1 /*
   2  * Copyright (c) 2005, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArray.hpp"
  34 #include "ci/ciObjArrayKlass.hpp"
  35 #include "ci/ciTypeArrayKlass.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "vmreg_sparc.inline.hpp"
  39 
  40 #ifdef ASSERT
  41 #define __ gen()->lir(__FILE__, __LINE__)->
  42 #else
  43 #define __ gen()->lir()->
  44 #endif
  45 
  46 void LIRItem::load_byte_item() {
  47   // byte loads use same registers as other loads
  48   load_item();
  49 }
  50 
  51 
  52 void LIRItem::load_nonconstant() {
  53   LIR_Opr r = value()->operand();
  54   if (_gen->can_inline_as_constant(value())) {
  55     if (!r->is_constant()) {
  56       r = LIR_OprFact::value_type(value()->type());
  57     }
  58     _result = r;
  59   } else {
  60     load_item();
  61   }
  62 }
  63 
  64 
  65 //--------------------------------------------------------------
  66 //               LIRGenerator
  67 //--------------------------------------------------------------
  68 
  69 LIR_Opr LIRGenerator::exceptionOopOpr()              { return FrameMap::Oexception_opr;  }
  70 LIR_Opr LIRGenerator::exceptionPcOpr()               { return FrameMap::Oissuing_pc_opr; }
  71 LIR_Opr LIRGenerator::syncLockOpr()                  { return new_register(T_INT); }
  72 LIR_Opr LIRGenerator::syncTempOpr()                  { return new_register(T_OBJECT); }
  73 LIR_Opr LIRGenerator::getThreadTemp()                { return rlock_callee_saved(T_LONG); }
  74 
  75 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
  76   LIR_Opr opr;
  77   switch (type->tag()) {
  78   case intTag:     opr = callee ? FrameMap::I0_opr      : FrameMap::O0_opr;       break;
  79   case objectTag:  opr = callee ? FrameMap::I0_oop_opr  : FrameMap::O0_oop_opr;   break;
  80   case longTag:    opr = callee ? FrameMap::in_long_opr : FrameMap::out_long_opr; break;
  81   case floatTag:   opr = FrameMap::F0_opr;                                        break;
  82   case doubleTag:  opr = FrameMap::F0_double_opr;                                 break;
  83 
  84   case addressTag:
  85   default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
  86   }
  87 
  88   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
  89   return opr;
  90 }
  91 
  92 LIR_Opr LIRGenerator::rlock_callee_saved(BasicType type) {
  93   LIR_Opr reg = new_register(type);
  94   set_vreg_flag(reg, callee_saved);
  95   return reg;
  96 }
  97 
  98 
  99 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
 100   return new_register(T_INT);
 101 }
 102 
 103 
 104 
 105 
 106 
 107 //--------- loading items into registers --------------------------------
 108 
 109 // SPARC cannot inline all constants
 110 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
 111   if (v->type()->as_IntConstant() != NULL) {
 112     return v->type()->as_IntConstant()->value() == 0;
 113   } else if (v->type()->as_LongConstant() != NULL) {
 114     return v->type()->as_LongConstant()->value() == 0L;
 115   } else if (v->type()->as_ObjectConstant() != NULL) {
 116     return v->type()->as_ObjectConstant()->value()->is_null_object();
 117   } else {
 118     return false;
 119   }
 120 }
 121 
 122 
 123 // only simm13 constants can be inlined
 124 bool LIRGenerator:: can_inline_as_constant(Value i) const {
 125   if (i->type()->as_IntConstant() != NULL) {
 126     return Assembler::is_simm13(i->type()->as_IntConstant()->value());
 127   } else {
 128     return can_store_as_constant(i, as_BasicType(i->type()));
 129   }
 130 }
 131 
 132 
 133 bool LIRGenerator:: can_inline_as_constant(LIR_Const* c) const {
 134   if (c->type() == T_INT) {
 135     return Assembler::is_simm13(c->as_jint());
 136   }
 137   return false;
 138 }
 139 
 140 
 141 LIR_Opr LIRGenerator::safepoint_poll_register() {
 142   return new_register(T_INT);
 143 }
 144 
 145 
 146 
 147 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
 148                                             int shift, int disp, BasicType type) {
 149   assert(base->is_register(), "must be");
 150   intx large_disp = disp;
 151 
 152   // accumulate fixed displacements
 153   if (index->is_constant()) {
 154     large_disp += (intx)(index->as_constant_ptr()->as_jint()) << shift;
 155     index = LIR_OprFact::illegalOpr;
 156   }
 157 
 158   if (index->is_register()) {
 159     // apply the shift and accumulate the displacement
 160     if (shift > 0) {
 161       LIR_Opr tmp = new_pointer_register();
 162       __ shift_left(index, shift, tmp);
 163       index = tmp;
 164     }
 165     if (large_disp != 0) {
 166       LIR_Opr tmp = new_pointer_register();
 167       if (Assembler::is_simm13(large_disp)) {
 168         __ add(tmp, LIR_OprFact::intptrConst(large_disp), tmp);
 169         index = tmp;
 170       } else {
 171         __ move(LIR_OprFact::intptrConst(large_disp), tmp);
