1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/nmethod.hpp"
  27 #include "gc/g1/g1BlockOffsetTable.inline.hpp"
  28 #include "gc/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc/g1/g1OopClosures.inline.hpp"
  30 #include "gc/g1/heapRegion.inline.hpp"
  31 #include "gc/g1/heapRegionBounds.inline.hpp"
  32 #include "gc/g1/heapRegionManager.inline.hpp"
  33 #include "gc/g1/heapRegionRemSet.hpp"
  34 #include "gc/shared/genOopClosures.inline.hpp"
  35 #include "gc/shared/liveRange.hpp"
  36 #include "gc/shared/space.inline.hpp"
  37 #include "memory/iterator.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "runtime/atomic.inline.hpp"
  40 #include "runtime/orderAccess.inline.hpp"
  41 
  42 int    HeapRegion::LogOfHRGrainBytes = 0;
  43 int    HeapRegion::LogOfHRGrainWords = 0;
  44 size_t HeapRegion::GrainBytes        = 0;
  45 size_t HeapRegion::GrainWords        = 0;
  46 size_t HeapRegion::CardsPerRegion    = 0;
  47 
  48 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
  49                                  HeapRegion* hr,
  50                                  G1ParPushHeapRSClosure* cl,
  51                                  CardTableModRefBS::PrecisionStyle precision) :
  52   DirtyCardToOopClosure(hr, cl, precision, NULL),
  53   _hr(hr), _rs_scan(cl), _g1(g1) { }
  54 
  55 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
  56                                                    OopClosure* oc) :
  57   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
  58 
  59 void HeapRegionDCTOC::walk_mem_region(MemRegion mr,
  60                                       HeapWord* bottom,
  61                                       HeapWord* top) {
  62   G1CollectedHeap* g1h = _g1;
  63   size_t oop_size;
  64   HeapWord* cur = bottom;
  65 
  66   // Start filtering what we add to the remembered set. If the object is
  67   // not considered dead, either because it is marked (in the mark bitmap)
  68   // or it was allocated after marking finished, then we add it. Otherwise
  69   // we can safely ignore the object.
  70   if (!g1h->is_obj_dead(oop(cur), _hr)) {
  71     oop_size = oop(cur)->oop_iterate(_rs_scan, mr);
  72   } else {
  73     oop_size = _hr->block_size(cur);
  74   }
  75 
  76   cur += oop_size;
  77 
  78   if (cur < top) {
  79     oop cur_oop = oop(cur);
  80     oop_size = _hr->block_size(cur);
  81     HeapWord* next_obj = cur + oop_size;
  82     while (next_obj < top) {
  83       // Keep filtering the remembered set.
  84       if (!g1h->is_obj_dead(cur_oop, _hr)) {
  85         // Bottom lies entirely below top, so we can call the
  86         // non-memRegion version of oop_iterate below.
  87         cur_oop->oop_iterate(_rs_scan);
  88       }
  89       cur = next_obj;
  90       cur_oop = oop(cur);
  91       oop_size = _hr->block_size(cur);
  92       next_obj = cur + oop_size;
  93     }
  94 
  95     // Last object. Need to do dead-obj filtering here too.
  96     if (!g1h->is_obj_dead(oop(cur), _hr)) {
  97       oop(cur)->oop_iterate(_rs_scan, mr);
  98     }
  99   }
 100 }
 101 
 102 size_t HeapRegion::max_region_size() {
 103   return HeapRegionBounds::max_size();
 104 }
 105 
 106 size_t HeapRegion::min_region_size_in_words() {
 107   return HeapRegionBounds::min_size() >> LogHeapWordSize;
 108 }
 109 
 110 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
 111   size_t region_size = G1HeapRegionSize;
 112   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
 113     size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
 114     region_size = MAX2(average_heap_size / HeapRegionBounds::target_number(),
 115                        HeapRegionBounds::min_size());
 116   }
 117 
 118   int region_size_log = log2_long((jlong) region_size);
 119   // Recalculate the region size to make sure it's a power of
 120   // 2. This means that region_size is the largest power of 2 that's
 121   // <= what we've calculated so far.
 122   region_size = ((size_t)1 << region_size_log);
 123 
 124   // Now make sure that we don't go over or under our limits.
 125   if (region_size < HeapRegionBounds::min_size()) {
 126     region_size = HeapRegionBounds::min_size();
 127   } else if (region_size > HeapRegionBounds::max_size()) {
 128     region_size = HeapRegionBounds::max_size();
 129   }
 130 
 131   // And recalculate the log.
 132   region_size_log = log2_long((jlong) region_size);
 133 
 134   // Now, set up the globals.
 135   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
 136   LogOfHRGrainBytes = region_size_log;
 137 
 138   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
 139   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
 140 
 141   guarantee(GrainBytes == 0, "we should only set it once");
 142   // The cast to int is safe, given that we've bounded region_size by
 143   // MIN_REGION_SIZE and MAX_REGION_SIZE.
