1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc/shared/cardTableModRefBS.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/interfaceSupport.hpp"
  35 #include "runtime/objectMonitor.hpp"
  36 #include "runtime/os.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "utilities/macros.hpp"
  40 #if INCLUDE_ALL_GCS
  41 #include "gc/g1/g1CollectedHeap.inline.hpp"
  42 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc/g1/heapRegion.hpp"
  44 #endif // INCLUDE_ALL_GCS
  45 
  46 #ifdef PRODUCT
  47 #define BLOCK_COMMENT(str) /* nothing */
  48 #define STOP(error) stop(error)
  49 #else
  50 #define BLOCK_COMMENT(str) block_comment(str)
  51 #define STOP(error) block_comment(error); stop(error)
  52 #endif
  53 
  54 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  55 // Implementation of AddressLiteral
  56 
  57 // A 2-D table for managing compressed displacement(disp8) on EVEX enabled platforms.
  58 unsigned char tuple_table[Assembler::EVEX_ETUP + 1][Assembler::AVX_512bit + 1] = {
  59   // -----------------Table 4.5 -------------------- //
  60   16, 32, 64,  // EVEX_FV(0)
  61   4,  4,  4,   // EVEX_FV(1) - with Evex.b
  62   16, 32, 64,  // EVEX_FV(2) - with Evex.w
  63   8,  8,  8,   // EVEX_FV(3) - with Evex.w and Evex.b
  64   8,  16, 32,  // EVEX_HV(0)
  65   4,  4,  4,   // EVEX_HV(1) - with Evex.b
  66   // -----------------Table 4.6 -------------------- //
  67   16, 32, 64,  // EVEX_FVM(0)
  68   1,  1,  1,   // EVEX_T1S(0)
  69   2,  2,  2,   // EVEX_T1S(1)
  70   4,  4,  4,   // EVEX_T1S(2)
  71   8,  8,  8,   // EVEX_T1S(3)
  72   4,  4,  4,   // EVEX_T1F(0)
  73   8,  8,  8,   // EVEX_T1F(1)
  74   8,  8,  8,   // EVEX_T2(0)
  75   0,  16, 16,  // EVEX_T2(1)
  76   0,  16, 16,  // EVEX_T4(0)
  77   0,  0,  32,  // EVEX_T4(1)
  78   0,  0,  32,  // EVEX_T8(0)
  79   8,  16, 32,  // EVEX_HVM(0)
  80   4,  8,  16,  // EVEX_QVM(0)
  81   2,  4,  8,   // EVEX_OVM(0)
  82   16, 16, 16,  // EVEX_M128(0)
  83   8,  32, 64,  // EVEX_DUP(0)
  84   0,  0,  0    // EVEX_NTUP
  85 };
  86 
  87 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  88   _is_lval = false;
  89   _target = target;
  90   switch (rtype) {
  91   case relocInfo::oop_type:
  92   case relocInfo::metadata_type:
  93     // Oops are a special case. Normally they would be their own section
  94     // but in cases like icBuffer they are literals in the code stream that
  95     // we don't have a section for. We use none so that we get a literal address
  96     // which is always patchable.
  97     break;
  98   case relocInfo::external_word_type:
  99     _rspec = external_word_Relocation::spec(target);
 100     break;
 101   case relocInfo::internal_word_type:
 102     _rspec = internal_word_Relocation::spec(target);
 103     break;
 104   case relocInfo::opt_virtual_call_type:
 105     _rspec = opt_virtual_call_Relocation::spec();
 106     break;
 107   case relocInfo::static_call_type:
 108     _rspec = static_call_Relocation::spec();
 109     break;
 110   case relocInfo::runtime_call_type:
 111     _rspec = runtime_call_Relocation::spec();
 112     break;
 113   case relocInfo::poll_type:
 114   case relocInfo::poll_return_type:
 115     _rspec = Relocation::spec_simple(rtype);
 116     break;
 117   case relocInfo::none:
 118     break;
 119   default:
 120     ShouldNotReachHere();
 121     break;
 122   }
 123 }
 124 
 125 // Implementation of Address
 126 
 127 #ifdef _LP64
 128 
 129 Address Address::make_array(ArrayAddress adr) {
 130   // Not implementable on 64bit machines
 131   // Should have been handled higher up the call chain.
 132   ShouldNotReachHere();
 133   return Address();
 134 }
 135 
 136 // exceedingly dangerous constructor
 137 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 138   _base  = noreg;
 139   _index = noreg;
 140   _scale = no_scale;
 141   _disp  = disp;
 142   switch (rtype) {
 143     case relocInfo::external_word_type:
 144       _rspec = external_word_Relocation::spec(loc);
 145       break;
 146     case relocInfo::internal_word_type:
 147       _rspec = internal_word_Relocation::spec(loc);
 148       break;
 149     case relocInfo::runtime_call_type:
 150       // HMM
 151       _rspec = runtime_call_Relocation::spec();
 152       break;
 153     case relocInfo::poll_type:
 154     case relocInfo::poll_return_type:
 155       _rspec = Relocation::spec_simple(rtype);
 156       break;
 157     case relocInfo::none:
 158       break;
 159     default:
 160       ShouldNotReachHere();
 161   }
 162 }
 163 #else // LP64
 164 
 165 Address Address::make_array(ArrayAddress adr) {
 166   AddressLiteral base = adr.base();
 167   Address index = adr.index();
 168   assert(index._disp == 0, "must not have disp"); // maybe it can?
 169   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 170   array._rspec = base._rspec;
 171   return array;
 172 }
 173 
 174 // exceedingly dangerous constructor
 175 Address::Address(address loc, RelocationHolder spec) {
 176   _base  = noreg;
 177   _index = noreg;
 178   _scale = no_scale;
 179   _disp  = (intptr_t) loc;
 180   _rspec = spec;
 181 }
 182 
 183 #endif // _LP64
 184 
 185 
 186 
 187 // Convert the raw encoding form into the form expected by the constructor for
 188 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 189 // that to noreg for the Address constructor.
 190 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 191   RelocationHolder rspec;
 192   if (disp_reloc != relocInfo::none) {
 193     rspec = Relocation::spec_simple(disp_reloc);
 194   }
 195   bool valid_index = index != rsp->encoding();
 196   if (valid_index) {
 197     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 198     madr._rspec = rspec;
 199     return madr;
 200   } else {
 201     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 202     madr._rspec = rspec;
 203     return madr;
 204   }
 205 }
 206 
 207 // Implementation of Assembler
 208 
 209 int AbstractAssembler::code_fill_byte() {
 210   return (u_char)'\xF4'; // hlt
 211 }
 212 
 213 // make this go away someday
 214 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 215   if (rtype == relocInfo::none)
 216     emit_int32(data);
 217   else
 218     emit_data(data, Relocation::spec_simple(rtype), format);
 219 }
 220 
 221 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 222   assert(imm_operand == 0, "default format must be immediate in this file");
 223   assert(inst_mark() != NULL, "must be inside InstructionMark");
 224   if (rspec.type() !=  relocInfo::none) {
 225     #ifdef ASSERT
 226       check_relocation(rspec, format);
 227     #endif
 228     // Do not use AbstractAssembler::relocate, which is not intended for
 229     // embedded words.  Instead, relocate to the enclosing instruction.
 230 
 231     // hack. call32 is too wide for mask so use disp32
 232     if (format == call32_operand)
 233       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 234     else
 235       code_section()->relocate(inst_mark(), rspec, format);
 236   }
 237   emit_int32(data);
 238 }
 239 
 240 static int encode(Register r) {
 241   int enc = r->encoding();
 242   if (enc >= 8) {
 243     enc -= 8;
 244   }
 245   return enc;
 246 }
 247 
 248 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 249   assert(dst->has_byte_register(), "must have byte register");
 250   assert(isByte(op1) && isByte(op2), "wrong opcode");
 251   assert(isByte(imm8), "not a byte");
 252   assert((op1 & 0x01) == 0, "should be 8bit operation");
 253   emit_int8(op1);
 254   emit_int8(op2 | encode(dst));
 255   emit_int8(imm8);
 256 }
 257 
 258 
 259 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 260   assert(isByte(op1) && isByte(op2), "wrong opcode");
 261   assert((op1 & 0x01) == 1, "should be 32bit operation");
 262   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 263   if (is8bit(imm32)) {
 264     emit_int8(op1 | 0x02); // set sign bit
 265     emit_int8(op2 | encode(dst));
 266     emit_int8(imm32 & 0xFF);
 267   } else {
 268     emit_int8(op1);
 269     emit_int8(op2 | encode(dst));
 270     emit_int32(imm32);
 271   }
 272 }
 273 
 274 // Force generation of a 4 byte immediate value even if it fits into 8bit
 275 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 276   assert(isByte(op1) && isByte(op2), "wrong opcode");
 277   assert((op1 & 0x01) == 1, "should be 32bit operation");
 278   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 279   emit_int8(op1);
 280   emit_int8(op2 | encode(dst));
 281   emit_int32(imm32);
 282 }
 283 
 284 // immediate-to-memory forms
 285 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 286   assert((op1 & 0x01) == 1, "should be 32bit operation");
 287   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 288   if (is8bit(imm32)) {
 289     emit_int8(op1 | 0x02); // set sign bit
 290     emit_operand(rm, adr, 1);
 291     emit_int8(imm32 & 0xFF);
 292   } else {
 293     emit_int8(op1);
 294     emit_operand(rm, adr, 4);
 295     emit_int32(imm32);
 296   }
 297 }
 298 
 299 
 300 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 301   assert(isByte(op1) && isByte(op2), "wrong opcode");
 302   emit_int8(op1);
 303   emit_int8(op2 | encode(dst) << 3 | encode(src));
 304 }
 305 
 306 
 307 bool Assembler::query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
 308                                            int cur_tuple_type, int in_size_in_bits, int cur_encoding) {
 309   int mod_idx = 0;
 310   // We will test if the displacement fits the compressed format and if so
 311   // apply the compression to the displacment iff the result is8bit.
 312   if (VM_Version::supports_evex() && is_evex_inst) {
 313     switch (cur_tuple_type) {
 314     case EVEX_FV:
 315       if ((cur_encoding & VEX_W) == VEX_W) {
 316         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 317       } else {
 318         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 319       }
 320       break;
 321 
 322     case EVEX_HV:
 323       mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 324       break;
 325 
 326     case EVEX_FVM:
 327       break;
 328 
 329     case EVEX_T1S:
 330       switch (in_size_in_bits) {
 331       case EVEX_8bit:
 332         break;
 333 
 334       case EVEX_16bit:
 335         mod_idx = 1;
 336         break;
 337 
 338       case EVEX_32bit:
 339         mod_idx = 2;
 340         break;
 341 
 342       case EVEX_64bit:
 343         mod_idx = 3;
 344         break;
 345       }
 346       break;
 347 
 348     case EVEX_T1F:
 349     case EVEX_T2:
 350     case EVEX_T4:
 351       mod_idx = (in_size_in_bits == EVEX_64bit) ? 1 : 0;
 352       break;
 353 
 354     case EVEX_T8:
 355       break;
 356 
 357     case EVEX_HVM:
 358       break;
 359 
 360     case EVEX_QVM:
 361       break;
 362 
 363     case EVEX_OVM:
 364       break;
 365 
 366     case EVEX_M128:
 367       break;
 368 
 369     case EVEX_DUP:
 370       break;
 371 
 372     default:
 373       assert(0, "no valid evex tuple_table entry");
 374       break;
 375     }
 376 
 377     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 378       int disp_factor = tuple_table[cur_tuple_type + mod_idx][vector_len];
 379       if ((disp % disp_factor) == 0) {
 380         int new_disp = disp / disp_factor;
 381         if ((-0x80 <= new_disp && new_disp < 0x80)) {
 382           disp = new_disp;
 383         }
 384       } else {
 385         return false;
 386       }
 387     }
 388   }
 389   return (-0x80 <= disp && disp < 0x80);
 390 }
 391 
 392 
 393 bool Assembler::emit_compressed_disp_byte(int &disp) {
 394   int mod_idx = 0;
 395   // We will test if the displacement fits the compressed format and if so
 396   // apply the compression to the displacment iff the result is8bit.
 397   if (VM_Version::supports_evex() && _attributes && _attributes->is_evex_instruction()) {
 398     int evex_encoding = _attributes->get_evex_encoding();
 399     int tuple_type = _attributes->get_tuple_type();
 400     switch (tuple_type) {
 401     case EVEX_FV:
 402       if ((evex_encoding & VEX_W) == VEX_W) {
 403         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 404       } else {
 405         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 406       }
 407       break;
 408 
 409     case EVEX_HV:
 410       mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 411       break;
 412 
 413     case EVEX_FVM:
 414       break;
 415 
 416     case EVEX_T1S:
 417       switch (_attributes->get_input_size()) {
 418       case EVEX_8bit:
 419         break;
 420 
 421       case EVEX_16bit:
 422         mod_idx = 1;
 423         break;
 424 
 425       case EVEX_32bit:
 426         mod_idx = 2;
 427         break;
 428 
 429       case EVEX_64bit:
 430         mod_idx = 3;
 431         break;
 432       }
 433       break;
 434 
 435     case EVEX_T1F:
 436     case EVEX_T2:
 437     case EVEX_T4:
 438       mod_idx = (_attributes->get_input_size() == EVEX_64bit) ? 1 : 0;
 439       break;
 440 
 441     case EVEX_T8:
 442       break;
 443 
 444     case EVEX_HVM:
 445       break;
 446 
 447     case EVEX_QVM:
 448       break;
 449 
 450     case EVEX_OVM:
 451       break;
 452 
 453     case EVEX_M128:
 454       break;
 455 
 456     case EVEX_DUP:
 457       break;
 458 
 459     default:
 460       assert(0, "no valid evex tuple_table entry");
 461       break;
 462     }
 463 
 464     int vector_len = _attributes->get_vector_len();
 465     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 466       int disp_factor = tuple_table[tuple_type + mod_idx][vector_len];
 467       if ((disp % disp_factor) == 0) {
 468         int new_disp = disp / disp_factor;
 469         if (is8bit(new_disp)) {
 470           disp = new_disp;
 471         }
 472       } else {
 473         return false;
 474       }
 475     }
 476   }
 477   return is8bit(disp);
 478 }
 479 
 480 
 481 void Assembler::emit_operand(Register reg, Register base, Register index,
 482                              Address::ScaleFactor scale, int disp,
 483                              RelocationHolder const& rspec,
 484                              int rip_relative_correction) {
 485   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 486 
 487   // Encode the registers as needed in the fields they are used in
 488 
 489   int regenc = encode(reg) << 3;
 490   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 491   int baseenc = base->is_valid() ? encode(base) : 0;
 492 
 493   if (base->is_valid()) {
 494     if (index->is_valid()) {
 495       assert(scale != Address::no_scale, "inconsistent address");
 496       // [base + index*scale + disp]
 497       if (disp == 0 && rtype == relocInfo::none  &&
 498           base != rbp LP64_ONLY(&& base != r13)) {
 499         // [base + index*scale]
 500         // [00 reg 100][ss index base]
 501         assert(index != rsp, "illegal addressing mode");
 502         emit_int8(0x04 | regenc);
 503         emit_int8(scale << 6 | indexenc | baseenc);
 504       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 505         // [base + index*scale + imm8]
 506         // [01 reg 100][ss index base] imm8
 507         assert(index != rsp, "illegal addressing mode");
 508         emit_int8(0x44 | regenc);
 509         emit_int8(scale << 6 | indexenc | baseenc);
 510         emit_int8(disp & 0xFF);
 511       } else {
 512         // [base + index*scale + disp32]
 513         // [10 reg 100][ss index base] disp32
 514         assert(index != rsp, "illegal addressing mode");
 515         emit_int8(0x84 | regenc);
 516         emit_int8(scale << 6 | indexenc | baseenc);
 517         emit_data(disp, rspec, disp32_operand);
 518       }
 519     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 520       // [rsp + disp]
 521       if (disp == 0 && rtype == relocInfo::none) {
 522         // [rsp]
 523         // [00 reg 100][00 100 100]
 524         emit_int8(0x04 | regenc);
 525         emit_int8(0x24);
 526       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 527         // [rsp + imm8]
 528         // [01 reg 100][00 100 100] disp8
 529         emit_int8(0x44 | regenc);
 530         emit_int8(0x24);
 531         emit_int8(disp & 0xFF);
 532       } else {
 533         // [rsp + imm32]
 534         // [10 reg 100][00 100 100] disp32
 535         emit_int8(0x84 | regenc);
 536         emit_int8(0x24);
 537         emit_data(disp, rspec, disp32_operand);
 538       }
 539     } else {
 540       // [base + disp]
 541       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 542       if (disp == 0 && rtype == relocInfo::none &&
 543           base != rbp LP64_ONLY(&& base != r13)) {
 544         // [base]
 545         // [00 reg base]
 546         emit_int8(0x00 | regenc | baseenc);
 547       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 548         // [base + disp8]
 549         // [01 reg base] disp8
 550         emit_int8(0x40 | regenc | baseenc);
 551         emit_int8(disp & 0xFF);
 552       } else {
 553         // [base + disp32]
 554         // [10 reg base] disp32
 555         emit_int8(0x80 | regenc | baseenc);
 556         emit_data(disp, rspec, disp32_operand);
 557       }
 558     }
 559   } else {
 560     if (index->is_valid()) {
 561       assert(scale != Address::no_scale, "inconsistent address");
 562       // [index*scale + disp]
 563       // [00 reg 100][ss index 101] disp32
 564       assert(index != rsp, "illegal addressing mode");
 565       emit_int8(0x04 | regenc);
 566       emit_int8(scale << 6 | indexenc | 0x05);
 567       emit_data(disp, rspec, disp32_operand);
 568     } else if (rtype != relocInfo::none ) {
 569       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 570       // [00 000 101] disp32
 571 
 572       emit_int8(0x05 | regenc);
 573       // Note that the RIP-rel. correction applies to the generated
 574       // disp field, but _not_ to the target address in the rspec.
 575 
 576       // disp was created by converting the target address minus the pc
 577       // at the start of the instruction. That needs more correction here.
 578       // intptr_t disp = target - next_ip;
 579       assert(inst_mark() != NULL, "must be inside InstructionMark");
 580       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 581       int64_t adjusted = disp;
 582       // Do rip-rel adjustment for 64bit
 583       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 584       assert(is_simm32(adjusted),
 585              "must be 32bit offset (RIP relative address)");
 586       emit_data((int32_t) adjusted, rspec, disp32_operand);
 587 
 588     } else {
 589       // 32bit never did this, did everything as the rip-rel/disp code above
 590       // [disp] ABSOLUTE
 591       // [00 reg 100][00 100 101] disp32
 592       emit_int8(0x04 | regenc);
 593       emit_int8(0x25);
 594       emit_data(disp, rspec, disp32_operand);
 595     }
 596   }
 597 }
 598 
 599 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 600                              Address::ScaleFactor scale, int disp,
 601                              RelocationHolder const& rspec) {
 602   if (UseAVX > 2) {
 603     int xreg_enc = reg->encoding();
 604     if (xreg_enc > 15) {
 605       XMMRegister new_reg = as_XMMRegister(xreg_enc & 0xf);
 606       emit_operand((Register)new_reg, base, index, scale, disp, rspec);
 607       return;
 608     }
 609   }
 610   emit_operand((Register)reg, base, index, scale, disp, rspec);
 611 }
 612 
 613 // Secret local extension to Assembler::WhichOperand:
 614 #define end_pc_operand (_WhichOperand_limit)
 615 
 616 address Assembler::locate_operand(address inst, WhichOperand which) {
 617   // Decode the given instruction, and return the address of
 618   // an embedded 32-bit operand word.
 619 
 620   // If "which" is disp32_operand, selects the displacement portion
 621   // of an effective address specifier.
 622   // If "which" is imm64_operand, selects the trailing immediate constant.
 623   // If "which" is call32_operand, selects the displacement of a call or jump.
 624   // Caller is responsible for ensuring that there is such an operand,
 625   // and that it is 32/64 bits wide.
 626 
 627   // If "which" is end_pc_operand, find the end of the instruction.
 628 
 629   address ip = inst;
 630   bool is_64bit = false;
 631 
 632   debug_only(bool has_disp32 = false);
 633   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 634 
 635   again_after_prefix:
 636   switch (0xFF & *ip++) {
 637 
 638   // These convenience macros generate groups of "case" labels for the switch.
 639 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 640 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 641              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 642 #define REP16(x) REP8((x)+0): \
 643               case REP8((x)+8)
 644 
 645   case CS_segment:
 646   case SS_segment:
 647   case DS_segment:
 648   case ES_segment:
 649   case FS_segment:
 650   case GS_segment:
 651     // Seems dubious
 652     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 653     assert(ip == inst+1, "only one prefix allowed");
 654     goto again_after_prefix;
 655 
 656   case 0x67:
 657   case REX:
 658   case REX_B:
 659   case REX_X:
 660   case REX_XB:
 661   case REX_R:
 662   case REX_RB:
 663   case REX_RX:
 664   case REX_RXB:
 665     NOT_LP64(assert(false, "64bit prefixes"));
 666     goto again_after_prefix;
 667 
 668   case REX_W:
 669   case REX_WB:
 670   case REX_WX:
 671   case REX_WXB:
 672   case REX_WR:
 673   case REX_WRB:
 674   case REX_WRX:
 675   case REX_WRXB:
 676     NOT_LP64(assert(false, "64bit prefixes"));
 677     is_64bit = true;
 678     goto again_after_prefix;
 679 
 680   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 681   case 0x88: // movb a, r
 682   case 0x89: // movl a, r
 683   case 0x8A: // movb r, a
 684   case 0x8B: // movl r, a
 685   case 0x8F: // popl a
 686     debug_only(has_disp32 = true);
 687     break;
 688 
 689   case 0x68: // pushq #32
 690     if (which == end_pc_operand) {
 691       return ip + 4;
 692     }
 693     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 694     return ip;                  // not produced by emit_operand
 695 
 696   case 0x66: // movw ... (size prefix)
 697     again_after_size_prefix2:
 698     switch (0xFF & *ip++) {
 699     case REX:
 700     case REX_B:
 701     case REX_X:
 702     case REX_XB:
 703     case REX_R:
 704     case REX_RB:
 705     case REX_RX:
 706     case REX_RXB:
 707     case REX_W:
 708     case REX_WB:
 709     case REX_WX:
 710     case REX_WXB:
 711     case REX_WR:
 712     case REX_WRB:
 713     case REX_WRX:
 714     case REX_WRXB:
 715       NOT_LP64(assert(false, "64bit prefix found"));
 716       goto again_after_size_prefix2;
 717     case 0x8B: // movw r, a
 718     case 0x89: // movw a, r
 719       debug_only(has_disp32 = true);
 720       break;
 721     case 0xC7: // movw a, #16
 722       debug_only(has_disp32 = true);
 723       tail_size = 2;  // the imm16
 724       break;
 725     case 0x0F: // several SSE/SSE2 variants
 726       ip--;    // reparse the 0x0F
 727       goto again_after_prefix;
 728     default:
 729       ShouldNotReachHere();
 730     }
 731     break;
 732 
 733   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 734     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 735     // these asserts are somewhat nonsensical
 736 #ifndef _LP64
 737     assert(which == imm_operand || which == disp32_operand,
 738            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 739 #else
 740     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 741            which == narrow_oop_operand && !is_64bit,
 742            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 743 #endif // _LP64
 744     return ip;
 745 
 746   case 0x69: // imul r, a, #32
 747   case 0xC7: // movl a, #32(oop?)
 748     tail_size = 4;
 749     debug_only(has_disp32 = true); // has both kinds of operands!
 750     break;
 751 
 752   case 0x0F: // movx..., etc.
 753     switch (0xFF & *ip++) {
 754     case 0x3A: // pcmpestri
 755       tail_size = 1;
 756     case 0x38: // ptest, pmovzxbw
 757       ip++; // skip opcode
 758       debug_only(has_disp32 = true); // has both kinds of operands!
 759       break;
 760 
 761     case 0x70: // pshufd r, r/a, #8
 762       debug_only(has_disp32 = true); // has both kinds of operands!
 763     case 0x73: // psrldq r, #8
 764       tail_size = 1;
 765       break;
 766 
 767     case 0x12: // movlps
 768     case 0x28: // movaps
 769     case 0x2E: // ucomiss
 770     case 0x2F: // comiss
 771     case 0x54: // andps
 772     case 0x55: // andnps
 773     case 0x56: // orps
 774     case 0x57: // xorps
 775     case 0x58: // addpd
 776     case 0x59: // mulpd
 777     case 0x6E: // movd
 778     case 0x7E: // movd
 779     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 780     case 0xFE: // paddd
 781       debug_only(has_disp32 = true);
 782       break;
 783 
 784     case 0xAD: // shrd r, a, %cl
 785     case 0xAF: // imul r, a
 786     case 0xBE: // movsbl r, a (movsxb)
 787     case 0xBF: // movswl r, a (movsxw)
 788     case 0xB6: // movzbl r, a (movzxb)
 789     case 0xB7: // movzwl r, a (movzxw)
 790     case REP16(0x40): // cmovl cc, r, a
 791     case 0xB0: // cmpxchgb
 792     case 0xB1: // cmpxchg
 793     case 0xC1: // xaddl
 794     case 0xC7: // cmpxchg8
 795     case REP16(0x90): // setcc a
 796       debug_only(has_disp32 = true);
 797       // fall out of the switch to decode the address
 798       break;
 799 
 800     case 0xC4: // pinsrw r, a, #8
 801       debug_only(has_disp32 = true);
 802     case 0xC5: // pextrw r, r, #8
 803       tail_size = 1;  // the imm8
 804       break;
 805 
 806     case 0xAC: // shrd r, a, #8
 807       debug_only(has_disp32 = true);
 808       tail_size = 1;  // the imm8
 809       break;
 810 
 811     case REP16(0x80): // jcc rdisp32
 812       if (which == end_pc_operand)  return ip + 4;
 813       assert(which == call32_operand, "jcc has no disp32 or imm");
 814       return ip;
 815     default:
 816       ShouldNotReachHere();
 817     }
 818     break;
 819 
 820   case 0x81: // addl a, #32; addl r, #32
 821     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 822     // on 32bit in the case of cmpl, the imm might be an oop
 823     tail_size = 4;
 824     debug_only(has_disp32 = true); // has both kinds of operands!
 825     break;
 826 
 827   case 0x83: // addl a, #8; addl r, #8
 828     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 829     debug_only(has_disp32 = true); // has both kinds of operands!
 830     tail_size = 1;
 831     break;
 832 
 833   case 0x9B:
 834     switch (0xFF & *ip++) {
 835     case 0xD9: // fnstcw a
 836       debug_only(has_disp32 = true);
 837       break;
 838     default:
 839       ShouldNotReachHere();
 840     }
 841     break;
 842 
 843   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 844   case REP4(0x10): // adc...
 845   case REP4(0x20): // and...
 846   case REP4(0x30): // xor...
 847   case REP4(0x08): // or...
 848   case REP4(0x18): // sbb...
 849   case REP4(0x28): // sub...
 850   case 0xF7: // mull a
 851   case 0x8D: // lea r, a
 852   case 0x87: // xchg r, a
 853   case REP4(0x38): // cmp...
 854   case 0x85: // test r, a
 855     debug_only(has_disp32 = true); // has both kinds of operands!
 856     break;
 857 
 858   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 859   case 0xC6: // movb a, #8
 860   case 0x80: // cmpb a, #8
 861   case 0x6B: // imul r, a, #8
 862     debug_only(has_disp32 = true); // has both kinds of operands!
 863     tail_size = 1; // the imm8
 864     break;
 865 
 866   case 0xC4: // VEX_3bytes
 867   case 0xC5: // VEX_2bytes
 868     assert((UseAVX > 0), "shouldn't have VEX prefix");
 869     assert(ip == inst+1, "no prefixes allowed");
 870     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 871     // but they have prefix 0x0F and processed when 0x0F processed above.
 872     //
 873     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 874     // instructions (these instructions are not supported in 64-bit mode).
 875     // To distinguish them bits [7:6] are set in the VEX second byte since
 876     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 877     // those VEX bits REX and vvvv bits are inverted.
 878     //
 879     // Fortunately C2 doesn't generate these instructions so we don't need
 880     // to check for them in product version.
 881 
 882     // Check second byte
 883     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 884 
 885     int vex_opcode;
 886     // First byte
 887     if ((0xFF & *inst) == VEX_3bytes) {
 888       vex_opcode = VEX_OPCODE_MASK & *ip;
 889       ip++; // third byte
 890       is_64bit = ((VEX_W & *ip) == VEX_W);
 891     } else {
 892       vex_opcode = VEX_OPCODE_0F;
 893     }
 894     ip++; // opcode
 895     // To find the end of instruction (which == end_pc_operand).
