1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledIC.hpp"
  30 #include "code/codeCacheExtensions.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "code/vtableStubs.hpp"
  33 #include "compiler/abstractCompiler.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compilerOracle.hpp"
  36 #include "compiler/disassembler.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/interpreterRuntime.hpp"
  40 #include "memory/universe.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "prims/forte.hpp"
  43 #include "prims/jvmtiExport.hpp"
  44 #include "prims/jvmtiRedefineClassesTrace.hpp"
  45 #include "prims/methodHandles.hpp"
  46 #include "prims/nativeLookup.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/atomic.inline.hpp"
  49 #include "runtime/biasedLocking.hpp"
  50 #include "runtime/handles.inline.hpp"
  51 #include "runtime/init.hpp"
  52 #include "runtime/interfaceSupport.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/sharedRuntime.hpp"
  55 #include "runtime/stubRoutines.hpp"
  56 #include "runtime/vframe.hpp"
  57 #include "runtime/vframeArray.hpp"
  58 #include "utilities/copy.hpp"
  59 #include "utilities/dtrace.hpp"
  60 #include "utilities/events.hpp"
  61 #include "utilities/hashtable.inline.hpp"
  62 #include "utilities/macros.hpp"
  63 #include "utilities/xmlstream.hpp"
  64 #ifdef COMPILER1
  65 #include "c1/c1_Runtime1.hpp"
  66 #endif
  67 
  68 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  69 
  70 // Shared stub locations
  71 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  72 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  73 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  74 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  75 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  76 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  77 
  78 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  79 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  80 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  81 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  82 
  83 #ifdef COMPILER2
  84 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  85 #endif // COMPILER2
  86 
  87 
  88 //----------------------------generate_stubs-----------------------------------
  89 void SharedRuntime::generate_stubs() {
  90   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
  91   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
  92   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
  93   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
  94   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
  95   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
  96 
  97   address runtime_exception_handler;
  98 
  99   if (ThreadLocalSafepoints) {
 100     runtime_exception_handler = CAST_FROM_FN_PTR(address, SharedRuntime::thread_local_safepoint);
 101   } else {
 102     runtime_exception_handler = CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception);
 103   }
 104 
 105 #ifdef COMPILER2
 106   // Vectors are generated only by C2.
 107   if (is_wide_vector(MaxVectorSize)) {
 108     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(runtime_exception_handler, POLL_AT_VECTOR_LOOP);
 109   }
 110 #endif // COMPILER2
 111   _polling_page_safepoint_handler_blob = generate_handler_blob(runtime_exception_handler, POLL_AT_LOOP);
 112   _polling_page_return_handler_blob    = generate_handler_blob(runtime_exception_handler, POLL_AT_RETURN);
 113 
 114   generate_deopt_blob();
 115 
 116 #ifdef COMPILER2
 117   generate_uncommon_trap_blob();
 118 #endif // COMPILER2
 119 }
 120 
 121 void SharedRuntime::thread_local_safepoint(JavaThread *thread) {
 122   thread->set_yieldpoint(false);
 123   thread->update_serialized_memory_version();
 124   if (SafepointSynchronize::is_synchronizing()) {
 125     SafepointSynchronize::handle_polling_page_exception(thread);
 126   }
 127 }
 128 
 129 #include <math.h>
 130 
 131 // Implementation of SharedRuntime
 132 
 133 #ifndef PRODUCT
 134 // For statistics
 135 int SharedRuntime::_ic_miss_ctr = 0;
 136 int SharedRuntime::_wrong_method_ctr = 0;
 137 int SharedRuntime::_resolve_static_ctr = 0;
 138 int SharedRuntime::_resolve_virtual_ctr = 0;
 139 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 140 int SharedRuntime::_implicit_null_throws = 0;
 141 int SharedRuntime::_implicit_div0_throws = 0;
 142 int SharedRuntime::_throw_null_ctr = 0;
 143 
 144 int SharedRuntime::_nof_normal_calls = 0;
 145 int SharedRuntime::_nof_optimized_calls = 0;
 146 int SharedRuntime::_nof_inlined_calls = 0;
 147 int SharedRuntime::_nof_megamorphic_calls = 0;
 148 int SharedRuntime::_nof_static_calls = 0;
 149 int SharedRuntime::_nof_inlined_static_calls = 0;
 150 int SharedRuntime::_nof_interface_calls = 0;
 151 int SharedRuntime::_nof_optimized_interface_calls = 0;
 152 int SharedRuntime::_nof_inlined_interface_calls = 0;
 153 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 154 int SharedRuntime::_nof_removable_exceptions = 0;
 155 
 156 int SharedRuntime::_new_instance_ctr=0;
 157 int SharedRuntime::_new_array_ctr=0;
 158 int SharedRuntime::_multi1_ctr=0;
 159 int SharedRuntime::_multi2_ctr=0;
 160 int SharedRuntime::_multi3_ctr=0;
 161 int SharedRuntime::_multi4_ctr=0;
 162 int SharedRuntime::_multi5_ctr=0;
 163 int SharedRuntime::_mon_enter_stub_ctr=0;
 164 int SharedRuntime::_mon_exit_stub_ctr=0;
 165 int SharedRuntime::_mon_enter_ctr=0;
 166 int SharedRuntime::_mon_exit_ctr=0;
 167 int SharedRuntime::_partial_subtype_ctr=0;
 168 int SharedRuntime::_jbyte_array_copy_ctr=0;
 169 int SharedRuntime::_jshort_array_copy_ctr=0;
 170 int SharedRuntime::_jint_array_copy_ctr=0;
 171 int SharedRuntime::_jlong_array_copy_ctr=0;
 172 int SharedRuntime::_oop_array_copy_ctr=0;
 173 int SharedRuntime::_checkcast_array_copy_ctr=0;
 174 int SharedRuntime::_unsafe_array_copy_ctr=0;
 175 int SharedRuntime::_generic_array_copy_ctr=0;
 176 int SharedRuntime::_slow_array_copy_ctr=0;
 177 int SharedRuntime::_find_handler_ctr=0;
 178 int SharedRuntime::_rethrow_ctr=0;
 179 
 180 int     SharedRuntime::_ICmiss_index                    = 0;
 181 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 182 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 183 
 184 
 185 void SharedRuntime::trace_ic_miss(address at) {
 186   for (int i = 0; i < _ICmiss_index; i++) {
 187     if (_ICmiss_at[i] == at) {
 188       _ICmiss_count[i]++;
 189       return;
 190     }
 191   }
 192   int index = _ICmiss_index++;
 193   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 194   _ICmiss_at[index] = at;
 195   _ICmiss_count[index] = 1;
 196 }
 197 
 198 void SharedRuntime::print_ic_miss_histogram() {
 199   if (ICMissHistogram) {
 200     tty->print_cr("IC Miss Histogram:");
 201     int tot_misses = 0;
 202     for (int i = 0; i < _ICmiss_index; i++) {
 203       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 204       tot_misses += _ICmiss_count[i];
 205     }
 206     tty->print_cr("Total IC misses: %7d", tot_misses);
 207   }
 208 }
 209 #endif // PRODUCT
 210 
 211 #if INCLUDE_ALL_GCS
 212 
 213 // G1 write-barrier pre: executed before a pointer store.
 214 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 215   thread->update_serialized_memory_version();
 216   if (orig == NULL) {
 217     assert(false, "should be optimized out");
 218     return;
 219   }
 220   assert(orig->is_oop(true /* ignore mark word */), "Error");
 221   // store the original value that was in the field reference
 222   thread->satb_mark_queue().enqueue(orig);
 223 JRT_END
 224 
 225 // G1 write-barrier post: executed after a pointer store.
 226 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 227   thread->update_serialized_memory_version();
 228   thread->dirty_card_queue().enqueue(card_addr);
 229 JRT_END
 230 
 231 #endif // INCLUDE_ALL_GCS
 232 
 233 
 234 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 235   return x * y;
 236 JRT_END
 237 
 238 
 239 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 240   if (x == min_jlong && y == CONST64(-1)) {
 241     return x;
 242   } else {
 243     return x / y;
 244   }
 245 JRT_END
 246 
 247 
 248 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 249   if (x == min_jlong && y == CONST64(-1)) {
 250     return 0;
 251   } else {
 252     return x % y;
 253   }
 254 JRT_END
 255 
 256 
 257 const juint  float_sign_mask  = 0x7FFFFFFF;
 258 const juint  float_infinity   = 0x7F800000;
 259 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 260 const julong double_infinity  = CONST64(0x7FF0000000000000);
 261 
 262 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 263 #ifdef _WIN64
 264   // 64-bit Windows on amd64 returns the wrong values for
 265   // infinity operands.
 266   union { jfloat f; juint i; } xbits, ybits;
 267   xbits.f = x;
 268   ybits.f = y;
 269   // x Mod Infinity == x unless x is infinity
 270   if (((xbits.i & float_sign_mask) != float_infinity) &&
 271        ((ybits.i & float_sign_mask) == float_infinity) ) {
 272     return x;
 273   }
 274 #endif
 275   return ((jfloat)fmod((double)x,(double)y));
 276 JRT_END
 277 
 278 
 279 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 280 #ifdef _WIN64
 281   union { jdouble d; julong l; } xbits, ybits;
 282   xbits.d = x;
 283   ybits.d = y;
 284   // x Mod Infinity == x unless x is infinity
 285   if (((xbits.l & double_sign_mask) != double_infinity) &&
 286        ((ybits.l & double_sign_mask) == double_infinity) ) {
 287     return x;
 288   }
 289 #endif
 290   return ((jdouble)fmod((double)x,(double)y));
 291 JRT_END
 292 
 293 #ifdef __SOFTFP__
 294 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 295   return x + y;
 296 JRT_END
 297 
 298 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 299   return x - y;
 300 JRT_END
 301 
 302 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 303   return x * y;
 304 JRT_END
 305 
 306 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 307   return x / y;
 308 JRT_END
 309 
 310 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 311   return x + y;
 312 JRT_END
 313 
 314 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 315   return x - y;
 316 JRT_END
 317 
 318 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 319   return x * y;
 320 JRT_END
 321 
 322 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 323   return x / y;
 324 JRT_END
 325 
 326 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 327   return (jfloat)x;
 328 JRT_END
 329 
 330 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 331   return (jdouble)x;
 332 JRT_END
 333 
 334 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 335   return (jdouble)x;
 336 JRT_END
 337 
 338 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 339   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 340 JRT_END
 341 
 342 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 343   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 344 JRT_END
 345 
 346 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 347   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 348 JRT_END
 349 
 350 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 351   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 352 JRT_END
 353 
 354 // Functions to return the opposite of the aeabi functions for nan.
 355 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 356   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 357 JRT_END
 358 
 359 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 360   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 361 JRT_END
 362 
 363 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 364   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 365 JRT_END
 366 
 367 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 368   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 369 JRT_END
 370 
 371 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 372   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 373 JRT_END
 374 
 375 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 376   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 377 JRT_END
 378 
 379 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 380   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 381 JRT_END
 382 
 383 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 384   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 385 JRT_END
 386 
 387 // Intrinsics make gcc generate code for these.
