1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "compiler/disassembler.hpp"
  29 #include "gc/shared/cardTableModRefBS.hpp"
  30 #include "gc/shared/collectedHeap.inline.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "memory/universe.hpp"
  34 #include "oops/klass.inline.hpp"
  35 #include "prims/methodHandles.hpp"
  36 #include "runtime/biasedLocking.hpp"
  37 #include "runtime/interfaceSupport.hpp"
  38 #include "runtime/objectMonitor.hpp"
  39 #include "runtime/os.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "runtime/stubRoutines.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc/g1/g1CollectedHeap.inline.hpp"
  45 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  46 #include "gc/g1/heapRegion.hpp"
  47 #endif // INCLUDE_ALL_GCS
  48 
  49 #ifdef PRODUCT
  50 #define BLOCK_COMMENT(str) /* nothing */
  51 #define STOP(error) stop(error)
  52 #else
  53 #define BLOCK_COMMENT(str) block_comment(str)
  54 #define STOP(error) block_comment(error); stop(error)
  55 #endif
  56 
  57 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  58 
  59 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  60 
  61 #ifdef ASSERT
  62 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  63 #endif
  64 
  65 static Assembler::Condition reverse[] = {
  66     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  67     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  68     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  69     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  70     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  71     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  72     Assembler::above          /* belowEqual    = 0x6 */ ,
  73     Assembler::belowEqual     /* above         = 0x7 */ ,
  74     Assembler::positive       /* negative      = 0x8 */ ,
  75     Assembler::negative       /* positive      = 0x9 */ ,
  76     Assembler::noParity       /* parity        = 0xa */ ,
  77     Assembler::parity         /* noParity      = 0xb */ ,
  78     Assembler::greaterEqual   /* less          = 0xc */ ,
  79     Assembler::less           /* greaterEqual  = 0xd */ ,
  80     Assembler::greater        /* lessEqual     = 0xe */ ,
  81     Assembler::lessEqual      /* greater       = 0xf, */
  82 
  83 };
  84 
  85 
  86 // Implementation of MacroAssembler
  87 
  88 // First all the versions that have distinct versions depending on 32/64 bit
  89 // Unless the difference is trivial (1 line or so).
  90 
  91 #ifndef _LP64
  92 
  93 // 32bit versions
  94 
  95 Address MacroAssembler::as_Address(AddressLiteral adr) {
  96   return Address(adr.target(), adr.rspec());
  97 }
  98 
  99 Address MacroAssembler::as_Address(ArrayAddress adr) {
 100   return Address::make_array(adr);
 101 }
 102 
 103 void MacroAssembler::call_VM_leaf_base(address entry_point,
 104                                        int number_of_arguments) {
 105   call(RuntimeAddress(entry_point));
 106   increment(rsp, number_of_arguments * wordSize);
 107 }
 108 
 109 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 110   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 111 }
 112 
 113 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 114   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 115 }
 116 
 117 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 118   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 119 }
 120 
 121 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 122   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 123 }
 124 
 125 void MacroAssembler::extend_sign(Register hi, Register lo) {
 126   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 127   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 128     cdql();
 129   } else {
 130     movl(hi, lo);
 131     sarl(hi, 31);
 132   }
 133 }
 134 
 135 void MacroAssembler::jC2(Register tmp, Label& L) {
 136   // set parity bit if FPU flag C2 is set (via rax)
 137   save_rax(tmp);
 138   fwait(); fnstsw_ax();
 139   sahf();
 140   restore_rax(tmp);
 141   // branch
 142   jcc(Assembler::parity, L);
 143 }
 144 
 145 void MacroAssembler::jnC2(Register tmp, Label& L) {
 146   // set parity bit if FPU flag C2 is set (via rax)
 147   save_rax(tmp);
 148   fwait(); fnstsw_ax();
 149   sahf();
 150   restore_rax(tmp);
 151   // branch
 152   jcc(Assembler::noParity, L);
 153 }
 154 
 155 // 32bit can do a case table jump in one instruction but we no longer allow the base
 156 // to be installed in the Address class
 157 void MacroAssembler::jump(ArrayAddress entry) {
 158   jmp(as_Address(entry));
 159 }
 160 
 161 // Note: y_lo will be destroyed
 162 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 163   // Long compare for Java (semantics as described in JVM spec.)
 164   Label high, low, done;
 165 
 166   cmpl(x_hi, y_hi);
 167   jcc(Assembler::less, low);
 168   jcc(Assembler::greater, high);
 169   // x_hi is the return register
 170   xorl(x_hi, x_hi);
 171   cmpl(x_lo, y_lo);
 172   jcc(Assembler::below, low);
 173   jcc(Assembler::equal, done);
 174 
 175   bind(high);
 176   xorl(x_hi, x_hi);
 177   increment(x_hi);
 178   jmp(done);
 179 
 180   bind(low);
 181   xorl(x_hi, x_hi);
 182   decrementl(x_hi);
 183 
 184   bind(done);
 185 }
 186 
 187 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 188     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 189 }
 190 
 191 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 192   // leal(dst, as_Address(adr));
 193   // see note in movl as to why we must use a move
 194   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 195 }
 196 
 197 void MacroAssembler::leave() {
 198   mov(rsp, rbp);
 199   pop(rbp);
 200 }
 201 
 202 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 203   // Multiplication of two Java long values stored on the stack
 204   // as illustrated below. Result is in rdx:rax.
 205   //
 206   // rsp ---> [  ??  ] \               \
 207   //            ....    | y_rsp_offset  |
 208   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 209   //          [ y_hi ]                  | (in bytes)
 210   //            ....                    |
 211   //          [ x_lo ]                 /
 212   //          [ x_hi ]
 213   //            ....
 214   //
 215   // Basic idea: lo(result) = lo(x_lo * y_lo)
 216   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 217   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 218   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 219   Label quick;
 220   // load x_hi, y_hi and check if quick
 221   // multiplication is possible
 222   movl(rbx, x_hi);
 223   movl(rcx, y_hi);
 224   movl(rax, rbx);
 225   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 226   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 227   // do full multiplication
 228   // 1st step
 229   mull(y_lo);                                    // x_hi * y_lo
 230   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 231   // 2nd step
 232   movl(rax, x_lo);
 233   mull(rcx);                                     // x_lo * y_hi
 234   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 235   // 3rd step
 236   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 237   movl(rax, x_lo);
 238   mull(y_lo);                                    // x_lo * y_lo
 239   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 240 }
 241 
 242 void MacroAssembler::lneg(Register hi, Register lo) {
 243   negl(lo);
 244   adcl(hi, 0);
 245   negl(hi);
 246 }
 247 
 248 void MacroAssembler::lshl(Register hi, Register lo) {
 249   // Java shift left long support (semantics as described in JVM spec., p.305)
 250   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 251   // shift value is in rcx !
 252   assert(hi != rcx, "must not use rcx");
 253   assert(lo != rcx, "must not use rcx");
 254   const Register s = rcx;                        // shift count
 255   const int      n = BitsPerWord;
 256   Label L;
 257   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 258   cmpl(s, n);                                    // if (s < n)
 259   jcc(Assembler::less, L);                       // else (s >= n)
 260   movl(hi, lo);                                  // x := x << n
 261   xorl(lo, lo);
 262   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 263   bind(L);                                       // s (mod n) < n
 264   shldl(hi, lo);                                 // x := x << s
 265   shll(lo);
 266 }
 267 
 268 
 269 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 270   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 271   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 272   assert(hi != rcx, "must not use rcx");
 273   assert(lo != rcx, "must not use rcx");
 274   const Register s = rcx;                        // shift count
 275   const int      n = BitsPerWord;
 276   Label L;
 277   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 278   cmpl(s, n);                                    // if (s < n)
 279   jcc(Assembler::less, L);                       // else (s >= n)
 280   movl(lo, hi);                                  // x := x >> n
 281   if (sign_extension) sarl(hi, 31);
 282   else                xorl(hi, hi);
 283   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 284   bind(L);                                       // s (mod n) < n
 285   shrdl(lo, hi);                                 // x := x >> s
 286   if (sign_extension) sarl(hi);
 287   else                shrl(hi);
 288 }
 289 
 290 void MacroAssembler::movoop(Register dst, jobject obj) {
 291   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 292 }
 293 
 294 void MacroAssembler::movoop(Address dst, jobject obj) {
 295   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 296 }
 297 
 298 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 299   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 300 }
 301 
 302 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 303   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 304 }
 305 
 306 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 307   // scratch register is not used,
 308   // it is defined to match parameters of 64-bit version of this method.
 309   if (src.is_lval()) {
 310     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 311   } else {
 312     movl(dst, as_Address(src));
 313   }
 314 }
 315 
 316 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 317   movl(as_Address(dst), src);
 318 }
 319 
 320 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 321   movl(dst, as_Address(src));
 322 }
 323 
 324 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 325 void MacroAssembler::movptr(Address dst, intptr_t src) {
 326   movl(dst, src);
 327 }
 328 
 329 
 330 void MacroAssembler::pop_callee_saved_registers() {
 331   pop(rcx);
 332   pop(rdx);
 333   pop(rdi);
 334   pop(rsi);
 335 }
 336 
 337 void MacroAssembler::pop_fTOS() {
 338   fld_d(Address(rsp, 0));
 339   addl(rsp, 2 * wordSize);
 340 }
 341 
 342 void MacroAssembler::push_callee_saved_registers() {
 343   push(rsi);
 344   push(rdi);
 345   push(rdx);
 346   push(rcx);
 347 }
 348 
 349 void MacroAssembler::push_fTOS() {
 350   subl(rsp, 2 * wordSize);
 351   fstp_d(Address(rsp, 0));
 352 }
 353 
 354 
 355 void MacroAssembler::pushoop(jobject obj) {
 356   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 357 }
 358 
 359 void MacroAssembler::pushklass(Metadata* obj) {
 360   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 361 }
 362 
 363 void MacroAssembler::pushptr(AddressLiteral src) {
 364   if (src.is_lval()) {
 365     push_literal32((int32_t)src.target(), src.rspec());
 366   } else {
 367     pushl(as_Address(src));
 368   }
 369 }
 370 
 371 void MacroAssembler::set_word_if_not_zero(Register dst) {
 372   xorl(dst, dst);
 373   set_byte_if_not_zero(dst);
 374 }
 375 
 376 static void pass_arg0(MacroAssembler* masm, Register arg) {
 377   masm->push(arg);
 378 }
 379 
 380 static void pass_arg1(MacroAssembler* masm, Register arg) {
 381   masm->push(arg);
 382 }
 383 
 384 static void pass_arg2(MacroAssembler* masm, Register arg) {
 385   masm->push(arg);
 386 }
 387 
 388 static void pass_arg3(MacroAssembler* masm, Register arg) {
 389   masm->push(arg);
 390 }
 391 
 392 #ifndef PRODUCT
 393 extern "C" void findpc(intptr_t x);
 394 #endif
 395 
 396 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 397   // In order to get locks to work, we need to fake a in_VM state
 398   JavaThread* thread = JavaThread::current();
 399   JavaThreadState saved_state = thread->thread_state();
 400   thread->set_thread_state(_thread_in_vm);
 401   if (ShowMessageBoxOnError) {
 402     JavaThread* thread = JavaThread::current();
 403     JavaThreadState saved_state = thread->thread_state();
 404     thread->set_thread_state(_thread_in_vm);
 405     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 406       ttyLocker ttyl;
 407       BytecodeCounter::print();
 408     }
 409     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 410     // This is the value of eip which points to where verify_oop will return.
 411     if (os::message_box(msg, "Execution stopped, print registers?")) {
 412       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 413       BREAKPOINT;
 414     }
 415   } else {
 416     ttyLocker ttyl;
 417     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
 418   }
 419   // Don't assert holding the ttyLock
 420     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
 421   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 422 }
 423 
 424 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 425   ttyLocker ttyl;
 426   FlagSetting fs(Debugging, true);
 427   tty->print_cr("eip = 0x%08x", eip);
 428 #ifndef PRODUCT
 429   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 430     tty->cr();
 431     findpc(eip);
 432     tty->cr();
 433   }
 434 #endif
 435 #define PRINT_REG(rax) \
 436   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 437   PRINT_REG(rax);
 438   PRINT_REG(rbx);
 439   PRINT_REG(rcx);
 440   PRINT_REG(rdx);
 441   PRINT_REG(rdi);
 442   PRINT_REG(rsi);
 443   PRINT_REG(rbp);
 444   PRINT_REG(rsp);
 445 #undef PRINT_REG
 446   // Print some words near top of staack.
 447   int* dump_sp = (int*) rsp;
 448   for (int col1 = 0; col1 < 8; col1++) {
 449     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 450     os::print_location(tty, *dump_sp++);
 451   }
 452   for (int row = 0; row < 16; row++) {
 453     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 454     for (int col = 0; col < 8; col++) {
 455       tty->print(" 0x%08x", *dump_sp++);
 456     }
 457     tty->cr();
 458   }
 459   // Print some instructions around pc:
 460   Disassembler::decode((address)eip-64, (address)eip);
 461   tty->print_cr("--------");
 462   Disassembler::decode((address)eip, (address)eip+32);
 463 }
 464 
 465 void MacroAssembler::stop(const char* msg) {
 466   ExternalAddress message((address)msg);
 467   // push address of message
 468   pushptr(message.addr());
 469   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 470   pusha();                                            // push registers
 471   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 472   hlt();
 473 }
 474 
 475 void MacroAssembler::warn(const char* msg) {
 476   push_CPU_state();
 477 
 478   ExternalAddress message((address) msg);
 479   // push address of message
 480   pushptr(message.addr());
 481 
 482   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 483   addl(rsp, wordSize);       // discard argument
 484   pop_CPU_state();
 485 }
 486 
 487 void MacroAssembler::print_state() {
 488   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 489   pusha();                                            // push registers
 490 
 491   push_CPU_state();
 492   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 493   pop_CPU_state();
 494 
 495   popa();
 496   addl(rsp, wordSize);
 497 }
 498 
 499 #else // _LP64
 500 
 501 // 64 bit versions
 502 
 503 Address MacroAssembler::as_Address(AddressLiteral adr) {
 504   // amd64 always does this as a pc-rel
 505   // we can be absolute or disp based on the instruction type
 506   // jmp/call are displacements others are absolute
 507   assert(!adr.is_lval(), "must be rval");
 508   assert(reachable(adr), "must be");
 509   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 510 
 511 }
 512 
 513 Address MacroAssembler::as_Address(ArrayAddress adr) {
 514   AddressLiteral base = adr.base();
 515   lea(rscratch1, base);
 516   Address index = adr.index();
 517   assert(index._disp == 0, "must not have disp"); // maybe it can?
 518   Address array(rscratch1, index._index, index._scale, index._disp);
 519   return array;
 520 }
 521 
 522 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 523   Label L, E;
 524 
 525 #ifdef _WIN64
 526   // Windows always allocates space for it's register args
 527   assert(num_args <= 4, "only register arguments supported");
 528   subq(rsp,  frame::arg_reg_save_area_bytes);
 529 #endif
 530 
 531   // Align stack if necessary
 532   testl(rsp, 15);
 533   jcc(Assembler::zero, L);
 534 
 535   subq(rsp, 8);
 536   {
 537     call(RuntimeAddress(entry_point));
 538   }
 539   addq(rsp, 8);
 540   jmp(E);
 541 
 542   bind(L);
 543   {
 544     call(RuntimeAddress(entry_point));
 545   }
 546 
 547   bind(E);
 548 
 549 #ifdef _WIN64
 550   // restore stack pointer
 551   addq(rsp, frame::arg_reg_save_area_bytes);
 552 #endif
 553 
 554 }
 555 
 556 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 557   assert(!src2.is_lval(), "should use cmpptr");
 558 
 559   if (reachable(src2)) {
 560     cmpq(src1, as_Address(src2));
 561   } else {
 562     lea(rscratch1, src2);
 563     Assembler::cmpq(src1, Address(rscratch1, 0));
 564   }
 565 }
 566 
 567 int MacroAssembler::corrected_idivq(Register reg) {
 568   // Full implementation of Java ldiv and lrem; checks for special
 569   // case as described in JVM spec., p.243 & p.271.  The function
 570   // returns the (pc) offset of the idivl instruction - may be needed
 571   // for implicit exceptions.
 572   //
 573   //         normal case                           special case
 574   //
 575   // input : rax: dividend                         min_long
 576   //         reg: divisor   (may not be eax/edx)   -1
 577   //
 578   // output: rax: quotient  (= rax idiv reg)       min_long
 579   //         rdx: remainder (= rax irem reg)       0
 580   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 581   static const int64_t min_long = 0x8000000000000000;
 582   Label normal_case, special_case;
 583 
 584   // check for special case
 585   cmp64(rax, ExternalAddress((address) &min_long));
 586   jcc(Assembler::notEqual, normal_case);
 587   xorl(rdx, rdx); // prepare rdx for possible special case (where
 588                   // remainder = 0)
 589   cmpq(reg, -1);
 590   jcc(Assembler::equal, special_case);
 591 
 592   // handle normal case
 593   bind(normal_case);
 594   cdqq();
 595   int idivq_offset = offset();
 596   idivq(reg);
 597 
 598   // normal and special case exit
 599   bind(special_case);
 600 
 601   return idivq_offset;
 602 }
 603 
 604 void MacroAssembler::decrementq(Register reg, int value) {
 605   if (value == min_jint) { subq(reg, value); return; }
 606   if (value <  0) { incrementq(reg, -value); return; }
 607   if (value == 0) {                        ; return; }
 608   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 609   /* else */      { subq(reg, value)       ; return; }
 610 }
 611 
 612 void MacroAssembler::decrementq(Address dst, int value) {
 613   if (value == min_jint) { subq(dst, value); return; }
 614   if (value <  0) { incrementq(dst, -value); return; }
 615   if (value == 0) {                        ; return; }
 616   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 617   /* else */      { subq(dst, value)       ; return; }
 618 }
 619 
 620 void MacroAssembler::incrementq(AddressLiteral dst) {
 621   if (reachable(dst)) {
 622     incrementq(as_Address(dst));
 623   } else {
 624     lea(rscratch1, dst);
 625     incrementq(Address(rscratch1, 0));
 626   }
 627 }
 628 
 629 void MacroAssembler::incrementq(Register reg, int value) {
 630   if (value == min_jint) { addq(reg, value); return; }
 631   if (value <  0) { decrementq(reg, -value); return; }
 632   if (value == 0) {                        ; return; }
 633   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 634   /* else */      { addq(reg, value)       ; return; }
 635 }
 636 
 637 void MacroAssembler::incrementq(Address dst, int value) {
 638   if (value == min_jint) { addq(dst, value); return; }
 639   if (value <  0) { decrementq(dst, -value); return; }
 640   if (value == 0) {                        ; return; }
 641   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 642   /* else */      { addq(dst, value)       ; return; }
 643 }
 644 
 645 // 32bit can do a case table jump in one instruction but we no longer allow the base
 646 // to be installed in the Address class
 647 void MacroAssembler::jump(ArrayAddress entry) {
 648   lea(rscratch1, entry.base());
 649   Address dispatch = entry.index();
 650   assert(dispatch._base == noreg, "must be");
 651   dispatch._base = rscratch1;
 652   jmp(dispatch);
 653 }
 654 
 655 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 656   ShouldNotReachHere(); // 64bit doesn't use two regs
 657   cmpq(x_lo, y_lo);
 658 }
 659 
 660 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 661     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 662 }
 663 
 664 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 665   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 666   movptr(dst, rscratch1);
 667 }
 668 
 669 void MacroAssembler::leave() {
 670   // %%% is this really better? Why not on 32bit too?
 671   emit_int8((unsigned char)0xC9); // LEAVE
 672 }
 673 
 674 void MacroAssembler::lneg(Register hi, Register lo) {
 675   ShouldNotReachHere(); // 64bit doesn't use two regs
 676   negq(lo);
 677 }
 678 
 679 void MacroAssembler::movoop(Register dst, jobject obj) {
 680   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 681 }
 682 
 683 void MacroAssembler::movoop(Address dst, jobject obj) {
 684   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 685   movq(dst, rscratch1);
 686 }
 687 
 688 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 689   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 690 }
 691 
 692 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 693   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 694   movq(dst, rscratch1);
 695 }
 696 
 697 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 698   if (src.is_lval()) {
 699     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 700   } else {
 701     if (reachable(src)) {
 702       movq(dst, as_Address(src));
 703     } else {
 704       lea(scratch, src);
 705       movq(dst, Address(scratch, 0));
 706     }
 707   }
 708 }
 709 
 710 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 711   movq(as_Address(dst), src);
 712 }
 713 
 714 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 715   movq(dst, as_Address(src));
 716 }
 717 
 718 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 719 void MacroAssembler::movptr(Address dst, intptr_t src) {
 720   mov64(rscratch1, src);
 721   movq(dst, rscratch1);
 722 }
 723 
 724 // These are mostly for initializing NULL
 725 void MacroAssembler::movptr(Address dst, int32_t src) {
 726   movslq(dst, src);
 727 }
 728 
 729 void MacroAssembler::movptr(Register dst, int32_t src) {
 730   mov64(dst, (intptr_t)src);
 731 }
 732 
 733 void MacroAssembler::pushoop(jobject obj) {
 734   movoop(rscratch1, obj);
 735   push(rscratch1);
 736 }
 737 
 738 void MacroAssembler::pushklass(Metadata* obj) {
 739   mov_metadata(rscratch1, obj);
 740   push(rscratch1);
 741 }
 742 
 743 void MacroAssembler::pushptr(AddressLiteral src) {
 744   lea(rscratch1, src);
 745   if (src.is_lval()) {
 746     push(rscratch1);
 747   } else {
 748     pushq(Address(rscratch1, 0));
 749   }
 750 }
 751 
 752 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
 753                                            bool clear_pc) {
 754   // we must set sp to zero to clear frame
 755   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 756   // must clear fp, so that compiled frames are not confused; it is
 757   // possible that we need it only for debugging
 758   if (clear_fp) {
 759     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 760   }
 761 
 762   if (clear_pc) {
 763     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 764   }
 765 }
 766 
 767 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 768                                          Register last_java_fp,
 769                                          address  last_java_pc) {
 770   // determine last_java_sp register
 771   if (!last_java_sp->is_valid()) {
 772     last_java_sp = rsp;
 773   }
 774 
 775   // last_java_fp is optional
 776   if (last_java_fp->is_valid()) {
 777     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 778            last_java_fp);
 779   }
 780 
 781   // last_java_pc is optional
 782   if (last_java_pc != NULL) {
 783     Address java_pc(r15_thread,
 784                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 785     lea(rscratch1, InternalAddress(last_java_pc));
 786     movptr(java_pc, rscratch1);
 787   }
 788 
 789   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 790 }
 791 
 792 static void pass_arg0(MacroAssembler* masm, Register arg) {
 793   if (c_rarg0 != arg ) {
 794     masm->mov(c_rarg0, arg);
 795   }
 796 }
 797 
 798 static void pass_arg1(MacroAssembler* masm, Register arg) {
 799   if (c_rarg1 != arg ) {
 800     masm->mov(c_rarg1, arg);
 801   }
 802 }
 803 
 804 static void pass_arg2(MacroAssembler* masm, Register arg) {
 805   if (c_rarg2 != arg ) {
 806     masm->mov(c_rarg2, arg);
 807   }
 808 }
 809 
 810 static void pass_arg3(MacroAssembler* masm, Register arg) {
 811   if (c_rarg3 != arg ) {
 812     masm->mov(c_rarg3, arg);
 813   }
 814 }
 815 
 816 void MacroAssembler::stop(const char* msg) {
 817   address rip = pc();
 818   pusha(); // get regs on stack
 819   lea(c_rarg0, ExternalAddress((address) msg));
 820   lea(c_rarg1, InternalAddress(rip));
 821   movq(c_rarg2, rsp); // pass pointer to regs array
 822   andq(rsp, -16); // align stack as required by ABI
 823   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 824   hlt();
 825 }
 826 
 827 void MacroAssembler::warn(const char* msg) {
 828   push(rbp);
 829   movq(rbp, rsp);
 830   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 831   push_CPU_state();   // keeps alignment at 16 bytes
 832   lea(c_rarg0, ExternalAddress((address) msg));
 833   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
 834   pop_CPU_state();
 835   mov(rsp, rbp);
 836   pop(rbp);
 837 }
 838 
 839 void MacroAssembler::print_state() {
 840   address rip = pc();
 841   pusha();            // get regs on stack
 842   push(rbp);
 843   movq(rbp, rsp);
 844   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 845   push_CPU_state();   // keeps alignment at 16 bytes
 846 
 847   lea(c_rarg0, InternalAddress(rip));
 848   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 849   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 850 
 851   pop_CPU_state();
 852   mov(rsp, rbp);
 853   pop(rbp);
 854   popa();
 855 }
 856 
 857 #ifndef PRODUCT
 858 extern "C" void findpc(intptr_t x);
 859 #endif
 860 
 861 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 862   // In order to get locks to work, we need to fake a in_VM state
 863   if (ShowMessageBoxOnError) {
 864     JavaThread* thread = JavaThread::current();
 865     JavaThreadState saved_state = thread->thread_state();
 866     thread->set_thread_state(_thread_in_vm);
 867 #ifndef PRODUCT
 868     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 869       ttyLocker ttyl;
 870       BytecodeCounter::print();
 871     }
 872 #endif
 873     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 874     // XXX correct this offset for amd64
 875     // This is the value of eip which points to where verify_oop will return.
 876     if (os::message_box(msg, "Execution stopped, print registers?")) {
 877       print_state64(pc, regs);
 878       BREAKPOINT;
 879       assert(false, "start up GDB");
 880     }
 881     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 882   } else {
 883     ttyLocker ttyl;
 884     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
 885                     msg);
 886     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
 887   }
 888 }
 889 
 890 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 891   ttyLocker ttyl;
 892   FlagSetting fs(Debugging, true);
 893   tty->print_cr("rip = 0x%016lx", pc);
 894 #ifndef PRODUCT
 895   tty->cr();
 896   findpc(pc);
 897   tty->cr();
 898 #endif
 899 #define PRINT_REG(rax, value) \
 900   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 901   PRINT_REG(rax, regs[15]);
 902   PRINT_REG(rbx, regs[12]);
 903   PRINT_REG(rcx, regs[14]);
 904   PRINT_REG(rdx, regs[13]);
 905   PRINT_REG(rdi, regs[8]);
 906   PRINT_REG(rsi, regs[9]);
 907   PRINT_REG(rbp, regs[10]);
 908   PRINT_REG(rsp, regs[11]);
 909   PRINT_REG(r8 , regs[7]);
 910   PRINT_REG(r9 , regs[6]);
 911   PRINT_REG(r10, regs[5]);
 912   PRINT_REG(r11, regs[4]);
 913   PRINT_REG(r12, regs[3]);
 914   PRINT_REG(r13, regs[2]);
 915   PRINT_REG(r14, regs[1]);
 916   PRINT_REG(r15, regs[0]);
 917 #undef PRINT_REG
 918   // Print some words near top of staack.
 919   int64_t* rsp = (int64_t*) regs[11];
 920   int64_t* dump_sp = rsp;
 921   for (int col1 = 0; col1 < 8; col1++) {
 922     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 923     os::print_location(tty, *dump_sp++);
 924   }
 925   for (int row = 0; row < 25; row++) {
 926     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 927     for (int col = 0; col < 4; col++) {
 928       tty->print(" 0x%016lx", *dump_sp++);
 929     }
 930     tty->cr();
 931   }
 932   // Print some instructions around pc:
 933   Disassembler::decode((address)pc-64, (address)pc);
 934   tty->print_cr("--------");
 935   Disassembler::decode((address)pc, (address)pc+32);
 936 }
 937 
 938 #endif // _LP64
 939 
 940 // Now versions that are common to 32/64 bit
 941 
 942 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 943   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 944 }
 945 
 946 void MacroAssembler::addptr(Register dst, Register src) {
 947   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 948 }
 949 
 950 void MacroAssembler::addptr(Address dst, Register src) {
 951   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 952 }
 953 
 954 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 955   if (reachable(src)) {
 956     Assembler::addsd(dst, as_Address(src));
 957   } else {
 958     lea(rscratch1, src);
 959     Assembler::addsd(dst, Address(rscratch1, 0));
 960   }
 961 }
 962 
 963 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 964   if (reachable(src)) {
 965     addss(dst, as_Address(src));
 966   } else {
 967     lea(rscratch1, src);
 968     addss(dst, Address(rscratch1, 0));
 969   }
 970 }
 971 
 972 void MacroAssembler::align(int modulus) {
 973   if (offset() % modulus != 0) {
 974     nop(modulus - (offset() % modulus));
 975   }
 976 }
 977 
 978 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
 979   // Used in sign-masking with aligned address.
 980   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 981   if (reachable(src)) {
 982     Assembler::andpd(dst, as_Address(src));
 983   } else {
 984     lea(rscratch1, src);
 985     Assembler::andpd(dst, Address(rscratch1, 0));
 986   }
 987 }
 988 
 989 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
 990   // Used in sign-masking with aligned address.
 991   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 992   if (reachable(src)) {
 993     Assembler::andps(dst, as_Address(src));
 994   } else {
 995     lea(rscratch1, src);
 996     Assembler::andps(dst, Address(rscratch1, 0));
 997   }
 998 }
 999 
1000 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1001   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1002 }
1003 
1004 void MacroAssembler::atomic_incl(Address counter_addr) {
1005   if (os::is_MP())
1006     lock();
1007   incrementl(counter_addr);
1008 }
1009 
1010 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1011   if (reachable(counter_addr)) {
1012     atomic_incl(as_Address(counter_addr));
1013   } else {
1014     lea(scr, counter_addr);
1015     atomic_incl(Address(scr, 0));
1016   }
1017 }
1018 
1019 #ifdef _LP64
1020 void MacroAssembler::atomic_incq(Address counter_addr) {
1021   if (os::is_MP())
1022     lock();
1023   incrementq(counter_addr);
1024 }
1025 
1026 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1027   if (reachable(counter_addr)) {
1028     atomic_incq(as_Address(counter_addr));
1029   } else {
1030     lea(scr, counter_addr);
1031     atomic_incq(Address(scr, 0));
1032   }
1033 }
1034 #endif
1035 
1036 // Writes to stack successive pages until offset reached to check for
1037 // stack overflow + shadow pages.  This clobbers tmp.
1038 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1039   movptr(tmp, rsp);
1040   // Bang stack for total size given plus shadow page size.
1041   // Bang one page at a time because large size can bang beyond yellow and
1042   // red zones.
1043   Label loop;
1044   bind(loop);
1045   movl(Address(tmp, (-os::vm_page_size())), size );
1046   subptr(tmp, os::vm_page_size());
1047   subl(size, os::vm_page_size());
1048   jcc(Assembler::greater, loop);
1049 
1050   // Bang down shadow pages too.
1051   // At this point, (tmp-0) is the last address touched, so don't
1052   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1053   // was post-decremented.)  Skip this address by starting at i=1, and
1054   // touch a few more pages below.  N.B.  It is important to touch all
1055   // the way down to and including i=StackShadowPages.
1056   for (int i = 1; i < StackShadowPages; i++) {
1057     // this could be any sized move but this is can be a debugging crumb
1058     // so the bigger the better.
1059     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1060   }
1061 }
1062 
1063 int MacroAssembler::biased_locking_enter(Register lock_reg,
1064                                          Register obj_reg,
1065                                          Register swap_reg,
1066                                          Register tmp_reg,
1067                                          bool swap_reg_contains_mark,
1068                                          Label& done,
1069                                          Label* slow_case,
1070                                          BiasedLockingCounters* counters) {
1071   assert(UseBiasedLocking, "why call this otherwise?");
1072   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1073   assert(tmp_reg != noreg, "tmp_reg must be supplied");
1074   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1075   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
1076   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1077   Address saved_mark_addr(lock_reg, 0);
1078 
1079   if (PrintBiasedLockingStatistics && counters == NULL) {
1080     counters = BiasedLocking::counters();
1081   }
1082   // Biased locking
1083   // See whether the lock is currently biased toward our thread and
1084   // whether the epoch is still valid
1085   // Note that the runtime guarantees sufficient alignment of JavaThread
1086   // pointers to allow age to be placed into low bits
1087   // First check to see whether biasing is even enabled for this object
1088   Label cas_label;
1089   int null_check_offset = -1;
1090   if (!swap_reg_contains_mark) {
1091     null_check_offset = offset();
1092     movptr(swap_reg, mark_addr);
1093   }
1094   movptr(tmp_reg, swap_reg);
1095   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
1096   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
1097   jcc(Assembler::notEqual, cas_label);
1098   // The bias pattern is present in the object's header. Need to check
1099   // whether the bias owner and the epoch are both still current.
1100 #ifndef _LP64
1101   // Note that because there is no current thread register on x86_32 we
1102   // need to store off the mark word we read out of the object to
1103   // avoid reloading it and needing to recheck invariants below. This
1104   // store is unfortunate but it makes the overall code shorter and
1105   // simpler.
1106   movptr(saved_mark_addr, swap_reg);
1107 #endif
1108   if (swap_reg_contains_mark) {
1109     null_check_offset = offset();
1110   }
1111   load_prototype_header(tmp_reg, obj_reg);
1112 #ifdef _LP64
1113   orptr(tmp_reg, r15_thread);
1114   xorptr(tmp_reg, swap_reg);
1115   Register header_reg = tmp_reg;
1116 #else
1117   xorptr(tmp_reg, swap_reg);
1118   get_thread(swap_reg);
1119   xorptr(swap_reg, tmp_reg);
1120   Register header_reg = swap_reg;
1121 #endif
1122   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
1123   if (counters != NULL) {
1124     cond_inc32(Assembler::zero,
1125                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1126   }
1127   jcc(Assembler::equal, done);
1128 
1129   Label try_revoke_bias;
1130   Label try_rebias;
1131 
1132   // At this point we know that the header has the bias pattern and
1133   // that we are not the bias owner in the current epoch. We need to
1134   // figure out more details about the state of the header in order to
1135   // know what operations can be legally performed on the object's
1136   // header.
1137 
1138   // If the low three bits in the xor result aren't clear, that means
1139   // the prototype header is no longer biased and we have to revoke
1140   // the bias on this object.
1141   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
1142   jccb(Assembler::notZero, try_revoke_bias);
1143 
1144   // Biasing is still enabled for this data type. See whether the
1145   // epoch of the current bias is still valid, meaning that the epoch
1146   // bits of the mark word are equal to the epoch bits of the
1147   // prototype header. (Note that the prototype header's epoch bits
1148   // only change at a safepoint.) If not, attempt to rebias the object
1149   // toward the current thread. Note that we must be absolutely sure
1150   // that the current epoch is invalid in order to do this because
1151   // otherwise the manipulations it performs on the mark word are
1152   // illegal.
