
3961     __ stop(str);
3962   } else {
3963     breakpoint();
3964   }
3965   __ bind(ok);
3966 }
3967 #endif
3968 
3969 void LIR_Assembler::membar() {
3970   // QQQ sparc TSO uses this,
3971   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
3972 }
3973 
3974 void LIR_Assembler::membar_acquire() {
3975   // No x86 machines currently require load fences
3976 }
3977 
3978 void LIR_Assembler::membar_release() {
3979   // No x86 machines currently require store fences
3980 }
3981 
3982 void LIR_Assembler::membar_loadload() {
3983   // no-op
3984   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
3985 }
3986 
3987 void LIR_Assembler::membar_storestore() {
3988   // no-op
3989   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
3990 }
3991 
3992 void LIR_Assembler::membar_loadstore() {
3993   // no-op
3994   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
3995 }
3996 
3997 void LIR_Assembler::membar_storeload() {
3998   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
3999 }
4000 
4001 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
4002   assert(result_reg->is_register(), "check");
4003 #ifdef _LP64
4004   // __ get_thread(result_reg->as_register_lo());
4005   __ mov(result_reg->as_register(), r15_thread);
4006 #else
4007   __ get_thread(result_reg->as_register());
4008 #endif // _LP64
4009 }
4010 
4011 
4012 void LIR_Assembler::peephole(LIR_List*) {
4013   // do nothing for now
4014 }
4015 
4016 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
4017   assert(data == dest, "xchg/xadd uses only 2 operands");
4018 
4019   if (data->type() == T_INT) {
4020     if (code == lir_xadd) {
4021       if (os::is_MP()) {
4022         __ lock();
4023       }
4024       __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
4025     } else {
4026       __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
4027     }
4028   } else if (data->is_oop()) {
4029     assert (code == lir_xchg, "xadd for oops");
4030     Register obj = data->as_register();
4031 #ifdef _LP64
4032     if (UseCompressedOops) {
4033       __ encode_heap_oop(obj);
4034       __ xchgl(obj, as_Address(src->as_address_ptr()));
4035       __ decode_heap_oop(obj);
4036     } else {
4037       __ xchgptr(obj, as_Address(src->as_address_ptr()));
4038     }
4039 #else
4040     __ xchgl(obj, as_Address(src->as_address_ptr()));
4041 #endif
4042   } else if (data->type() == T_LONG) {
4043 #ifdef _LP64
4044     assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
4045     if (code == lir_xadd) {
4046       if (os::is_MP()) {
4047         __ lock();
4048       }
4049       __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
4050     } else {
4051       __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
4052     }
4053 #else
4054     ShouldNotReachHere();
4055 #endif
4056   } else {
4057     ShouldNotReachHere();
4058   }
4059 }
4060 
4061 #undef __