 144   GrainBytes = region_size;
 145 
 146   guarantee(GrainWords == 0, "we should only set it once");
 147   GrainWords = GrainBytes >> LogHeapWordSize;
 148   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
 149 
 150   guarantee(CardsPerRegion == 0, "we should only set it once");
 151   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
 152 }
 153 
 154 void HeapRegion::reset_after_compaction() {
 155   G1OffsetTableContigSpace::reset_after_compaction();
 156   // After a compaction the mark bitmap is invalid, so we must
 157   // treat all objects as being inside the unmarked area.
 158   zero_marked_bytes();
 159   init_top_at_mark_start();
 160 }
 161 
 162 void HeapRegion::hr_clear(bool par, bool clear_space, bool locked) {
 163   assert(_humongous_start_region == NULL,
 164          "we should have already filtered out humongous regions");
 165   assert(_end == orig_end(),
 166          "we should have already filtered out humongous regions");
 167   assert(!in_collection_set(),
 168          err_msg("Should not clear heap region %u in the collection set", hrm_index()));
 169 
 170   set_allocation_context(AllocationContext::system());
 171   set_young_index_in_cset(-1);
 172   uninstall_surv_rate_group();
 173   set_free();
 174   reset_pre_dummy_top();
 175 
 176   if (!par) {
 177     // If this is parallel, this will be done later.
 178     HeapRegionRemSet* hrrs = rem_set();
 179     if (locked) {
 180       hrrs->clear_locked();
 181     } else {
 182       hrrs->clear();
 183     }
 184   }
 185   zero_marked_bytes();
 186 
 187   _offsets.resize(HeapRegion::GrainWords);
 188   init_top_at_mark_start();
 189   if (clear_space) clear(SpaceDecorator::Mangle);
 190 }
 191 
 192 void HeapRegion::par_clear() {
 193   assert(used() == 0, "the region should have been already cleared");
 194   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
 195   HeapRegionRemSet* hrrs = rem_set();
 196   hrrs->clear();
 197   CardTableModRefBS* ct_bs =
 198     barrier_set_cast<CardTableModRefBS>(G1CollectedHeap::heap()->barrier_set());
 199   ct_bs->clear(MemRegion(bottom(), end()));
 200 }
 201 
 202 void HeapRegion::calc_gc_efficiency() {
 203   // GC efficiency is the ratio of how much space would be
 204   // reclaimed over how long we predict it would take to reclaim it.
 205   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 206   G1CollectorPolicy* g1p = g1h->g1_policy();
 207 
 208   // Retrieve a prediction of the elapsed time for this region for
 209   // a mixed gc because the region will only be evacuated during a
 210   // mixed gc.
 211   double region_elapsed_time_ms =
 212     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
 213   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
 214 }
 215 
 216 void HeapRegion::set_starts_humongous(HeapWord* new_top, HeapWord* new_end) {
 217   assert(!is_humongous(), "sanity / pre-condition");
 218   assert(end() == orig_end(),
 219          "Should be normal before the humongous object allocation");
 220   assert(top() == bottom(), "should be empty");
 221   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
 222 
 223   _type.set_starts_humongous();
 224   _humongous_start_region = this;
 225 
 226   set_end(new_end);
 227   _offsets.set_for_starts_humongous(new_top);
 228 }
 229 
 230 void HeapRegion::set_continues_humongous(HeapRegion* first_hr) {
 231   assert(!is_humongous(), "sanity / pre-condition");
 232   assert(end() == orig_end(),
 233          "Should be normal before the humongous object allocation");
 234   assert(top() == bottom(), "should be empty");
 235   assert(first_hr->is_starts_humongous(), "pre-condition");
 236 
 237   _type.set_continues_humongous();
 238   _humongous_start_region = first_hr;
 239 }
 240 
 241 void HeapRegion::clear_humongous() {
 242   assert(is_humongous(), "pre-condition");
 243 
 244   if (is_starts_humongous()) {
 245     assert(top() <= end(), "pre-condition");
 246     set_end(orig_end());
 247     if (top() > end()) {
 248       // at least one "continues humongous" region after it
 249       set_top(end());
 250     }
 251   } else {
 252     // continues humongous
 253     assert(end() == orig_end(), "sanity");
 254   }
 255 
 256   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
 257   _humongous_start_region = NULL;
 258 }
 259 
 260 HeapRegion::HeapRegion(uint hrm_index,
 261                        G1BlockOffsetSharedArray* sharedOffsetArray,
 262                        MemRegion mr) :
 263     G1OffsetTableContigSpace(sharedOffsetArray, mr),
 264     _hrm_index(hrm_index),
 265     _allocation_context(AllocationContext::system()),
 266     _humongous_start_region(NULL),
 267     _next_in_special_set(NULL),
 268     _evacuation_failed(false),
 269     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
 270     _next_young_region(NULL),
 271     _next_dirty_cards_region(NULL), _next(NULL), _prev(NULL),
 272 #ifdef ASSERT
 273     _containing_set(NULL),
 274 #endif // ASSERT
 275      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
 276     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
 277     _predicted_bytes_to_copy(0)
 278 {
 279   _rem_set = new HeapRegionRemSet(sharedOffsetArray, this);
 280   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
 281 
 282   initialize(mr);
 283 }
 284 
 285 void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
 286   assert(_rem_set->is_empty(), "Remembered set must be empty");
 287 
 288   G1OffsetTableContigSpace::initialize(mr, clear_space, mangle_space);
 289 
 290   hr_clear(false /*par*/, false /*clear_space*/);
 291   set_top(bottom());
 292   record_timestamp();
 293 
 294   assert(mr.end() == orig_end(),
 295          err_msg("Given region end address " PTR_FORMAT " should match exactly "
 296                  "bottom plus one region size, i.e. " PTR_FORMAT,
 297                  p2i(mr.end()), p2i(orig_end())));
 298 }
 299 
 300 CompactibleSpace* HeapRegion::next_compaction_space() const {
 301   return G1CollectedHeap::heap()->next_compaction_region(this);
 302 }
 303 
 304 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
 305                                                     bool during_conc_mark) {
 306   // We always recreate the prev marking info and we'll explicitly
 307   // mark all objects we find to be self-forwarded on the prev
 308   // bitmap. So all objects need to be below PTAMS.