 388 float  SharedRuntime::fneg(float f)   {
 389   return -f;
 390 }
 391 
 392 double SharedRuntime::dneg(double f)  {
 393   return -f;
 394 }
 395 
 396 #endif // __SOFTFP__
 397 
 398 #if defined(__SOFTFP__) || defined(E500V2)
 399 // Intrinsics make gcc generate code for these.
 400 double SharedRuntime::dabs(double f)  {
 401   return (f <= (double)0.0) ? (double)0.0 - f : f;
 402 }
 403 
 404 #endif
 405 
 406 #if defined(__SOFTFP__) || defined(PPC32)
 407 double SharedRuntime::dsqrt(double f) {
 408   return sqrt(f);
 409 }
 410 #endif
 411 
 412 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 413   if (g_isnan(x))
 414     return 0;
 415   if (x >= (jfloat) max_jint)
 416     return max_jint;
 417   if (x <= (jfloat) min_jint)
 418     return min_jint;
 419   return (jint) x;
 420 JRT_END
 421 
 422 
 423 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 424   if (g_isnan(x))
 425     return 0;
 426   if (x >= (jfloat) max_jlong)
 427     return max_jlong;
 428   if (x <= (jfloat) min_jlong)
 429     return min_jlong;
 430   return (jlong) x;
 431 JRT_END
 432 
 433 
 434 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 435   if (g_isnan(x))
 436     return 0;
 437   if (x >= (jdouble) max_jint)
 438     return max_jint;
 439   if (x <= (jdouble) min_jint)
 440     return min_jint;
 441   return (jint) x;
 442 JRT_END
 443 
 444 
 445 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 446   if (g_isnan(x))
 447     return 0;
 448   if (x >= (jdouble) max_jlong)
 449     return max_jlong;
 450   if (x <= (jdouble) min_jlong)
 451     return min_jlong;
 452   return (jlong) x;
 453 JRT_END
 454 
 455 
 456 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 457   return (jfloat)x;
 458 JRT_END
 459 
 460 
 461 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 462   return (jfloat)x;
 463 JRT_END
 464 
 465 
 466 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 467   return (jdouble)x;
 468 JRT_END
 469 
 470 // Exception handling across interpreter/compiler boundaries
 471 //
 472 // exception_handler_for_return_address(...) returns the continuation address.
 473 // The continuation address is the entry point of the exception handler of the
 474 // previous frame depending on the return address.
 475 
 476 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 477   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
 478   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 479 
 480   // Reset method handle flag.
 481   thread->set_is_method_handle_return(false);
 482 
 483   // The fastest case first
 484   CodeBlob* blob = CodeCache::find_blob(return_address);
 485   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 486   if (nm != NULL) {
 487     // Set flag if return address is a method handle call site.
 488     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 489     // native nmethods don't have exception handlers
 490     assert(!nm->is_native_method(), "no exception handler");
 491     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 492     if (nm->is_deopt_pc(return_address)) {
 493       // If we come here because of a stack overflow, the stack may be
 494       // unguarded. Reguard the stack otherwise if we return to the
 495       // deopt blob and the stack bang causes a stack overflow we
 496       // crash.
 497       bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
 498       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 499       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 500       return SharedRuntime::deopt_blob()->unpack_with_exception();
 501     } else {
 502       return nm->exception_begin();
 503     }
 504   }
 505 
 506   // Entry code
 507   if (StubRoutines::returns_to_call_stub(return_address)) {
 508     return StubRoutines::catch_exception_entry();
 509   }
 510   // Interpreted code
 511   if (Interpreter::contains(return_address)) {
 512     return Interpreter::rethrow_exception_entry();
 513   }
 514 
 515   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 516   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 517 
 518 #ifndef PRODUCT
 519   { ResourceMark rm;
 520     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 521     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 522     tty->print_cr("b) other problem");
 523   }
 524 #endif // PRODUCT
 525 
 526   ShouldNotReachHere();
 527   return NULL;
 528 }
 529 
 530 
 531 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 532   return raw_exception_handler_for_return_address(thread, return_address);
 533 JRT_END
 534 
 535 
 536 address SharedRuntime::get_poll_stub(address pc) {
 537   address stub;
 538   // Look up the code blob
 539   CodeBlob *cb = CodeCache::find_blob(pc);
 540 
 541   assert(((NativeInstruction*)pc)->is_safepoint_poll(),
 542     "Only polling locations are used for safepoint");
 543 
 544   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 545   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
 546   if (at_poll_return) {
 547     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 548            "polling page return stub not created yet");
 549     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 550   } else if (has_wide_vectors) {
 551     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 552            "polling page vectors safepoint stub not created yet");
 553     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 554   } else {
 555     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 556            "polling page safepoint stub not created yet");
 557     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 558   }
 559 #ifndef PRODUCT
 560   if (TraceSafepoint) {
 561     char buf[256];
 562     jio_snprintf(buf, sizeof(buf),
 563                  "... found polling page %s exception at pc = "
 564                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 565                  at_poll_return ? "return" : "loop",
 566                  (intptr_t)pc, (intptr_t)stub);
 567     tty->print_raw_cr(buf);
 568   }
 569 #endif // PRODUCT
 570   return stub;
 571 }
 572 
 573 
 574 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 575   assert(caller.is_interpreted_frame(), "");
 576   int args_size = ArgumentSizeComputer(sig).size() + 1;
 577   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 578   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 579   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 580   return result;
 581 }
 582 
 583 
 584 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 585   if (JvmtiExport::can_post_on_exceptions()) {
 586     vframeStream vfst(thread, true);
 587     methodHandle method = methodHandle(thread, vfst.method());
 588     address bcp = method()->bcp_from(vfst.bci());
 589     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 590   }
 591   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 592 }
 593 
 594 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 595   Handle h_exception = Exceptions::new_exception(thread, name, message);
 596   throw_and_post_jvmti_exception(thread, h_exception);
 597 }
 598 
 599 // The interpreter code to call this tracing function is only
 600 // called/generated when TraceRedefineClasses has the right bits
 601 // set. Since obsolete methods are never compiled, we don't have
 602 // to modify the compilers to generate calls to this function.
 603 //
 604 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 605     JavaThread* thread, Method* method))
 606   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 607 
 608   if (method->is_obsolete()) {
 609     // We are calling an obsolete method, but this is not necessarily
 610     // an error. Our method could have been redefined just after we
 611     // fetched the Method* from the constant pool.
 612 
 613     // RC_TRACE macro has an embedded ResourceMark
 614     RC_TRACE_WITH_THREAD(0x00001000, thread,
 615                          ("calling obsolete method '%s'",
 616                           method->name_and_sig_as_C_string()));
 617     if (RC_TRACE_ENABLED(0x00002000)) {
 618       // this option is provided to debug calls to obsolete methods
 619       guarantee(false, "faulting at call to an obsolete method.");
 620     }
 621   }
 622   return 0;
 623 JRT_END
 624 
 625 // ret_pc points into caller; we are returning caller's exception handler
 626 // for given exception
 627 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 628                                                     bool force_unwind, bool top_frame_only) {
 629   assert(nm != NULL, "must exist");
 630   ResourceMark rm;
 631 
 632   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 633   // determine handler bci, if any
 634   EXCEPTION_MARK;
 635 
 636   int handler_bci = -1;
 637   int scope_depth = 0;
 638   if (!force_unwind) {
 639     int bci = sd->bci();
 640     bool recursive_exception = false;
 641     do {
 642       bool skip_scope_increment = false;
 643       // exception handler lookup
 644       KlassHandle ek (THREAD, exception->klass());
 645       methodHandle mh(THREAD, sd->method());
 646       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 647       if (HAS_PENDING_EXCEPTION) {
 648         recursive_exception = true;
 649         // We threw an exception while trying to find the exception handler.
 650         // Transfer the new exception to the exception handle which will
 651         // be set into thread local storage, and do another lookup for an
 652         // exception handler for this exception, this time starting at the
 653         // BCI of the exception handler which caused the exception to be
 654         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 655         // argument to ensure that the correct exception is thrown (4870175).
 656         exception = Handle(THREAD, PENDING_EXCEPTION);
 657         CLEAR_PENDING_EXCEPTION;
 658         if (handler_bci >= 0) {
 659           bci = handler_bci;
 660           handler_bci = -1;
 661           skip_scope_increment = true;
 662         }
 663       }
 664       else {
 665         recursive_exception = false;
 666       }
 667       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 668         sd = sd->sender();
 669         if (sd != NULL) {
 670           bci = sd->bci();
 671         }
 672         ++scope_depth;
 673       }
 674     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 675   }
 676 
 677   // found handling method => lookup exception handler
 678   int catch_pco = ret_pc - nm->code_begin();
 679 
 680   ExceptionHandlerTable table(nm);
 681   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 682   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 683     // Allow abbreviated catch tables.  The idea is to allow a method
 684     // to materialize its exceptions without committing to the exact
 685     // routing of exceptions.  In particular this is needed for adding
 686     // a synthetic handler to unlock monitors when inlining
 687     // synchronized methods since the unlock path isn't represented in
 688     // the bytecodes.
 689     t = table.entry_for(catch_pco, -1, 0);
 690   }
 691 
 692 #ifdef COMPILER1
 693   if (t == NULL && nm->is_compiled_by_c1()) {
 694     assert(nm->unwind_handler_begin() != NULL, "");
 695     return nm->unwind_handler_begin();
 696   }
 697 #endif
 698 
 699   if (t == NULL) {
 700     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 701     tty->print_cr("   Exception:");
 702     exception->print();
 703     tty->cr();
 704     tty->print_cr(" Compiled exception table :");
 705     table.print();
 706     nm->print_code();
 707     guarantee(false, "missing exception handler");
 708     return NULL;
 709   }
 710 
 711   return nm->code_begin() + t->pco();
 712 }
 713 
 714 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 715   // These errors occur only at call sites
 716   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 717 JRT_END
 718 
 719 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 720   // These errors occur only at call sites
 721   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 722 JRT_END
 723 
 724 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 725   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 726 JRT_END
 727 
 728 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 729   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 730 JRT_END
 731 
 732 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 733   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 734   // cache sites (when the callee activation is not yet set up) so we are at a call site
 735   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 736 JRT_END
 737 
 738 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 739   // We avoid using the normal exception construction in this case because
 740   // it performs an upcall to Java, and we're already out of stack space.
 741   Klass* k = SystemDictionary::StackOverflowError_klass();
 742   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 743   Handle exception (thread, exception_oop);
 744   if (StackTraceInThrowable) {
 745     java_lang_Throwable::fill_in_stack_trace(exception);
 746   }
 747   // Increment counter for hs_err file reporting
 748   Atomic::inc(&Exceptions::_stack_overflow_errors);
 749   throw_and_post_jvmti_exception(thread, exception);
 750 JRT_END
 751 
 752 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 753                                                            address pc,
 754                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 755 {
 756   address target_pc = NULL;
 757 
 758   if (Interpreter::contains(pc)) {
 759 #ifdef CC_INTERP
 760     // C++ interpreter doesn't throw implicit exceptions
 761     ShouldNotReachHere();
 762 #else
 763     switch (exception_kind) {
 764       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 765       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 766       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 767       default:                      ShouldNotReachHere();
 768     }
 769 #endif // !CC_INTERP
 770   } else {
 771     switch (exception_kind) {
 772       case STACK_OVERFLOW: {
 773         // Stack overflow only occurs upon frame setup; the callee is
 774         // going to be unwound. Dispatch to a shared runtime stub
 775         // which will cause the StackOverflowError to be fabricated
 776         // and processed.