 896     switch (vex_opcode) {
 897       case VEX_OPCODE_0F:
 898         switch (0xFF & *ip) {
 899         case 0x70: // pshufd r, r/a, #8
 900         case 0x71: // ps[rl|ra|ll]w r, #8
 901         case 0x72: // ps[rl|ra|ll]d r, #8
 902         case 0x73: // ps[rl|ra|ll]q r, #8
 903         case 0xC2: // cmp[ps|pd|ss|sd] r, r, r/a, #8
 904         case 0xC4: // pinsrw r, r, r/a, #8
 905         case 0xC5: // pextrw r/a, r, #8
 906         case 0xC6: // shufp[s|d] r, r, r/a, #8
 907           tail_size = 1;  // the imm8
 908           break;
 909         }
 910         break;
 911       case VEX_OPCODE_0F_3A:
 912         tail_size = 1;
 913         break;
 914     }
 915     ip++; // skip opcode
 916     debug_only(has_disp32 = true); // has both kinds of operands!
 917     break;
 918 
 919   case 0x62: // EVEX_4bytes
 920     assert(VM_Version::supports_evex(), "shouldn't have EVEX prefix");
 921     assert(ip == inst+1, "no prefixes allowed");
 922     // no EVEX collisions, all instructions that have 0x62 opcodes
 923     // have EVEX versions and are subopcodes of 0x66
 924     ip++; // skip P0 and exmaine W in P1
 925     is_64bit = ((VEX_W & *ip) == VEX_W);
 926     ip++; // move to P2
 927     ip++; // skip P2, move to opcode
 928     // To find the end of instruction (which == end_pc_operand).
 929     switch (0xFF & *ip) {
 930     case 0x22: // pinsrd r, r/a, #8
 931     case 0x61: // pcmpestri r, r/a, #8
 932     case 0x70: // pshufd r, r/a, #8
 933     case 0x73: // psrldq r, #8
 934       tail_size = 1;  // the imm8
 935       break;
 936     default:
 937       break;
 938     }
 939     ip++; // skip opcode
 940     debug_only(has_disp32 = true); // has both kinds of operands!
 941     break;
 942 
 943   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 944   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 945   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 946   case 0xDD: // fld_d a; fst_d a; fstp_d a
 947   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 948   case 0xDF: // fild_d a; fistp_d a
 949   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 950   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 951   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 952     debug_only(has_disp32 = true);
 953     break;
 954 
 955   case 0xE8: // call rdisp32
 956   case 0xE9: // jmp  rdisp32
 957     if (which == end_pc_operand)  return ip + 4;
 958     assert(which == call32_operand, "call has no disp32 or imm");
 959     return ip;
 960 
 961   case 0xF0:                    // Lock
 962     assert(os::is_MP(), "only on MP");
 963     goto again_after_prefix;
 964 
 965   case 0xF3:                    // For SSE
 966   case 0xF2:                    // For SSE2
 967     switch (0xFF & *ip++) {
 968     case REX:
 969     case REX_B:
 970     case REX_X:
 971     case REX_XB:
 972     case REX_R:
 973     case REX_RB:
 974     case REX_RX:
 975     case REX_RXB:
 976     case REX_W:
 977     case REX_WB:
 978     case REX_WX:
 979     case REX_WXB:
 980     case REX_WR:
 981     case REX_WRB:
 982     case REX_WRX:
 983     case REX_WRXB:
 984       NOT_LP64(assert(false, "found 64bit prefix"));
 985       ip++;
 986     default:
 987       ip++;
 988     }
 989     debug_only(has_disp32 = true); // has both kinds of operands!
 990     break;
 991 
 992   default:
 993     ShouldNotReachHere();
 994 
 995 #undef REP8
 996 #undef REP16
 997   }
 998 
 999   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
1000 #ifdef _LP64
1001   assert(which != imm_operand, "instruction is not a movq reg, imm64");
1002 #else
1003   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
1004   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
1005 #endif // LP64
1006   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
1007 
1008   // parse the output of emit_operand
1009   int op2 = 0xFF & *ip++;
1010   int base = op2 & 0x07;
1011   int op3 = -1;
1012   const int b100 = 4;
1013   const int b101 = 5;
1014   if (base == b100 && (op2 >> 6) != 3) {
1015     op3 = 0xFF & *ip++;
1016     base = op3 & 0x07;   // refetch the base
1017   }
1018   // now ip points at the disp (if any)
1019 
1020   switch (op2 >> 6) {
1021   case 0:
1022     // [00 reg  100][ss index base]
1023     // [00 reg  100][00   100  esp]
1024     // [00 reg base]
1025     // [00 reg  100][ss index  101][disp32]
1026     // [00 reg  101]               [disp32]
1027 
1028     if (base == b101) {
1029       if (which == disp32_operand)
1030         return ip;              // caller wants the disp32
1031       ip += 4;                  // skip the disp32
1032     }
1033     break;
1034 
1035   case 1:
1036     // [01 reg  100][ss index base][disp8]
1037     // [01 reg  100][00   100  esp][disp8]
1038     // [01 reg base]               [disp8]
1039     ip += 1;                    // skip the disp8
1040     break;
1041 
1042   case 2:
1043     // [10 reg  100][ss index base][disp32]
1044     // [10 reg  100][00   100  esp][disp32]
1045     // [10 reg base]               [disp32]
1046     if (which == disp32_operand)
1047       return ip;                // caller wants the disp32
1048     ip += 4;                    // skip the disp32
1049     break;
1050 
1051   case 3:
1052     // [11 reg base]  (not a memory addressing mode)
1053     break;
1054   }
1055 
1056   if (which == end_pc_operand) {
1057     return ip + tail_size;
1058   }
1059 
1060 #ifdef _LP64
1061   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
1062 #else
1063   assert(which == imm_operand, "instruction has only an imm field");
1064 #endif // LP64
1065   return ip;
1066 }
1067 
1068 address Assembler::locate_next_instruction(address inst) {
1069   // Secretly share code with locate_operand:
1070   return locate_operand(inst, end_pc_operand);
1071 }
1072 
1073 
1074 #ifdef ASSERT
1075 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
1076   address inst = inst_mark();
1077   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
1078   address opnd;
1079 
1080   Relocation* r = rspec.reloc();
1081   if (r->type() == relocInfo::none) {
1082     return;
1083   } else if (r->is_call() || format == call32_operand) {
1084     // assert(format == imm32_operand, "cannot specify a nonzero format");
1085     opnd = locate_operand(inst, call32_operand);
1086   } else if (r->is_data()) {
1087     assert(format == imm_operand || format == disp32_operand
1088            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
1089     opnd = locate_operand(inst, (WhichOperand)format);
1090   } else {
1091     assert(format == imm_operand, "cannot specify a format");
1092     return;
1093   }
1094   assert(opnd == pc(), "must put operand where relocs can find it");
1095 }
1096 #endif // ASSERT
1097 
1098 void Assembler::emit_operand32(Register reg, Address adr) {
1099   assert(reg->encoding() < 8, "no extended registers");
1100   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1101   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1102                adr._rspec);
1103 }
1104 
1105 void Assembler::emit_operand(Register reg, Address adr,
1106                              int rip_relative_correction) {
1107   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1108                adr._rspec,
1109                rip_relative_correction);
1110 }
1111 
1112 void Assembler::emit_operand(XMMRegister reg, Address adr) {
1113   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1114                adr._rspec);
1115 }
1116 
1117 // MMX operations
1118 void Assembler::emit_operand(MMXRegister reg, Address adr) {
1119   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1120   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1121 }
1122 
1123 // work around gcc (3.2.1-7a) bug
1124 void Assembler::emit_operand(Address adr, MMXRegister reg) {
1125   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1126   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1127 }
1128 
1129 
1130 void Assembler::emit_farith(int b1, int b2, int i) {
1131   assert(isByte(b1) && isByte(b2), "wrong opcode");
1132   assert(0 <= i &&  i < 8, "illegal stack offset");
1133   emit_int8(b1);
1134   emit_int8(b2 + i);
1135 }
1136 
1137 
1138 // Now the Assembler instructions (identical for 32/64 bits)
1139 
1140 void Assembler::adcl(Address dst, int32_t imm32) {
1141   InstructionMark im(this);
1142   prefix(dst);
1143   emit_arith_operand(0x81, rdx, dst, imm32);
1144 }
1145 
1146 void Assembler::adcl(Address dst, Register src) {
1147   InstructionMark im(this);
1148   prefix(dst, src);
1149   emit_int8(0x11);
1150   emit_operand(src, dst);
1151 }
1152 
1153 void Assembler::adcl(Register dst, int32_t imm32) {
1154   prefix(dst);
1155   emit_arith(0x81, 0xD0, dst, imm32);
1156 }
1157 
1158 void Assembler::adcl(Register dst, Address src) {
1159   InstructionMark im(this);
1160   prefix(src, dst);
1161   emit_int8(0x13);
1162   emit_operand(dst, src);
1163 }
1164 
1165 void Assembler::adcl(Register dst, Register src) {
1166   (void) prefix_and_encode(dst->encoding(), src->encoding());
1167   emit_arith(0x13, 0xC0, dst, src);
1168 }
1169 
1170 void Assembler::addl(Address dst, int32_t imm32) {
1171   InstructionMark im(this);
1172   prefix(dst);
1173   emit_arith_operand(0x81, rax, dst, imm32);
1174 }
1175 
1176 void Assembler::addb(Address dst, int imm8) {
1177   InstructionMark im(this);
1178   prefix(dst);
1179   emit_int8((unsigned char)0x80);
1180   emit_operand(rax, dst, 1);
1181   emit_int8(imm8);
1182 }
1183 
1184 void Assembler::addw(Address dst, int imm16) {
1185   InstructionMark im(this);
1186   emit_int8(0x66);
1187   prefix(dst);
1188   emit_int8((unsigned char)0x81);
1189   emit_operand(rax, dst, 2);
1190   emit_int16(imm16);
1191 }
1192 
1193 void Assembler::addl(Address dst, Register src) {
1194   InstructionMark im(this);
1195   prefix(dst, src);
1196   emit_int8(0x01);
1197   emit_operand(src, dst);
1198 }
1199 
1200 void Assembler::addl(Register dst, int32_t imm32) {
1201   prefix(dst);
1202   emit_arith(0x81, 0xC0, dst, imm32);
1203 }
1204 
1205 void Assembler::addl(Register dst, Address src) {
1206   InstructionMark im(this);
1207   prefix(src, dst);
1208   emit_int8(0x03);
1209   emit_operand(dst, src);
1210 }
1211 
1212 void Assembler::addl(Register dst, Register src) {
1213   (void) prefix_and_encode(dst->encoding(), src->encoding());
1214   emit_arith(0x03, 0xC0, dst, src);
1215 }
1216 
1217 void Assembler::addr_nop_4() {
1218   assert(UseAddressNop, "no CPU support");
1219   // 4 bytes: NOP DWORD PTR [EAX+0]
1220   emit_int8(0x0F);
1221   emit_int8(0x1F);
1222   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
1223   emit_int8(0);    // 8-bits offset (1 byte)
1224 }
1225 
1226 void Assembler::addr_nop_5() {
1227   assert(UseAddressNop, "no CPU support");
1228   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
1229   emit_int8(0x0F);
1230   emit_int8(0x1F);
1231   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
1232   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1233   emit_int8(0);    // 8-bits offset (1 byte)
1234 }
1235 
1236 void Assembler::addr_nop_7() {
1237   assert(UseAddressNop, "no CPU support");
1238   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
1239   emit_int8(0x0F);
1240   emit_int8(0x1F);
1241   emit_int8((unsigned char)0x80);
1242                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
1243   emit_int32(0);   // 32-bits offset (4 bytes)
1244 }
1245 
1246 void Assembler::addr_nop_8() {
1247   assert(UseAddressNop, "no CPU support");
1248   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
1249   emit_int8(0x0F);
1250   emit_int8(0x1F);
1251   emit_int8((unsigned char)0x84);
1252                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
1253   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1254   emit_int32(0);   // 32-bits offset (4 bytes)
1255 }
1256 
1257 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
1258   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1259   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1260   attributes.set_rex_vex_w_reverted();
1261   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1262   emit_int8(0x58);
1263   emit_int8((unsigned char)(0xC0 | encode));
1264 }
1265 
1266 void Assembler::addsd(XMMRegister dst, Address src) {
1267   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1268   InstructionMark im(this);
1269   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1270   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1271   attributes.set_rex_vex_w_reverted();
1272   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1273   emit_int8(0x58);
1274   emit_operand(dst, src);
1275 }
1276 
1277 void Assembler::addss(XMMRegister dst, XMMRegister src) {
1278   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1279   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1280   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1281   emit_int8(0x58);
1282   emit_int8((unsigned char)(0xC0 | encode));
1283 }
1284 
1285 void Assembler::addss(XMMRegister dst, Address src) {
1286   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1287   InstructionMark im(this);
1288   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1289   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1290   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1291   emit_int8(0x58);
1292   emit_operand(dst, src);
1293 }
1294 
1295 void Assembler::aesdec(XMMRegister dst, Address src) {
1296   assert(VM_Version::supports_aes(), "");
1297   InstructionMark im(this);
1298   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1299   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1300   emit_int8((unsigned char)0xDE);
1301   emit_operand(dst, src);
1302 }
1303 
1304 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1305   assert(VM_Version::supports_aes(), "");
1306   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1307   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1308   emit_int8((unsigned char)0xDE);
1309   emit_int8(0xC0 | encode);
1310 }
1311 
1312 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1313   assert(VM_Version::supports_aes(), "");
1314   InstructionMark im(this);
1315   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1316   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1317   emit_int8((unsigned char)0xDF);
1318   emit_operand(dst, src);
1319 }
1320 
1321 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1322   assert(VM_Version::supports_aes(), "");
1323   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1324   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1325   emit_int8((unsigned char)0xDF);
1326   emit_int8((unsigned char)(0xC0 | encode));
1327 }
1328 
1329 void Assembler::aesenc(XMMRegister dst, Address src) {
1330   assert(VM_Version::supports_aes(), "");
1331   InstructionMark im(this);
1332   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1333   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1334   emit_int8((unsigned char)0xDC);
1335   emit_operand(dst, src);
1336 }
1337 
1338 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1339   assert(VM_Version::supports_aes(), "");
1340   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1341   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1342   emit_int8((unsigned char)0xDC);
1343   emit_int8(0xC0 | encode);
1344 }
1345 
1346 void Assembler::aesenclast(XMMRegister dst, Address src) {
1347   assert(VM_Version::supports_aes(), "");
1348   InstructionMark im(this);
1349   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1350   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1351   emit_int8((unsigned char)0xDD);
1352   emit_operand(dst, src);
1353 }
1354 
1355 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1356   assert(VM_Version::supports_aes(), "");
1357   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1358   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1359   emit_int8((unsigned char)0xDD);
1360   emit_int8((unsigned char)(0xC0 | encode));
1361 }
1362 
1363 void Assembler::andl(Address dst, int32_t imm32) {
1364   InstructionMark im(this);
1365   prefix(dst);
1366   emit_int8((unsigned char)0x81);
1367   emit_operand(rsp, dst, 4);
1368   emit_int32(imm32);
1369 }
1370 
1371 void Assembler::andl(Register dst, int32_t imm32) {
1372   prefix(dst);
1373   emit_arith(0x81, 0xE0, dst, imm32);
1374 }
1375 
1376 void Assembler::andl(Register dst, Address src) {
1377   InstructionMark im(this);
1378   prefix(src, dst);
1379   emit_int8(0x23);
1380   emit_operand(dst, src);
1381 }
1382 
1383 void Assembler::andl(Register dst, Register src) {
1384   (void) prefix_and_encode(dst->encoding(), src->encoding());
1385   emit_arith(0x23, 0xC0, dst, src);
1386 }
1387 
1388 void Assembler::andnl(Register dst, Register src1, Register src2) {
1389   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1390   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1391   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1392   emit_int8((unsigned char)0xF2);
1393   emit_int8((unsigned char)(0xC0 | encode));
1394 }
1395 
1396 void Assembler::andnl(Register dst, Register src1, Address src2) {
1397   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1398   InstructionMark im(this);
1399   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1400   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1401   emit_int8((unsigned char)0xF2);
1402   emit_operand(dst, src2);
1403 }
1404 
1405 void Assembler::bsfl(Register dst, Register src) {
1406   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1407   emit_int8(0x0F);
1408   emit_int8((unsigned char)0xBC);
1409   emit_int8((unsigned char)(0xC0 | encode));
1410 }
1411 
1412 void Assembler::bsrl(Register dst, Register src) {
1413   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1414   emit_int8(0x0F);
1415   emit_int8((unsigned char)0xBD);
1416   emit_int8((unsigned char)(0xC0 | encode));
1417 }
1418 
1419 void Assembler::bswapl(Register reg) { // bswap
1420   int encode = prefix_and_encode(reg->encoding());
1421   emit_int8(0x0F);
1422   emit_int8((unsigned char)(0xC8 | encode));
1423 }
1424 
1425 void Assembler::blsil(Register dst, Register src) {
1426   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1427   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1428   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1429   emit_int8((unsigned char)0xF3);
1430   emit_int8((unsigned char)(0xC0 | encode));
1431 }
1432 
1433 void Assembler::blsil(Register dst, Address src) {
1434   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1435   InstructionMark im(this);
1436   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1437   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1438   emit_int8((unsigned char)0xF3);
1439   emit_operand(rbx, src);
1440 }
1441 
1442 void Assembler::blsmskl(Register dst, Register src) {
1443   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1444   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1445   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1446   emit_int8((unsigned char)0xF3);
1447   emit_int8((unsigned char)(0xC0 | encode));
1448 }
1449 
1450 void Assembler::blsmskl(Register dst, Address src) {
1451   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1452   InstructionMark im(this);
1453   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1454   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1455   emit_int8((unsigned char)0xF3);
1456   emit_operand(rdx, src);
1457 }
1458 
1459 void Assembler::blsrl(Register dst, Register src) {
1460   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1461   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1462   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1463   emit_int8((unsigned char)0xF3);
1464   emit_int8((unsigned char)(0xC0 | encode));
1465 }
1466 
1467 void Assembler::blsrl(Register dst, Address src) {
1468   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1469   InstructionMark im(this);
1470   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1471   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1472   emit_int8((unsigned char)0xF3);
1473   emit_operand(rcx, src);
1474 }
1475 
1476 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1477   // suspect disp32 is always good
1478   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1479 
1480   if (L.is_bound()) {
1481     const int long_size = 5;
1482     int offs = (int)( target(L) - pc() );
1483     assert(offs <= 0, "assembler error");
1484     InstructionMark im(this);
1485     // 1110 1000 #32-bit disp
1486     emit_int8((unsigned char)0xE8);
1487     emit_data(offs - long_size, rtype, operand);
1488   } else {
1489     InstructionMark im(this);
1490     // 1110 1000 #32-bit disp
1491     L.add_patch_at(code(), locator());
1492 
1493     emit_int8((unsigned char)0xE8);
1494     emit_data(int(0), rtype, operand);
1495   }
1496 }
1497 
1498 void Assembler::call(Register dst) {
1499   int encode = prefix_and_encode(dst->encoding());
1500   emit_int8((unsigned char)0xFF);
1501   emit_int8((unsigned char)(0xD0 | encode));
1502 }
1503 
1504 
1505 void Assembler::call(Address adr) {
1506   InstructionMark im(this);
1507   prefix(adr);
1508   emit_int8((unsigned char)0xFF);
1509   emit_operand(rdx, adr);
1510 }
1511 
1512 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1513   assert(entry != NULL, "call most probably wrong");
1514   InstructionMark im(this);
1515   emit_int8((unsigned char)0xE8);
1516   intptr_t disp = entry - (pc() + sizeof(int32_t));
1517   assert(is_simm32(disp), "must be 32bit offset (call2)");
1518   // Technically, should use call32_operand, but this format is
1519   // implied by the fact that we're emitting a call instruction.
1520 
1521   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1522   emit_data((int) disp, rspec, operand);
1523 }
1524 
1525 void Assembler::cdql() {
1526   emit_int8((unsigned char)0x99);
1527 }
1528 
1529 void Assembler::cld() {
1530   emit_int8((unsigned char)0xFC);
1531 }
1532 
1533 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1534   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1535   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1536   emit_int8(0x0F);
1537   emit_int8(0x40 | cc);
1538   emit_int8((unsigned char)(0xC0 | encode));
1539 }
1540 
1541 
1542 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1543   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1544   prefix(src, dst);
1545   emit_int8(0x0F);
1546   emit_int8(0x40 | cc);
1547   emit_operand(dst, src);
1548 }
1549 
1550 void Assembler::cmpb(Address dst, int imm8) {
1551   InstructionMark im(this);
1552   prefix(dst);
1553   emit_int8((unsigned char)0x80);
1554   emit_operand(rdi, dst, 1);
1555   emit_int8(imm8);
1556 }
1557 
1558 void Assembler::cmpl(Address dst, int32_t imm32) {
1559   InstructionMark im(this);
1560   prefix(dst);
1561   emit_int8((unsigned char)0x81);
1562   emit_operand(rdi, dst, 4);
1563   emit_int32(imm32);
1564 }
1565 
1566 void Assembler::cmpl(Register dst, int32_t imm32) {
1567   prefix(dst);
1568   emit_arith(0x81, 0xF8, dst, imm32);
1569 }
1570 
1571 void Assembler::cmpl(Register dst, Register src) {
1572   (void) prefix_and_encode(dst->encoding(), src->encoding());
1573   emit_arith(0x3B, 0xC0, dst, src);
1574 }
1575 
1576 void Assembler::cmpl(Register dst, Address  src) {
1577   InstructionMark im(this);
1578   prefix(src, dst);
1579   emit_int8((unsigned char)0x3B);
1580   emit_operand(dst, src);
1581 }
1582 
1583 void Assembler::cmpw(Address dst, int imm16) {
1584   InstructionMark im(this);
1585   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1586   emit_int8(0x66);
1587   emit_int8((unsigned char)0x81);
1588   emit_operand(rdi, dst, 2);
1589   emit_int16(imm16);
1590 }
1591 
1592 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1593 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1594 // The ZF is set if the compared values were equal, and cleared otherwise.
1595 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1596   InstructionMark im(this);
1597   prefix(adr, reg);
1598   emit_int8(0x0F);
1599   emit_int8((unsigned char)0xB1);
1600   emit_operand(reg, adr);
1601 }
1602 
1603 // The 8-bit cmpxchg compares the value at adr with the contents of rax,
1604 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1605 // The ZF is set if the compared values were equal, and cleared otherwise.
1606 void Assembler::cmpxchgb(Register reg, Address adr) { // cmpxchg
1607   InstructionMark im(this);
1608   prefix(adr, reg, true);
1609   emit_int8(0x0F);
1610   emit_int8((unsigned char)0xB0);
1611   emit_operand(reg, adr);
1612 }
1613 
1614 void Assembler::comisd(XMMRegister dst, Address src) {
1615   // NOTE: dbx seems to decode this as comiss even though the
1616   // 0x66 is there. Strangly ucomisd comes out correct
1617   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1618   InstructionMark im(this);
1619   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);;
1620   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1621   attributes.set_rex_vex_w_reverted();
1622   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1623   emit_int8(0x2F);
1624   emit_operand(dst, src);
1625 }
1626 
1627 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1628   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1629   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1630   attributes.set_rex_vex_w_reverted();
1631   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1632   emit_int8(0x2F);
1633   emit_int8((unsigned char)(0xC0 | encode));
1634 }
1635 
1636 void Assembler::comiss(XMMRegister dst, Address src) {
1637   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1638   InstructionMark im(this);
1639   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1640   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1641   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1642   emit_int8(0x2F);
1643   emit_operand(dst, src);
1644 }
1645 
1646 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1647   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1648   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1649   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1650   emit_int8(0x2F);
1651   emit_int8((unsigned char)(0xC0 | encode));
1652 }
1653 
1654 void Assembler::cpuid() {
1655   emit_int8(0x0F);
1656   emit_int8((unsigned char)0xA2);
1657 }
1658 
1659 // Opcode / Instruction                      Op /  En  64 - Bit Mode     Compat / Leg Mode Description                  Implemented
1660 // F2 0F 38 F0 / r       CRC32 r32, r / m8   RM        Valid             Valid             Accumulate CRC32 on r / m8.  v
1661 // F2 REX 0F 38 F0 / r   CRC32 r32, r / m8*  RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1662 // F2 REX.W 0F 38 F0 / r CRC32 r64, r / m8   RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1663 //
1664 // F2 0F 38 F1 / r       CRC32 r32, r / m16  RM        Valid             Valid             Accumulate CRC32 on r / m16. v
1665 //
1666 // F2 0F 38 F1 / r       CRC32 r32, r / m32  RM        Valid             Valid             Accumulate CRC32 on r / m32. v
1667 //
1668 // F2 REX.W 0F 38 F1 / r CRC32 r64, r / m64  RM        Valid             N.E.              Accumulate CRC32 on r / m64. v
1669 void Assembler::crc32(Register crc, Register v, int8_t sizeInBytes) {
1670   assert(VM_Version::supports_sse4_2(), "");
1671   int8_t w = 0x01;
1672   Prefix p = Prefix_EMPTY;
1673 
1674   emit_int8((int8_t)0xF2);
1675   switch (sizeInBytes) {
1676   case 1:
1677     w = 0;
1678     break;
1679   case 2:
1680   case 4:
1681     break;
1682   LP64_ONLY(case 8:)
1683     // This instruction is not valid in 32 bits
1684     // Note:
1685     // http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
1686     //
1687     // Page B - 72   Vol. 2C says
1688     // qwreg2 to qwreg            1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : 11 qwreg1 qwreg2
1689     // mem64 to qwreg             1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : mod qwreg r / m
1690     //                                                                            F0!!!
1691     // while 3 - 208 Vol. 2A
1692     // F2 REX.W 0F 38 F1 / r       CRC32 r64, r / m64             RM         Valid      N.E.Accumulate CRC32 on r / m64.
1693     //
1694     // the 0 on a last bit is reserved for a different flavor of this instruction :
1695     // F2 REX.W 0F 38 F0 / r       CRC32 r64, r / m8              RM         Valid      N.E.Accumulate CRC32 on r / m8.
1696     p = REX_W;
1697     break;
1698   default:
1699     assert(0, "Unsupported value for a sizeInBytes argument");
1700     break;
1701   }
1702   LP64_ONLY(prefix(crc, v, p);)
1703   emit_int8((int8_t)0x0F);
1704   emit_int8(0x38);
1705   emit_int8((int8_t)(0xF0 | w));
1706   emit_int8(0xC0 | ((crc->encoding() & 0x7) << 3) | (v->encoding() & 7));
1707 }
1708 
1709 void Assembler::crc32(Register crc, Address adr, int8_t sizeInBytes) {
1710   assert(VM_Version::supports_sse4_2(), "");
1711   InstructionMark im(this);
1712   int8_t w = 0x01;
1713   Prefix p = Prefix_EMPTY;
1714 
1715   emit_int8((int8_t)0xF2);
1716   switch (sizeInBytes) {
1717   case 1:
1718     w = 0;
1719     break;
1720   case 2:
1721   case 4:
1722     break;
1723   LP64_ONLY(case 8:)
1724     // This instruction is not valid in 32 bits
1725     p = REX_W;
1726     break;
1727   default:
1728     assert(0, "Unsupported value for a sizeInBytes argument");
1729     break;
1730   }
1731   LP64_ONLY(prefix(crc, adr, p);)
1732   emit_int8((int8_t)0x0F);
1733   emit_int8(0x38);
1734   emit_int8((int8_t)(0xF0 | w));
1735   emit_operand(crc, adr);
1736 }
1737 
1738 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1739   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1740   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1741   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1742   emit_int8((unsigned char)0xE6);
1743   emit_int8((unsigned char)(0xC0 | encode));
1744 }
1745 
1746 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1747   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1748   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1749   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1750   emit_int8(0x5B);
1751   emit_int8((unsigned char)(0xC0 | encode));
1752 }
1753 
1754 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1755   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1756   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1757   attributes.set_rex_vex_w_reverted();
1758   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1759   emit_int8(0x5A);
1760   emit_int8((unsigned char)(0xC0 | encode));
1761 }
1762 
1763 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1764   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1765   InstructionMark im(this);
1766   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1767   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1768   attributes.set_rex_vex_w_reverted();
1769   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1770   emit_int8(0x5A);
1771   emit_operand(dst, src);
1772 }
1773 
1774 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1775   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1776   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1777   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1778   emit_int8(0x2A);
1779   emit_int8((unsigned char)(0xC0 | encode));
1780 }
1781 
1782 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1783   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1784   InstructionMark im(this);
1785   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1786   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1787   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1788   emit_int8(0x2A);
1789   emit_operand(dst, src);
1790 }
1791 
1792 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1793   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1794   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1795   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1796   emit_int8(0x2A);
1797   emit_int8((unsigned char)(0xC0 | encode));
1798 }
1799 
1800 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1801   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1802   InstructionMark im(this);
1803   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1804   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1805   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1806   emit_int8(0x2A);
1807   emit_operand(dst, src);
1808 }
1809 
1810 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
1811   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1812   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1813   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1814   emit_int8(0x2A);
1815   emit_int8((unsigned char)(0xC0 | encode));
1816 }
1817 
1818 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1819   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1820   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1821   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1822   emit_int8(0x5A);
1823   emit_int8((unsigned char)(0xC0 | encode));
1824 }
1825 
1826 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1827   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1828   InstructionMark im(this);
1829   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1830   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1831   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1832   emit_int8(0x5A);
1833   emit_operand(dst, src);
1834 }
1835 
1836 
1837 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1838   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1839   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1840   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1841   emit_int8(0x2C);
1842   emit_int8((unsigned char)(0xC0 | encode));
1843 }
1844 
1845 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1846   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1847   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1848   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1849   emit_int8(0x2C);
1850   emit_int8((unsigned char)(0xC0 | encode));
1851 }
1852 
1853 void Assembler::cvttpd2dq(XMMRegister dst, XMMRegister src) {
1854   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1855   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
1856   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1857   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1858   emit_int8((unsigned char)0xE6);
1859   emit_int8((unsigned char)(0xC0 | encode));
1860 }
1861 
1862 void Assembler::decl(Address dst) {
1863   // Don't use it directly. Use MacroAssembler::decrement() instead.