 172         __ add(tmp, index, tmp);
 173         index = tmp;
 174       }
 175       large_disp = 0;
 176     }
 177   } else if (large_disp != 0 && !Assembler::is_simm13(large_disp)) {
 178     // index is illegal so replace it with the displacement loaded into a register
 179     index = new_pointer_register();
 180     __ move(LIR_OprFact::intptrConst(large_disp), index);
 181     large_disp = 0;
 182   }
 183 
 184   // at this point we either have base + index or base + displacement
 185   if (large_disp == 0) {
 186     return new LIR_Address(base, index, type);
 187   } else {
 188     assert(Assembler::is_simm13(large_disp), "must be");
 189     return new LIR_Address(base, large_disp, type);
 190   }
 191 }
 192 
 193 
 194 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
 195                                               BasicType type, bool needs_card_mark) {
 196   int elem_size = type2aelembytes(type);
 197   int shift = exact_log2(elem_size);
 198 
 199   LIR_Opr base_opr;
 200   intx offset = arrayOopDesc::base_offset_in_bytes(type);
 201 
 202   if (index_opr->is_constant()) {
 203     intx i = index_opr->as_constant_ptr()->as_jint();
 204     intx array_offset = i * elem_size;
 205     if (Assembler::is_simm13(array_offset + offset)) {
 206       base_opr = array_opr;
 207       offset = array_offset + offset;
 208     } else {
 209       base_opr = new_pointer_register();
 210       if (Assembler::is_simm13(array_offset)) {
 211         __ add(array_opr, LIR_OprFact::intptrConst(array_offset), base_opr);
 212       } else {
 213         __ move(LIR_OprFact::intptrConst(array_offset), base_opr);
 214         __ add(base_opr, array_opr, base_opr);
 215       }
 216     }
 217   } else {
 218     if (index_opr->type() == T_INT) {
 219       LIR_Opr tmp = new_register(T_LONG);
 220       __ convert(Bytecodes::_i2l, index_opr, tmp);
 221       index_opr = tmp;
 222     }
 223 
 224     base_opr = new_pointer_register();
 225     assert (index_opr->is_register(), "Must be register");
 226     if (shift > 0) {
 227       __ shift_left(index_opr, shift, base_opr);
 228       __ add(base_opr, array_opr, base_opr);
 229     } else {
 230       __ add(index_opr, array_opr, base_opr);
 231     }
 232   }
 233   if (needs_card_mark) {
 234     LIR_Opr ptr = new_pointer_register();
 235     __ add(base_opr, LIR_OprFact::intptrConst(offset), ptr);
 236     return new LIR_Address(ptr, type);
 237   } else {
 238     return new LIR_Address(base_opr, offset, type);
 239   }
 240 }
 241 
 242 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
 243   LIR_Opr r;
 244   if (type == T_LONG) {
 245     r = LIR_OprFact::longConst(x);
 246   } else if (type == T_INT) {
 247     r = LIR_OprFact::intConst(x);
 248   } else {
 249     ShouldNotReachHere();
 250   }
 251   if (!Assembler::is_simm13(x)) {
 252     LIR_Opr tmp = new_register(type);
 253     __ move(r, tmp);
 254     return tmp;
 255   }
 256   return r;
 257 }
 258 
 259 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
 260   LIR_Opr pointer = new_pointer_register();
 261   __ move(LIR_OprFact::intptrConst(counter), pointer);
 262   LIR_Address* addr = new LIR_Address(pointer, type);
 263   increment_counter(addr, step);
 264 }
 265 
 266 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
 267   LIR_Opr temp = new_register(addr->type());
 268   __ move(addr, temp);
 269   __ add(temp, load_immediate(step, addr->type()), temp);
 270   __ move(temp, addr);
 271 }
 272 
 273 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
 274   LIR_Opr o7opr = FrameMap::O7_opr;
 275   __ load(new LIR_Address(base, disp, T_INT), o7opr, info);
 276   __ cmp(condition, o7opr, c);
 277 }
 278 
 279 
 280 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
 281   LIR_Opr o7opr = FrameMap::O7_opr;
 282   __ load(new LIR_Address(base, disp, type), o7opr, info);
 283   __ cmp(condition, reg, o7opr);
 284 }
 285 
 286 
 287 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
 288   LIR_Opr o7opr = FrameMap::O7_opr;
 289   __ load(new LIR_Address(base, disp, type), o7opr, info);
 290   __ cmp(condition, reg, o7opr);
 291 }
 292 
 293 
 294 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
 295   assert(left != result, "should be different registers");
 296   if (is_power_of_2(c + 1)) {
 297     __ shift_left(left, log2_intptr(c + 1), result);
 298     __ sub(result, left, result);
 299     return true;
 300   } else if (is_power_of_2(c - 1)) {
 301     __ shift_left(left, log2_intptr(c - 1), result);
 302     __ add(result, left, result);
 303     return true;
 304   }
 305   return false;
 306 }
 307 
 308 
 309 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
 310   BasicType t = item->type();
 311   LIR_Opr sp_opr = FrameMap::SP_opr;
 312   if ((t == T_LONG || t == T_DOUBLE) &&
 313       ((in_bytes(offset_from_sp) - STACK_BIAS) % 8 != 0)) {