 777         // Stack overflow should never occur during deoptimization:
 778         // the compiled method bangs the stack by as much as the
 779         // interpreter would need in case of a deoptimization. The
 780         // deoptimization blob and uncommon trap blob bang the stack
 781         // in a debug VM to verify the correctness of the compiled
 782         // method stack banging.
 783         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 784         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
 785         return StubRoutines::throw_StackOverflowError_entry();
 786       }
 787 
 788       case IMPLICIT_NULL: {
 789         if (VtableStubs::contains(pc)) {
 790           // We haven't yet entered the callee frame. Fabricate an
 791           // exception and begin dispatching it in the caller. Since
 792           // the caller was at a call site, it's safe to destroy all
 793           // caller-saved registers, as these entry points do.
 794           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 795 
 796           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 797           if (vt_stub == NULL) return NULL;
 798 
 799           if (vt_stub->is_abstract_method_error(pc)) {
 800             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 801             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
 802             return StubRoutines::throw_AbstractMethodError_entry();
 803           } else {
 804             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
 805             return StubRoutines::throw_NullPointerException_at_call_entry();
 806           }
 807         } else {
 808           CodeBlob* cb = CodeCache::find_blob(pc);
 809 
 810           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 811           if (cb == NULL) return NULL;
 812 
 813           // Exception happened in CodeCache. Must be either:
 814           // 1. Inline-cache check in C2I handler blob,
 815           // 2. Inline-cache check in nmethod, or
 816           // 3. Implicit null exception in nmethod
 817 
 818           if (!cb->is_nmethod()) {
 819             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 820             if (!is_in_blob) {
 821               cb->print();
 822               fatal(err_msg("exception happened outside interpreter, nmethods and vtable stubs at pc " INTPTR_FORMAT, pc));
 823             }
 824             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
 825             // There is no handler here, so we will simply unwind.
 826             return StubRoutines::throw_NullPointerException_at_call_entry();
 827           }
 828 
 829           // Otherwise, it's an nmethod.  Consult its exception handlers.
 830           nmethod* nm = (nmethod*)cb;
 831           if (nm->inlinecache_check_contains(pc)) {
 832             // exception happened inside inline-cache check code
 833             // => the nmethod is not yet active (i.e., the frame
 834             // is not set up yet) => use return address pushed by
 835             // caller => don't push another return address
 836             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
 837             return StubRoutines::throw_NullPointerException_at_call_entry();
 838           }
 839 
 840           if (nm->method()->is_method_handle_intrinsic()) {
 841             // exception happened inside MH dispatch code, similar to a vtable stub
 842             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
 843             return StubRoutines::throw_NullPointerException_at_call_entry();
 844           }
 845 
 846 #ifndef PRODUCT
 847           _implicit_null_throws++;
 848 #endif
 849           target_pc = nm->continuation_for_implicit_exception(pc);
 850           // If there's an unexpected fault, target_pc might be NULL,
 851           // in which case we want to fall through into the normal
 852           // error handling code.
 853         }
 854 
 855         break; // fall through
 856       }
 857 
 858 
 859       case IMPLICIT_DIVIDE_BY_ZERO: {
 860         nmethod* nm = CodeCache::find_nmethod(pc);
 861         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
 862 #ifndef PRODUCT
 863         _implicit_div0_throws++;
 864 #endif
 865         target_pc = nm->continuation_for_implicit_exception(pc);
 866         // If there's an unexpected fault, target_pc might be NULL,
 867         // in which case we want to fall through into the normal
 868         // error handling code.
 869         break; // fall through
 870       }
 871 
 872       default: ShouldNotReachHere();
 873     }
 874 
 875     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 876 
 877     // for AbortVMOnException flag
 878     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
 879     if (exception_kind == IMPLICIT_NULL) {
 880       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 881     } else {
 882       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 883     }
 884     return target_pc;
 885   }
 886 
 887   ShouldNotReachHere();
 888   return NULL;
 889 }
 890 
 891 
 892 /**
 893  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 894  * installed in the native function entry of all native Java methods before
 895  * they get linked to their actual native methods.
 896  *
 897  * \note
 898  * This method actually never gets called!  The reason is because
 899  * the interpreter's native entries call NativeLookup::lookup() which
 900  * throws the exception when the lookup fails.  The exception is then
 901  * caught and forwarded on the return from NativeLookup::lookup() call
 902  * before the call to the native function.  This might change in the future.
 903  */
 904 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 905 {
 906   // We return a bad value here to make sure that the exception is
 907   // forwarded before we look at the return value.
 908   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 909 }
 910 JNI_END
 911 
 912 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 913   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 914 }
 915 
 916 
 917 #ifndef PRODUCT
 918 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 919   const frame f = thread->last_frame();
 920   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 921 #ifndef PRODUCT
 922   methodHandle mh(THREAD, f.interpreter_frame_method());
 923   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 924 #endif // !PRODUCT
 925   return preserve_this_value;
 926 JRT_END
 927 #endif // !PRODUCT
 928 
 929 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 930   assert(obj->is_oop(), "must be a valid oop");
 931   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 932   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 933 JRT_END
 934 
 935 
 936 jlong SharedRuntime::get_java_tid(Thread* thread) {
 937   if (thread != NULL) {
 938     if (thread->is_Java_thread()) {
 939       oop obj = ((JavaThread*)thread)->threadObj();
 940       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 941     }
 942   }
 943   return 0;
 944 }
 945 
 946 /**
 947  * This function ought to be a void function, but cannot be because
 948  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 949  * 6254741.  Once that is fixed we can remove the dummy return value.
 950  */
 951 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
 952   return dtrace_object_alloc_base(Thread::current(), o, size);
 953 }
 954 
 955 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
 956   assert(DTraceAllocProbes, "wrong call");
 957   Klass* klass = o->klass();
 958   Symbol* name = klass->name();
 959   HOTSPOT_OBJECT_ALLOC(
 960                    get_java_tid(thread),
 961                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
 962   return 0;
 963 }
 964 
 965 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 966     JavaThread* thread, Method* method))
 967   assert(DTraceMethodProbes, "wrong call");
 968   Symbol* kname = method->klass_name();
 969   Symbol* name = method->name();
 970   Symbol* sig = method->signature();
 971   HOTSPOT_METHOD_ENTRY(
 972       get_java_tid(thread),
 973       (char *) kname->bytes(), kname->utf8_length(),
 974       (char *) name->bytes(), name->utf8_length(),
 975       (char *) sig->bytes(), sig->utf8_length());
 976   return 0;
 977 JRT_END
 978 
 979 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
 980     JavaThread* thread, Method* method))
 981   assert(DTraceMethodProbes, "wrong call");
 982   Symbol* kname = method->klass_name();
 983   Symbol* name = method->name();
 984   Symbol* sig = method->signature();
 985   HOTSPOT_METHOD_RETURN(
 986       get_java_tid(thread),
 987       (char *) kname->bytes(), kname->utf8_length(),
 988       (char *) name->bytes(), name->utf8_length(),
 989       (char *) sig->bytes(), sig->utf8_length());
 990   return 0;
 991 JRT_END
 992 
 993 
 994 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
 995 // for a call current in progress, i.e., arguments has been pushed on stack
 996 // put callee has not been invoked yet.  Used by: resolve virtual/static,
 997 // vtable updates, etc.  Caller frame must be compiled.
 998 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
 999   ResourceMark rm(THREAD);
1000 
1001   // last java frame on stack (which includes native call frames)
1002   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1003 
1004   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1005 }
1006 
1007 
1008 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1009 // for a call current in progress, i.e., arguments has been pushed on stack
1010 // but callee has not been invoked yet.  Caller frame must be compiled.
1011 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1012                                               vframeStream& vfst,
1013                                               Bytecodes::Code& bc,
1014                                               CallInfo& callinfo, TRAPS) {
1015   Handle receiver;
1016   Handle nullHandle;  //create a handy null handle for exception returns
1017 
1018   assert(!vfst.at_end(), "Java frame must exist");
1019 
1020   // Find caller and bci from vframe
1021   methodHandle caller(THREAD, vfst.method());
1022   int          bci   = vfst.bci();
1023 
1024   // Find bytecode
1025   Bytecode_invoke bytecode(caller, bci);
1026   bc = bytecode.invoke_code();
1027   int bytecode_index = bytecode.index();
1028 
1029   // Find receiver for non-static call
1030   if (bc != Bytecodes::_invokestatic &&
1031       bc != Bytecodes::_invokedynamic &&
1032       bc != Bytecodes::_invokehandle) {
1033     // This register map must be update since we need to find the receiver for
1034     // compiled frames. The receiver might be in a register.
1035     RegisterMap reg_map2(thread);
1036     frame stubFrame   = thread->last_frame();
1037     // Caller-frame is a compiled frame
1038     frame callerFrame = stubFrame.sender(&reg_map2);
1039 
1040     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1041     if (callee.is_null()) {
1042       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1043     }
1044     // Retrieve from a compiled argument list
1045     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1046 
1047     if (receiver.is_null()) {
1048       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1049     }
1050   }
1051 
1052   // Resolve method. This is parameterized by bytecode.
1053   constantPoolHandle constants(THREAD, caller->constants());
1054   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1055   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1056 
1057 #ifdef ASSERT
1058   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1059   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) {
1060     assert(receiver.not_null(), "should have thrown exception");
1061     KlassHandle receiver_klass(THREAD, receiver->klass());
1062     Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1063                             // klass is already loaded
1064     KlassHandle static_receiver_klass(THREAD, rk);
1065     // Method handle invokes might have been optimized to a direct call
1066     // so don't check for the receiver class.
1067     // FIXME this weakens the assert too much
1068     methodHandle callee = callinfo.selected_method();
1069     assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
1070            callee->is_method_handle_intrinsic() ||
1071            callee->is_compiled_lambda_form(),
1072            "actual receiver must be subclass of static receiver klass");
1073     if (receiver_klass->oop_is_instance()) {
1074       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1075         tty->print_cr("ERROR: Klass not yet initialized!!");
1076         receiver_klass()->print();
1077       }
1078       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1079     }
1080   }
1081 #endif
1082 
1083   return receiver;
1084 }
1085 
1086 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1087   ResourceMark rm(THREAD);
1088   // We need first to check if any Java activations (compiled, interpreted)
1089   // exist on the stack since last JavaCall.  If not, we need
1090   // to get the target method from the JavaCall wrapper.
1091   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1092   methodHandle callee_method;
1093   if (vfst.at_end()) {
1094     // No Java frames were found on stack since we did the JavaCall.
1095     // Hence the stack can only contain an entry_frame.  We need to
1096     // find the target method from the stub frame.
1097     RegisterMap reg_map(thread, false);
1098     frame fr = thread->last_frame();
1099     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1100     fr = fr.sender(&reg_map);
1101     assert(fr.is_entry_frame(), "must be");
1102     // fr is now pointing to the entry frame.