1153   testptr(header_reg, markOopDesc::epoch_mask_in_place);
1154   jccb(Assembler::notZero, try_rebias);
1155 
1156   // The epoch of the current bias is still valid but we know nothing
1157   // about the owner; it might be set or it might be clear. Try to
1158   // acquire the bias of the object using an atomic operation. If this
1159   // fails we will go in to the runtime to revoke the object's bias.
1160   // Note that we first construct the presumed unbiased header so we
1161   // don't accidentally blow away another thread's valid bias.
1162   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1163   andptr(swap_reg,
1164          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
1165 #ifdef _LP64
1166   movptr(tmp_reg, swap_reg);
1167   orptr(tmp_reg, r15_thread);
1168 #else
1169   get_thread(tmp_reg);
1170   orptr(tmp_reg, swap_reg);
1171 #endif
1172   if (os::is_MP()) {
1173     lock();
1174   }
1175   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1176   // If the biasing toward our thread failed, this means that
1177   // another thread succeeded in biasing it toward itself and we
1178   // need to revoke that bias. The revocation will occur in the
1179   // interpreter runtime in the slow case.
1180   if (counters != NULL) {
1181     cond_inc32(Assembler::zero,
1182                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1183   }
1184   if (slow_case != NULL) {
1185     jcc(Assembler::notZero, *slow_case);
1186   }
1187   jmp(done);
1188 
1189   bind(try_rebias);
1190   // At this point we know the epoch has expired, meaning that the
1191   // current "bias owner", if any, is actually invalid. Under these
1192   // circumstances _only_, we are allowed to use the current header's
1193   // value as the comparison value when doing the cas to acquire the
1194   // bias in the current epoch. In other words, we allow transfer of
1195   // the bias from one thread to another directly in this situation.
1196   //
1197   // FIXME: due to a lack of registers we currently blow away the age
1198   // bits in this situation. Should attempt to preserve them.
1199   load_prototype_header(tmp_reg, obj_reg);
1200 #ifdef _LP64
1201   orptr(tmp_reg, r15_thread);
1202 #else
1203   get_thread(swap_reg);
1204   orptr(tmp_reg, swap_reg);
1205   movptr(swap_reg, saved_mark_addr);
1206 #endif
1207   if (os::is_MP()) {
1208     lock();
1209   }
1210   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1211   // If the biasing toward our thread failed, then another thread
1212   // succeeded in biasing it toward itself and we need to revoke that
1213   // bias. The revocation will occur in the runtime in the slow case.
1214   if (counters != NULL) {
1215     cond_inc32(Assembler::zero,
1216                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1217   }
1218   if (slow_case != NULL) {
1219     jcc(Assembler::notZero, *slow_case);
1220   }
1221   jmp(done);
1222 
1223   bind(try_revoke_bias);
1224   // The prototype mark in the klass doesn't have the bias bit set any
1225   // more, indicating that objects of this data type are not supposed
1226   // to be biased any more. We are going to try to reset the mark of
1227   // this object to the prototype value and fall through to the
1228   // CAS-based locking scheme. Note that if our CAS fails, it means
1229   // that another thread raced us for the privilege of revoking the
1230   // bias of this particular object, so it's okay to continue in the
1231   // normal locking code.
1232   //
1233   // FIXME: due to a lack of registers we currently blow away the age
1234   // bits in this situation. Should attempt to preserve them.
1235   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1236   load_prototype_header(tmp_reg, obj_reg);
1237   if (os::is_MP()) {
1238     lock();
1239   }
1240   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1241   // Fall through to the normal CAS-based lock, because no matter what
1242   // the result of the above CAS, some thread must have succeeded in
1243   // removing the bias bit from the object's header.
1244   if (counters != NULL) {
1245     cond_inc32(Assembler::zero,
1246                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1247   }
1248 
1249   bind(cas_label);
1250 
1251   return null_check_offset;
1252 }
1253 
1254 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1255   assert(UseBiasedLocking, "why call this otherwise?");
1256 
1257   // Check for biased locking unlock case, which is a no-op
1258   // Note: we do not have to check the thread ID for two reasons.
1259   // First, the interpreter checks for IllegalMonitorStateException at
1260   // a higher level. Second, if the bias was revoked while we held the
1261   // lock, the object could not be rebiased toward another thread, so
1262   // the bias bit would be clear.
1263   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1264   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
1265   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
1266   jcc(Assembler::equal, done);
1267 }
1268 
1269 #ifdef COMPILER2
1270 
1271 #if INCLUDE_RTM_OPT
1272 
1273 // Update rtm_counters based on abort status
1274 // input: abort_status
1275 //        rtm_counters (RTMLockingCounters*)
1276 // flags are killed
1277 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1278 
1279   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1280   if (PrintPreciseRTMLockingStatistics) {
1281     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1282       Label check_abort;
1283       testl(abort_status, (1<<i));
1284       jccb(Assembler::equal, check_abort);
1285       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1286       bind(check_abort);
1287     }
1288   }
1289 }
1290 
1291 // Branch if (random & (count-1) != 0), count is 2^n
1292 // tmp, scr and flags are killed
1293 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1294   assert(tmp == rax, "");
1295   assert(scr == rdx, "");
1296   rdtsc(); // modifies EDX:EAX
1297   andptr(tmp, count-1);
1298   jccb(Assembler::notZero, brLabel);
1299 }
1300 
1301 // Perform abort ratio calculation, set no_rtm bit if high ratio
1302 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1303 // tmpReg, rtm_counters_Reg and flags are killed
1304 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1305                                                  Register rtm_counters_Reg,
1306                                                  RTMLockingCounters* rtm_counters,
1307                                                  Metadata* method_data) {
1308   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1309 
1310   if (RTMLockingCalculationDelay > 0) {
1311     // Delay calculation
1312     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1313     testptr(tmpReg, tmpReg);
1314     jccb(Assembler::equal, L_done);
1315   }
1316   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1317   //   Aborted transactions = abort_count * 100
1318   //   All transactions = total_count *  RTMTotalCountIncrRate
1319   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1320 
1321   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1322   cmpptr(tmpReg, RTMAbortThreshold);
1323   jccb(Assembler::below, L_check_always_rtm2);
1324   imulptr(tmpReg, tmpReg, 100);
1325 
1326   Register scrReg = rtm_counters_Reg;
1327   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1328   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1329   imulptr(scrReg, scrReg, RTMAbortRatio);
1330   cmpptr(tmpReg, scrReg);
1331   jccb(Assembler::below, L_check_always_rtm1);
1332   if (method_data != NULL) {
1333     // set rtm_state to "no rtm" in MDO
1334     mov_metadata(tmpReg, method_data);
1335     if (os::is_MP()) {
1336       lock();
1337     }
1338     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1339   }
1340   jmpb(L_done);
1341   bind(L_check_always_rtm1);
1342   // Reload RTMLockingCounters* address
1343   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1344   bind(L_check_always_rtm2);
1345   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1346   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1347   jccb(Assembler::below, L_done);
1348   if (method_data != NULL) {
1349     // set rtm_state to "always rtm" in MDO
1350     mov_metadata(tmpReg, method_data);
1351     if (os::is_MP()) {
1352       lock();
1353     }
1354     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1355   }
1356   bind(L_done);
1357 }
1358 
1359 // Update counters and perform abort ratio calculation
1360 // input:  abort_status_Reg
1361 // rtm_counters_Reg, flags are killed
1362 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1363                                    Register rtm_counters_Reg,
1364                                    RTMLockingCounters* rtm_counters,
1365                                    Metadata* method_data,
1366                                    bool profile_rtm) {
1367 
1368   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1369   // update rtm counters based on rax value at abort
1370   // reads abort_status_Reg, updates flags
1371   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1372   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1373   if (profile_rtm) {
1374     // Save abort status because abort_status_Reg is used by following code.
1375     if (RTMRetryCount > 0) {
1376       push(abort_status_Reg);
1377     }
1378     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1379     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1380     // restore abort status
1381     if (RTMRetryCount > 0) {
1382       pop(abort_status_Reg);
1383     }
1384   }
1385 }
1386 
1387 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1388 // inputs: retry_count_Reg
1389 //       : abort_status_Reg
1390 // output: retry_count_Reg decremented by 1
1391 // flags are killed
1392 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1393   Label doneRetry;
1394   assert(abort_status_Reg == rax, "");
1395   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1396   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1397   // if reason is in 0x6 and retry count != 0 then retry
1398   andptr(abort_status_Reg, 0x6);
1399   jccb(Assembler::zero, doneRetry);
1400   testl(retry_count_Reg, retry_count_Reg);
1401   jccb(Assembler::zero, doneRetry);
1402   pause();
1403   decrementl(retry_count_Reg);
1404   jmp(retryLabel);
1405   bind(doneRetry);
1406 }
1407 
1408 // Spin and retry if lock is busy,
1409 // inputs: box_Reg (monitor address)
1410 //       : retry_count_Reg
1411 // output: retry_count_Reg decremented by 1
1412 //       : clear z flag if retry count exceeded
1413 // tmp_Reg, scr_Reg, flags are killed
1414 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1415                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1416   Label SpinLoop, SpinExit, doneRetry;
1417   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1418 
1419   testl(retry_count_Reg, retry_count_Reg);
1420   jccb(Assembler::zero, doneRetry);
1421   decrementl(retry_count_Reg);
1422   movptr(scr_Reg, RTMSpinLoopCount);
1423 
1424   bind(SpinLoop);
1425   pause();
1426   decrementl(scr_Reg);
1427   jccb(Assembler::lessEqual, SpinExit);
1428   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1429   testptr(tmp_Reg, tmp_Reg);
1430   jccb(Assembler::notZero, SpinLoop);
1431 
1432   bind(SpinExit);
1433   jmp(retryLabel);
1434   bind(doneRetry);
1435   incrementl(retry_count_Reg); // clear z flag
1436 }
1437 
1438 // Use RTM for normal stack locks
1439 // Input: objReg (object to lock)
1440 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1441                                        Register retry_on_abort_count_Reg,
1442                                        RTMLockingCounters* stack_rtm_counters,
1443                                        Metadata* method_data, bool profile_rtm,
1444                                        Label& DONE_LABEL, Label& IsInflated) {
1445   assert(UseRTMForStackLocks, "why call this otherwise?");
1446   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1447   assert(tmpReg == rax, "");
1448   assert(scrReg == rdx, "");
1449   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1450 
1451   if (RTMRetryCount > 0) {
1452     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1453     bind(L_rtm_retry);
1454   }
1455   movptr(tmpReg, Address(objReg, 0));
1456   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
1457   jcc(Assembler::notZero, IsInflated);
1458 
1459   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1460     Label L_noincrement;
1461     if (RTMTotalCountIncrRate > 1) {
1462       // tmpReg, scrReg and flags are killed
1463       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1464     }
1465     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1466     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1467     bind(L_noincrement);
1468   }
1469   xbegin(L_on_abort);
1470   movptr(tmpReg, Address(objReg, 0));       // fetch markword
1471   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1472   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1473   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1474 
1475   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1476   if (UseRTMXendForLockBusy) {
1477     xend();
1478     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1479     jmp(L_decrement_retry);
1480   }
1481   else {
1482     xabort(0);
1483   }
1484   bind(L_on_abort);
1485   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1486     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1487   }
1488   bind(L_decrement_retry);
1489   if (RTMRetryCount > 0) {
1490     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1491     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1492   }
1493 }
1494 
1495 // Use RTM for inflating locks
1496 // inputs: objReg (object to lock)
1497 //         boxReg (on-stack box address (displaced header location) - KILLED)
1498 //         tmpReg (ObjectMonitor address + markOopDesc::monitor_value)
1499 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1500                                           Register scrReg, Register retry_on_busy_count_Reg,
1501                                           Register retry_on_abort_count_Reg,
1502                                           RTMLockingCounters* rtm_counters,
1503                                           Metadata* method_data, bool profile_rtm,
1504                                           Label& DONE_LABEL) {
1505   assert(UseRTMLocking, "why call this otherwise?");
1506   assert(tmpReg == rax, "");
1507   assert(scrReg == rdx, "");
1508   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1509   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1510 
1511   // Without cast to int32_t a movptr will destroy r10 which is typically obj
1512   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1513   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1514 
1515   if (RTMRetryCount > 0) {
1516     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1517     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1518     bind(L_rtm_retry);
1519   }
1520   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1521     Label L_noincrement;
1522     if (RTMTotalCountIncrRate > 1) {
1523       // tmpReg, scrReg and flags are killed
1524       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1525     }
1526     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1527     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1528     bind(L_noincrement);
1529   }
1530   xbegin(L_on_abort);
1531   movptr(tmpReg, Address(objReg, 0));
1532   movptr(tmpReg, Address(tmpReg, owner_offset));
1533   testptr(tmpReg, tmpReg);
1534   jcc(Assembler::zero, DONE_LABEL);
1535   if (UseRTMXendForLockBusy) {
1536     xend();
1537     jmp(L_decrement_retry);
1538   }
1539   else {
1540     xabort(0);
1541   }
1542   bind(L_on_abort);
1543   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1544   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1545     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1546   }
1547   if (RTMRetryCount > 0) {
1548     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1549     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1550   }
1551 
1552   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1553   testptr(tmpReg, tmpReg) ;
1554   jccb(Assembler::notZero, L_decrement_retry) ;
1555 
1556   // Appears unlocked - try to swing _owner from null to non-null.
1557   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1558 #ifdef _LP64
1559   Register threadReg = r15_thread;
1560 #else
1561   get_thread(scrReg);
1562   Register threadReg = scrReg;
1563 #endif
1564   if (os::is_MP()) {
1565     lock();
1566   }
1567   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1568 
1569   if (RTMRetryCount > 0) {
1570     // success done else retry
1571     jccb(Assembler::equal, DONE_LABEL) ;
1572     bind(L_decrement_retry);
1573     // Spin and retry if lock is busy.
1574     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1575   }
1576   else {
1577     bind(L_decrement_retry);
1578   }
1579 }
1580 
1581 #endif //  INCLUDE_RTM_OPT
1582 
1583 // Fast_Lock and Fast_Unlock used by C2
1584 
1585 // Because the transitions from emitted code to the runtime
1586 // monitorenter/exit helper stubs are so slow it's critical that
1587 // we inline both the stack-locking fast-path and the inflated fast path.
1588 //
1589 // See also: cmpFastLock and cmpFastUnlock.
1590 //
1591 // What follows is a specialized inline transliteration of the code
1592 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
1593 // another option would be to emit TrySlowEnter and TrySlowExit methods
1594 // at startup-time.  These methods would accept arguments as
1595 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1596 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
1597 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1598 // In practice, however, the # of lock sites is bounded and is usually small.
1599 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1600 // if the processor uses simple bimodal branch predictors keyed by EIP
1601 // Since the helper routines would be called from multiple synchronization
1602 // sites.
1603 //
1604 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1605 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1606 // to those specialized methods.  That'd give us a mostly platform-independent
1607 // implementation that the JITs could optimize and inline at their pleasure.
1608 // Done correctly, the only time we'd need to cross to native could would be
1609 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1610 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1611 // (b) explicit barriers or fence operations.
1612 //
1613 // TODO:
1614 //
1615 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
1616 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
1617 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1618 //    the lock operators would typically be faster than reifying Self.
1619 //
1620 // *  Ideally I'd define the primitives as:
1621 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1622 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1623 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1624 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1625 //    Furthermore the register assignments are overconstrained, possibly resulting in
1626 //    sub-optimal code near the synchronization site.
1627 //
1628 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1629 //    Alternately, use a better sp-proximity test.
1630 //
1631 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1632 //    Either one is sufficient to uniquely identify a thread.
1633 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1634 //
1635 // *  Intrinsify notify() and notifyAll() for the common cases where the
1636 //    object is locked by the calling thread but the waitlist is empty.
1637 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1638 //
1639 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1640 //    But beware of excessive branch density on AMD Opterons.
1641 //
1642 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
1643 //    or failure of the fast-path.  If the fast-path fails then we pass
1644 //    control to the slow-path, typically in C.  In Fast_Lock and
1645 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
1646 //    will emit a conditional branch immediately after the node.
1647 //    So we have branches to branches and lots of ICC.ZF games.
1648 //    Instead, it might be better to have C2 pass a "FailureLabel"
1649 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
1650 //    will drop through the node.  ICC.ZF is undefined at exit.
1651 //    In the case of failure, the node will branch directly to the
1652 //    FailureLabel
1653 
1654 
1655 // obj: object to lock
1656 // box: on-stack box address (displaced header location) - KILLED
1657 // rax,: tmp -- KILLED
1658 // scr: tmp -- KILLED
1659 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1660                                Register scrReg, Register cx1Reg, Register cx2Reg,
1661                                BiasedLockingCounters* counters,
1662                                RTMLockingCounters* rtm_counters,
1663                                RTMLockingCounters* stack_rtm_counters,
1664                                Metadata* method_data,
1665                                bool use_rtm, bool profile_rtm) {
1666   // Ensure the register assignents are disjoint
1667   assert(tmpReg == rax, "");
1668 
1669   if (use_rtm) {
1670     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1671   } else {
1672     assert(cx1Reg == noreg, "");
1673     assert(cx2Reg == noreg, "");
1674     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1675   }
1676 
1677   if (counters != NULL) {
1678     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1679   }
1680   if (EmitSync & 1) {
1681       // set box->dhw = markOopDesc::unused_mark()
1682       // Force all sync thru slow-path: slow_enter() and slow_exit()
1683       movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1684       cmpptr (rsp, (int32_t)NULL_WORD);
1685   } else {
1686     // Possible cases that we'll encounter in fast_lock
1687     // ------------------------------------------------
1688     // * Inflated
1689     //    -- unlocked
1690     //    -- Locked
1691     //       = by self
1692     //       = by other
1693     // * biased
1694     //    -- by Self
1695     //    -- by other
1696     // * neutral
1697     // * stack-locked
1698     //    -- by self
1699     //       = sp-proximity test hits
1700     //       = sp-proximity test generates false-negative
1701     //    -- by other
1702     //
1703 
1704     Label IsInflated, DONE_LABEL;
1705 
1706     // it's stack-locked, biased or neutral
1707     // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1708     // order to reduce the number of conditional branches in the most common cases.
1709     // Beware -- there's a subtle invariant that fetch of the markword
1710     // at [FETCH], below, will never observe a biased encoding (*101b).
1711     // If this invariant is not held we risk exclusion (safety) failure.
1712     if (UseBiasedLocking && !UseOptoBiasInlining) {
1713       biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1714     }
1715 
1716 #if INCLUDE_RTM_OPT
1717     if (UseRTMForStackLocks && use_rtm) {
1718       rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1719                         stack_rtm_counters, method_data, profile_rtm,
1720                         DONE_LABEL, IsInflated);
1721     }
1722 #endif // INCLUDE_RTM_OPT
1723 
1724     movptr(tmpReg, Address(objReg, 0));          // [FETCH]
1725     testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
1726     jccb(Assembler::notZero, IsInflated);
1727 
1728     // Attempt stack-locking ...
1729     orptr (tmpReg, markOopDesc::unlocked_value);
1730     movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1731     if (os::is_MP()) {
1732       lock();
1733     }
1734     cmpxchgptr(boxReg, Address(objReg, 0));      // Updates tmpReg
1735     if (counters != NULL) {
1736       cond_inc32(Assembler::equal,
1737                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1738     }
1739     jcc(Assembler::equal, DONE_LABEL);           // Success
1740 
1741     // Recursive locking.
1742     // The object is stack-locked: markword contains stack pointer to BasicLock.
1743     // Locked by current thread if difference with current SP is less than one page.
1744     subptr(tmpReg, rsp);
1745     // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1746     andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1747     movptr(Address(boxReg, 0), tmpReg);
1748     if (counters != NULL) {
1749       cond_inc32(Assembler::equal,
1750                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1751     }
1752     jmp(DONE_LABEL);
1753 
1754     bind(IsInflated);
1755     // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markOopDesc::monitor_value
1756 
1757 #if INCLUDE_RTM_OPT
1758     // Use the same RTM locking code in 32- and 64-bit VM.
1759     if (use_rtm) {
1760       rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1761                            rtm_counters, method_data, profile_rtm, DONE_LABEL);
1762     } else {
1763 #endif // INCLUDE_RTM_OPT
1764 
1765 #ifndef _LP64
1766     // The object is inflated.
1767 
1768     // boxReg refers to the on-stack BasicLock in the current frame.
1769     // We'd like to write:
1770     //   set box->_displaced_header = markOopDesc::unused_mark().  Any non-0 value suffices.
1771     // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1772     // additional latency as we have another ST in the store buffer that must drain.
1773 
1774     if (EmitSync & 8192) {
1775        movptr(Address(boxReg, 0), 3);            // results in ST-before-CAS penalty
1776        get_thread (scrReg);
1777        movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
1778        movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
1779        if (os::is_MP()) {
1780          lock();
1781        }
1782        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1783     } else
1784     if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
1785        // register juggle because we need tmpReg for cmpxchgptr below
1786        movptr(scrReg, boxReg);
1787        movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1788 
1789        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1790        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1791           // prefetchw [eax + Offset(_owner)-2]
1792           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1793        }
1794 
1795        if ((EmitSync & 64) == 0) {
1796          // Optimistic form: consider XORL tmpReg,tmpReg
1797          movptr(tmpReg, NULL_WORD);
1798        } else {
1799          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1800          // Test-And-CAS instead of CAS
1801          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1802          testptr(tmpReg, tmpReg);                   // Locked ?
1803          jccb  (Assembler::notZero, DONE_LABEL);
1804        }
1805 
1806        // Appears unlocked - try to swing _owner from null to non-null.
1807        // Ideally, I'd manifest "Self" with get_thread and then attempt
1808        // to CAS the register containing Self into m->Owner.
1809        // But we don't have enough registers, so instead we can either try to CAS
1810        // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1811        // we later store "Self" into m->Owner.  Transiently storing a stack address
1812        // (rsp or the address of the box) into  m->owner is harmless.
1813        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1814        if (os::is_MP()) {
1815          lock();
1816        }
1817        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1818        movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1819        // If we weren't able to swing _owner from NULL to the BasicLock
1820        // then take the slow path.
1821        jccb  (Assembler::notZero, DONE_LABEL);
1822        // update _owner from BasicLock to thread
1823        get_thread (scrReg);                    // beware: clobbers ICCs
1824        movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
1825        xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1826 
1827        // If the CAS fails we can either retry or pass control to the slow-path.
1828        // We use the latter tactic.
1829        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1830        // If the CAS was successful ...
1831        //   Self has acquired the lock
1832        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1833        // Intentional fall-through into DONE_LABEL ...
1834     } else {
1835        movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark()));  // results in ST-before-CAS penalty
1836        movptr(boxReg, tmpReg);
1837 
1838        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1839        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1840           // prefetchw [eax + Offset(_owner)-2]
1841           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1842        }
1843 
1844        if ((EmitSync & 64) == 0) {
1845          // Optimistic form
1846          xorptr  (tmpReg, tmpReg);
1847        } else {
1848          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1849          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1850          testptr(tmpReg, tmpReg);                   // Locked ?
1851          jccb  (Assembler::notZero, DONE_LABEL);
1852        }
1853 
1854        // Appears unlocked - try to swing _owner from null to non-null.
1855        // Use either "Self" (in scr) or rsp as thread identity in _owner.
1856        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1857        get_thread (scrReg);
1858        if (os::is_MP()) {
1859          lock();
1860        }
1861        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1862 
1863        // If the CAS fails we can either retry or pass control to the slow-path.
1864        // We use the latter tactic.
1865        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1866        // If the CAS was successful ...
1867        //   Self has acquired the lock
1868        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1869        // Intentional fall-through into DONE_LABEL ...
1870     }
1871 #else // _LP64
1872     // It's inflated
1873     movq(scrReg, tmpReg);
1874     xorq(tmpReg, tmpReg);
1875 
1876     if (os::is_MP()) {
1877       lock();
1878     }
1879     cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1880     // Unconditionally set box->_displaced_header = markOopDesc::unused_mark().
1881     // Without cast to int32_t movptr will destroy r10 which is typically obj.
1882     movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1883     // Intentional fall-through into DONE_LABEL ...
1884     // Propagate ICC.ZF from CAS above into DONE_LABEL.
1885 #endif // _LP64
1886 #if INCLUDE_RTM_OPT
1887     } // use_rtm()
1888 #endif
1889     // DONE_LABEL is a hot target - we'd really like to place it at the
1890     // start of cache line by padding with NOPs.
1891     // See the AMD and Intel software optimization manuals for the
1892     // most efficient "long" NOP encodings.
1893     // Unfortunately none of our alignment mechanisms suffice.
1894     bind(DONE_LABEL);
1895 
1896     // At DONE_LABEL the icc ZFlag is set as follows ...
1897     // Fast_Unlock uses the same protocol.
1898     // ZFlag == 1 -> Success
1899     // ZFlag == 0 -> Failure - force control through the slow-path
1900   }
1901 }
1902 
1903 // obj: object to unlock
1904 // box: box address (displaced header location), killed.  Must be EAX.
1905 // tmp: killed, cannot be obj nor box.
1906 //
1907 // Some commentary on balanced locking:
1908 //
1909 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
1910 // Methods that don't have provably balanced locking are forced to run in the
1911 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1912 // The interpreter provides two properties:
1913 // I1:  At return-time the interpreter automatically and quietly unlocks any
1914 //      objects acquired the current activation (frame).  Recall that the
1915 //      interpreter maintains an on-stack list of locks currently held by
1916 //      a frame.
1917 // I2:  If a method attempts to unlock an object that is not held by the
1918 //      the frame the interpreter throws IMSX.
1919 //
1920 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
1921 // B() doesn't have provably balanced locking so it runs in the interpreter.
1922 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
1923 // is still locked by A().
1924 //
1925 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
1926 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
1927 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
1928 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
1929 // Arguably given that the spec legislates the JNI case as undefined our implementation
1930 // could reasonably *avoid* checking owner in Fast_Unlock().
1931 // In the interest of performance we elide m->Owner==Self check in unlock.
1932 // A perfectly viable alternative is to elide the owner check except when
1933 // Xcheck:jni is enabled.
1934 
1935 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
1936   assert(boxReg == rax, "");
1937   assert_different_registers(objReg, boxReg, tmpReg);
1938 
1939   if (EmitSync & 4) {
1940     // Disable - inhibit all inlining.  Force control through the slow-path
1941     cmpptr (rsp, 0);
1942   } else {
1943     Label DONE_LABEL, Stacked, CheckSucc;
1944 
1945     // Critically, the biased locking test must have precedence over
1946     // and appear before the (box->dhw == 0) recursive stack-lock test.
1947     if (UseBiasedLocking && !UseOptoBiasInlining) {
1948        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
1949     }
1950 
1951 #if INCLUDE_RTM_OPT
1952     if (UseRTMForStackLocks && use_rtm) {
1953       assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1954       Label L_regular_unlock;
1955       movptr(tmpReg, Address(objReg, 0));           // fetch markword
1956       andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1957       cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1958       jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
1959       xend();                                       // otherwise end...
1960       jmp(DONE_LABEL);                              // ... and we're done
1961       bind(L_regular_unlock);
1962     }
1963 #endif
1964 
1965     cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
1966     jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
1967     movptr(tmpReg, Address(objReg, 0));             // Examine the object's markword
1968     testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
1969     jccb  (Assembler::zero, Stacked);
1970 
1971     // It's inflated.
1972 #if INCLUDE_RTM_OPT
1973     if (use_rtm) {
1974       Label L_regular_inflated_unlock;
1975       int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1976       movptr(boxReg, Address(tmpReg, owner_offset));
1977       testptr(boxReg, boxReg);
1978       jccb(Assembler::notZero, L_regular_inflated_unlock);
1979       xend();
1980       jmpb(DONE_LABEL);
1981       bind(L_regular_inflated_unlock);
1982     }
1983 #endif
1984 
1985     // Despite our balanced locking property we still check that m->_owner == Self
1986     // as java routines or native JNI code called by this thread might
1987     // have released the lock.
1988     // Refer to the comments in synchronizer.cpp for how we might encode extra
1989     // state in _succ so we can avoid fetching EntryList|cxq.
1990     //
1991     // I'd like to add more cases in fast_lock() and fast_unlock() --
1992     // such as recursive enter and exit -- but we have to be wary of
1993     // I$ bloat, T$ effects and BP$ effects.
1994     //
1995     // If there's no contention try a 1-0 exit.  That is, exit without
1996     // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
1997     // we detect and recover from the race that the 1-0 exit admits.
1998     //
1999     // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
2000     // before it STs null into _owner, releasing the lock.  Updates
2001     // to data protected by the critical section must be visible before
2002     // we drop the lock (and thus before any other thread could acquire
2003     // the lock and observe the fields protected by the lock).
2004     // IA32's memory-model is SPO, so STs are ordered with respect to
2005     // each other and there's no need for an explicit barrier (fence).
2006     // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
2007 #ifndef _LP64
2008     get_thread (boxReg);
2009     if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
2010       // prefetchw [ebx + Offset(_owner)-2]
2011       prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2012     }
2013 
2014     // Note that we could employ various encoding schemes to reduce
2015     // the number of loads below (currently 4) to just 2 or 3.
2016     // Refer to the comments in synchronizer.cpp.
2017     // In practice the chain of fetches doesn't seem to impact performance, however.
2018     xorptr(boxReg, boxReg);
2019     if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
2020        // Attempt to reduce branch density - AMD's branch predictor.
2021        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2022        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2023        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2024        jccb  (Assembler::notZero, DONE_LABEL);
2025        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2026        jmpb  (DONE_LABEL);
2027     } else {
2028        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2029        jccb  (Assembler::notZero, DONE_LABEL);
2030        movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2031        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2032        jccb  (Assembler::notZero, CheckSucc);
2033        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2034        jmpb  (DONE_LABEL);
2035     }
2036 
2037     // The Following code fragment (EmitSync & 65536) improves the performance of
2038     // contended applications and contended synchronization microbenchmarks.
2039     // Unfortunately the emission of the code - even though not executed - causes regressions
2040     // in scimark and jetstream, evidently because of $ effects.  Replacing the code
2041     // with an equal number of never-executed NOPs results in the same regression.
2042     // We leave it off by default.
2043 
2044     if ((EmitSync & 65536) != 0) {
2045        Label LSuccess, LGoSlowPath ;
2046 
2047        bind  (CheckSucc);
2048 
2049        // Optional pre-test ... it's safe to elide this
2050        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2051        jccb(Assembler::zero, LGoSlowPath);
2052 
2053        // We have a classic Dekker-style idiom:
2054        //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
2055        // There are a number of ways to implement the barrier:
2056        // (1) lock:andl &m->_owner, 0
2057        //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
2058        //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
2059        //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
2060        // (2) If supported, an explicit MFENCE is appealing.
2061        //     In older IA32 processors MFENCE is slower than lock:add or xchg
2062        //     particularly if the write-buffer is full as might be the case if
2063        //     if stores closely precede the fence or fence-equivalent instruction.
2064        //     See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2065        //     as the situation has changed with Nehalem and Shanghai.
2066        // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
2067        //     The $lines underlying the top-of-stack should be in M-state.
2068        //     The locked add instruction is serializing, of course.
2069        // (4) Use xchg, which is serializing
2070        //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
2071        // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
2072        //     The integer condition codes will tell us if succ was 0.
2073        //     Since _succ and _owner should reside in the same $line and
2074        //     we just stored into _owner, it's likely that the $line
2075        //     remains in M-state for the lock:orl.
2076        //
2077        // We currently use (3), although it's likely that switching to (2)
2078        // is correct for the future.
2079 
2080        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2081        if (os::is_MP()) {
2082          lock(); addptr(Address(rsp, 0), 0);
2083        }
2084        // Ratify _succ remains non-null
2085        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), 0);
2086        jccb  (Assembler::notZero, LSuccess);
2087 
2088        xorptr(boxReg, boxReg);                  // box is really EAX
2089        if (os::is_MP()) { lock(); }
2090        cmpxchgptr(rsp, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2091        // There's no successor so we tried to regrab the lock with the
2092        // placeholder value. If that didn't work, then another thread
2093        // grabbed the lock so we're done (and exit was a success).
2094        jccb  (Assembler::notEqual, LSuccess);
2095        // Since we're low on registers we installed rsp as a placeholding in _owner.
2096        // Now install Self over rsp.  This is safe as we're transitioning from
2097        // non-null to non=null
2098        get_thread (boxReg);
2099        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), boxReg);
2100        // Intentional fall-through into LGoSlowPath ...
2101 
2102        bind  (LGoSlowPath);
2103        orptr(boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2104        jmpb  (DONE_LABEL);
2105 
2106        bind  (LSuccess);
2107        xorptr(boxReg, boxReg);                 // set ICC.ZF=1 to indicate success
2108        jmpb  (DONE_LABEL);
2109     }
2110 
2111     bind (Stacked);
2112     // It's not inflated and it's not recursively stack-locked and it's not biased.
2113     // It must be stack-locked.
2114     // Try to reset the header to displaced header.
2115     // The "box" value on the stack is stable, so we can reload
2116     // and be assured we observe the same value as above.
2117     movptr(tmpReg, Address(boxReg, 0));
2118     if (os::is_MP()) {
2119       lock();
2120     }
2121     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2122     // Intention fall-thru into DONE_LABEL
2123 
2124     // DONE_LABEL is a hot target - we'd really like to place it at the
2125     // start of cache line by padding with NOPs.
2126     // See the AMD and Intel software optimization manuals for the
2127     // most efficient "long" NOP encodings.
2128     // Unfortunately none of our alignment mechanisms suffice.
2129     if ((EmitSync & 65536) == 0) {
2130        bind (CheckSucc);
2131     }
2132 #else // _LP64
2133     // It's inflated
2134     if (EmitSync & 1024) {
2135       // Emit code to check that _owner == Self
2136       // We could fold the _owner test into subsequent code more efficiently
2137       // than using a stand-alone check, but since _owner checking is off by
2138       // default we don't bother. We also might consider predicating the
2139       // _owner==Self check on Xcheck:jni or running on a debug build.
2140       movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2141       xorptr(boxReg, r15_thread);
2142     } else {
2143       xorptr(boxReg, boxReg);
2144     }
2145     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2146     jccb  (Assembler::notZero, DONE_LABEL);
2147     movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2148     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2149     jccb  (Assembler::notZero, CheckSucc);
2150     movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2151     jmpb  (DONE_LABEL);
2152 
2153     if ((EmitSync & 65536) == 0) {
2154       // Try to avoid passing control into the slow_path ...