 314     __ unaligned_move(item, new LIR_Address(sp_opr, in_bytes(offset_from_sp), t));
 315   } else {
 316     __ move(item, new LIR_Address(sp_opr, in_bytes(offset_from_sp), t));
 317   }
 318 }
 319 
 320 void LIRGenerator::array_store_check(LIR_Opr value, LIR_Opr array, CodeEmitInfo* store_check_info, ciMethod* profiled_method, int profiled_bci) {
 321   LIR_Opr tmp1 = FrameMap::G1_opr;
 322   LIR_Opr tmp2 = FrameMap::G3_opr;
 323   LIR_Opr tmp3 = FrameMap::G5_opr;
 324   __ store_check(value, array, tmp1, tmp2, tmp3, store_check_info, profiled_method, profiled_bci);
 325 }
 326 
 327 //----------------------------------------------------------------------
 328 //             visitor functions
 329 //----------------------------------------------------------------------
 330 
 331 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
 332   assert(x->is_pinned(),"");
 333   LIRItem obj(x->obj(), this);
 334   obj.load_item();
 335 
 336   set_no_result(x);
 337 
 338   LIR_Opr lock    = FrameMap::G1_opr;
 339   LIR_Opr scratch = FrameMap::G3_opr;
 340   LIR_Opr hdr     = FrameMap::G4_opr;
 341 
 342   CodeEmitInfo* info_for_exception = NULL;
 343   if (x->needs_null_check()) {
 344     info_for_exception = state_for(x);
 345   }
 346 
 347   // this CodeEmitInfo must not have the xhandlers because here the
 348   // object is already locked (xhandlers expects object to be unlocked)
 349   CodeEmitInfo* info = state_for(x, x->state(), true);
 350   monitor_enter(obj.result(), lock, hdr, scratch, x->monitor_no(), info_for_exception, info);
 351 }
 352 
 353 
 354 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
 355   assert(x->is_pinned(),"");
 356   LIRItem obj(x->obj(), this);
 357   obj.dont_load_item();
 358 
 359   set_no_result(x);
 360   LIR_Opr lock      = FrameMap::G1_opr;
 361   LIR_Opr hdr       = FrameMap::G3_opr;
 362   LIR_Opr obj_temp  = FrameMap::G4_opr;
 363   monitor_exit(obj_temp, lock, hdr, LIR_OprFact::illegalOpr, x->monitor_no());
 364 }
 365 
 366 
 367 // _ineg, _lneg, _fneg, _dneg
 368 void LIRGenerator::do_NegateOp(NegateOp* x) {
 369   LIRItem value(x->x(), this);
 370   value.load_item();
 371   LIR_Opr reg = rlock_result(x);
 372   __ negate(value.result(), reg);
 373 }
 374 
 375 
 376 
 377 // for  _fadd, _fmul, _fsub, _fdiv, _frem
 378 //      _dadd, _dmul, _dsub, _ddiv, _drem
 379 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
 380   switch (x->op()) {
 381   case Bytecodes::_fadd:
 382   case Bytecodes::_fmul:
 383   case Bytecodes::_fsub:
 384   case Bytecodes::_fdiv:
 385   case Bytecodes::_dadd:
 386   case Bytecodes::_dmul:
 387   case Bytecodes::_dsub:
 388   case Bytecodes::_ddiv: {
 389     LIRItem left(x->x(), this);
 390     LIRItem right(x->y(), this);
 391     left.load_item();
 392     right.load_item();
 393     rlock_result(x);
 394     arithmetic_op_fpu(x->op(), x->operand(), left.result(), right.result(), x->is_strictfp());
 395   }
 396   break;
 397 
 398   case Bytecodes::_frem:
 399   case Bytecodes::_drem: {
 400     address entry;
 401     switch (x->op()) {
 402     case Bytecodes::_frem:
 403       entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
 404       break;
 405     case Bytecodes::_drem:
 406       entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
 407       break;
 408     default:
 409       ShouldNotReachHere();
 410     }
 411     LIR_Opr result = call_runtime(x->x(), x->y(), entry, x->type(), NULL);
 412     set_result(x, result);
 413   }
 414   break;
 415 
 416   default: ShouldNotReachHere();
 417   }
 418 }
 419 
 420 
 421 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
 422 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
 423   switch (x->op()) {
 424   case Bytecodes::_lrem:
 425   case Bytecodes::_lmul:
 426   case Bytecodes::_ldiv: {
 427 
 428     if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) {
 429       LIRItem right(x->y(), this);
 430       right.load_item();
 431 
 432       CodeEmitInfo* info = state_for(x);
 433       LIR_Opr item = right.result();
 434       assert(item->is_register(), "must be");
 435       __ cmp(lir_cond_equal, item, LIR_OprFact::longConst(0));
 436       __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
 437     }
 438 
 439     address entry;
 440     switch (x->op()) {
 441     case Bytecodes::_lrem:
 442       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
 443       break; // check if dividend is 0 is done elsewhere
 444     case Bytecodes::_ldiv:
 445       entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
 446       break; // check if dividend is 0 is done elsewhere
 447     case Bytecodes::_lmul:
 448       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
 449       break;
 450     default:
 451       ShouldNotReachHere();
 452     }
 453 
 454     // order of arguments to runtime call is reversed.