1864   InstructionMark im(this);
1865   prefix(dst);
1866   emit_int8((unsigned char)0xFF);
1867   emit_operand(rcx, dst);
1868 }
1869 
1870 void Assembler::divsd(XMMRegister dst, Address src) {
1871   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1872   InstructionMark im(this);
1873   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1874   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1875   attributes.set_rex_vex_w_reverted();
1876   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1877   emit_int8(0x5E);
1878   emit_operand(dst, src);
1879 }
1880 
1881 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1882   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1883   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1884   attributes.set_rex_vex_w_reverted();
1885   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1886   emit_int8(0x5E);
1887   emit_int8((unsigned char)(0xC0 | encode));
1888 }
1889 
1890 void Assembler::divss(XMMRegister dst, Address src) {
1891   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1892   InstructionMark im(this);
1893   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1894   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1895   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1896   emit_int8(0x5E);
1897   emit_operand(dst, src);
1898 }
1899 
1900 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1901   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1902   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1903   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1904   emit_int8(0x5E);
1905   emit_int8((unsigned char)(0xC0 | encode));
1906 }
1907 
1908 void Assembler::emms() {
1909   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1910   emit_int8(0x0F);
1911   emit_int8(0x77);
1912 }
1913 
1914 void Assembler::hlt() {
1915   emit_int8((unsigned char)0xF4);
1916 }
1917 
1918 void Assembler::idivl(Register src) {
1919   int encode = prefix_and_encode(src->encoding());
1920   emit_int8((unsigned char)0xF7);
1921   emit_int8((unsigned char)(0xF8 | encode));
1922 }
1923 
1924 void Assembler::divl(Register src) { // Unsigned
1925   int encode = prefix_and_encode(src->encoding());
1926   emit_int8((unsigned char)0xF7);
1927   emit_int8((unsigned char)(0xF0 | encode));
1928 }
1929 
1930 void Assembler::imull(Register src) {
1931   int encode = prefix_and_encode(src->encoding());
1932   emit_int8((unsigned char)0xF7);
1933   emit_int8((unsigned char)(0xE8 | encode));
1934 }
1935 
1936 void Assembler::imull(Register dst, Register src) {
1937   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1938   emit_int8(0x0F);
1939   emit_int8((unsigned char)0xAF);
1940   emit_int8((unsigned char)(0xC0 | encode));
1941 }
1942 
1943 
1944 void Assembler::imull(Register dst, Register src, int value) {
1945   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1946   if (is8bit(value)) {
1947     emit_int8(0x6B);
1948     emit_int8((unsigned char)(0xC0 | encode));
1949     emit_int8(value & 0xFF);
1950   } else {
1951     emit_int8(0x69);
1952     emit_int8((unsigned char)(0xC0 | encode));
1953     emit_int32(value);
1954   }
1955 }
1956 
1957 void Assembler::imull(Register dst, Address src) {
1958   InstructionMark im(this);
1959   prefix(src, dst);
1960   emit_int8(0x0F);
1961   emit_int8((unsigned char) 0xAF);
1962   emit_operand(dst, src);
1963 }
1964 
1965 
1966 void Assembler::incl(Address dst) {
1967   // Don't use it directly. Use MacroAssembler::increment() instead.
1968   InstructionMark im(this);
1969   prefix(dst);
1970   emit_int8((unsigned char)0xFF);
1971   emit_operand(rax, dst);
1972 }
1973 
1974 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
1975   InstructionMark im(this);
1976   assert((0 <= cc) && (cc < 16), "illegal cc");
1977   if (L.is_bound()) {
1978     address dst = target(L);
1979     assert(dst != NULL, "jcc most probably wrong");
1980 
1981     const int short_size = 2;
1982     const int long_size = 6;
1983     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
1984     if (maybe_short && is8bit(offs - short_size)) {
1985       // 0111 tttn #8-bit disp
1986       emit_int8(0x70 | cc);
1987       emit_int8((offs - short_size) & 0xFF);
1988     } else {
1989       // 0000 1111 1000 tttn #32-bit disp
1990       assert(is_simm32(offs - long_size),
1991              "must be 32bit offset (call4)");
1992       emit_int8(0x0F);
1993       emit_int8((unsigned char)(0x80 | cc));
1994       emit_int32(offs - long_size);
1995     }
1996   } else {
1997     // Note: could eliminate cond. jumps to this jump if condition
1998     //       is the same however, seems to be rather unlikely case.
1999     // Note: use jccb() if label to be bound is very close to get
2000     //       an 8-bit displacement
2001     L.add_patch_at(code(), locator());
2002     emit_int8(0x0F);
2003     emit_int8((unsigned char)(0x80 | cc));
2004     emit_int32(0);
2005   }
2006 }
2007 
2008 void Assembler::jccb(Condition cc, Label& L) {
2009   if (L.is_bound()) {
2010     const int short_size = 2;
2011     address entry = target(L);
2012 #ifdef ASSERT
2013     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
2014     intptr_t delta = short_branch_delta();
2015     if (delta != 0) {
2016       dist += (dist < 0 ? (-delta) :delta);
2017     }
2018     assert(is8bit(dist), "Dispacement too large for a short jmp");
2019 #endif
2020     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
2021     // 0111 tttn #8-bit disp
2022     emit_int8(0x70 | cc);
2023     emit_int8((offs - short_size) & 0xFF);
2024   } else {
2025     InstructionMark im(this);
2026     L.add_patch_at(code(), locator());
2027     emit_int8(0x70 | cc);
2028     emit_int8(0);
2029   }
2030 }
2031 
2032 void Assembler::jmp(Address adr) {
2033   InstructionMark im(this);
2034   prefix(adr);
2035   emit_int8((unsigned char)0xFF);
2036   emit_operand(rsp, adr);
2037 }
2038 
2039 void Assembler::jmp(Label& L, bool maybe_short) {
2040   if (L.is_bound()) {
2041     address entry = target(L);
2042     assert(entry != NULL, "jmp most probably wrong");
2043     InstructionMark im(this);
2044     const int short_size = 2;
2045     const int long_size = 5;
2046     intptr_t offs = entry - pc();
2047     if (maybe_short && is8bit(offs - short_size)) {
2048       emit_int8((unsigned char)0xEB);
2049       emit_int8((offs - short_size) & 0xFF);
2050     } else {
2051       emit_int8((unsigned char)0xE9);
2052       emit_int32(offs - long_size);
2053     }
2054   } else {
2055     // By default, forward jumps are always 32-bit displacements, since
2056     // we can't yet know where the label will be bound.  If you're sure that
2057     // the forward jump will not run beyond 256 bytes, use jmpb to
2058     // force an 8-bit displacement.
2059     InstructionMark im(this);
2060     L.add_patch_at(code(), locator());
2061     emit_int8((unsigned char)0xE9);
2062     emit_int32(0);
2063   }
2064 }
2065 
2066 void Assembler::jmp(Register entry) {
2067   int encode = prefix_and_encode(entry->encoding());
2068   emit_int8((unsigned char)0xFF);
2069   emit_int8((unsigned char)(0xE0 | encode));
2070 }
2071 
2072 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
2073   InstructionMark im(this);
2074   emit_int8((unsigned char)0xE9);
2075   assert(dest != NULL, "must have a target");
2076   intptr_t disp = dest - (pc() + sizeof(int32_t));
2077   assert(is_simm32(disp), "must be 32bit offset (jmp)");
2078   emit_data(disp, rspec.reloc(), call32_operand);
2079 }
2080 
2081 void Assembler::jmpb(Label& L) {
2082   if (L.is_bound()) {
2083     const int short_size = 2;
2084     address entry = target(L);
2085     assert(entry != NULL, "jmp most probably wrong");
2086 #ifdef ASSERT
2087     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
2088     intptr_t delta = short_branch_delta();
2089     if (delta != 0) {
2090       dist += (dist < 0 ? (-delta) :delta);
2091     }
2092     assert(is8bit(dist), "Dispacement too large for a short jmp");
2093 #endif
2094     intptr_t offs = entry - pc();
2095     emit_int8((unsigned char)0xEB);
2096     emit_int8((offs - short_size) & 0xFF);
2097   } else {
2098     InstructionMark im(this);
2099     L.add_patch_at(code(), locator());
2100     emit_int8((unsigned char)0xEB);
2101     emit_int8(0);
2102   }
2103 }
2104 
2105 void Assembler::ldmxcsr( Address src) {
2106   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2107   InstructionMark im(this);
2108   prefix(src);
2109   emit_int8(0x0F);
2110   emit_int8((unsigned char)0xAE);
2111   emit_operand(as_Register(2), src);
2112 }
2113 
2114 void Assembler::leal(Register dst, Address src) {
2115   InstructionMark im(this);
2116 #ifdef _LP64
2117   emit_int8(0x67); // addr32
2118   prefix(src, dst);
2119 #endif // LP64
2120   emit_int8((unsigned char)0x8D);
2121   emit_operand(dst, src);
2122 }
2123 
2124 void Assembler::lfence() {
2125   emit_int8(0x0F);
2126   emit_int8((unsigned char)0xAE);
2127   emit_int8((unsigned char)0xE8);
2128 }
2129 
2130 void Assembler::lock() {
2131   emit_int8((unsigned char)0xF0);
2132 }
2133 
2134 void Assembler::lzcntl(Register dst, Register src) {
2135   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
2136   emit_int8((unsigned char)0xF3);
2137   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2138   emit_int8(0x0F);
2139   emit_int8((unsigned char)0xBD);
2140   emit_int8((unsigned char)(0xC0 | encode));
2141 }
2142 
2143 // Emit mfence instruction
2144 void Assembler::mfence() {
2145   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
2146   emit_int8(0x0F);
2147   emit_int8((unsigned char)0xAE);
2148   emit_int8((unsigned char)0xF0);
2149 }
2150 
2151 void Assembler::mov(Register dst, Register src) {
2152   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
2153 }
2154 
2155 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
2156   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2157   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2158   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2159   attributes.set_rex_vex_w_reverted();
2160   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2161   emit_int8(0x28);
2162   emit_int8((unsigned char)(0xC0 | encode));
2163 }
2164 
2165 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
2166   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2167   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2168   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2169   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2170   emit_int8(0x28);
2171   emit_int8((unsigned char)(0xC0 | encode));
2172 }
2173 
2174 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
2175   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2176   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2177   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2178   emit_int8(0x16);
2179   emit_int8((unsigned char)(0xC0 | encode));
2180 }
2181 
2182 void Assembler::movb(Register dst, Address src) {
2183   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2184   InstructionMark im(this);
2185   prefix(src, dst, true);
2186   emit_int8((unsigned char)0x8A);
2187   emit_operand(dst, src);
2188 }
2189 
2190 void Assembler::movddup(XMMRegister dst, XMMRegister src) {
2191   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
2192   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2193   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2194   attributes.set_rex_vex_w_reverted();
2195   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2196   emit_int8(0x12);
2197   emit_int8(0xC0 | encode);
2198 }
2199 
2200 void Assembler::kmovbl(KRegister dst, Register src) {
2201   assert(VM_Version::supports_avx512dq(), "");
2202   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2203   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2204   emit_int8((unsigned char)0x92);
2205   emit_int8((unsigned char)(0xC0 | encode));
2206 }
2207 
2208 void Assembler::kmovbl(Register dst, KRegister src) {
2209   assert(VM_Version::supports_avx512dq(), "");
2210   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2211   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2212   emit_int8((unsigned char)0x93);
2213   emit_int8((unsigned char)(0xC0 | encode));
2214 }
2215 
2216 void Assembler::kmovwl(KRegister dst, Register src) {
2217   assert(VM_Version::supports_evex(), "");
2218   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2219   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2220   emit_int8((unsigned char)0x92);
2221   emit_int8((unsigned char)(0xC0 | encode));
2222 }
2223 
2224 void Assembler::kmovwl(Register dst, KRegister src) {
2225   assert(VM_Version::supports_evex(), "");
2226   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2227   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2228   emit_int8((unsigned char)0x93);
2229   emit_int8((unsigned char)(0xC0 | encode));
2230 }
2231 
2232 void Assembler::kmovwl(KRegister dst, Address src) {
2233   assert(VM_Version::supports_evex(), "");
2234   InstructionMark im(this);
2235   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2236   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2237   emit_int8((unsigned char)0x90);
2238   emit_operand((Register)dst, src);
2239 }
2240 
2241 void Assembler::kmovdl(KRegister dst, Register src) {
2242   assert(VM_Version::supports_avx512bw(), "");
2243   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2244   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2245   emit_int8((unsigned char)0x92);
2246   emit_int8((unsigned char)(0xC0 | encode));
2247 }
2248 
2249 void Assembler::kmovdl(Register dst, KRegister src) {
2250   assert(VM_Version::supports_avx512bw(), "");
2251   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2252   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2253   emit_int8((unsigned char)0x93);
2254   emit_int8((unsigned char)(0xC0 | encode));
2255 }
2256 
2257 void Assembler::kmovql(KRegister dst, KRegister src) {
2258   assert(VM_Version::supports_avx512bw(), "");
2259   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2260   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2261   emit_int8((unsigned char)0x90);
2262   emit_int8((unsigned char)(0xC0 | encode));
2263 }
2264 
2265 void Assembler::kmovql(KRegister dst, Address src) {
2266   assert(VM_Version::supports_avx512bw(), "");
2267   InstructionMark im(this);
2268   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2269   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2270   emit_int8((unsigned char)0x90);
2271   emit_operand((Register)dst, src);
2272 }
2273 
2274 void Assembler::kmovql(Address dst, KRegister src) {
2275   assert(VM_Version::supports_avx512bw(), "");
2276   InstructionMark im(this);
2277   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2278   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2279   emit_int8((unsigned char)0x90);
2280   emit_operand((Register)src, dst);
2281 }
2282 
2283 void Assembler::kmovql(KRegister dst, Register src) {
2284   assert(VM_Version::supports_avx512bw(), "");
2285   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2286   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2287   emit_int8((unsigned char)0x92);
2288   emit_int8((unsigned char)(0xC0 | encode));
2289 }
2290 
2291 void Assembler::kmovql(Register dst, KRegister src) {
2292   assert(VM_Version::supports_avx512bw(), "");
2293   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2294   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2295   emit_int8((unsigned char)0x93);
2296   emit_int8((unsigned char)(0xC0 | encode));
2297 }
2298 
2299 void Assembler::knotwl(KRegister dst, KRegister src) {
2300   assert(VM_Version::supports_evex(), "");
2301   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2302   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2303   emit_int8((unsigned char)0x44);
2304   emit_int8((unsigned char)(0xC0 | encode));
2305 }
2306 
2307 // This instruction produces ZF or CF flags
2308 void Assembler::kortestbl(KRegister src1, KRegister src2) {
2309   assert(VM_Version::supports_avx512dq(), "");
2310   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2311   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2312   emit_int8((unsigned char)0x98);
2313   emit_int8((unsigned char)(0xC0 | encode));
2314 }
2315 
2316 // This instruction produces ZF or CF flags
2317 void Assembler::kortestwl(KRegister src1, KRegister src2) {
2318   assert(VM_Version::supports_evex(), "");
2319   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2320   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2321   emit_int8((unsigned char)0x98);
2322   emit_int8((unsigned char)(0xC0 | encode));
2323 }
2324 
2325 // This instruction produces ZF or CF flags
2326 void Assembler::kortestdl(KRegister src1, KRegister src2) {
2327   assert(VM_Version::supports_avx512bw(), "");
2328   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2329   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2330   emit_int8((unsigned char)0x98);
2331   emit_int8((unsigned char)(0xC0 | encode));
2332 }
2333 
2334 // This instruction produces ZF or CF flags
2335 void Assembler::kortestql(KRegister src1, KRegister src2) {
2336   assert(VM_Version::supports_avx512bw(), "");
2337   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2338   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2339   emit_int8((unsigned char)0x98);
2340   emit_int8((unsigned char)(0xC0 | encode));
2341 }
2342 
2343 // This instruction produces ZF or CF flags
2344 void Assembler::ktestql(KRegister src1, KRegister src2) {
2345   assert(VM_Version::supports_avx512bw(), "");
2346   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2347   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2348   emit_int8((unsigned char)0x99);
2349   emit_int8((unsigned char)(0xC0 | encode));
2350 }
2351 
2352 void Assembler::ktestq(KRegister src1, KRegister src2) {
2353   assert(VM_Version::supports_avx512bw(), "");
2354   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2355   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2356   emit_int8((unsigned char)0x99);
2357   emit_int8((unsigned char)(0xC0 | encode));
2358 }
2359 
2360 void Assembler::ktestd(KRegister src1, KRegister src2) {
2361   assert(VM_Version::supports_avx512bw(), "");
2362   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2363   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2364   emit_int8((unsigned char)0x99);
2365   emit_int8((unsigned char)(0xC0 | encode));
2366 }
2367 
2368 void Assembler::movb(Address dst, int imm8) {
2369   InstructionMark im(this);
2370    prefix(dst);
2371   emit_int8((unsigned char)0xC6);
2372   emit_operand(rax, dst, 1);
2373   emit_int8(imm8);
2374 }
2375 
2376 
2377 void Assembler::movb(Address dst, Register src) {
2378   assert(src->has_byte_register(), "must have byte register");
2379   InstructionMark im(this);
2380   prefix(dst, src, true);
2381   emit_int8((unsigned char)0x88);
2382   emit_operand(src, dst);
2383 }
2384 
2385 void Assembler::movdl(XMMRegister dst, Register src) {
2386   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2387   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2388   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2389   emit_int8(0x6E);
2390   emit_int8((unsigned char)(0xC0 | encode));
2391 }
2392 
2393 void Assembler::movdl(Register dst, XMMRegister src) {
2394   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2395   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2396   // swap src/dst to get correct prefix
2397   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2398   emit_int8(0x7E);
2399   emit_int8((unsigned char)(0xC0 | encode));
2400 }
2401 
2402 void Assembler::movdl(XMMRegister dst, Address src) {
2403   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2404   InstructionMark im(this);
2405   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2406   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2407   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2408   emit_int8(0x6E);
2409   emit_operand(dst, src);
2410 }
2411 
2412 void Assembler::movdl(Address dst, XMMRegister src) {
2413   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2414   InstructionMark im(this);
2415   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2416   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2417   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2418   emit_int8(0x7E);
2419   emit_operand(src, dst);
2420 }
2421 
2422 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
2423   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2424   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2425   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2426   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2427   emit_int8(0x6F);
2428   emit_int8((unsigned char)(0xC0 | encode));
2429 }
2430 
2431 void Assembler::movdqa(XMMRegister dst, Address src) {
2432   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2433   InstructionMark im(this);
2434   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2435   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2436   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2437   emit_int8(0x6F);
2438   emit_operand(dst, src);
2439 }
2440 
2441 void Assembler::movdqu(XMMRegister dst, Address src) {
2442   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2443   InstructionMark im(this);
2444   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2445   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2446   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2447   emit_int8(0x6F);
2448   emit_operand(dst, src);
2449 }
2450 
2451 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
2452   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2453   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2454   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2455   emit_int8(0x6F);
2456   emit_int8((unsigned char)(0xC0 | encode));
2457 }
2458 
2459 void Assembler::movdqu(Address dst, XMMRegister src) {
2460   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2461   InstructionMark im(this);
2462   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2463   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2464   attributes.reset_is_clear_context();
2465   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2466   emit_int8(0x7F);
2467   emit_operand(src, dst);
2468 }
2469 
2470 // Move Unaligned 256bit Vector
2471 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
2472   assert(UseAVX > 0, "");
2473   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2474   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2475   emit_int8(0x6F);
2476   emit_int8((unsigned char)(0xC0 | encode));
2477 }
2478 
2479 void Assembler::vmovdqu(XMMRegister dst, Address src) {
2480   assert(UseAVX > 0, "");
2481   InstructionMark im(this);
2482   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2483   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2484   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2485   emit_int8(0x6F);
2486   emit_operand(dst, src);
2487 }
2488 
2489 void Assembler::vmovdqu(Address dst, XMMRegister src) {
2490   assert(UseAVX > 0, "");
2491   InstructionMark im(this);
2492   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2493   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2494   attributes.reset_is_clear_context();
2495   // swap src<->dst for encoding
2496   assert(src != xnoreg, "sanity");
2497   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2498   emit_int8(0x7F);
2499   emit_operand(src, dst);
2500 }
2501 
2502 // Move Unaligned EVEX enabled Vector (programmable : 8,16,32,64)
2503 void Assembler::evmovdqub(XMMRegister dst, XMMRegister src, int vector_len) {
2504   assert(VM_Version::supports_evex(), "");
2505   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2506   attributes.set_is_evex_instruction();
2507   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2508   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2509   emit_int8(0x6F);
2510   emit_int8((unsigned char)(0xC0 | encode));
2511 }
2512 
2513 void Assembler::evmovdqub(XMMRegister dst, Address src, int vector_len) {
2514   assert(VM_Version::supports_evex(), "");
2515   InstructionMark im(this);
2516   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2517   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2518   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2519   attributes.set_is_evex_instruction();
2520   vex_prefix(src, 0, dst->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2521   emit_int8(0x6F);
2522   emit_operand(dst, src);
2523 }
2524 
2525 void Assembler::evmovdqub(Address dst, XMMRegister src, int vector_len) {
2526   assert(VM_Version::supports_evex(), "");
2527   assert(src != xnoreg, "sanity");
2528   InstructionMark im(this);
2529   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2530   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2531   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2532   attributes.set_is_evex_instruction();
2533   vex_prefix(dst, 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2534   emit_int8(0x7F);
2535   emit_operand(src, dst);
2536 }
2537 
2538 void Assembler::evmovdqub(XMMRegister dst, KRegister mask, Address src, int vector_len) {
2539   assert(VM_Version::supports_avx512vlbw(), "");
2540   assert(is_vector_masking(), "");    // For stub code use only
2541   InstructionMark im(this);
2542   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
2543   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2544   attributes.set_embedded_opmask_register_specifier(mask);
2545   attributes.set_is_evex_instruction();
2546   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2547   emit_int8(0x6F);
2548   emit_operand(dst, src);
2549 }
2550 
2551 void Assembler::evmovdquw(XMMRegister dst, Address src, int vector_len) {
2552   assert(VM_Version::supports_evex(), "");
2553   InstructionMark im(this);
2554   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2555   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2556   attributes.set_is_evex_instruction();
2557   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2558   vex_prefix(src, 0, dst->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2559   emit_int8(0x6F);
2560   emit_operand(dst, src);
2561 }
2562 
2563 void Assembler::evmovdquw(XMMRegister dst, KRegister mask, Address src, int vector_len) {
2564   assert(is_vector_masking(), "");
2565   assert(VM_Version::supports_avx512vlbw(), "");
2566   InstructionMark im(this);
2567   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
2568   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2569   attributes.set_embedded_opmask_register_specifier(mask);
2570   attributes.set_is_evex_instruction();
2571   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2572   emit_int8(0x6F);
2573   emit_operand(dst, src);
2574 }
2575 
2576 void Assembler::evmovdquw(Address dst, XMMRegister src, int vector_len) {
2577   assert(VM_Version::supports_evex(), "");
2578   assert(src != xnoreg, "sanity");
2579   InstructionMark im(this);
2580   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2581   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2582   attributes.set_is_evex_instruction();
2583   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2584   vex_prefix(dst, 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2585   emit_int8(0x7F);
2586   emit_operand(src, dst);
2587 }
2588 
2589 void Assembler::evmovdquw(Address dst, KRegister mask, XMMRegister src, int vector_len) {
2590   assert(VM_Version::supports_avx512vlbw(), "");
2591   assert(src != xnoreg, "sanity");
2592   InstructionMark im(this);
2593   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2594   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2595   attributes.reset_is_clear_context();
2596   attributes.set_embedded_opmask_register_specifier(mask);
2597   attributes.set_is_evex_instruction();
2598   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2599   emit_int8(0x7F);
2600   emit_operand(src, dst);
2601 }
2602 
2603 void Assembler::evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
2604   assert(VM_Version::supports_evex(), "");
2605   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2606   attributes.set_is_evex_instruction();
2607   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2608   emit_int8(0x6F);
2609   emit_int8((unsigned char)(0xC0 | encode));
2610 }
2611 
2612 void Assembler::evmovdqul(XMMRegister dst, Address src, int vector_len) {
2613   assert(VM_Version::supports_evex(), "");
2614   InstructionMark im(this);
2615   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false , /* uses_vl */ true);
2616   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2617   attributes.set_is_evex_instruction();
2618   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2619   emit_int8(0x6F);
2620   emit_operand(dst, src);
2621 }
2622 
2623 void Assembler::evmovdqul(Address dst, XMMRegister src, int vector_len) {
2624   assert(VM_Version::supports_evex(), "");
2625   assert(src != xnoreg, "sanity");
2626   InstructionMark im(this);
2627   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2628   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2629   attributes.reset_is_clear_context();
2630   attributes.set_is_evex_instruction();
2631   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2632   emit_int8(0x7F);
2633   emit_operand(src, dst);
2634 }
2635 
2636 void Assembler::evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
2637   assert(VM_Version::supports_evex(), "");
2638   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2639   attributes.set_is_evex_instruction();
2640   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2641   emit_int8(0x6F);
2642   emit_int8((unsigned char)(0xC0 | encode));
2643 }
2644 
2645 void Assembler::evmovdquq(XMMRegister dst, Address src, int vector_len) {
2646   assert(VM_Version::supports_evex(), "");
2647   InstructionMark im(this);
2648   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2649   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2650   attributes.set_is_evex_instruction();
2651   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2652   emit_int8(0x6F);
2653   emit_operand(dst, src);
2654 }
2655 
2656 void Assembler::evmovdquq(Address dst, XMMRegister src, int vector_len) {
2657   assert(VM_Version::supports_evex(), "");
2658   assert(src != xnoreg, "sanity");
2659   InstructionMark im(this);
2660   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2661   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2662   attributes.reset_is_clear_context();
2663   attributes.set_is_evex_instruction();
2664   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2665   emit_int8(0x7F);
2666   emit_operand(src, dst);
2667 }
2668 
2669 // Uses zero extension on 64bit
2670 
2671 void Assembler::movl(Register dst, int32_t imm32) {
2672   int encode = prefix_and_encode(dst->encoding());
2673   emit_int8((unsigned char)(0xB8 | encode));
2674   emit_int32(imm32);
2675 }
2676 
2677 void Assembler::movl(Register dst, Register src) {
2678   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2679   emit_int8((unsigned char)0x8B);
2680   emit_int8((unsigned char)(0xC0 | encode));
2681 }
2682 
2683 void Assembler::movl(Register dst, Address src) {
2684   InstructionMark im(this);
2685   prefix(src, dst);
2686   emit_int8((unsigned char)0x8B);
2687   emit_operand(dst, src);
2688 }
2689 
2690 void Assembler::movl(Address dst, int32_t imm32) {
2691   InstructionMark im(this);
2692   prefix(dst);
2693   emit_int8((unsigned char)0xC7);
2694   emit_operand(rax, dst, 4);
2695   emit_int32(imm32);
2696 }
2697 
2698 void Assembler::movl(Address dst, Register src) {
2699   InstructionMark im(this);
2700   prefix(dst, src);
2701   emit_int8((unsigned char)0x89);
2702   emit_operand(src, dst);
2703 }
2704 
2705 // New cpus require to use movsd and movss to avoid partial register stall
2706 // when loading from memory. But for old Opteron use movlpd instead of movsd.