2155       Label LSuccess, LGoSlowPath ;
2156       bind  (CheckSucc);
2157 
2158       // The following optional optimization can be elided if necessary
2159       // Effectively: if (succ == null) goto SlowPath
2160       // The code reduces the window for a race, however,
2161       // and thus benefits performance.
2162       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2163       jccb  (Assembler::zero, LGoSlowPath);
2164 
2165       if ((EmitSync & 16) && os::is_MP()) {
2166         orptr(boxReg, boxReg);
2167         xchgptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2168       } else {
2169         movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2170         if (os::is_MP()) {
2171           // Memory barrier/fence
2172           // Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
2173           // Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
2174           // This is faster on Nehalem and AMD Shanghai/Barcelona.
2175           // See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2176           // We might also restructure (ST Owner=0;barrier;LD _Succ) to
2177           // (mov box,0; xchgq box, &m->Owner; LD _succ) .
2178           lock(); addl(Address(rsp, 0), 0);
2179         }
2180       }
2181       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2182       jccb  (Assembler::notZero, LSuccess);
2183 
2184       // Rare inopportune interleaving - race.
2185       // The successor vanished in the small window above.
2186       // The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
2187       // We need to ensure progress and succession.
2188       // Try to reacquire the lock.
2189       // If that fails then the new owner is responsible for succession and this
2190       // thread needs to take no further action and can exit via the fast path (success).
2191       // If the re-acquire succeeds then pass control into the slow path.
2192       // As implemented, this latter mode is horrible because we generated more
2193       // coherence traffic on the lock *and* artifically extended the critical section
2194       // length while by virtue of passing control into the slow path.
2195 
2196       // box is really RAX -- the following CMPXCHG depends on that binding
2197       // cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
2198       movptr(boxReg, (int32_t)NULL_WORD);
2199       if (os::is_MP()) { lock(); }
2200       cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2201       // There's no successor so we tried to regrab the lock.
2202       // If that didn't work, then another thread grabbed the
2203       // lock so we're done (and exit was a success).
2204       jccb  (Assembler::notEqual, LSuccess);
2205       // Intentional fall-through into slow-path
2206 
2207       bind  (LGoSlowPath);
2208       orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2209       jmpb  (DONE_LABEL);
2210 
2211       bind  (LSuccess);
2212       testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2213       jmpb  (DONE_LABEL);
2214     }
2215 
2216     bind  (Stacked);
2217     movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2218     if (os::is_MP()) { lock(); }
2219     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2220 
2221     if (EmitSync & 65536) {
2222        bind (CheckSucc);
2223     }
2224 #endif
2225     bind(DONE_LABEL);
2226   }
2227 }
2228 #endif // COMPILER2
2229 
2230 void MacroAssembler::c2bool(Register x) {
2231   // implements x == 0 ? 0 : 1
2232   // note: must only look at least-significant byte of x
2233   //       since C-style booleans are stored in one byte
2234   //       only! (was bug)
2235   andl(x, 0xFF);
2236   setb(Assembler::notZero, x);
2237 }
2238 
2239 // Wouldn't need if AddressLiteral version had new name
2240 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2241   Assembler::call(L, rtype);
2242 }
2243 
2244 void MacroAssembler::call(Register entry) {
2245   Assembler::call(entry);
2246 }
2247 
2248 void MacroAssembler::call(AddressLiteral entry) {
2249   if (reachable(entry)) {
2250     Assembler::call_literal(entry.target(), entry.rspec());
2251   } else {
2252     lea(rscratch1, entry);
2253     Assembler::call(rscratch1);
2254   }
2255 }
2256 
2257 void MacroAssembler::ic_call(address entry) {
2258   RelocationHolder rh = virtual_call_Relocation::spec(pc());
2259   movptr(rax, (intptr_t)Universe::non_oop_word());
2260   call(AddressLiteral(entry, rh));
2261 }
2262 
2263 // Implementation of call_VM versions
2264 
2265 void MacroAssembler::call_VM(Register oop_result,
2266                              address entry_point,
2267                              bool check_exceptions) {
2268   Label C, E;
2269   call(C, relocInfo::none);
2270   jmp(E);
2271 
2272   bind(C);
2273   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2274   ret(0);
2275 
2276   bind(E);
2277 }
2278 
2279 void MacroAssembler::call_VM(Register oop_result,
2280                              address entry_point,
2281                              Register arg_1,
2282                              bool check_exceptions) {
2283   Label C, E;
2284   call(C, relocInfo::none);
2285   jmp(E);
2286 
2287   bind(C);
2288   pass_arg1(this, arg_1);
2289   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2290   ret(0);
2291 
2292   bind(E);
2293 }
2294 
2295 void MacroAssembler::call_VM(Register oop_result,
2296                              address entry_point,
2297                              Register arg_1,
2298                              Register arg_2,
2299                              bool check_exceptions) {
2300   Label C, E;
2301   call(C, relocInfo::none);
2302   jmp(E);
2303 
2304   bind(C);
2305 
2306   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2307 
2308   pass_arg2(this, arg_2);
2309   pass_arg1(this, arg_1);
2310   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2311   ret(0);
2312 
2313   bind(E);
2314 }
2315 
2316 void MacroAssembler::call_VM(Register oop_result,
2317                              address entry_point,
2318                              Register arg_1,
2319                              Register arg_2,
2320                              Register arg_3,
2321                              bool check_exceptions) {
2322   Label C, E;
2323   call(C, relocInfo::none);
2324   jmp(E);
2325 
2326   bind(C);
2327 
2328   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2329   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2330   pass_arg3(this, arg_3);
2331 
2332   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2333   pass_arg2(this, arg_2);
2334 
2335   pass_arg1(this, arg_1);
2336   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2337   ret(0);
2338 
2339   bind(E);
2340 }
2341 
2342 void MacroAssembler::call_VM(Register oop_result,
2343                              Register last_java_sp,
2344                              address entry_point,
2345                              int number_of_arguments,
2346                              bool check_exceptions) {
2347   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2348   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2349 }
2350 
2351 void MacroAssembler::call_VM(Register oop_result,
2352                              Register last_java_sp,
2353                              address entry_point,
2354                              Register arg_1,
2355                              bool check_exceptions) {
2356   pass_arg1(this, arg_1);
2357   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2358 }
2359 
2360 void MacroAssembler::call_VM(Register oop_result,
2361                              Register last_java_sp,
2362                              address entry_point,
2363                              Register arg_1,
2364                              Register arg_2,
2365                              bool check_exceptions) {
2366 
2367   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2368   pass_arg2(this, arg_2);
2369   pass_arg1(this, arg_1);
2370   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2371 }
2372 
2373 void MacroAssembler::call_VM(Register oop_result,
2374                              Register last_java_sp,
2375                              address entry_point,
2376                              Register arg_1,
2377                              Register arg_2,
2378                              Register arg_3,
2379                              bool check_exceptions) {
2380   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2381   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2382   pass_arg3(this, arg_3);
2383   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2384   pass_arg2(this, arg_2);
2385   pass_arg1(this, arg_1);
2386   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2387 }
2388 
2389 void MacroAssembler::super_call_VM(Register oop_result,
2390                                    Register last_java_sp,
2391                                    address entry_point,
2392                                    int number_of_arguments,
2393                                    bool check_exceptions) {
2394   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2395   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2396 }
2397 
2398 void MacroAssembler::super_call_VM(Register oop_result,
2399                                    Register last_java_sp,
2400                                    address entry_point,
2401                                    Register arg_1,
2402                                    bool check_exceptions) {
2403   pass_arg1(this, arg_1);
2404   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2405 }
2406 
2407 void MacroAssembler::super_call_VM(Register oop_result,
2408                                    Register last_java_sp,
2409                                    address entry_point,
2410                                    Register arg_1,
2411                                    Register arg_2,
2412                                    bool check_exceptions) {
2413 
2414   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2415   pass_arg2(this, arg_2);
2416   pass_arg1(this, arg_1);
2417   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2418 }
2419 
2420 void MacroAssembler::super_call_VM(Register oop_result,
2421                                    Register last_java_sp,
2422                                    address entry_point,
2423                                    Register arg_1,
2424                                    Register arg_2,
2425                                    Register arg_3,
2426                                    bool check_exceptions) {
2427   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2428   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2429   pass_arg3(this, arg_3);
2430   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2431   pass_arg2(this, arg_2);
2432   pass_arg1(this, arg_1);
2433   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2434 }
2435 
2436 void MacroAssembler::call_VM_base(Register oop_result,
2437                                   Register java_thread,
2438                                   Register last_java_sp,
2439                                   address  entry_point,
2440                                   int      number_of_arguments,
2441                                   bool     check_exceptions) {
2442   // determine java_thread register
2443   if (!java_thread->is_valid()) {
2444 #ifdef _LP64
2445     java_thread = r15_thread;
2446 #else
2447     java_thread = rdi;
2448     get_thread(java_thread);
2449 #endif // LP64
2450   }
2451   // determine last_java_sp register
2452   if (!last_java_sp->is_valid()) {
2453     last_java_sp = rsp;
2454   }
2455   // debugging support
2456   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2457   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2458 #ifdef ASSERT
2459   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2460   // r12 is the heapbase.
2461   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2462 #endif // ASSERT
2463 
2464   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2465   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2466 
2467   // push java thread (becomes first argument of C function)
2468 
2469   NOT_LP64(push(java_thread); number_of_arguments++);
2470   LP64_ONLY(mov(c_rarg0, r15_thread));
2471 
2472   // set last Java frame before call
2473   assert(last_java_sp != rbp, "can't use ebp/rbp");
2474 
2475   // Only interpreter should have to set fp
2476   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2477 
2478   // do the call, remove parameters
2479   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2480 
2481   // restore the thread (cannot use the pushed argument since arguments
2482   // may be overwritten by C code generated by an optimizing compiler);
2483   // however can use the register value directly if it is callee saved.
2484   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2485     // rdi & rsi (also r15) are callee saved -> nothing to do
2486 #ifdef ASSERT
2487     guarantee(java_thread != rax, "change this code");
2488     push(rax);
2489     { Label L;
2490       get_thread(rax);
2491       cmpptr(java_thread, rax);
2492       jcc(Assembler::equal, L);
2493       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2494       bind(L);
2495     }
2496     pop(rax);
2497 #endif
2498   } else {
2499     get_thread(java_thread);
2500   }
2501   // reset last Java frame
2502   // Only interpreter should have to clear fp
2503   reset_last_Java_frame(java_thread, true, false);
2504 
2505 #ifndef CC_INTERP
2506    // C++ interp handles this in the interpreter
2507   check_and_handle_popframe(java_thread);
2508   check_and_handle_earlyret(java_thread);
2509 #endif /* CC_INTERP */
2510 
2511   if (check_exceptions) {
2512     // check for pending exceptions (java_thread is set upon return)
2513     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2514 #ifndef _LP64
2515     jump_cc(Assembler::notEqual,
2516             RuntimeAddress(StubRoutines::forward_exception_entry()));
2517 #else
2518     // This used to conditionally jump to forward_exception however it is
2519     // possible if we relocate that the branch will not reach. So we must jump
2520     // around so we can always reach
2521 
2522     Label ok;
2523     jcc(Assembler::equal, ok);
2524     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2525     bind(ok);
2526 #endif // LP64
2527   }
2528 
2529   // get oop result if there is one and reset the value in the thread
2530   if (oop_result->is_valid()) {
2531     get_vm_result(oop_result, java_thread);
2532   }
2533 }
2534 
2535 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2536 
2537   // Calculate the value for last_Java_sp
2538   // somewhat subtle. call_VM does an intermediate call
2539   // which places a return address on the stack just under the
2540   // stack pointer as the user finsihed with it. This allows
2541   // use to retrieve last_Java_pc from last_Java_sp[-1].
2542   // On 32bit we then have to push additional args on the stack to accomplish
2543   // the actual requested call. On 64bit call_VM only can use register args
2544   // so the only extra space is the return address that call_VM created.
2545   // This hopefully explains the calculations here.
2546 
2547 #ifdef _LP64
2548   // We've pushed one address, correct last_Java_sp
2549   lea(rax, Address(rsp, wordSize));
2550 #else
2551   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2552 #endif // LP64
2553 
2554   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2555 
2556 }
2557 
2558 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2559   call_VM_leaf_base(entry_point, number_of_arguments);
2560 }
2561 
2562 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2563   pass_arg0(this, arg_0);
2564   call_VM_leaf(entry_point, 1);
2565 }
2566 
2567 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2568 
2569   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2570   pass_arg1(this, arg_1);
2571   pass_arg0(this, arg_0);
2572   call_VM_leaf(entry_point, 2);
2573 }
2574 
2575 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2576   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2577   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2578   pass_arg2(this, arg_2);
2579   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2580   pass_arg1(this, arg_1);
2581   pass_arg0(this, arg_0);
2582   call_VM_leaf(entry_point, 3);
2583 }
2584 
2585 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2586   pass_arg0(this, arg_0);
2587   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2588 }
2589 
2590 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2591 
2592   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2593   pass_arg1(this, arg_1);
2594   pass_arg0(this, arg_0);
2595   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2596 }
2597 
2598 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2599   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2600   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2601   pass_arg2(this, arg_2);
2602   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2603   pass_arg1(this, arg_1);
2604   pass_arg0(this, arg_0);
2605   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2606 }
2607 
2608 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2609   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2610   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2611   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2612   pass_arg3(this, arg_3);
2613   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2614   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2615   pass_arg2(this, arg_2);
2616   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2617   pass_arg1(this, arg_1);
2618   pass_arg0(this, arg_0);
2619   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2620 }
2621 
2622 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2623   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2624   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2625   verify_oop(oop_result, "broken oop in call_VM_base");
2626 }
2627 
2628 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2629   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2630   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2631 }
2632 
2633 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2634 }
2635 
2636 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2637 }
2638 
2639 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2640   if (reachable(src1)) {
2641     cmpl(as_Address(src1), imm);
2642   } else {
2643     lea(rscratch1, src1);
2644     cmpl(Address(rscratch1, 0), imm);
2645   }
2646 }
2647 
2648 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2649   assert(!src2.is_lval(), "use cmpptr");
2650   if (reachable(src2)) {
2651     cmpl(src1, as_Address(src2));
2652   } else {
2653     lea(rscratch1, src2);
2654     cmpl(src1, Address(rscratch1, 0));
2655   }
2656 }
2657 
2658 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2659   Assembler::cmpl(src1, imm);
2660 }
2661 
2662 void MacroAssembler::cmp32(Register src1, Address src2) {
2663   Assembler::cmpl(src1, src2);
2664 }
2665 
2666 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2667   ucomisd(opr1, opr2);
2668 
2669   Label L;
2670   if (unordered_is_less) {
2671     movl(dst, -1);
2672     jcc(Assembler::parity, L);
2673     jcc(Assembler::below , L);
2674     movl(dst, 0);
2675     jcc(Assembler::equal , L);
2676     increment(dst);
2677   } else { // unordered is greater
2678     movl(dst, 1);
2679     jcc(Assembler::parity, L);
2680     jcc(Assembler::above , L);
2681     movl(dst, 0);
2682     jcc(Assembler::equal , L);
2683     decrementl(dst);
2684   }
2685   bind(L);
2686 }
2687 
2688 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2689   ucomiss(opr1, opr2);
2690 
2691   Label L;
2692   if (unordered_is_less) {
2693     movl(dst, -1);
2694     jcc(Assembler::parity, L);
2695     jcc(Assembler::below , L);
2696     movl(dst, 0);
2697     jcc(Assembler::equal , L);
2698     increment(dst);
2699   } else { // unordered is greater
2700     movl(dst, 1);
2701     jcc(Assembler::parity, L);
2702     jcc(Assembler::above , L);
2703     movl(dst, 0);
2704     jcc(Assembler::equal , L);
2705     decrementl(dst);
2706   }
2707   bind(L);
2708 }
2709 
2710 
2711 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2712   if (reachable(src1)) {
2713     cmpb(as_Address(src1), imm);
2714   } else {
2715     lea(rscratch1, src1);
2716     cmpb(Address(rscratch1, 0), imm);
2717   }
2718 }
2719 
2720 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2721 #ifdef _LP64
2722   if (src2.is_lval()) {
2723     movptr(rscratch1, src2);
2724     Assembler::cmpq(src1, rscratch1);
2725   } else if (reachable(src2)) {
2726     cmpq(src1, as_Address(src2));
2727   } else {
2728     lea(rscratch1, src2);
2729     Assembler::cmpq(src1, Address(rscratch1, 0));
2730   }
2731 #else
2732   if (src2.is_lval()) {
2733     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2734   } else {
2735     cmpl(src1, as_Address(src2));
2736   }
2737 #endif // _LP64
2738 }
2739 
2740 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2741   assert(src2.is_lval(), "not a mem-mem compare");
2742 #ifdef _LP64
2743   // moves src2's literal address
2744   movptr(rscratch1, src2);
2745   Assembler::cmpq(src1, rscratch1);
2746 #else
2747   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2748 #endif // _LP64
2749 }
2750 
2751 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2752   if (reachable(adr)) {
2753     if (os::is_MP())
2754       lock();
2755     cmpxchgptr(reg, as_Address(adr));
2756   } else {
2757     lea(rscratch1, adr);
2758     if (os::is_MP())
2759       lock();
2760     cmpxchgptr(reg, Address(rscratch1, 0));
2761   }
2762 }
2763 
2764 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2765   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2766 }
2767 
2768 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2769   if (reachable(src)) {
2770     Assembler::comisd(dst, as_Address(src));
2771   } else {
2772     lea(rscratch1, src);
2773     Assembler::comisd(dst, Address(rscratch1, 0));
2774   }
2775 }
2776 
2777 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2778   if (reachable(src)) {
2779     Assembler::comiss(dst, as_Address(src));
2780   } else {
2781     lea(rscratch1, src);
2782     Assembler::comiss(dst, Address(rscratch1, 0));
2783   }
2784 }
2785 
2786 
2787 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2788   Condition negated_cond = negate_condition(cond);
2789   Label L;
2790   jcc(negated_cond, L);
2791   pushf(); // Preserve flags
2792   atomic_incl(counter_addr);
2793   popf();
2794   bind(L);
2795 }
2796 
2797 int MacroAssembler::corrected_idivl(Register reg) {
2798   // Full implementation of Java idiv and irem; checks for
2799   // special case as described in JVM spec., p.243 & p.271.
2800   // The function returns the (pc) offset of the idivl
2801   // instruction - may be needed for implicit exceptions.
2802   //
2803   //         normal case                           special case
2804   //
2805   // input : rax,: dividend                         min_int
2806   //         reg: divisor   (may not be rax,/rdx)   -1
2807   //
2808   // output: rax,: quotient  (= rax, idiv reg)       min_int
2809   //         rdx: remainder (= rax, irem reg)       0
2810   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2811   const int min_int = 0x80000000;
2812   Label normal_case, special_case;
2813 
2814   // check for special case
2815   cmpl(rax, min_int);
2816   jcc(Assembler::notEqual, normal_case);
2817   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2818   cmpl(reg, -1);
2819   jcc(Assembler::equal, special_case);
2820 
2821   // handle normal case
2822   bind(normal_case);
2823   cdql();
2824   int idivl_offset = offset();
2825   idivl(reg);
2826 
2827   // normal and special case exit
2828   bind(special_case);
2829 
2830   return idivl_offset;
2831 }
2832 
2833 
2834 
2835 void MacroAssembler::decrementl(Register reg, int value) {
2836   if (value == min_jint) {subl(reg, value) ; return; }
2837   if (value <  0) { incrementl(reg, -value); return; }
2838   if (value == 0) {                        ; return; }
2839   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2840   /* else */      { subl(reg, value)       ; return; }
2841 }
2842 
2843 void MacroAssembler::decrementl(Address dst, int value) {
2844   if (value == min_jint) {subl(dst, value) ; return; }
2845   if (value <  0) { incrementl(dst, -value); return; }
2846   if (value == 0) {                        ; return; }
2847   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2848   /* else */      { subl(dst, value)       ; return; }
2849 }
2850 
2851 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2852   assert (shift_value > 0, "illegal shift value");
2853   Label _is_positive;
2854   testl (reg, reg);
2855   jcc (Assembler::positive, _is_positive);
2856   int offset = (1 << shift_value) - 1 ;
2857 
2858   if (offset == 1) {
2859     incrementl(reg);
2860   } else {
2861     addl(reg, offset);
2862   }
2863 
2864   bind (_is_positive);
2865   sarl(reg, shift_value);
2866 }
2867 
2868 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2869   if (reachable(src)) {
2870     Assembler::divsd(dst, as_Address(src));
2871   } else {
2872     lea(rscratch1, src);
2873     Assembler::divsd(dst, Address(rscratch1, 0));
2874   }
2875 }
2876 
2877 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2878   if (reachable(src)) {
2879     Assembler::divss(dst, as_Address(src));
2880   } else {
2881     lea(rscratch1, src);
2882     Assembler::divss(dst, Address(rscratch1, 0));
2883   }
2884 }
2885 
2886 // !defined(COMPILER2) is because of stupid core builds
2887 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
2888 void MacroAssembler::empty_FPU_stack() {
2889   if (VM_Version::supports_mmx()) {
2890     emms();
2891   } else {
2892     for (int i = 8; i-- > 0; ) ffree(i);
2893   }
2894 }
2895 #endif // !LP64 || C1 || !C2
2896 
2897 
2898 // Defines obj, preserves var_size_in_bytes
2899 void MacroAssembler::eden_allocate(Register obj,
2900                                    Register var_size_in_bytes,
2901                                    int con_size_in_bytes,
2902                                    Register t1,
2903                                    Label& slow_case) {
2904   assert(obj == rax, "obj must be in rax, for cmpxchg");
2905   assert_different_registers(obj, var_size_in_bytes, t1);
2906   if (!Universe::heap()->supports_inline_contig_alloc()) {
2907     jmp(slow_case);
2908   } else {
2909     Register end = t1;
2910     Label retry;
2911     bind(retry);
2912     ExternalAddress heap_top((address) Universe::heap()->top_addr());
2913     movptr(obj, heap_top);
2914     if (var_size_in_bytes == noreg) {
2915       lea(end, Address(obj, con_size_in_bytes));
2916     } else {
2917       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
2918     }
2919     // if end < obj then we wrapped around => object too long => slow case
2920     cmpptr(end, obj);
2921     jcc(Assembler::below, slow_case);
2922     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
2923     jcc(Assembler::above, slow_case);
2924     // Compare obj with the top addr, and if still equal, store the new top addr in
2925     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
2926     // it otherwise. Use lock prefix for atomicity on MPs.
2927     locked_cmpxchgptr(end, heap_top);
2928     jcc(Assembler::notEqual, retry);
2929   }
2930 }
2931 
2932 void MacroAssembler::enter() {
2933   push(rbp);
2934   mov(rbp, rsp);
2935 }
2936 
2937 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2938 void MacroAssembler::fat_nop() {
2939   if (UseAddressNop) {
2940     addr_nop_5();
2941   } else {
2942     emit_int8(0x26); // es:
2943     emit_int8(0x2e); // cs:
2944     emit_int8(0x64); // fs:
2945     emit_int8(0x65); // gs:
2946     emit_int8((unsigned char)0x90);
2947   }
2948 }
2949 
2950 void MacroAssembler::fcmp(Register tmp) {
2951   fcmp(tmp, 1, true, true);
2952 }
2953 
2954 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
2955   assert(!pop_right || pop_left, "usage error");
2956   if (VM_Version::supports_cmov()) {
2957     assert(tmp == noreg, "unneeded temp");
2958     if (pop_left) {
2959       fucomip(index);
2960     } else {
2961       fucomi(index);
2962     }
2963     if (pop_right) {
2964       fpop();
2965     }
2966   } else {
2967     assert(tmp != noreg, "need temp");
2968     if (pop_left) {
2969       if (pop_right) {
2970         fcompp();
2971       } else {
2972         fcomp(index);
2973       }
2974     } else {
2975       fcom(index);
2976     }
2977     // convert FPU condition into eflags condition via rax,
2978     save_rax(tmp);
2979     fwait(); fnstsw_ax();
2980     sahf();
2981     restore_rax(tmp);
2982   }
2983   // condition codes set as follows:
2984   //
2985   // CF (corresponds to C0) if x < y
2986   // PF (corresponds to C2) if unordered
2987   // ZF (corresponds to C3) if x = y
2988 }
2989 
2990 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
2991   fcmp2int(dst, unordered_is_less, 1, true, true);
2992 }
2993 
2994 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
2995   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
2996   Label L;
2997   if (unordered_is_less) {
2998     movl(dst, -1);
2999     jcc(Assembler::parity, L);
3000     jcc(Assembler::below , L);
3001     movl(dst, 0);
3002     jcc(Assembler::equal , L);
3003     increment(dst);
3004   } else { // unordered is greater
3005     movl(dst, 1);
3006     jcc(Assembler::parity, L);
3007     jcc(Assembler::above , L);
3008     movl(dst, 0);
3009     jcc(Assembler::equal , L);
3010     decrementl(dst);
3011   }
3012   bind(L);
3013 }
3014 
3015 void MacroAssembler::fld_d(AddressLiteral src) {
3016   fld_d(as_Address(src));
3017 }
3018 
3019 void MacroAssembler::fld_s(AddressLiteral src) {
3020   fld_s(as_Address(src));
3021 }
3022 
3023 void MacroAssembler::fld_x(AddressLiteral src) {
3024   Assembler::fld_x(as_Address(src));
3025 }
3026 
3027 void MacroAssembler::fldcw(AddressLiteral src) {
3028   Assembler::fldcw(as_Address(src));
3029 }
3030 
3031 void MacroAssembler::pow_exp_core_encoding() {
3032   // kills rax, rcx, rdx
3033   subptr(rsp,sizeof(jdouble));
3034   // computes 2^X. Stack: X ...
3035   // f2xm1 computes 2^X-1 but only operates on -1<=X<=1. Get int(X) and
3036   // keep it on the thread's stack to compute 2^int(X) later
3037   // then compute 2^(X-int(X)) as (2^(X-int(X)-1+1)
3038   // final result is obtained with: 2^X = 2^int(X) * 2^(X-int(X))
3039   fld_s(0);                 // Stack: X X ...
3040   frndint();                // Stack: int(X) X ...
3041   fsuba(1);                 // Stack: int(X) X-int(X) ...
3042   fistp_s(Address(rsp,0));  // move int(X) as integer to thread's stack. Stack: X-int(X) ...
3043   f2xm1();                  // Stack: 2^(X-int(X))-1 ...
3044   fld1();                   // Stack: 1 2^(X-int(X))-1 ...
3045   faddp(1);                 // Stack: 2^(X-int(X))
3046   // computes 2^(int(X)): add exponent bias (1023) to int(X), then
3047   // shift int(X)+1023 to exponent position.
3048   // Exponent is limited to 11 bits if int(X)+1023 does not fit in 11
3049   // bits, set result to NaN. 0x000 and 0x7FF are reserved exponent
3050   // values so detect them and set result to NaN.
3051   movl(rax,Address(rsp,0));
3052   movl(rcx, -2048); // 11 bit mask and valid NaN binary encoding
3053   addl(rax, 1023);
3054   movl(rdx,rax);
3055   shll(rax,20);
3056   // Check that 0 < int(X)+1023 < 2047. Otherwise set rax to NaN.
3057   addl(rdx,1);
3058   // Check that 1 < int(X)+1023+1 < 2048
3059   // in 3 steps:
3060   // 1- (int(X)+1023+1)&-2048 == 0 => 0 <= int(X)+1023+1 < 2048
3061   // 2- (int(X)+1023+1)&-2048 != 0
3062   // 3- (int(X)+1023+1)&-2048 != 1
3063   // Do 2- first because addl just updated the flags.
3064   cmov32(Assembler::equal,rax,rcx);
3065   cmpl(rdx,1);
3066   cmov32(Assembler::equal,rax,rcx);
3067   testl(rdx,rcx);
3068   cmov32(Assembler::notEqual,rax,rcx);
3069   movl(Address(rsp,4),rax);
3070   movl(Address(rsp,0),0);
3071   fmul_d(Address(rsp,0));   // Stack: 2^X ...
3072   addptr(rsp,sizeof(jdouble));
3073 }
3074 
3075 void MacroAssembler::increase_precision() {
3076   subptr(rsp, BytesPerWord);
3077   fnstcw(Address(rsp, 0));
3078   movl(rax, Address(rsp, 0));
3079   orl(rax, 0x300);
3080   push(rax);
3081   fldcw(Address(rsp, 0));
3082   pop(rax);
3083 }
3084 
3085 void MacroAssembler::restore_precision() {
3086   fldcw(Address(rsp, 0));
3087   addptr(rsp, BytesPerWord);
3088 }
3089 
3090 void MacroAssembler::fast_pow() {
3091   // computes X^Y = 2^(Y * log2(X))
3092   // if fast computation is not possible, result is NaN. Requires
3093   // fallback from user of this macro.
3094   // increase precision for intermediate steps of the computation
3095   BLOCK_COMMENT("fast_pow {");
3096   increase_precision();
3097   fyl2x();                 // Stack: (Y*log2(X)) ...
3098   pow_exp_core_encoding(); // Stack: exp(X) ...
3099   restore_precision();
3100   BLOCK_COMMENT("} fast_pow");
3101 }
3102 
3103 void MacroAssembler::fast_exp() {
3104   // computes exp(X) = 2^(X * log2(e))
3105   // if fast computation is not possible, result is NaN. Requires
3106   // fallback from user of this macro.
3107   // increase precision for intermediate steps of the computation
3108   increase_precision();
3109   fldl2e();                // Stack: log2(e) X ...
3110   fmulp(1);                // Stack: (X*log2(e)) ...
3111   pow_exp_core_encoding(); // Stack: exp(X) ...
3112   restore_precision();
3113 }
3114 
3115 void MacroAssembler::pow_or_exp(bool is_exp, int num_fpu_regs_in_use) {
3116   // kills rax, rcx, rdx
3117   // pow and exp needs 2 extra registers on the fpu stack.
3118   Label slow_case, done;
3119   Register tmp = noreg;
3120   if (!VM_Version::supports_cmov()) {
3121     // fcmp needs a temporary so preserve rdx,
3122     tmp = rdx;
3123   }
3124   Register tmp2 = rax;
3125   Register tmp3 = rcx;
3126 
3127   if (is_exp) {
3128     // Stack: X
3129     fld_s(0);                   // duplicate argument for runtime call. Stack: X X
3130     fast_exp();                 // Stack: exp(X) X
3131     fcmp(tmp, 0, false, false); // Stack: exp(X) X
3132     // exp(X) not equal to itself: exp(X) is NaN go to slow case.
3133     jcc(Assembler::parity, slow_case);
3134     // get rid of duplicate argument. Stack: exp(X)
3135     if (num_fpu_regs_in_use > 0) {
3136       fxch();
3137       fpop();
3138     } else {
3139       ffree(1);
3140     }
3141     jmp(done);
3142   } else {
3143     // Stack: X Y
3144     Label x_negative, y_not_2;
3145 
3146     static double two = 2.0;
3147     ExternalAddress two_addr((address)&two);
3148 
3149     // constant maybe too far on 64 bit
3150     lea(tmp2, two_addr);
3151     fld_d(Address(tmp2, 0));    // Stack: 2 X Y
3152     fcmp(tmp, 2, true, false);  // Stack: X Y
3153     jcc(Assembler::parity, y_not_2);
3154     jcc(Assembler::notEqual, y_not_2);
3155 
3156     fxch(); fpop();             // Stack: X
3157     fmul(0);                    // Stack: X*X
3158 
3159     jmp(done);
3160 
3161     bind(y_not_2);
3162 
3163     fldz();                     // Stack: 0 X Y
3164     fcmp(tmp, 1, true, false);  // Stack: X Y
3165     jcc(Assembler::above, x_negative);
3166 
3167     // X >= 0
3168 
3169     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
3170     fld_s(1);                   // Stack: X Y X Y
3171     fast_pow();                 // Stack: X^Y X Y
3172     fcmp(tmp, 0, false, false); // Stack: X^Y X Y
3173     // X^Y not equal to itself: X^Y is NaN go to slow case.
3174     jcc(Assembler::parity, slow_case);
3175     // get rid of duplicate arguments. Stack: X^Y
3176     if (num_fpu_regs_in_use > 0) {
3177       fxch(); fpop();
3178       fxch(); fpop();
3179     } else {
3180       ffree(2);
3181       ffree(1);
3182     }
3183     jmp(done);
3184 
3185     // X <= 0
3186     bind(x_negative);
3187 
3188     fld_s(1);                   // Stack: Y X Y
3189     frndint();                  // Stack: int(Y) X Y
3190     fcmp(tmp, 2, false, false); // Stack: int(Y) X Y
3191     jcc(Assembler::notEqual, slow_case);
3192 
3193     subptr(rsp, 8);
3194 
3195     // For X^Y, when X < 0, Y has to be an integer and the final
3196     // result depends on whether it's odd or even. We just checked
3197     // that int(Y) == Y.  We move int(Y) to gp registers as a 64 bit
3198     // integer to test its parity. If int(Y) is huge and doesn't fit
3199     // in the 64 bit integer range, the integer indefinite value will
3200     // end up in the gp registers. Huge numbers are all even, the
3201     // integer indefinite number is even so it's fine.
3202 
3203 #ifdef ASSERT
3204     // Let's check we don't end up with an integer indefinite number
3205     // when not expected. First test for huge numbers: check whether
3206     // int(Y)+1 == int(Y) which is true for very large numbers and
3207     // those are all even. A 64 bit integer is guaranteed to not
3208     // overflow for numbers where y+1 != y (when precision is set to
3209     // double precision).
3210     Label y_not_huge;
3211 
3212     fld1();                     // Stack: 1 int(Y) X Y
3213     fadd(1);                    // Stack: 1+int(Y) int(Y) X Y
3214 
3215 #ifdef _LP64
3216     // trip to memory to force the precision down from double extended
3217     // precision
3218     fstp_d(Address(rsp, 0));
3219     fld_d(Address(rsp, 0));
3220 #endif
3221 
3222     fcmp(tmp, 1, true, false);  // Stack: int(Y) X Y
3223 #endif
3224 
3225     // move int(Y) as 64 bit integer to thread's stack
3226     fistp_d(Address(rsp,0));    // Stack: X Y
3227 
3228 #ifdef ASSERT
3229     jcc(Assembler::notEqual, y_not_huge);
3230 
3231     // Y is huge so we know it's even. It may not fit in a 64 bit
3232     // integer and we don't want the debug code below to see the
3233     // integer indefinite value so overwrite int(Y) on the thread's
3234     // stack with 0.