 309   _prev_marked_bytes = 0;
 310 
 311   if (during_initial_mark) {
 312     // During initial-mark, we'll also explicitly mark all objects
 313     // we find to be self-forwarded on the next bitmap. So all
 314     // objects need to be below NTAMS.
 315     _next_top_at_mark_start = top();
 316     _next_marked_bytes = 0;
 317   } else if (during_conc_mark) {
 318     // During concurrent mark, all objects in the CSet (including
 319     // the ones we find to be self-forwarded) are implicitly live.
 320     // So all objects need to be above NTAMS.
 321     _next_top_at_mark_start = bottom();
 322     _next_marked_bytes = 0;
 323   }
 324 }
 325 
 326 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
 327                                                   bool during_conc_mark,
 328                                                   size_t marked_bytes) {
 329   assert(marked_bytes <= used(),
 330          err_msg("marked: " SIZE_FORMAT " used: " SIZE_FORMAT, marked_bytes, used()));
 331   _prev_top_at_mark_start = top();
 332   _prev_marked_bytes = marked_bytes;
 333 }
 334 
 335 HeapWord*
 336 HeapRegion::object_iterate_mem_careful(MemRegion mr,
 337                                                  ObjectClosure* cl) {
 338   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 339   // We used to use "block_start_careful" here.  But we're actually happy
 340   // to update the BOT while we do this...
 341   HeapWord* cur = block_start(mr.start());
 342   mr = mr.intersection(used_region());
 343   if (mr.is_empty()) return NULL;
 344   // Otherwise, find the obj that extends onto mr.start().
 345 
 346   assert(cur <= mr.start()
 347          && (oop(cur)->klass_or_null() == NULL ||
 348              cur + oop(cur)->size() > mr.start()),
 349          "postcondition of block_start");
 350   oop obj;
 351   while (cur < mr.end()) {
 352     obj = oop(cur);
 353     if (obj->klass_or_null() == NULL) {
 354       // Ran into an unparseable point.
 355       return cur;
 356     } else if (!g1h->is_obj_dead(obj)) {
 357       cl->do_object(obj);
 358     }
 359     cur += block_size(cur);
 360   }
 361   return NULL;
 362 }
 363 
 364 
 365 bool HeapRegion::clean_card(MemRegion& mr,
 366                             bool filter_young,
 367                             jbyte* &card_ptr) {
 368   // Currently, we should only have to clean the card if filter_young
 369   // is true and vice versa.
 370   if (filter_young) {
 371     assert(card_ptr != NULL, "pre-condition");
 372   } else {
 373     assert(card_ptr == NULL, "pre-condition");
 374   }
 375   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 376 
 377   // If we're within a stop-world GC, then we might look at a card in a
 378   // GC alloc region that extends onto a GC LAB, which may not be
 379   // parseable.  Stop such at the "scan_top" of the region.
 380   if (g1h->is_gc_active()) {
 381     mr = mr.intersection(MemRegion(bottom(), scan_top()));
 382   } else {
 383     mr = mr.intersection(used_region());
 384   }
 385   if (mr.is_empty()) return false;
 386   // Otherwise, find the obj that extends onto mr.start().
 387 
 388   // The intersection of the incoming mr (for the card) and the
 389   // allocated part of the region is non-empty. This implies that
 390   // we have actually allocated into this region. The code in
 391   // G1CollectedHeap.cpp that allocates a new region sets the
 392   // is_young tag on the region before allocating. Thus we
 393   // safely know if this region is young.