 455     LIR_Opr result = call_runtime(x->y(), x->x(), entry, x->type(), NULL);
 456     set_result(x, result);
 457     break;
 458   }
 459   case Bytecodes::_ladd:
 460   case Bytecodes::_lsub: {
 461     LIRItem left(x->x(), this);
 462     LIRItem right(x->y(), this);
 463     left.load_item();
 464     right.load_item();
 465     rlock_result(x);
 466 
 467     arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
 468     break;
 469   }
 470   default: ShouldNotReachHere();
 471   }
 472 }
 473 
 474 
 475 // Returns if item is an int constant that can be represented by a simm13
 476 static bool is_simm13(LIR_Opr item) {
 477   if (item->is_constant() && item->type() == T_INT) {
 478     return Assembler::is_simm13(item->as_constant_ptr()->as_jint());
 479   } else {
 480     return false;
 481   }
 482 }
 483 
 484 
 485 // for: _iadd, _imul, _isub, _idiv, _irem
 486 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
 487   bool is_div_rem = x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem;
 488   LIRItem left(x->x(), this);
 489   LIRItem right(x->y(), this);
 490   // missing test if instr is commutative and if we should swap
 491   right.load_nonconstant();
 492   assert(right.is_constant() || right.is_register(), "wrong state of right");
 493   left.load_item();
 494   rlock_result(x);
 495   if (is_div_rem) {
 496     CodeEmitInfo* info = state_for(x);
 497     LIR_Opr tmp = FrameMap::G1_opr;
 498     if (x->op() == Bytecodes::_irem) {
 499       __ irem(left.result(), right.result(), x->operand(), tmp, info);
 500     } else if (x->op() == Bytecodes::_idiv) {
 501       __ idiv(left.result(), right.result(), x->operand(), tmp, info);
 502     }
 503   } else {
 504     arithmetic_op_int(x->op(), x->operand(), left.result(), right.result(), FrameMap::G1_opr);
 505   }
 506 }
 507 
 508 
 509 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
 510   ValueTag tag = x->type()->tag();
 511   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
 512   switch (tag) {
 513     case floatTag:
 514     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
 515     case longTag:    do_ArithmeticOp_Long(x); return;
 516     case intTag:     do_ArithmeticOp_Int(x);  return;
 517   }
 518   ShouldNotReachHere();
 519 }
 520 
 521 
 522 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
 523 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
 524   LIRItem value(x->x(), this);
 525   LIRItem count(x->y(), this);
 526   // Long shift destroys count register
 527   if (value.type()->is_long()) {
 528     count.set_destroys_register();
 529   }
 530   value.load_item();
 531   // the old backend doesn't support this
 532   if (count.is_constant() && count.type()->as_IntConstant() != NULL && value.type()->is_int()) {
 533     jint c = count.get_jint_constant() & 0x1f;
 534     assert(c >= 0 && c < 32, "should be small");
 535     count.dont_load_item();
 536   } else {
 537     count.load_item();
 538   }
 539   LIR_Opr reg = rlock_result(x);
 540   shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
 541 }
 542 
 543 
 544 // _iand, _land, _ior, _lor, _ixor, _lxor
 545 void LIRGenerator::do_LogicOp(LogicOp* x) {
 546   LIRItem left(x->x(), this);
 547   LIRItem right(x->y(), this);
 548 
 549   left.load_item();
 550   right.load_nonconstant();
 551   LIR_Opr reg = rlock_result(x);
 552 
 553   logic_op(x->op(), reg, left.result(), right.result());
 554 }
 555 
 556 
 557 
 558 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
 559 void LIRGenerator::do_CompareOp(CompareOp* x) {
 560   LIRItem left(x->x(), this);
 561   LIRItem right(x->y(), this);
 562   left.load_item();
 563   right.load_item();
 564   LIR_Opr reg = rlock_result(x);
 565   if (x->x()->type()->is_float_kind()) {
 566     Bytecodes::Code code = x->op();
 567     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
 568   } else if (x->x()->type()->tag() == longTag) {
 569     __ lcmp2int(left.result(), right.result(), reg);
 570   } else {
 571     Unimplemented();
 572   }
 573 }
 574 
 575 LIR_Opr LIRGenerator::cas(BasicType type, LIR_Opr addr, LIRItem& cmp_value, LIRItem& new_value) {
 576   LIR_Opr result = new_register(T_INT);
 577   LIR_Opr t1 = FrameMap::G1_opr;
 578   LIR_Opr t2 = FrameMap::G3_opr;
 579   cmp_value.load_item();
 580   new_value.load_item();
 581   if (type == T_OBJECT || type == T_ARRAY) {
 582     __ cas_obj(addr, cmp_value.result(), new_value.result(), t1, t2);
 583   } else if (type == T_INT) {
 584     __ cas_int(addr, cmp_value.result(), new_value.result(), t1, t2);
 585   } else if (type == T_LONG) {
 586     __ cas_long(addr, cmp_value.result(), new_value.result(), t1, t2);
 587   } else {
 588     Unimplemented();
 589   }
 590   __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0),
 591            result, type);
 592   return result;
 593 }
 594 
 595 LIR_Opr LIRGenerator::swap(BasicType type, LIR_Opr addr, LIRItem& value) {
 596   bool is_obj = type == T_OBJECT || type == T_ARRAY;
 597   LIR_Opr result = new_register(type);
 598   LIR_Opr tmp = LIR_OprFact::illegalOpr;
 599 
 600   value.load_item();
 601 
 602   if (is_obj) {
 603     tmp = FrameMap::G3_opr;
 604   }
 605 
 606   // Because we want a 2-arg form of xchg
 607   __ move(value.result(), result);
 608   __ xchg(addr, result, result, tmp);
 609   return result;
 610 }
 611 
 612 LIR_Opr LIRGenerator::add(BasicType type, LIR_Opr addr, LIRItem& value) {
 613   Unimplemented();
 614   return LIR_OprFact::illegalOpr;
 615 }
 616 
 617 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
 618   switch (x->id()) {
 619     case vmIntrinsics::_dabs:
 620     case vmIntrinsics::_dsqrt: {
 621       assert(x->number_of_arguments() == 1, "wrong type");
 622       LIRItem value(x->argument_at(0), this);
 623       value.load_item();
 624       LIR_Opr dst = rlock_result(x);
 625 
 626       switch (x->id()) {
 627       case vmIntrinsics::_dsqrt: {
 628         __ sqrt(value.result(), dst, LIR_OprFact::illegalOpr);
 629         break;
 630       }
 631       case vmIntrinsics::_dabs: {
 632         __ abs(value.result(), dst, LIR_OprFact::illegalOpr);
 633         break;