2707 // The selection is done in MacroAssembler::movdbl() and movflt().
2708 void Assembler::movlpd(XMMRegister dst, Address src) {
2709   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2710   InstructionMark im(this);
2711   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2712   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2713   attributes.set_rex_vex_w_reverted();
2714   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2715   emit_int8(0x12);
2716   emit_operand(dst, src);
2717 }
2718 
2719 void Assembler::movq( MMXRegister dst, Address src ) {
2720   assert( VM_Version::supports_mmx(), "" );
2721   emit_int8(0x0F);
2722   emit_int8(0x6F);
2723   emit_operand(dst, src);
2724 }
2725 
2726 void Assembler::movq( Address dst, MMXRegister src ) {
2727   assert( VM_Version::supports_mmx(), "" );
2728   emit_int8(0x0F);
2729   emit_int8(0x7F);
2730   // workaround gcc (3.2.1-7a) bug
2731   // In that version of gcc with only an emit_operand(MMX, Address)
2732   // gcc will tail jump and try and reverse the parameters completely
2733   // obliterating dst in the process. By having a version available
2734   // that doesn't need to swap the args at the tail jump the bug is
2735   // avoided.
2736   emit_operand(dst, src);
2737 }
2738 
2739 void Assembler::movq(XMMRegister dst, Address src) {
2740   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2741   InstructionMark im(this);
2742   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2743   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2744   attributes.set_rex_vex_w_reverted();
2745   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2746   emit_int8(0x7E);
2747   emit_operand(dst, src);
2748 }
2749 
2750 void Assembler::movq(Address dst, XMMRegister src) {
2751   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2752   InstructionMark im(this);
2753   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2754   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2755   attributes.set_rex_vex_w_reverted();
2756   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2757   emit_int8((unsigned char)0xD6);
2758   emit_operand(src, dst);
2759 }
2760 
2761 void Assembler::movsbl(Register dst, Address src) { // movsxb
2762   InstructionMark im(this);
2763   prefix(src, dst);
2764   emit_int8(0x0F);
2765   emit_int8((unsigned char)0xBE);
2766   emit_operand(dst, src);
2767 }
2768 
2769 void Assembler::movsbl(Register dst, Register src) { // movsxb
2770   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2771   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2772   emit_int8(0x0F);
2773   emit_int8((unsigned char)0xBE);
2774   emit_int8((unsigned char)(0xC0 | encode));
2775 }
2776 
2777 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
2778   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2779   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2780   attributes.set_rex_vex_w_reverted();
2781   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2782   emit_int8(0x10);
2783   emit_int8((unsigned char)(0xC0 | encode));
2784 }
2785 
2786 void Assembler::movsd(XMMRegister dst, Address src) {
2787   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2788   InstructionMark im(this);
2789   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2790   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2791   attributes.set_rex_vex_w_reverted();
2792   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2793   emit_int8(0x10);
2794   emit_operand(dst, src);
2795 }
2796 
2797 void Assembler::movsd(Address dst, XMMRegister src) {
2798   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2799   InstructionMark im(this);
2800   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2801   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2802   attributes.reset_is_clear_context();
2803   attributes.set_rex_vex_w_reverted();
2804   simd_prefix(src, xnoreg, dst, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2805   emit_int8(0x11);
2806   emit_operand(src, dst);
2807 }
2808 
2809 void Assembler::movss(XMMRegister dst, XMMRegister src) {
2810   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2811   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2812   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2813   emit_int8(0x10);
2814   emit_int8((unsigned char)(0xC0 | encode));
2815 }
2816 
2817 void Assembler::movss(XMMRegister dst, Address src) {
2818   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2819   InstructionMark im(this);
2820   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2821   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2822   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2823   emit_int8(0x10);
2824   emit_operand(dst, src);
2825 }
2826 
2827 void Assembler::movss(Address dst, XMMRegister src) {
2828   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2829   InstructionMark im(this);
2830   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2831   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2832   attributes.reset_is_clear_context();
2833   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2834   emit_int8(0x11);
2835   emit_operand(src, dst);
2836 }
2837 
2838 void Assembler::movswl(Register dst, Address src) { // movsxw
2839   InstructionMark im(this);
2840   prefix(src, dst);
2841   emit_int8(0x0F);
2842   emit_int8((unsigned char)0xBF);
2843   emit_operand(dst, src);
2844 }
2845 
2846 void Assembler::movswl(Register dst, Register src) { // movsxw
2847   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2848   emit_int8(0x0F);
2849   emit_int8((unsigned char)0xBF);
2850   emit_int8((unsigned char)(0xC0 | encode));
2851 }
2852 
2853 void Assembler::movw(Address dst, int imm16) {
2854   InstructionMark im(this);
2855 
2856   emit_int8(0x66); // switch to 16-bit mode
2857   prefix(dst);
2858   emit_int8((unsigned char)0xC7);
2859   emit_operand(rax, dst, 2);
2860   emit_int16(imm16);
2861 }
2862 
2863 void Assembler::movw(Register dst, Address src) {
2864   InstructionMark im(this);
2865   emit_int8(0x66);
2866   prefix(src, dst);
2867   emit_int8((unsigned char)0x8B);
2868   emit_operand(dst, src);
2869 }
2870 
2871 void Assembler::movw(Address dst, Register src) {
2872   InstructionMark im(this);
2873   emit_int8(0x66);
2874   prefix(dst, src);
2875   emit_int8((unsigned char)0x89);
2876   emit_operand(src, dst);
2877 }
2878 
2879 void Assembler::movzbl(Register dst, Address src) { // movzxb
2880   InstructionMark im(this);
2881   prefix(src, dst);
2882   emit_int8(0x0F);
2883   emit_int8((unsigned char)0xB6);
2884   emit_operand(dst, src);
2885 }
2886 
2887 void Assembler::movzbl(Register dst, Register src) { // movzxb
2888   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2889   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2890   emit_int8(0x0F);
2891   emit_int8((unsigned char)0xB6);
2892   emit_int8(0xC0 | encode);
2893 }
2894 
2895 void Assembler::movzwl(Register dst, Address src) { // movzxw
2896   InstructionMark im(this);
2897   prefix(src, dst);
2898   emit_int8(0x0F);
2899   emit_int8((unsigned char)0xB7);
2900   emit_operand(dst, src);
2901 }
2902 
2903 void Assembler::movzwl(Register dst, Register src) { // movzxw
2904   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2905   emit_int8(0x0F);
2906   emit_int8((unsigned char)0xB7);
2907   emit_int8(0xC0 | encode);
2908 }
2909 
2910 void Assembler::mull(Address src) {
2911   InstructionMark im(this);
2912   prefix(src);
2913   emit_int8((unsigned char)0xF7);
2914   emit_operand(rsp, src);
2915 }
2916 
2917 void Assembler::mull(Register src) {
2918   int encode = prefix_and_encode(src->encoding());
2919   emit_int8((unsigned char)0xF7);
2920   emit_int8((unsigned char)(0xE0 | encode));
2921 }
2922 
2923 void Assembler::mulsd(XMMRegister dst, Address src) {
2924   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2925   InstructionMark im(this);
2926   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2927   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2928   attributes.set_rex_vex_w_reverted();
2929   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2930   emit_int8(0x59);
2931   emit_operand(dst, src);
2932 }
2933 
2934 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
2935   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2936   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2937   attributes.set_rex_vex_w_reverted();
2938   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2939   emit_int8(0x59);
2940   emit_int8((unsigned char)(0xC0 | encode));
2941 }
2942 
2943 void Assembler::mulss(XMMRegister dst, Address src) {
2944   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2945   InstructionMark im(this);
2946   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2947   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2948   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2949   emit_int8(0x59);
2950   emit_operand(dst, src);
2951 }
2952 
2953 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
2954   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2955   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2956   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2957   emit_int8(0x59);
2958   emit_int8((unsigned char)(0xC0 | encode));
2959 }
2960 
2961 void Assembler::negl(Register dst) {
2962   int encode = prefix_and_encode(dst->encoding());
2963   emit_int8((unsigned char)0xF7);
2964   emit_int8((unsigned char)(0xD8 | encode));
2965 }
2966 
2967 void Assembler::nop(int i) {
2968 #ifdef ASSERT
2969   assert(i > 0, " ");
2970   // The fancy nops aren't currently recognized by debuggers making it a
2971   // pain to disassemble code while debugging. If asserts are on clearly
2972   // speed is not an issue so simply use the single byte traditional nop
2973   // to do alignment.
2974 
2975   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
2976   return;
2977 
2978 #endif // ASSERT
2979 
2980   if (UseAddressNop && VM_Version::is_intel()) {
2981     //
2982     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
2983     //  1: 0x90
2984     //  2: 0x66 0x90
2985     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2986     //  4: 0x0F 0x1F 0x40 0x00
2987     //  5: 0x0F 0x1F 0x44 0x00 0x00
2988     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2989     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2990     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2991     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2992     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2993     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2994 
2995     // The rest coding is Intel specific - don't use consecutive address nops
2996 
2997     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2998     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2999     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3000     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3001 
3002     while(i >= 15) {
3003       // For Intel don't generate consecutive addess nops (mix with regular nops)
3004       i -= 15;
3005       emit_int8(0x66);   // size prefix
3006       emit_int8(0x66);   // size prefix
3007       emit_int8(0x66);   // size prefix
3008       addr_nop_8();
3009       emit_int8(0x66);   // size prefix
3010       emit_int8(0x66);   // size prefix
3011       emit_int8(0x66);   // size prefix
3012       emit_int8((unsigned char)0x90);
3013                          // nop
3014     }
3015     switch (i) {
3016       case 14:
3017         emit_int8(0x66); // size prefix
3018       case 13:
3019         emit_int8(0x66); // size prefix
3020       case 12:
3021         addr_nop_8();
3022         emit_int8(0x66); // size prefix
3023         emit_int8(0x66); // size prefix
3024         emit_int8(0x66); // size prefix
3025         emit_int8((unsigned char)0x90);
3026                          // nop
3027         break;
3028       case 11:
3029         emit_int8(0x66); // size prefix
3030       case 10:
3031         emit_int8(0x66); // size prefix
3032       case 9:
3033         emit_int8(0x66); // size prefix
3034       case 8:
3035         addr_nop_8();
3036         break;
3037       case 7:
3038         addr_nop_7();
3039         break;
3040       case 6:
3041         emit_int8(0x66); // size prefix
3042       case 5:
3043         addr_nop_5();
3044         break;
3045       case 4:
3046         addr_nop_4();
3047         break;
3048       case 3:
3049         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3050         emit_int8(0x66); // size prefix
3051       case 2:
3052         emit_int8(0x66); // size prefix
3053       case 1:
3054         emit_int8((unsigned char)0x90);
3055                          // nop
3056         break;
3057       default:
3058         assert(i == 0, " ");
3059     }
3060     return;
3061   }
3062   if (UseAddressNop && VM_Version::is_amd()) {
3063     //
3064     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
3065     //  1: 0x90
3066     //  2: 0x66 0x90
3067     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
3068     //  4: 0x0F 0x1F 0x40 0x00
3069     //  5: 0x0F 0x1F 0x44 0x00 0x00
3070     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
3071     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3072     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3073     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3074     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3075     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3076 
3077     // The rest coding is AMD specific - use consecutive address nops
3078 
3079     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
3080     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
3081     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3082     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3083     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3084     //     Size prefixes (0x66) are added for larger sizes
3085 
3086     while(i >= 22) {
3087       i -= 11;
3088       emit_int8(0x66); // size prefix
3089       emit_int8(0x66); // size prefix
3090       emit_int8(0x66); // size prefix
3091       addr_nop_8();
3092     }
3093     // Generate first nop for size between 21-12
3094     switch (i) {
3095       case 21:
3096         i -= 1;
3097         emit_int8(0x66); // size prefix
3098       case 20:
3099       case 19:
3100         i -= 1;
3101         emit_int8(0x66); // size prefix
3102       case 18:
3103       case 17:
3104         i -= 1;
3105         emit_int8(0x66); // size prefix
3106       case 16:
3107       case 15:
3108         i -= 8;
3109         addr_nop_8();
3110         break;
3111       case 14:
3112       case 13:
3113         i -= 7;
3114         addr_nop_7();
3115         break;
3116       case 12:
3117         i -= 6;
3118         emit_int8(0x66); // size prefix
3119         addr_nop_5();
3120         break;
3121       default:
3122         assert(i < 12, " ");
3123     }
3124 
3125     // Generate second nop for size between 11-1
3126     switch (i) {
3127       case 11:
3128         emit_int8(0x66); // size prefix
3129       case 10:
3130         emit_int8(0x66); // size prefix
3131       case 9:
3132         emit_int8(0x66); // size prefix
3133       case 8:
3134         addr_nop_8();
3135         break;
3136       case 7:
3137         addr_nop_7();
3138         break;
3139       case 6:
3140         emit_int8(0x66); // size prefix
3141       case 5:
3142         addr_nop_5();
3143         break;
3144       case 4:
3145         addr_nop_4();
3146         break;
3147       case 3:
3148         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3149         emit_int8(0x66); // size prefix
3150       case 2:
3151         emit_int8(0x66); // size prefix
3152       case 1:
3153         emit_int8((unsigned char)0x90);
3154                          // nop
3155         break;
3156       default:
3157         assert(i == 0, " ");
3158     }
3159     return;
3160   }
3161 
3162   // Using nops with size prefixes "0x66 0x90".
3163   // From AMD Optimization Guide:
3164   //  1: 0x90
3165   //  2: 0x66 0x90
3166   //  3: 0x66 0x66 0x90
3167   //  4: 0x66 0x66 0x66 0x90
3168   //  5: 0x66 0x66 0x90 0x66 0x90
3169   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
3170   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
3171   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
3172   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
3173   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
3174   //
3175   while(i > 12) {
3176     i -= 4;
3177     emit_int8(0x66); // size prefix
3178     emit_int8(0x66);
3179     emit_int8(0x66);
3180     emit_int8((unsigned char)0x90);
3181                      // nop
3182   }
3183   // 1 - 12 nops
3184   if(i > 8) {
3185     if(i > 9) {
3186       i -= 1;
3187       emit_int8(0x66);
3188     }
3189     i -= 3;
3190     emit_int8(0x66);
3191     emit_int8(0x66);
3192     emit_int8((unsigned char)0x90);
3193   }
3194   // 1 - 8 nops
3195   if(i > 4) {
3196     if(i > 6) {
3197       i -= 1;
3198       emit_int8(0x66);
3199     }
3200     i -= 3;
3201     emit_int8(0x66);
3202     emit_int8(0x66);
3203     emit_int8((unsigned char)0x90);
3204   }
3205   switch (i) {
3206     case 4:
3207       emit_int8(0x66);
3208     case 3:
3209       emit_int8(0x66);
3210     case 2:
3211       emit_int8(0x66);
3212     case 1:
3213       emit_int8((unsigned char)0x90);
3214       break;
3215     default:
3216       assert(i == 0, " ");
3217   }
3218 }
3219 
3220 void Assembler::notl(Register dst) {
3221   int encode = prefix_and_encode(dst->encoding());
3222   emit_int8((unsigned char)0xF7);
3223   emit_int8((unsigned char)(0xD0 | encode));
3224 }
3225 
3226 void Assembler::orl(Address dst, int32_t imm32) {
3227   InstructionMark im(this);
3228   prefix(dst);
3229   emit_arith_operand(0x81, rcx, dst, imm32);
3230 }
3231 
3232 void Assembler::orl(Register dst, int32_t imm32) {
3233   prefix(dst);
3234   emit_arith(0x81, 0xC8, dst, imm32);
3235 }
3236 
3237 void Assembler::orl(Register dst, Address src) {
3238   InstructionMark im(this);
3239   prefix(src, dst);
3240   emit_int8(0x0B);
3241   emit_operand(dst, src);
3242 }
3243 
3244 void Assembler::orl(Register dst, Register src) {
3245   (void) prefix_and_encode(dst->encoding(), src->encoding());
3246   emit_arith(0x0B, 0xC0, dst, src);
3247 }
3248 
3249 void Assembler::orl(Address dst, Register src) {
3250   InstructionMark im(this);
3251   prefix(dst, src);
3252   emit_int8(0x09);
3253   emit_operand(src, dst);
3254 }
3255 
3256 void Assembler::packuswb(XMMRegister dst, Address src) {
3257   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3258   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3259   InstructionMark im(this);
3260   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3261   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3262   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3263   emit_int8(0x67);
3264   emit_operand(dst, src);
3265 }
3266 
3267 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
3268   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3269   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3270   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3271   emit_int8(0x67);
3272   emit_int8((unsigned char)(0xC0 | encode));
3273 }
3274 
3275 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3276   assert(UseAVX > 0, "some form of AVX must be enabled");
3277   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3278   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3279   emit_int8(0x67);
3280   emit_int8((unsigned char)(0xC0 | encode));
3281 }
3282 
3283 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len) {
3284   assert(VM_Version::supports_avx2(), "");
3285   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3286   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3287   emit_int8(0x00);
3288   emit_int8(0xC0 | encode);
3289   emit_int8(imm8);
3290 }
3291 
3292 void Assembler::vperm2i128(XMMRegister dst,  XMMRegister nds, XMMRegister src, int imm8) {
3293   assert(VM_Version::supports_avx2(), "");
3294   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3295   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3296   emit_int8(0x46);
3297   emit_int8(0xC0 | encode);
3298   emit_int8(imm8);
3299 }
3300 
3301 void Assembler::vperm2f128(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8) {
3302   assert(VM_Version::supports_avx(), "");
3303   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3304   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3305   emit_int8(0x06);
3306   emit_int8(0xC0 | encode);
3307   emit_int8(imm8);
3308 }
3309 
3310 
3311 void Assembler::pause() {
3312   emit_int8((unsigned char)0xF3);
3313   emit_int8((unsigned char)0x90);
3314 }
3315 
3316 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3317   assert(VM_Version::supports_sse4_2(), "");
3318   InstructionMark im(this);
3319   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3320   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3321   emit_int8(0x61);
3322   emit_operand(dst, src);
3323   emit_int8(imm8);
3324 }
3325 
3326 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3327   assert(VM_Version::supports_sse4_2(), "");
3328   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3329   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3330   emit_int8(0x61);
3331   emit_int8((unsigned char)(0xC0 | encode));
3332   emit_int8(imm8);
3333 }
3334 
3335 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3336 void Assembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3337   assert(VM_Version::supports_sse2(), "");
3338   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3339   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3340   emit_int8(0x74);
3341   emit_int8((unsigned char)(0xC0 | encode));
3342 }
3343 
3344 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3345 void Assembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3346   assert(VM_Version::supports_avx(), "");
3347   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3348   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3349   emit_int8(0x74);
3350   emit_int8((unsigned char)(0xC0 | encode));
3351 }
3352 
3353 // In this context, kdst is written the mask used to process the equal components
3354 void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3355   assert(VM_Version::supports_avx512bw(), "");
3356   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3357   attributes.set_is_evex_instruction();
3358   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3359   emit_int8(0x74);
3360   emit_int8((unsigned char)(0xC0 | encode));
3361 }
3362 
3363 void Assembler::evpcmpgtb(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3364   assert(VM_Version::supports_avx512vlbw(), "");
3365   InstructionMark im(this);
3366   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3367   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3368   attributes.set_is_evex_instruction();
3369   int dst_enc = kdst->encoding();
3370   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3371   emit_int8(0x64);
3372   emit_operand(as_Register(dst_enc), src);
3373 }
3374 
3375 void Assembler::evpcmpgtb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len) {
3376   assert(is_vector_masking(), "");
3377   assert(VM_Version::supports_avx512vlbw(), "");
3378   InstructionMark im(this);
3379   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
3380   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3381   attributes.reset_is_clear_context();
3382   attributes.set_embedded_opmask_register_specifier(mask);
3383   attributes.set_is_evex_instruction();
3384   int dst_enc = kdst->encoding();
3385   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3386   emit_int8(0x64);
3387   emit_operand(as_Register(dst_enc), src);
3388 }
3389 
3390 void Assembler::evpcmpuw(KRegister kdst, XMMRegister nds, XMMRegister src, ComparisonPredicate vcc, int vector_len) {
3391   assert(VM_Version::supports_avx512vlbw(), "");
3392   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3393   attributes.set_is_evex_instruction();
3394   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3395   emit_int8(0x3E);
3396   emit_int8((unsigned char)(0xC0 | encode));
3397   emit_int8(vcc);
3398 }
3399 
3400 void Assembler::evpcmpuw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, ComparisonPredicate vcc, int vector_len) {
3401   assert(is_vector_masking(), "");
3402   assert(VM_Version::supports_avx512vlbw(), "");
3403   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
3404   attributes.reset_is_clear_context();
3405   attributes.set_embedded_opmask_register_specifier(mask);
3406   attributes.set_is_evex_instruction();
3407   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3408   emit_int8(0x3E);
3409   emit_int8((unsigned char)(0xC0 | encode));
3410   emit_int8(vcc);
3411 }
3412 
3413 void Assembler::evpcmpuw(KRegister kdst, XMMRegister nds, Address src, ComparisonPredicate vcc, int vector_len) {
3414   assert(VM_Version::supports_avx512vlbw(), "");
3415   InstructionMark im(this);
3416   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3417   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3418   attributes.set_is_evex_instruction();
3419   int dst_enc = kdst->encoding();
3420   vex_prefix(src, nds->encoding(), kdst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3421   emit_int8(0x3E);
3422   emit_operand(as_Register(dst_enc), src);
3423   emit_int8(vcc);
3424 }
3425 
3426 void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3427   assert(VM_Version::supports_avx512bw(), "");
3428   InstructionMark im(this);
3429   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3430   attributes.set_is_evex_instruction();
3431   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3432   int dst_enc = kdst->encoding();
3433   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3434   emit_int8(0x74);
3435   emit_operand(as_Register(dst_enc), src);
3436 }
3437 
3438 void Assembler::evpcmpeqb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len) {
3439   assert(VM_Version::supports_avx512vlbw(), "");
3440   assert(is_vector_masking(), "");    // For stub code use only
3441   InstructionMark im(this);
3442   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_reg_mask */ false, /* uses_vl */ false);
3443   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3444   attributes.reset_is_clear_context();
3445   attributes.set_embedded_opmask_register_specifier(mask);
3446   attributes.set_is_evex_instruction();
3447   vex_prefix(src, nds->encoding(), kdst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3448   emit_int8(0x74);
3449   emit_operand(as_Register(kdst->encoding()), src);
3450 }
3451 
3452 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3453 void Assembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3454   assert(VM_Version::supports_sse2(), "");
3455   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3456   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3457   emit_int8(0x75);
3458   emit_int8((unsigned char)(0xC0 | encode));
3459 }
3460 
3461 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3462 void Assembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3463   assert(VM_Version::supports_avx(), "");
3464   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3465   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3466   emit_int8(0x75);
3467   emit_int8((unsigned char)(0xC0 | encode));
3468 }
3469 
3470 // In this context, kdst is written the mask used to process the equal components
3471 void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3472   assert(VM_Version::supports_avx512bw(), "");
3473   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3474   attributes.set_is_evex_instruction();
3475   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3476   emit_int8(0x75);
3477   emit_int8((unsigned char)(0xC0 | encode));
3478 }
3479 
3480 void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3481   assert(VM_Version::supports_avx512bw(), "");
3482   InstructionMark im(this);
3483   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3484   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3485   attributes.set_is_evex_instruction();
3486   int dst_enc = kdst->encoding();
3487   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3488   emit_int8(0x75);
3489   emit_operand(as_Register(dst_enc), src);
3490 }
3491 
3492 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3493 void Assembler::pcmpeqd(XMMRegister dst, XMMRegister src) {
3494   assert(VM_Version::supports_sse2(), "");
3495   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3496   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3497   emit_int8(0x76);
3498   emit_int8((unsigned char)(0xC0 | encode));
3499 }
3500 
3501 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3502 void Assembler::vpcmpeqd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3503   assert(VM_Version::supports_avx(), "");
3504   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3505   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3506   emit_int8(0x76);
3507   emit_int8((unsigned char)(0xC0 | encode));
3508 }
3509 
3510 // In this context, kdst is written the mask used to process the equal components
3511 void Assembler::evpcmpeqd(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3512   assert(VM_Version::supports_evex(), "");
3513   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3514   attributes.set_is_evex_instruction();
3515   attributes.reset_is_clear_context();
3516   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3517   emit_int8(0x76);