 394   if (is_young() && filter_young) {
 395     return false;
 396   }
 397 
 398   assert(!is_young(), "check value of filter_young");
 399 
 400   // We can only clean the card here, after we make the decision that
 401   // the card is not young. And we only clean the card if we have been
 402   // asked to (i.e., card_ptr != NULL).
 403   if (card_ptr != NULL) {
 404     *card_ptr = CardTableModRefBS::clean_card_val();
 405   }
 406 
 407   return true;
 408 }
 409 
 410 HeapWord* HeapRegion::process_oops_on_card(MemRegion mr,
 411                                            FilterOutOfRegionClosure *cl,
 412                                            jbyte *card_ptr) {
 413   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 414   G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
 415   // Cache the boundaries of the memory region in some const locals
 416   HeapWord* const start = mr.start();
 417   HeapWord* const end = mr.end();
 418 
 419   HeapWord* cur;
 420 
 421   // We used to use "block_start_careful" here.  But we're actually happy
 422   // to update the BOT while we do this...
 423   cur = block_start(start);
 424   assert(cur <= start, "Postcondition");
 425 
 426   oop obj;
 427 
 428   HeapWord* next = cur;
 429   do {
 430     cur = next;
 431     obj = oop(cur);
 432     if (obj->klass_or_null() == NULL) {
 433       // Ran into an unparseable point.
 434       return cur;
 435     }
 436     // Otherwise...
 437     next = cur + block_size(cur);
 438   } while (next <= start);
 439 
 440   // If we finish the above loop...We have a parseable object that
 441   // begins on or before the start of the memory region, and ends
 442   // inside or spans the entire region.
 443   assert(cur <= start, "Loop postcondition");
 444   assert(obj->klass_or_null() != NULL, "Loop postcondition");
 445 
 446   do {
 447     obj = oop(cur);
 448     assert((cur + block_size(cur)) > (HeapWord*)obj, "Loop invariant");
 449     if (obj->klass_or_null() == NULL) {
 450       // Ran into an unparseable point.
 451       return cur;
 452     }
 453 
 454     // Advance the current pointer. "obj" still points to the object to iterate.
 455     cur = cur + block_size(cur);
 456 
 457     if (!g1h->is_obj_dead(obj)) {
 458       // Non-objArrays are sometimes marked imprecise at the object start. We
 459       // always need to iterate over them in full.
 460       // We only iterate over object arrays in full if they are completely contained
 461       // in the memory region.
 462       if (!obj->is_objArray() || (((HeapWord*)obj) >= start && cur <= end)) {
 463         obj->oop_iterate(cl);
 464       } else {
 465         obj->oop_iterate(cl, mr);
 466       }
 467     }
 468   } while (cur < end);
 469 
 470   return NULL;
 471 }
 472 
 473 HeapWord*
 474 HeapRegion::
 475 oops_on_card_seq_iterate_careful(MemRegion mr,
 476                                  FilterOutOfRegionClosure* cl,
 477                                  bool filter_young,
 478                                  jbyte* card_ptr) {
 479   if (!clean_card(mr, filter_young, card_ptr)) return NULL;
 480   if (card_ptr != NULL) OrderAccess::storeload();   // serialize card cleaning
 481   return process_oops_on_card(mr, cl, card_ptr);
 482 }
 483 
 484 // Code roots support
 485 
 486 void HeapRegion::add_strong_code_root(nmethod* nm) {
 487   HeapRegionRemSet* hrrs = rem_set();
 488   hrrs->add_strong_code_root(nm);
 489 }
 490 
 491 void HeapRegion::add_strong_code_root_locked(nmethod* nm) {
 492   assert_locked_or_safepoint(CodeCache_lock);
 493   HeapRegionRemSet* hrrs = rem_set();
 494   hrrs->add_strong_code_root_locked(nm);
 495 }
 496 
 497 void HeapRegion::remove_strong_code_root(nmethod* nm) {
 498   HeapRegionRemSet* hrrs = rem_set();
 499   hrrs->remove_strong_code_root(nm);
 500 }
 501 
 502 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
 503   HeapRegionRemSet* hrrs = rem_set();
 504   hrrs->strong_code_roots_do(blk);
 505 }
 506 
 507 class VerifyStrongCodeRootOopClosure: public OopClosure {
 508   const HeapRegion* _hr;
 509   nmethod* _nm;
 510   bool _failures;
 511   bool _has_oops_in_region;
 512 
 513   template <class T> void do_oop_work(T* p) {
 514     T heap_oop = oopDesc::load_heap_oop(p);
 515     if (!oopDesc::is_null(heap_oop)) {
 516       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 517 
 518       // Note: not all the oops embedded in the nmethod are in the
 519       // current region. We only look at those which are.