 634       }
 635       }
 636       break;
 637     }
 638     case vmIntrinsics::_dlog10: // fall through
 639     case vmIntrinsics::_dlog: // fall through
 640     case vmIntrinsics::_dsin: // fall through
 641     case vmIntrinsics::_dtan: // fall through
 642     case vmIntrinsics::_dcos: // fall through
 643     case vmIntrinsics::_dexp: {
 644       assert(x->number_of_arguments() == 1, "wrong type");
 645 
 646       address runtime_entry = NULL;
 647       switch (x->id()) {
 648       case vmIntrinsics::_dsin:
 649         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
 650         break;
 651       case vmIntrinsics::_dcos:
 652         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
 653         break;
 654       case vmIntrinsics::_dtan:
 655         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
 656         break;
 657       case vmIntrinsics::_dlog:
 658         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
 659         break;
 660       case vmIntrinsics::_dlog10:
 661         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
 662         break;
 663       case vmIntrinsics::_dexp:
 664         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
 665         break;
 666       default:
 667         ShouldNotReachHere();
 668       }
 669 
 670       LIR_Opr result = call_runtime(x->argument_at(0), runtime_entry, x->type(), NULL);
 671       set_result(x, result);
 672       break;
 673     }
 674     case vmIntrinsics::_dpow: {
 675       assert(x->number_of_arguments() == 2, "wrong type");
 676       address runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
 677       LIR_Opr result = call_runtime(x->argument_at(0), x->argument_at(1), runtime_entry, x->type(), NULL);
 678       set_result(x, result);
 679       break;
 680     }
 681   }
 682 }
 683 
 684 
 685 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
 686   assert(x->number_of_arguments() == 5, "wrong type");
 687 
 688   // Make all state_for calls early since they can emit code
 689   CodeEmitInfo* info = state_for(x, x->state());
 690 
 691   // Note: spill caller save before setting the item
 692   LIRItem src     (x->argument_at(0), this);
 693   LIRItem src_pos (x->argument_at(1), this);
 694   LIRItem dst     (x->argument_at(2), this);
 695   LIRItem dst_pos (x->argument_at(3), this);
 696   LIRItem length  (x->argument_at(4), this);
 697   // load all values in callee_save_registers, as this makes the
 698   // parameter passing to the fast case simpler
 699   src.load_item_force     (rlock_callee_saved(T_OBJECT));
 700   src_pos.load_item_force (rlock_callee_saved(T_INT));
 701   dst.load_item_force     (rlock_callee_saved(T_OBJECT));
 702   dst_pos.load_item_force (rlock_callee_saved(T_INT));
 703   length.load_item_force  (rlock_callee_saved(T_INT));
 704 
 705   int flags;
 706   ciArrayKlass* expected_type;
 707   arraycopy_helper(x, &flags, &expected_type);
 708 
 709   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(),
 710                length.result(), rlock_callee_saved(T_INT),
 711                expected_type, flags, info);
 712   set_no_result(x);
 713 }
 714 
 715 void LIRGenerator::do_update_CRC32(Intrinsic* x) {
 716   // Make all state_for calls early since they can emit code
 717   LIR_Opr result = rlock_result(x);
 718   int flags = 0;
 719   switch (x->id()) {
 720     case vmIntrinsics::_updateCRC32: {
 721       LIRItem crc(x->argument_at(0), this);
 722       LIRItem val(x->argument_at(1), this);
 723       // val is destroyed by update_crc32
 724       val.set_destroys_register();
 725       crc.load_item();
 726       val.load_item();
 727       __ update_crc32(crc.result(), val.result(), result);
 728       break;
 729     }
 730     case vmIntrinsics::_updateBytesCRC32:
 731     case vmIntrinsics::_updateByteBufferCRC32: {
 732 
 733       bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32);
 734 
 735       LIRItem crc(x->argument_at(0), this);
 736       LIRItem buf(x->argument_at(1), this);
 737       LIRItem off(x->argument_at(2), this);
 738       LIRItem len(x->argument_at(3), this);
 739 
 740       buf.load_item();
 741       off.load_nonconstant();
 742 
 743       LIR_Opr index = off.result();
 744       int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
 745       if(off.result()->is_constant()) {
 746         index = LIR_OprFact::illegalOpr;
 747         offset += off.result()->as_jint();
 748       }
 749 
 750       LIR_Opr base_op = buf.result();
 751 
 752       if (index->is_valid()) {
 753         LIR_Opr tmp = new_register(T_LONG);
 754         __ convert(Bytecodes::_i2l, index, tmp);
 755         index = tmp;
 756         if (index->is_constant()) {
 757           offset += index->as_constant_ptr()->as_jint();
 758           index = LIR_OprFact::illegalOpr;
 759         } else if (index->is_register()) {
 760           LIR_Opr tmp2 = new_register(T_LONG);
 761           LIR_Opr tmp3 = new_register(T_LONG);
 762           __ move(base_op, tmp2);
 763           __ move(index, tmp3);
 764           __ add(tmp2, tmp3, tmp2);
 765           base_op = tmp2;
 766         } else {
 767           ShouldNotReachHere();
 768         }
 769       }
 770 
 771       LIR_Address* a = new LIR_Address(base_op, offset, T_BYTE);
 772 
 773       BasicTypeList signature(3);
 774       signature.append(T_INT);
 775       signature.append(T_ADDRESS);
 776       signature.append(T_INT);
 777       CallingConvention* cc = frame_map()->c_calling_convention(&signature);
 778       const LIR_Opr result_reg = result_register_for(x->type());
 779 
 780       LIR_Opr addr = new_pointer_register();
 781       __ leal(LIR_OprFact::address(a), addr);
 782 
 783       crc.load_item_force(cc->at(0));
 784       __ move(addr, cc->at(1));
 785       len.load_item_force(cc->at(2));
 786 
 787       __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args());
 788       __ move(result_reg, result);
 789 
 790       break;
 791     }
 792     default: {
 793       ShouldNotReachHere();
 794     }
 795   }
 796 }
 797 
 798 void LIRGenerator::do_update_CRC32C(Intrinsic* x) {