1103     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1104     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1105   } else {
1106     Bytecodes::Code bc;
1107     CallInfo callinfo;
1108     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1109     callee_method = callinfo.selected_method();
1110   }
1111   assert(callee_method()->is_method(), "must be");
1112   return callee_method;
1113 }
1114 
1115 // Resolves a call.
1116 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1117                                            bool is_virtual,
1118                                            bool is_optimized, TRAPS) {
1119   methodHandle callee_method;
1120   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1121   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1122     int retry_count = 0;
1123     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1124            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1125       // If has a pending exception then there is no need to re-try to
1126       // resolve this method.
1127       // If the method has been redefined, we need to try again.
1128       // Hack: we have no way to update the vtables of arrays, so don't
1129       // require that java.lang.Object has been updated.
1130 
1131       // It is very unlikely that method is redefined more than 100 times
1132       // in the middle of resolve. If it is looping here more than 100 times
1133       // means then there could be a bug here.
1134       guarantee((retry_count++ < 100),
1135                 "Could not resolve to latest version of redefined method");
1136       // method is redefined in the middle of resolve so re-try.
1137       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1138     }
1139   }
1140   return callee_method;
1141 }
1142 
1143 // Resolves a call.  The compilers generate code for calls that go here
1144 // and are patched with the real destination of the call.
1145 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1146                                            bool is_virtual,
1147                                            bool is_optimized, TRAPS) {
1148 
1149   ResourceMark rm(thread);
1150   RegisterMap cbl_map(thread, false);
1151   frame caller_frame = thread->last_frame().sender(&cbl_map);
1152 
1153   CodeBlob* caller_cb = caller_frame.cb();
1154   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1155   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1156 
1157   // make sure caller is not getting deoptimized
1158   // and removed before we are done with it.
1159   // CLEANUP - with lazy deopt shouldn't need this lock
1160   nmethodLocker caller_lock(caller_nm);
1161 
1162   // determine call info & receiver
1163   // note: a) receiver is NULL for static calls
1164   //       b) an exception is thrown if receiver is NULL for non-static calls
1165   CallInfo call_info;
1166   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1167   Handle receiver = find_callee_info(thread, invoke_code,
1168                                      call_info, CHECK_(methodHandle()));
1169   methodHandle callee_method = call_info.selected_method();
1170 
1171   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1172          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1173          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1174          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1175 
1176   assert(caller_nm->is_alive(), "It should be alive");
1177 
1178 #ifndef PRODUCT
1179   // tracing/debugging/statistics
1180   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1181                 (is_virtual) ? (&_resolve_virtual_ctr) :
1182                                (&_resolve_static_ctr);
1183   Atomic::inc(addr);
1184 
1185   if (TraceCallFixup) {
1186     ResourceMark rm(thread);
1187     tty->print("resolving %s%s (%s) call to",
1188       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1189       Bytecodes::name(invoke_code));
1190     callee_method->print_short_name(tty);
1191     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
1192   }
1193 #endif
1194 
1195   // JSR 292 key invariant:
1196   // If the resolved method is a MethodHandle invoke target, the call
1197   // site must be a MethodHandle call site, because the lambda form might tail-call
1198   // leaving the stack in a state unknown to either caller or callee
1199   // TODO detune for now but we might need it again
1200 //  assert(!callee_method->is_compiled_lambda_form() ||
1201 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1202 
1203   // Compute entry points. This might require generation of C2I converter
1204   // frames, so we cannot be holding any locks here. Furthermore, the
1205   // computation of the entry points is independent of patching the call.  We
1206   // always return the entry-point, but we only patch the stub if the call has
1207   // not been deoptimized.  Return values: For a virtual call this is an
1208   // (cached_oop, destination address) pair. For a static call/optimized
1209   // virtual this is just a destination address.
1210 
1211   StaticCallInfo static_call_info;
1212   CompiledICInfo virtual_call_info;
1213 
1214   // Make sure the callee nmethod does not get deoptimized and removed before
1215   // we are done patching the code.
1216   nmethod* callee_nm = callee_method->code();
1217   if (callee_nm != NULL && !callee_nm->is_in_use()) {
1218     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1219     callee_nm = NULL;
1220   }
1221   nmethodLocker nl_callee(callee_nm);
1222 #ifdef ASSERT
1223   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1224 #endif
1225 
1226   if (is_virtual) {
1227     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1228     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1229     KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
1230     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1231                      is_optimized, static_bound, virtual_call_info,
1232                      CHECK_(methodHandle()));
1233   } else {
1234     // static call
1235     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1236   }
1237 
1238   // grab lock, check for deoptimization and potentially patch caller
1239   {
1240     MutexLocker ml_patch(CompiledIC_lock);
1241 
1242     // Lock blocks for safepoint during which both nmethods can change state.
1243 
1244     // Now that we are ready to patch if the Method* was redefined then
1245     // don't update call site and let the caller retry.
1246     // Don't update call site if callee nmethod was unloaded or deoptimized.
1247     // Don't update call site if callee nmethod was replaced by an other nmethod
1248     // which may happen when multiply alive nmethod (tiered compilation)
1249     // will be supported.
1250     if (!callee_method->is_old() &&
1251         (callee_nm == NULL || callee_nm->is_in_use() && (callee_method->code() == callee_nm))) {
1252 #ifdef ASSERT
1253       // We must not try to patch to jump to an already unloaded method.
1254       if (dest_entry_point != 0) {
1255         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1256         assert((cb != NULL) && cb->is_nmethod() && (((nmethod*)cb) == callee_nm),
1257                "should not call unloaded nmethod");
1258       }
1259 #endif
1260       if (is_virtual) {
1261         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1262         if (inline_cache->is_clean()) {
1263           inline_cache->set_to_monomorphic(virtual_call_info);
1264         }
1265       } else {
1266         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1267         if (ssc->is_clean()) ssc->set(static_call_info);
1268       }
1269     }
1270 
1271   } // unlock CompiledIC_lock
1272 
1273   return callee_method;
1274 }
1275 
1276 
1277 // Inline caches exist only in compiled code
1278 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1279 #ifdef ASSERT
1280   RegisterMap reg_map(thread, false);
1281   frame stub_frame = thread->last_frame();
1282   assert(stub_frame.is_runtime_frame(), "sanity check");
1283   frame caller_frame = stub_frame.sender(&reg_map);
1284   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1285 #endif /* ASSERT */
1286 
1287   methodHandle callee_method;
1288   JRT_BLOCK
1289     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1290     // Return Method* through TLS
1291     thread->set_vm_result_2(callee_method());
1292   JRT_BLOCK_END
1293   // return compiled code entry point after potential safepoints
1294   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1295   return callee_method->verified_code_entry();
1296 JRT_END
1297 
1298 
1299 // Handle call site that has been made non-entrant
1300 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1301   // 6243940 We might end up in here if the callee is deoptimized
1302   // as we race to call it.  We don't want to take a safepoint if
1303   // the caller was interpreted because the caller frame will look
1304   // interpreted to the stack walkers and arguments are now
1305   // "compiled" so it is much better to make this transition
1306   // invisible to the stack walking code. The i2c path will
1307   // place the callee method in the callee_target. It is stashed
1308   // there because if we try and find the callee by normal means a
1309   // safepoint is possible and have trouble gc'ing the compiled args.
1310   RegisterMap reg_map(thread, false);
1311   frame stub_frame = thread->last_frame();
1312   assert(stub_frame.is_runtime_frame(), "sanity check");
1313   frame caller_frame = stub_frame.sender(&reg_map);
1314 
1315   if (caller_frame.is_interpreted_frame() ||
1316       caller_frame.is_entry_frame()) {
1317     Method* callee = thread->callee_target();
1318     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1319     thread->set_vm_result_2(callee);
1320     thread->set_callee_target(NULL);
1321     return callee->get_c2i_entry();
1322   }
1323 
1324   // Must be compiled to compiled path which is safe to stackwalk
1325   methodHandle callee_method;
1326   JRT_BLOCK
1327     // Force resolving of caller (if we called from compiled frame)
1328     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1329     thread->set_vm_result_2(callee_method());
1330   JRT_BLOCK_END
1331   // return compiled code entry point after potential safepoints
1332   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1333   return callee_method->verified_code_entry();
1334 JRT_END
1335 
1336 // Handle abstract method call
1337 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1338   return StubRoutines::throw_AbstractMethodError_entry();
1339 JRT_END
1340 
1341 
1342 // resolve a static call and patch code
1343 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1344   methodHandle callee_method;
1345   JRT_BLOCK
1346     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1347     thread->set_vm_result_2(callee_method());
1348   JRT_BLOCK_END
1349   // return compiled code entry point after potential safepoints
1350   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1351   return callee_method->verified_code_entry();
1352 JRT_END
1353 
1354 
1355 // resolve virtual call and update inline cache to monomorphic
1356 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1357   methodHandle callee_method;
1358   JRT_BLOCK
1359     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1360     thread->set_vm_result_2(callee_method());
1361   JRT_BLOCK_END
1362   // return compiled code entry point after potential safepoints
1363   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1364   return callee_method->verified_code_entry();
1365 JRT_END
1366 
1367 
1368 // Resolve a virtual call that can be statically bound (e.g., always
1369 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1370 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1371   methodHandle callee_method;
1372   JRT_BLOCK
1373     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1374     thread->set_vm_result_2(callee_method());
1375   JRT_BLOCK_END
1376   // return compiled code entry point after potential safepoints
1377   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1378   return callee_method->verified_code_entry();
1379 JRT_END
1380 
1381 
1382 
1383 
1384 
1385 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1386   ResourceMark rm(thread);
1387   CallInfo call_info;
1388   Bytecodes::Code bc;
1389 
1390   // receiver is NULL for static calls. An exception is thrown for NULL
1391   // receivers for non-static calls
1392   Handle receiver = find_callee_info(thread, bc, call_info,
1393                                      CHECK_(methodHandle()));
1394   // Compiler1 can produce virtual call sites that can actually be statically bound
1395   // If we fell thru to below we would think that the site was going megamorphic
1396   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1397   // we'd try and do a vtable dispatch however methods that can be statically bound
1398   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1399   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1400   // plain ic_miss) and the site will be converted to an optimized virtual call site
1401   // never to miss again. I don't believe C2 will produce code like this but if it
1402   // did this would still be the correct thing to do for it too, hence no ifdef.
1403   //
1404   if (call_info.resolved_method()->can_be_statically_bound()) {
1405     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1406     if (TraceCallFixup) {
1407       RegisterMap reg_map(thread, false);
1408       frame caller_frame = thread->last_frame().sender(&reg_map);
1409       ResourceMark rm(thread);
1410       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1411       callee_method->print_short_name(tty);
1412       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1413       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1414     }
1415     return callee_method;
1416   }
1417 
1418   methodHandle callee_method = call_info.selected_method();
1419 
1420   bool should_be_mono = false;
1421 
1422 #ifndef PRODUCT
1423   Atomic::inc(&_ic_miss_ctr);
1424 
1425   // Statistics & Tracing
1426   if (TraceCallFixup) {
1427     ResourceMark rm(thread);
1428     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1429     callee_method->print_short_name(tty);
1430     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1431   }
1432 
1433   if (ICMissHistogram) {
1434     MutexLocker m(VMStatistic_lock);
1435     RegisterMap reg_map(thread, false);
1436     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1437     // produce statistics under the lock
1438     trace_ic_miss(f.pc());
1439   }
1440 #endif
1441 
1442   // install an event collector so that when a vtable stub is created the
1443   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1444   // event can't be posted when the stub is created as locks are held
1445   // - instead the event will be deferred until the event collector goes
1446   // out of scope.