3235     movl(Address(rsp, 0), 0);
3236     movl(Address(rsp, 4), 0);
3237 
3238     bind(y_not_huge);
3239 #endif
3240 
3241     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
3242     fld_s(1);                   // Stack: X Y X Y
3243     fabs();                     // Stack: abs(X) Y X Y
3244     fast_pow();                 // Stack: abs(X)^Y X Y
3245     fcmp(tmp, 0, false, false); // Stack: abs(X)^Y X Y
3246     // abs(X)^Y not equal to itself: abs(X)^Y is NaN go to slow case.
3247 
3248     pop(tmp2);
3249     NOT_LP64(pop(tmp3));
3250     jcc(Assembler::parity, slow_case);
3251 
3252 #ifdef ASSERT
3253     // Check that int(Y) is not integer indefinite value (int
3254     // overflow). Shouldn't happen because for values that would
3255     // overflow, 1+int(Y)==Y which was tested earlier.
3256 #ifndef _LP64
3257     {
3258       Label integer;
3259       testl(tmp2, tmp2);
3260       jcc(Assembler::notZero, integer);
3261       cmpl(tmp3, 0x80000000);
3262       jcc(Assembler::notZero, integer);
3263       STOP("integer indefinite value shouldn't be seen here");
3264       bind(integer);
3265     }
3266 #else
3267     {
3268       Label integer;
3269       mov(tmp3, tmp2); // preserve tmp2 for parity check below
3270       shlq(tmp3, 1);
3271       jcc(Assembler::carryClear, integer);
3272       jcc(Assembler::notZero, integer);
3273       STOP("integer indefinite value shouldn't be seen here");
3274       bind(integer);
3275     }
3276 #endif
3277 #endif
3278 
3279     // get rid of duplicate arguments. Stack: X^Y
3280     if (num_fpu_regs_in_use > 0) {
3281       fxch(); fpop();
3282       fxch(); fpop();
3283     } else {
3284       ffree(2);
3285       ffree(1);
3286     }
3287 
3288     testl(tmp2, 1);
3289     jcc(Assembler::zero, done); // X <= 0, Y even: X^Y = abs(X)^Y
3290     // X <= 0, Y even: X^Y = -abs(X)^Y
3291 
3292     fchs();                     // Stack: -abs(X)^Y Y
3293     jmp(done);
3294   }
3295 
3296   // slow case: runtime call
3297   bind(slow_case);
3298 
3299   fpop();                       // pop incorrect result or int(Y)
3300 
3301   fp_runtime_fallback(is_exp ? CAST_FROM_FN_PTR(address, SharedRuntime::dexp) : CAST_FROM_FN_PTR(address, SharedRuntime::dpow),
3302                       is_exp ? 1 : 2, num_fpu_regs_in_use);
3303 
3304   // Come here with result in F-TOS
3305   bind(done);
3306 }
3307 
3308 void MacroAssembler::fpop() {
3309   ffree();
3310   fincstp();
3311 }
3312 
3313 void MacroAssembler::fremr(Register tmp) {
3314   save_rax(tmp);
3315   { Label L;
3316     bind(L);
3317     fprem();
3318     fwait(); fnstsw_ax();
3319 #ifdef _LP64
3320     testl(rax, 0x400);
3321     jcc(Assembler::notEqual, L);
3322 #else
3323     sahf();
3324     jcc(Assembler::parity, L);
3325 #endif // _LP64
3326   }
3327   restore_rax(tmp);
3328   // Result is in ST0.
3329   // Note: fxch & fpop to get rid of ST1
3330   // (otherwise FPU stack could overflow eventually)
3331   fxch(1);
3332   fpop();
3333 }
3334 
3335 
3336 void MacroAssembler::incrementl(AddressLiteral dst) {
3337   if (reachable(dst)) {
3338     incrementl(as_Address(dst));
3339   } else {
3340     lea(rscratch1, dst);
3341     incrementl(Address(rscratch1, 0));
3342   }
3343 }
3344 
3345 void MacroAssembler::incrementl(ArrayAddress dst) {
3346   incrementl(as_Address(dst));
3347 }
3348 
3349 void MacroAssembler::incrementl(Register reg, int value) {
3350   if (value == min_jint) {addl(reg, value) ; return; }
3351   if (value <  0) { decrementl(reg, -value); return; }
3352   if (value == 0) {                        ; return; }
3353   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3354   /* else */      { addl(reg, value)       ; return; }
3355 }
3356 
3357 void MacroAssembler::incrementl(Address dst, int value) {
3358   if (value == min_jint) {addl(dst, value) ; return; }
3359   if (value <  0) { decrementl(dst, -value); return; }
3360   if (value == 0) {                        ; return; }
3361   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3362   /* else */      { addl(dst, value)       ; return; }
3363 }
3364 
3365 void MacroAssembler::jump(AddressLiteral dst) {
3366   if (reachable(dst)) {
3367     jmp_literal(dst.target(), dst.rspec());
3368   } else {
3369     lea(rscratch1, dst);
3370     jmp(rscratch1);
3371   }
3372 }
3373 
3374 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3375   if (reachable(dst)) {
3376     InstructionMark im(this);
3377     relocate(dst.reloc());
3378     const int short_size = 2;
3379     const int long_size = 6;
3380     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3381     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3382       // 0111 tttn #8-bit disp
3383       emit_int8(0x70 | cc);
3384       emit_int8((offs - short_size) & 0xFF);
3385     } else {
3386       // 0000 1111 1000 tttn #32-bit disp
3387       emit_int8(0x0F);
3388       emit_int8((unsigned char)(0x80 | cc));
3389       emit_int32(offs - long_size);
3390     }
3391   } else {
3392 #ifdef ASSERT
3393     warning("reversing conditional branch");
3394 #endif /* ASSERT */
3395     Label skip;
3396     jccb(reverse[cc], skip);
3397     lea(rscratch1, dst);
3398     Assembler::jmp(rscratch1);
3399     bind(skip);
3400   }
3401 }
3402 
3403 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3404   if (reachable(src)) {
3405     Assembler::ldmxcsr(as_Address(src));
3406   } else {
3407     lea(rscratch1, src);
3408     Assembler::ldmxcsr(Address(rscratch1, 0));
3409   }
3410 }
3411 
3412 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3413   int off;
3414   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3415     off = offset();
3416     movsbl(dst, src); // movsxb
3417   } else {
3418     off = load_unsigned_byte(dst, src);
3419     shll(dst, 24);
3420     sarl(dst, 24);
3421   }
3422   return off;
3423 }
3424 
3425 // Note: load_signed_short used to be called load_signed_word.
3426 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3427 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3428 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3429 int MacroAssembler::load_signed_short(Register dst, Address src) {
3430   int off;
3431   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3432     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3433     // version but this is what 64bit has always done. This seems to imply
3434     // that users are only using 32bits worth.
3435     off = offset();
3436     movswl(dst, src); // movsxw
3437   } else {
3438     off = load_unsigned_short(dst, src);
3439     shll(dst, 16);
3440     sarl(dst, 16);
3441   }
3442   return off;
3443 }
3444 
3445 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3446   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3447   // and "3.9 Partial Register Penalties", p. 22).
3448   int off;
3449   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3450     off = offset();
3451     movzbl(dst, src); // movzxb
3452   } else {
3453     xorl(dst, dst);
3454     off = offset();
3455     movb(dst, src);
3456   }
3457   return off;
3458 }
3459 
3460 // Note: load_unsigned_short used to be called load_unsigned_word.
3461 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3462   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3463   // and "3.9 Partial Register Penalties", p. 22).
3464   int off;
3465   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3466     off = offset();
3467     movzwl(dst, src); // movzxw
3468   } else {
3469     xorl(dst, dst);
3470     off = offset();
3471     movw(dst, src);
3472   }
3473   return off;
3474 }
3475 
3476 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3477   switch (size_in_bytes) {
3478 #ifndef _LP64
3479   case  8:
3480     assert(dst2 != noreg, "second dest register required");
3481     movl(dst,  src);
3482     movl(dst2, src.plus_disp(BytesPerInt));
3483     break;
3484 #else
3485   case  8:  movq(dst, src); break;
3486 #endif
3487   case  4:  movl(dst, src); break;
3488   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3489   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3490   default:  ShouldNotReachHere();
3491   }
3492 }
3493 
3494 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3495   switch (size_in_bytes) {
3496 #ifndef _LP64
3497   case  8:
3498     assert(src2 != noreg, "second source register required");
3499     movl(dst,                        src);
3500     movl(dst.plus_disp(BytesPerInt), src2);
3501     break;
3502 #else
3503   case  8:  movq(dst, src); break;
3504 #endif
3505   case  4:  movl(dst, src); break;
3506   case  2:  movw(dst, src); break;
3507   case  1:  movb(dst, src); break;
3508   default:  ShouldNotReachHere();
3509   }
3510 }
3511 
3512 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3513   if (reachable(dst)) {
3514     movl(as_Address(dst), src);
3515   } else {
3516     lea(rscratch1, dst);
3517     movl(Address(rscratch1, 0), src);
3518   }
3519 }
3520 
3521 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3522   if (reachable(src)) {
3523     movl(dst, as_Address(src));
3524   } else {
3525     lea(rscratch1, src);
3526     movl(dst, Address(rscratch1, 0));
3527   }
3528 }
3529 
3530 // C++ bool manipulation
3531 
3532 void MacroAssembler::movbool(Register dst, Address src) {
3533   if(sizeof(bool) == 1)
3534     movb(dst, src);
3535   else if(sizeof(bool) == 2)
3536     movw(dst, src);
3537   else if(sizeof(bool) == 4)
3538     movl(dst, src);
3539   else
3540     // unsupported
3541     ShouldNotReachHere();
3542 }
3543 
3544 void MacroAssembler::movbool(Address dst, bool boolconst) {
3545   if(sizeof(bool) == 1)
3546     movb(dst, (int) boolconst);
3547   else if(sizeof(bool) == 2)
3548     movw(dst, (int) boolconst);
3549   else if(sizeof(bool) == 4)
3550     movl(dst, (int) boolconst);
3551   else
3552     // unsupported
3553     ShouldNotReachHere();
3554 }
3555 
3556 void MacroAssembler::movbool(Address dst, Register src) {
3557   if(sizeof(bool) == 1)
3558     movb(dst, src);
3559   else if(sizeof(bool) == 2)
3560     movw(dst, src);
3561   else if(sizeof(bool) == 4)
3562     movl(dst, src);
3563   else
3564     // unsupported
3565     ShouldNotReachHere();
3566 }
3567 
3568 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3569   movb(as_Address(dst), src);
3570 }
3571 
3572 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3573   if (reachable(src)) {
3574     movdl(dst, as_Address(src));
3575   } else {
3576     lea(rscratch1, src);
3577     movdl(dst, Address(rscratch1, 0));
3578   }
3579 }
3580 
3581 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3582   if (reachable(src)) {
3583     movq(dst, as_Address(src));
3584   } else {
3585     lea(rscratch1, src);
3586     movq(dst, Address(rscratch1, 0));
3587   }
3588 }
3589 
3590 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3591   if (reachable(src)) {
3592     if (UseXmmLoadAndClearUpper) {
3593       movsd (dst, as_Address(src));
3594     } else {
3595       movlpd(dst, as_Address(src));
3596     }
3597   } else {
3598     lea(rscratch1, src);
3599     if (UseXmmLoadAndClearUpper) {
3600       movsd (dst, Address(rscratch1, 0));
3601     } else {
3602       movlpd(dst, Address(rscratch1, 0));
3603     }
3604   }
3605 }
3606 
3607 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3608   if (reachable(src)) {
3609     movss(dst, as_Address(src));
3610   } else {
3611     lea(rscratch1, src);
3612     movss(dst, Address(rscratch1, 0));
3613   }
3614 }
3615 
3616 void MacroAssembler::movptr(Register dst, Register src) {
3617   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3618 }
3619 
3620 void MacroAssembler::movptr(Register dst, Address src) {
3621   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3622 }
3623 
3624 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3625 void MacroAssembler::movptr(Register dst, intptr_t src) {
3626   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3627 }
3628 
3629 void MacroAssembler::movptr(Address dst, Register src) {
3630   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3631 }
3632 
3633 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src) {
3634   if (reachable(src)) {
3635     Assembler::movdqu(dst, as_Address(src));
3636   } else {
3637     lea(rscratch1, src);
3638     Assembler::movdqu(dst, Address(rscratch1, 0));
3639   }
3640 }
3641 
3642 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3643   if (reachable(src)) {
3644     Assembler::movdqa(dst, as_Address(src));
3645   } else {
3646     lea(rscratch1, src);
3647     Assembler::movdqa(dst, Address(rscratch1, 0));
3648   }
3649 }
3650 
3651 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3652   if (reachable(src)) {
3653     Assembler::movsd(dst, as_Address(src));
3654   } else {
3655     lea(rscratch1, src);
3656     Assembler::movsd(dst, Address(rscratch1, 0));
3657   }
3658 }
3659 
3660 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3661   if (reachable(src)) {
3662     Assembler::movss(dst, as_Address(src));
3663   } else {
3664     lea(rscratch1, src);
3665     Assembler::movss(dst, Address(rscratch1, 0));
3666   }
3667 }
3668 
3669 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3670   if (reachable(src)) {
3671     Assembler::mulsd(dst, as_Address(src));
3672   } else {
3673     lea(rscratch1, src);
3674     Assembler::mulsd(dst, Address(rscratch1, 0));
3675   }
3676 }
3677 
3678 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3679   if (reachable(src)) {
3680     Assembler::mulss(dst, as_Address(src));
3681   } else {
3682     lea(rscratch1, src);
3683     Assembler::mulss(dst, Address(rscratch1, 0));
3684   }
3685 }
3686 
3687 void MacroAssembler::null_check(Register reg, int offset) {
3688   if (needs_explicit_null_check(offset)) {
3689     // provoke OS NULL exception if reg = NULL by
3690     // accessing M[reg] w/o changing any (non-CC) registers
3691     // NOTE: cmpl is plenty here to provoke a segv
3692     cmpptr(rax, Address(reg, 0));
3693     // Note: should probably use testl(rax, Address(reg, 0));
3694     //       may be shorter code (however, this version of
3695     //       testl needs to be implemented first)
3696   } else {
3697     // nothing to do, (later) access of M[reg + offset]
3698     // will provoke OS NULL exception if reg = NULL
3699   }
3700 }
3701 
3702 void MacroAssembler::os_breakpoint() {
3703   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3704   // (e.g., MSVC can't call ps() otherwise)
3705   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3706 }
3707 
3708 void MacroAssembler::pop_CPU_state() {
3709   pop_FPU_state();
3710   pop_IU_state();
3711 }
3712 
3713 void MacroAssembler::pop_FPU_state() {
3714   NOT_LP64(frstor(Address(rsp, 0));)
3715   LP64_ONLY(fxrstor(Address(rsp, 0));)
3716   addptr(rsp, FPUStateSizeInWords * wordSize);
3717 }
3718 
3719 void MacroAssembler::pop_IU_state() {
3720   popa();
3721   LP64_ONLY(addq(rsp, 8));
3722   popf();
3723 }
3724 
3725 // Save Integer and Float state
3726 // Warning: Stack must be 16 byte aligned (64bit)
3727 void MacroAssembler::push_CPU_state() {
3728   push_IU_state();
3729   push_FPU_state();
3730 }
3731 
3732 void MacroAssembler::push_FPU_state() {
3733   subptr(rsp, FPUStateSizeInWords * wordSize);
3734 #ifndef _LP64
3735   fnsave(Address(rsp, 0));
3736   fwait();
3737 #else
3738   fxsave(Address(rsp, 0));
3739 #endif // LP64
3740 }
3741 
3742 void MacroAssembler::push_IU_state() {
3743   // Push flags first because pusha kills them
3744   pushf();
3745   // Make sure rsp stays 16-byte aligned
3746   LP64_ONLY(subq(rsp, 8));
3747   pusha();
3748 }
3749 
3750 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
3751   // determine java_thread register
3752   if (!java_thread->is_valid()) {
3753     java_thread = rdi;
3754     get_thread(java_thread);
3755   }
3756   // we must set sp to zero to clear frame
3757   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3758   if (clear_fp) {
3759     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3760   }
3761 
3762   if (clear_pc)
3763     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3764 
3765 }
3766 
3767 void MacroAssembler::restore_rax(Register tmp) {
3768   if (tmp == noreg) pop(rax);
3769   else if (tmp != rax) mov(rax, tmp);
3770 }
3771 
3772 void MacroAssembler::round_to(Register reg, int modulus) {
3773   addptr(reg, modulus - 1);
3774   andptr(reg, -modulus);
3775 }
3776 
3777 void MacroAssembler::save_rax(Register tmp) {
3778   if (tmp == noreg) push(rax);
3779   else if (tmp != rax) mov(tmp, rax);
3780 }
3781 
3782 // Write serialization page so VM thread can do a pseudo remote membar.
3783 // We use the current thread pointer to calculate a thread specific
3784 // offset to write to within the page. This minimizes bus traffic
3785 // due to cache line collision.
3786 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
3787   movl(tmp, thread);
3788   shrl(tmp, os::get_serialize_page_shift_count());
3789   andl(tmp, (os::vm_page_size() - sizeof(int)));
3790 
3791   Address index(noreg, tmp, Address::times_1);
3792   ExternalAddress page(os::get_memory_serialize_page());
3793 
3794   // Size of store must match masking code above
3795   movl(as_Address(ArrayAddress(page, index)), tmp);
3796 }
3797 
3798 // Calls to C land
3799 //
3800 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3801 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3802 // has to be reset to 0. This is required to allow proper stack traversal.
3803 void MacroAssembler::set_last_Java_frame(Register java_thread,
3804                                          Register last_java_sp,
3805                                          Register last_java_fp,
3806                                          address  last_java_pc) {
3807   // determine java_thread register
3808   if (!java_thread->is_valid()) {
3809     java_thread = rdi;
3810     get_thread(java_thread);
3811   }
3812   // determine last_java_sp register
3813   if (!last_java_sp->is_valid()) {
3814     last_java_sp = rsp;
3815   }
3816 
3817   // last_java_fp is optional
3818 
3819   if (last_java_fp->is_valid()) {
3820     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3821   }
3822 
3823   // last_java_pc is optional
3824 
3825   if (last_java_pc != NULL) {
3826     lea(Address(java_thread,
3827                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3828         InternalAddress(last_java_pc));
3829 
3830   }
3831   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3832 }
3833 
3834 void MacroAssembler::shlptr(Register dst, int imm8) {
3835   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3836 }
3837 
3838 void MacroAssembler::shrptr(Register dst, int imm8) {
3839   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3840 }
3841 
3842 void MacroAssembler::sign_extend_byte(Register reg) {
3843   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3844     movsbl(reg, reg); // movsxb
3845   } else {
3846     shll(reg, 24);
3847     sarl(reg, 24);
3848   }
3849 }
3850 
3851 void MacroAssembler::sign_extend_short(Register reg) {
3852   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3853     movswl(reg, reg); // movsxw
3854   } else {
3855     shll(reg, 16);
3856     sarl(reg, 16);
3857   }
3858 }
3859 
3860 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3861   assert(reachable(src), "Address should be reachable");
3862   testl(dst, as_Address(src));
3863 }
3864 
3865 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
3866   if (reachable(src)) {
3867     Assembler::sqrtsd(dst, as_Address(src));
3868   } else {
3869     lea(rscratch1, src);
3870     Assembler::sqrtsd(dst, Address(rscratch1, 0));
3871   }
3872 }
3873 
3874 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
3875   if (reachable(src)) {
3876     Assembler::sqrtss(dst, as_Address(src));
3877   } else {
3878     lea(rscratch1, src);
3879     Assembler::sqrtss(dst, Address(rscratch1, 0));
3880   }
3881 }
3882 
3883 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
3884   if (reachable(src)) {
3885     Assembler::subsd(dst, as_Address(src));
3886   } else {
3887     lea(rscratch1, src);
3888     Assembler::subsd(dst, Address(rscratch1, 0));
3889   }
3890 }
3891 
3892 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
3893   if (reachable(src)) {
3894     Assembler::subss(dst, as_Address(src));
3895   } else {
3896     lea(rscratch1, src);
3897     Assembler::subss(dst, Address(rscratch1, 0));
3898   }
3899 }
3900 
3901 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
3902   if (reachable(src)) {
3903     Assembler::ucomisd(dst, as_Address(src));
3904   } else {
3905     lea(rscratch1, src);
3906     Assembler::ucomisd(dst, Address(rscratch1, 0));
3907   }
3908 }
3909 
3910 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
3911   if (reachable(src)) {
3912     Assembler::ucomiss(dst, as_Address(src));
3913   } else {
3914     lea(rscratch1, src);
3915     Assembler::ucomiss(dst, Address(rscratch1, 0));
3916   }
3917 }
3918 
3919 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
3920   // Used in sign-bit flipping with aligned address.
3921   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3922   if (reachable(src)) {
3923     Assembler::xorpd(dst, as_Address(src));
3924   } else {
3925     lea(rscratch1, src);
3926     Assembler::xorpd(dst, Address(rscratch1, 0));
3927   }
3928 }
3929 
3930 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
3931   // Used in sign-bit flipping with aligned address.
3932   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3933   if (reachable(src)) {
3934     Assembler::xorps(dst, as_Address(src));
3935   } else {
3936     lea(rscratch1, src);
3937     Assembler::xorps(dst, Address(rscratch1, 0));
3938   }
3939 }
3940 
3941 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
3942   // Used in sign-bit flipping with aligned address.
3943   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
3944   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
3945   if (reachable(src)) {
3946     Assembler::pshufb(dst, as_Address(src));
3947   } else {
3948     lea(rscratch1, src);
3949     Assembler::pshufb(dst, Address(rscratch1, 0));
3950   }
3951 }
3952 
3953 // AVX 3-operands instructions
3954 
3955 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3956   if (reachable(src)) {
3957     vaddsd(dst, nds, as_Address(src));
3958   } else {
3959     lea(rscratch1, src);
3960     vaddsd(dst, nds, Address(rscratch1, 0));
3961   }
3962 }
3963 
3964 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3965   if (reachable(src)) {
3966     vaddss(dst, nds, as_Address(src));
3967   } else {
3968     lea(rscratch1, src);
3969     vaddss(dst, nds, Address(rscratch1, 0));
3970   }
3971 }
3972 
3973 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
3974   if (reachable(src)) {
3975     vandpd(dst, nds, as_Address(src), vector_len);
3976   } else {
3977     lea(rscratch1, src);
3978     vandpd(dst, nds, Address(rscratch1, 0), vector_len);
3979   }
3980 }
3981 
3982 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
3983   if (reachable(src)) {
3984     vandps(dst, nds, as_Address(src), vector_len);
3985   } else {
3986     lea(rscratch1, src);
3987     vandps(dst, nds, Address(rscratch1, 0), vector_len);
3988   }
3989 }
3990 
3991 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3992   if (reachable(src)) {
3993     vdivsd(dst, nds, as_Address(src));
3994   } else {
3995     lea(rscratch1, src);
3996     vdivsd(dst, nds, Address(rscratch1, 0));
3997   }
3998 }
3999 
4000 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4001   if (reachable(src)) {
4002     vdivss(dst, nds, as_Address(src));
4003   } else {
4004     lea(rscratch1, src);
4005     vdivss(dst, nds, Address(rscratch1, 0));
4006   }
4007 }
4008 
4009 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4010   if (reachable(src)) {
4011     vmulsd(dst, nds, as_Address(src));
4012   } else {
4013     lea(rscratch1, src);
4014     vmulsd(dst, nds, Address(rscratch1, 0));
4015   }
4016 }
4017 
4018 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4019   if (reachable(src)) {
4020     vmulss(dst, nds, as_Address(src));
4021   } else {
4022     lea(rscratch1, src);
4023     vmulss(dst, nds, Address(rscratch1, 0));
4024   }
4025 }
4026 
4027 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4028   if (reachable(src)) {
4029     vsubsd(dst, nds, as_Address(src));
4030   } else {
4031     lea(rscratch1, src);
4032     vsubsd(dst, nds, Address(rscratch1, 0));
4033   }
4034 }
4035 
4036 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4037   if (reachable(src)) {
4038     vsubss(dst, nds, as_Address(src));
4039   } else {
4040     lea(rscratch1, src);
4041     vsubss(dst, nds, Address(rscratch1, 0));
4042   }
4043 }
4044 
4045 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4046   if (reachable(src)) {
4047     vxorpd(dst, nds, as_Address(src), vector_len);
4048   } else {
4049     lea(rscratch1, src);
4050     vxorpd(dst, nds, Address(rscratch1, 0), vector_len);
4051   }
4052 }
4053 
4054 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4055   if (reachable(src)) {
4056     vxorps(dst, nds, as_Address(src), vector_len);
4057   } else {
4058     lea(rscratch1, src);
4059     vxorps(dst, nds, Address(rscratch1, 0), vector_len);
4060   }
4061 }
4062 
4063 
4064 //////////////////////////////////////////////////////////////////////////////////
4065 #if INCLUDE_ALL_GCS
4066 
4067 void MacroAssembler::g1_write_barrier_pre(Register obj,
4068                                           Register pre_val,
4069                                           Register thread,
4070                                           Register tmp,
4071                                           bool tosca_live,
4072                                           bool expand_call) {
4073 
4074   // If expand_call is true then we expand the call_VM_leaf macro
4075   // directly to skip generating the check by
4076   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
4077 
4078 #ifdef _LP64
4079   assert(thread == r15_thread, "must be");
4080 #endif // _LP64
4081 
4082   Label done;
4083   Label runtime;
4084 
4085   assert(pre_val != noreg, "check this code");
4086 
4087   if (obj != noreg) {
4088     assert_different_registers(obj, pre_val, tmp);
4089     assert(pre_val != rax, "check this code");
4090   }
4091 
4092   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4093                                        PtrQueue::byte_offset_of_active()));
4094   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4095                                        PtrQueue::byte_offset_of_index()));
4096   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4097                                        PtrQueue::byte_offset_of_buf()));
4098 
4099 
4100   // Is marking active?
4101   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
4102     cmpl(in_progress, 0);
4103   } else {
4104     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
4105     cmpb(in_progress, 0);
4106   }
4107   jcc(Assembler::equal, done);
4108 
4109   // Do we need to load the previous value?
4110   if (obj != noreg) {
4111     load_heap_oop(pre_val, Address(obj, 0));
4112   }
4113 
4114   // Is the previous value null?
4115   cmpptr(pre_val, (int32_t) NULL_WORD);
4116   jcc(Assembler::equal, done);
4117 
4118   // Can we store original value in the thread's buffer?
4119   // Is index == 0?
4120   // (The index field is typed as size_t.)
4121 
4122   movptr(tmp, index);                   // tmp := *index_adr
4123   cmpptr(tmp, 0);                       // tmp == 0?
4124   jcc(Assembler::equal, runtime);       // If yes, goto runtime
4125 
4126   subptr(tmp, wordSize);                // tmp := tmp - wordSize
4127   movptr(index, tmp);                   // *index_adr := tmp
4128   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
4129 
4130   // Record the previous value
4131   movptr(Address(tmp, 0), pre_val);
4132   jmp(done);
4133 
4134   bind(runtime);
4135   // save the live input values
4136   if(tosca_live) push(rax);
4137 
4138   if (obj != noreg && obj != rax)
4139     push(obj);
4140 
4141   if (pre_val != rax)
4142     push(pre_val);
4143 
4144   // Calling the runtime using the regular call_VM_leaf mechanism generates
4145   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
4146   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
4147   //
4148   // If we care generating the pre-barrier without a frame (e.g. in the
4149   // intrinsified Reference.get() routine) then ebp might be pointing to
4150   // the caller frame and so this check will most likely fail at runtime.
4151   //
4152   // Expanding the call directly bypasses the generation of the check.
4153   // So when we do not have have a full interpreter frame on the stack
4154   // expand_call should be passed true.
4155 
4156   NOT_LP64( push(thread); )
4157 
4158   if (expand_call) {
4159     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
4160     pass_arg1(this, thread);
4161     pass_arg0(this, pre_val);
4162     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
4163   } else {
4164     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
4165   }
4166 
4167   NOT_LP64( pop(thread); )
4168 
4169   // save the live input values
4170   if (pre_val != rax)
4171     pop(pre_val);
4172 
4173   if (obj != noreg && obj != rax)
4174     pop(obj);
4175 
4176   if(tosca_live) pop(rax);
4177 
4178   bind(done);
4179 }
4180 
4181 void MacroAssembler::g1_write_barrier_post(Register store_addr,
4182                                            Register new_val,
4183                                            Register thread,
4184                                            Register tmp,
4185                                            Register tmp2) {
4186 #ifdef _LP64
4187   assert(thread == r15_thread, "must be");
4188 #endif // _LP64
4189 
4190   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
4191                                        PtrQueue::byte_offset_of_index()));
4192   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
4193                                        PtrQueue::byte_offset_of_buf()));
4194 
4195   CardTableModRefBS* ct =
4196     barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
4197   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
4198 
4199   Label done;
4200   Label runtime;
4201 
4202   // Does store cross heap regions?
4203 
4204   movptr(tmp, store_addr);
4205   xorptr(tmp, new_val);
4206   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
4207   jcc(Assembler::equal, done);
4208 
4209   // crosses regions, storing NULL?
4210 
4211   cmpptr(new_val, (int32_t) NULL_WORD);
4212   jcc(Assembler::equal, done);
4213 
4214   // storing region crossing non-NULL, is card already dirty?
4215 
4216   const Register card_addr = tmp;
4217   const Register cardtable = tmp2;
4218 
4219   movptr(card_addr, store_addr);
4220   shrptr(card_addr, CardTableModRefBS::card_shift);
4221   // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
4222   // a valid address and therefore is not properly handled by the relocation code.
4223   movptr(cardtable, (intptr_t)ct->byte_map_base);
4224   addptr(card_addr, cardtable);
4225 
4226   cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
4227   jcc(Assembler::equal, done);
4228 
4229   membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
4230   cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
4231   jcc(Assembler::equal, done);
4232 
4233 
4234   // storing a region crossing, non-NULL oop, card is clean.
4235   // dirty card and log.
4236 
4237   movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
4238 
4239   cmpl(queue_index, 0);
4240   jcc(Assembler::equal, runtime);
4241   subl(queue_index, wordSize);
4242   movptr(tmp2, buffer);
4243 #ifdef _LP64
4244   movslq(rscratch1, queue_index);
4245   addq(tmp2, rscratch1);
4246   movq(Address(tmp2, 0), card_addr);
4247 #else
4248   addl(tmp2, queue_index);
4249   movl(Address(tmp2, 0), card_addr);
4250 #endif
4251   jmp(done);
4252 
4253   bind(runtime);
4254   // save the live input values
4255   push(store_addr);
4256   push(new_val);
4257 #ifdef _LP64
4258   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
4259 #else
4260   push(thread);
4261   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
4262   pop(thread);
4263 #endif
4264   pop(new_val);
4265   pop(store_addr);
4266 
4267   bind(done);
4268 }
4269 
4270 #endif // INCLUDE_ALL_GCS
4271 //////////////////////////////////////////////////////////////////////////////////
4272 
4273 
4274 void MacroAssembler::store_check(Register obj, Address dst) {
4275   store_check(obj);
4276 }
4277 
4278 void MacroAssembler::store_check(Register obj) {
4279   // Does a store check for the oop in register obj. The content of
4280   // register obj is destroyed afterwards.
4281 
4282   BarrierSet* bs = Universe::heap()->barrier_set();
4283   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
4284 
4285   CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(bs);
4286   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
4287 
4288   shrptr(obj, CardTableModRefBS::card_shift);
4289 
4290   Address card_addr;
4291 
4292   // The calculation for byte_map_base is as follows:
4293   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
4294   // So this essentially converts an address to a displacement and it will
4295   // never need to be relocated. On 64bit however the value may be too
4296   // large for a 32bit displacement.
4297   intptr_t disp = (intptr_t) ct->byte_map_base;
4298   if (is_simm32(disp)) {
4299     card_addr = Address(noreg, obj, Address::times_1, disp);
4300   } else {
4301     // By doing it as an ExternalAddress 'disp' could be converted to a rip-relative
4302     // displacement and done in a single instruction given favorable mapping and a
4303     // smarter version of as_Address. However, 'ExternalAddress' generates a relocation
4304     // entry and that entry is not properly handled by the relocation code.
4305     AddressLiteral cardtable((address)ct->byte_map_base, relocInfo::none);
4306     Address index(noreg, obj, Address::times_1);
4307     card_addr = as_Address(ArrayAddress(cardtable, index));
4308   }
4309 
4310   int dirty = CardTableModRefBS::dirty_card_val();
4311   if (UseCondCardMark) {
4312     Label L_already_dirty;
4313     if (UseConcMarkSweepGC) {
4314       membar(Assembler::StoreLoad);
4315     }
4316     cmpb(card_addr, dirty);
4317     jcc(Assembler::equal, L_already_dirty);
4318     movb(card_addr, dirty);
4319     bind(L_already_dirty);
4320   } else {
4321     movb(card_addr, dirty);
4322   }
4323 }
4324 
4325 void MacroAssembler::subptr(Register dst, int32_t imm32) {
4326   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
4327 }
4328 
4329 // Force generation of a 4 byte immediate value even if it fits into 8bit
4330 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
4331   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
4332 }
4333 
4334 void MacroAssembler::subptr(Register dst, Register src) {
4335   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
4336 }
4337 
4338 // C++ bool manipulation
4339 void MacroAssembler::testbool(Register dst) {
4340   if(sizeof(bool) == 1)
4341     testb(dst, 0xff);
4342   else if(sizeof(bool) == 2) {
4343     // testw implementation needed for two byte bools
4344     ShouldNotReachHere();
4345   } else if(sizeof(bool) == 4)
4346     testl(dst, dst);
4347   else
4348     // unsupported
4349     ShouldNotReachHere();
4350 }
4351 
4352 void MacroAssembler::testptr(Register dst, Register src) {
4353   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
4354 }
4355 
4356 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
4357 void MacroAssembler::tlab_allocate(Register obj,
4358                                    Register var_size_in_bytes,
4359                                    int con_size_in_bytes,
4360                                    Register t1,
4361                                    Register t2,
4362                                    Label& slow_case) {
4363   assert_different_registers(obj, t1, t2);
4364   assert_different_registers(obj, var_size_in_bytes, t1);
4365   Register end = t2;
4366   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
4367 
4368   verify_tlab();
4369 
4370   NOT_LP64(get_thread(thread));
4371 
4372   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
4373   if (var_size_in_bytes == noreg) {
4374     lea(end, Address(obj, con_size_in_bytes));
4375   } else {
4376     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
4377   }
4378   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
4379   jcc(Assembler::above, slow_case);
4380 
4381   // update the tlab top pointer
4382   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
4383 
4384   // recover var_size_in_bytes if necessary
4385   if (var_size_in_bytes == end) {
4386     subptr(var_size_in_bytes, obj);
4387   }
4388   verify_tlab();
4389 }
4390 
4391 // Preserves rbx, and rdx.