 799   // Make all state_for calls early since they can emit code
 800   LIR_Opr result = rlock_result(x);
 801   int flags = 0;
 802   switch (x->id()) {
 803     case vmIntrinsics::_updateBytesCRC32C:
 804     case vmIntrinsics::_updateDirectByteBufferCRC32C: {
 805 
 806       bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32C);
 807       int array_offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
 808 
 809       LIRItem crc(x->argument_at(0), this);
 810       LIRItem buf(x->argument_at(1), this);
 811       LIRItem off(x->argument_at(2), this);
 812       LIRItem end(x->argument_at(3), this);
 813 
 814       buf.load_item();
 815       off.load_nonconstant();
 816       end.load_nonconstant();
 817 
 818       // len = end - off
 819       LIR_Opr len  = end.result();
 820       LIR_Opr tmpA = new_register(T_INT);
 821       LIR_Opr tmpB = new_register(T_INT);
 822       __ move(end.result(), tmpA);
 823       __ move(off.result(), tmpB);
 824       __ sub(tmpA, tmpB, tmpA);
 825       len = tmpA;
 826 
 827       LIR_Opr index = off.result();
 828 
 829       if(off.result()->is_constant()) {
 830         index = LIR_OprFact::illegalOpr;
 831         array_offset += off.result()->as_jint();
 832       }
 833 
 834       LIR_Opr base_op = buf.result();
 835 
 836       if (index->is_valid()) {
 837         LIR_Opr tmp = new_register(T_LONG);
 838         __ convert(Bytecodes::_i2l, index, tmp);
 839         index = tmp;
 840         if (index->is_constant()) {
 841           array_offset += index->as_constant_ptr()->as_jint();
 842           index = LIR_OprFact::illegalOpr;
 843         } else if (index->is_register()) {
 844           LIR_Opr tmp2 = new_register(T_LONG);
 845           LIR_Opr tmp3 = new_register(T_LONG);
 846           __ move(base_op, tmp2);
 847           __ move(index, tmp3);
 848           __ add(tmp2, tmp3, tmp2);
 849           base_op = tmp2;
 850         } else {
 851           ShouldNotReachHere();
 852         }
 853       }
 854 
 855       LIR_Address* a = new LIR_Address(base_op, array_offset, T_BYTE);
 856 
 857       BasicTypeList signature(3);
 858       signature.append(T_INT);
 859       signature.append(T_ADDRESS);
 860       signature.append(T_INT);
 861       CallingConvention* cc = frame_map()->c_calling_convention(&signature);
 862       const LIR_Opr result_reg = result_register_for(x->type());
 863 
 864       LIR_Opr addr = new_pointer_register();
 865       __ leal(LIR_OprFact::address(a), addr);
 866 
 867       crc.load_item_force(cc->at(0));
 868       __ move(addr, cc->at(1));
 869       __ move(len, cc->at(2));
 870 
 871       __ call_runtime_leaf(StubRoutines::updateBytesCRC32C(), getThreadTemp(), result_reg, cc->args());
 872       __ move(result_reg, result);
 873 
 874       break;
 875     }
 876     default: {
 877       ShouldNotReachHere();
 878     }
 879   }
 880 }
 881 
 882 void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) {
 883   fatal("FMA intrinsic is not implemented on this platform");
 884 }
 885 
 886 void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) {
 887   fatal("vectorizedMismatch intrinsic is not implemented on this platform");
 888 }
 889 
 890 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
 891 // _i2b, _i2c, _i2s
 892 void LIRGenerator::do_Convert(Convert* x) {
 893 
 894   switch (x->op()) {
 895     case Bytecodes::_f2l:
 896     case Bytecodes::_d2l:
 897     case Bytecodes::_d2i:
 898     case Bytecodes::_l2f:
 899     case Bytecodes::_l2d: {
 900 
 901       address entry;
 902       switch (x->op()) {
 903       case Bytecodes::_l2f:
 904         entry = CAST_FROM_FN_PTR(address, SharedRuntime::l2f);
 905         break;
 906       case Bytecodes::_l2d:
 907         entry = CAST_FROM_FN_PTR(address, SharedRuntime::l2d);
 908         break;
 909       case Bytecodes::_f2l:
 910         entry = CAST_FROM_FN_PTR(address, SharedRuntime::f2l);
 911         break;
 912       case Bytecodes::_d2l:
 913         entry = CAST_FROM_FN_PTR(address, SharedRuntime::d2l);
 914         break;
 915       case Bytecodes::_d2i:
 916         entry = CAST_FROM_FN_PTR(address, SharedRuntime::d2i);
 917         break;
 918       default:
 919         ShouldNotReachHere();
 920       }
 921       LIR_Opr result = call_runtime(x->value(), entry, x->type(), NULL);
 922       set_result(x, result);
 923       break;
 924     }
 925 
 926     case Bytecodes::_i2f:
 927     case Bytecodes::_i2d: {
 928       LIRItem value(x->value(), this);
 929 
 930       LIR_Opr reg = rlock_result(x);
 931       // To convert an int to double, we need to load the 32-bit int
 932       // from memory into a single precision floating point register
 933       // (even numbered). Then the sparc fitod instruction takes care
 934       // of the conversion. This is a bit ugly, but is the best way to
 935       // get the int value in a single precision floating point register
 936       value.load_item();
 937       LIR_Opr tmp = force_to_spill(value.result(), T_FLOAT);
 938       __ convert(x->op(), tmp, reg);
 939       break;
 940     }
 941     break;
 942 
 943     case Bytecodes::_i2l:
 944     case Bytecodes::_i2b:
 945     case Bytecodes::_i2c:
 946     case Bytecodes::_i2s:
 947     case Bytecodes::_l2i:
 948     case Bytecodes::_f2d:
 949     case Bytecodes::_d2f: { // inline code
 950       LIRItem value(x->value(), this);
 951 
 952       value.load_item();
 953       LIR_Opr reg = rlock_result(x);
 954       __ convert(x->op(), value.result(), reg, false);
 955     }
 956     break;
 957 
 958     case Bytecodes::_f2i: {
 959       LIRItem value (x->value(), this);
 960       value.set_destroys_register();
 961       value.load_item();
 962       LIR_Opr reg = rlock_result(x);
 963       set_vreg_flag(reg, must_start_in_memory);
 964       __ convert(x->op(), value.result(), reg, false);
 965     }
 966     break;
 967 
 968     default: ShouldNotReachHere();
 969   }
 970 }
 971 
 972 
 973 void LIRGenerator::do_NewInstance(NewInstance* x) {
 974   print_if_not_loaded(x);
 975 
 976   // This instruction can be deoptimized in the slow path : use
 977   // O0 as result register.