3518   emit_int8((unsigned char)(0xC0 | encode));
3519 }
3520 
3521 void Assembler::evpcmpeqd(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3522   assert(VM_Version::supports_evex(), "");
3523   InstructionMark im(this);
3524   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3525   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3526   attributes.reset_is_clear_context();
3527   attributes.set_is_evex_instruction();
3528   int dst_enc = kdst->encoding();
3529   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3530   emit_int8(0x76);
3531   emit_operand(as_Register(dst_enc), src);
3532 }
3533 
3534 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3535 void Assembler::pcmpeqq(XMMRegister dst, XMMRegister src) {
3536   assert(VM_Version::supports_sse4_1(), "");
3537   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3538   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3539   emit_int8(0x29);
3540   emit_int8((unsigned char)(0xC0 | encode));
3541 }
3542 
3543 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3544 void Assembler::vpcmpeqq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3545   assert(VM_Version::supports_avx(), "");
3546   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3547   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3548   emit_int8(0x29);
3549   emit_int8((unsigned char)(0xC0 | encode));
3550 }
3551 
3552 // In this context, kdst is written the mask used to process the equal components
3553 void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3554   assert(VM_Version::supports_evex(), "");
3555   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3556   attributes.reset_is_clear_context();
3557   attributes.set_is_evex_instruction();
3558   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3559   emit_int8(0x29);
3560   emit_int8((unsigned char)(0xC0 | encode));
3561 }
3562 
3563 // In this context, kdst is written the mask used to process the equal components
3564 void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3565   assert(VM_Version::supports_evex(), "");
3566   InstructionMark im(this);
3567   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3568   attributes.reset_is_clear_context();
3569   attributes.set_is_evex_instruction();
3570   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
3571   int dst_enc = kdst->encoding();
3572   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3573   emit_int8(0x29);
3574   emit_operand(as_Register(dst_enc), src);
3575 }
3576 
3577 void Assembler::pmovmskb(Register dst, XMMRegister src) {
3578   assert(VM_Version::supports_sse2(), "");
3579   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3580   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3581   emit_int8((unsigned char)0xD7);
3582   emit_int8((unsigned char)(0xC0 | encode));
3583 }
3584 
3585 void Assembler::vpmovmskb(Register dst, XMMRegister src) {
3586   assert(VM_Version::supports_avx2(), "");
3587   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3588   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3589   emit_int8((unsigned char)0xD7);
3590   emit_int8((unsigned char)(0xC0 | encode));
3591 }
3592 
3593 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
3594   assert(VM_Version::supports_sse4_1(), "");
3595   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3596   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3597   emit_int8(0x16);
3598   emit_int8((unsigned char)(0xC0 | encode));
3599   emit_int8(imm8);
3600 }
3601 
3602 void Assembler::pextrd(Address dst, XMMRegister src, int imm8) {
3603   assert(VM_Version::supports_sse4_1(), "");
3604   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3605   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3606   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3607   emit_int8(0x16);
3608   emit_operand(src, dst);
3609   emit_int8(imm8);
3610 }
3611 
3612 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
3613   assert(VM_Version::supports_sse4_1(), "");
3614   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3615   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3616   emit_int8(0x16);
3617   emit_int8((unsigned char)(0xC0 | encode));
3618   emit_int8(imm8);
3619 }
3620 
3621 void Assembler::pextrq(Address dst, XMMRegister src, int imm8) {
3622   assert(VM_Version::supports_sse4_1(), "");
3623   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3624   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3625   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3626   emit_int8(0x16);
3627   emit_operand(src, dst);
3628   emit_int8(imm8);
3629 }
3630 
3631 void Assembler::pextrw(Register dst, XMMRegister src, int imm8) {
3632   assert(VM_Version::supports_sse2(), "");
3633   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3634   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3635   emit_int8((unsigned char)0xC5);
3636   emit_int8((unsigned char)(0xC0 | encode));
3637   emit_int8(imm8);
3638 }
3639 
3640 void Assembler::pextrw(Address dst, XMMRegister src, int imm8) {
3641   assert(VM_Version::supports_sse4_1(), "");
3642   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3643   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
3644   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3645   emit_int8((unsigned char)0x15);
3646   emit_operand(src, dst);
3647   emit_int8(imm8);
3648 }
3649 
3650 void Assembler::pextrb(Address dst, XMMRegister src, int imm8) {
3651   assert(VM_Version::supports_sse4_1(), "");
3652   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3653   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
3654   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3655   emit_int8(0x14);
3656   emit_operand(src, dst);
3657   emit_int8(imm8);
3658 }
3659 
3660 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
3661   assert(VM_Version::supports_sse4_1(), "");
3662   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3663   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3664   emit_int8(0x22);
3665   emit_int8((unsigned char)(0xC0 | encode));
3666   emit_int8(imm8);
3667 }
3668 
3669 void Assembler::pinsrd(XMMRegister dst, Address src, int imm8) {
3670   assert(VM_Version::supports_sse4_1(), "");
3671   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3672   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3673   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3674   emit_int8(0x22);
3675   emit_operand(dst,src);
3676   emit_int8(imm8);
3677 }
3678 
3679 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
3680   assert(VM_Version::supports_sse4_1(), "");
3681   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3682   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3683   emit_int8(0x22);
3684   emit_int8((unsigned char)(0xC0 | encode));
3685   emit_int8(imm8);
3686 }
3687 
3688 void Assembler::pinsrq(XMMRegister dst, Address src, int imm8) {
3689   assert(VM_Version::supports_sse4_1(), "");
3690   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3691   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3692   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3693   emit_int8(0x22);
3694   emit_operand(dst, src);
3695   emit_int8(imm8);
3696 }
3697 
3698 void Assembler::pinsrw(XMMRegister dst, Register src, int imm8) {
3699   assert(VM_Version::supports_sse2(), "");
3700   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3701   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3702   emit_int8((unsigned char)0xC4);
3703   emit_int8((unsigned char)(0xC0 | encode));
3704   emit_int8(imm8);
3705 }
3706 
3707 void Assembler::pinsrw(XMMRegister dst, Address src, int imm8) {
3708   assert(VM_Version::supports_sse2(), "");
3709   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3710   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
3711   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3712   emit_int8((unsigned char)0xC4);
3713   emit_operand(dst, src);
3714   emit_int8(imm8);
3715 }
3716 
3717 void Assembler::pinsrb(XMMRegister dst, Address src, int imm8) {
3718   assert(VM_Version::supports_sse4_1(), "");
3719   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3720   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
3721   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3722   emit_int8(0x20);
3723   emit_operand(dst, src);
3724   emit_int8(imm8);
3725 }
3726 
3727 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
3728   assert(VM_Version::supports_sse4_1(), "");
3729   InstructionMark im(this);
3730   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3731   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3732   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3733   emit_int8(0x30);
3734   emit_operand(dst, src);
3735 }
3736 
3737 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3738   assert(VM_Version::supports_sse4_1(), "");
3739   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3740   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3741   emit_int8(0x30);
3742   emit_int8((unsigned char)(0xC0 | encode));
3743 }
3744 
3745 void Assembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
3746   assert(VM_Version::supports_avx(), "");
3747   InstructionMark im(this);
3748   assert(dst != xnoreg, "sanity");
3749   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3750   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3751   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3752   emit_int8(0x30);
3753   emit_operand(dst, src);
3754 }
3755 
3756 void Assembler::evpmovzxbw(XMMRegister dst, KRegister mask, Address src, int vector_len) {
3757   assert(is_vector_masking(), "");
3758   assert(VM_Version::supports_avx512vlbw(), "");
3759   assert(dst != xnoreg, "sanity");
3760   InstructionMark im(this);
3761   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
3762   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3763   attributes.set_embedded_opmask_register_specifier(mask);
3764   attributes.set_is_evex_instruction();
3765   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3766   emit_int8(0x30);
3767   emit_operand(dst, src);
3768 }
3769 
3770 void Assembler::evpmovwb(Address dst, XMMRegister src, int vector_len) {
3771   assert(VM_Version::supports_avx512vlbw(), "");
3772   assert(src != xnoreg, "sanity");
3773   InstructionMark im(this);
3774   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3775   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3776   attributes.set_is_evex_instruction();
3777   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
3778   emit_int8(0x30);
3779   emit_operand(src, dst);
3780 }
3781 
3782 void Assembler::evpmovwb(Address dst, KRegister mask, XMMRegister src, int vector_len) {
3783   assert(is_vector_masking(), "");
3784   assert(VM_Version::supports_avx512vlbw(), "");
3785   assert(src != xnoreg, "sanity");
3786   InstructionMark im(this);
3787   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
3788   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3789   attributes.reset_is_clear_context();
3790   attributes.set_embedded_opmask_register_specifier(mask);
3791   attributes.set_is_evex_instruction();
3792   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
3793   emit_int8(0x30);
3794   emit_operand(src, dst);
3795 }
3796 
3797 // generic
3798 void Assembler::pop(Register dst) {
3799   int encode = prefix_and_encode(dst->encoding());
3800   emit_int8(0x58 | encode);
3801 }
3802 
3803 void Assembler::popcntl(Register dst, Address src) {
3804   assert(VM_Version::supports_popcnt(), "must support");
3805   InstructionMark im(this);
3806   emit_int8((unsigned char)0xF3);
3807   prefix(src, dst);
3808   emit_int8(0x0F);
3809   emit_int8((unsigned char)0xB8);
3810   emit_operand(dst, src);
3811 }
3812 
3813 void Assembler::popcntl(Register dst, Register src) {
3814   assert(VM_Version::supports_popcnt(), "must support");
3815   emit_int8((unsigned char)0xF3);
3816   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3817   emit_int8(0x0F);
3818   emit_int8((unsigned char)0xB8);
3819   emit_int8((unsigned char)(0xC0 | encode));
3820 }
3821 
3822 void Assembler::popf() {
3823   emit_int8((unsigned char)0x9D);
3824 }
3825 
3826 #ifndef _LP64 // no 32bit push/pop on amd64
3827 void Assembler::popl(Address dst) {
3828   // NOTE: this will adjust stack by 8byte on 64bits
3829   InstructionMark im(this);
3830   prefix(dst);
3831   emit_int8((unsigned char)0x8F);
3832   emit_operand(rax, dst);
3833 }
3834 #endif
3835 
3836 void Assembler::prefetch_prefix(Address src) {
3837   prefix(src);
3838   emit_int8(0x0F);
3839 }
3840 
3841 void Assembler::prefetchnta(Address src) {
3842   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3843   InstructionMark im(this);
3844   prefetch_prefix(src);
3845   emit_int8(0x18);
3846   emit_operand(rax, src); // 0, src
3847 }
3848 
3849 void Assembler::prefetchr(Address src) {
3850   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3851   InstructionMark im(this);
3852   prefetch_prefix(src);
3853   emit_int8(0x0D);
3854   emit_operand(rax, src); // 0, src
3855 }
3856 
3857 void Assembler::prefetcht0(Address src) {
3858   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3859   InstructionMark im(this);
3860   prefetch_prefix(src);
3861   emit_int8(0x18);
3862   emit_operand(rcx, src); // 1, src
3863 }
3864 
3865 void Assembler::prefetcht1(Address src) {
3866   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3867   InstructionMark im(this);
3868   prefetch_prefix(src);
3869   emit_int8(0x18);
3870   emit_operand(rdx, src); // 2, src
3871 }
3872 
3873 void Assembler::prefetcht2(Address src) {
3874   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3875   InstructionMark im(this);
3876   prefetch_prefix(src);
3877   emit_int8(0x18);
3878   emit_operand(rbx, src); // 3, src
3879 }
3880 
3881 void Assembler::prefetchw(Address src) {
3882   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3883   InstructionMark im(this);
3884   prefetch_prefix(src);
3885   emit_int8(0x0D);
3886   emit_operand(rcx, src); // 1, src
3887 }
3888 
3889 void Assembler::prefix(Prefix p) {
3890   emit_int8(p);
3891 }
3892 
3893 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
3894   assert(VM_Version::supports_ssse3(), "");
3895   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3896   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3897   emit_int8(0x00);
3898   emit_int8((unsigned char)(0xC0 | encode));
3899 }
3900 
3901 void Assembler::vpshufb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3902   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
3903          vector_len == AVX_256bit? VM_Version::supports_avx2() :
3904          0, "");
3905   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3906   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3907   emit_int8(0x00);
3908   emit_int8((unsigned char)(0xC0 | encode));
3909 }
3910 
3911 void Assembler::pshufb(XMMRegister dst, Address src) {
3912   assert(VM_Version::supports_ssse3(), "");
3913   InstructionMark im(this);
3914   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3915   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3916   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3917   emit_int8(0x00);
3918   emit_operand(dst, src);
3919 }
3920 
3921 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
3922   assert(isByte(mode), "invalid value");
3923   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3924   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
3925   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3926   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3927   emit_int8(0x70);
3928   emit_int8((unsigned char)(0xC0 | encode));
3929   emit_int8(mode & 0xFF);
3930 }
3931 
3932 void Assembler::vpshufd(XMMRegister dst, XMMRegister src, int mode, int vector_len) {
3933   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
3934          vector_len == AVX_256bit? VM_Version::supports_avx2() :
3935          0, "");
3936   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3937   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3938   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3939   emit_int8(0x70);
3940   emit_int8((unsigned char)(0xC0 | encode));
3941   emit_int8(mode & 0xFF);
3942 }
3943 
3944 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
3945   assert(isByte(mode), "invalid value");
3946   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3947   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3948   InstructionMark im(this);
3949   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3950   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3951   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3952   emit_int8(0x70);
3953   emit_operand(dst, src);
3954   emit_int8(mode & 0xFF);
3955 }
3956 
3957 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
3958   assert(isByte(mode), "invalid value");
3959   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3960   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3961   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3962   emit_int8(0x70);
3963   emit_int8((unsigned char)(0xC0 | encode));
3964   emit_int8(mode & 0xFF);
3965 }
3966 
3967 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
3968   assert(isByte(mode), "invalid value");
3969   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3970   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3971   InstructionMark im(this);
3972   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3973   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3974   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3975   emit_int8(0x70);
3976   emit_operand(dst, src);
3977   emit_int8(mode & 0xFF);
3978 }
3979 
3980 void Assembler::psrldq(XMMRegister dst, int shift) {
3981   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
3982   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3983   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3984   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3985   emit_int8(0x73);
3986   emit_int8((unsigned char)(0xC0 | encode));
3987   emit_int8(shift);
3988 }
3989 
3990 void Assembler::pslldq(XMMRegister dst, int shift) {
3991   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
3992   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3993   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3994   // XMM7 is for /7 encoding: 66 0F 73 /7 ib
3995   int encode = simd_prefix_and_encode(xmm7, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3996   emit_int8(0x73);
3997   emit_int8((unsigned char)(0xC0 | encode));
3998   emit_int8(shift);
3999 }
4000 
4001 void Assembler::ptest(XMMRegister dst, Address src) {
4002   assert(VM_Version::supports_sse4_1(), "");
4003   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4004   InstructionMark im(this);
4005   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4006   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4007   emit_int8(0x17);
4008   emit_operand(dst, src);
4009 }
4010 
4011 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
4012   assert(VM_Version::supports_sse4_1(), "");
4013   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4014   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4015   emit_int8(0x17);
4016   emit_int8((unsigned char)(0xC0 | encode));
4017 }
4018 
4019 void Assembler::vptest(XMMRegister dst, Address src) {
4020   assert(VM_Version::supports_avx(), "");
4021   InstructionMark im(this);
4022   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4023   assert(dst != xnoreg, "sanity");
4024   // swap src<->dst for encoding
4025   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4026   emit_int8(0x17);
4027   emit_operand(dst, src);
4028 }
4029 
4030 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
4031   assert(VM_Version::supports_avx(), "");
4032   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4033   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4034   emit_int8(0x17);
4035   emit_int8((unsigned char)(0xC0 | encode));
4036 }
4037 
4038 void Assembler::punpcklbw(XMMRegister dst, Address src) {
4039   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4040   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4041   InstructionMark im(this);
4042   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ false, /* uses_vl */ true);
4043   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4044   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4045   emit_int8(0x60);
4046   emit_operand(dst, src);
4047 }
4048 
4049 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
4050   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4051   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ false, /* uses_vl */ true);
4052   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4053   emit_int8(0x60);
4054   emit_int8((unsigned char)(0xC0 | encode));
4055 }
4056 
4057 void Assembler::punpckldq(XMMRegister dst, Address src) {
4058   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4059   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4060   InstructionMark im(this);
4061   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4062   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4063   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4064   emit_int8(0x62);
4065   emit_operand(dst, src);
4066 }
4067 
4068 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
4069   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4070   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4071   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4072   emit_int8(0x62);
4073   emit_int8((unsigned char)(0xC0 | encode));
4074 }
4075 
4076 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
4077   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4078   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4079   attributes.set_rex_vex_w_reverted();
4080   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4081   emit_int8(0x6C);
4082   emit_int8((unsigned char)(0xC0 | encode));
4083 }
4084 
4085 void Assembler::push(int32_t imm32) {
4086   // in 64bits we push 64bits onto the stack but only
4087   // take a 32bit immediate
4088   emit_int8(0x68);
4089   emit_int32(imm32);
4090 }
4091 
4092 void Assembler::push(Register src) {
4093   int encode = prefix_and_encode(src->encoding());
4094 
4095   emit_int8(0x50 | encode);
4096 }
4097 
4098 void Assembler::pushf() {
4099   emit_int8((unsigned char)0x9C);
4100 }
4101 
4102 #ifndef _LP64 // no 32bit push/pop on amd64
4103 void Assembler::pushl(Address src) {
4104   // Note this will push 64bit on 64bit
4105   InstructionMark im(this);
4106   prefix(src);
4107   emit_int8((unsigned char)0xFF);
4108   emit_operand(rsi, src);
4109 }
4110 #endif
4111 
4112 void Assembler::rcll(Register dst, int imm8) {
4113   assert(isShiftCount(imm8), "illegal shift count");
4114   int encode = prefix_and_encode(dst->encoding());
4115   if (imm8 == 1) {
4116     emit_int8((unsigned char)0xD1);
4117     emit_int8((unsigned char)(0xD0 | encode));
4118   } else {
4119     emit_int8((unsigned char)0xC1);
4120     emit_int8((unsigned char)0xD0 | encode);
4121     emit_int8(imm8);
4122   }
4123 }
4124 
4125 void Assembler::rcpps(XMMRegister dst, XMMRegister src) {
4126   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4127   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4128   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4129   emit_int8(0x53);
4130   emit_int8((unsigned char)(0xC0 | encode));
4131 }
4132 
4133 void Assembler::rcpss(XMMRegister dst, XMMRegister src) {
4134   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4135   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4136   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4137   emit_int8(0x53);
4138   emit_int8((unsigned char)(0xC0 | encode));
4139 }
4140 
4141 void Assembler::rdtsc() {
4142   emit_int8((unsigned char)0x0F);
4143   emit_int8((unsigned char)0x31);
4144 }
4145 
4146 // copies data from [esi] to [edi] using rcx pointer sized words
4147 // generic
4148 void Assembler::rep_mov() {
4149   emit_int8((unsigned char)0xF3);
4150   // MOVSQ
4151   LP64_ONLY(prefix(REX_W));
4152   emit_int8((unsigned char)0xA5);
4153 }
4154 
4155 // sets rcx bytes with rax, value at [edi]
4156 void Assembler::rep_stosb() {
4157   emit_int8((unsigned char)0xF3); // REP
4158   LP64_ONLY(prefix(REX_W));
4159   emit_int8((unsigned char)0xAA); // STOSB
4160 }
4161 
4162 // sets rcx pointer sized words with rax, value at [edi]
4163 // generic
4164 void Assembler::rep_stos() {
4165   emit_int8((unsigned char)0xF3); // REP
4166   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
4167   emit_int8((unsigned char)0xAB);
4168 }
4169 
4170 // scans rcx pointer sized words at [edi] for occurance of rax,
4171 // generic
4172 void Assembler::repne_scan() { // repne_scan
4173   emit_int8((unsigned char)0xF2);
4174   // SCASQ
4175   LP64_ONLY(prefix(REX_W));
4176   emit_int8((unsigned char)0xAF);
4177 }
4178 
4179 #ifdef _LP64
4180 // scans rcx 4 byte words at [edi] for occurance of rax,
4181 // generic
4182 void Assembler::repne_scanl() { // repne_scan
4183   emit_int8((unsigned char)0xF2);
4184   // SCASL
4185   emit_int8((unsigned char)0xAF);
4186 }
4187 #endif
4188 
4189 void Assembler::ret(int imm16) {
4190   if (imm16 == 0) {
4191     emit_int8((unsigned char)0xC3);
4192   } else {
4193     emit_int8((unsigned char)0xC2);
4194     emit_int16(imm16);
4195   }
4196 }
4197 
4198 void Assembler::sahf() {
4199 #ifdef _LP64
4200   // Not supported in 64bit mode
4201   ShouldNotReachHere();
4202 #endif
4203   emit_int8((unsigned char)0x9E);
4204 }
4205 
4206 void Assembler::sarl(Register dst, int imm8) {
4207   int encode = prefix_and_encode(dst->encoding());
4208   assert(isShiftCount(imm8), "illegal shift count");
4209   if (imm8 == 1) {
4210     emit_int8((unsigned char)0xD1);
4211     emit_int8((unsigned char)(0xF8 | encode));
4212   } else {
4213     emit_int8((unsigned char)0xC1);
4214     emit_int8((unsigned char)(0xF8 | encode));
4215     emit_int8(imm8);
4216   }
4217 }
4218 
4219 void Assembler::sarl(Register dst) {
4220   int encode = prefix_and_encode(dst->encoding());
4221   emit_int8((unsigned char)0xD3);
4222   emit_int8((unsigned char)(0xF8 | encode));
4223 }
4224 
4225 void Assembler::sbbl(Address dst, int32_t imm32) {
4226   InstructionMark im(this);
4227   prefix(dst);
4228   emit_arith_operand(0x81, rbx, dst, imm32);
4229 }
4230 
4231 void Assembler::sbbl(Register dst, int32_t imm32) {
4232   prefix(dst);
4233   emit_arith(0x81, 0xD8, dst, imm32);
4234 }
4235 
4236 
4237 void Assembler::sbbl(Register dst, Address src) {
4238   InstructionMark im(this);
4239   prefix(src, dst);
4240   emit_int8(0x1B);
4241   emit_operand(dst, src);
4242 }
4243 
4244 void Assembler::sbbl(Register dst, Register src) {
4245   (void) prefix_and_encode(dst->encoding(), src->encoding());
4246   emit_arith(0x1B, 0xC0, dst, src);
4247 }
4248 
4249 void Assembler::setb(Condition cc, Register dst) {
4250   assert(0 <= cc && cc < 16, "illegal cc");
4251   int encode = prefix_and_encode(dst->encoding(), true);
4252   emit_int8(0x0F);
4253   emit_int8((unsigned char)0x90 | cc);
4254   emit_int8((unsigned char)(0xC0 | encode));
4255 }
4256 
4257 void Assembler::palignr(XMMRegister dst, XMMRegister src, int imm8) {
4258   assert(VM_Version::supports_ssse3(), "");
4259   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ false);
4260   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4261   emit_int8((unsigned char)0x0F);
4262   emit_int8((unsigned char)(0xC0 | encode));
4263   emit_int8(imm8);
4264 }
4265 
4266 void Assembler::vpalignr(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len) {
4267   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
4268          vector_len == AVX_256bit? VM_Version::supports_avx2() :
4269          0, "");
4270   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4271   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4272   emit_int8((unsigned char)0x0F);
4273   emit_int8((unsigned char)(0xC0 | encode));
4274   emit_int8(imm8);
4275 }
4276 
4277 void Assembler::pblendw(XMMRegister dst, XMMRegister src, int imm8) {
4278   assert(VM_Version::supports_sse4_1(), "");
4279   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4280   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4281   emit_int8((unsigned char)0x0E);
4282   emit_int8((unsigned char)(0xC0 | encode));
4283   emit_int8(imm8);
4284 }
4285 
4286 void Assembler::sha1rnds4(XMMRegister dst, XMMRegister src, int imm8) {
4287   assert(VM_Version::supports_sha(), "");
4288   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_3A, /* rex_w */ false);
4289   emit_int8((unsigned char)0xCC);
4290   emit_int8((unsigned char)(0xC0 | encode));
4291   emit_int8((unsigned char)imm8);
4292 }
4293 
4294 void Assembler::sha1nexte(XMMRegister dst, XMMRegister src) {
4295   assert(VM_Version::supports_sha(), "");
4296   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4297   emit_int8((unsigned char)0xC8);
4298   emit_int8((unsigned char)(0xC0 | encode));
4299 }
4300 
4301 void Assembler::sha1msg1(XMMRegister dst, XMMRegister src) {
4302   assert(VM_Version::supports_sha(), "");
4303   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4304   emit_int8((unsigned char)0xC9);
4305   emit_int8((unsigned char)(0xC0 | encode));
4306 }
4307 
4308 void Assembler::sha1msg2(XMMRegister dst, XMMRegister src) {
4309   assert(VM_Version::supports_sha(), "");
4310   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4311   emit_int8((unsigned char)0xCA);
4312   emit_int8((unsigned char)(0xC0 | encode));
4313 }
4314 
4315 // xmm0 is implicit additional source to this instruction.