4392 Register MacroAssembler::tlab_refill(Label& retry,
4393                                      Label& try_eden,
4394                                      Label& slow_case) {
4395   Register top = rax;
4396   Register t1  = rcx;
4397   Register t2  = rsi;
4398   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
4399   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
4400   Label do_refill, discard_tlab;
4401 
4402   if (!Universe::heap()->supports_inline_contig_alloc()) {
4403     // No allocation in the shared eden.
4404     jmp(slow_case);
4405   }
4406 
4407   NOT_LP64(get_thread(thread_reg));
4408 
4409   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
4410   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
4411 
4412   // calculate amount of free space
4413   subptr(t1, top);
4414   shrptr(t1, LogHeapWordSize);
4415 
4416   // Retain tlab and allocate object in shared space if
4417   // the amount free in the tlab is too large to discard.
4418   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
4419   jcc(Assembler::lessEqual, discard_tlab);
4420 
4421   // Retain
4422   // %%% yuck as movptr...
4423   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
4424   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
4425   if (TLABStats) {
4426     // increment number of slow_allocations
4427     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
4428   }
4429   jmp(try_eden);
4430 
4431   bind(discard_tlab);
4432   if (TLABStats) {
4433     // increment number of refills
4434     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
4435     // accumulate wastage -- t1 is amount free in tlab
4436     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
4437   }
4438 
4439   // if tlab is currently allocated (top or end != null) then
4440   // fill [top, end + alignment_reserve) with array object
4441   testptr(top, top);
4442   jcc(Assembler::zero, do_refill);
4443 
4444   // set up the mark word
4445   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
4446   // set the length to the remaining space
4447   subptr(t1, typeArrayOopDesc::header_size(T_INT));
4448   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
4449   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
4450   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
4451   // set klass to intArrayKlass
4452   // dubious reloc why not an oop reloc?
4453   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
4454   // store klass last.  concurrent gcs assumes klass length is valid if
4455   // klass field is not null.
4456   store_klass(top, t1);
4457 
4458   movptr(t1, top);
4459   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
4460   incr_allocated_bytes(thread_reg, t1, 0);
4461 
4462   // refill the tlab with an eden allocation
4463   bind(do_refill);
4464   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
4465   shlptr(t1, LogHeapWordSize);
4466   // allocate new tlab, address returned in top
4467   eden_allocate(top, t1, 0, t2, slow_case);
4468 
4469   // Check that t1 was preserved in eden_allocate.
4470 #ifdef ASSERT
4471   if (UseTLAB) {
4472     Label ok;
4473     Register tsize = rsi;
4474     assert_different_registers(tsize, thread_reg, t1);
4475     push(tsize);
4476     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
4477     shlptr(tsize, LogHeapWordSize);
4478     cmpptr(t1, tsize);
4479     jcc(Assembler::equal, ok);
4480     STOP("assert(t1 != tlab size)");
4481     should_not_reach_here();
4482 
4483     bind(ok);
4484     pop(tsize);
4485   }
4486 #endif
4487   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
4488   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
4489   addptr(top, t1);
4490   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
4491   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
4492   verify_tlab();
4493   jmp(retry);
4494 
4495   return thread_reg; // for use by caller
4496 }
4497 
4498 void MacroAssembler::incr_allocated_bytes(Register thread,
4499                                           Register var_size_in_bytes,
4500                                           int con_size_in_bytes,
4501                                           Register t1) {
4502   if (!thread->is_valid()) {
4503 #ifdef _LP64
4504     thread = r15_thread;
4505 #else
4506     assert(t1->is_valid(), "need temp reg");
4507     thread = t1;
4508     get_thread(thread);
4509 #endif
4510   }
4511 
4512 #ifdef _LP64
4513   if (var_size_in_bytes->is_valid()) {
4514     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
4515   } else {
4516     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
4517   }
4518 #else
4519   if (var_size_in_bytes->is_valid()) {
4520     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
4521   } else {
4522     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
4523   }
4524   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
4525 #endif
4526 }
4527 
4528 void MacroAssembler::fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use) {
4529   pusha();
4530 
4531   // if we are coming from c1, xmm registers may be live
4532   int off = 0;
4533   if (UseSSE == 1)  {
4534     subptr(rsp, sizeof(jdouble)*8);
4535     movflt(Address(rsp,off++*sizeof(jdouble)),xmm0);
4536     movflt(Address(rsp,off++*sizeof(jdouble)),xmm1);
4537     movflt(Address(rsp,off++*sizeof(jdouble)),xmm2);
4538     movflt(Address(rsp,off++*sizeof(jdouble)),xmm3);
4539     movflt(Address(rsp,off++*sizeof(jdouble)),xmm4);
4540     movflt(Address(rsp,off++*sizeof(jdouble)),xmm5);
4541     movflt(Address(rsp,off++*sizeof(jdouble)),xmm6);
4542     movflt(Address(rsp,off++*sizeof(jdouble)),xmm7);
4543   } else if (UseSSE >= 2)  {
4544     if (UseAVX > 2) {
4545       movl(rbx, 0xffff);
4546 #ifdef _LP64
4547       kmovql(k1, rbx);
4548 #else
4549       kmovdl(k1, rbx);
4550 #endif
4551     }
4552 #ifdef COMPILER2
4553     if (MaxVectorSize > 16) {
4554       assert(UseAVX > 0, "256bit vectors are supported only with AVX");
4555       // Save upper half of YMM registes
4556       subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4557       vextractf128h(Address(rsp,  0),xmm0);
4558       vextractf128h(Address(rsp, 16),xmm1);
4559       vextractf128h(Address(rsp, 32),xmm2);
4560       vextractf128h(Address(rsp, 48),xmm3);
4561       vextractf128h(Address(rsp, 64),xmm4);
4562       vextractf128h(Address(rsp, 80),xmm5);
4563       vextractf128h(Address(rsp, 96),xmm6);
4564       vextractf128h(Address(rsp,112),xmm7);
4565 #ifdef _LP64
4566       vextractf128h(Address(rsp,128),xmm8);
4567       vextractf128h(Address(rsp,144),xmm9);
4568       vextractf128h(Address(rsp,160),xmm10);
4569       vextractf128h(Address(rsp,176),xmm11);
4570       vextractf128h(Address(rsp,192),xmm12);
4571       vextractf128h(Address(rsp,208),xmm13);
4572       vextractf128h(Address(rsp,224),xmm14);
4573       vextractf128h(Address(rsp,240),xmm15);
4574 #endif
4575     }
4576 #endif
4577     // Save whole 128bit (16 bytes) XMM regiters
4578     subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4579     movdqu(Address(rsp,off++*16),xmm0);
4580     movdqu(Address(rsp,off++*16),xmm1);
4581     movdqu(Address(rsp,off++*16),xmm2);
4582     movdqu(Address(rsp,off++*16),xmm3);
4583     movdqu(Address(rsp,off++*16),xmm4);
4584     movdqu(Address(rsp,off++*16),xmm5);
4585     movdqu(Address(rsp,off++*16),xmm6);
4586     movdqu(Address(rsp,off++*16),xmm7);
4587 #ifdef _LP64
4588     movdqu(Address(rsp,off++*16),xmm8);
4589     movdqu(Address(rsp,off++*16),xmm9);
4590     movdqu(Address(rsp,off++*16),xmm10);
4591     movdqu(Address(rsp,off++*16),xmm11);
4592     movdqu(Address(rsp,off++*16),xmm12);
4593     movdqu(Address(rsp,off++*16),xmm13);
4594     movdqu(Address(rsp,off++*16),xmm14);
4595     movdqu(Address(rsp,off++*16),xmm15);
4596 #endif
4597   }
4598 
4599   // Preserve registers across runtime call
4600   int incoming_argument_and_return_value_offset = -1;
4601   if (num_fpu_regs_in_use > 1) {
4602     // Must preserve all other FPU regs (could alternatively convert
4603     // SharedRuntime::dsin, dcos etc. into assembly routines known not to trash
4604     // FPU state, but can not trust C compiler)
4605     NEEDS_CLEANUP;
4606     // NOTE that in this case we also push the incoming argument(s) to
4607     // the stack and restore it later; we also use this stack slot to
4608     // hold the return value from dsin, dcos etc.
4609     for (int i = 0; i < num_fpu_regs_in_use; i++) {
4610       subptr(rsp, sizeof(jdouble));
4611       fstp_d(Address(rsp, 0));
4612     }
4613     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
4614     for (int i = nb_args-1; i >= 0; i--) {
4615       fld_d(Address(rsp, incoming_argument_and_return_value_offset-i*sizeof(jdouble)));
4616     }
4617   }
4618 
4619   subptr(rsp, nb_args*sizeof(jdouble));
4620   for (int i = 0; i < nb_args; i++) {
4621     fstp_d(Address(rsp, i*sizeof(jdouble)));
4622   }
4623 
4624 #ifdef _LP64
4625   if (nb_args > 0) {
4626     movdbl(xmm0, Address(rsp, 0));
4627   }
4628   if (nb_args > 1) {
4629     movdbl(xmm1, Address(rsp, sizeof(jdouble)));
4630   }
4631   assert(nb_args <= 2, "unsupported number of args");
4632 #endif // _LP64
4633 
4634   // NOTE: we must not use call_VM_leaf here because that requires a
4635   // complete interpreter frame in debug mode -- same bug as 4387334
4636   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
4637   // do proper 64bit abi
4638 
4639   NEEDS_CLEANUP;
4640   // Need to add stack banging before this runtime call if it needs to
4641   // be taken; however, there is no generic stack banging routine at
4642   // the MacroAssembler level
4643 
4644   MacroAssembler::call_VM_leaf_base(runtime_entry, 0);
4645 
4646 #ifdef _LP64
4647   movsd(Address(rsp, 0), xmm0);
4648   fld_d(Address(rsp, 0));
4649 #endif // _LP64
4650   addptr(rsp, sizeof(jdouble) * nb_args);
4651   if (num_fpu_regs_in_use > 1) {
4652     // Must save return value to stack and then restore entire FPU
4653     // stack except incoming arguments
4654     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
4655     for (int i = 0; i < num_fpu_regs_in_use - nb_args; i++) {
4656       fld_d(Address(rsp, 0));
4657       addptr(rsp, sizeof(jdouble));
4658     }
4659     fld_d(Address(rsp, (nb_args-1)*sizeof(jdouble)));
4660     addptr(rsp, sizeof(jdouble) * nb_args);
4661   }
4662 
4663   off = 0;
4664   if (UseSSE == 1)  {
4665     movflt(xmm0, Address(rsp,off++*sizeof(jdouble)));
4666     movflt(xmm1, Address(rsp,off++*sizeof(jdouble)));
4667     movflt(xmm2, Address(rsp,off++*sizeof(jdouble)));
4668     movflt(xmm3, Address(rsp,off++*sizeof(jdouble)));
4669     movflt(xmm4, Address(rsp,off++*sizeof(jdouble)));
4670     movflt(xmm5, Address(rsp,off++*sizeof(jdouble)));
4671     movflt(xmm6, Address(rsp,off++*sizeof(jdouble)));
4672     movflt(xmm7, Address(rsp,off++*sizeof(jdouble)));
4673     addptr(rsp, sizeof(jdouble)*8);
4674   } else if (UseSSE >= 2)  {
4675     // Restore whole 128bit (16 bytes) XMM regiters
4676     movdqu(xmm0, Address(rsp,off++*16));
4677     movdqu(xmm1, Address(rsp,off++*16));
4678     movdqu(xmm2, Address(rsp,off++*16));
4679     movdqu(xmm3, Address(rsp,off++*16));
4680     movdqu(xmm4, Address(rsp,off++*16));
4681     movdqu(xmm5, Address(rsp,off++*16));
4682     movdqu(xmm6, Address(rsp,off++*16));
4683     movdqu(xmm7, Address(rsp,off++*16));
4684 #ifdef _LP64
4685     movdqu(xmm8, Address(rsp,off++*16));
4686     movdqu(xmm9, Address(rsp,off++*16));
4687     movdqu(xmm10, Address(rsp,off++*16));
4688     movdqu(xmm11, Address(rsp,off++*16));
4689     movdqu(xmm12, Address(rsp,off++*16));
4690     movdqu(xmm13, Address(rsp,off++*16));
4691     movdqu(xmm14, Address(rsp,off++*16));
4692     movdqu(xmm15, Address(rsp,off++*16));
4693 #endif
4694     addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4695 #ifdef COMPILER2
4696     if (MaxVectorSize > 16) {
4697       // Restore upper half of YMM registes.
4698       vinsertf128h(xmm0, Address(rsp,  0));
4699       vinsertf128h(xmm1, Address(rsp, 16));
4700       vinsertf128h(xmm2, Address(rsp, 32));
4701       vinsertf128h(xmm3, Address(rsp, 48));
4702       vinsertf128h(xmm4, Address(rsp, 64));
4703       vinsertf128h(xmm5, Address(rsp, 80));
4704       vinsertf128h(xmm6, Address(rsp, 96));
4705       vinsertf128h(xmm7, Address(rsp,112));
4706 #ifdef _LP64
4707       vinsertf128h(xmm8, Address(rsp,128));
4708       vinsertf128h(xmm9, Address(rsp,144));
4709       vinsertf128h(xmm10, Address(rsp,160));
4710       vinsertf128h(xmm11, Address(rsp,176));
4711       vinsertf128h(xmm12, Address(rsp,192));
4712       vinsertf128h(xmm13, Address(rsp,208));
4713       vinsertf128h(xmm14, Address(rsp,224));
4714       vinsertf128h(xmm15, Address(rsp,240));
4715 #endif
4716       addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4717     }
4718 #endif
4719   }
4720   popa();
4721 }
4722 
4723 static const double     pi_4 =  0.7853981633974483;
4724 
4725 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
4726   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
4727   // was attempted in this code; unfortunately it appears that the
4728   // switch to 80-bit precision and back causes this to be
4729   // unprofitable compared with simply performing a runtime call if
4730   // the argument is out of the (-pi/4, pi/4) range.
4731 
4732   Register tmp = noreg;
4733   if (!VM_Version::supports_cmov()) {
4734     // fcmp needs a temporary so preserve rbx,
4735     tmp = rbx;
4736     push(tmp);
4737   }
4738 
4739   Label slow_case, done;
4740 
4741   ExternalAddress pi4_adr = (address)&pi_4;
4742   if (reachable(pi4_adr)) {
4743     // x ?<= pi/4
4744     fld_d(pi4_adr);
4745     fld_s(1);                // Stack:  X  PI/4  X
4746     fabs();                  // Stack: |X| PI/4  X
4747     fcmp(tmp);
4748     jcc(Assembler::above, slow_case);
4749 
4750     // fastest case: -pi/4 <= x <= pi/4
4751     switch(trig) {
4752     case 's':
4753       fsin();
4754       break;
4755     case 'c':
4756       fcos();
4757       break;
4758     case 't':
4759       ftan();
4760       break;
4761     default:
4762       assert(false, "bad intrinsic");
4763       break;
4764     }
4765     jmp(done);
4766   }
4767 
4768   // slow case: runtime call
4769   bind(slow_case);
4770 
4771   switch(trig) {
4772   case 's':
4773     {
4774       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 1, num_fpu_regs_in_use);
4775     }
4776     break;
4777   case 'c':
4778     {
4779       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 1, num_fpu_regs_in_use);
4780     }
4781     break;
4782   case 't':
4783     {
4784       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 1, num_fpu_regs_in_use);
4785     }
4786     break;
4787   default:
4788     assert(false, "bad intrinsic");
4789     break;
4790   }
4791 
4792   // Come here with result in F-TOS
4793   bind(done);
4794 
4795   if (tmp != noreg) {
4796     pop(tmp);
4797   }
4798 }
4799 
4800 
4801 // Look up the method for a megamorphic invokeinterface call.
4802 // The target method is determined by <intf_klass, itable_index>.
4803 // The receiver klass is in recv_klass.
4804 // On success, the result will be in method_result, and execution falls through.
4805 // On failure, execution transfers to the given label.
4806 void MacroAssembler::lookup_interface_method(Register recv_klass,
4807                                              Register intf_klass,
4808                                              RegisterOrConstant itable_index,
4809                                              Register method_result,
4810                                              Register scan_temp,
4811                                              Label& L_no_such_interface) {
4812   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
4813   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
4814          "caller must use same register for non-constant itable index as for method");
4815 
4816   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
4817   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
4818   int itentry_off = itableMethodEntry::method_offset_in_bytes();
4819   int scan_step   = itableOffsetEntry::size() * wordSize;
4820   int vte_size    = vtableEntry::size() * wordSize;
4821   Address::ScaleFactor times_vte_scale = Address::times_ptr;
4822   assert(vte_size == wordSize, "else adjust times_vte_scale");
4823 
4824   movl(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize));
4825 
4826   // %%% Could store the aligned, prescaled offset in the klassoop.
4827   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
4828   if (HeapWordsPerLong > 1) {
4829     // Round up to align_object_offset boundary
4830     // see code for InstanceKlass::start_of_itable!
4831     round_to(scan_temp, BytesPerLong);
4832   }
4833 
4834   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
4835   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
4836   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
4837 
4838   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
4839   //   if (scan->interface() == intf) {
4840   //     result = (klass + scan->offset() + itable_index);
4841   //   }
4842   // }
4843   Label search, found_method;
4844 
4845   for (int peel = 1; peel >= 0; peel--) {
4846     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
4847     cmpptr(intf_klass, method_result);
4848 
4849     if (peel) {
4850       jccb(Assembler::equal, found_method);
4851     } else {
4852       jccb(Assembler::notEqual, search);
4853       // (invert the test to fall through to found_method...)
4854     }
4855 
4856     if (!peel)  break;
4857 
4858     bind(search);
4859 
4860     // Check that the previous entry is non-null.  A null entry means that
4861     // the receiver class doesn't implement the interface, and wasn't the
4862     // same as when the caller was compiled.
4863     testptr(method_result, method_result);
4864     jcc(Assembler::zero, L_no_such_interface);
4865     addptr(scan_temp, scan_step);
4866   }
4867 
4868   bind(found_method);
4869 
4870   // Got a hit.
4871   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
4872   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
4873 }
4874 
4875 
4876 // virtual method calling
4877 void MacroAssembler::lookup_virtual_method(Register recv_klass,
4878                                            RegisterOrConstant vtable_index,
4879                                            Register method_result) {
4880   const int base = InstanceKlass::vtable_start_offset() * wordSize;
4881   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
4882   Address vtable_entry_addr(recv_klass,
4883                             vtable_index, Address::times_ptr,
4884                             base + vtableEntry::method_offset_in_bytes());
4885   movptr(method_result, vtable_entry_addr);
4886 }
4887 
4888 
4889 void MacroAssembler::check_klass_subtype(Register sub_klass,
4890                            Register super_klass,
4891                            Register temp_reg,
4892                            Label& L_success) {
4893   Label L_failure;
4894   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
4895   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
4896   bind(L_failure);
4897 }
4898 
4899 
4900 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
4901                                                    Register super_klass,
4902                                                    Register temp_reg,
4903                                                    Label* L_success,
4904                                                    Label* L_failure,
4905                                                    Label* L_slow_path,
4906                                         RegisterOrConstant super_check_offset) {
4907   assert_different_registers(sub_klass, super_klass, temp_reg);
4908   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
4909   if (super_check_offset.is_register()) {
4910     assert_different_registers(sub_klass, super_klass,
4911                                super_check_offset.as_register());
4912   } else if (must_load_sco) {
4913     assert(temp_reg != noreg, "supply either a temp or a register offset");
4914   }
4915 
4916   Label L_fallthrough;
4917   int label_nulls = 0;
4918   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
4919   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
4920   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
4921   assert(label_nulls <= 1, "at most one NULL in the batch");
4922 
4923   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
4924   int sco_offset = in_bytes(Klass::super_check_offset_offset());
4925   Address super_check_offset_addr(super_klass, sco_offset);
4926 
4927   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
4928   // range of a jccb.  If this routine grows larger, reconsider at
4929   // least some of these.
4930 #define local_jcc(assembler_cond, label)                                \
4931   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
4932   else                             jcc( assembler_cond, label) /*omit semi*/
4933 
4934   // Hacked jmp, which may only be used just before L_fallthrough.
4935 #define final_jmp(label)                                                \
4936   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
4937   else                            jmp(label)                /*omit semi*/
4938 
4939   // If the pointers are equal, we are done (e.g., String[] elements).
4940   // This self-check enables sharing of secondary supertype arrays among
4941   // non-primary types such as array-of-interface.  Otherwise, each such
4942   // type would need its own customized SSA.
4943   // We move this check to the front of the fast path because many
4944   // type checks are in fact trivially successful in this manner,
4945   // so we get a nicely predicted branch right at the start of the check.
4946   cmpptr(sub_klass, super_klass);
4947   local_jcc(Assembler::equal, *L_success);
4948 
4949   // Check the supertype display:
4950   if (must_load_sco) {
4951     // Positive movl does right thing on LP64.
4952     movl(temp_reg, super_check_offset_addr);
4953     super_check_offset = RegisterOrConstant(temp_reg);
4954   }
4955   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
4956   cmpptr(super_klass, super_check_addr); // load displayed supertype
4957 
4958   // This check has worked decisively for primary supers.
4959   // Secondary supers are sought in the super_cache ('super_cache_addr').
4960   // (Secondary supers are interfaces and very deeply nested subtypes.)
4961   // This works in the same check above because of a tricky aliasing
4962   // between the super_cache and the primary super display elements.
4963   // (The 'super_check_addr' can address either, as the case requires.)
4964   // Note that the cache is updated below if it does not help us find
4965   // what we need immediately.
4966   // So if it was a primary super, we can just fail immediately.
4967   // Otherwise, it's the slow path for us (no success at this point).
4968 
4969   if (super_check_offset.is_register()) {
4970     local_jcc(Assembler::equal, *L_success);
4971     cmpl(super_check_offset.as_register(), sc_offset);
4972     if (L_failure == &L_fallthrough) {
4973       local_jcc(Assembler::equal, *L_slow_path);
4974     } else {
4975       local_jcc(Assembler::notEqual, *L_failure);
4976       final_jmp(*L_slow_path);
4977     }
4978   } else if (super_check_offset.as_constant() == sc_offset) {
4979     // Need a slow path; fast failure is impossible.
4980     if (L_slow_path == &L_fallthrough) {
4981       local_jcc(Assembler::equal, *L_success);
4982     } else {
4983       local_jcc(Assembler::notEqual, *L_slow_path);
4984       final_jmp(*L_success);
4985     }
4986   } else {
4987     // No slow path; it's a fast decision.
4988     if (L_failure == &L_fallthrough) {
4989       local_jcc(Assembler::equal, *L_success);
4990     } else {
4991       local_jcc(Assembler::notEqual, *L_failure);
4992       final_jmp(*L_success);
4993     }
4994   }
4995 
4996   bind(L_fallthrough);
4997 
4998 #undef local_jcc
4999 #undef final_jmp
5000 }
5001 
5002 
5003 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
5004                                                    Register super_klass,
5005                                                    Register temp_reg,
5006                                                    Register temp2_reg,
5007                                                    Label* L_success,
5008                                                    Label* L_failure,
5009                                                    bool set_cond_codes) {
5010   assert_different_registers(sub_klass, super_klass, temp_reg);
5011   if (temp2_reg != noreg)
5012     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
5013 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
5014 
5015   Label L_fallthrough;
5016   int label_nulls = 0;
5017   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5018   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5019   assert(label_nulls <= 1, "at most one NULL in the batch");
5020 
5021   // a couple of useful fields in sub_klass:
5022   int ss_offset = in_bytes(Klass::secondary_supers_offset());
5023   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5024   Address secondary_supers_addr(sub_klass, ss_offset);
5025   Address super_cache_addr(     sub_klass, sc_offset);
5026 
5027   // Do a linear scan of the secondary super-klass chain.
5028   // This code is rarely used, so simplicity is a virtue here.
5029   // The repne_scan instruction uses fixed registers, which we must spill.
5030   // Don't worry too much about pre-existing connections with the input regs.
5031 
5032   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
5033   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
5034 
5035   // Get super_klass value into rax (even if it was in rdi or rcx).
5036   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
5037   if (super_klass != rax || UseCompressedOops) {
5038     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
5039     mov(rax, super_klass);
5040   }
5041   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
5042   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
5043 
5044 #ifndef PRODUCT
5045   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
5046   ExternalAddress pst_counter_addr((address) pst_counter);
5047   NOT_LP64(  incrementl(pst_counter_addr) );
5048   LP64_ONLY( lea(rcx, pst_counter_addr) );
5049   LP64_ONLY( incrementl(Address(rcx, 0)) );
5050 #endif //PRODUCT
5051 
5052   // We will consult the secondary-super array.
5053   movptr(rdi, secondary_supers_addr);
5054   // Load the array length.  (Positive movl does right thing on LP64.)
5055   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
5056   // Skip to start of data.
5057   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
5058 
5059   // Scan RCX words at [RDI] for an occurrence of RAX.
5060   // Set NZ/Z based on last compare.
5061   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
5062   // not change flags (only scas instruction which is repeated sets flags).
5063   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
5064 
5065     testptr(rax,rax); // Set Z = 0
5066     repne_scan();
5067 
5068   // Unspill the temp. registers:
5069   if (pushed_rdi)  pop(rdi);
5070   if (pushed_rcx)  pop(rcx);
5071   if (pushed_rax)  pop(rax);
5072 
5073   if (set_cond_codes) {
5074     // Special hack for the AD files:  rdi is guaranteed non-zero.
5075     assert(!pushed_rdi, "rdi must be left non-NULL");
5076     // Also, the condition codes are properly set Z/NZ on succeed/failure.
5077   }
5078 
5079   if (L_failure == &L_fallthrough)
5080         jccb(Assembler::notEqual, *L_failure);
5081   else  jcc(Assembler::notEqual, *L_failure);
5082 
5083   // Success.  Cache the super we found and proceed in triumph.
5084   movptr(super_cache_addr, super_klass);
5085 
5086   if (L_success != &L_fallthrough) {
5087     jmp(*L_success);
5088   }
5089 
5090 #undef IS_A_TEMP
5091 
5092   bind(L_fallthrough);
5093 }
5094 
5095 
5096 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
5097   if (VM_Version::supports_cmov()) {
5098     cmovl(cc, dst, src);
5099   } else {
5100     Label L;
5101     jccb(negate_condition(cc), L);
5102     movl(dst, src);
5103     bind(L);
5104   }
5105 }
5106 
5107 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
5108   if (VM_Version::supports_cmov()) {
5109     cmovl(cc, dst, src);
5110   } else {
5111     Label L;
5112     jccb(negate_condition(cc), L);
5113     movl(dst, src);
5114     bind(L);
5115   }
5116 }
5117 
5118 void MacroAssembler::verify_oop(Register reg, const char* s) {
5119   if (!VerifyOops) return;
5120 
5121   // Pass register number to verify_oop_subroutine
5122   const char* b = NULL;
5123   {
5124     ResourceMark rm;
5125     stringStream ss;
5126     ss.print("verify_oop: %s: %s", reg->name(), s);
5127     b = code_string(ss.as_string());
5128   }
5129   BLOCK_COMMENT("verify_oop {");
5130 #ifdef _LP64
5131   push(rscratch1);                    // save r10, trashed by movptr()
5132 #endif
5133   push(rax);                          // save rax,
5134   push(reg);                          // pass register argument
5135   ExternalAddress buffer((address) b);
5136   // avoid using pushptr, as it modifies scratch registers
5137   // and our contract is not to modify anything
5138   movptr(rax, buffer.addr());
5139   push(rax);
5140   // call indirectly to solve generation ordering problem
5141   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5142   call(rax);
5143   // Caller pops the arguments (oop, message) and restores rax, r10
5144   BLOCK_COMMENT("} verify_oop");
5145 }
5146 
5147 
5148 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
5149                                                       Register tmp,
5150                                                       int offset) {
5151   intptr_t value = *delayed_value_addr;
5152   if (value != 0)
5153     return RegisterOrConstant(value + offset);
5154 
5155   // load indirectly to solve generation ordering problem
5156   movptr(tmp, ExternalAddress((address) delayed_value_addr));
5157 
5158 #ifdef ASSERT
5159   { Label L;
5160     testptr(tmp, tmp);
5161     if (WizardMode) {
5162       const char* buf = NULL;
5163       {
5164         ResourceMark rm;
5165         stringStream ss;
5166         ss.print("DelayedValue=" INTPTR_FORMAT, delayed_value_addr[1]);
5167         buf = code_string(ss.as_string());
5168       }
5169       jcc(Assembler::notZero, L);
5170       STOP(buf);
5171     } else {
5172       jccb(Assembler::notZero, L);
5173       hlt();
5174     }
5175     bind(L);
5176   }
5177 #endif
5178 
5179   if (offset != 0)
5180     addptr(tmp, offset);
5181 
5182   return RegisterOrConstant(tmp);
5183 }
5184 
5185 
5186 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
5187                                          int extra_slot_offset) {
5188   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
5189   int stackElementSize = Interpreter::stackElementSize;
5190   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
5191 #ifdef ASSERT
5192   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
5193   assert(offset1 - offset == stackElementSize, "correct arithmetic");
5194 #endif
5195   Register             scale_reg    = noreg;
5196   Address::ScaleFactor scale_factor = Address::no_scale;
5197   if (arg_slot.is_constant()) {
5198     offset += arg_slot.as_constant() * stackElementSize;
5199   } else {
5200     scale_reg    = arg_slot.as_register();
5201     scale_factor = Address::times(stackElementSize);
5202   }
5203   offset += wordSize;           // return PC is on stack
5204   return Address(rsp, scale_reg, scale_factor, offset);
5205 }
5206 
5207 
5208 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
5209   if (!VerifyOops) return;
5210 
5211   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
5212   // Pass register number to verify_oop_subroutine
5213   const char* b = NULL;
5214   {
5215     ResourceMark rm;
5216     stringStream ss;
5217     ss.print("verify_oop_addr: %s", s);
5218     b = code_string(ss.as_string());
5219   }
5220 #ifdef _LP64
5221   push(rscratch1);                    // save r10, trashed by movptr()
5222 #endif
5223   push(rax);                          // save rax,
5224   // addr may contain rsp so we will have to adjust it based on the push
5225   // we just did (and on 64 bit we do two pushes)
5226   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
5227   // stores rax into addr which is backwards of what was intended.
5228   if (addr.uses(rsp)) {
5229     lea(rax, addr);
5230     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
5231   } else {
5232     pushptr(addr);
5233   }
5234 
5235   ExternalAddress buffer((address) b);
5236   // pass msg argument
5237   // avoid using pushptr, as it modifies scratch registers
5238   // and our contract is not to modify anything
5239   movptr(rax, buffer.addr());
5240   push(rax);
5241 
5242   // call indirectly to solve generation ordering problem
5243   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5244   call(rax);
5245   // Caller pops the arguments (addr, message) and restores rax, r10.