 978   const LIR_Opr reg = result_register_for(x->type());
 979 
 980   CodeEmitInfo* info = state_for(x, x->state());
 981   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
 982   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
 983   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
 984   LIR_Opr tmp4 = FrameMap::O1_oop_opr;
 985   LIR_Opr klass_reg = FrameMap::G5_metadata_opr;
 986   new_instance(reg, x->klass(), x->is_unresolved(), tmp1, tmp2, tmp3, tmp4, klass_reg, info);
 987   LIR_Opr result = rlock_result(x);
 988   __ move(reg, result);
 989 }
 990 
 991 
 992 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
 993   // Evaluate state_for early since it may emit code
 994   CodeEmitInfo* info = state_for(x, x->state());
 995 
 996   LIRItem length(x->length(), this);
 997   length.load_item();
 998 
 999   LIR_Opr reg = result_register_for(x->type());
1000   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
1001   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
1002   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
1003   LIR_Opr tmp4 = FrameMap::O1_oop_opr;
1004   LIR_Opr klass_reg = FrameMap::G5_metadata_opr;
1005   LIR_Opr len = length.result();
1006   BasicType elem_type = x->elt_type();
1007 
1008   __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
1009 
1010   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
1011   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
1012 
1013   LIR_Opr result = rlock_result(x);
1014   __ move(reg, result);
1015 }
1016 
1017 
1018 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
1019   // Evaluate state_for early since it may emit code.
1020   CodeEmitInfo* info = state_for(x, x->state());
1021   // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
1022   // and therefore provide the state before the parameters have been consumed
1023   CodeEmitInfo* patching_info = NULL;
1024   if (!x->klass()->is_loaded() || PatchALot) {
1025     patching_info = state_for(x, x->state_before());
1026   }
1027 
1028   LIRItem length(x->length(), this);
1029   length.load_item();
1030 
1031   const LIR_Opr reg = result_register_for(x->type());
1032   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
1033   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
1034   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
1035   LIR_Opr tmp4 = FrameMap::O1_oop_opr;
1036   LIR_Opr klass_reg = FrameMap::G5_metadata_opr;
1037   LIR_Opr len = length.result();
1038 
1039   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
1040   ciMetadata* obj = ciObjArrayKlass::make(x->klass());
1041   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
1042     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
1043   }
1044   klass2reg_with_patching(klass_reg, obj, patching_info);
1045   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
1046 
1047   LIR_Opr result = rlock_result(x);
1048   __ move(reg, result);
1049 }
1050 
1051 
1052 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1053   Values* dims = x->dims();
1054   int i = dims->length();
1055   LIRItemList* items = new LIRItemList(i, i, NULL);
1056   while (i-- > 0) {
1057     LIRItem* size = new LIRItem(dims->at(i), this);
1058     items->at_put(i, size);
1059   }
1060 
1061   // Evaluate state_for early since it may emit code.
1062   CodeEmitInfo* patching_info = NULL;
1063   if (!x->klass()->is_loaded() || PatchALot) {
1064     patching_info = state_for(x, x->state_before());
1065 
1066     // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
1067     // clone all handlers (NOTE: Usually this is handled transparently
1068     // by the CodeEmitInfo cloning logic in CodeStub constructors but
1069     // is done explicitly here because a stub isn't being used).
1070     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1071   }
1072   CodeEmitInfo* info = state_for(x, x->state());
1073 
1074   i = dims->length();
1075   while (i-- > 0) {
1076     LIRItem* size = items->at(i);
1077     size->load_item();
1078     store_stack_parameter (size->result(),
1079                            in_ByteSize(STACK_BIAS +
1080                                        frame::memory_parameter_word_sp_offset * wordSize +
1081                                        i * sizeof(jint)));
1082   }
1083 
1084   // This instruction can be deoptimized in the slow path : use
1085   // O0 as result register.