4316 void Assembler::sha256rnds2(XMMRegister dst, XMMRegister src) {
4317   assert(VM_Version::supports_sha(), "");
4318   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4319   emit_int8((unsigned char)0xCB);
4320   emit_int8((unsigned char)(0xC0 | encode));
4321 }
4322 
4323 void Assembler::sha256msg1(XMMRegister dst, XMMRegister src) {
4324   assert(VM_Version::supports_sha(), "");
4325   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4326   emit_int8((unsigned char)0xCC);
4327   emit_int8((unsigned char)(0xC0 | encode));
4328 }
4329 
4330 void Assembler::sha256msg2(XMMRegister dst, XMMRegister src) {
4331   assert(VM_Version::supports_sha(), "");
4332   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4333   emit_int8((unsigned char)0xCD);
4334   emit_int8((unsigned char)(0xC0 | encode));
4335 }
4336 
4337 
4338 void Assembler::shll(Register dst, int imm8) {
4339   assert(isShiftCount(imm8), "illegal shift count");
4340   int encode = prefix_and_encode(dst->encoding());
4341   if (imm8 == 1 ) {
4342     emit_int8((unsigned char)0xD1);
4343     emit_int8((unsigned char)(0xE0 | encode));
4344   } else {
4345     emit_int8((unsigned char)0xC1);
4346     emit_int8((unsigned char)(0xE0 | encode));
4347     emit_int8(imm8);
4348   }
4349 }
4350 
4351 void Assembler::shll(Register dst) {
4352   int encode = prefix_and_encode(dst->encoding());
4353   emit_int8((unsigned char)0xD3);
4354   emit_int8((unsigned char)(0xE0 | encode));
4355 }
4356 
4357 void Assembler::shrl(Register dst, int imm8) {
4358   assert(isShiftCount(imm8), "illegal shift count");
4359   int encode = prefix_and_encode(dst->encoding());
4360   emit_int8((unsigned char)0xC1);
4361   emit_int8((unsigned char)(0xE8 | encode));
4362   emit_int8(imm8);
4363 }
4364 
4365 void Assembler::shrl(Register dst) {
4366   int encode = prefix_and_encode(dst->encoding());
4367   emit_int8((unsigned char)0xD3);
4368   emit_int8((unsigned char)(0xE8 | encode));
4369 }
4370 
4371 // copies a single word from [esi] to [edi]
4372 void Assembler::smovl() {
4373   emit_int8((unsigned char)0xA5);
4374 }
4375 
4376 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
4377   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4378   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4379   attributes.set_rex_vex_w_reverted();
4380   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4381   emit_int8(0x51);
4382   emit_int8((unsigned char)(0xC0 | encode));
4383 }
4384 
4385 void Assembler::sqrtsd(XMMRegister dst, Address src) {
4386   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4387   InstructionMark im(this);
4388   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4389   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4390   attributes.set_rex_vex_w_reverted();
4391   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4392   emit_int8(0x51);
4393   emit_operand(dst, src);
4394 }
4395 
4396 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
4397   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4398   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4399   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4400   emit_int8(0x51);
4401   emit_int8((unsigned char)(0xC0 | encode));
4402 }
4403 
4404 void Assembler::std() {
4405   emit_int8((unsigned char)0xFD);
4406 }
4407 
4408 void Assembler::sqrtss(XMMRegister dst, Address src) {
4409   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4410   InstructionMark im(this);
4411   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4412   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4413   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4414   emit_int8(0x51);
4415   emit_operand(dst, src);
4416 }
4417 
4418 void Assembler::stmxcsr( Address dst) {
4419   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4420   InstructionMark im(this);
4421   prefix(dst);
4422   emit_int8(0x0F);
4423   emit_int8((unsigned char)0xAE);
4424   emit_operand(as_Register(3), dst);
4425 }
4426 
4427 void Assembler::subl(Address dst, int32_t imm32) {
4428   InstructionMark im(this);
4429   prefix(dst);
4430   emit_arith_operand(0x81, rbp, dst, imm32);
4431 }
4432 
4433 void Assembler::subl(Address dst, Register src) {
4434   InstructionMark im(this);
4435   prefix(dst, src);
4436   emit_int8(0x29);
4437   emit_operand(src, dst);
4438 }
4439 
4440 void Assembler::subl(Register dst, int32_t imm32) {
4441   prefix(dst);
4442   emit_arith(0x81, 0xE8, dst, imm32);
4443 }
4444 
4445 // Force generation of a 4 byte immediate value even if it fits into 8bit
4446 void Assembler::subl_imm32(Register dst, int32_t imm32) {
4447   prefix(dst);
4448   emit_arith_imm32(0x81, 0xE8, dst, imm32);
4449 }
4450 
4451 void Assembler::subl(Register dst, Address src) {
4452   InstructionMark im(this);
4453   prefix(src, dst);
4454   emit_int8(0x2B);
4455   emit_operand(dst, src);
4456 }
4457 
4458 void Assembler::subl(Register dst, Register src) {
4459   (void) prefix_and_encode(dst->encoding(), src->encoding());
4460   emit_arith(0x2B, 0xC0, dst, src);
4461 }
4462 
4463 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
4464   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4465   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4466   attributes.set_rex_vex_w_reverted();
4467   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4468   emit_int8(0x5C);
4469   emit_int8((unsigned char)(0xC0 | encode));
4470 }
4471 
4472 void Assembler::subsd(XMMRegister dst, Address src) {
4473   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4474   InstructionMark im(this);
4475   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4476   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4477   attributes.set_rex_vex_w_reverted();
4478   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4479   emit_int8(0x5C);
4480   emit_operand(dst, src);
4481 }
4482 
4483 void Assembler::subss(XMMRegister dst, XMMRegister src) {
4484   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4485   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false , /* uses_vl */ false);
4486   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4487   emit_int8(0x5C);
4488   emit_int8((unsigned char)(0xC0 | encode));
4489 }
4490 
4491 void Assembler::subss(XMMRegister dst, Address src) {
4492   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4493   InstructionMark im(this);
4494   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4495   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4496   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4497   emit_int8(0x5C);
4498   emit_operand(dst, src);
4499 }
4500 
4501 void Assembler::testb(Register dst, int imm8) {
4502   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
4503   (void) prefix_and_encode(dst->encoding(), true);
4504   emit_arith_b(0xF6, 0xC0, dst, imm8);
4505 }
4506 
4507 void Assembler::testb(Address dst, int imm8) {
4508   InstructionMark im(this);
4509   prefix(dst);
4510   emit_int8((unsigned char)0xF6);
4511   emit_operand(rax, dst, 1);
4512   emit_int8(imm8);
4513 }
4514 
4515 void Assembler::testl(Register dst, int32_t imm32) {
4516   // not using emit_arith because test
4517   // doesn't support sign-extension of
4518   // 8bit operands
4519   int encode = dst->encoding();
4520   if (encode == 0) {
4521     emit_int8((unsigned char)0xA9);
4522   } else {
4523     encode = prefix_and_encode(encode);
4524     emit_int8((unsigned char)0xF7);
4525     emit_int8((unsigned char)(0xC0 | encode));
4526   }
4527   emit_int32(imm32);
4528 }
4529 
4530 void Assembler::testl(Register dst, Register src) {
4531   (void) prefix_and_encode(dst->encoding(), src->encoding());
4532   emit_arith(0x85, 0xC0, dst, src);
4533 }
4534 
4535 void Assembler::testl(Register dst, Address src) {
4536   InstructionMark im(this);
4537   prefix(src, dst);
4538   emit_int8((unsigned char)0x85);
4539   emit_operand(dst, src);
4540 }
4541 
4542 void Assembler::tzcntl(Register dst, Register src) {
4543   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
4544   emit_int8((unsigned char)0xF3);
4545   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4546   emit_int8(0x0F);
4547   emit_int8((unsigned char)0xBC);
4548   emit_int8((unsigned char)0xC0 | encode);
4549 }
4550 
4551 void Assembler::tzcntq(Register dst, Register src) {
4552   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
4553   emit_int8((unsigned char)0xF3);
4554   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4555   emit_int8(0x0F);
4556   emit_int8((unsigned char)0xBC);
4557   emit_int8((unsigned char)(0xC0 | encode));
4558 }
4559 
4560 void Assembler::ucomisd(XMMRegister dst, Address src) {
4561   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4562   InstructionMark im(this);
4563   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4564   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4565   attributes.set_rex_vex_w_reverted();
4566   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4567   emit_int8(0x2E);
4568   emit_operand(dst, src);
4569 }
4570 
4571 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
4572   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4573   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4574   attributes.set_rex_vex_w_reverted();
4575   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4576   emit_int8(0x2E);
4577   emit_int8((unsigned char)(0xC0 | encode));
4578 }
4579 
4580 void Assembler::ucomiss(XMMRegister dst, Address src) {
4581   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4582   InstructionMark im(this);
4583   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4584   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4585   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4586   emit_int8(0x2E);
4587   emit_operand(dst, src);
4588 }
4589 
4590 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
4591   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4592   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4593   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4594   emit_int8(0x2E);
4595   emit_int8((unsigned char)(0xC0 | encode));
4596 }
4597 
4598 void Assembler::xabort(int8_t imm8) {
4599   emit_int8((unsigned char)0xC6);
4600   emit_int8((unsigned char)0xF8);
4601   emit_int8((unsigned char)(imm8 & 0xFF));
4602 }
4603 
4604 void Assembler::xaddb(Address dst, Register src) {
4605   InstructionMark im(this);
4606   prefix(dst, src, true);
4607   emit_int8(0x0F);
4608   emit_int8((unsigned char)0xC0);
4609   emit_operand(src, dst);
4610 }
4611 
4612 void Assembler::xaddw(Address dst, Register src) {
4613   InstructionMark im(this);
4614   emit_int8(0x66);
4615   prefix(dst, src);
4616   emit_int8(0x0F);
4617   emit_int8((unsigned char)0xC1);
4618   emit_operand(src, dst);
4619 }
4620 
4621 void Assembler::xaddl(Address dst, Register src) {
4622   InstructionMark im(this);
4623   prefix(dst, src);
4624   emit_int8(0x0F);
4625   emit_int8((unsigned char)0xC1);
4626   emit_operand(src, dst);
4627 }
4628 
4629 void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
4630   InstructionMark im(this);
4631   relocate(rtype);
4632   if (abort.is_bound()) {
4633     address entry = target(abort);
4634     assert(entry != NULL, "abort entry NULL");
4635     intptr_t offset = entry - pc();
4636     emit_int8((unsigned char)0xC7);
4637     emit_int8((unsigned char)0xF8);
4638     emit_int32(offset - 6); // 2 opcode + 4 address
4639   } else {
4640     abort.add_patch_at(code(), locator());
4641     emit_int8((unsigned char)0xC7);
4642     emit_int8((unsigned char)0xF8);
4643     emit_int32(0);
4644   }
4645 }
4646 
4647 void Assembler::xchgb(Register dst, Address src) { // xchg
4648   InstructionMark im(this);
4649   prefix(src, dst, true);
4650   emit_int8((unsigned char)0x86);
4651   emit_operand(dst, src);
4652 }
4653 
4654 void Assembler::xchgw(Register dst, Address src) { // xchg
4655   InstructionMark im(this);
4656   emit_int8(0x66);
4657   prefix(src, dst);
4658   emit_int8((unsigned char)0x87);
4659   emit_operand(dst, src);
4660 }
4661 
4662 void Assembler::xchgl(Register dst, Address src) { // xchg
4663   InstructionMark im(this);
4664   prefix(src, dst);
4665   emit_int8((unsigned char)0x87);
4666   emit_operand(dst, src);
4667 }
4668 
4669 void Assembler::xchgl(Register dst, Register src) {
4670   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4671   emit_int8((unsigned char)0x87);
4672   emit_int8((unsigned char)(0xC0 | encode));
4673 }
4674 
4675 void Assembler::xend() {
4676   emit_int8((unsigned char)0x0F);
4677   emit_int8((unsigned char)0x01);
4678   emit_int8((unsigned char)0xD5);
4679 }
4680 
4681 void Assembler::xgetbv() {
4682   emit_int8(0x0F);
4683   emit_int8(0x01);
4684   emit_int8((unsigned char)0xD0);
4685 }
4686 
4687 void Assembler::xorl(Register dst, int32_t imm32) {
4688   prefix(dst);
4689   emit_arith(0x81, 0xF0, dst, imm32);
4690 }
4691 
4692 void Assembler::xorl(Register dst, Address src) {
4693   InstructionMark im(this);
4694   prefix(src, dst);
4695   emit_int8(0x33);
4696   emit_operand(dst, src);
4697 }
4698 
4699 void Assembler::xorl(Register dst, Register src) {
4700   (void) prefix_and_encode(dst->encoding(), src->encoding());
4701   emit_arith(0x33, 0xC0, dst, src);
4702 }
4703 
4704 void Assembler::xorb(Register dst, Address src) {
4705   InstructionMark im(this);
4706   prefix(src, dst);
4707   emit_int8(0x32);
4708   emit_operand(dst, src);
4709 }
4710 
4711 // AVX 3-operands scalar float-point arithmetic instructions
4712 
4713 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
4714   assert(VM_Version::supports_avx(), "");
4715   InstructionMark im(this);
4716   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4717   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4718   attributes.set_rex_vex_w_reverted();
4719   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4720   emit_int8(0x58);
4721   emit_operand(dst, src);
4722 }
4723 
4724 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4725   assert(VM_Version::supports_avx(), "");
4726   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4727   attributes.set_rex_vex_w_reverted();
4728   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4729   emit_int8(0x58);
4730   emit_int8((unsigned char)(0xC0 | encode));
4731 }
4732 
4733 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
4734   assert(VM_Version::supports_avx(), "");
4735   InstructionMark im(this);
4736   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4737   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4738   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4739   emit_int8(0x58);
4740   emit_operand(dst, src);
4741 }
4742 
4743 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4744   assert(VM_Version::supports_avx(), "");
4745   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4746   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4747   emit_int8(0x58);
4748   emit_int8((unsigned char)(0xC0 | encode));
4749 }
4750 
4751 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
4752   assert(VM_Version::supports_avx(), "");
4753   InstructionMark im(this);
4754   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4755   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4756   attributes.set_rex_vex_w_reverted();
4757   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4758   emit_int8(0x5E);
4759   emit_operand(dst, src);
4760 }
4761 
4762 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4763   assert(VM_Version::supports_avx(), "");
4764   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4765   attributes.set_rex_vex_w_reverted();
4766   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4767   emit_int8(0x5E);
4768   emit_int8((unsigned char)(0xC0 | encode));
4769 }
4770 
4771 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
4772   assert(VM_Version::supports_avx(), "");
4773   InstructionMark im(this);
4774   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4775   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4776   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4777   emit_int8(0x5E);
4778   emit_operand(dst, src);
4779 }
4780 
4781 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4782   assert(VM_Version::supports_avx(), "");
4783   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4784   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4785   emit_int8(0x5E);
4786   emit_int8((unsigned char)(0xC0 | encode));
4787 }
4788 
4789 void Assembler::vfmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
4790   assert(VM_Version::supports_fma(), "");
4791   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4792   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4793   emit_int8((unsigned char)0xB9);
4794   emit_int8((unsigned char)(0xC0 | encode));
4795 }
4796 
4797 void Assembler::vfmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
4798   assert(VM_Version::supports_fma(), "");
4799   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4800   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4801   emit_int8((unsigned char)0xB9);
4802   emit_int8((unsigned char)(0xC0 | encode));
4803 }
4804 
4805 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
4806   assert(VM_Version::supports_avx(), "");
4807   InstructionMark im(this);
4808   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4809   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4810   attributes.set_rex_vex_w_reverted();
4811   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4812   emit_int8(0x59);
4813   emit_operand(dst, src);
4814 }
4815 
4816 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4817   assert(VM_Version::supports_avx(), "");
4818   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4819   attributes.set_rex_vex_w_reverted();
4820   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4821   emit_int8(0x59);
4822   emit_int8((unsigned char)(0xC0 | encode));
4823 }
4824 
4825 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
4826   assert(VM_Version::supports_avx(), "");
4827   InstructionMark im(this);
4828   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4829   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4830   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4831   emit_int8(0x59);
4832   emit_operand(dst, src);
4833 }
4834 
4835 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4836   assert(VM_Version::supports_avx(), "");
4837   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4838   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4839   emit_int8(0x59);
4840   emit_int8((unsigned char)(0xC0 | encode));
4841 }
4842 
4843 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
4844   assert(VM_Version::supports_avx(), "");
4845   InstructionMark im(this);
4846   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4847   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4848   attributes.set_rex_vex_w_reverted();
4849   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4850   emit_int8(0x5C);
4851   emit_operand(dst, src);
4852 }
4853 
4854 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4855   assert(VM_Version::supports_avx(), "");
4856   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4857   attributes.set_rex_vex_w_reverted();
4858   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4859   emit_int8(0x5C);
4860   emit_int8((unsigned char)(0xC0 | encode));
4861 }
4862 
4863 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
4864   assert(VM_Version::supports_avx(), "");
4865   InstructionMark im(this);
4866   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4867   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4868   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4869   emit_int8(0x5C);
4870   emit_operand(dst, src);
4871 }
4872 
4873 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4874   assert(VM_Version::supports_avx(), "");
4875   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4876   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4877   emit_int8(0x5C);
4878   emit_int8((unsigned char)(0xC0 | encode));
4879 }
4880 
4881 //====================VECTOR ARITHMETIC=====================================
4882 
4883 // Float-point vector arithmetic
4884 
4885 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
4886   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4887   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4888   attributes.set_rex_vex_w_reverted();
4889   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4890   emit_int8(0x58);
4891   emit_int8((unsigned char)(0xC0 | encode));
4892 }
4893 
4894 void Assembler::addpd(XMMRegister dst, Address src) {
4895   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4896   InstructionMark im(this);
4897   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4898   attributes.set_rex_vex_w_reverted();
4899   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4900   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4901   emit_int8(0x58);
4902   emit_operand(dst, src);
4903 }
4904 
4905 
4906 void Assembler::addps(XMMRegister dst, XMMRegister src) {
4907   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4908   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4909   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4910   emit_int8(0x58);
4911   emit_int8((unsigned char)(0xC0 | encode));
4912 }
4913 
4914 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4915   assert(VM_Version::supports_avx(), "");
4916   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4917   attributes.set_rex_vex_w_reverted();
4918   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4919   emit_int8(0x58);
4920   emit_int8((unsigned char)(0xC0 | encode));
4921 }
4922 
4923 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4924   assert(VM_Version::supports_avx(), "");
4925   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4926   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4927   emit_int8(0x58);
4928   emit_int8((unsigned char)(0xC0 | encode));
4929 }
4930 
4931 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4932   assert(VM_Version::supports_avx(), "");
4933   InstructionMark im(this);
4934   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4935   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4936   attributes.set_rex_vex_w_reverted();
4937   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4938   emit_int8(0x58);
4939   emit_operand(dst, src);
4940 }
4941 
4942 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4943   assert(VM_Version::supports_avx(), "");
4944   InstructionMark im(this);
4945   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4946   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4947   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4948   emit_int8(0x58);
4949   emit_operand(dst, src);
4950 }
4951 
4952 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
4953   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4954   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4955   attributes.set_rex_vex_w_reverted();
4956   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4957   emit_int8(0x5C);
4958   emit_int8((unsigned char)(0xC0 | encode));
4959 }
4960 
4961 void Assembler::subps(XMMRegister dst, XMMRegister src) {
4962   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4963   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4964   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4965   emit_int8(0x5C);
4966   emit_int8((unsigned char)(0xC0 | encode));
4967 }
4968 
4969 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4970   assert(VM_Version::supports_avx(), "");
4971   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4972   attributes.set_rex_vex_w_reverted();
4973   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4974   emit_int8(0x5C);
4975   emit_int8((unsigned char)(0xC0 | encode));
4976 }
4977 
4978 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4979   assert(VM_Version::supports_avx(), "");
4980   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4981   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4982   emit_int8(0x5C);
4983   emit_int8((unsigned char)(0xC0 | encode));
4984 }
4985 
4986 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4987   assert(VM_Version::supports_avx(), "");
4988   InstructionMark im(this);
4989   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4990   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4991   attributes.set_rex_vex_w_reverted();
4992   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4993   emit_int8(0x5C);
4994   emit_operand(dst, src);
4995 }
4996 
4997 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4998   assert(VM_Version::supports_avx(), "");
4999   InstructionMark im(this);
5000   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5001   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5002   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5003   emit_int8(0x5C);
5004   emit_operand(dst, src);
5005 }
5006 
5007 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
5008   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5009   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5010   attributes.set_rex_vex_w_reverted();
5011   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5012   emit_int8(0x59);
5013   emit_int8((unsigned char)(0xC0 | encode));
5014 }
5015 
5016 void Assembler::mulpd(XMMRegister dst, Address src) {
5017   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5018   InstructionMark im(this);
5019   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5020   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5021   attributes.set_rex_vex_w_reverted();
5022   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5023   emit_int8(0x59);
5024   emit_operand(dst, src);
5025 }
5026 
5027 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
5028   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5029   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5030   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5031   emit_int8(0x59);
5032   emit_int8((unsigned char)(0xC0 | encode));
5033 }
5034 
5035 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5036   assert(VM_Version::supports_avx(), "");
5037   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5038   attributes.set_rex_vex_w_reverted();
5039   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5040   emit_int8(0x59);
5041   emit_int8((unsigned char)(0xC0 | encode));
5042 }
5043 
5044 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5045   assert(VM_Version::supports_avx(), "");
5046   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5047   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5048   emit_int8(0x59);
5049   emit_int8((unsigned char)(0xC0 | encode));
5050 }
5051 
5052 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5053   assert(VM_Version::supports_avx(), "");
5054   InstructionMark im(this);
5055   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5056   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5057   attributes.set_rex_vex_w_reverted();
5058   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5059   emit_int8(0x59);
5060   emit_operand(dst, src);
5061 }
5062 
5063 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5064   assert(VM_Version::supports_avx(), "");
5065   InstructionMark im(this);
5066   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5067   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5068   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5069   emit_int8(0x59);
5070   emit_operand(dst, src);
5071 }
5072 
5073 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
5074   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5075   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5076   attributes.set_rex_vex_w_reverted();
5077   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5078   emit_int8(0x5E);
5079   emit_int8((unsigned char)(0xC0 | encode));
5080 }
5081 
5082 void Assembler::divps(XMMRegister dst, XMMRegister src) {
5083   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5084   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5085   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5086   emit_int8(0x5E);
5087   emit_int8((unsigned char)(0xC0 | encode));
5088 }
5089 
5090 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5091   assert(VM_Version::supports_avx(), "");
5092   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5093   attributes.set_rex_vex_w_reverted();
5094   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5095   emit_int8(0x5E);
5096   emit_int8((unsigned char)(0xC0 | encode));
5097 }
5098 
5099 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5100   assert(VM_Version::supports_avx(), "");
5101   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5102   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5103   emit_int8(0x5E);
5104   emit_int8((unsigned char)(0xC0 | encode));
5105 }
5106 
5107 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5108   assert(VM_Version::supports_avx(), "");
5109   InstructionMark im(this);
5110   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5111   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5112   attributes.set_rex_vex_w_reverted();
5113   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5114   emit_int8(0x5E);
5115   emit_operand(dst, src);
5116 }
5117 
5118 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5119   assert(VM_Version::supports_avx(), "");
5120   InstructionMark im(this);
5121   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5122   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5123   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5124   emit_int8(0x5E);
5125   emit_operand(dst, src);
5126 }
5127 
5128 void Assembler::vsqrtpd(XMMRegister dst, XMMRegister src, int vector_len) {
5129   assert(VM_Version::supports_avx(), "");
5130   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5131   attributes.set_rex_vex_w_reverted();
5132   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5133   emit_int8(0x51);
5134   emit_int8((unsigned char)(0xC0 | encode));
5135 }
5136 
5137 void Assembler::vsqrtpd(XMMRegister dst, Address src, int vector_len) {
5138   assert(VM_Version::supports_avx(), "");
5139   InstructionMark im(this);
5140   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5141   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5142   attributes.set_rex_vex_w_reverted();
5143   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5144   emit_int8(0x51);
5145   emit_operand(dst, src);
5146 }
5147 
5148 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
5149   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5150   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5151   attributes.set_rex_vex_w_reverted();
5152   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5153   emit_int8(0x54);
5154   emit_int8((unsigned char)(0xC0 | encode));
5155 }
5156 
5157 void Assembler::andps(XMMRegister dst, XMMRegister src) {
5158   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5159   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5160   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5161   emit_int8(0x54);
5162   emit_int8((unsigned char)(0xC0 | encode));
5163 }
5164 
5165 void Assembler::andps(XMMRegister dst, Address src) {
5166   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5167   InstructionMark im(this);
5168   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5169   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5170   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5171   emit_int8(0x54);
5172   emit_operand(dst, src);
5173 }
5174 
5175 void Assembler::andpd(XMMRegister dst, Address src) {
5176   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5177   InstructionMark im(this);
5178   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5179   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5180   attributes.set_rex_vex_w_reverted();
5181   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5182   emit_int8(0x54);
5183   emit_operand(dst, src);
5184 }
5185 
5186 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5187   assert(VM_Version::supports_avx(), "");
5188   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5189   attributes.set_rex_vex_w_reverted();
5190   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5191   emit_int8(0x54);
5192   emit_int8((unsigned char)(0xC0 | encode));
5193 }
5194 
5195 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5196   assert(VM_Version::supports_avx(), "");
5197   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5198   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5199   emit_int8(0x54);
5200   emit_int8((unsigned char)(0xC0 | encode));
5201 }
5202 
5203 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5204   assert(VM_Version::supports_avx(), "");
5205   InstructionMark im(this);
5206   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5207   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5208   attributes.set_rex_vex_w_reverted();
5209   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5210   emit_int8(0x54);
5211   emit_operand(dst, src);
5212 }
5213 
5214 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5215   assert(VM_Version::supports_avx(), "");
5216   InstructionMark im(this);
5217   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5218   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5219   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5220   emit_int8(0x54);
5221   emit_operand(dst, src);
5222 }
5223 
5224 void Assembler::unpckhpd(XMMRegister dst, XMMRegister src) {
5225   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5226   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5227   attributes.set_rex_vex_w_reverted();
5228   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5229   emit_int8(0x15);
5230   emit_int8((unsigned char)(0xC0 | encode));
5231 }
5232 
5233 void Assembler::unpcklpd(XMMRegister dst, XMMRegister src) {
5234   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5235   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5236   attributes.set_rex_vex_w_reverted();
5237   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5238   emit_int8(0x14);
5239   emit_int8((unsigned char)(0xC0 | encode));
5240 }
5241 
5242 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
5243   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5244   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5245   attributes.set_rex_vex_w_reverted();
5246   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5247   emit_int8(0x57);
5248   emit_int8((unsigned char)(0xC0 | encode));
5249 }
5250 
5251 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
5252   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5253   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5254   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5255   emit_int8(0x57);
5256   emit_int8((unsigned char)(0xC0 | encode));
5257 }
5258 
5259 void Assembler::xorpd(XMMRegister dst, Address src) {
5260   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5261   InstructionMark im(this);
5262   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5263   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5264   attributes.set_rex_vex_w_reverted();
5265   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5266   emit_int8(0x57);
5267   emit_operand(dst, src);
5268 }
5269 
5270 void Assembler::xorps(XMMRegister dst, Address src) {
5271   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5272   InstructionMark im(this);
5273   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5274   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5275   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5276   emit_int8(0x57);
5277   emit_operand(dst, src);
5278 }
5279 
5280 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5281   assert(VM_Version::supports_avx(), "");
5282   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5283   attributes.set_rex_vex_w_reverted();
5284   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5285   emit_int8(0x57);
5286   emit_int8((unsigned char)(0xC0 | encode));
5287 }
5288 
5289 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5290   assert(VM_Version::supports_avx(), "");
5291   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5292   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5293   emit_int8(0x57);
5294   emit_int8((unsigned char)(0xC0 | encode));
5295 }
5296 
5297 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5298   assert(VM_Version::supports_avx(), "");
5299   InstructionMark im(this);
5300   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5301   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5302   attributes.set_rex_vex_w_reverted();
5303   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5304   emit_int8(0x57);
5305   emit_operand(dst, src);
5306 }
5307 
5308 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5309   assert(VM_Version::supports_avx(), "");
5310   InstructionMark im(this);
5311   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5312   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5313   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5314   emit_int8(0x57);
5315   emit_operand(dst, src);
5316 }
5317 
5318 // Integer vector arithmetic
5319 void Assembler::vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5320   assert(VM_Version::supports_avx() && (vector_len == 0) ||
5321          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
5322   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5323   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5324   emit_int8(0x01);
5325   emit_int8((unsigned char)(0xC0 | encode));
5326 }
5327 
5328 void Assembler::vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5329   assert(VM_Version::supports_avx() && (vector_len == 0) ||
5330          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
5331   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5332   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5333   emit_int8(0x02);
5334   emit_int8((unsigned char)(0xC0 | encode));
5335 }
5336 
5337 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
5338   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5339   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5340   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5341   emit_int8((unsigned char)0xFC);
5342   emit_int8((unsigned char)(0xC0 | encode));
5343 }
5344 
5345 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
5346   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5347   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5348   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5349   emit_int8((unsigned char)0xFD);
5350   emit_int8((unsigned char)(0xC0 | encode));
5351 }
5352 
5353 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
5354   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5355   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5356   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5357   emit_int8((unsigned char)0xFE);
5358   emit_int8((unsigned char)(0xC0 | encode));
5359 }
5360 
5361 void Assembler::paddd(XMMRegister dst, Address src) {
5362   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5363   InstructionMark im(this);
5364   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5365   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5366   emit_int8((unsigned char)0xFE);
5367   emit_operand(dst, src);
5368 }
5369 
5370 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
5371   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5372   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5373   attributes.set_rex_vex_w_reverted();
5374   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5375   emit_int8((unsigned char)0xD4);
5376   emit_int8((unsigned char)(0xC0 | encode));
5377 }
5378 
5379 void Assembler::phaddw(XMMRegister dst, XMMRegister src) {
5380   assert(VM_Version::supports_sse3(), "");
5381   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5382   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5383   emit_int8(0x01);
5384   emit_int8((unsigned char)(0xC0 | encode));
5385 }
5386 
5387 void Assembler::phaddd(XMMRegister dst, XMMRegister src) {
5388   assert(VM_Version::supports_sse3(), "");
5389   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5390   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5391   emit_int8(0x02);
5392   emit_int8((unsigned char)(0xC0 | encode));
5393 }
5394 
5395 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5396   assert(UseAVX > 0, "requires some form of AVX");
5397   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5398   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5399   emit_int8((unsigned char)0xFC);
5400   emit_int8((unsigned char)(0xC0 | encode));
5401 }
5402 
5403 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5404   assert(UseAVX > 0, "requires some form of AVX");
5405   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5406   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5407   emit_int8((unsigned char)0xFD);
5408   emit_int8((unsigned char)(0xC0 | encode));
5409 }
5410 
5411 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5412   assert(UseAVX > 0, "requires some form of AVX");
5413   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5414   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5415   emit_int8((unsigned char)0xFE);
5416   emit_int8((unsigned char)(0xC0 | encode));
5417 }
5418 
5419 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5420   assert(UseAVX > 0, "requires some form of AVX");
5421   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5422   attributes.set_rex_vex_w_reverted();
5423   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5424   emit_int8((unsigned char)0xD4);
5425   emit_int8((unsigned char)(0xC0 | encode));
5426 }
5427 
5428 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5429   assert(UseAVX > 0, "requires some form of AVX");
5430   InstructionMark im(this);
5431   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5432   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5433   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5434   emit_int8((unsigned char)0xFC);
5435   emit_operand(dst, src);
5436 }
5437 
5438 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5439   assert(UseAVX > 0, "requires some form of AVX");
5440   InstructionMark im(this);
5441   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5442   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5443   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5444   emit_int8((unsigned char)0xFD);
5445   emit_operand(dst, src);
5446 }
5447 
5448 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5449   assert(UseAVX > 0, "requires some form of AVX");
5450   InstructionMark im(this);
5451   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5452   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5453   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5454   emit_int8((unsigned char)0xFE);
5455   emit_operand(dst, src);
5456 }
5457 
5458 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5459   assert(UseAVX > 0, "requires some form of AVX");
5460   InstructionMark im(this);
5461   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5462   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5463   attributes.set_rex_vex_w_reverted();
5464   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5465   emit_int8((unsigned char)0xD4);
5466   emit_operand(dst, src);
5467 }
5468 
5469 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
5470   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5471   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5472   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5473   emit_int8((unsigned char)0xF8);
5474   emit_int8((unsigned char)(0xC0 | encode));
5475 }
5476 
5477 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
5478   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5479   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5480   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5481   emit_int8((unsigned char)0xF9);
5482   emit_int8((unsigned char)(0xC0 | encode));
5483 }
5484 
5485 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
5486   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5487   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5488   emit_int8((unsigned char)0xFA);
5489   emit_int8((unsigned char)(0xC0 | encode));
5490 }
5491 
5492 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
5493   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5494   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5495   attributes.set_rex_vex_w_reverted();
5496   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5497   emit_int8((unsigned char)0xFB);
5498   emit_int8((unsigned char)(0xC0 | encode));
5499 }
5500 
5501 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5502   assert(UseAVX > 0, "requires some form of AVX");
5503   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5504   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5505   emit_int8((unsigned char)0xF8);
5506   emit_int8((unsigned char)(0xC0 | encode));
5507 }
5508 
5509 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5510   assert(UseAVX > 0, "requires some form of AVX");
5511   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5512   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5513   emit_int8((unsigned char)0xF9);
5514   emit_int8((unsigned char)(0xC0 | encode));
5515 }
5516 
5517 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5518   assert(UseAVX > 0, "requires some form of AVX");
5519   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5520   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5521   emit_int8((unsigned char)0xFA);
5522   emit_int8((unsigned char)(0xC0 | encode));
5523 }
5524 
5525 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5526   assert(UseAVX > 0, "requires some form of AVX");
5527   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5528   attributes.set_rex_vex_w_reverted();
5529   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5530   emit_int8((unsigned char)0xFB);
5531   emit_int8((unsigned char)(0xC0 | encode));
5532 }
5533 
5534 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5535   assert(UseAVX > 0, "requires some form of AVX");
5536   InstructionMark im(this);
5537   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5538   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5539   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5540   emit_int8((unsigned char)0xF8);
5541   emit_operand(dst, src);
5542 }
5543 
5544 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5545   assert(UseAVX > 0, "requires some form of AVX");
5546   InstructionMark im(this);
5547   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5548   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5549   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5550   emit_int8((unsigned char)0xF9);
5551   emit_operand(dst, src);
5552 }
5553 
5554 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5555   assert(UseAVX > 0, "requires some form of AVX");
5556   InstructionMark im(this);
5557   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5558   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5559   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5560   emit_int8((unsigned char)0xFA);
5561   emit_operand(dst, src);
5562 }
5563 
5564 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5565   assert(UseAVX > 0, "requires some form of AVX");
5566   InstructionMark im(this);
5567   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5568   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5569   attributes.set_rex_vex_w_reverted();
5570   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5571   emit_int8((unsigned char)0xFB);
5572   emit_operand(dst, src);
5573 }
5574 
5575 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
5576   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5577   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5578   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5579   emit_int8((unsigned char)0xD5);
5580   emit_int8((unsigned char)(0xC0 | encode));
5581 }
5582 
5583 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
5584   assert(VM_Version::supports_sse4_1(), "");
5585   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5586   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5587   emit_int8(0x40);
5588   emit_int8((unsigned char)(0xC0 | encode));
5589 }
5590 
5591 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5592   assert(UseAVX > 0, "requires some form of AVX");
5593   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5594   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5595   emit_int8((unsigned char)0xD5);
5596   emit_int8((unsigned char)(0xC0 | encode));
5597 }
5598 
5599 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5600   assert(UseAVX > 0, "requires some form of AVX");
5601   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5602   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5603   emit_int8(0x40);
5604   emit_int8((unsigned char)(0xC0 | encode));
5605 }
5606 
5607 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5608   assert(UseAVX > 2, "requires some form of EVEX");
5609   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5610   attributes.set_is_evex_instruction();
5611   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5612   emit_int8(0x40);
5613   emit_int8((unsigned char)(0xC0 | encode));
5614 }
5615 
5616 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5617   assert(UseAVX > 0, "requires some form of AVX");
5618   InstructionMark im(this);
5619   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5620   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5621   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5622   emit_int8((unsigned char)0xD5);
5623   emit_operand(dst, src);
5624 }
5625 
5626 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5627   assert(UseAVX > 0, "requires some form of AVX");
5628   InstructionMark im(this);
5629   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5630   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5631   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5632   emit_int8(0x40);
5633   emit_operand(dst, src);
5634 }
5635 
5636 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5637   assert(UseAVX > 2, "requires some form of EVEX");
5638   InstructionMark im(this);
5639   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5640   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5641   attributes.set_is_evex_instruction();
5642   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5643   emit_int8(0x40);
5644   emit_operand(dst, src);
5645 }
5646 
5647 // Shift packed integers left by specified number of bits.