5246 }
5247 
5248 void MacroAssembler::verify_tlab() {
5249 #ifdef ASSERT
5250   if (UseTLAB && VerifyOops) {
5251     Label next, ok;
5252     Register t1 = rsi;
5253     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
5254 
5255     push(t1);
5256     NOT_LP64(push(thread_reg));
5257     NOT_LP64(get_thread(thread_reg));
5258 
5259     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5260     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5261     jcc(Assembler::aboveEqual, next);
5262     STOP("assert(top >= start)");
5263     should_not_reach_here();
5264 
5265     bind(next);
5266     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
5267     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5268     jcc(Assembler::aboveEqual, ok);
5269     STOP("assert(top <= end)");
5270     should_not_reach_here();
5271 
5272     bind(ok);
5273     NOT_LP64(pop(thread_reg));
5274     pop(t1);
5275   }
5276 #endif
5277 }
5278 
5279 class ControlWord {
5280  public:
5281   int32_t _value;
5282 
5283   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
5284   int  precision_control() const       { return  (_value >>  8) & 3      ; }
5285   bool precision() const               { return ((_value >>  5) & 1) != 0; }
5286   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
5287   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5288   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5289   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5290   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5291 
5292   void print() const {
5293     // rounding control
5294     const char* rc;
5295     switch (rounding_control()) {
5296       case 0: rc = "round near"; break;
5297       case 1: rc = "round down"; break;
5298       case 2: rc = "round up  "; break;
5299       case 3: rc = "chop      "; break;
5300     };
5301     // precision control
5302     const char* pc;
5303     switch (precision_control()) {
5304       case 0: pc = "24 bits "; break;
5305       case 1: pc = "reserved"; break;
5306       case 2: pc = "53 bits "; break;
5307       case 3: pc = "64 bits "; break;
5308     };
5309     // flags
5310     char f[9];
5311     f[0] = ' ';
5312     f[1] = ' ';
5313     f[2] = (precision   ()) ? 'P' : 'p';
5314     f[3] = (underflow   ()) ? 'U' : 'u';
5315     f[4] = (overflow    ()) ? 'O' : 'o';
5316     f[5] = (zero_divide ()) ? 'Z' : 'z';
5317     f[6] = (denormalized()) ? 'D' : 'd';
5318     f[7] = (invalid     ()) ? 'I' : 'i';
5319     f[8] = '\x0';
5320     // output
5321     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
5322   }
5323 
5324 };
5325 
5326 class StatusWord {
5327  public:
5328   int32_t _value;
5329 
5330   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
5331   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
5332   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
5333   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
5334   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
5335   int  top() const                     { return  (_value >> 11) & 7      ; }
5336   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
5337   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
5338   bool precision() const               { return ((_value >>  5) & 1) != 0; }
5339   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
5340   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5341   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5342   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5343   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5344 
5345   void print() const {
5346     // condition codes
5347     char c[5];
5348     c[0] = (C3()) ? '3' : '-';
5349     c[1] = (C2()) ? '2' : '-';
5350     c[2] = (C1()) ? '1' : '-';
5351     c[3] = (C0()) ? '0' : '-';
5352     c[4] = '\x0';
5353     // flags
5354     char f[9];
5355     f[0] = (error_status()) ? 'E' : '-';
5356     f[1] = (stack_fault ()) ? 'S' : '-';
5357     f[2] = (precision   ()) ? 'P' : '-';
5358     f[3] = (underflow   ()) ? 'U' : '-';
5359     f[4] = (overflow    ()) ? 'O' : '-';
5360     f[5] = (zero_divide ()) ? 'Z' : '-';
5361     f[6] = (denormalized()) ? 'D' : '-';
5362     f[7] = (invalid     ()) ? 'I' : '-';
5363     f[8] = '\x0';
5364     // output
5365     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
5366   }
5367 
5368 };
5369 
5370 class TagWord {
5371  public:
5372   int32_t _value;
5373 
5374   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
5375 
5376   void print() const {
5377     printf("%04x", _value & 0xFFFF);
5378   }
5379 
5380 };
5381 
5382 class FPU_Register {
5383  public:
5384   int32_t _m0;
5385   int32_t _m1;
5386   int16_t _ex;
5387 
5388   bool is_indefinite() const           {
5389     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
5390   }
5391 
5392   void print() const {
5393     char  sign = (_ex < 0) ? '-' : '+';
5394     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
5395     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
5396   };
5397 
5398 };
5399 
5400 class FPU_State {
5401  public:
5402   enum {
5403     register_size       = 10,
5404     number_of_registers =  8,
5405     register_mask       =  7
5406   };
5407 
5408   ControlWord  _control_word;
5409   StatusWord   _status_word;
5410   TagWord      _tag_word;
5411   int32_t      _error_offset;
5412   int32_t      _error_selector;
5413   int32_t      _data_offset;
5414   int32_t      _data_selector;
5415   int8_t       _register[register_size * number_of_registers];
5416 
5417   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
5418   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
5419 
5420   const char* tag_as_string(int tag) const {
5421     switch (tag) {
5422       case 0: return "valid";
5423       case 1: return "zero";
5424       case 2: return "special";
5425       case 3: return "empty";
5426     }
5427     ShouldNotReachHere();
5428     return NULL;
5429   }
5430 
5431   void print() const {
5432     // print computation registers
5433     { int t = _status_word.top();
5434       for (int i = 0; i < number_of_registers; i++) {
5435         int j = (i - t) & register_mask;
5436         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
5437         st(j)->print();
5438         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
5439       }
5440     }
5441     printf("\n");
5442     // print control registers
5443     printf("ctrl = "); _control_word.print(); printf("\n");
5444     printf("stat = "); _status_word .print(); printf("\n");
5445     printf("tags = "); _tag_word    .print(); printf("\n");
5446   }
5447 
5448 };
5449 
5450 class Flag_Register {
5451  public:
5452   int32_t _value;
5453 
5454   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
5455   bool direction() const               { return ((_value >> 10) & 1) != 0; }
5456   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
5457   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
5458   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
5459   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
5460   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
5461 
5462   void print() const {
5463     // flags
5464     char f[8];
5465     f[0] = (overflow       ()) ? 'O' : '-';
5466     f[1] = (direction      ()) ? 'D' : '-';
5467     f[2] = (sign           ()) ? 'S' : '-';
5468     f[3] = (zero           ()) ? 'Z' : '-';
5469     f[4] = (auxiliary_carry()) ? 'A' : '-';
5470     f[5] = (parity         ()) ? 'P' : '-';
5471     f[6] = (carry          ()) ? 'C' : '-';
5472     f[7] = '\x0';
5473     // output
5474     printf("%08x  flags = %s", _value, f);
5475   }
5476 
5477 };
5478 
5479 class IU_Register {
5480  public:
5481   int32_t _value;
5482 
5483   void print() const {
5484     printf("%08x  %11d", _value, _value);
5485   }
5486 
5487 };
5488 
5489 class IU_State {
5490  public:
5491   Flag_Register _eflags;
5492   IU_Register   _rdi;
5493   IU_Register   _rsi;
5494   IU_Register   _rbp;
5495   IU_Register   _rsp;
5496   IU_Register   _rbx;
5497   IU_Register   _rdx;
5498   IU_Register   _rcx;
5499   IU_Register   _rax;
5500 
5501   void print() const {
5502     // computation registers
5503     printf("rax,  = "); _rax.print(); printf("\n");
5504     printf("rbx,  = "); _rbx.print(); printf("\n");
5505     printf("rcx  = "); _rcx.print(); printf("\n");
5506     printf("rdx  = "); _rdx.print(); printf("\n");
5507     printf("rdi  = "); _rdi.print(); printf("\n");
5508     printf("rsi  = "); _rsi.print(); printf("\n");
5509     printf("rbp,  = "); _rbp.print(); printf("\n");
5510     printf("rsp  = "); _rsp.print(); printf("\n");
5511     printf("\n");
5512     // control registers
5513     printf("flgs = "); _eflags.print(); printf("\n");
5514   }
5515 };
5516 
5517 
5518 class CPU_State {
5519  public:
5520   FPU_State _fpu_state;
5521   IU_State  _iu_state;
5522 
5523   void print() const {
5524     printf("--------------------------------------------------\n");
5525     _iu_state .print();
5526     printf("\n");
5527     _fpu_state.print();
5528     printf("--------------------------------------------------\n");
5529   }
5530 
5531 };
5532 
5533 
5534 static void _print_CPU_state(CPU_State* state) {
5535   state->print();
5536 };
5537 
5538 
5539 void MacroAssembler::print_CPU_state() {
5540   push_CPU_state();
5541   push(rsp);                // pass CPU state
5542   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
5543   addptr(rsp, wordSize);       // discard argument
5544   pop_CPU_state();
5545 }
5546 
5547 
5548 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
5549   static int counter = 0;
5550   FPU_State* fs = &state->_fpu_state;
5551   counter++;
5552   // For leaf calls, only verify that the top few elements remain empty.
5553   // We only need 1 empty at the top for C2 code.
5554   if( stack_depth < 0 ) {
5555     if( fs->tag_for_st(7) != 3 ) {
5556       printf("FPR7 not empty\n");
5557       state->print();
5558       assert(false, "error");
5559       return false;
5560     }
5561     return true;                // All other stack states do not matter
5562   }
5563 
5564   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
5565          "bad FPU control word");
5566 
5567   // compute stack depth
5568   int i = 0;
5569   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
5570   int d = i;
5571   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
5572   // verify findings
5573   if (i != FPU_State::number_of_registers) {
5574     // stack not contiguous
5575     printf("%s: stack not contiguous at ST%d\n", s, i);
5576     state->print();
5577     assert(false, "error");
5578     return false;
5579   }
5580   // check if computed stack depth corresponds to expected stack depth
5581   if (stack_depth < 0) {
5582     // expected stack depth is -stack_depth or less
5583     if (d > -stack_depth) {
5584       // too many elements on the stack
5585       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
5586       state->print();
5587       assert(false, "error");
5588       return false;
5589     }
5590   } else {
5591     // expected stack depth is stack_depth
5592     if (d != stack_depth) {
5593       // wrong stack depth
5594       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
5595       state->print();
5596       assert(false, "error");
5597       return false;
5598     }
5599   }
5600   // everything is cool
5601   return true;
5602 }
5603 
5604 
5605 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
5606   if (!VerifyFPU) return;
5607   push_CPU_state();
5608   push(rsp);                // pass CPU state
5609   ExternalAddress msg((address) s);
5610   // pass message string s
5611   pushptr(msg.addr());
5612   push(stack_depth);        // pass stack depth
5613   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
5614   addptr(rsp, 3 * wordSize);   // discard arguments
5615   // check for error
5616   { Label L;
5617     testl(rax, rax);
5618     jcc(Assembler::notZero, L);
5619     int3();                  // break if error condition
5620     bind(L);
5621   }
5622   pop_CPU_state();
5623 }
5624 
5625 void MacroAssembler::restore_cpu_control_state_after_jni() {
5626   // Either restore the MXCSR register after returning from the JNI Call
5627   // or verify that it wasn't changed (with -Xcheck:jni flag).
5628   if (VM_Version::supports_sse()) {
5629     if (RestoreMXCSROnJNICalls) {
5630       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
5631     } else if (CheckJNICalls) {
5632       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
5633     }
5634   }
5635   if (VM_Version::supports_avx()) {
5636     // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
5637     vzeroupper();
5638   }
5639 
5640 #ifndef _LP64
5641   // Either restore the x87 floating pointer control word after returning
5642   // from the JNI call or verify that it wasn't changed.
5643   if (CheckJNICalls) {
5644     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
5645   }
5646 #endif // _LP64
5647 }
5648 
5649 
5650 void MacroAssembler::load_klass(Register dst, Register src) {
5651 #ifdef _LP64
5652   if (UseCompressedClassPointers) {
5653     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5654     decode_klass_not_null(dst);
5655   } else
5656 #endif
5657     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5658 }
5659 
5660 void MacroAssembler::load_prototype_header(Register dst, Register src) {
5661   load_klass(dst, src);
5662   movptr(dst, Address(dst, Klass::prototype_header_offset()));
5663 }
5664 
5665 void MacroAssembler::store_klass(Register dst, Register src) {
5666 #ifdef _LP64
5667   if (UseCompressedClassPointers) {
5668     encode_klass_not_null(src);
5669     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5670   } else
5671 #endif
5672     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5673 }
5674 
5675 void MacroAssembler::load_heap_oop(Register dst, Address src) {
5676 #ifdef _LP64
5677   // FIXME: Must change all places where we try to load the klass.
5678   if (UseCompressedOops) {
5679     movl(dst, src);
5680     decode_heap_oop(dst);
5681   } else
5682 #endif
5683     movptr(dst, src);
5684 }
5685 
5686 // Doesn't do verfication, generates fixed size code
5687 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
5688 #ifdef _LP64
5689   if (UseCompressedOops) {
5690     movl(dst, src);
5691     decode_heap_oop_not_null(dst);
5692   } else
5693 #endif
5694     movptr(dst, src);
5695 }
5696 
5697 void MacroAssembler::store_heap_oop(Address dst, Register src) {
5698 #ifdef _LP64
5699   if (UseCompressedOops) {
5700     assert(!dst.uses(src), "not enough registers");
5701     encode_heap_oop(src);
5702     movl(dst, src);
5703   } else
5704 #endif
5705     movptr(dst, src);
5706 }
5707 
5708 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
5709   assert_different_registers(src1, tmp);
5710 #ifdef _LP64
5711   if (UseCompressedOops) {
5712     bool did_push = false;
5713     if (tmp == noreg) {
5714       tmp = rax;
5715       push(tmp);
5716       did_push = true;
5717       assert(!src2.uses(rsp), "can't push");
5718     }
5719     load_heap_oop(tmp, src2);
5720     cmpptr(src1, tmp);
5721     if (did_push)  pop(tmp);
5722   } else
5723 #endif
5724     cmpptr(src1, src2);
5725 }
5726 
5727 // Used for storing NULLs.
5728 void MacroAssembler::store_heap_oop_null(Address dst) {
5729 #ifdef _LP64
5730   if (UseCompressedOops) {
5731     movl(dst, (int32_t)NULL_WORD);
5732   } else {
5733     movslq(dst, (int32_t)NULL_WORD);
5734   }
5735 #else
5736   movl(dst, (int32_t)NULL_WORD);
5737 #endif
5738 }
5739 
5740 #ifdef _LP64
5741 void MacroAssembler::store_klass_gap(Register dst, Register src) {
5742   if (UseCompressedClassPointers) {
5743     // Store to klass gap in destination
5744     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
5745   }
5746 }
5747 
5748 #ifdef ASSERT
5749 void MacroAssembler::verify_heapbase(const char* msg) {
5750   assert (UseCompressedOops, "should be compressed");
5751   assert (Universe::heap() != NULL, "java heap should be initialized");
5752   if (CheckCompressedOops) {
5753     Label ok;
5754     push(rscratch1); // cmpptr trashes rscratch1
5755     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
5756     jcc(Assembler::equal, ok);
5757     STOP(msg);
5758     bind(ok);
5759     pop(rscratch1);
5760   }
5761 }
5762 #endif
5763 
5764 // Algorithm must match oop.inline.hpp encode_heap_oop.
5765 void MacroAssembler::encode_heap_oop(Register r) {
5766 #ifdef ASSERT
5767   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
5768 #endif
5769   verify_oop(r, "broken oop in encode_heap_oop");
5770   if (Universe::narrow_oop_base() == NULL) {
5771     if (Universe::narrow_oop_shift() != 0) {
5772       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5773       shrq(r, LogMinObjAlignmentInBytes);
5774     }
5775     return;
5776   }
5777   testq(r, r);
5778   cmovq(Assembler::equal, r, r12_heapbase);
5779   subq(r, r12_heapbase);
5780   shrq(r, LogMinObjAlignmentInBytes);
5781 }
5782 
5783 void MacroAssembler::encode_heap_oop_not_null(Register r) {
5784 #ifdef ASSERT
5785   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
5786   if (CheckCompressedOops) {
5787     Label ok;
5788     testq(r, r);
5789     jcc(Assembler::notEqual, ok);
5790     STOP("null oop passed to encode_heap_oop_not_null");
5791     bind(ok);
5792   }
5793 #endif
5794   verify_oop(r, "broken oop in encode_heap_oop_not_null");
5795   if (Universe::narrow_oop_base() != NULL) {
5796     subq(r, r12_heapbase);
5797   }
5798   if (Universe::narrow_oop_shift() != 0) {
5799     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5800     shrq(r, LogMinObjAlignmentInBytes);
5801   }
5802 }
5803 
5804 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
5805 #ifdef ASSERT
5806   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
5807   if (CheckCompressedOops) {
5808     Label ok;
5809     testq(src, src);
5810     jcc(Assembler::notEqual, ok);
5811     STOP("null oop passed to encode_heap_oop_not_null2");
5812     bind(ok);
5813   }
5814 #endif
5815   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
5816   if (dst != src) {
5817     movq(dst, src);
5818   }
5819   if (Universe::narrow_oop_base() != NULL) {
5820     subq(dst, r12_heapbase);
5821   }
5822   if (Universe::narrow_oop_shift() != 0) {
5823     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5824     shrq(dst, LogMinObjAlignmentInBytes);
5825   }
5826 }
5827 
5828 void  MacroAssembler::decode_heap_oop(Register r) {
5829 #ifdef ASSERT
5830   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
5831 #endif
5832   if (Universe::narrow_oop_base() == NULL) {
5833     if (Universe::narrow_oop_shift() != 0) {
5834       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5835       shlq(r, LogMinObjAlignmentInBytes);
5836     }
5837   } else {
5838     Label done;
5839     shlq(r, LogMinObjAlignmentInBytes);
5840     jccb(Assembler::equal, done);
5841     addq(r, r12_heapbase);
5842     bind(done);
5843   }
5844   verify_oop(r, "broken oop in decode_heap_oop");
5845 }
5846 
5847 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
5848   // Note: it will change flags
5849   assert (UseCompressedOops, "should only be used for compressed headers");
5850   assert (Universe::heap() != NULL, "java heap should be initialized");
5851   // Cannot assert, unverified entry point counts instructions (see .ad file)
5852   // vtableStubs also counts instructions in pd_code_size_limit.
5853   // Also do not verify_oop as this is called by verify_oop.
5854   if (Universe::narrow_oop_shift() != 0) {
5855     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5856     shlq(r, LogMinObjAlignmentInBytes);
5857     if (Universe::narrow_oop_base() != NULL) {
5858       addq(r, r12_heapbase);
5859     }
5860   } else {
5861     assert (Universe::narrow_oop_base() == NULL, "sanity");
5862   }
5863 }
5864 
5865 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
5866   // Note: it will change flags
5867   assert (UseCompressedOops, "should only be used for compressed headers");
5868   assert (Universe::heap() != NULL, "java heap should be initialized");
5869   // Cannot assert, unverified entry point counts instructions (see .ad file)
5870   // vtableStubs also counts instructions in pd_code_size_limit.
5871   // Also do not verify_oop as this is called by verify_oop.
5872   if (Universe::narrow_oop_shift() != 0) {
5873     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5874     if (LogMinObjAlignmentInBytes == Address::times_8) {
5875       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
5876     } else {
5877       if (dst != src) {
5878         movq(dst, src);
5879       }
5880       shlq(dst, LogMinObjAlignmentInBytes);
5881       if (Universe::narrow_oop_base() != NULL) {
5882         addq(dst, r12_heapbase);
5883       }
5884     }
5885   } else {
5886     assert (Universe::narrow_oop_base() == NULL, "sanity");
5887     if (dst != src) {
5888       movq(dst, src);
5889     }
5890   }
5891 }
5892 
5893 void MacroAssembler::encode_klass_not_null(Register r) {
5894   if (Universe::narrow_klass_base() != NULL) {
5895     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5896     assert(r != r12_heapbase, "Encoding a klass in r12");
5897     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
5898     subq(r, r12_heapbase);
5899   }
5900   if (Universe::narrow_klass_shift() != 0) {
5901     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5902     shrq(r, LogKlassAlignmentInBytes);
5903   }
5904   if (Universe::narrow_klass_base() != NULL) {
5905     reinit_heapbase();
5906   }
5907 }
5908 
5909 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
5910   if (dst == src) {
5911     encode_klass_not_null(src);
5912   } else {
5913     if (Universe::narrow_klass_base() != NULL) {
5914       mov64(dst, (int64_t)Universe::narrow_klass_base());
5915       negq(dst);
5916       addq(dst, src);
5917     } else {
5918       movptr(dst, src);
5919     }
5920     if (Universe::narrow_klass_shift() != 0) {
5921       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5922       shrq(dst, LogKlassAlignmentInBytes);
5923     }
5924   }
5925 }
5926 
5927 // Function instr_size_for_decode_klass_not_null() counts the instructions
5928 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
5929 // when (Universe::heap() != NULL).  Hence, if the instructions they
5930 // generate change, then this method needs to be updated.
5931 int MacroAssembler::instr_size_for_decode_klass_not_null() {
5932   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
5933   if (Universe::narrow_klass_base() != NULL) {
5934     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
5935     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
5936   } else {
5937     // longest load decode klass function, mov64, leaq
5938     return 16;
5939   }
5940 }
5941 
5942 // !!! If the instructions that get generated here change then function
5943 // instr_size_for_decode_klass_not_null() needs to get updated.
5944 void  MacroAssembler::decode_klass_not_null(Register r) {
5945   // Note: it will change flags
5946   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5947   assert(r != r12_heapbase, "Decoding a klass in r12");
5948   // Cannot assert, unverified entry point counts instructions (see .ad file)
5949   // vtableStubs also counts instructions in pd_code_size_limit.
5950   // Also do not verify_oop as this is called by verify_oop.
5951   if (Universe::narrow_klass_shift() != 0) {
5952     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5953     shlq(r, LogKlassAlignmentInBytes);
5954   }
5955   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5956   if (Universe::narrow_klass_base() != NULL) {
5957     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
5958     addq(r, r12_heapbase);
5959     reinit_heapbase();
5960   }
5961 }
5962 
5963 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
5964   // Note: it will change flags
5965   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5966   if (dst == src) {
5967     decode_klass_not_null(dst);
5968   } else {
5969     // Cannot assert, unverified entry point counts instructions (see .ad file)
5970     // vtableStubs also counts instructions in pd_code_size_limit.
5971     // Also do not verify_oop as this is called by verify_oop.
5972     mov64(dst, (int64_t)Universe::narrow_klass_base());
5973     if (Universe::narrow_klass_shift() != 0) {
5974       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5975       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
5976       leaq(dst, Address(dst, src, Address::times_8, 0));
5977     } else {
5978       addq(dst, src);
5979     }
5980   }
5981 }
5982 
5983 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
5984   assert (UseCompressedOops, "should only be used for compressed headers");
5985   assert (Universe::heap() != NULL, "java heap should be initialized");
5986   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5987   int oop_index = oop_recorder()->find_index(obj);
5988   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5989   mov_narrow_oop(dst, oop_index, rspec);
5990 }
5991 
5992 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
5993   assert (UseCompressedOops, "should only be used for compressed headers");
5994   assert (Universe::heap() != NULL, "java heap should be initialized");
5995   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5996   int oop_index = oop_recorder()->find_index(obj);
5997   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5998   mov_narrow_oop(dst, oop_index, rspec);
5999 }
6000 
6001 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
6002   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6003   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6004   int klass_index = oop_recorder()->find_index(k);
6005   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6006   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6007 }
6008 
6009 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
6010   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6011   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6012   int klass_index = oop_recorder()->find_index(k);
6013   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6014   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6015 }
6016 
6017 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
6018   assert (UseCompressedOops, "should only be used for compressed headers");
6019   assert (Universe::heap() != NULL, "java heap should be initialized");
6020   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6021   int oop_index = oop_recorder()->find_index(obj);
6022   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6023   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6024 }
6025 
6026 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
6027   assert (UseCompressedOops, "should only be used for compressed headers");
6028   assert (Universe::heap() != NULL, "java heap should be initialized");
6029   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6030   int oop_index = oop_recorder()->find_index(obj);
6031   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6032   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6033 }
6034 
6035 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
6036   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6037   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6038   int klass_index = oop_recorder()->find_index(k);
6039   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6040   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6041 }
6042 
6043 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
6044   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6045   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6046   int klass_index = oop_recorder()->find_index(k);
6047   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6048   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6049 }
6050 
6051 void MacroAssembler::reinit_heapbase() {
6052   if (UseCompressedOops || UseCompressedClassPointers) {
6053     if (Universe::heap() != NULL) {
6054       if (Universe::narrow_oop_base() == NULL) {
6055         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
6056       } else {
6057         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
6058       }
6059     } else {
6060       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6061     }
6062   }
6063 }
6064 
6065 #endif // _LP64
6066 
6067 
6068 // C2 compiled method's prolog code.
6069 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b) {
6070 
6071   // WARNING: Initial instruction MUST be 5 bytes or longer so that
6072   // NativeJump::patch_verified_entry will be able to patch out the entry
6073   // code safely. The push to verify stack depth is ok at 5 bytes,
6074   // the frame allocation can be either 3 or 6 bytes. So if we don't do
6075   // stack bang then we must use the 6 byte frame allocation even if
6076   // we have no frame. :-(
6077   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
6078 
6079   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
6080   // Remove word for return addr
6081   framesize -= wordSize;
6082   stack_bang_size -= wordSize;
6083 
6084   // Calls to C2R adapters often do not accept exceptional returns.
6085   // We require that their callers must bang for them.  But be careful, because
6086   // some VM calls (such as call site linkage) can use several kilobytes of
6087   // stack.  But the stack safety zone should account for that.
6088   // See bugs 4446381, 4468289, 4497237.
6089   if (stack_bang_size > 0) {
6090     generate_stack_overflow_check(stack_bang_size);
6091 
6092     // We always push rbp, so that on return to interpreter rbp, will be
6093     // restored correctly and we can correct the stack.
6094     push(rbp);
6095     // Save caller's stack pointer into RBP if the frame pointer is preserved.
6096     if (PreserveFramePointer) {
6097       mov(rbp, rsp);
6098     }
6099     // Remove word for ebp
6100     framesize -= wordSize;
6101 
6102     // Create frame
6103     if (framesize) {
6104       subptr(rsp, framesize);
6105     }
6106   } else {
6107     // Create frame (force generation of a 4 byte immediate value)
6108     subptr_imm32(rsp, framesize);
6109 
6110     // Save RBP register now.
6111     framesize -= wordSize;
6112     movptr(Address(rsp, framesize), rbp);
6113     // Save caller's stack pointer into RBP if the frame pointer is preserved.
6114     if (PreserveFramePointer) {
6115       movptr(rbp, rsp);
6116       addptr(rbp, framesize + wordSize);
6117     }
6118   }
6119 
6120   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
6121     framesize -= wordSize;
6122     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
6123   }
6124 
6125 #ifndef _LP64
6126   // If method sets FPU control word do it now
6127   if (fp_mode_24b) {
6128     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
6129   }
6130   if (UseSSE >= 2 && VerifyFPU) {
6131     verify_FPU(0, "FPU stack must be clean on entry");
6132   }
6133 #endif
6134 
6135 #ifdef ASSERT
6136   if (VerifyStackAtCalls) {
6137     Label L;
6138     push(rax);
6139     mov(rax, rsp);
6140     andptr(rax, StackAlignmentInBytes-1);
6141     cmpptr(rax, StackAlignmentInBytes-wordSize);
6142     pop(rax);
6143     jcc(Assembler::equal, L);
6144     STOP("Stack is not properly aligned!");
6145     bind(L);
6146   }
6147 #endif
6148 
6149 }
6150 
6151 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp) {
6152   // cnt - number of qwords (8-byte words).
6153   // base - start address, qword aligned.
6154   assert(base==rdi, "base register must be edi for rep stos");
6155   assert(tmp==rax,   "tmp register must be eax for rep stos");
6156   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
6157 
6158   xorptr(tmp, tmp);
6159   if (UseFastStosb) {
6160     shlptr(cnt,3); // convert to number of bytes
6161     rep_stosb();
6162   } else {
6163     NOT_LP64(shlptr(cnt,1);) // convert to number of dwords for 32-bit VM
6164     rep_stos();
6165   }
6166 }
6167 
6168 // IndexOf for constant substrings with size >= 8 chars
6169 // which don't need to be loaded through stack.
6170 void MacroAssembler::string_indexofC8(Register str1, Register str2,
6171                                       Register cnt1, Register cnt2,
6172                                       int int_cnt2,  Register result,
6173                                       XMMRegister vec, Register tmp) {
6174   ShortBranchVerifier sbv(this);
6175   assert(UseSSE42Intrinsics, "SSE4.2 is required");
6176 
6177   // This method uses pcmpestri instruction with bound registers
6178   //   inputs:
6179   //     xmm - substring
6180   //     rax - substring length (elements count)
6181   //     mem - scanned string
6182   //     rdx - string length (elements count)
6183   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6184   //   outputs:
6185   //     rcx - matched index in string
6186   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6187 
6188   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
6189         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
6190         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
6191 
6192   // Note, inline_string_indexOf() generates checks:
6193   // if (substr.count > string.count) return -1;
6194   // if (substr.count == 0) return 0;
6195   assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");
6196 
6197   // Load substring.
6198   movdqu(vec, Address(str2, 0));
6199   movl(cnt2, int_cnt2);
6200   movptr(result, str1); // string addr
6201 
6202   if (int_cnt2 > 8) {
6203     jmpb(SCAN_TO_SUBSTR);
6204 
6205     // Reload substr for rescan, this code
6206     // is executed only for large substrings (> 8 chars)
6207     bind(RELOAD_SUBSTR);
6208     movdqu(vec, Address(str2, 0));
6209     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
6210 
6211     bind(RELOAD_STR);
6212     // We came here after the beginning of the substring was
6213     // matched but the rest of it was not so we need to search
6214     // again. Start from the next element after the previous match.
6215 
6216     // cnt2 is number of substring reminding elements and
6217     // cnt1 is number of string reminding elements when cmp failed.
6218     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
6219     subl(cnt1, cnt2);
6220     addl(cnt1, int_cnt2);
6221     movl(cnt2, int_cnt2); // Now restore cnt2
6222 
6223     decrementl(cnt1);     // Shift to next element
6224     cmpl(cnt1, cnt2);
6225     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6226 
6227     addptr(result, 2);
6228 
6229   } // (int_cnt2 > 8)
6230 
6231   // Scan string for start of substr in 16-byte vectors
6232   bind(SCAN_TO_SUBSTR);
6233   pcmpestri(vec, Address(result, 0), 0x0d);
6234   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6235   subl(cnt1, 8);
6236   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6237   cmpl(cnt1, cnt2);
6238   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6239   addptr(result, 16);
6240   jmpb(SCAN_TO_SUBSTR);
6241 
6242   // Found a potential substr
6243   bind(FOUND_CANDIDATE);
6244   // Matched whole vector if first element matched (tmp(rcx) == 0).
6245   if (int_cnt2 == 8) {
6246     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
6247   } else { // int_cnt2 > 8
6248     jccb(Assembler::overflow, FOUND_SUBSTR);
6249   }
6250   // After pcmpestri tmp(rcx) contains matched element index
6251   // Compute start addr of substr
6252   lea(result, Address(result, tmp, Address::times_2));
6253 
6254   // Make sure string is still long enough
6255   subl(cnt1, tmp);
6256   cmpl(cnt1, cnt2);
6257   if (int_cnt2 == 8) {
6258     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6259   } else { // int_cnt2 > 8
6260     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
6261   }
6262   // Left less then substring.
6263 
6264   bind(RET_NOT_FOUND);
6265   movl(result, -1);
6266   jmpb(EXIT);
6267 
6268   if (int_cnt2 > 8) {
6269     // This code is optimized for the case when whole substring
6270     // is matched if its head is matched.
6271     bind(MATCH_SUBSTR_HEAD);
6272     pcmpestri(vec, Address(result, 0), 0x0d);
6273     // Reload only string if does not match
6274     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
6275 
6276     Label CONT_SCAN_SUBSTR;
6277     // Compare the rest of substring (> 8 chars).
6278     bind(FOUND_SUBSTR);
6279     // First 8 chars are already matched.
6280     negptr(cnt2);
6281     addptr(cnt2, 8);
6282 
6283     bind(SCAN_SUBSTR);
6284     subl(cnt1, 8);
6285     cmpl(cnt2, -8); // Do not read beyond substring
6286     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
6287     // Back-up strings to avoid reading beyond substring:
6288     // cnt1 = cnt1 - cnt2 + 8
6289     addl(cnt1, cnt2); // cnt2 is negative
6290     addl(cnt1, 8);
6291     movl(cnt2, 8); negptr(cnt2);
6292     bind(CONT_SCAN_SUBSTR);
6293     if (int_cnt2 < (int)G) {
6294       movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
6295       pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
6296     } else {
6297       // calculate index in register to avoid integer overflow (int_cnt2*2)
6298       movl(tmp, int_cnt2);
6299       addptr(tmp, cnt2);
6300       movdqu(vec, Address(str2, tmp, Address::times_2, 0));
6301       pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
6302     }
6303     // Need to reload strings pointers if not matched whole vector
6304     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6305     addptr(cnt2, 8);
6306     jcc(Assembler::negative, SCAN_SUBSTR);
6307     // Fall through if found full substring
6308 
6309   } // (int_cnt2 > 8)
6310 
6311   bind(RET_FOUND);
6312   // Found result if we matched full small substring.
6313   // Compute substr offset
6314   subptr(result, str1);
6315   shrl(result, 1); // index
6316   bind(EXIT);
6317 
6318 } // string_indexofC8
6319 
6320 // Small strings are loaded through stack if they cross page boundary.
6321 void MacroAssembler::string_indexof(Register str1, Register str2,
6322                                     Register cnt1, Register cnt2,
6323                                     int int_cnt2,  Register result,
6324                                     XMMRegister vec, Register tmp) {
6325   ShortBranchVerifier sbv(this);
6326   assert(UseSSE42Intrinsics, "SSE4.2 is required");
6327   //
6328   // int_cnt2 is length of small (< 8 chars) constant substring
6329   // or (-1) for non constant substring in which case its length
6330   // is in cnt2 register.
6331   //
6332   // Note, inline_string_indexOf() generates checks:
6333   // if (substr.count > string.count) return -1;
6334   // if (substr.count == 0) return 0;
6335   //
6336   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");
6337 
6338   // This method uses pcmpestri instruction with bound registers
6339   //   inputs:
6340   //     xmm - substring
6341   //     rax - substring length (elements count)
6342   //     mem - scanned string
6343   //     rdx - string length (elements count)
6344   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6345   //   outputs:
6346   //     rcx - matched index in string
6347   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6348 
6349   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
6350         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
6351         FOUND_CANDIDATE;
6352 
6353   { //========================================================
6354     // We don't know where these strings are located
6355     // and we can't read beyond them. Load them through stack.
6356     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
6357 
6358     movptr(tmp, rsp); // save old SP
6359 
6360     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
6361       if (int_cnt2 == 1) {  // One char
6362         load_unsigned_short(result, Address(str2, 0));
6363         movdl(vec, result); // move 32 bits
6364       } else if (int_cnt2 == 2) { // Two chars
6365         movdl(vec, Address(str2, 0)); // move 32 bits
6366       } else if (int_cnt2 == 4) { // Four chars
6367         movq(vec, Address(str2, 0));  // move 64 bits
6368       } else { // cnt2 = { 3, 5, 6, 7 }
6369         // Array header size is 12 bytes in 32-bit VM
6370         // + 6 bytes for 3 chars == 18 bytes,
6371         // enough space to load vec and shift.
6372         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
6373         movdqu(vec, Address(str2, (int_cnt2*2)-16));
6374         psrldq(vec, 16-(int_cnt2*2));
6375       }
6376     } else { // not constant substring
6377       cmpl(cnt2, 8);
6378       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
6379 
6380       // We can read beyond string if srt+16 does not cross page boundary
6381       // since heaps are aligned and mapped by pages.
6382       assert(os::vm_page_size() < (int)G, "default page should be small");
6383       movl(result, str2); // We need only low 32 bits
6384       andl(result, (os::vm_page_size()-1));
6385       cmpl(result, (os::vm_page_size()-16));
6386       jccb(Assembler::belowEqual, CHECK_STR);
6387 
6388       // Move small strings to stack to allow load 16 bytes into vec.
6389       subptr(rsp, 16);
6390       int stk_offset = wordSize-2;
6391       push(cnt2);
6392 
6393       bind(COPY_SUBSTR);
6394       load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
6395       movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
6396       decrement(cnt2);
6397       jccb(Assembler::notZero, COPY_SUBSTR);
6398 
6399       pop(cnt2);
6400       movptr(str2, rsp);  // New substring address
6401     } // non constant
6402 
6403     bind(CHECK_STR);
6404     cmpl(cnt1, 8);
6405     jccb(Assembler::aboveEqual, BIG_STRINGS);
6406 
6407     // Check cross page boundary.
6408     movl(result, str1); // We need only low 32 bits
6409     andl(result, (os::vm_page_size()-1));
6410     cmpl(result, (os::vm_page_size()-16));
6411     jccb(Assembler::belowEqual, BIG_STRINGS);
6412 
6413     subptr(rsp, 16);
6414     int stk_offset = -2;
6415     if (int_cnt2 < 0) { // not constant
6416       push(cnt2);
6417       stk_offset += wordSize;
6418     }
6419     movl(cnt2, cnt1);
6420 
6421     bind(COPY_STR);
6422     load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
6423     movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
6424     decrement(cnt2);
6425     jccb(Assembler::notZero, COPY_STR);
6426 
6427     if (int_cnt2 < 0) { // not constant
6428       pop(cnt2);
6429     }
6430     movptr(str1, rsp);  // New string address
6431 
6432     bind(BIG_STRINGS);
6433     // Load substring.