1447   JvmtiDynamicCodeEventCollector event_collector;
1448 
1449   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1450   { MutexLocker ml_patch (CompiledIC_lock);
1451     RegisterMap reg_map(thread, false);
1452     frame caller_frame = thread->last_frame().sender(&reg_map);
1453     CodeBlob* cb = caller_frame.cb();
1454     if (cb->is_nmethod()) {
1455       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
1456       bool should_be_mono = false;
1457       if (inline_cache->is_optimized()) {
1458         if (TraceCallFixup) {
1459           ResourceMark rm(thread);
1460           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1461           callee_method->print_short_name(tty);
1462           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1463         }
1464         should_be_mono = true;
1465       } else if (inline_cache->is_icholder_call()) {
1466         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1467         if (ic_oop != NULL) {
1468 
1469           if (receiver()->klass() == ic_oop->holder_klass()) {
1470             // This isn't a real miss. We must have seen that compiled code
1471             // is now available and we want the call site converted to a
1472             // monomorphic compiled call site.
1473             // We can't assert for callee_method->code() != NULL because it
1474             // could have been deoptimized in the meantime
1475             if (TraceCallFixup) {
1476               ResourceMark rm(thread);
1477               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1478               callee_method->print_short_name(tty);
1479               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1480             }
1481             should_be_mono = true;
1482           }
1483         }
1484       }
1485 
1486       if (should_be_mono) {
1487 
1488         // We have a path that was monomorphic but was going interpreted
1489         // and now we have (or had) a compiled entry. We correct the IC
1490         // by using a new icBuffer.
1491         CompiledICInfo info;
1492         KlassHandle receiver_klass(THREAD, receiver()->klass());
1493         inline_cache->compute_monomorphic_entry(callee_method,
1494                                                 receiver_klass,
1495                                                 inline_cache->is_optimized(),
1496                                                 false,
1497                                                 info, CHECK_(methodHandle()));
1498         inline_cache->set_to_monomorphic(info);
1499       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1500         // Potential change to megamorphic
1501         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1502         if (!successful) {
1503           inline_cache->set_to_clean();
1504         }
1505       } else {
1506         // Either clean or megamorphic
1507       }
1508     }
1509   } // Release CompiledIC_lock
1510 
1511   return callee_method;
1512 }
1513 
1514 //
1515 // Resets a call-site in compiled code so it will get resolved again.
1516 // This routines handles both virtual call sites, optimized virtual call
1517 // sites, and static call sites. Typically used to change a call sites
1518 // destination from compiled to interpreted.
1519 //
1520 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1521   ResourceMark rm(thread);
1522   RegisterMap reg_map(thread, false);
1523   frame stub_frame = thread->last_frame();
1524   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1525   frame caller = stub_frame.sender(&reg_map);
1526 
1527   // Do nothing if the frame isn't a live compiled frame.
1528   // nmethod could be deoptimized by the time we get here
1529   // so no update to the caller is needed.
1530 
1531   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1532 
1533     address pc = caller.pc();
1534 
1535     // Default call_addr is the location of the "basic" call.
1536     // Determine the address of the call we a reresolving. With
1537     // Inline Caches we will always find a recognizable call.
1538     // With Inline Caches disabled we may or may not find a
1539     // recognizable call. We will always find a call for static
1540     // calls and for optimized virtual calls. For vanilla virtual
1541     // calls it depends on the state of the UseInlineCaches switch.
1542     //
1543     // With Inline Caches disabled we can get here for a virtual call
1544     // for two reasons:
1545     //   1 - calling an abstract method. The vtable for abstract methods
1546     //       will run us thru handle_wrong_method and we will eventually
1547     //       end up in the interpreter to throw the ame.
1548     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1549     //       call and between the time we fetch the entry address and
1550     //       we jump to it the target gets deoptimized. Similar to 1
1551     //       we will wind up in the interprter (thru a c2i with c2).
1552     //
1553     address call_addr = NULL;
1554     {
1555       // Get call instruction under lock because another thread may be
1556       // busy patching it.
1557       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1558       // Location of call instruction
1559       if (NativeCall::is_call_before(pc)) {
1560         NativeCall *ncall = nativeCall_before(pc);
1561         call_addr = ncall->instruction_address();
1562       }
1563     }
1564 
1565     // Check for static or virtual call
1566     bool is_static_call = false;
1567     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1568     // Make sure nmethod doesn't get deoptimized and removed until
1569     // this is done with it.
1570     // CLEANUP - with lazy deopt shouldn't need this lock
1571     nmethodLocker nmlock(caller_nm);
1572 
1573     if (call_addr != NULL) {
1574       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1575       int ret = iter.next(); // Get item
1576       if (ret) {
1577         assert(iter.addr() == call_addr, "must find call");
1578         if (iter.type() == relocInfo::static_call_type) {
1579           is_static_call = true;
1580         } else {
1581           assert(iter.type() == relocInfo::virtual_call_type ||
1582                  iter.type() == relocInfo::opt_virtual_call_type
1583                 , "unexpected relocInfo. type");
1584         }
1585       } else {
1586         assert(!UseInlineCaches, "relocation info. must exist for this address");
1587       }
1588 
1589       // Cleaning the inline cache will force a new resolve. This is more robust
1590       // than directly setting it to the new destination, since resolving of calls
1591       // is always done through the same code path. (experience shows that it
1592       // leads to very hard to track down bugs, if an inline cache gets updated
1593       // to a wrong method). It should not be performance critical, since the
1594       // resolve is only done once.
1595 
1596       MutexLocker ml(CompiledIC_lock);
1597       if (is_static_call) {
1598         CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1599         ssc->set_to_clean();
1600       } else {
1601         // compiled, dispatched call (which used to call an interpreted method)
1602         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1603         inline_cache->set_to_clean();
1604       }
1605     }
1606 
1607   }
1608 
1609   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1610 
1611 
1612 #ifndef PRODUCT
1613   Atomic::inc(&_wrong_method_ctr);
1614 
1615   if (TraceCallFixup) {
1616     ResourceMark rm(thread);
1617     tty->print("handle_wrong_method reresolving call to");
1618     callee_method->print_short_name(tty);
1619     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1620   }
1621 #endif
1622 
1623   return callee_method;
1624 }
1625 
1626 #ifdef ASSERT
1627 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
1628                                                                 const BasicType* sig_bt,
1629                                                                 const VMRegPair* regs) {
1630   ResourceMark rm;
1631   const int total_args_passed = method->size_of_parameters();
1632   const VMRegPair*    regs_with_member_name = regs;
1633         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1634 
1635   const int member_arg_pos = total_args_passed - 1;
1636   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1637   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1638 
1639   const bool is_outgoing = method->is_method_handle_intrinsic();
1640   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1641 
1642   for (int i = 0; i < member_arg_pos; i++) {
1643     VMReg a =    regs_with_member_name[i].first();
1644     VMReg b = regs_without_member_name[i].first();
1645     assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
1646   }
1647   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1648 }
1649 #endif
1650 
1651 // ---------------------------------------------------------------------------
1652 // We are calling the interpreter via a c2i. Normally this would mean that
1653 // we were called by a compiled method. However we could have lost a race
1654 // where we went int -> i2c -> c2i and so the caller could in fact be
1655 // interpreted. If the caller is compiled we attempt to patch the caller
1656 // so he no longer calls into the interpreter.
1657 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1658   Method* moop(method);
1659 
1660   address entry_point = moop->from_compiled_entry();
1661 
1662   // It's possible that deoptimization can occur at a call site which hasn't
1663   // been resolved yet, in which case this function will be called from
1664   // an nmethod that has been patched for deopt and we can ignore the
1665   // request for a fixup.
1666   // Also it is possible that we lost a race in that from_compiled_entry
1667   // is now back to the i2c in that case we don't need to patch and if
1668   // we did we'd leap into space because the callsite needs to use
1669   // "to interpreter" stub in order to load up the Method*. Don't
1670   // ask me how I know this...
1671 
1672   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1673   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1674     return;
1675   }
1676 
1677   // The check above makes sure this is a nmethod.
1678   nmethod* nm = cb->as_nmethod_or_null();
1679   assert(nm, "must be");
1680 
1681   // Get the return PC for the passed caller PC.
1682   address return_pc = caller_pc + frame::pc_return_offset;
1683 
1684   // There is a benign race here. We could be attempting to patch to a compiled
1685   // entry point at the same time the callee is being deoptimized. If that is
1686   // the case then entry_point may in fact point to a c2i and we'd patch the
1687   // call site with the same old data. clear_code will set code() to NULL
1688   // at the end of it. If we happen to see that NULL then we can skip trying
1689   // to patch. If we hit the window where the callee has a c2i in the
1690   // from_compiled_entry and the NULL isn't present yet then we lose the race
1691   // and patch the code with the same old data. Asi es la vida.
1692 
1693   if (moop->code() == NULL) return;
1694 
1695   if (nm->is_in_use()) {
1696 
1697     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1698     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1699     if (NativeCall::is_call_before(return_pc)) {
1700       NativeCall *call = nativeCall_before(return_pc);
1701       //
1702       // bug 6281185. We might get here after resolving a call site to a vanilla
1703       // virtual call. Because the resolvee uses the verified entry it may then
1704       // see compiled code and attempt to patch the site by calling us. This would
1705       // then incorrectly convert the call site to optimized and its downhill from
1706       // there. If you're lucky you'll get the assert in the bugid, if not you've
1707       // just made a call site that could be megamorphic into a monomorphic site
1708       // for the rest of its life! Just another racing bug in the life of
1709       // fixup_callers_callsite ...
1710       //
1711       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1712       iter.next();
1713       assert(iter.has_current(), "must have a reloc at java call site");
1714       relocInfo::relocType typ = iter.reloc()->type();
1715       if (typ != relocInfo::static_call_type &&
1716            typ != relocInfo::opt_virtual_call_type &&
1717            typ != relocInfo::static_stub_type) {
1718         return;
1719       }
1720       address destination = call->destination();
1721       if (destination != entry_point) {
1722         CodeBlob* callee = CodeCache::find_blob(destination);
1723         // callee == cb seems weird. It means calling interpreter thru stub.
1724         if (callee == cb || callee->is_adapter_blob()) {
1725           // static call or optimized virtual
1726           if (TraceCallFixup) {
1727             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1728             moop->print_short_name(tty);
1729             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1730           }
1731           call->set_destination_mt_safe(entry_point);
1732         } else {
1733           if (TraceCallFixup) {
1734             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1735             moop->print_short_name(tty);
1736             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1737           }
1738           // assert is too strong could also be resolve destinations.