5648 void Assembler::psllw(XMMRegister dst, int shift) {
5649   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5650   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5651   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
5652   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5653   emit_int8(0x71);
5654   emit_int8((unsigned char)(0xC0 | encode));
5655   emit_int8(shift & 0xFF);
5656 }
5657 
5658 void Assembler::pslld(XMMRegister dst, int shift) {
5659   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5660   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5661   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
5662   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5663   emit_int8(0x72);
5664   emit_int8((unsigned char)(0xC0 | encode));
5665   emit_int8(shift & 0xFF);
5666 }
5667 
5668 void Assembler::psllq(XMMRegister dst, int shift) {
5669   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5670   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5671   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
5672   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5673   emit_int8(0x73);
5674   emit_int8((unsigned char)(0xC0 | encode));
5675   emit_int8(shift & 0xFF);
5676 }
5677 
5678 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
5679   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5680   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5681   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5682   emit_int8((unsigned char)0xF1);
5683   emit_int8((unsigned char)(0xC0 | encode));
5684 }
5685 
5686 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
5687   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5688   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5689   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5690   emit_int8((unsigned char)0xF2);
5691   emit_int8((unsigned char)(0xC0 | encode));
5692 }
5693 
5694 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
5695   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5696   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5697   attributes.set_rex_vex_w_reverted();
5698   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5699   emit_int8((unsigned char)0xF3);
5700   emit_int8((unsigned char)(0xC0 | encode));
5701 }
5702 
5703 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5704   assert(UseAVX > 0, "requires some form of AVX");
5705   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5706   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
5707   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5708   emit_int8(0x71);
5709   emit_int8((unsigned char)(0xC0 | encode));
5710   emit_int8(shift & 0xFF);
5711 }
5712 
5713 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5714   assert(UseAVX > 0, "requires some form of AVX");
5715   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5716   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5717   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
5718   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5719   emit_int8(0x72);
5720   emit_int8((unsigned char)(0xC0 | encode));
5721   emit_int8(shift & 0xFF);
5722 }
5723 
5724 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5725   assert(UseAVX > 0, "requires some form of AVX");
5726   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5727   attributes.set_rex_vex_w_reverted();
5728   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
5729   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5730   emit_int8(0x73);
5731   emit_int8((unsigned char)(0xC0 | encode));
5732   emit_int8(shift & 0xFF);
5733 }
5734 
5735 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5736   assert(UseAVX > 0, "requires some form of AVX");
5737   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5738   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5739   emit_int8((unsigned char)0xF1);
5740   emit_int8((unsigned char)(0xC0 | encode));
5741 }
5742 
5743 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5744   assert(UseAVX > 0, "requires some form of AVX");
5745   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5746   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5747   emit_int8((unsigned char)0xF2);
5748   emit_int8((unsigned char)(0xC0 | encode));
5749 }
5750 
5751 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5752   assert(UseAVX > 0, "requires some form of AVX");
5753   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5754   attributes.set_rex_vex_w_reverted();
5755   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5756   emit_int8((unsigned char)0xF3);
5757   emit_int8((unsigned char)(0xC0 | encode));
5758 }
5759 
5760 // Shift packed integers logically right by specified number of bits.
5761 void Assembler::psrlw(XMMRegister dst, int shift) {
5762   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5763   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5764   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
5765   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5766   emit_int8(0x71);
5767   emit_int8((unsigned char)(0xC0 | encode));
5768   emit_int8(shift & 0xFF);
5769 }
5770 
5771 void Assembler::psrld(XMMRegister dst, int shift) {
5772   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5773   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5774   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
5775   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5776   emit_int8(0x72);
5777   emit_int8((unsigned char)(0xC0 | encode));
5778   emit_int8(shift & 0xFF);
5779 }
5780 
5781 void Assembler::psrlq(XMMRegister dst, int shift) {
5782   // Do not confuse it with psrldq SSE2 instruction which
5783   // shifts 128 bit value in xmm register by number of bytes.
5784   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5785   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5786   attributes.set_rex_vex_w_reverted();
5787   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
5788   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5789   emit_int8(0x73);
5790   emit_int8((unsigned char)(0xC0 | encode));
5791   emit_int8(shift & 0xFF);
5792 }
5793 
5794 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
5795   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5796   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5797   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5798   emit_int8((unsigned char)0xD1);
5799   emit_int8((unsigned char)(0xC0 | encode));
5800 }
5801 
5802 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
5803   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5804   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5805   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5806   emit_int8((unsigned char)0xD2);
5807   emit_int8((unsigned char)(0xC0 | encode));
5808 }
5809 
5810 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
5811   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5812   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5813   attributes.set_rex_vex_w_reverted();
5814   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5815   emit_int8((unsigned char)0xD3);
5816   emit_int8((unsigned char)(0xC0 | encode));
5817 }
5818 
5819 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5820   assert(UseAVX > 0, "requires some form of AVX");
5821   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5822   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
5823   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5824   emit_int8(0x71);
5825   emit_int8((unsigned char)(0xC0 | encode));
5826   emit_int8(shift & 0xFF);
5827 }
5828 
5829 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5830   assert(UseAVX > 0, "requires some form of AVX");
5831   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5832   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
5833   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5834   emit_int8(0x72);
5835   emit_int8((unsigned char)(0xC0 | encode));
5836   emit_int8(shift & 0xFF);
5837 }
5838 
5839 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5840   assert(UseAVX > 0, "requires some form of AVX");
5841   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5842   attributes.set_rex_vex_w_reverted();
5843   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
5844   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5845   emit_int8(0x73);
5846   emit_int8((unsigned char)(0xC0 | encode));
5847   emit_int8(shift & 0xFF);
5848 }
5849 
5850 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5851   assert(UseAVX > 0, "requires some form of AVX");
5852   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5853   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5854   emit_int8((unsigned char)0xD1);
5855   emit_int8((unsigned char)(0xC0 | encode));
5856 }
5857 
5858 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5859   assert(UseAVX > 0, "requires some form of AVX");
5860   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5861   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5862   emit_int8((unsigned char)0xD2);
5863   emit_int8((unsigned char)(0xC0 | encode));
5864 }
5865 
5866 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5867   assert(UseAVX > 0, "requires some form of AVX");
5868   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5869   attributes.set_rex_vex_w_reverted();
5870   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5871   emit_int8((unsigned char)0xD3);
5872   emit_int8((unsigned char)(0xC0 | encode));
5873 }
5874 
5875 // Shift packed integers arithmetically right by specified number of bits.
5876 void Assembler::psraw(XMMRegister dst, int shift) {
5877   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5878   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5879   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5880   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5881   emit_int8(0x71);
5882   emit_int8((unsigned char)(0xC0 | encode));
5883   emit_int8(shift & 0xFF);
5884 }
5885 
5886 void Assembler::psrad(XMMRegister dst, int shift) {
5887   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5888   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5889   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
5890   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5891   emit_int8(0x72);
5892   emit_int8((unsigned char)(0xC0 | encode));
5893   emit_int8(shift & 0xFF);
5894 }
5895 
5896 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
5897   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5898   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5899   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5900   emit_int8((unsigned char)0xE1);
5901   emit_int8((unsigned char)(0xC0 | encode));
5902 }
5903 
5904 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
5905   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5906   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5907   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5908   emit_int8((unsigned char)0xE2);
5909   emit_int8((unsigned char)(0xC0 | encode));
5910 }
5911 
5912 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5913   assert(UseAVX > 0, "requires some form of AVX");
5914   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5915   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5916   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5917   emit_int8(0x71);
5918   emit_int8((unsigned char)(0xC0 | encode));
5919   emit_int8(shift & 0xFF);
5920 }
5921 
5922 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5923   assert(UseAVX > 0, "requires some form of AVX");
5924   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5925   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5926   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5927   emit_int8(0x72);
5928   emit_int8((unsigned char)(0xC0 | encode));
5929   emit_int8(shift & 0xFF);
5930 }
5931 
5932 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5933   assert(UseAVX > 0, "requires some form of AVX");
5934   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5935   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5936   emit_int8((unsigned char)0xE1);
5937   emit_int8((unsigned char)(0xC0 | encode));
5938 }
5939 
5940 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5941   assert(UseAVX > 0, "requires some form of AVX");
5942   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5943   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5944   emit_int8((unsigned char)0xE2);
5945   emit_int8((unsigned char)(0xC0 | encode));
5946 }
5947 
5948 
5949 // logical operations packed integers
5950 void Assembler::pand(XMMRegister dst, XMMRegister src) {
5951   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5952   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5953   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5954   emit_int8((unsigned char)0xDB);
5955   emit_int8((unsigned char)(0xC0 | encode));
5956 }
5957 
5958 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5959   assert(UseAVX > 0, "requires some form of AVX");
5960   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5961   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5962   emit_int8((unsigned char)0xDB);
5963   emit_int8((unsigned char)(0xC0 | encode));
5964 }
5965 
5966 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5967   assert(UseAVX > 0, "requires some form of AVX");
5968   InstructionMark im(this);
5969   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5970   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5971   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5972   emit_int8((unsigned char)0xDB);
5973   emit_operand(dst, src);
5974 }
5975 
5976 void Assembler::pandn(XMMRegister dst, XMMRegister src) {
5977   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5978   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5979   attributes.set_rex_vex_w_reverted();
5980   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5981   emit_int8((unsigned char)0xDF);
5982   emit_int8((unsigned char)(0xC0 | encode));
5983 }
5984 
5985 void Assembler::por(XMMRegister dst, XMMRegister src) {
5986   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5987   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5988   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5989   emit_int8((unsigned char)0xEB);
5990   emit_int8((unsigned char)(0xC0 | encode));
5991 }
5992 
5993 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5994   assert(UseAVX > 0, "requires some form of AVX");
5995   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5996   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5997   emit_int8((unsigned char)0xEB);
5998   emit_int8((unsigned char)(0xC0 | encode));
5999 }
6000 
6001 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6002   assert(UseAVX > 0, "requires some form of AVX");
6003   InstructionMark im(this);
6004   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6005   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
6006   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6007   emit_int8((unsigned char)0xEB);
6008   emit_operand(dst, src);
6009 }
6010 
6011 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
6012   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6013   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6014   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6015   emit_int8((unsigned char)0xEF);
6016   emit_int8((unsigned char)(0xC0 | encode));
6017 }
6018 
6019 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6020   assert(UseAVX > 0, "requires some form of AVX");
6021   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6022   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6023   emit_int8((unsigned char)0xEF);
6024   emit_int8((unsigned char)(0xC0 | encode));
6025 }
6026 
6027 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6028   assert(UseAVX > 0, "requires some form of AVX");
6029   InstructionMark im(this);
6030   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6031   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
6032   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6033   emit_int8((unsigned char)0xEF);
6034   emit_operand(dst, src);
6035 }
6036 
6037 
6038 // vinserti forms
6039 
6040 void Assembler::vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6041   assert(VM_Version::supports_avx2(), "");
6042   assert(imm8 <= 0x01, "imm8: %u", imm8);
6043   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6044   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6045   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6046   emit_int8(0x38);
6047   emit_int8((unsigned char)(0xC0 | encode));
6048   // 0x00 - insert into lower 128 bits
6049   // 0x01 - insert into upper 128 bits
6050   emit_int8(imm8 & 0x01);
6051 }
6052 
6053 void Assembler::vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6054   assert(VM_Version::supports_avx2(), "");
6055   assert(dst != xnoreg, "sanity");
6056   assert(imm8 <= 0x01, "imm8: %u", imm8);
6057   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6058   InstructionMark im(this);
6059   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6060   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6061   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6062   emit_int8(0x38);
6063   emit_operand(dst, src);
6064   // 0x00 - insert into lower 128 bits
6065   // 0x01 - insert into upper 128 bits
6066   emit_int8(imm8 & 0x01);
6067 }
6068 
6069 void Assembler::vinserti32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6070   assert(VM_Version::supports_evex(), "");
6071   assert(imm8 <= 0x03, "imm8: %u", imm8);
6072   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6073   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6074   emit_int8(0x38);
6075   emit_int8((unsigned char)(0xC0 | encode));
6076   // 0x00 - insert into q0 128 bits (0..127)
6077   // 0x01 - insert into q1 128 bits (128..255)
6078   // 0x02 - insert into q2 128 bits (256..383)
6079   // 0x03 - insert into q3 128 bits (384..511)
6080   emit_int8(imm8 & 0x03);
6081 }
6082 
6083 void Assembler::vinserti32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6084   assert(VM_Version::supports_avx(), "");
6085   assert(dst != xnoreg, "sanity");
6086   assert(imm8 <= 0x03, "imm8: %u", imm8);
6087   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
6088   InstructionMark im(this);
6089   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6090   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6091   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6092   emit_int8(0x18);
6093   emit_operand(dst, src);
6094   // 0x00 - insert into q0 128 bits (0..127)
6095   // 0x01 - insert into q1 128 bits (128..255)
6096   // 0x02 - insert into q2 128 bits (256..383)
6097   // 0x03 - insert into q3 128 bits (384..511)
6098   emit_int8(imm8 & 0x03);
6099 }
6100 
6101 void Assembler::vinserti64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6102   assert(VM_Version::supports_evex(), "");
6103   assert(imm8 <= 0x01, "imm8: %u", imm8);
6104   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6105   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6106   emit_int8(0x38);
6107   emit_int8((unsigned char)(0xC0 | encode));
6108   // 0x00 - insert into lower 256 bits
6109   // 0x01 - insert into upper 256 bits
6110   emit_int8(imm8 & 0x01);
6111 }
6112 
6113 
6114 // vinsertf forms
6115 
6116 void Assembler::vinsertf128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6117   assert(VM_Version::supports_avx(), "");
6118   assert(imm8 <= 0x01, "imm8: %u", imm8);
6119   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6120   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6121   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6122   emit_int8(0x18);
6123   emit_int8((unsigned char)(0xC0 | encode));
6124   // 0x00 - insert into lower 128 bits
6125   // 0x01 - insert into upper 128 bits
6126   emit_int8(imm8 & 0x01);
6127 }
6128 
6129 void Assembler::vinsertf128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6130   assert(VM_Version::supports_avx(), "");
6131   assert(dst != xnoreg, "sanity");
6132   assert(imm8 <= 0x01, "imm8: %u", imm8);
6133   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6134   InstructionMark im(this);
6135   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6136   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6137   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6138   emit_int8(0x18);
6139   emit_operand(dst, src);
6140   // 0x00 - insert into lower 128 bits
6141   // 0x01 - insert into upper 128 bits
6142   emit_int8(imm8 & 0x01);
6143 }
6144 
6145 void Assembler::vinsertf32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6146   assert(VM_Version::supports_evex(), "");
6147   assert(imm8 <= 0x03, "imm8: %u", imm8);
6148   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6149   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6150   emit_int8(0x18);
6151   emit_int8((unsigned char)(0xC0 | encode));
6152   // 0x00 - insert into q0 128 bits (0..127)
6153   // 0x01 - insert into q1 128 bits (128..255)
6154   // 0x02 - insert into q2 128 bits (256..383)
6155   // 0x03 - insert into q3 128 bits (384..511)
6156   emit_int8(imm8 & 0x03);
6157 }
6158 
6159 void Assembler::vinsertf32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6160   assert(VM_Version::supports_avx(), "");
6161   assert(dst != xnoreg, "sanity");
6162   assert(imm8 <= 0x03, "imm8: %u", imm8);
6163   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
6164   InstructionMark im(this);
6165   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6166   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6167   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6168   emit_int8(0x18);
6169   emit_operand(dst, src);
6170   // 0x00 - insert into q0 128 bits (0..127)
6171   // 0x01 - insert into q1 128 bits (128..255)
6172   // 0x02 - insert into q2 128 bits (256..383)
6173   // 0x03 - insert into q3 128 bits (384..511)
6174   emit_int8(imm8 & 0x03);
6175 }
6176 
6177 void Assembler::vinsertf64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6178   assert(VM_Version::supports_evex(), "");
6179   assert(imm8 <= 0x01, "imm8: %u", imm8);
6180   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6181   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6182   emit_int8(0x1A);
6183   emit_int8((unsigned char)(0xC0 | encode));
6184   // 0x00 - insert into lower 256 bits
6185   // 0x01 - insert into upper 256 bits
6186   emit_int8(imm8 & 0x01);
6187 }
6188 
6189 void Assembler::vinsertf64x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6190   assert(VM_Version::supports_evex(), "");
6191   assert(dst != xnoreg, "sanity");
6192   assert(imm8 <= 0x01, "imm8: %u", imm8);
6193   InstructionMark im(this);
6194   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6195   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_64bit);
6196   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6197   emit_int8(0x1A);
6198   emit_operand(dst, src);
6199   // 0x00 - insert into lower 256 bits
6200   // 0x01 - insert into upper 256 bits
6201   emit_int8(imm8 & 0x01);
6202 }
6203 
6204 
6205 // vextracti forms
6206 
6207 void Assembler::vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6208   assert(VM_Version::supports_avx(), "");
6209   assert(imm8 <= 0x01, "imm8: %u", imm8);
6210   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6211   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6212   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6213   emit_int8(0x39);
6214   emit_int8((unsigned char)(0xC0 | encode));
6215   // 0x00 - extract from lower 128 bits
6216   // 0x01 - extract from upper 128 bits
6217   emit_int8(imm8 & 0x01);
6218 }
6219 
6220 void Assembler::vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
6221   assert(VM_Version::supports_avx2(), "");
6222   assert(src != xnoreg, "sanity");
6223   assert(imm8 <= 0x01, "imm8: %u", imm8);
6224   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6225   InstructionMark im(this);
6226   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6227   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6228   attributes.reset_is_clear_context();
6229   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6230   emit_int8(0x39);
6231   emit_operand(src, dst);
6232   // 0x00 - extract from lower 128 bits
6233   // 0x01 - extract from upper 128 bits
6234   emit_int8(imm8 & 0x01);
6235 }
6236 
6237 void Assembler::vextracti32x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6238   assert(VM_Version::supports_avx(), "");
6239   assert(imm8 <= 0x03, "imm8: %u", imm8);
6240   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
6241   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6242   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6243   emit_int8(0x39);
6244   emit_int8((unsigned char)(0xC0 | encode));
6245   // 0x00 - extract from bits 127:0
6246   // 0x01 - extract from bits 255:128
6247   // 0x02 - extract from bits 383:256
6248   // 0x03 - extract from bits 511:384
6249   emit_int8(imm8 & 0x03);
6250 }
6251 
6252 void Assembler::vextracti32x4(Address dst, XMMRegister src, uint8_t imm8) {
6253   assert(VM_Version::supports_evex(), "");
6254   assert(src != xnoreg, "sanity");
6255   assert(imm8 <= 0x03, "imm8: %u", imm8);
6256   InstructionMark im(this);
6257   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6258   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6259   attributes.reset_is_clear_context();
6260   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6261   emit_int8(0x39);
6262   emit_operand(src, dst);
6263   // 0x00 - extract from bits 127:0
6264   // 0x01 - extract from bits 255:128
6265   // 0x02 - extract from bits 383:256
6266   // 0x03 - extract from bits 511:384
6267   emit_int8(imm8 & 0x03);
6268 }
6269 
6270 void Assembler::vextracti64x2(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6271   assert(VM_Version::supports_avx512dq(), "");
6272   assert(imm8 <= 0x03, "imm8: %u", imm8);
6273   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6274   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6275   emit_int8(0x39);
6276   emit_int8((unsigned char)(0xC0 | encode));
6277   // 0x00 - extract from bits 127:0
6278   // 0x01 - extract from bits 255:128
6279   // 0x02 - extract from bits 383:256
6280   // 0x03 - extract from bits 511:384
6281   emit_int8(imm8 & 0x03);
6282 }
6283 
6284 void Assembler::vextracti64x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6285   assert(VM_Version::supports_evex(), "");
6286   assert(imm8 <= 0x01, "imm8: %u", imm8);
6287   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6288   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6289   emit_int8(0x3B);
6290   emit_int8((unsigned char)(0xC0 | encode));
6291   // 0x00 - extract from lower 256 bits
6292   // 0x01 - extract from upper 256 bits
6293   emit_int8(imm8 & 0x01);
6294 }
6295 
6296 
6297 // vextractf forms
6298 
6299 void Assembler::vextractf128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6300   assert(VM_Version::supports_avx(), "");
6301   assert(imm8 <= 0x01, "imm8: %u", imm8);
6302   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6303   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6304   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6305   emit_int8(0x19);
6306   emit_int8((unsigned char)(0xC0 | encode));
6307   // 0x00 - extract from lower 128 bits
6308   // 0x01 - extract from upper 128 bits
6309   emit_int8(imm8 & 0x01);
6310 }
6311 
6312 void Assembler::vextractf128(Address dst, XMMRegister src, uint8_t imm8) {
6313   assert(VM_Version::supports_avx(), "");
6314   assert(src != xnoreg, "sanity");
6315   assert(imm8 <= 0x01, "imm8: %u", imm8);
6316   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6317   InstructionMark im(this);
6318   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6319   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6320   attributes.reset_is_clear_context();
6321   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6322   emit_int8(0x19);
6323   emit_operand(src, dst);
6324   // 0x00 - extract from lower 128 bits
6325   // 0x01 - extract from upper 128 bits
6326   emit_int8(imm8 & 0x01);
6327 }
6328 
6329 void Assembler::vextractf32x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6330   assert(VM_Version::supports_avx(), "");
6331   assert(imm8 <= 0x03, "imm8: %u", imm8);
6332   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
6333   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6334   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6335   emit_int8(0x19);
6336   emit_int8((unsigned char)(0xC0 | encode));
6337   // 0x00 - extract from bits 127:0
6338   // 0x01 - extract from bits 255:128
6339   // 0x02 - extract from bits 383:256
6340   // 0x03 - extract from bits 511:384
6341   emit_int8(imm8 & 0x03);
6342 }
6343 
6344 void Assembler::vextractf32x4(Address dst, XMMRegister src, uint8_t imm8) {
6345   assert(VM_Version::supports_evex(), "");
6346   assert(src != xnoreg, "sanity");
6347   assert(imm8 <= 0x03, "imm8: %u", imm8);
6348   InstructionMark im(this);
6349   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6350   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6351   attributes.reset_is_clear_context();
6352   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6353   emit_int8(0x19);
6354   emit_operand(src, dst);
6355   // 0x00 - extract from bits 127:0
6356   // 0x01 - extract from bits 255:128
6357   // 0x02 - extract from bits 383:256
6358   // 0x03 - extract from bits 511:384
6359   emit_int8(imm8 & 0x03);
6360 }
6361 
6362 void Assembler::vextractf64x2(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6363   assert(VM_Version::supports_avx512dq(), "");
6364   assert(imm8 <= 0x03, "imm8: %u", imm8);
6365   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6366   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6367   emit_int8(0x19);
6368   emit_int8((unsigned char)(0xC0 | encode));
6369   // 0x00 - extract from bits 127:0
6370   // 0x01 - extract from bits 255:128
6371   // 0x02 - extract from bits 383:256
6372   // 0x03 - extract from bits 511:384
6373   emit_int8(imm8 & 0x03);
6374 }
6375 
6376 void Assembler::vextractf64x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6377   assert(VM_Version::supports_evex(), "");
6378   assert(imm8 <= 0x01, "imm8: %u", imm8);
6379   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6380   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6381   emit_int8(0x1B);
6382   emit_int8((unsigned char)(0xC0 | encode));
6383   // 0x00 - extract from lower 256 bits
6384   // 0x01 - extract from upper 256 bits
6385   emit_int8(imm8 & 0x01);
6386 }
6387 
6388 void Assembler::vextractf64x4(Address dst, XMMRegister src, uint8_t imm8) {
6389   assert(VM_Version::supports_evex(), "");
6390   assert(src != xnoreg, "sanity");
6391   assert(imm8 <= 0x01, "imm8: %u", imm8);
6392   InstructionMark im(this);
6393   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6394   attributes.set_address_attributes(/* tuple_type */ EVEX_T4,/* input_size_in_bits */  EVEX_64bit);
6395   attributes.reset_is_clear_context();
6396   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6397   emit_int8(0x1B);
6398   emit_operand(src, dst);
6399   // 0x00 - extract from lower 256 bits
6400   // 0x01 - extract from upper 256 bits
6401   emit_int8(imm8 & 0x01);
6402 }
6403 
6404 
6405 // legacy word/dword replicate
6406 void Assembler::vpbroadcastw(XMMRegister dst, XMMRegister src) {
6407   assert(VM_Version::supports_avx2(), "");
6408   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6409   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6410   emit_int8(0x79);
6411   emit_int8((unsigned char)(0xC0 | encode));
6412 }
6413 
6414 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
6415   assert(VM_Version::supports_avx2(), "");
6416   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6417   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6418   emit_int8(0x58);
6419   emit_int8((unsigned char)(0xC0 | encode));
6420 }
6421 
6422 
6423 // xmm/mem sourced byte/word/dword/qword replicate
6424 
6425 // duplicate 1-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6426 void Assembler::evpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len) {
6427   assert(VM_Version::supports_evex(), "");
6428   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6429   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6430   emit_int8(0x78);
6431   emit_int8((unsigned char)(0xC0 | encode));
6432 }
6433 
6434 void Assembler::evpbroadcastb(XMMRegister dst, Address src, int vector_len) {
6435   assert(VM_Version::supports_evex(), "");
6436   assert(dst != xnoreg, "sanity");
6437   InstructionMark im(this);
6438   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6439   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
6440   // swap src<->dst for encoding
6441   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6442   emit_int8(0x78);
6443   emit_operand(dst, src);
6444 }
6445 
6446 // duplicate 2-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6447 void Assembler::evpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
6448   assert(VM_Version::supports_evex(), "");
6449   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6450   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6451   emit_int8(0x79);
6452   emit_int8((unsigned char)(0xC0 | encode));
6453 }
6454 
6455 void Assembler::evpbroadcastw(XMMRegister dst, Address src, int vector_len) {
6456   assert(VM_Version::supports_evex(), "");
6457   assert(dst != xnoreg, "sanity");
6458   InstructionMark im(this);
6459   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6460   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
6461   // swap src<->dst for encoding
6462   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6463   emit_int8(0x79);
6464   emit_operand(dst, src);
6465 }
6466 
6467 // duplicate 4-byte integer data from src into programmed locations in dest : requires AVX512VL
6468 void Assembler::evpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len) {
6469   assert(VM_Version::supports_evex(), "");
6470   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6471   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6472   emit_int8(0x58);
6473   emit_int8((unsigned char)(0xC0 | encode));
6474 }
6475 
6476 void Assembler::evpbroadcastd(XMMRegister dst, Address src, int vector_len) {
6477   assert(VM_Version::supports_evex(), "");
6478   assert(dst != xnoreg, "sanity");
6479   InstructionMark im(this);
6480   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6481   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
6482   // swap src<->dst for encoding
6483   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6484   emit_int8(0x58);
6485   emit_operand(dst, src);
6486 }
6487 
6488 // duplicate 8-byte integer data from src into programmed locations in dest : requires AVX512VL
6489 void Assembler::evpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len) {
6490   assert(VM_Version::supports_evex(), "");
6491   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6492   attributes.set_rex_vex_w_reverted();
6493   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6494   emit_int8(0x59);
6495   emit_int8((unsigned char)(0xC0 | encode));
6496 }
6497 
6498 void Assembler::evpbroadcastq(XMMRegister dst, Address src, int vector_len) {
6499   assert(VM_Version::supports_evex(), "");
6500   assert(dst != xnoreg, "sanity");
6501   InstructionMark im(this);
6502   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6503   attributes.set_rex_vex_w_reverted();
6504   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6505   // swap src<->dst for encoding
6506   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6507   emit_int8(0x59);
6508   emit_operand(dst, src);
6509 }
6510 
6511 
6512 // scalar single/double precision replicate
6513 
6514 // duplicate single precision data from src into programmed locations in dest : requires AVX512VL
6515 void Assembler::evpbroadcastss(XMMRegister dst, XMMRegister src, int vector_len) {
6516   assert(VM_Version::supports_evex(), "");
6517   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6518   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6519   emit_int8(0x18);
6520   emit_int8((unsigned char)(0xC0 | encode));
6521 }
6522 
6523 void Assembler::evpbroadcastss(XMMRegister dst, Address src, int vector_len) {
6524   assert(VM_Version::supports_evex(), "");
6525   assert(dst != xnoreg, "sanity");
6526   InstructionMark im(this);
6527   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6528   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
6529   // swap src<->dst for encoding
6530   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6531   emit_int8(0x18);
6532   emit_operand(dst, src);
6533 }
6534 
6535 // duplicate double precision data from src into programmed locations in dest : requires AVX512VL
6536 void Assembler::evpbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len) {
6537   assert(VM_Version::supports_evex(), "");
6538   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6539   attributes.set_rex_vex_w_reverted();
6540   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6541   emit_int8(0x19);
6542   emit_int8((unsigned char)(0xC0 | encode));
6543 }
6544 
6545 void Assembler::evpbroadcastsd(XMMRegister dst, Address src, int vector_len) {
6546   assert(VM_Version::supports_evex(), "");
6547   assert(dst != xnoreg, "sanity");
6548   InstructionMark im(this);
6549   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6550   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6551   attributes.set_rex_vex_w_reverted();
6552   // swap src<->dst for encoding
6553   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6554   emit_int8(0x19);
6555   emit_operand(dst, src);
6556 }
6557 
6558 
6559 // gpr source broadcast forms
6560 
6561 // duplicate 1-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6562 void Assembler::evpbroadcastb(XMMRegister dst, Register src, int vector_len) {
6563   assert(VM_Version::supports_evex(), "");
6564   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6565   attributes.set_is_evex_instruction();
6566   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6567   emit_int8(0x7A);
6568   emit_int8((unsigned char)(0xC0 | encode));
6569 }
6570 
6571 // duplicate 2-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6572 void Assembler::evpbroadcastw(XMMRegister dst, Register src, int vector_len) {
6573   assert(VM_Version::supports_evex(), "");
6574   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6575   attributes.set_is_evex_instruction();
6576   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6577   emit_int8(0x7B);
6578   emit_int8((unsigned char)(0xC0 | encode));
6579 }
6580 
6581 // duplicate 4-byte integer data from src into programmed locations in dest : requires AVX512VL
6582 void Assembler::evpbroadcastd(XMMRegister dst, Register src, int vector_len) {
6583   assert(VM_Version::supports_evex(), "");
6584   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6585   attributes.set_is_evex_instruction();
6586   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6587   emit_int8(0x7C);
6588   emit_int8((unsigned char)(0xC0 | encode));
6589 }
6590 
6591 // duplicate 8-byte integer data from src into programmed locations in dest : requires AVX512VL
6592 void Assembler::evpbroadcastq(XMMRegister dst, Register src, int vector_len) {
6593   assert(VM_Version::supports_evex(), "");
6594   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6595   attributes.set_is_evex_instruction();
6596   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6597   emit_int8(0x7C);
6598   emit_int8((unsigned char)(0xC0 | encode));
6599 }
6600 
6601 
6602 // Carry-Less Multiplication Quadword
6603 void Assembler::pclmulqdq(XMMRegister dst, XMMRegister src, int mask) {
6604   assert(VM_Version::supports_clmul(), "");
6605   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6606   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6607   emit_int8(0x44);
6608   emit_int8((unsigned char)(0xC0 | encode));
6609   emit_int8((unsigned char)mask);
6610 }
6611 
6612 // Carry-Less Multiplication Quadword
6613 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
6614   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
6615   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6616   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6617   emit_int8(0x44);
6618   emit_int8((unsigned char)(0xC0 | encode));
6619   emit_int8((unsigned char)mask);
6620 }
6621 
6622 void Assembler::vzeroupper() {
6623   assert(VM_Version::supports_avx(), "");
6624   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6625   (void)vex_prefix_and_encode(0, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
6626   emit_int8(0x77);
6627 }
6628 
6629 #ifndef _LP64
6630 // 32bit only pieces of the assembler
6631 
6632 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
6633   // NO PREFIX AS NEVER 64BIT
6634   InstructionMark im(this);
6635   emit_int8((unsigned char)0x81);
6636   emit_int8((unsigned char)(0xF8 | src1->encoding()));
6637   emit_data(imm32, rspec, 0);
6638 }
6639 
6640 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
6641   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
6642   InstructionMark im(this);
6643   emit_int8((unsigned char)0x81);
6644   emit_operand(rdi, src1);
6645   emit_data(imm32, rspec, 0);
6646 }
6647 
6648 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
6649 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
6650 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
6651 void Assembler::cmpxchg8(Address adr) {
6652   InstructionMark im(this);
6653   emit_int8(0x0F);
6654   emit_int8((unsigned char)0xC7);
6655   emit_operand(rcx, adr);
6656 }
6657 
6658 void Assembler::decl(Register dst) {
6659   // Don't use it directly. Use MacroAssembler::decrementl() instead.