6434     if (int_cnt2 < 0) { // -1
6435       movdqu(vec, Address(str2, 0));
6436       push(cnt2);       // substr count
6437       push(str2);       // substr addr
6438       push(str1);       // string addr
6439     } else {
6440       // Small (< 8 chars) constant substrings are loaded already.
6441       movl(cnt2, int_cnt2);
6442     }
6443     push(tmp);  // original SP
6444 
6445   } // Finished loading
6446 
6447   //========================================================
6448   // Start search
6449   //
6450 
6451   movptr(result, str1); // string addr
6452 
6453   if (int_cnt2  < 0) {  // Only for non constant substring
6454     jmpb(SCAN_TO_SUBSTR);
6455 
6456     // SP saved at sp+0
6457     // String saved at sp+1*wordSize
6458     // Substr saved at sp+2*wordSize
6459     // Substr count saved at sp+3*wordSize
6460 
6461     // Reload substr for rescan, this code
6462     // is executed only for large substrings (> 8 chars)
6463     bind(RELOAD_SUBSTR);
6464     movptr(str2, Address(rsp, 2*wordSize));
6465     movl(cnt2, Address(rsp, 3*wordSize));
6466     movdqu(vec, Address(str2, 0));
6467     // We came here after the beginning of the substring was
6468     // matched but the rest of it was not so we need to search
6469     // again. Start from the next element after the previous match.
6470     subptr(str1, result); // Restore counter
6471     shrl(str1, 1);
6472     addl(cnt1, str1);
6473     decrementl(cnt1);   // Shift to next element
6474     cmpl(cnt1, cnt2);
6475     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6476 
6477     addptr(result, 2);
6478   } // non constant
6479 
6480   // Scan string for start of substr in 16-byte vectors
6481   bind(SCAN_TO_SUBSTR);
6482   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6483   pcmpestri(vec, Address(result, 0), 0x0d);
6484   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6485   subl(cnt1, 8);
6486   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6487   cmpl(cnt1, cnt2);
6488   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6489   addptr(result, 16);
6490 
6491   bind(ADJUST_STR);
6492   cmpl(cnt1, 8); // Do not read beyond string
6493   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6494   // Back-up string to avoid reading beyond string.
6495   lea(result, Address(result, cnt1, Address::times_2, -16));
6496   movl(cnt1, 8);
6497   jmpb(SCAN_TO_SUBSTR);
6498 
6499   // Found a potential substr
6500   bind(FOUND_CANDIDATE);
6501   // After pcmpestri tmp(rcx) contains matched element index
6502 
6503   // Make sure string is still long enough
6504   subl(cnt1, tmp);
6505   cmpl(cnt1, cnt2);
6506   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
6507   // Left less then substring.
6508 
6509   bind(RET_NOT_FOUND);
6510   movl(result, -1);
6511   jmpb(CLEANUP);
6512 
6513   bind(FOUND_SUBSTR);
6514   // Compute start addr of substr
6515   lea(result, Address(result, tmp, Address::times_2));
6516 
6517   if (int_cnt2 > 0) { // Constant substring
6518     // Repeat search for small substring (< 8 chars)
6519     // from new point without reloading substring.
6520     // Have to check that we don't read beyond string.
6521     cmpl(tmp, 8-int_cnt2);
6522     jccb(Assembler::greater, ADJUST_STR);
6523     // Fall through if matched whole substring.
6524   } else { // non constant
6525     assert(int_cnt2 == -1, "should be != 0");
6526 
6527     addl(tmp, cnt2);
6528     // Found result if we matched whole substring.
6529     cmpl(tmp, 8);
6530     jccb(Assembler::lessEqual, RET_FOUND);
6531 
6532     // Repeat search for small substring (<= 8 chars)
6533     // from new point 'str1' without reloading substring.
6534     cmpl(cnt2, 8);
6535     // Have to check that we don't read beyond string.
6536     jccb(Assembler::lessEqual, ADJUST_STR);
6537 
6538     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
6539     // Compare the rest of substring (> 8 chars).
6540     movptr(str1, result);
6541 
6542     cmpl(tmp, cnt2);
6543     // First 8 chars are already matched.
6544     jccb(Assembler::equal, CHECK_NEXT);
6545 
6546     bind(SCAN_SUBSTR);
6547     pcmpestri(vec, Address(str1, 0), 0x0d);
6548     // Need to reload strings pointers if not matched whole vector
6549     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6550 
6551     bind(CHECK_NEXT);
6552     subl(cnt2, 8);
6553     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
6554     addptr(str1, 16);
6555     addptr(str2, 16);
6556     subl(cnt1, 8);
6557     cmpl(cnt2, 8); // Do not read beyond substring
6558     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
6559     // Back-up strings to avoid reading beyond substring.
6560     lea(str2, Address(str2, cnt2, Address::times_2, -16));
6561     lea(str1, Address(str1, cnt2, Address::times_2, -16));
6562     subl(cnt1, cnt2);
6563     movl(cnt2, 8);
6564     addl(cnt1, 8);
6565     bind(CONT_SCAN_SUBSTR);
6566     movdqu(vec, Address(str2, 0));
6567     jmpb(SCAN_SUBSTR);
6568 
6569     bind(RET_FOUND_LONG);
6570     movptr(str1, Address(rsp, wordSize));
6571   } // non constant
6572 
6573   bind(RET_FOUND);
6574   // Compute substr offset
6575   subptr(result, str1);
6576   shrl(result, 1); // index
6577 
6578   bind(CLEANUP);
6579   pop(rsp); // restore SP
6580 
6581 } // string_indexof
6582 
6583 // Compare strings.
6584 void MacroAssembler::string_compare(Register str1, Register str2,
6585                                     Register cnt1, Register cnt2, Register result,
6586                                     XMMRegister vec1) {
6587   ShortBranchVerifier sbv(this);
6588   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
6589 
6590   // Compute the minimum of the string lengths and the
6591   // difference of the string lengths (stack).
6592   // Do the conditional move stuff
6593   movl(result, cnt1);
6594   subl(cnt1, cnt2);
6595   push(cnt1);
6596   cmov32(Assembler::lessEqual, cnt2, result);
6597 
6598   // Is the minimum length zero?
6599   testl(cnt2, cnt2);
6600   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6601 
6602   // Compare first characters
6603   load_unsigned_short(result, Address(str1, 0));
6604   load_unsigned_short(cnt1, Address(str2, 0));
6605   subl(result, cnt1);
6606   jcc(Assembler::notZero,  POP_LABEL);
6607   cmpl(cnt2, 1);
6608   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6609 
6610   // Check if the strings start at the same location.
6611   cmpptr(str1, str2);
6612   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6613 
6614   Address::ScaleFactor scale = Address::times_2;
6615   int stride = 8;
6616 
6617   if (UseAVX >= 2 && UseSSE42Intrinsics) {
6618     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
6619     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
6620     Label COMPARE_TAIL_LONG;
6621     int pcmpmask = 0x19;
6622 
6623     // Setup to compare 16-chars (32-bytes) vectors,
6624     // start from first character again because it has aligned address.
6625     int stride2 = 16;
6626     int adr_stride  = stride  << scale;
6627 
6628     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6629     // rax and rdx are used by pcmpestri as elements counters
6630     movl(result, cnt2);
6631     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
6632     jcc(Assembler::zero, COMPARE_TAIL_LONG);
6633 
6634     // fast path : compare first 2 8-char vectors.
6635     bind(COMPARE_16_CHARS);
6636     movdqu(vec1, Address(str1, 0));
6637     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6638     jccb(Assembler::below, COMPARE_INDEX_CHAR);
6639 
6640     movdqu(vec1, Address(str1, adr_stride));
6641     pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
6642     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
6643     addl(cnt1, stride);
6644 
6645     // Compare the characters at index in cnt1
6646     bind(COMPARE_INDEX_CHAR); //cnt1 has the offset of the mismatching character
6647     load_unsigned_short(result, Address(str1, cnt1, scale));
6648     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
6649     subl(result, cnt2);
6650     jmp(POP_LABEL);
6651 
6652     // Setup the registers to start vector comparison loop
6653     bind(COMPARE_WIDE_VECTORS);
6654     lea(str1, Address(str1, result, scale));
6655     lea(str2, Address(str2, result, scale));
6656     subl(result, stride2);
6657     subl(cnt2, stride2);
6658     jccb(Assembler::zero, COMPARE_WIDE_TAIL);
6659     negptr(result);
6660 
6661     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
6662     bind(COMPARE_WIDE_VECTORS_LOOP);
6663     vmovdqu(vec1, Address(str1, result, scale));
6664     vpxor(vec1, Address(str2, result, scale));
6665     vptest(vec1, vec1);
6666     jccb(Assembler::notZero, VECTOR_NOT_EQUAL);
6667     addptr(result, stride2);
6668     subl(cnt2, stride2);
6669     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
6670     // clean upper bits of YMM registers
6671     vpxor(vec1, vec1);
6672 
6673     // compare wide vectors tail
6674     bind(COMPARE_WIDE_TAIL);
6675     testptr(result, result);
6676     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6677 
6678     movl(result, stride2);
6679     movl(cnt2, result);
6680     negptr(result);
6681     jmpb(COMPARE_WIDE_VECTORS_LOOP);
6682 
6683     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
6684     bind(VECTOR_NOT_EQUAL);
6685     // clean upper bits of YMM registers
6686     vpxor(vec1, vec1);
6687     lea(str1, Address(str1, result, scale));
6688     lea(str2, Address(str2, result, scale));
6689     jmp(COMPARE_16_CHARS);
6690 
6691     // Compare tail chars, length between 1 to 15 chars
6692     bind(COMPARE_TAIL_LONG);
6693     movl(cnt2, result);
6694     cmpl(cnt2, stride);
6695     jccb(Assembler::less, COMPARE_SMALL_STR);
6696 
6697     movdqu(vec1, Address(str1, 0));
6698     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6699     jcc(Assembler::below, COMPARE_INDEX_CHAR);
6700     subptr(cnt2, stride);
6701     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6702     lea(str1, Address(str1, result, scale));
6703     lea(str2, Address(str2, result, scale));
6704     negptr(cnt2);
6705     jmpb(WHILE_HEAD_LABEL);
6706 
6707     bind(COMPARE_SMALL_STR);
6708   } else if (UseSSE42Intrinsics) {
6709     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
6710     int pcmpmask = 0x19;
6711     // Setup to compare 8-char (16-byte) vectors,
6712     // start from first character again because it has aligned address.
6713     movl(result, cnt2);
6714     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
6715     jccb(Assembler::zero, COMPARE_TAIL);
6716 
6717     lea(str1, Address(str1, result, scale));
6718     lea(str2, Address(str2, result, scale));
6719     negptr(result);
6720 
6721     // pcmpestri
6722     //   inputs:
6723     //     vec1- substring
6724     //     rax - negative string length (elements count)
6725     //     mem - scanned string
6726     //     rdx - string length (elements count)
6727     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
6728     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
6729     //   outputs:
6730     //     rcx - first mismatched element index
6731     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6732 
6733     bind(COMPARE_WIDE_VECTORS);
6734     movdqu(vec1, Address(str1, result, scale));
6735     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6736     // After pcmpestri cnt1(rcx) contains mismatched element index
6737 
6738     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
6739     addptr(result, stride);
6740     subptr(cnt2, stride);
6741     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
6742 
6743     // compare wide vectors tail
6744     testptr(result, result);
6745     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6746 
6747     movl(cnt2, stride);
6748     movl(result, stride);
6749     negptr(result);
6750     movdqu(vec1, Address(str1, result, scale));
6751     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6752     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
6753 
6754     // Mismatched characters in the vectors
6755     bind(VECTOR_NOT_EQUAL);
6756     addptr(cnt1, result);
6757     load_unsigned_short(result, Address(str1, cnt1, scale));
6758     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
6759     subl(result, cnt2);
6760     jmpb(POP_LABEL);
6761 
6762     bind(COMPARE_TAIL); // limit is zero
6763     movl(cnt2, result);
6764     // Fallthru to tail compare
6765   }
6766   // Shift str2 and str1 to the end of the arrays, negate min
6767   lea(str1, Address(str1, cnt2, scale));
6768   lea(str2, Address(str2, cnt2, scale));
6769   decrementl(cnt2);  // first character was compared already
6770   negptr(cnt2);
6771 
6772   // Compare the rest of the elements
6773   bind(WHILE_HEAD_LABEL);
6774   load_unsigned_short(result, Address(str1, cnt2, scale, 0));
6775   load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
6776   subl(result, cnt1);
6777   jccb(Assembler::notZero, POP_LABEL);
6778   increment(cnt2);
6779   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
6780 
6781   // Strings are equal up to min length.  Return the length difference.
6782   bind(LENGTH_DIFF_LABEL);
6783   pop(result);
6784   jmpb(DONE_LABEL);
6785 
6786   // Discard the stored length difference
6787   bind(POP_LABEL);
6788   pop(cnt1);
6789 
6790   // That's it
6791   bind(DONE_LABEL);
6792 }
6793 
6794 // Compare char[] arrays aligned to 4 bytes or substrings.
6795 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
6796                                         Register limit, Register result, Register chr,
6797                                         XMMRegister vec1, XMMRegister vec2) {
6798   ShortBranchVerifier sbv(this);
6799   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
6800 
6801   int length_offset  = arrayOopDesc::length_offset_in_bytes();
6802   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
6803 
6804   // Check the input args
6805   cmpptr(ary1, ary2);
6806   jcc(Assembler::equal, TRUE_LABEL);
6807 
6808   if (is_array_equ) {
6809     // Need additional checks for arrays_equals.
6810     testptr(ary1, ary1);
6811     jcc(Assembler::zero, FALSE_LABEL);
6812     testptr(ary2, ary2);
6813     jcc(Assembler::zero, FALSE_LABEL);
6814 
6815     // Check the lengths
6816     movl(limit, Address(ary1, length_offset));
6817     cmpl(limit, Address(ary2, length_offset));
6818     jcc(Assembler::notEqual, FALSE_LABEL);
6819   }
6820 
6821   // count == 0
6822   testl(limit, limit);
6823   jcc(Assembler::zero, TRUE_LABEL);
6824 
6825   if (is_array_equ) {
6826     // Load array address
6827     lea(ary1, Address(ary1, base_offset));
6828     lea(ary2, Address(ary2, base_offset));
6829   }
6830 
6831   shll(limit, 1);      // byte count != 0
6832   movl(result, limit); // copy
6833 
6834   if (UseAVX >= 2) {
6835     // With AVX2, use 32-byte vector compare
6836     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6837 
6838     // Compare 32-byte vectors
6839     andl(result, 0x0000001e);  //   tail count (in bytes)
6840     andl(limit, 0xffffffe0);   // vector count (in bytes)
6841     jccb(Assembler::zero, COMPARE_TAIL);
6842 
6843     lea(ary1, Address(ary1, limit, Address::times_1));
6844     lea(ary2, Address(ary2, limit, Address::times_1));
6845     negptr(limit);
6846 
6847     bind(COMPARE_WIDE_VECTORS);
6848     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
6849     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
6850     vpxor(vec1, vec2);
6851 
6852     vptest(vec1, vec1);
6853     jccb(Assembler::notZero, FALSE_LABEL);
6854     addptr(limit, 32);
6855     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6856 
6857     testl(result, result);
6858     jccb(Assembler::zero, TRUE_LABEL);
6859 
6860     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
6861     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
6862     vpxor(vec1, vec2);
6863 
6864     vptest(vec1, vec1);
6865     jccb(Assembler::notZero, FALSE_LABEL);
6866     jmpb(TRUE_LABEL);
6867 
6868     bind(COMPARE_TAIL); // limit is zero
6869     movl(limit, result);
6870     // Fallthru to tail compare
6871   } else if (UseSSE42Intrinsics) {
6872     // With SSE4.2, use double quad vector compare
6873     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6874 
6875     // Compare 16-byte vectors
6876     andl(result, 0x0000000e);  //   tail count (in bytes)
6877     andl(limit, 0xfffffff0);   // vector count (in bytes)
6878     jccb(Assembler::zero, COMPARE_TAIL);
6879 
6880     lea(ary1, Address(ary1, limit, Address::times_1));
6881     lea(ary2, Address(ary2, limit, Address::times_1));
6882     negptr(limit);
6883 
6884     bind(COMPARE_WIDE_VECTORS);
6885     movdqu(vec1, Address(ary1, limit, Address::times_1));
6886     movdqu(vec2, Address(ary2, limit, Address::times_1));
6887     pxor(vec1, vec2);
6888 
6889     ptest(vec1, vec1);
6890     jccb(Assembler::notZero, FALSE_LABEL);
6891     addptr(limit, 16);
6892     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6893 
6894     testl(result, result);
6895     jccb(Assembler::zero, TRUE_LABEL);
6896 
6897     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
6898     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
6899     pxor(vec1, vec2);
6900 
6901     ptest(vec1, vec1);
6902     jccb(Assembler::notZero, FALSE_LABEL);
6903     jmpb(TRUE_LABEL);
6904 
6905     bind(COMPARE_TAIL); // limit is zero
6906     movl(limit, result);
6907     // Fallthru to tail compare
6908   }
6909 
6910   // Compare 4-byte vectors
6911   andl(limit, 0xfffffffc); // vector count (in bytes)
6912   jccb(Assembler::zero, COMPARE_CHAR);
6913 
6914   lea(ary1, Address(ary1, limit, Address::times_1));
6915   lea(ary2, Address(ary2, limit, Address::times_1));
6916   negptr(limit);
6917 
6918   bind(COMPARE_VECTORS);
6919   movl(chr, Address(ary1, limit, Address::times_1));
6920   cmpl(chr, Address(ary2, limit, Address::times_1));
6921   jccb(Assembler::notEqual, FALSE_LABEL);
6922   addptr(limit, 4);
6923   jcc(Assembler::notZero, COMPARE_VECTORS);
6924 
6925   // Compare trailing char (final 2 bytes), if any
6926   bind(COMPARE_CHAR);
6927   testl(result, 0x2);   // tail  char
6928   jccb(Assembler::zero, TRUE_LABEL);
6929   load_unsigned_short(chr, Address(ary1, 0));
6930   load_unsigned_short(limit, Address(ary2, 0));
6931   cmpl(chr, limit);
6932   jccb(Assembler::notEqual, FALSE_LABEL);
6933 
6934   bind(TRUE_LABEL);
6935   movl(result, 1);   // return true
6936   jmpb(DONE);
6937 
6938   bind(FALSE_LABEL);
6939   xorl(result, result); // return false
6940 
6941   // That's it
6942   bind(DONE);
6943   if (UseAVX >= 2) {
6944     // clean upper bits of YMM registers
6945     vpxor(vec1, vec1);
6946     vpxor(vec2, vec2);
6947   }
6948 }
6949 
6950 void MacroAssembler::generate_fill(BasicType t, bool aligned,
6951                                    Register to, Register value, Register count,
6952                                    Register rtmp, XMMRegister xtmp) {
6953   ShortBranchVerifier sbv(this);
6954   assert_different_registers(to, value, count, rtmp);
6955   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
6956   Label L_fill_2_bytes, L_fill_4_bytes;
6957 
6958   int shift = -1;
6959   switch (t) {
6960     case T_BYTE:
6961       shift = 2;
6962       break;
6963     case T_SHORT:
6964       shift = 1;
6965       break;
6966     case T_INT:
6967       shift = 0;
6968       break;
6969     default: ShouldNotReachHere();
6970   }
6971 
6972   if (t == T_BYTE) {
6973     andl(value, 0xff);
6974     movl(rtmp, value);
6975     shll(rtmp, 8);
6976     orl(value, rtmp);
6977   }
6978   if (t == T_SHORT) {
6979     andl(value, 0xffff);
6980   }
6981   if (t == T_BYTE || t == T_SHORT) {
6982     movl(rtmp, value);
6983     shll(rtmp, 16);
6984     orl(value, rtmp);
6985   }
6986 
6987   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
6988   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
6989   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
6990     // align source address at 4 bytes address boundary
6991     if (t == T_BYTE) {
6992       // One byte misalignment happens only for byte arrays
6993       testptr(to, 1);
6994       jccb(Assembler::zero, L_skip_align1);
6995       movb(Address(to, 0), value);
6996       increment(to);
6997       decrement(count);
6998       BIND(L_skip_align1);
6999     }
7000     // Two bytes misalignment happens only for byte and short (char) arrays
7001     testptr(to, 2);
7002     jccb(Assembler::zero, L_skip_align2);
7003     movw(Address(to, 0), value);
7004     addptr(to, 2);
7005     subl(count, 1<<(shift-1));
7006     BIND(L_skip_align2);
7007   }
7008   if (UseSSE < 2) {
7009     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7010     // Fill 32-byte chunks
7011     subl(count, 8 << shift);
7012     jcc(Assembler::less, L_check_fill_8_bytes);
7013     align(16);
7014 
7015     BIND(L_fill_32_bytes_loop);
7016 
7017     for (int i = 0; i < 32; i += 4) {
7018       movl(Address(to, i), value);
7019     }
7020 
7021     addptr(to, 32);
7022     subl(count, 8 << shift);
7023     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7024     BIND(L_check_fill_8_bytes);
7025     addl(count, 8 << shift);
7026     jccb(Assembler::zero, L_exit);
7027     jmpb(L_fill_8_bytes);
7028 
7029     //
7030     // length is too short, just fill qwords
7031     //
7032     BIND(L_fill_8_bytes_loop);
7033     movl(Address(to, 0), value);
7034     movl(Address(to, 4), value);
7035     addptr(to, 8);
7036     BIND(L_fill_8_bytes);
7037     subl(count, 1 << (shift + 1));
7038     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7039     // fall through to fill 4 bytes
7040   } else {
7041     Label L_fill_32_bytes;
7042     if (!UseUnalignedLoadStores) {
7043       // align to 8 bytes, we know we are 4 byte aligned to start
7044       testptr(to, 4);
7045       jccb(Assembler::zero, L_fill_32_bytes);
7046       movl(Address(to, 0), value);
7047       addptr(to, 4);
7048       subl(count, 1<<shift);
7049     }
7050     BIND(L_fill_32_bytes);
7051     {
7052       assert( UseSSE >= 2, "supported cpu only" );
7053       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7054       if (UseAVX > 2) {
7055         movl(rtmp, 0xffff);
7056 #ifdef _LP64
7057         kmovql(k1, rtmp);
7058 #else
7059         kmovdl(k1, rtmp);
7060 #endif
7061       }
7062       movdl(xtmp, value);
7063       if (UseAVX > 2 && UseUnalignedLoadStores) {
7064         // Fill 64-byte chunks
7065         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
7066         evpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
7067 
7068         subl(count, 16 << shift);
7069         jcc(Assembler::less, L_check_fill_32_bytes);
7070         align(16);
7071 
7072         BIND(L_fill_64_bytes_loop);
7073         evmovdqu(Address(to, 0), xtmp, Assembler::AVX_512bit);
7074         addptr(to, 64);
7075         subl(count, 16 << shift);
7076         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
7077 
7078         BIND(L_check_fill_32_bytes);
7079         addl(count, 8 << shift);
7080         jccb(Assembler::less, L_check_fill_8_bytes);
7081         evmovdqu(Address(to, 0), xtmp, Assembler::AVX_256bit);
7082         addptr(to, 32);
7083         subl(count, 8 << shift);
7084 
7085         BIND(L_check_fill_8_bytes);
7086       } else if (UseAVX == 2 && UseUnalignedLoadStores) {
7087         // Fill 64-byte chunks
7088         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
7089         vpbroadcastd(xtmp, xtmp);
7090 
7091         subl(count, 16 << shift);
7092         jcc(Assembler::less, L_check_fill_32_bytes);
7093         align(16);
7094 
7095         BIND(L_fill_64_bytes_loop);
7096         vmovdqu(Address(to, 0), xtmp);
7097         vmovdqu(Address(to, 32), xtmp);
7098         addptr(to, 64);
7099         subl(count, 16 << shift);
7100         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
7101 
7102         BIND(L_check_fill_32_bytes);
7103         addl(count, 8 << shift);
7104         jccb(Assembler::less, L_check_fill_8_bytes);
7105         vmovdqu(Address(to, 0), xtmp);
7106         addptr(to, 32);
7107         subl(count, 8 << shift);
7108 
7109         BIND(L_check_fill_8_bytes);
7110         // clean upper bits of YMM registers
7111         movdl(xtmp, value);
7112         pshufd(xtmp, xtmp, 0);
7113       } else {
7114         // Fill 32-byte chunks
7115         pshufd(xtmp, xtmp, 0);
7116 
7117         subl(count, 8 << shift);
7118         jcc(Assembler::less, L_check_fill_8_bytes);
7119         align(16);
7120 
7121         BIND(L_fill_32_bytes_loop);
7122 
7123         if (UseUnalignedLoadStores) {
7124           movdqu(Address(to, 0), xtmp);
7125           movdqu(Address(to, 16), xtmp);
7126         } else {
7127           movq(Address(to, 0), xtmp);
7128           movq(Address(to, 8), xtmp);
7129           movq(Address(to, 16), xtmp);
7130           movq(Address(to, 24), xtmp);
7131         }
7132 
7133         addptr(to, 32);
7134         subl(count, 8 << shift);
7135         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7136 
7137         BIND(L_check_fill_8_bytes);
7138       }
7139       addl(count, 8 << shift);
7140       jccb(Assembler::zero, L_exit);
7141       jmpb(L_fill_8_bytes);
7142 
7143       //
7144       // length is too short, just fill qwords
7145       //
7146       BIND(L_fill_8_bytes_loop);
7147       movq(Address(to, 0), xtmp);
7148       addptr(to, 8);
7149       BIND(L_fill_8_bytes);
7150       subl(count, 1 << (shift + 1));
7151       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7152     }
7153   }
7154   // fill trailing 4 bytes
7155   BIND(L_fill_4_bytes);
7156   testl(count, 1<<shift);
7157   jccb(Assembler::zero, L_fill_2_bytes);
7158   movl(Address(to, 0), value);
7159   if (t == T_BYTE || t == T_SHORT) {
7160     addptr(to, 4);
7161     BIND(L_fill_2_bytes);
7162     // fill trailing 2 bytes
7163     testl(count, 1<<(shift-1));
7164     jccb(Assembler::zero, L_fill_byte);
7165     movw(Address(to, 0), value);
7166     if (t == T_BYTE) {
7167       addptr(to, 2);
7168       BIND(L_fill_byte);
7169       // fill trailing byte
7170       testl(count, 1);
7171       jccb(Assembler::zero, L_exit);
7172       movb(Address(to, 0), value);
7173     } else {
7174       BIND(L_fill_byte);
7175     }
7176   } else {
7177     BIND(L_fill_2_bytes);
7178   }
7179   BIND(L_exit);
7180 }
7181 
7182 // encode char[] to byte[] in ISO_8859_1
7183 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
7184                                       XMMRegister tmp1Reg, XMMRegister tmp2Reg,
7185                                       XMMRegister tmp3Reg, XMMRegister tmp4Reg,
7186                                       Register tmp5, Register result) {
7187   // rsi: src
7188   // rdi: dst
7189   // rdx: len
7190   // rcx: tmp5
7191   // rax: result
7192   ShortBranchVerifier sbv(this);
7193   assert_different_registers(src, dst, len, tmp5, result);
7194   Label L_done, L_copy_1_char, L_copy_1_char_exit;
7195 
7196   // set result
7197   xorl(result, result);
7198   // check for zero length
7199   testl(len, len);
7200   jcc(Assembler::zero, L_done);
7201   movl(result, len);
7202 
7203   // Setup pointers
7204   lea(src, Address(src, len, Address::times_2)); // char[]
7205   lea(dst, Address(dst, len, Address::times_1)); // byte[]
7206   negptr(len);
7207 
7208   if (UseSSE42Intrinsics || UseAVX >= 2) {
7209     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
7210     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
7211 
7212     if (UseAVX >= 2) {
7213       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
7214       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7215       movdl(tmp1Reg, tmp5);
7216       vpbroadcastd(tmp1Reg, tmp1Reg);
7217       jmpb(L_chars_32_check);
7218 
7219       bind(L_copy_32_chars);
7220       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
7221       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
7222       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
7223       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7224       jccb(Assembler::notZero, L_copy_32_chars_exit);
7225       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
7226       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
7227       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
7228 
7229       bind(L_chars_32_check);
7230       addptr(len, 32);
7231       jccb(Assembler::lessEqual, L_copy_32_chars);
7232 
7233       bind(L_copy_32_chars_exit);
7234       subptr(len, 16);
7235       jccb(Assembler::greater, L_copy_16_chars_exit);
7236 
7237     } else if (UseSSE42Intrinsics) {
7238       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7239       movdl(tmp1Reg, tmp5);
7240       pshufd(tmp1Reg, tmp1Reg, 0);
7241       jmpb(L_chars_16_check);
7242     }
7243 
7244     bind(L_copy_16_chars);
7245     if (UseAVX >= 2) {
7246       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
7247       vptest(tmp2Reg, tmp1Reg);
7248       jccb(Assembler::notZero, L_copy_16_chars_exit);
7249       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
7250       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
7251     } else {
7252       if (UseAVX > 0) {
7253         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7254         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7255         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
7256       } else {
7257         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7258         por(tmp2Reg, tmp3Reg);
7259         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7260         por(tmp2Reg, tmp4Reg);
7261       }
7262       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7263       jccb(Assembler::notZero, L_copy_16_chars_exit);
7264       packuswb(tmp3Reg, tmp4Reg);
7265     }
7266     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
7267 
7268     bind(L_chars_16_check);
7269     addptr(len, 16);
7270     jccb(Assembler::lessEqual, L_copy_16_chars);
7271 
7272     bind(L_copy_16_chars_exit);
7273     if (UseAVX >= 2) {
7274       // clean upper bits of YMM registers
7275       vpxor(tmp2Reg, tmp2Reg);
7276       vpxor(tmp3Reg, tmp3Reg);
7277       vpxor(tmp4Reg, tmp4Reg);
7278       movdl(tmp1Reg, tmp5);
7279       pshufd(tmp1Reg, tmp1Reg, 0);
7280     }
7281     subptr(len, 8);
7282     jccb(Assembler::greater, L_copy_8_chars_exit);
7283 
7284     bind(L_copy_8_chars);
7285     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
7286     ptest(tmp3Reg, tmp1Reg);
7287     jccb(Assembler::notZero, L_copy_8_chars_exit);
7288     packuswb(tmp3Reg, tmp1Reg);
7289     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
7290     addptr(len, 8);
7291     jccb(Assembler::lessEqual, L_copy_8_chars);
7292 
7293     bind(L_copy_8_chars_exit);
7294     subptr(len, 8);
7295     jccb(Assembler::zero, L_done);
7296   }
7297 
7298   bind(L_copy_1_char);
7299   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
7300   testl(tmp5, 0xff00);      // check if Unicode char
7301   jccb(Assembler::notZero, L_copy_1_char_exit);
7302   movb(Address(dst, len, Address::times_1, 0), tmp5);
7303   addptr(len, 1);
7304   jccb(Assembler::less, L_copy_1_char);
7305 
7306   bind(L_copy_1_char_exit);
7307   addptr(result, len); // len is negative count of not processed elements
7308   bind(L_done);
7309 }
7310 
7311 #ifdef _LP64
7312 /**
7313  * Helper for multiply_to_len().
7314  */
7315 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
7316   addq(dest_lo, src1);
7317   adcq(dest_hi, 0);
7318   addq(dest_lo, src2);
7319   adcq(dest_hi, 0);
7320 }
7321 
7322 /**
7323  * Multiply 64 bit by 64 bit first loop.
7324  */
7325 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
7326                                            Register y, Register y_idx, Register z,
7327                                            Register carry, Register product,
7328                                            Register idx, Register kdx) {
7329   //
7330   //  jlong carry, x[], y[], z[];
7331   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7332   //    huge_128 product = y[idx] * x[xstart] + carry;
7333   //    z[kdx] = (jlong)product;
7334   //    carry  = (jlong)(product >>> 64);
7335   //  }
7336   //  z[xstart] = carry;
7337   //
7338 
7339   Label L_first_loop, L_first_loop_exit;
7340   Label L_one_x, L_one_y, L_multiply;
7341 
7342   decrementl(xstart);
7343   jcc(Assembler::negative, L_one_x);
7344 
7345   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
7346   rorq(x_xstart, 32); // convert big-endian to little-endian
7347 
7348   bind(L_first_loop);
7349   decrementl(idx);
7350   jcc(Assembler::negative, L_first_loop_exit);
7351   decrementl(idx);
7352   jcc(Assembler::negative, L_one_y);
7353   movq(y_idx, Address(y, idx, Address::times_4,  0));
7354   rorq(y_idx, 32); // convert big-endian to little-endian
7355   bind(L_multiply);
7356   movq(product, x_xstart);
7357   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
7358   addq(product, carry);
7359   adcq(rdx, 0);
7360   subl(kdx, 2);
7361   movl(Address(z, kdx, Address::times_4,  4), product);
7362   shrq(product, 32);
7363   movl(Address(z, kdx, Address::times_4,  0), product);
7364   movq(carry, rdx);
7365   jmp(L_first_loop);
7366 
7367   bind(L_one_y);
7368   movl(y_idx, Address(y,  0));
7369   jmp(L_multiply);
7370 
7371   bind(L_one_x);
7372   movl(x_xstart, Address(x,  0));
7373   jmp(L_first_loop);
7374 
7375   bind(L_first_loop_exit);
7376 }
7377 
7378 /**
7379  * Multiply 64 bit by 64 bit and add 128 bit.
7380  */
7381 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
7382                                             Register yz_idx, Register idx,
7383                                             Register carry, Register product, int offset) {
7384   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
7385   //     z[kdx] = (jlong)product;
7386 
7387   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
7388   rorq(yz_idx, 32); // convert big-endian to little-endian
7389   movq(product, x_xstart);
7390   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
7391   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
7392   rorq(yz_idx, 32); // convert big-endian to little-endian
7393 
7394   add2_with_carry(rdx, product, carry, yz_idx);
7395 
7396   movl(Address(z, idx, Address::times_4,  offset+4), product);
7397   shrq(product, 32);
7398   movl(Address(z, idx, Address::times_4,  offset), product);
7399 
7400 }
7401 
7402 /**
7403  * Multiply 128 bit by 128 bit. Unrolled inner loop.