1739           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1740         }
1741       } else {
1742           if (TraceCallFixup) {
1743             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1744             moop->print_short_name(tty);
1745             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1746           }
1747       }
1748     }
1749   }
1750 IRT_END
1751 
1752 
1753 // same as JVM_Arraycopy, but called directly from compiled code
1754 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1755                                                 oopDesc* dest, jint dest_pos,
1756                                                 jint length,
1757                                                 JavaThread* thread)) {
1758 #ifndef PRODUCT
1759   _slow_array_copy_ctr++;
1760 #endif
1761   // Check if we have null pointers
1762   if (src == NULL || dest == NULL) {
1763     THROW(vmSymbols::java_lang_NullPointerException());
1764   }
1765   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1766   // even though the copy_array API also performs dynamic checks to ensure
1767   // that src and dest are truly arrays (and are conformable).
1768   // The copy_array mechanism is awkward and could be removed, but
1769   // the compilers don't call this function except as a last resort,
1770   // so it probably doesn't matter.
1771   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1772                                         (arrayOopDesc*)dest, dest_pos,
1773                                         length, thread);
1774 }
1775 JRT_END
1776 
1777 char* SharedRuntime::generate_class_cast_message(
1778     JavaThread* thread, const char* objName) {
1779 
1780   // Get target class name from the checkcast instruction
1781   vframeStream vfst(thread, true);
1782   assert(!vfst.at_end(), "Java frame must exist");
1783   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1784   Klass* targetKlass = vfst.method()->constants()->klass_at(
1785     cc.index(), thread);
1786   return generate_class_cast_message(objName, targetKlass->external_name());
1787 }
1788 
1789 char* SharedRuntime::generate_class_cast_message(
1790     const char* objName, const char* targetKlassName, const char* desc) {
1791   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1792 
1793   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1794   if (NULL == message) {
1795     // Shouldn't happen, but don't cause even more problems if it does
1796     message = const_cast<char*>(objName);
1797   } else {
1798     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1799   }
1800   return message;
1801 }
1802 
1803 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1804   (void) JavaThread::current()->reguard_stack();
1805 JRT_END
1806 
1807 
1808 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1809 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1810   // Disable ObjectSynchronizer::quick_enter() in default config
1811   // until JDK-8077392 is resolved.
1812   if ((SyncFlags & 256) != 0 && !SafepointSynchronize::is_synchronizing()) {
1813     // Only try quick_enter() if we're not trying to reach a safepoint
1814     // so that the calling thread reaches the safepoint more quickly.
1815     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
1816   }
1817   // NO_ASYNC required because an async exception on the state transition destructor
1818   // would leave you with the lock held and it would never be released.
1819   // The normal monitorenter NullPointerException is thrown without acquiring a lock
1820   // and the model is that an exception implies the method failed.
1821   JRT_BLOCK_NO_ASYNC
1822   oop obj(_obj);
1823   if (PrintBiasedLockingStatistics) {
1824     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1825   }
1826   Handle h_obj(THREAD, obj);
1827   if (UseBiasedLocking) {
1828     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1829     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1830   } else {
1831     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1832   }
1833   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1834   JRT_BLOCK_END
1835 JRT_END
1836 
1837 // Handles the uncommon cases of monitor unlocking in compiled code
1838 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
1839    oop obj(_obj);
1840   assert(JavaThread::current() == THREAD, "invariant");
1841   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1842   // testing was unable to ever fire the assert that guarded it so I have removed it.
1843   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1844 #undef MIGHT_HAVE_PENDING
1845 #ifdef MIGHT_HAVE_PENDING
1846   // Save and restore any pending_exception around the exception mark.
1847   // While the slow_exit must not throw an exception, we could come into
1848   // this routine with one set.
1849   oop pending_excep = NULL;
1850   const char* pending_file;
1851   int pending_line;
1852   if (HAS_PENDING_EXCEPTION) {
1853     pending_excep = PENDING_EXCEPTION;
1854     pending_file  = THREAD->exception_file();
1855     pending_line  = THREAD->exception_line();
1856     CLEAR_PENDING_EXCEPTION;
1857   }
1858 #endif /* MIGHT_HAVE_PENDING */
1859 
1860   {
1861     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1862     EXCEPTION_MARK;
1863     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1864   }
1865 
1866 #ifdef MIGHT_HAVE_PENDING
1867   if (pending_excep != NULL) {
1868     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1869   }
1870 #endif /* MIGHT_HAVE_PENDING */
1871 JRT_END
1872 
1873 #ifndef PRODUCT
1874 
1875 void SharedRuntime::print_statistics() {
1876   ttyLocker ttyl;
1877   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1878 
1879   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1880 
1881   SharedRuntime::print_ic_miss_histogram();
1882 
1883   if (CountRemovableExceptions) {
1884     if (_nof_removable_exceptions > 0) {
1885       Unimplemented(); // this counter is not yet incremented
1886       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1887     }
1888   }
1889 
1890   // Dump the JRT_ENTRY counters
1891   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1892   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1893   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1894   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1895   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1896   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1897   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1898 
1899   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
1900   tty->print_cr("%5d wrong method", _wrong_method_ctr);
1901   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
1902   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
1903   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
1904 
1905   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
1906   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
1907   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
1908   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
1909   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
1910   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
1911   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
1912   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
1913   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
1914   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
1915   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
1916   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
1917   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
1918   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
1919   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
1920   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
1921 
1922   AdapterHandlerLibrary::print_statistics();
1923 
1924   if (xtty != NULL)  xtty->tail("statistics");
1925 }
1926 
1927 inline double percent(int x, int y) {
1928   return 100.0 * x / MAX2(y, 1);
1929 }
1930 
1931 class MethodArityHistogram {
1932  public:
1933   enum { MAX_ARITY = 256 };
1934  private:
1935   static int _arity_histogram[MAX_ARITY];     // histogram of #args
1936   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1937   static int _max_arity;                      // max. arity seen
1938   static int _max_size;                       // max. arg size seen
1939 
1940   static void add_method_to_histogram(nmethod* nm) {
1941     Method* m = nm->method();
1942     ArgumentCount args(m->signature());
1943     int arity   = args.size() + (m->is_static() ? 0 : 1);
1944     int argsize = m->size_of_parameters();
1945     arity   = MIN2(arity, MAX_ARITY-1);
1946     argsize = MIN2(argsize, MAX_ARITY-1);
1947     int count = nm->method()->compiled_invocation_count();
1948     _arity_histogram[arity]  += count;
1949     _size_histogram[argsize] += count;
1950     _max_arity = MAX2(_max_arity, arity);
1951     _max_size  = MAX2(_max_size, argsize);
1952   }
1953 
1954   void print_histogram_helper(int n, int* histo, const char* name) {
1955     const int N = MIN2(5, n);
1956     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1957     double sum = 0;
1958     double weighted_sum = 0;
1959     int i;
1960     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
1961     double rest = sum;
1962     double percent = sum / 100;
1963     for (i = 0; i <= N; i++) {
1964       rest -= histo[i];
1965       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
1966     }
1967     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
1968     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
1969   }
1970 
1971   void print_histogram() {
1972     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1973     print_histogram_helper(_max_arity, _arity_histogram, "arity");
1974     tty->print_cr("\nSame for parameter size (in words):");
1975     print_histogram_helper(_max_size, _size_histogram, "size");
1976     tty->cr();
1977   }
1978 
1979  public:
1980   MethodArityHistogram() {
1981     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1982     _max_arity = _max_size = 0;
1983     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
1984     CodeCache::nmethods_do(add_method_to_histogram);
1985     print_histogram();
1986   }
1987 };
1988 
1989 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
1990 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
1991 int MethodArityHistogram::_max_arity;
1992 int MethodArityHistogram::_max_size;
1993 
1994 void SharedRuntime::print_call_statistics(int comp_total) {
1995   tty->print_cr("Calls from compiled code:");
1996   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
1997   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
1998   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
1999   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2000   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2001   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2002   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2003   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2004   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2005   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2006   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2007   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2008   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2009   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2010   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2011   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2012   tty->cr();
2013   tty->print_cr("Note 1: counter updates are not MT-safe.");
2014   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2015   tty->print_cr("        %% in nested categories are relative to their category");
2016   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2017   tty->cr();
2018 
2019   MethodArityHistogram h;
2020 }
2021 #endif
2022 
2023 
2024 // A simple wrapper class around the calling convention information
2025 // that allows sharing of adapters for the same calling convention.
2026 class AdapterFingerPrint : public CHeapObj<mtCode> {
2027  private:
2028   enum {
2029     _basic_type_bits = 4,
2030     _basic_type_mask = right_n_bits(_basic_type_bits),
2031     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2032     _compact_int_count = 3
2033   };
2034   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2035   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2036 
2037   union {
2038     int  _compact[_compact_int_count];
2039     int* _fingerprint;
2040   } _value;
2041   int _length; // A negative length indicates the fingerprint is in the compact form,
2042                // Otherwise _value._fingerprint is the array.
2043 
2044   // Remap BasicTypes that are handled equivalently by the adapters.
2045   // These are correct for the current system but someday it might be
2046   // necessary to make this mapping platform dependent.
2047   static int adapter_encoding(BasicType in) {
2048     switch (in) {
2049       case T_BOOLEAN:
2050       case T_BYTE:
2051       case T_SHORT:
2052       case T_CHAR:
2053         // There are all promoted to T_INT in the calling convention
2054         return T_INT;
2055 
2056       case T_OBJECT:
2057       case T_ARRAY:
2058         // In other words, we assume that any register good enough for
2059         // an int or long is good enough for a managed pointer.
2060 #ifdef _LP64
2061         return T_LONG;
2062 #else
2063         return T_INT;
2064 #endif
2065 
2066       case T_INT:
2067       case T_LONG:
2068       case T_FLOAT:
2069       case T_DOUBLE:
2070       case T_VOID:
2071         return in;
2072 
2073       default:
2074         ShouldNotReachHere();
2075         return T_CONFLICT;
2076     }
2077   }
2078 
2079  public:
2080   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2081     // The fingerprint is based on the BasicType signature encoded
2082     // into an array of ints with eight entries per int.
2083     int* ptr;
2084     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2085     if (len <= _compact_int_count) {
2086       assert(_compact_int_count == 3, "else change next line");
2087       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2088       // Storing the signature encoded as signed chars hits about 98%
2089       // of the time.