 520       if (_hr->is_in(obj)) {
 521         // Object is in the region. Check that its less than top
 522         if (_hr->top() <= (HeapWord*)obj) {
 523           // Object is above top
 524           gclog_or_tty->print_cr("Object " PTR_FORMAT " in region "
 525                                  "[" PTR_FORMAT ", " PTR_FORMAT ") is above "
 526                                  "top " PTR_FORMAT,
 527                                  p2i(obj), p2i(_hr->bottom()), p2i(_hr->end()), p2i(_hr->top()));
 528           _failures = true;
 529           return;
 530         }
 531         // Nmethod has at least one oop in the current region
 532         _has_oops_in_region = true;
 533       }
 534     }
 535   }
 536 
 537 public:
 538   VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
 539     _hr(hr), _failures(false), _has_oops_in_region(false) {}
 540 
 541   void do_oop(narrowOop* p) { do_oop_work(p); }
 542   void do_oop(oop* p)       { do_oop_work(p); }
 543 
 544   bool failures()           { return _failures; }
 545   bool has_oops_in_region() { return _has_oops_in_region; }
 546 };
 547 
 548 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
 549   const HeapRegion* _hr;
 550   bool _failures;
 551 public:
 552   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
 553     _hr(hr), _failures(false) {}
 554 
 555   void do_code_blob(CodeBlob* cb) {
 556     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
 557     if (nm != NULL) {
 558       // Verify that the nemthod is live
 559       if (!nm->is_alive()) {
 560         gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] has dead nmethod "
 561                                PTR_FORMAT " in its strong code roots",
 562                                p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
 563         _failures = true;
 564       } else {
 565         VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
 566         nm->oops_do(&oop_cl);
 567         if (!oop_cl.has_oops_in_region()) {
 568           gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] has nmethod "
 569                                  PTR_FORMAT " in its strong code roots "
 570                                  "with no pointers into region",
 571                                  p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
 572           _failures = true;
 573         } else if (oop_cl.failures()) {
 574           gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] has other "
 575                                  "failures for nmethod " PTR_FORMAT,
 576                                  p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
 577           _failures = true;
 578         }
 579       }
 580     }
 581   }
 582 
 583   bool failures()       { return _failures; }
 584 };
 585 
 586 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
 587   if (!G1VerifyHeapRegionCodeRoots) {
 588     // We're not verifying code roots.
 589     return;
 590   }
 591   if (vo == VerifyOption_G1UseMarkWord) {
 592     // Marking verification during a full GC is performed after class
 593     // unloading, code cache unloading, etc so the strong code roots
 594     // attached to each heap region are in an inconsistent state. They won't
 595     // be consistent until the strong code roots are rebuilt after the
 596     // actual GC. Skip verifying the strong code roots in this particular
 597     // time.
 598     assert(VerifyDuringGC, "only way to get here");
 599     return;
 600   }
 601 
 602   HeapRegionRemSet* hrrs = rem_set();
 603   size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
 604 
 605   // if this region is empty then there should be no entries
 606   // on its strong code root list
 607   if (is_empty()) {
 608     if (strong_code_roots_length > 0) {
 609       gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] is empty "
 610                              "but has " SIZE_FORMAT " code root entries",
 611                              p2i(bottom()), p2i(end()), strong_code_roots_length);
 612       *failures = true;
 613     }
 614     return;
 615   }
 616 
 617   if (is_continues_humongous()) {
 618     if (strong_code_roots_length > 0) {
 619       gclog_or_tty->print_cr("region " HR_FORMAT " is a continuation of a humongous "
 620                              "region but has " SIZE_FORMAT " code root entries",
 621                              HR_FORMAT_PARAMS(this), strong_code_roots_length);
 622       *failures = true;
 623     }
 624     return;
 625   }
 626 
 627   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
 628   strong_code_roots_do(&cb_cl);
 629 
 630   if (cb_cl.failures()) {
 631     *failures = true;
 632   }
 633 }
 634 
 635 void HeapRegion::print() const { print_on(gclog_or_tty); }
 636 void HeapRegion::print_on(outputStream* st) const {
 637   st->print("AC%4u", allocation_context());
 638 
 639   st->print(" %2s", get_short_type_str());
 640   if (in_collection_set())
 641     st->print(" CS");
 642   else
 643     st->print("   ");
 644   st->print(" TS %5d", _gc_time_stamp);
 645   st->print(" PTAMS " PTR_FORMAT " NTAMS " PTR_FORMAT,
 646             p2i(prev_top_at_mark_start()), p2i(next_top_at_mark_start()));
 647   G1OffsetTableContigSpace::print_on(st);
 648 }
 649 
 650 class VerifyLiveClosure: public OopClosure {
 651 private:
 652   G1CollectedHeap* _g1h;
 653   CardTableModRefBS* _bs;
 654   oop _containing_obj;
 655   bool _failures;
 656   int _n_failures;
 657   VerifyOption _vo;
 658 public:
 659   // _vo == UsePrevMarking -> use "prev" marking information,
 660   // _vo == UseNextMarking -> use "next" marking information,
 661   // _vo == UseMarkWord    -> use mark word from object header.