1086   const LIR_Opr klass_reg = FrameMap::O0_metadata_opr;
1087   klass2reg_with_patching(klass_reg, x->klass(), patching_info);
1088   LIR_Opr rank = FrameMap::O1_opr;
1089   __ move(LIR_OprFact::intConst(x->rank()), rank);
1090   LIR_Opr varargs = FrameMap::as_pointer_opr(O2);
1091   int offset_from_sp = (frame::memory_parameter_word_sp_offset * wordSize) + STACK_BIAS;
1092   __ add(FrameMap::SP_opr,
1093          LIR_OprFact::intptrConst(offset_from_sp),
1094          varargs);
1095   LIR_OprList* args = new LIR_OprList(3);
1096   args->append(klass_reg);
1097   args->append(rank);
1098   args->append(varargs);
1099   const LIR_Opr reg = result_register_for(x->type());
1100   __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1101                   LIR_OprFact::illegalOpr,
1102                   reg, args, info);
1103 
1104   LIR_Opr result = rlock_result(x);
1105   __ move(reg, result);
1106 }
1107 
1108 
1109 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1110 }
1111 
1112 
1113 void LIRGenerator::do_CheckCast(CheckCast* x) {
1114   LIRItem obj(x->obj(), this);
1115   CodeEmitInfo* patching_info = NULL;
1116   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
1117     // must do this before locking the destination register as an oop register,
1118     // and before the obj is loaded (so x->obj()->item() is valid for creating a debug info location)
1119     patching_info = state_for(x, x->state_before());
1120   }
1121   obj.load_item();
1122   LIR_Opr out_reg = rlock_result(x);
1123   CodeStub* stub;
1124   CodeEmitInfo* info_for_exception = state_for(x);
1125 
1126   if (x->is_incompatible_class_change_check()) {
1127     assert(patching_info == NULL, "can't patch this");
1128     stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1129   } else {
1130     stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1131   }
1132   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
1133   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
1134   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
1135   __ checkcast(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3,
1136                x->direct_compare(), info_for_exception, patching_info, stub,
1137                x->profiled_method(), x->profiled_bci());
1138 }
1139 
1140 
1141 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1142   LIRItem obj(x->obj(), this);
1143   CodeEmitInfo* patching_info = NULL;
1144   if (!x->klass()->is_loaded() || PatchALot) {
1145     patching_info = state_for(x, x->state_before());
1146   }
1147   // ensure the result register is not the input register because the result is initialized before the patching safepoint
1148   obj.load_item();
1149   LIR_Opr out_reg = rlock_result(x);
1150   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
1151   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
1152   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
1153   __ instanceof(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3,
1154                 x->direct_compare(), patching_info,
1155                 x->profiled_method(), x->profiled_bci());
1156 }
1157 
1158 
1159 void LIRGenerator::do_If(If* x) {
1160   assert(x->number_of_sux() == 2, "inconsistency");
1161   ValueTag tag = x->x()->type()->tag();
1162   LIRItem xitem(x->x(), this);
1163   LIRItem yitem(x->y(), this);
1164   LIRItem* xin = &xitem;
1165   LIRItem* yin = &yitem;
1166   If::Condition cond = x->cond();
1167 
1168   if (tag == longTag) {
1169     // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1170     // mirror for other conditions
1171     if (cond == If::gtr || cond == If::leq) {
1172       // swap inputs
1173       cond = Instruction::mirror(cond);
1174       xin = &yitem;
1175       yin = &xitem;
1176     }
1177     xin->set_destroys_register();
1178   }
1179 
1180   LIR_Opr left = LIR_OprFact::illegalOpr;
1181   LIR_Opr right = LIR_OprFact::illegalOpr;
1182 
1183   xin->load_item();
1184   left = xin->result();
1185 
1186   if (is_simm13(yin->result())) {
1187     // inline int constants which are small enough to be immediate operands
1188     right = LIR_OprFact::value_type(yin->value()->type());
1189   } else if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 &&
1190              (cond == If::eql || cond == If::neq)) {
1191     // inline long zero
1192     right = LIR_OprFact::value_type(yin->value()->type());
1193   } else if (tag == objectTag && yin->is_constant() && (yin->get_jobject_constant()->is_null_object())) {
1194     right = LIR_OprFact::value_type(yin->value()->type());
1195   } else {
1196     yin->load_item();
1197     right = yin->result();
1198   }
1199   set_no_result(x);
1200 
1201   // add safepoint before generating condition code so it can be recomputed
1202   if (x->is_safepoint()) {
1203     // increment backedge counter if needed
1204     increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
1205     __ safepoint(new_register(T_INT), state_for(x, x->state_before()));
1206   }
1207 
1208   __ cmp(lir_cond(cond), left, right);
1209   // Generate branch profiling. Profiling code doesn't kill flags.
1210   profile_branch(x, cond);
1211   move_to_phi(x->state());
1212   if (x->x()->type()->is_float_kind()) {
1213     __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
1214   } else {
1215     __ branch(lir_cond(cond), right->type(), x->tsux());
1216   }
1217   assert(x->default_sux() == x->fsux(), "wrong destination above");
1218   __ jump(x->default_sux());
1219 }
1220 
1221 
1222 LIR_Opr LIRGenerator::getThreadPointer() {
1223   return FrameMap::as_pointer_opr(G2);
1224 }
1225 
1226 
1227 void LIRGenerator::trace_block_entry(BlockBegin* block) {
1228   __ move(LIR_OprFact::intConst(block->block_id()), FrameMap::O0_opr);
1229   LIR_OprList* args = new LIR_OprList(1);
1230   args->append(FrameMap::O0_opr);
1231   address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
1232   __ call_runtime_leaf(func, rlock_callee_saved(T_INT), LIR_OprFact::illegalOpr, args);
1233 }
1234 
1235 
1236 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1237                                         CodeEmitInfo* info) {
1238   __ store(value, address, info);
1239 }
1240 
1241 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1242                                        CodeEmitInfo* info) {
1243   __ load(address, result, info);
1244 }