2090       _length = -len;
2091       ptr = _value._compact;
2092     } else {
2093       _length = len;
2094       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2095       ptr = _value._fingerprint;
2096     }
2097 
2098     // Now pack the BasicTypes with 8 per int
2099     int sig_index = 0;
2100     for (int index = 0; index < len; index++) {
2101       int value = 0;
2102       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2103         int bt = ((sig_index < total_args_passed)
2104                   ? adapter_encoding(sig_bt[sig_index++])
2105                   : 0);
2106         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2107         value = (value << _basic_type_bits) | bt;
2108       }
2109       ptr[index] = value;
2110     }
2111   }
2112 
2113   ~AdapterFingerPrint() {
2114     if (_length > 0) {
2115       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2116     }
2117   }
2118 
2119   int value(int index) {
2120     if (_length < 0) {
2121       return _value._compact[index];
2122     }
2123     return _value._fingerprint[index];
2124   }
2125   int length() {
2126     if (_length < 0) return -_length;
2127     return _length;
2128   }
2129 
2130   bool is_compact() {
2131     return _length <= 0;
2132   }
2133 
2134   unsigned int compute_hash() {
2135     int hash = 0;
2136     for (int i = 0; i < length(); i++) {
2137       int v = value(i);
2138       hash = (hash << 8) ^ v ^ (hash >> 5);
2139     }
2140     return (unsigned int)hash;
2141   }
2142 
2143   const char* as_string() {
2144     stringStream st;
2145     st.print("0x");
2146     for (int i = 0; i < length(); i++) {
2147       st.print("%08x", value(i));
2148     }
2149     return st.as_string();
2150   }
2151 
2152   bool equals(AdapterFingerPrint* other) {
2153     if (other->_length != _length) {
2154       return false;
2155     }
2156     if (_length < 0) {
2157       assert(_compact_int_count == 3, "else change next line");
2158       return _value._compact[0] == other->_value._compact[0] &&
2159              _value._compact[1] == other->_value._compact[1] &&
2160              _value._compact[2] == other->_value._compact[2];
2161     } else {
2162       for (int i = 0; i < _length; i++) {
2163         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2164           return false;
2165         }
2166       }
2167     }
2168     return true;
2169   }
2170 };
2171 
2172 
2173 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2174 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2175   friend class AdapterHandlerTableIterator;
2176 
2177  private:
2178 
2179 #ifndef PRODUCT
2180   static int _lookups; // number of calls to lookup
2181   static int _buckets; // number of buckets checked
2182   static int _equals;  // number of buckets checked with matching hash
2183   static int _hits;    // number of successful lookups
2184   static int _compact; // number of equals calls with compact signature
2185 #endif
2186 
2187   AdapterHandlerEntry* bucket(int i) {
2188     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2189   }
2190 
2191  public:
2192   AdapterHandlerTable()
2193     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
2194 
2195   // Create a new entry suitable for insertion in the table
2196   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2197     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2198     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2199     return entry;
2200   }
2201 
2202   // Insert an entry into the table
2203   void add(AdapterHandlerEntry* entry) {
2204     int index = hash_to_index(entry->hash());
2205     add_entry(index, entry);
2206   }
2207 
2208   void free_entry(AdapterHandlerEntry* entry) {
2209     entry->deallocate();
2210     BasicHashtable<mtCode>::free_entry(entry);
2211   }
2212 
2213   // Find a entry with the same fingerprint if it exists
2214   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2215     NOT_PRODUCT(_lookups++);
2216     AdapterFingerPrint fp(total_args_passed, sig_bt);
2217     unsigned int hash = fp.compute_hash();
2218     int index = hash_to_index(hash);
2219     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2220       NOT_PRODUCT(_buckets++);
2221       if (e->hash() == hash) {
2222         NOT_PRODUCT(_equals++);
2223         if (fp.equals(e->fingerprint())) {
2224 #ifndef PRODUCT
2225           if (fp.is_compact()) _compact++;
2226           _hits++;
2227 #endif
2228           return e;
2229         }
2230       }
2231     }
2232     return NULL;
2233   }
2234 
2235 #ifndef PRODUCT
2236   void print_statistics() {
2237     ResourceMark rm;
2238     int longest = 0;
2239     int empty = 0;
2240     int total = 0;
2241     int nonempty = 0;
2242     for (int index = 0; index < table_size(); index++) {
2243       int count = 0;
2244       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2245         count++;
2246       }
2247       if (count != 0) nonempty++;
2248       if (count == 0) empty++;
2249       if (count > longest) longest = count;
2250       total += count;
2251     }
2252     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2253                   empty, longest, total, total / (double)nonempty);
2254     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2255                   _lookups, _buckets, _equals, _hits, _compact);
2256   }
2257 #endif
2258 };
2259 
2260 
2261 #ifndef PRODUCT
2262 
2263 int AdapterHandlerTable::_lookups;
2264 int AdapterHandlerTable::_buckets;
2265 int AdapterHandlerTable::_equals;
2266 int AdapterHandlerTable::_hits;
2267 int AdapterHandlerTable::_compact;
2268 
2269 #endif
2270 
2271 class AdapterHandlerTableIterator : public StackObj {
2272  private:
2273   AdapterHandlerTable* _table;
2274   int _index;
2275   AdapterHandlerEntry* _current;
2276 
2277   void scan() {
2278     while (_index < _table->table_size()) {
2279       AdapterHandlerEntry* a = _table->bucket(_index);
2280       _index++;
2281       if (a != NULL) {
2282         _current = a;
2283         return;
2284       }
2285     }
2286   }
2287 
2288  public:
2289   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2290     scan();
2291   }
2292   bool has_next() {
2293     return _current != NULL;
2294   }
2295   AdapterHandlerEntry* next() {
2296     if (_current != NULL) {
2297       AdapterHandlerEntry* result = _current;
2298       _current = _current->next();
2299       if (_current == NULL) scan();
2300       return result;
2301     } else {
2302       return NULL;
2303     }
2304   }
2305 };
2306 
2307 
2308 // ---------------------------------------------------------------------------
2309 // Implementation of AdapterHandlerLibrary
2310 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2311 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2312 const int AdapterHandlerLibrary_size = 16*K;
2313 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2314 
2315 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2316   // Should be called only when AdapterHandlerLibrary_lock is active.
2317   if (_buffer == NULL) // Initialize lazily
2318       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2319   return _buffer;
2320 }
2321 
2322 extern "C" void unexpected_adapter_call() {
2323   ShouldNotCallThis();
2324 }
2325 
2326 void AdapterHandlerLibrary::initialize() {
2327   if (_adapters != NULL) return;
2328   _adapters = new AdapterHandlerTable();
2329 
2330   if (!CodeCacheExtensions::skip_compiler_support()) {
2331     // Create a special handler for abstract methods.  Abstract methods
2332     // are never compiled so an i2c entry is somewhat meaningless, but
2333     // throw AbstractMethodError just in case.
2334     // Pass wrong_method_abstract for the c2i transitions to return
2335     // AbstractMethodError for invalid invocations.
2336     address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2337     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2338                                                                 StubRoutines::throw_AbstractMethodError_entry(),
2339                                                                 wrong_method_abstract, wrong_method_abstract);
2340   } else {
2341     // Adapters are not supposed to be used.
2342     // Generate a special one to cause an error if used (and store this
2343     // singleton in place of the useless _abstract_method_error adapter).
2344     address entry = (address) &unexpected_adapter_call;
2345     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2346                                                                 entry,
2347                                                                 entry,
2348                                                                 entry);
2349 
2350   }
2351 }
2352 
2353 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2354                                                       address i2c_entry,
2355                                                       address c2i_entry,
2356                                                       address c2i_unverified_entry) {
2357   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2358 }
2359 
2360 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2361   // Use customized signature handler.  Need to lock around updates to
2362   // the AdapterHandlerTable (it is not safe for concurrent readers
2363   // and a single writer: this could be fixed if it becomes a
2364   // problem).
2365 
2366   ResourceMark rm;
2367 
2368   NOT_PRODUCT(int insts_size);
2369   AdapterBlob* new_adapter = NULL;
2370   AdapterHandlerEntry* entry = NULL;
2371   AdapterFingerPrint* fingerprint = NULL;
2372   {
2373     MutexLocker mu(AdapterHandlerLibrary_lock);
2374     // make sure data structure is initialized
2375     initialize();
2376 
2377     if (CodeCacheExtensions::skip_compiler_support()) {
2378       // adapters are useless and should not be used, including the
2379       // abstract_method_handler. However, some callers check that
2380       // an adapter was installed.
2381       // Return the singleton adapter, stored into _abstract_method_handler
2382       // and modified to cause an error if we ever call it.
2383       return _abstract_method_handler;
2384     }
2385 
2386     if (method->is_abstract()) {
2387       return _abstract_method_handler;
2388     }
2389 
2390     // Fill in the signature array, for the calling-convention call.
2391     int total_args_passed = method->size_of_parameters(); // All args on stack
2392 
2393     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2394     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2395     int i = 0;
2396     if (!method->is_static())  // Pass in receiver first
2397       sig_bt[i++] = T_OBJECT;
2398     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2399       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2400       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2401         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2402     }
2403     assert(i == total_args_passed, "");
2404 
2405     // Lookup method signature's fingerprint
2406     entry = _adapters->lookup(total_args_passed, sig_bt);
2407 
2408 #ifdef ASSERT
2409     AdapterHandlerEntry* shared_entry = NULL;
2410     // Start adapter sharing verification only after the VM is booted.
2411     if (VerifyAdapterSharing && (entry != NULL)) {
2412       shared_entry = entry;
2413       entry = NULL;
2414     }
2415 #endif
2416 
2417     if (entry != NULL) {
2418       return entry;
2419     }
2420 
2421     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2422     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2423 
2424     // Make a C heap allocated version of the fingerprint to store in the adapter
2425     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2426 
2427     // StubRoutines::code2() is initialized after this function can be called. As a result,
2428     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2429     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2430     // stub that ensure that an I2C stub is called from an interpreter frame.
2431     bool contains_all_checks = StubRoutines::code2() != NULL;
2432 
2433     // Create I2C & C2I handlers
2434     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2435     if (buf != NULL) {
2436       CodeBuffer buffer(buf);
2437       short buffer_locs[20];
2438       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2439                                              sizeof(buffer_locs)/sizeof(relocInfo));
2440 
2441       MacroAssembler _masm(&buffer);
2442       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2443                                                      total_args_passed,
2444                                                      comp_args_on_stack,
2445                                                      sig_bt,
2446                                                      regs,
2447                                                      fingerprint);
2448 #ifdef ASSERT
2449       if (VerifyAdapterSharing) {
2450         if (shared_entry != NULL) {
2451           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2452           // Release the one just created and return the original
2453           _adapters->free_entry(entry);
2454           return shared_entry;
2455         } else  {
2456           entry->save_code(buf->code_begin(), buffer.insts_size());
2457         }
2458       }
2459 #endif
2460 
2461       new_adapter = AdapterBlob::create(&buffer);
2462       NOT_PRODUCT(insts_size = buffer.insts_size());
2463     }
2464     if (new_adapter == NULL) {
2465       // CodeCache is full, disable compilation
2466       // Ought to log this but compile log is only per compile thread
2467       // and we're some non descript Java thread.