 662   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) :
 663     _g1h(g1h), _bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
 664     _containing_obj(NULL), _failures(false), _n_failures(0), _vo(vo)
 665   { }
 666 
 667   void set_containing_obj(oop obj) {
 668     _containing_obj = obj;
 669   }
 670 
 671   bool failures() { return _failures; }
 672   int n_failures() { return _n_failures; }
 673 
 674   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
 675   virtual void do_oop(      oop* p) { do_oop_work(p); }
 676 
 677   void print_object(outputStream* out, oop obj) {
 678 #ifdef PRODUCT
 679     Klass* k = obj->klass();
 680     const char* class_name = InstanceKlass::cast(k)->external_name();
 681     out->print_cr("class name %s", class_name);
 682 #else // PRODUCT
 683     obj->print_on(out);
 684 #endif // PRODUCT
 685   }
 686 
 687   template <class T>
 688   void do_oop_work(T* p) {
 689     assert(_containing_obj != NULL, "Precondition");
 690     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
 691            "Precondition");
 692     T heap_oop = oopDesc::load_heap_oop(p);
 693     if (!oopDesc::is_null(heap_oop)) {
 694       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 695       bool failed = false;
 696       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
 697         MutexLockerEx x(ParGCRareEvent_lock,
 698                         Mutex::_no_safepoint_check_flag);
 699 
 700         if (!_failures) {
 701           gclog_or_tty->cr();
 702           gclog_or_tty->print_cr("----------");
 703         }
 704         if (!_g1h->is_in_closed_subset(obj)) {
 705           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 706           gclog_or_tty->print_cr("Field " PTR_FORMAT
 707                                  " of live obj " PTR_FORMAT " in region "
 708                                  "[" PTR_FORMAT ", " PTR_FORMAT ")",
 709                                  p2i(p), p2i(_containing_obj),
 710                                  p2i(from->bottom()), p2i(from->end()));
 711           print_object(gclog_or_tty, _containing_obj);
 712           gclog_or_tty->print_cr("points to obj " PTR_FORMAT " not in the heap",
 713                                  p2i(obj));
 714         } else {
 715           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 716           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
 717           gclog_or_tty->print_cr("Field " PTR_FORMAT
 718                                  " of live obj " PTR_FORMAT " in region "
 719                                  "[" PTR_FORMAT ", " PTR_FORMAT ")",
 720                                  p2i(p), p2i(_containing_obj),
 721                                  p2i(from->bottom()), p2i(from->end()));
 722           print_object(gclog_or_tty, _containing_obj);
 723           gclog_or_tty->print_cr("points to dead obj " PTR_FORMAT " in region "
 724                                  "[" PTR_FORMAT ", " PTR_FORMAT ")",
 725                                  p2i(obj), p2i(to->bottom()), p2i(to->end()));
 726           print_object(gclog_or_tty, obj);
 727         }
 728         gclog_or_tty->print_cr("----------");
 729         gclog_or_tty->flush();
 730         _failures = true;
 731         failed = true;
 732         _n_failures++;
 733       }
 734 
 735       if (!_g1h->collector_state()->full_collection() || G1VerifyRSetsDuringFullGC) {
 736         HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 737         HeapRegion* to   = _g1h->heap_region_containing(obj);
 738         if (from != NULL && to != NULL &&
 739             from != to &&
 740             !to->is_pinned()) {
 741           jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
 742           jbyte cv_field = *_bs->byte_for_const(p);
 743           const jbyte dirty = CardTableModRefBS::dirty_card_val();
 744 
 745           bool is_bad = !(from->is_young()
 746                           || to->rem_set()->contains_reference(p)
 747                           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
 748                               (_containing_obj->is_objArray() ?
 749                                   cv_field == dirty
 750                                : cv_obj == dirty || cv_field == dirty));
 751           if (is_bad) {
 752             MutexLockerEx x(ParGCRareEvent_lock,
 753                             Mutex::_no_safepoint_check_flag);
 754 
 755             if (!_failures) {
 756               gclog_or_tty->cr();
 757               gclog_or_tty->print_cr("----------");
 758             }
 759             gclog_or_tty->print_cr("Missing rem set entry:");
 760             gclog_or_tty->print_cr("Field " PTR_FORMAT " "
 761                                    "of obj " PTR_FORMAT ", "
 762                                    "in region " HR_FORMAT,
 763                                    p2i(p), p2i(_containing_obj),
 764                                    HR_FORMAT_PARAMS(from));
 765             _containing_obj->print_on(gclog_or_tty);
 766             gclog_or_tty->print_cr("points to obj " PTR_FORMAT " "
 767                                    "in region " HR_FORMAT,
 768                                    p2i(obj),
 769                                    HR_FORMAT_PARAMS(to));
 770             obj->print_on(gclog_or_tty);
 771             gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
 772                           cv_obj, cv_field);
 773             gclog_or_tty->print_cr("----------");
 774             gclog_or_tty->flush();
 775             _failures = true;
 776             if (!failed) _n_failures++;
 777           }
 778         }
 779       }
 780     }
 781   }
 782 };
 783 
 784 // This really ought to be commoned up into OffsetTableContigSpace somehow.