7404  */
7405 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
7406                                              Register yz_idx, Register idx, Register jdx,
7407                                              Register carry, Register product,
7408                                              Register carry2) {
7409   //   jlong carry, x[], y[], z[];
7410   //   int kdx = ystart+1;
7411   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7412   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
7413   //     z[kdx+idx+1] = (jlong)product;
7414   //     jlong carry2  = (jlong)(product >>> 64);
7415   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
7416   //     z[kdx+idx] = (jlong)product;
7417   //     carry  = (jlong)(product >>> 64);
7418   //   }
7419   //   idx += 2;
7420   //   if (idx > 0) {
7421   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
7422   //     z[kdx+idx] = (jlong)product;
7423   //     carry  = (jlong)(product >>> 64);
7424   //   }
7425   //
7426 
7427   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7428 
7429   movl(jdx, idx);
7430   andl(jdx, 0xFFFFFFFC);
7431   shrl(jdx, 2);
7432 
7433   bind(L_third_loop);
7434   subl(jdx, 1);
7435   jcc(Assembler::negative, L_third_loop_exit);
7436   subl(idx, 4);
7437 
7438   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
7439   movq(carry2, rdx);
7440 
7441   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
7442   movq(carry, rdx);
7443   jmp(L_third_loop);
7444 
7445   bind (L_third_loop_exit);
7446 
7447   andl (idx, 0x3);
7448   jcc(Assembler::zero, L_post_third_loop_done);
7449 
7450   Label L_check_1;
7451   subl(idx, 2);
7452   jcc(Assembler::negative, L_check_1);
7453 
7454   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
7455   movq(carry, rdx);
7456 
7457   bind (L_check_1);
7458   addl (idx, 0x2);
7459   andl (idx, 0x1);
7460   subl(idx, 1);
7461   jcc(Assembler::negative, L_post_third_loop_done);
7462 
7463   movl(yz_idx, Address(y, idx, Address::times_4,  0));
7464   movq(product, x_xstart);
7465   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
7466   movl(yz_idx, Address(z, idx, Address::times_4,  0));
7467 
7468   add2_with_carry(rdx, product, yz_idx, carry);
7469 
7470   movl(Address(z, idx, Address::times_4,  0), product);
7471   shrq(product, 32);
7472 
7473   shlq(rdx, 32);
7474   orq(product, rdx);
7475   movq(carry, product);
7476 
7477   bind(L_post_third_loop_done);
7478 }
7479 
7480 /**
7481  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
7482  *
7483  */
7484 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
7485                                                   Register carry, Register carry2,
7486                                                   Register idx, Register jdx,
7487                                                   Register yz_idx1, Register yz_idx2,
7488                                                   Register tmp, Register tmp3, Register tmp4) {
7489   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
7490 
7491   //   jlong carry, x[], y[], z[];
7492   //   int kdx = ystart+1;
7493   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7494   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
7495   //     jlong carry2  = (jlong)(tmp3 >>> 64);
7496   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
7497   //     carry  = (jlong)(tmp4 >>> 64);
7498   //     z[kdx+idx+1] = (jlong)tmp3;
7499   //     z[kdx+idx] = (jlong)tmp4;
7500   //   }
7501   //   idx += 2;
7502   //   if (idx > 0) {
7503   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
7504   //     z[kdx+idx] = (jlong)yz_idx1;
7505   //     carry  = (jlong)(yz_idx1 >>> 64);
7506   //   }
7507   //
7508 
7509   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7510 
7511   movl(jdx, idx);
7512   andl(jdx, 0xFFFFFFFC);
7513   shrl(jdx, 2);
7514 
7515   bind(L_third_loop);
7516   subl(jdx, 1);
7517   jcc(Assembler::negative, L_third_loop_exit);
7518   subl(idx, 4);
7519 
7520   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
7521   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
7522   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
7523   rorxq(yz_idx2, yz_idx2, 32);
7524 
7525   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
7526   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
7527 
7528   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
7529   rorxq(yz_idx1, yz_idx1, 32);
7530   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7531   rorxq(yz_idx2, yz_idx2, 32);
7532 
7533   if (VM_Version::supports_adx()) {
7534     adcxq(tmp3, carry);
7535     adoxq(tmp3, yz_idx1);
7536 
7537     adcxq(tmp4, tmp);
7538     adoxq(tmp4, yz_idx2);
7539 
7540     movl(carry, 0); // does not affect flags
7541     adcxq(carry2, carry);
7542     adoxq(carry2, carry);
7543   } else {
7544     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
7545     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
7546   }
7547   movq(carry, carry2);
7548 
7549   movl(Address(z, idx, Address::times_4, 12), tmp3);
7550   shrq(tmp3, 32);
7551   movl(Address(z, idx, Address::times_4,  8), tmp3);
7552 
7553   movl(Address(z, idx, Address::times_4,  4), tmp4);
7554   shrq(tmp4, 32);
7555   movl(Address(z, idx, Address::times_4,  0), tmp4);
7556 
7557   jmp(L_third_loop);
7558 
7559   bind (L_third_loop_exit);
7560 
7561   andl (idx, 0x3);
7562   jcc(Assembler::zero, L_post_third_loop_done);
7563 
7564   Label L_check_1;
7565   subl(idx, 2);
7566   jcc(Assembler::negative, L_check_1);
7567 
7568   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
7569   rorxq(yz_idx1, yz_idx1, 32);
7570   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
7571   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7572   rorxq(yz_idx2, yz_idx2, 32);
7573 
7574   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
7575 
7576   movl(Address(z, idx, Address::times_4,  4), tmp3);
7577   shrq(tmp3, 32);
7578   movl(Address(z, idx, Address::times_4,  0), tmp3);
7579   movq(carry, tmp4);
7580 
7581   bind (L_check_1);
7582   addl (idx, 0x2);
7583   andl (idx, 0x1);
7584   subl(idx, 1);
7585   jcc(Assembler::negative, L_post_third_loop_done);
7586   movl(tmp4, Address(y, idx, Address::times_4,  0));
7587   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
7588   movl(tmp4, Address(z, idx, Address::times_4,  0));
7589 
7590   add2_with_carry(carry2, tmp3, tmp4, carry);
7591 
7592   movl(Address(z, idx, Address::times_4,  0), tmp3);
7593   shrq(tmp3, 32);
7594 
7595   shlq(carry2, 32);
7596   orq(tmp3, carry2);
7597   movq(carry, tmp3);
7598 
7599   bind(L_post_third_loop_done);
7600 }
7601 
7602 /**
7603  * Code for BigInteger::multiplyToLen() instrinsic.
7604  *
7605  * rdi: x
7606  * rax: xlen
7607  * rsi: y
7608  * rcx: ylen
7609  * r8:  z
7610  * r11: zlen
7611  * r12: tmp1
7612  * r13: tmp2
7613  * r14: tmp3
7614  * r15: tmp4
7615  * rbx: tmp5
7616  *
7617  */
7618 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
7619                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
7620   ShortBranchVerifier sbv(this);
7621   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
7622 
7623   push(tmp1);
7624   push(tmp2);
7625   push(tmp3);
7626   push(tmp4);
7627   push(tmp5);
7628 
7629   push(xlen);
7630   push(zlen);
7631 
7632   const Register idx = tmp1;
7633   const Register kdx = tmp2;
7634   const Register xstart = tmp3;
7635 
7636   const Register y_idx = tmp4;
7637   const Register carry = tmp5;
7638   const Register product  = xlen;
7639   const Register x_xstart = zlen;  // reuse register
7640 
7641   // First Loop.
7642   //
7643   //  final static long LONG_MASK = 0xffffffffL;
7644   //  int xstart = xlen - 1;
7645   //  int ystart = ylen - 1;
7646   //  long carry = 0;
7647   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7648   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
7649   //    z[kdx] = (int)product;
7650   //    carry = product >>> 32;
7651   //  }
7652   //  z[xstart] = (int)carry;
7653   //
7654 
7655   movl(idx, ylen);      // idx = ylen;
7656   movl(kdx, zlen);      // kdx = xlen+ylen;
7657   xorq(carry, carry);   // carry = 0;
7658 
7659   Label L_done;
7660 
7661   movl(xstart, xlen);
7662   decrementl(xstart);
7663   jcc(Assembler::negative, L_done);
7664 
7665   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
7666 
7667   Label L_second_loop;
7668   testl(kdx, kdx);
7669   jcc(Assembler::zero, L_second_loop);
7670 
7671   Label L_carry;
7672   subl(kdx, 1);
7673   jcc(Assembler::zero, L_carry);
7674 
7675   movl(Address(z, kdx, Address::times_4,  0), carry);
7676   shrq(carry, 32);
7677   subl(kdx, 1);
7678 
7679   bind(L_carry);
7680   movl(Address(z, kdx, Address::times_4,  0), carry);
7681 
7682   // Second and third (nested) loops.
7683   //
7684   // for (int i = xstart-1; i >= 0; i--) { // Second loop
7685   //   carry = 0;
7686   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
7687   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
7688   //                    (z[k] & LONG_MASK) + carry;
7689   //     z[k] = (int)product;
7690   //     carry = product >>> 32;
7691   //   }
7692   //   z[i] = (int)carry;
7693   // }
7694   //
7695   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
7696 
7697   const Register jdx = tmp1;
7698 
7699   bind(L_second_loop);
7700   xorl(carry, carry);    // carry = 0;
7701   movl(jdx, ylen);       // j = ystart+1
7702 
7703   subl(xstart, 1);       // i = xstart-1;
7704   jcc(Assembler::negative, L_done);
7705 
7706   push (z);
7707 
7708   Label L_last_x;
7709   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
7710   subl(xstart, 1);       // i = xstart-1;
7711   jcc(Assembler::negative, L_last_x);
7712 
7713   if (UseBMI2Instructions) {
7714     movq(rdx,  Address(x, xstart, Address::times_4,  0));
7715     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
7716   } else {
7717     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
7718     rorq(x_xstart, 32);  // convert big-endian to little-endian
7719   }
7720 
7721   Label L_third_loop_prologue;
7722   bind(L_third_loop_prologue);
7723 
7724   push (x);
7725   push (xstart);
7726   push (ylen);
7727 
7728 
7729   if (UseBMI2Instructions) {
7730     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
7731   } else { // !UseBMI2Instructions
7732     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
7733   }
7734 
7735   pop(ylen);
7736   pop(xlen);
7737   pop(x);
7738   pop(z);
7739 
7740   movl(tmp3, xlen);
7741   addl(tmp3, 1);
7742   movl(Address(z, tmp3, Address::times_4,  0), carry);
7743   subl(tmp3, 1);
7744   jccb(Assembler::negative, L_done);
7745 
7746   shrq(carry, 32);
7747   movl(Address(z, tmp3, Address::times_4,  0), carry);
7748   jmp(L_second_loop);
7749 
7750   // Next infrequent code is moved outside loops.
7751   bind(L_last_x);
7752   if (UseBMI2Instructions) {
7753     movl(rdx, Address(x,  0));
7754   } else {
7755     movl(x_xstart, Address(x,  0));
7756   }
7757   jmp(L_third_loop_prologue);
7758 
7759   bind(L_done);
7760 
7761   pop(zlen);
7762   pop(xlen);
7763 
7764   pop(tmp5);
7765   pop(tmp4);
7766   pop(tmp3);
7767   pop(tmp2);
7768   pop(tmp1);
7769 }
7770 
7771 //Helper functions for square_to_len()
7772 
7773 /**
7774  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
7775  * Preserves x and z and modifies rest of the registers.
7776  */
7777 
7778 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
7779   // Perform square and right shift by 1
7780   // Handle odd xlen case first, then for even xlen do the following
7781   // jlong carry = 0;
7782   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
7783   //     huge_128 product = x[j:j+1] * x[j:j+1];
7784   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
7785   //     z[i+2:i+3] = (jlong)(product >>> 1);
7786   //     carry = (jlong)product;
7787   // }
7788 
7789   xorq(tmp5, tmp5);     // carry
7790   xorq(rdxReg, rdxReg);
7791   xorl(tmp1, tmp1);     // index for x
7792   xorl(tmp4, tmp4);     // index for z
7793 
7794   Label L_first_loop, L_first_loop_exit;
7795 
7796   testl(xlen, 1);
7797   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
7798 
7799   // Square and right shift by 1 the odd element using 32 bit multiply
7800   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
7801   imulq(raxReg, raxReg);
7802   shrq(raxReg, 1);
7803   adcq(tmp5, 0);
7804   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
7805   incrementl(tmp1);
7806   addl(tmp4, 2);
7807 
7808   // Square and  right shift by 1 the rest using 64 bit multiply
7809   bind(L_first_loop);
7810   cmpptr(tmp1, xlen);
7811   jccb(Assembler::equal, L_first_loop_exit);
7812 
7813   // Square
7814   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
7815   rorq(raxReg, 32);    // convert big-endian to little-endian
7816   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
7817 
7818   // Right shift by 1 and save carry
7819   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
7820   rcrq(rdxReg, 1);
7821   rcrq(raxReg, 1);
7822   adcq(tmp5, 0);
7823 
7824   // Store result in z
7825   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
7826   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
7827 
7828   // Update indices for x and z
7829   addl(tmp1, 2);
7830   addl(tmp4, 4);
7831   jmp(L_first_loop);
7832 
7833   bind(L_first_loop_exit);
7834 }
7835 
7836 
7837 /**
7838  * Perform the following multiply add operation using BMI2 instructions
7839  * carry:sum = sum + op1*op2 + carry
7840  * op2 should be in rdx
7841  * op2 is preserved, all other registers are modified
7842  */
7843 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
7844   // assert op2 is rdx
7845   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
7846   addq(sum, carry);
7847   adcq(tmp2, 0);
7848   addq(sum, op1);
7849   adcq(tmp2, 0);
7850   movq(carry, tmp2);
7851 }
7852 
7853 /**
7854  * Perform the following multiply add operation:
7855  * carry:sum = sum + op1*op2 + carry
7856  * Preserves op1, op2 and modifies rest of registers
7857  */
7858 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
7859   // rdx:rax = op1 * op2
7860   movq(raxReg, op2);
7861   mulq(op1);
7862 
7863   //  rdx:rax = sum + carry + rdx:rax
7864   addq(sum, carry);
7865   adcq(rdxReg, 0);
7866   addq(sum, raxReg);
7867   adcq(rdxReg, 0);
7868 
7869   // carry:sum = rdx:sum
7870   movq(carry, rdxReg);
7871 }
7872 
7873 /**
7874  * Add 64 bit long carry into z[] with carry propogation.
7875  * Preserves z and carry register values and modifies rest of registers.
7876  *
7877  */
7878 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
7879   Label L_fourth_loop, L_fourth_loop_exit;
7880 
7881   movl(tmp1, 1);
7882   subl(zlen, 2);
7883   addq(Address(z, zlen, Address::times_4, 0), carry);
7884 
7885   bind(L_fourth_loop);
7886   jccb(Assembler::carryClear, L_fourth_loop_exit);
7887   subl(zlen, 2);
7888   jccb(Assembler::negative, L_fourth_loop_exit);
7889   addq(Address(z, zlen, Address::times_4, 0), tmp1);
7890   jmp(L_fourth_loop);
7891   bind(L_fourth_loop_exit);
7892 }
7893 
7894 /**
7895  * Shift z[] left by 1 bit.
7896  * Preserves x, len, z and zlen registers and modifies rest of the registers.
7897  *
7898  */
7899 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
7900 
7901   Label L_fifth_loop, L_fifth_loop_exit;
7902 
7903   // Fifth loop
7904   // Perform primitiveLeftShift(z, zlen, 1)
7905 
7906   const Register prev_carry = tmp1;
7907   const Register new_carry = tmp4;
7908   const Register value = tmp2;
7909   const Register zidx = tmp3;
7910 
7911   // int zidx, carry;
7912   // long value;
7913   // carry = 0;
7914   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
7915   //    (carry:value)  = (z[i] << 1) | carry ;
7916   //    z[i] = value;
7917   // }
7918 
7919   movl(zidx, zlen);
7920   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
7921 
7922   bind(L_fifth_loop);
7923   decl(zidx);  // Use decl to preserve carry flag
7924   decl(zidx);
7925   jccb(Assembler::negative, L_fifth_loop_exit);
7926 
7927   if (UseBMI2Instructions) {
7928      movq(value, Address(z, zidx, Address::times_4, 0));
7929      rclq(value, 1);
7930      rorxq(value, value, 32);
7931      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
7932   }
7933   else {
7934     // clear new_carry
7935     xorl(new_carry, new_carry);
7936 
7937     // Shift z[i] by 1, or in previous carry and save new carry
7938     movq(value, Address(z, zidx, Address::times_4, 0));
7939     shlq(value, 1);
7940     adcl(new_carry, 0);
7941 
7942     orq(value, prev_carry);
7943     rorq(value, 0x20);
7944     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
7945 
7946     // Set previous carry = new carry
7947     movl(prev_carry, new_carry);
7948   }
7949   jmp(L_fifth_loop);
7950 
7951   bind(L_fifth_loop_exit);
7952 }
7953 
7954 
7955 /**
7956  * Code for BigInteger::squareToLen() intrinsic
7957  *
7958  * rdi: x
7959  * rsi: len
7960  * r8:  z
7961  * rcx: zlen
7962  * r12: tmp1
7963  * r13: tmp2
7964  * r14: tmp3
7965  * r15: tmp4
7966  * rbx: tmp5
7967  *
7968  */
7969 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
7970 
7971   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, fifth_loop, fifth_loop_exit, L_last_x, L_multiply;
7972   push(tmp1);
7973   push(tmp2);
7974   push(tmp3);
7975   push(tmp4);
7976   push(tmp5);
7977 
7978   // First loop
7979   // Store the squares, right shifted one bit (i.e., divided by 2).
7980   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
7981 
7982   // Add in off-diagonal sums.
7983   //
7984   // Second, third (nested) and fourth loops.
7985   // zlen +=2;
7986   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
7987   //    carry = 0;
7988   //    long op2 = x[xidx:xidx+1];
7989   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
7990   //       k -= 2;
7991   //       long op1 = x[j:j+1];
7992   //       long sum = z[k:k+1];
7993   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
7994   //       z[k:k+1] = sum;
7995   //    }
7996   //    add_one_64(z, k, carry, tmp_regs);
7997   // }
7998 
7999   const Register carry = tmp5;
8000   const Register sum = tmp3;
8001   const Register op1 = tmp4;
8002   Register op2 = tmp2;
8003 
8004   push(zlen);
8005   push(len);
8006   addl(zlen,2);
8007   bind(L_second_loop);
8008   xorq(carry, carry);
8009   subl(zlen, 4);
8010   subl(len, 2);
8011   push(zlen);
8012   push(len);
8013   cmpl(len, 0);
8014   jccb(Assembler::lessEqual, L_second_loop_exit);
8015 
8016   // Multiply an array by one 64 bit long.
8017   if (UseBMI2Instructions) {
8018     op2 = rdxReg;
8019     movq(op2, Address(x, len, Address::times_4,  0));
8020     rorxq(op2, op2, 32);
8021   }
8022   else {
8023     movq(op2, Address(x, len, Address::times_4,  0));
8024     rorq(op2, 32);
8025   }
8026 
8027   bind(L_third_loop);
8028   decrementl(len);
8029   jccb(Assembler::negative, L_third_loop_exit);
8030   decrementl(len);
8031   jccb(Assembler::negative, L_last_x);
8032 
8033   movq(op1, Address(x, len, Address::times_4,  0));
8034   rorq(op1, 32);
8035 
8036   bind(L_multiply);
8037   subl(zlen, 2);
8038   movq(sum, Address(z, zlen, Address::times_4,  0));
8039 
8040   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
8041   if (UseBMI2Instructions) {
8042     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
8043   }
8044   else {
8045     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8046   }
8047 
8048   movq(Address(z, zlen, Address::times_4, 0), sum);
8049 
8050   jmp(L_third_loop);
8051   bind(L_third_loop_exit);
8052 
8053   // Fourth loop
8054   // Add 64 bit long carry into z with carry propogation.
8055   // Uses offsetted zlen.
8056   add_one_64(z, zlen, carry, tmp1);
8057 
8058   pop(len);
8059   pop(zlen);
8060   jmp(L_second_loop);
8061 
8062   // Next infrequent code is moved outside loops.
8063   bind(L_last_x);
8064   movl(op1, Address(x, 0));
8065   jmp(L_multiply);
8066 
8067   bind(L_second_loop_exit);
8068   pop(len);
8069   pop(zlen);
8070   pop(len);
8071   pop(zlen);
8072 
8073   // Fifth loop
8074   // Shift z left 1 bit.
8075   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
8076 
8077   // z[zlen-1] |= x[len-1] & 1;
8078   movl(tmp3, Address(x, len, Address::times_4, -4));
8079   andl(tmp3, 1);
8080   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
8081 
8082   pop(tmp5);
8083   pop(tmp4);
8084   pop(tmp3);
8085   pop(tmp2);
8086   pop(tmp1);
8087 }
8088 
8089 /**
8090  * Helper function for mul_add()
8091  * Multiply the in[] by int k and add to out[] starting at offset offs using
8092  * 128 bit by 32 bit multiply and return the carry in tmp5.
8093  * Only quad int aligned length of in[] is operated on in this function.
8094  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
8095  * This function preserves out, in and k registers.
8096  * len and offset point to the appropriate index in "in" & "out" correspondingly
8097  * tmp5 has the carry.
8098  * other registers are temporary and are modified.
8099  *
8100  */
8101 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
8102   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
8103   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8104 
8105   Label L_first_loop, L_first_loop_exit;
8106 
8107   movl(tmp1, len);
8108   shrl(tmp1, 2);
8109 
8110   bind(L_first_loop);
8111   subl(tmp1, 1);
8112   jccb(Assembler::negative, L_first_loop_exit);
8113 
8114   subl(len, 4);
8115   subl(offset, 4);
8116 
8117   Register op2 = tmp2;
8118   const Register sum = tmp3;
8119   const Register op1 = tmp4;
8120   const Register carry = tmp5;
8121 
8122   if (UseBMI2Instructions) {
8123     op2 = rdxReg;
8124   }
8125 
8126   movq(op1, Address(in, len, Address::times_4,  8));
8127   rorq(op1, 32);
8128   movq(sum, Address(out, offset, Address::times_4,  8));
8129   rorq(sum, 32);
8130   if (UseBMI2Instructions) {
8131     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8132   }
8133   else {
8134     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8135   }
8136   // Store back in big endian from little endian
8137   rorq(sum, 0x20);
8138   movq(Address(out, offset, Address::times_4,  8), sum);
8139 
8140   movq(op1, Address(in, len, Address::times_4,  0));
8141   rorq(op1, 32);
8142   movq(sum, Address(out, offset, Address::times_4,  0));
8143   rorq(sum, 32);
8144   if (UseBMI2Instructions) {
8145     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8146   }
8147   else {
8148     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8149   }
8150   // Store back in big endian from little endian
8151   rorq(sum, 0x20);
8152   movq(Address(out, offset, Address::times_4,  0), sum);
8153 
8154   jmp(L_first_loop);
8155   bind(L_first_loop_exit);
8156 }
8157 
8158 /**
8159  * Code for BigInteger::mulAdd() intrinsic
8160  *
8161  * rdi: out
8162  * rsi: in
8163  * r11: offs (out.length - offset)
8164  * rcx: len
8165  * r8:  k
8166  * r12: tmp1
8167  * r13: tmp2
8168  * r14: tmp3
8169  * r15: tmp4
8170  * rbx: tmp5
8171  * Multiply the in[] by word k and add to out[], return the carry in rax
8172  */
8173 void MacroAssembler::mul_add(Register out, Register in, Register offs,
8174    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
8175    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8176 
8177   Label L_carry, L_last_in, L_done;
8178 
8179 // carry = 0;
8180 // for (int j=len-1; j >= 0; j--) {
8181 //    long product = (in[j] & LONG_MASK) * kLong +
8182 //                   (out[offs] & LONG_MASK) + carry;
8183 //    out[offs--] = (int)product;
8184 //    carry = product >>> 32;
8185 // }
8186 //
8187   push(tmp1);
8188   push(tmp2);
8189   push(tmp3);
8190   push(tmp4);
8191   push(tmp5);
8192 
8193   Register op2 = tmp2;
8194   const Register sum = tmp3;
8195   const Register op1 = tmp4;
8196   const Register carry =  tmp5;
8197 
8198   if (UseBMI2Instructions) {
8199     op2 = rdxReg;
8200     movl(op2, k);
8201   }
8202   else {
8203     movl(op2, k);
8204   }
8205 
8206   xorq(carry, carry);
8207 
8208   //First loop
8209 
8210   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
8211   //The carry is in tmp5
8212   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
8213 
8214   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
8215   decrementl(len);
8216   jccb(Assembler::negative, L_carry);
8217   decrementl(len);
8218   jccb(Assembler::negative, L_last_in);
8219 
8220   movq(op1, Address(in, len, Address::times_4,  0));
8221   rorq(op1, 32);
8222 
8223   subl(offs, 2);
8224   movq(sum, Address(out, offs, Address::times_4,  0));
8225   rorq(sum, 32);
8226 
8227   if (UseBMI2Instructions) {
8228     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8229   }
8230   else {
8231     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8232   }
8233 
8234   // Store back in big endian from little endian
8235   rorq(sum, 0x20);
8236   movq(Address(out, offs, Address::times_4,  0), sum);
8237 
8238   testl(len, len);
8239   jccb(Assembler::zero, L_carry);
8240 
8241   //Multiply the last in[] entry, if any
8242   bind(L_last_in);
8243   movl(op1, Address(in, 0));
8244   movl(sum, Address(out, offs, Address::times_4,  -4));
8245 
8246   movl(raxReg, k);
8247   mull(op1); //tmp4 * eax -> edx:eax
8248   addl(sum, carry);
8249   adcl(rdxReg, 0);
8250   addl(sum, raxReg);
8251   adcl(rdxReg, 0);
8252   movl(carry, rdxReg);
8253 
8254   movl(Address(out, offs, Address::times_4,  -4), sum);
8255 
8256   bind(L_carry);
8257   //return tmp5/carry as carry in rax
8258   movl(rax, carry);
8259 
8260   bind(L_done);
8261   pop(tmp5);
8262   pop(tmp4);
8263   pop(tmp3);
8264   pop(tmp2);
8265   pop(tmp1);
8266 }
8267 #endif
8268 
8269 /**
8270  * Emits code to update CRC-32 with a byte value according to constants in table
8271  *
8272  * @param [in,out]crc   Register containing the crc.
8273  * @param [in]val       Register containing the byte to fold into the CRC.
8274  * @param [in]table     Register containing the table of crc constants.
8275  *
8276  * uint32_t crc;
8277  * val = crc_table[(val ^ crc) & 0xFF];
8278  * crc = val ^ (crc >> 8);
8279  *
8280  */
8281 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
8282   xorl(val, crc);
8283   andl(val, 0xFF);
8284   shrl(crc, 8); // unsigned shift
8285   xorl(crc, Address(table, val, Address::times_4, 0));
8286 }
8287 
8288 /**
8289  * Fold 128-bit data chunk
8290  */
8291 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
8292   if (UseAVX > 0) {
8293     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
8294     vpclmulldq(xcrc, xK, xcrc); // [63:0]
8295     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
8296     pxor(xcrc, xtmp);
8297   } else {
8298     movdqa(xtmp, xcrc);
8299     pclmulhdq(xtmp, xK);   // [123:64]
8300     pclmulldq(xcrc, xK);   // [63:0]
8301     pxor(xcrc, xtmp);
8302     movdqu(xtmp, Address(buf, offset));
8303     pxor(xcrc, xtmp);
8304   }
8305 }
8306 
8307 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
8308   if (UseAVX > 0) {
8309     vpclmulhdq(xtmp, xK, xcrc);
8310     vpclmulldq(xcrc, xK, xcrc);
8311     pxor(xcrc, xbuf);
8312     pxor(xcrc, xtmp);
8313   } else {
8314     movdqa(xtmp, xcrc);
8315     pclmulhdq(xtmp, xK);
8316     pclmulldq(xcrc, xK);
8317     pxor(xcrc, xbuf);
8318     pxor(xcrc, xtmp);
8319   }
8320 }
8321 
8322 /**
8323  * 8-bit folds to compute 32-bit CRC
8324  *
8325  * uint64_t xcrc;
8326  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
8327  */
8328 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
8329   movdl(tmp, xcrc);
8330   andl(tmp, 0xFF);
8331   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
8332   psrldq(xcrc, 1); // unsigned shift one byte
8333   pxor(xcrc, xtmp);
8334 }
8335 
8336 /**
8337  * uint32_t crc;
8338  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
8339  */
8340 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
8341   movl(tmp, crc);
8342   andl(tmp, 0xFF);
8343   shrl(crc, 8);
8344   xorl(crc, Address(table, tmp, Address::times_4, 0));
8345 }
8346 
8347 /**
8348  * @param crc   register containing existing CRC (32-bit)
8349  * @param buf   register pointing to input byte buffer (byte*)
8350  * @param len   register containing number of bytes
8351  * @param table register that will contain address of CRC table
8352  * @param tmp   scratch register
8353  */
8354 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
8355   assert_different_registers(crc, buf, len, table, tmp, rax);
8356 
8357   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
8358   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
8359 
8360   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
8361   notl(crc); // ~crc
8362   cmpl(len, 16);
8363   jcc(Assembler::less, L_tail);
8364 
8365   // Align buffer to 16 bytes
8366   movl(tmp, buf);
8367   andl(tmp, 0xF);
8368   jccb(Assembler::zero, L_aligned);
8369   subl(tmp,  16);
8370   addl(len, tmp);
8371 
8372   align(4);
8373   BIND(L_align_loop);
8374   movsbl(rax, Address(buf, 0)); // load byte with sign extension
8375   update_byte_crc32(crc, rax, table);
8376   increment(buf);
8377   incrementl(tmp);
8378   jccb(Assembler::less, L_align_loop);
8379 
8380   BIND(L_aligned);
8381   movl(tmp, len); // save
8382   shrl(len, 4);
8383   jcc(Assembler::zero, L_tail_restore);
8384 
8385   // Fold crc into first bytes of vector
8386   movdqa(xmm1, Address(buf, 0));
8387   movdl(rax, xmm1);
8388   xorl(crc, rax);
8389   pinsrd(xmm1, crc, 0);
8390   addptr(buf, 16);
8391   subl(len, 4); // len > 0
8392   jcc(Assembler::less, L_fold_tail);
8393 
8394   movdqa(xmm2, Address(buf,  0));
8395   movdqa(xmm3, Address(buf, 16));
8396   movdqa(xmm4, Address(buf, 32));
8397   addptr(buf, 48);
8398   subl(len, 3);
8399   jcc(Assembler::lessEqual, L_fold_512b);
8400 
8401   // Fold total 512 bits of polynomial on each iteration,
8402   // 128 bits per each of 4 parallel streams.
8403   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
8404 
8405   align(32);
8406   BIND(L_fold_512b_loop);
8407   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
8408   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
8409   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
8410   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
8411   addptr(buf, 64);
8412   subl(len, 4);
8413   jcc(Assembler::greater, L_fold_512b_loop);
8414 
8415   // Fold 512 bits to 128 bits.
8416   BIND(L_fold_512b);
8417   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
8418   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
8419   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
8420   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
8421 
8422   // Fold the rest of 128 bits data chunks
8423   BIND(L_fold_tail);
8424   addl(len, 3);
8425   jccb(Assembler::lessEqual, L_fold_128b);
8426   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
8427 
8428   BIND(L_fold_tail_loop);
8429   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
8430   addptr(buf, 16);
8431   decrementl(len);
8432   jccb(Assembler::greater, L_fold_tail_loop);
8433 
8434   // Fold 128 bits in xmm1 down into 32 bits in crc register.
8435   BIND(L_fold_128b);
8436   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
8437   if (UseAVX > 0) {
8438     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
8439     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
8440     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
8441   } else {
8442     movdqa(xmm2, xmm0);
8443     pclmulqdq(xmm2, xmm1, 0x1);
8444     movdqa(xmm3, xmm0);
8445     pand(xmm3, xmm2);
8446     pclmulqdq(xmm0, xmm3, 0x1);
8447   }
8448   psrldq(xmm1, 8);
8449   psrldq(xmm2, 4);
8450   pxor(xmm0, xmm1);
8451   pxor(xmm0, xmm2);
8452 
8453   // 8 8-bit folds to compute 32-bit CRC.
8454   for (int j = 0; j < 4; j++) {
8455     fold_8bit_crc32(xmm0, table, xmm1, rax);
8456   }
8457   movdl(crc, xmm0); // mov 32 bits to general register
8458   for (int j = 0; j < 4; j++) {
8459     fold_8bit_crc32(crc, table, rax);
8460   }
8461 
8462   BIND(L_tail_restore);
8463   movl(len, tmp); // restore
8464   BIND(L_tail);
8465   andl(len, 0xf);
8466   jccb(Assembler::zero, L_exit);
8467 
8468   // Fold the rest of bytes
8469   align(4);
8470   BIND(L_tail_loop);
8471   movsbl(rax, Address(buf, 0)); // load byte with sign extension
8472   update_byte_crc32(crc, rax, table);
8473   increment(buf);
8474   decrementl(len);
8475   jccb(Assembler::greater, L_tail_loop);
8476 
8477   BIND(L_exit);
8478   notl(crc); // ~c
8479 }
8480 
8481 #undef BIND
8482 #undef BLOCK_COMMENT
8483 
8484 
8485 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
8486   switch (cond) {
8487     // Note some conditions are synonyms for others
8488     case Assembler::zero:         return Assembler::notZero;
8489     case Assembler::notZero:      return Assembler::zero;
8490     case Assembler::less:         return Assembler::greaterEqual;
8491     case Assembler::lessEqual:    return Assembler::greater;
8492     case Assembler::greater:      return Assembler::lessEqual;
8493     case Assembler::greaterEqual: return Assembler::less;
8494     case Assembler::below:        return Assembler::aboveEqual;
8495     case Assembler::belowEqual:   return Assembler::above;
8496     case Assembler::above:        return Assembler::belowEqual;
8497     case Assembler::aboveEqual:   return Assembler::below;
8498     case Assembler::overflow:     return Assembler::noOverflow;
8499     case Assembler::noOverflow:   return Assembler::overflow;
8500     case Assembler::negative:     return Assembler::positive;
8501     case Assembler::positive:     return Assembler::negative;
8502     case Assembler::parity:       return Assembler::noParity;
8503     case Assembler::noParity:     return Assembler::parity;
8504   }
8505   ShouldNotReachHere(); return Assembler::overflow;
8506 }
8507 
8508 SkipIfEqual::SkipIfEqual(
8509     MacroAssembler* masm, const bool* flag_addr, bool value) {
8510   _masm = masm;
8511   _masm->cmp8(ExternalAddress((address)flag_addr), value);
8512   _masm->jcc(Assembler::equal, _label);
8513 }
8514 
8515 SkipIfEqual::~SkipIfEqual() {
8516   _masm->bind(_label);
8517 }