2468       return NULL; // Out of CodeCache space
2469     }
2470     entry->relocate(new_adapter->content_begin());
2471 #ifndef PRODUCT
2472     // debugging suppport
2473     if (PrintAdapterHandlers || PrintStubCode) {
2474       ttyLocker ttyl;
2475       entry->print_adapter_on(tty);
2476       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2477                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2478                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2479       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2480       if (Verbose || PrintStubCode) {
2481         address first_pc = entry->base_address();
2482         if (first_pc != NULL) {
2483           Disassembler::decode(first_pc, first_pc + insts_size);
2484           tty->cr();
2485         }
2486       }
2487     }
2488 #endif
2489     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2490     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2491     if (contains_all_checks || !VerifyAdapterCalls) {
2492       _adapters->add(entry);
2493     }
2494   }
2495   // Outside of the lock
2496   if (new_adapter != NULL) {
2497     char blob_id[256];
2498     jio_snprintf(blob_id,
2499                  sizeof(blob_id),
2500                  "%s(%s)@" PTR_FORMAT,
2501                  new_adapter->name(),
2502                  fingerprint->as_string(),
2503                  new_adapter->content_begin());
2504     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2505 
2506     if (JvmtiExport::should_post_dynamic_code_generated()) {
2507       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2508     }
2509   }
2510   return entry;
2511 }
2512 
2513 address AdapterHandlerEntry::base_address() {
2514   address base = _i2c_entry;
2515   if (base == NULL)  base = _c2i_entry;
2516   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2517   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2518   return base;
2519 }
2520 
2521 void AdapterHandlerEntry::relocate(address new_base) {
2522   address old_base = base_address();
2523   assert(old_base != NULL, "");
2524   ptrdiff_t delta = new_base - old_base;
2525   if (_i2c_entry != NULL)
2526     _i2c_entry += delta;
2527   if (_c2i_entry != NULL)
2528     _c2i_entry += delta;
2529   if (_c2i_unverified_entry != NULL)
2530     _c2i_unverified_entry += delta;
2531   assert(base_address() == new_base, "");
2532 }
2533 
2534 
2535 void AdapterHandlerEntry::deallocate() {
2536   delete _fingerprint;
2537 #ifdef ASSERT
2538   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2539 #endif
2540 }
2541 
2542 
2543 #ifdef ASSERT
2544 // Capture the code before relocation so that it can be compared
2545 // against other versions.  If the code is captured after relocation
2546 // then relative instructions won't be equivalent.
2547 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2548   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2549   _saved_code_length = length;
2550   memcpy(_saved_code, buffer, length);
2551 }
2552 
2553 
2554 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2555   if (length != _saved_code_length) {
2556     return false;
2557   }
2558 
2559   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2560 }
2561 #endif
2562 
2563 
2564 /**
2565  * Create a native wrapper for this native method.  The wrapper converts the
2566  * Java-compiled calling convention to the native convention, handles
2567  * arguments, and transitions to native.  On return from the native we transition
2568  * back to java blocking if a safepoint is in progress.
2569  */
2570 void AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
2571   ResourceMark rm;
2572   nmethod* nm = NULL;
2573 
2574   assert(method->is_native(), "must be native");
2575   assert(method->is_method_handle_intrinsic() ||
2576          method->has_native_function(), "must have something valid to call!");
2577 
2578   {
2579     // Perform the work while holding the lock, but perform any printing outside the lock
2580     MutexLocker mu(AdapterHandlerLibrary_lock);
2581     // See if somebody beat us to it
2582     nm = method->code();
2583     if (nm != NULL) {
2584       return;
2585     }
2586 
2587     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2588     assert(compile_id > 0, "Must generate native wrapper");
2589 
2590 
2591     ResourceMark rm;
2592     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2593     if (buf != NULL) {
2594       CodeBuffer buffer(buf);
2595       double locs_buf[20];
2596       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2597       MacroAssembler _masm(&buffer);
2598 
2599       // Fill in the signature array, for the calling-convention call.
2600       const int total_args_passed = method->size_of_parameters();
2601 
2602       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2603       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2604       int i=0;
2605       if (!method->is_static())  // Pass in receiver first
2606         sig_bt[i++] = T_OBJECT;
2607       SignatureStream ss(method->signature());
2608       for (; !ss.at_return_type(); ss.next()) {
2609         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2610         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2611           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2612       }
2613       assert(i == total_args_passed, "");
2614       BasicType ret_type = ss.type();
2615 
2616       // Now get the compiled-Java layout as input (or output) arguments.
2617       // NOTE: Stubs for compiled entry points of method handle intrinsics
2618       // are just trampolines so the argument registers must be outgoing ones.
2619       const bool is_outgoing = method->is_method_handle_intrinsic();
2620       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2621 
2622       // Generate the compiled-to-native wrapper code
2623       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2624 
2625       if (nm != NULL) {
2626         method->set_code(method, nm);
2627       }
2628     }
2629   } // Unlock AdapterHandlerLibrary_lock
2630 
2631 
2632   // Install the generated code.
2633   if (nm != NULL) {
2634     if (PrintCompilation) {
2635       ttyLocker ttyl;
2636       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
2637     }
2638     nm->post_compiled_method_load_event();
2639   }
2640 }
2641 
2642 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2643   assert(thread == JavaThread::current(), "must be");
2644   // The code is about to enter a JNI lazy critical native method and
2645   // _needs_gc is true, so if this thread is already in a critical
2646   // section then just return, otherwise this thread should block
2647   // until needs_gc has been cleared.
2648   if (thread->in_critical()) {
2649     return;
2650   }
2651   // Lock and unlock a critical section to give the system a chance to block
2652   GC_locker::lock_critical(thread);
2653   GC_locker::unlock_critical(thread);
2654 JRT_END
2655 
2656 // -------------------------------------------------------------------------
2657 // Java-Java calling convention
2658 // (what you use when Java calls Java)
2659 
2660 //------------------------------name_for_receiver----------------------------------
2661 // For a given signature, return the VMReg for parameter 0.
2662 VMReg SharedRuntime::name_for_receiver() {
2663   VMRegPair regs;
2664   BasicType sig_bt = T_OBJECT;
2665   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2666   // Return argument 0 register.  In the LP64 build pointers
2667   // take 2 registers, but the VM wants only the 'main' name.
2668   return regs.first();
2669 }
2670 
2671 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2672   // This method is returning a data structure allocating as a
2673   // ResourceObject, so do not put any ResourceMarks in here.
2674   char *s = sig->as_C_string();
2675   int len = (int)strlen(s);
2676   s++; len--;                   // Skip opening paren
2677   char *t = s+len;
2678   while (*(--t) != ')');      // Find close paren
2679 
2680   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2681   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2682   int cnt = 0;
2683   if (has_receiver) {
2684     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2685   }
2686 
2687   while (s < t) {
2688     switch (*s++) {            // Switch on signature character
2689     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2690     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2691     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2692     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2693     case 'I': sig_bt[cnt++] = T_INT;     break;
2694     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2695     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2696     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2697     case 'V': sig_bt[cnt++] = T_VOID;    break;
2698     case 'L':                   // Oop
2699       while (*s++ != ';');   // Skip signature
2700       sig_bt[cnt++] = T_OBJECT;
2701       break;
2702     case '[': {                 // Array
2703       do {                      // Skip optional size
2704         while (*s >= '0' && *s <= '9') s++;
2705       } while (*s++ == '[');   // Nested arrays?
2706       // Skip element type
2707       if (s[-1] == 'L')
2708         while (*s++ != ';'); // Skip signature
2709       sig_bt[cnt++] = T_ARRAY;
2710       break;
2711     }
2712     default : ShouldNotReachHere();
2713     }
2714   }
2715 
2716   if (has_appendix) {
2717     sig_bt[cnt++] = T_OBJECT;
2718   }
2719 
2720   assert(cnt < 256, "grow table size");
2721 
2722   int comp_args_on_stack;
2723   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2724 
2725   // the calling convention doesn't count out_preserve_stack_slots so
2726   // we must add that in to get "true" stack offsets.
2727 
2728   if (comp_args_on_stack) {
2729     for (int i = 0; i < cnt; i++) {
2730       VMReg reg1 = regs[i].first();
2731       if (reg1->is_stack()) {
2732         // Yuck
2733         reg1 = reg1->bias(out_preserve_stack_slots());
2734       }
2735       VMReg reg2 = regs[i].second();
2736       if (reg2->is_stack()) {
2737         // Yuck
2738         reg2 = reg2->bias(out_preserve_stack_slots());
2739       }
2740       regs[i].set_pair(reg2, reg1);
2741     }
2742   }
2743 
2744   // results
2745   *arg_size = cnt;
2746   return regs;
2747 }
2748 
2749 // OSR Migration Code
2750 //
2751 // This code is used convert interpreter frames into compiled frames.  It is
2752 // called from very start of a compiled OSR nmethod.  A temp array is
2753 // allocated to hold the interesting bits of the interpreter frame.  All
2754 // active locks are inflated to allow them to move.  The displaced headers and
2755 // active interpreter locals are copied into the temp buffer.  Then we return
2756 // back to the compiled code.  The compiled code then pops the current
2757 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2758 // copies the interpreter locals and displaced headers where it wants.
2759 // Finally it calls back to free the temp buffer.
2760 //
2761 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2762 
2763 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2764 
2765   //
2766   // This code is dependent on the memory layout of the interpreter local
2767   // array and the monitors. On all of our platforms the layout is identical
2768   // so this code is shared. If some platform lays the their arrays out
2769   // differently then this code could move to platform specific code or
2770   // the code here could be modified to copy items one at a time using
2771   // frame accessor methods and be platform independent.
2772 
2773   frame fr = thread->last_frame();
2774   assert(fr.is_interpreted_frame(), "");
2775   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
2776 
2777   // Figure out how many monitors are active.
2778   int active_monitor_count = 0;
2779   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2780        kptr < fr.interpreter_frame_monitor_begin();
2781        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2782     if (kptr->obj() != NULL) active_monitor_count++;
2783   }
2784 
2785   // QQQ we could place number of active monitors in the array so that compiled code
2786   // could double check it.
2787 
2788   Method* moop = fr.interpreter_frame_method();
2789   int max_locals = moop->max_locals();
2790   // Allocate temp buffer, 1 word per local & 2 per active monitor
2791   int buf_size_words = max_locals + active_monitor_count*2;
2792   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2793 
2794   // Copy the locals.  Order is preserved so that loading of longs works.
2795   // Since there's no GC I can copy the oops blindly.
2796   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2797   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2798                        (HeapWord*)&buf[0],
2799                        max_locals);
2800 
2801   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2802   int i = max_locals;
2803   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2804        kptr2 < fr.interpreter_frame_monitor_begin();
2805        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2806     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2807       BasicLock *lock = kptr2->lock();
2808       // Inflate so the displaced header becomes position-independent
2809       if (lock->displaced_header()->is_unlocked())
2810         ObjectSynchronizer::inflate_helper(kptr2->obj());
2811       // Now the displaced header is free to move
2812       buf[i++] = (intptr_t)lock->displaced_header();
2813       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
2814     }
2815   }
2816   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
2817 
2818   return buf;
2819 JRT_END
2820 
2821 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2822   FREE_C_HEAP_ARRAY(intptr_t, buf);
2823 JRT_END
2824 
2825 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2826   AdapterHandlerTableIterator iter(_adapters);
2827   while (iter.has_next()) {
2828     AdapterHandlerEntry* a = iter.next();
2829     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
2830   }
2831   return false;
2832 }
2833 
2834 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
2835   AdapterHandlerTableIterator iter(_adapters);
2836   while (iter.has_next()) {
2837     AdapterHandlerEntry* a = iter.next();
2838     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
2839       st->print("Adapter for signature: ");
2840       a->print_adapter_on(tty);
2841       return;
2842     }
2843   }
2844   assert(false, "Should have found handler");
2845 }
2846 
2847 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
2848   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2849                (intptr_t) this, fingerprint()->as_string(),
2850                get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
2851 
2852 }
2853 
2854 #ifndef PRODUCT
2855 
2856 void AdapterHandlerLibrary::print_statistics() {
2857   _adapters->print_statistics();
2858 }
2859 
2860 #endif /* PRODUCT */