 785 // We would need a mechanism to make that code skip dead objects.
 786 
 787 void HeapRegion::verify(VerifyOption vo,
 788                         bool* failures) const {
 789   G1CollectedHeap* g1 = G1CollectedHeap::heap();
 790   *failures = false;
 791   HeapWord* p = bottom();
 792   HeapWord* prev_p = NULL;
 793   VerifyLiveClosure vl_cl(g1, vo);
 794   bool is_region_humongous = is_humongous();
 795   size_t object_num = 0;
 796   while (p < top()) {
 797     oop obj = oop(p);
 798     size_t obj_size = block_size(p);
 799     object_num += 1;
 800 
 801     if (is_region_humongous != g1->is_humongous(obj_size) &&
 802         !g1->is_obj_dead(obj, this)) { // Dead objects may have bigger block_size since they span several objects.
 803       gclog_or_tty->print_cr("obj " PTR_FORMAT " is of %shumongous size ("
 804                              SIZE_FORMAT " words) in a %shumongous region",
 805                              p2i(p), g1->is_humongous(obj_size) ? "" : "non-",
 806                              obj_size, is_region_humongous ? "" : "non-");
 807        *failures = true;
 808        return;
 809     }
 810 
 811     if (!g1->is_obj_dead_cond(obj, this, vo)) {
 812       if (obj->is_oop()) {
 813         Klass* klass = obj->klass();
 814         bool is_metaspace_object = Metaspace::contains(klass) ||
 815                                    (vo == VerifyOption_G1UsePrevMarking &&
 816                                    ClassLoaderDataGraph::unload_list_contains(klass));
 817         if (!is_metaspace_object) {
 818           gclog_or_tty->print_cr("klass " PTR_FORMAT " of object " PTR_FORMAT " "
 819                                  "not metadata", p2i(klass), p2i(obj));
 820           *failures = true;
 821           return;
 822         } else if (!klass->is_klass()) {
 823           gclog_or_tty->print_cr("klass " PTR_FORMAT " of object " PTR_FORMAT " "
 824                                  "not a klass", p2i(klass), p2i(obj));
 825           *failures = true;
 826           return;
 827         } else {
 828           vl_cl.set_containing_obj(obj);
 829           obj->oop_iterate_no_header(&vl_cl);
 830           if (vl_cl.failures()) {
 831             *failures = true;
 832           }
 833           if (G1MaxVerifyFailures >= 0 &&
 834               vl_cl.n_failures() >= G1MaxVerifyFailures) {
 835             return;
 836           }
 837         }
 838       } else {
 839         gclog_or_tty->print_cr(PTR_FORMAT " no an oop", p2i(obj));
 840         *failures = true;
 841         return;
 842       }
 843     }
 844     prev_p = p;
 845     p += obj_size;
 846   }
 847 
 848   if (!is_young() && !is_empty()) {
 849     _offsets.verify();
 850   }
 851 
 852   if (p != top()) {
 853     gclog_or_tty->print_cr("end of last object " PTR_FORMAT " "
 854                            "does not match top " PTR_FORMAT, p2i(p), p2i(top()));
 855     *failures = true;
 856     return;
 857   }
 858 
 859   HeapWord* the_end = end();
 860   assert(p == top(), "it should still hold");
 861   // Do some extra BOT consistency checking for addresses in the
 862   // range [top, end). BOT look-ups in this range should yield
 863   // top. No point in doing that if top == end (there's nothing there).
 864   if (p < the_end) {
 865     // Look up top
 866     HeapWord* addr_1 = p;
 867     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
 868     if (b_start_1 != p) {
 869       gclog_or_tty->print_cr("BOT look up for top: " PTR_FORMAT " "
 870                              " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 871                              p2i(addr_1), p2i(b_start_1), p2i(p));
 872       *failures = true;
 873       return;
 874     }
 875 
 876     // Look up top + 1
 877     HeapWord* addr_2 = p + 1;
 878     if (addr_2 < the_end) {
 879       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
 880       if (b_start_2 != p) {
 881         gclog_or_tty->print_cr("BOT look up for top + 1: " PTR_FORMAT " "
 882                                " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 883                                p2i(addr_2), p2i(b_start_2), p2i(p));
 884         *failures = true;
 885         return;
 886       }
 887     }
 888 
 889     // Look up an address between top and end
 890     size_t diff = pointer_delta(the_end, p) / 2;
 891     HeapWord* addr_3 = p + diff;
 892     if (addr_3 < the_end) {
 893       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
 894       if (b_start_3 != p) {
 895         gclog_or_tty->print_cr("BOT look up for top + diff: " PTR_FORMAT " "
 896                                " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 897                                p2i(addr_3), p2i(b_start_3), p2i(p));
 898         *failures = true;
 899         return;
 900       }
 901     }
 902 
 903     // Look up end - 1
 904     HeapWord* addr_4 = the_end - 1;
 905     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
 906     if (b_start_4 != p) {
 907       gclog_or_tty->print_cr("BOT look up for end - 1: " PTR_FORMAT " "
 908                              " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 909                              p2i(addr_4), p2i(b_start_4), p2i(p));
 910       *failures = true;
 911       return;
 912     }
 913   }
 914 
 915   if (is_region_humongous && object_num > 1) {
 916     gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] is humongous "
 917                            "but has " SIZE_FORMAT ", objects",
 918                            p2i(bottom()), p2i(end()), object_num);
 919     *failures = true;
 920     return;
 921   }
 922 
 923   verify_strong_code_roots(vo, failures);
 924 }
 925 
 926 void HeapRegion::verify() const {
 927   bool dummy = false;
 928   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
 929 }
 930 
 931 void HeapRegion::prepare_for_compaction(CompactPoint* cp) {
 932   scan_and_forward(this, cp);
 933 }
 934 
 935 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
 936 // away eventually.
 937 
 938 void G1OffsetTableContigSpace::clear(bool mangle_space) {
 939   set_top(bottom());
 940   _scan_top = bottom();
 941   CompactibleSpace::clear(mangle_space);
 942   reset_bot();
 943 }
 944 
 945 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
 946   Space::set_bottom(new_bottom);
 947   _offsets.set_bottom(new_bottom);
 948 }
 949 
 950 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
 951   Space::set_end(new_end);
 952   _offsets.resize(new_end - bottom());
 953 }
 954 
 955 #ifndef PRODUCT
 956 void G1OffsetTableContigSpace::mangle_unused_area() {
 957   mangle_unused_area_complete();
 958 }
 959 
 960 void G1OffsetTableContigSpace::mangle_unused_area_complete() {
 961   SpaceMangler::mangle_region(MemRegion(top(), end()));
 962 }
 963 #endif
 964 
 965 void G1OffsetTableContigSpace::print() const {
 966   print_short();
 967   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
 968                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 969                 p2i(bottom()), p2i(top()), p2i(_offsets.threshold()), p2i(end()));
 970 }
 971 
 972 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
 973   return _offsets.initialize_threshold();
 974 }
 975 
 976 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
 977                                                     HeapWord* end) {
 978   _offsets.alloc_block(start, end);
 979   return _offsets.threshold();
 980 }
 981 
 982 HeapWord* G1OffsetTableContigSpace::scan_top() const {
 983   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 984   HeapWord* local_top = top();
 985   OrderAccess::loadload();
 986   const unsigned local_time_stamp = _gc_time_stamp;
 987   assert(local_time_stamp <= g1h->get_gc_time_stamp(), "invariant");
 988   if (local_time_stamp < g1h->get_gc_time_stamp()) {
 989     return local_top;
 990   } else {
 991     return _scan_top;
 992   }
 993 }
 994 
 995 void G1OffsetTableContigSpace::record_timestamp() {
 996   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 997   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
 998 
 999   if (_gc_time_stamp < curr_gc_time_stamp) {
1000     // Setting the time stamp here tells concurrent readers to look at
1001     // scan_top to know the maximum allowed address to look at.
1002 
1003     // scan_top should be bottom for all regions except for the
1004     // retained old alloc region which should have scan_top == top
1005     HeapWord* st = _scan_top;
1006     guarantee(st == _bottom || st == _top, "invariant");
1007 
1008     _gc_time_stamp = curr_gc_time_stamp;
1009   }
1010 }
1011 
1012 void G1OffsetTableContigSpace::record_retained_region() {
1013   // scan_top is the maximum address where it's safe for the next gc to
1014   // scan this region.
1015   _scan_top = top();
1016 }
1017 
1018 void G1OffsetTableContigSpace::safe_object_iterate(ObjectClosure* blk) {
1019   object_iterate(blk);
1020 }
1021 
1022 void G1OffsetTableContigSpace::object_iterate(ObjectClosure* blk) {
1023   HeapWord* p = bottom();
1024   while (p < top()) {
1025     if (block_is_obj(p)) {
1026       blk->do_object(oop(p));
1027     }
1028     p += block_size(p);
1029   }
1030 }
1031 
1032 G1OffsetTableContigSpace::
1033 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
1034                          MemRegion mr) :
1035   _offsets(sharedOffsetArray, mr),
1036   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
1037   _gc_time_stamp(0)
1038 {
1039   _offsets.set_space(this);
1040 }
1041 
1042 void G1OffsetTableContigSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
1043   CompactibleSpace::initialize(mr, clear_space, mangle_space);
1044   _top = bottom();
1045   _scan_top = bottom();
1046   set_saved_mark_word(NULL);
1047   reset_bot();
1048 }