6660  emit_int8(0x48 | dst->encoding());
6661 }
6662 
6663 #endif // _LP64
6664 
6665 // 64bit typically doesn't use the x87 but needs to for the trig funcs
6666 
6667 void Assembler::fabs() {
6668   emit_int8((unsigned char)0xD9);
6669   emit_int8((unsigned char)0xE1);
6670 }
6671 
6672 void Assembler::fadd(int i) {
6673   emit_farith(0xD8, 0xC0, i);
6674 }
6675 
6676 void Assembler::fadd_d(Address src) {
6677   InstructionMark im(this);
6678   emit_int8((unsigned char)0xDC);
6679   emit_operand32(rax, src);
6680 }
6681 
6682 void Assembler::fadd_s(Address src) {
6683   InstructionMark im(this);
6684   emit_int8((unsigned char)0xD8);
6685   emit_operand32(rax, src);
6686 }
6687 
6688 void Assembler::fadda(int i) {
6689   emit_farith(0xDC, 0xC0, i);
6690 }
6691 
6692 void Assembler::faddp(int i) {
6693   emit_farith(0xDE, 0xC0, i);
6694 }
6695 
6696 void Assembler::fchs() {
6697   emit_int8((unsigned char)0xD9);
6698   emit_int8((unsigned char)0xE0);
6699 }
6700 
6701 void Assembler::fcom(int i) {
6702   emit_farith(0xD8, 0xD0, i);
6703 }
6704 
6705 void Assembler::fcomp(int i) {
6706   emit_farith(0xD8, 0xD8, i);
6707 }
6708 
6709 void Assembler::fcomp_d(Address src) {
6710   InstructionMark im(this);
6711   emit_int8((unsigned char)0xDC);
6712   emit_operand32(rbx, src);
6713 }
6714 
6715 void Assembler::fcomp_s(Address src) {
6716   InstructionMark im(this);
6717   emit_int8((unsigned char)0xD8);
6718   emit_operand32(rbx, src);
6719 }
6720 
6721 void Assembler::fcompp() {
6722   emit_int8((unsigned char)0xDE);
6723   emit_int8((unsigned char)0xD9);
6724 }
6725 
6726 void Assembler::fcos() {
6727   emit_int8((unsigned char)0xD9);
6728   emit_int8((unsigned char)0xFF);
6729 }
6730 
6731 void Assembler::fdecstp() {
6732   emit_int8((unsigned char)0xD9);
6733   emit_int8((unsigned char)0xF6);
6734 }
6735 
6736 void Assembler::fdiv(int i) {
6737   emit_farith(0xD8, 0xF0, i);
6738 }
6739 
6740 void Assembler::fdiv_d(Address src) {
6741   InstructionMark im(this);
6742   emit_int8((unsigned char)0xDC);
6743   emit_operand32(rsi, src);
6744 }
6745 
6746 void Assembler::fdiv_s(Address src) {
6747   InstructionMark im(this);
6748   emit_int8((unsigned char)0xD8);
6749   emit_operand32(rsi, src);
6750 }
6751 
6752 void Assembler::fdiva(int i) {
6753   emit_farith(0xDC, 0xF8, i);
6754 }
6755 
6756 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
6757 //       is erroneous for some of the floating-point instructions below.
6758 
6759 void Assembler::fdivp(int i) {
6760   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
6761 }
6762 
6763 void Assembler::fdivr(int i) {
6764   emit_farith(0xD8, 0xF8, i);
6765 }
6766 
6767 void Assembler::fdivr_d(Address src) {
6768   InstructionMark im(this);
6769   emit_int8((unsigned char)0xDC);
6770   emit_operand32(rdi, src);
6771 }
6772 
6773 void Assembler::fdivr_s(Address src) {
6774   InstructionMark im(this);
6775   emit_int8((unsigned char)0xD8);
6776   emit_operand32(rdi, src);
6777 }
6778 
6779 void Assembler::fdivra(int i) {
6780   emit_farith(0xDC, 0xF0, i);
6781 }
6782 
6783 void Assembler::fdivrp(int i) {
6784   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
6785 }
6786 
6787 void Assembler::ffree(int i) {
6788   emit_farith(0xDD, 0xC0, i);
6789 }
6790 
6791 void Assembler::fild_d(Address adr) {
6792   InstructionMark im(this);
6793   emit_int8((unsigned char)0xDF);
6794   emit_operand32(rbp, adr);
6795 }
6796 
6797 void Assembler::fild_s(Address adr) {
6798   InstructionMark im(this);
6799   emit_int8((unsigned char)0xDB);
6800   emit_operand32(rax, adr);
6801 }
6802 
6803 void Assembler::fincstp() {
6804   emit_int8((unsigned char)0xD9);
6805   emit_int8((unsigned char)0xF7);
6806 }
6807 
6808 void Assembler::finit() {
6809   emit_int8((unsigned char)0x9B);
6810   emit_int8((unsigned char)0xDB);
6811   emit_int8((unsigned char)0xE3);
6812 }
6813 
6814 void Assembler::fist_s(Address adr) {
6815   InstructionMark im(this);
6816   emit_int8((unsigned char)0xDB);
6817   emit_operand32(rdx, adr);
6818 }
6819 
6820 void Assembler::fistp_d(Address adr) {
6821   InstructionMark im(this);
6822   emit_int8((unsigned char)0xDF);
6823   emit_operand32(rdi, adr);
6824 }
6825 
6826 void Assembler::fistp_s(Address adr) {
6827   InstructionMark im(this);
6828   emit_int8((unsigned char)0xDB);
6829   emit_operand32(rbx, adr);
6830 }
6831 
6832 void Assembler::fld1() {
6833   emit_int8((unsigned char)0xD9);
6834   emit_int8((unsigned char)0xE8);
6835 }
6836 
6837 void Assembler::fld_d(Address adr) {
6838   InstructionMark im(this);
6839   emit_int8((unsigned char)0xDD);
6840   emit_operand32(rax, adr);
6841 }
6842 
6843 void Assembler::fld_s(Address adr) {
6844   InstructionMark im(this);
6845   emit_int8((unsigned char)0xD9);
6846   emit_operand32(rax, adr);
6847 }
6848 
6849 
6850 void Assembler::fld_s(int index) {
6851   emit_farith(0xD9, 0xC0, index);
6852 }
6853 
6854 void Assembler::fld_x(Address adr) {
6855   InstructionMark im(this);
6856   emit_int8((unsigned char)0xDB);
6857   emit_operand32(rbp, adr);
6858 }
6859 
6860 void Assembler::fldcw(Address src) {
6861   InstructionMark im(this);
6862   emit_int8((unsigned char)0xD9);
6863   emit_operand32(rbp, src);
6864 }
6865 
6866 void Assembler::fldenv(Address src) {
6867   InstructionMark im(this);
6868   emit_int8((unsigned char)0xD9);
6869   emit_operand32(rsp, src);
6870 }
6871 
6872 void Assembler::fldlg2() {
6873   emit_int8((unsigned char)0xD9);
6874   emit_int8((unsigned char)0xEC);
6875 }
6876 
6877 void Assembler::fldln2() {
6878   emit_int8((unsigned char)0xD9);
6879   emit_int8((unsigned char)0xED);
6880 }
6881 
6882 void Assembler::fldz() {
6883   emit_int8((unsigned char)0xD9);
6884   emit_int8((unsigned char)0xEE);
6885 }
6886 
6887 void Assembler::flog() {
6888   fldln2();
6889   fxch();
6890   fyl2x();
6891 }
6892 
6893 void Assembler::flog10() {
6894   fldlg2();
6895   fxch();
6896   fyl2x();
6897 }
6898 
6899 void Assembler::fmul(int i) {
6900   emit_farith(0xD8, 0xC8, i);
6901 }
6902 
6903 void Assembler::fmul_d(Address src) {
6904   InstructionMark im(this);
6905   emit_int8((unsigned char)0xDC);
6906   emit_operand32(rcx, src);
6907 }
6908 
6909 void Assembler::fmul_s(Address src) {
6910   InstructionMark im(this);
6911   emit_int8((unsigned char)0xD8);
6912   emit_operand32(rcx, src);
6913 }
6914 
6915 void Assembler::fmula(int i) {
6916   emit_farith(0xDC, 0xC8, i);
6917 }
6918 
6919 void Assembler::fmulp(int i) {
6920   emit_farith(0xDE, 0xC8, i);
6921 }
6922 
6923 void Assembler::fnsave(Address dst) {
6924   InstructionMark im(this);
6925   emit_int8((unsigned char)0xDD);
6926   emit_operand32(rsi, dst);
6927 }
6928 
6929 void Assembler::fnstcw(Address src) {
6930   InstructionMark im(this);
6931   emit_int8((unsigned char)0x9B);
6932   emit_int8((unsigned char)0xD9);
6933   emit_operand32(rdi, src);
6934 }
6935 
6936 void Assembler::fnstsw_ax() {
6937   emit_int8((unsigned char)0xDF);
6938   emit_int8((unsigned char)0xE0);
6939 }
6940 
6941 void Assembler::fprem() {
6942   emit_int8((unsigned char)0xD9);
6943   emit_int8((unsigned char)0xF8);
6944 }
6945 
6946 void Assembler::fprem1() {
6947   emit_int8((unsigned char)0xD9);
6948   emit_int8((unsigned char)0xF5);
6949 }
6950 
6951 void Assembler::frstor(Address src) {
6952   InstructionMark im(this);
6953   emit_int8((unsigned char)0xDD);
6954   emit_operand32(rsp, src);
6955 }
6956 
6957 void Assembler::fsin() {
6958   emit_int8((unsigned char)0xD9);
6959   emit_int8((unsigned char)0xFE);
6960 }
6961 
6962 void Assembler::fsqrt() {
6963   emit_int8((unsigned char)0xD9);
6964   emit_int8((unsigned char)0xFA);
6965 }
6966 
6967 void Assembler::fst_d(Address adr) {
6968   InstructionMark im(this);
6969   emit_int8((unsigned char)0xDD);
6970   emit_operand32(rdx, adr);
6971 }
6972 
6973 void Assembler::fst_s(Address adr) {
6974   InstructionMark im(this);
6975   emit_int8((unsigned char)0xD9);
6976   emit_operand32(rdx, adr);
6977 }
6978 
6979 void Assembler::fstp_d(Address adr) {
6980   InstructionMark im(this);
6981   emit_int8((unsigned char)0xDD);
6982   emit_operand32(rbx, adr);
6983 }
6984 
6985 void Assembler::fstp_d(int index) {
6986   emit_farith(0xDD, 0xD8, index);
6987 }
6988 
6989 void Assembler::fstp_s(Address adr) {
6990   InstructionMark im(this);
6991   emit_int8((unsigned char)0xD9);
6992   emit_operand32(rbx, adr);
6993 }
6994 
6995 void Assembler::fstp_x(Address adr) {
6996   InstructionMark im(this);
6997   emit_int8((unsigned char)0xDB);
6998   emit_operand32(rdi, adr);
6999 }
7000 
7001 void Assembler::fsub(int i) {
7002   emit_farith(0xD8, 0xE0, i);
7003 }
7004 
7005 void Assembler::fsub_d(Address src) {
7006   InstructionMark im(this);
7007   emit_int8((unsigned char)0xDC);
7008   emit_operand32(rsp, src);
7009 }
7010 
7011 void Assembler::fsub_s(Address src) {
7012   InstructionMark im(this);
7013   emit_int8((unsigned char)0xD8);
7014   emit_operand32(rsp, src);
7015 }
7016 
7017 void Assembler::fsuba(int i) {
7018   emit_farith(0xDC, 0xE8, i);
7019 }
7020 
7021 void Assembler::fsubp(int i) {
7022   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
7023 }
7024 
7025 void Assembler::fsubr(int i) {
7026   emit_farith(0xD8, 0xE8, i);
7027 }
7028 
7029 void Assembler::fsubr_d(Address src) {
7030   InstructionMark im(this);
7031   emit_int8((unsigned char)0xDC);
7032   emit_operand32(rbp, src);
7033 }
7034 
7035 void Assembler::fsubr_s(Address src) {
7036   InstructionMark im(this);
7037   emit_int8((unsigned char)0xD8);
7038   emit_operand32(rbp, src);
7039 }
7040 
7041 void Assembler::fsubra(int i) {
7042   emit_farith(0xDC, 0xE0, i);
7043 }
7044 
7045 void Assembler::fsubrp(int i) {
7046   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
7047 }
7048 
7049 void Assembler::ftan() {
7050   emit_int8((unsigned char)0xD9);
7051   emit_int8((unsigned char)0xF2);
7052   emit_int8((unsigned char)0xDD);
7053   emit_int8((unsigned char)0xD8);
7054 }
7055 
7056 void Assembler::ftst() {
7057   emit_int8((unsigned char)0xD9);
7058   emit_int8((unsigned char)0xE4);
7059 }
7060 
7061 void Assembler::fucomi(int i) {
7062   // make sure the instruction is supported (introduced for P6, together with cmov)
7063   guarantee(VM_Version::supports_cmov(), "illegal instruction");
7064   emit_farith(0xDB, 0xE8, i);
7065 }
7066 
7067 void Assembler::fucomip(int i) {
7068   // make sure the instruction is supported (introduced for P6, together with cmov)
7069   guarantee(VM_Version::supports_cmov(), "illegal instruction");
7070   emit_farith(0xDF, 0xE8, i);
7071 }
7072 
7073 void Assembler::fwait() {
7074   emit_int8((unsigned char)0x9B);
7075 }
7076 
7077 void Assembler::fxch(int i) {
7078   emit_farith(0xD9, 0xC8, i);
7079 }
7080 
7081 void Assembler::fyl2x() {
7082   emit_int8((unsigned char)0xD9);
7083   emit_int8((unsigned char)0xF1);
7084 }
7085 
7086 void Assembler::frndint() {
7087   emit_int8((unsigned char)0xD9);
7088   emit_int8((unsigned char)0xFC);
7089 }
7090 
7091 void Assembler::f2xm1() {
7092   emit_int8((unsigned char)0xD9);
7093   emit_int8((unsigned char)0xF0);
7094 }
7095 
7096 void Assembler::fldl2e() {
7097   emit_int8((unsigned char)0xD9);
7098   emit_int8((unsigned char)0xEA);
7099 }
7100 
7101 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
7102 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
7103 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
7104 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
7105 
7106 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
7107 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
7108   if (pre > 0) {
7109     emit_int8(simd_pre[pre]);
7110   }
7111   if (rex_w) {
7112     prefixq(adr, xreg);
7113   } else {
7114     prefix(adr, xreg);
7115   }
7116   if (opc > 0) {
7117     emit_int8(0x0F);
7118     int opc2 = simd_opc[opc];
7119     if (opc2 > 0) {
7120       emit_int8(opc2);
7121     }
7122   }
7123 }
7124 
7125 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
7126   if (pre > 0) {
7127     emit_int8(simd_pre[pre]);
7128   }
7129   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) : prefix_and_encode(dst_enc, src_enc);
7130   if (opc > 0) {
7131     emit_int8(0x0F);
7132     int opc2 = simd_opc[opc];
7133     if (opc2 > 0) {
7134       emit_int8(opc2);
7135     }
7136   }
7137   return encode;
7138 }
7139 
7140 
7141 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, int nds_enc, VexSimdPrefix pre, VexOpcode opc) {
7142   int vector_len = _attributes->get_vector_len();
7143   bool vex_w = _attributes->is_rex_vex_w();
7144   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
7145     prefix(VEX_3bytes);
7146 
7147     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
7148     byte1 = (~byte1) & 0xE0;
7149     byte1 |= opc;
7150     emit_int8(byte1);
7151 
7152     int byte2 = ((~nds_enc) & 0xf) << 3;
7153     byte2 |= (vex_w ? VEX_W : 0) | ((vector_len > 0) ? 4 : 0) | pre;
7154     emit_int8(byte2);
7155   } else {
7156     prefix(VEX_2bytes);
7157 
7158     int byte1 = vex_r ? VEX_R : 0;
7159     byte1 = (~byte1) & 0x80;
7160     byte1 |= ((~nds_enc) & 0xf) << 3;
7161     byte1 |= ((vector_len > 0 ) ? 4 : 0) | pre;
7162     emit_int8(byte1);
7163   }
7164 }
7165 
7166 // This is a 4 byte encoding
7167 void Assembler::evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool evex_r, bool evex_v, int nds_enc, VexSimdPrefix pre, VexOpcode opc){
7168   // EVEX 0x62 prefix
7169   prefix(EVEX_4bytes);
7170   bool vex_w = _attributes->is_rex_vex_w();
7171   int evex_encoding = (vex_w ? VEX_W : 0);
7172   // EVEX.b is not currently used for broadcast of single element or data rounding modes
7173   _attributes->set_evex_encoding(evex_encoding);
7174 
7175   // P0: byte 2, initialized to RXBR`00mm
7176   // instead of not'd
7177   int byte2 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0) | (evex_r ? EVEX_Rb : 0);
7178   byte2 = (~byte2) & 0xF0;
7179   // confine opc opcode extensions in mm bits to lower two bits
7180   // of form {0F, 0F_38, 0F_3A}
7181   byte2 |= opc;
7182   emit_int8(byte2);
7183 
7184   // P1: byte 3 as Wvvvv1pp
7185   int byte3 = ((~nds_enc) & 0xf) << 3;
7186   // p[10] is always 1
7187   byte3 |= EVEX_F;
7188   byte3 |= (vex_w & 1) << 7;
7189   // confine pre opcode extensions in pp bits to lower two bits
7190   // of form {66, F3, F2}
7191   byte3 |= pre;
7192   emit_int8(byte3);
7193 
7194   // P2: byte 4 as zL'Lbv'aaa
7195   // kregs are implemented in the low 3 bits as aaa (hard code k1, it will be initialized for now)
7196   int byte4 = (_attributes->is_no_reg_mask()) ?
7197               0 :
7198               _attributes->get_embedded_opmask_register_specifier();
7199   // EVEX.v` for extending EVEX.vvvv or VIDX
7200   byte4 |= (evex_v ? 0: EVEX_V);
7201   // third EXEC.b for broadcast actions
7202   byte4 |= (_attributes->is_extended_context() ? EVEX_Rb : 0);
7203   // fourth EVEX.L'L for vector length : 0 is 128, 1 is 256, 2 is 512, currently we do not support 1024
7204   byte4 |= ((_attributes->get_vector_len())& 0x3) << 5;
7205   // last is EVEX.z for zero/merge actions
7206   if (_attributes->is_no_reg_mask() == false) {
7207     byte4 |= (_attributes->is_clear_context() ? EVEX_Z : 0);
7208   }
7209   emit_int8(byte4);
7210 }
7211 
7212 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
7213   bool vex_r = ((xreg_enc & 8) == 8) ? 1 : 0;
7214   bool vex_b = adr.base_needs_rex();
7215   bool vex_x = adr.index_needs_rex();
7216   set_attributes(attributes);
7217   attributes->set_current_assembler(this);
7218 
7219   // if vector length is turned off, revert to AVX for vectors smaller than 512-bit
7220   if (UseAVX > 2 && _legacy_mode_vl && attributes->uses_vl()) {
7221     switch (attributes->get_vector_len()) {
7222     case AVX_128bit:
7223     case AVX_256bit:
7224       attributes->set_is_legacy_mode();
7225       break;
7226     }
7227   }
7228 
7229   // For pure EVEX check and see if this instruction
7230   // is allowed in legacy mode and has resources which will
7231   // fit in it.  Pure EVEX instructions will use set_is_evex_instruction in their definition,
7232   // else that field is set when we encode to EVEX
7233   if (UseAVX > 2 && !attributes->is_legacy_mode() &&
7234       !_is_managed && !attributes->is_evex_instruction()) {
7235     if (!_legacy_mode_vl && attributes->get_vector_len() != AVX_512bit) {
7236       bool check_register_bank = NOT_IA32(true) IA32_ONLY(false);
7237       if (check_register_bank) {
7238         // check nds_enc and xreg_enc for upper bank usage
7239         if (nds_enc < 16 && xreg_enc < 16) {
7240           attributes->set_is_legacy_mode();
7241         }
7242       } else {
7243         attributes->set_is_legacy_mode();
7244       }
7245     }
7246   }
7247 
7248   _is_managed = false;
7249   if (UseAVX > 2 && !attributes->is_legacy_mode())
7250   {
7251     bool evex_r = (xreg_enc >= 16);
7252     bool evex_v = (nds_enc >= 16);
7253     attributes->set_is_evex_instruction();
7254     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
7255   } else {
7256     if (UseAVX > 2 && attributes->is_rex_vex_w_reverted()) {
7257       attributes->set_rex_vex_w(false);
7258     }
7259     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
7260   }
7261 }
7262 
7263 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
7264   bool vex_r = ((dst_enc & 8) == 8) ? 1 : 0;
7265   bool vex_b = ((src_enc & 8) == 8) ? 1 : 0;
7266   bool vex_x = false;
7267   set_attributes(attributes);
7268   attributes->set_current_assembler(this);
7269   bool check_register_bank = NOT_IA32(true) IA32_ONLY(false);
7270 
7271   // if vector length is turned off, revert to AVX for vectors smaller than 512-bit
7272   if (UseAVX > 2 && _legacy_mode_vl && attributes->uses_vl()) {
7273     switch (attributes->get_vector_len()) {
7274     case AVX_128bit:
7275     case AVX_256bit:
7276       if (check_register_bank) {
7277         if (dst_enc >= 16 || nds_enc >= 16 || src_enc >= 16) {
7278           // up propagate arithmetic instructions to meet RA requirements
7279           attributes->set_vector_len(AVX_512bit);
7280         } else {
7281           attributes->set_is_legacy_mode();
7282         }
7283       } else {
7284         attributes->set_is_legacy_mode();
7285       }
7286       break;
7287     }
7288   }
7289 
7290   // For pure EVEX check and see if this instruction
7291   // is allowed in legacy mode and has resources which will
7292   // fit in it.  Pure EVEX instructions will use set_is_evex_instruction in their definition,
7293   // else that field is set when we encode to EVEX
7294   if (UseAVX > 2 && !attributes->is_legacy_mode() &&
7295       !_is_managed && !attributes->is_evex_instruction()) {
7296     if (!_legacy_mode_vl && attributes->get_vector_len() != AVX_512bit) {
7297       if (check_register_bank) {
7298         // check dst_enc, nds_enc and src_enc for upper bank usage
7299         if (dst_enc < 16 && nds_enc < 16 && src_enc < 16) {
7300           attributes->set_is_legacy_mode();
7301         }
7302       } else {
7303         attributes->set_is_legacy_mode();
7304       }
7305     }
7306   }
7307 
7308   _is_managed = false;
7309   if (UseAVX > 2 && !attributes->is_legacy_mode())
7310   {
7311     bool evex_r = (dst_enc >= 16);
7312     bool evex_v = (nds_enc >= 16);
7313     // can use vex_x as bank extender on rm encoding
7314     vex_x = (src_enc >= 16);
7315     attributes->set_is_evex_instruction();
7316     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
7317   } else {
7318     if (UseAVX > 2 && attributes->is_rex_vex_w_reverted()) {
7319       attributes->set_rex_vex_w(false);
7320     }
7321     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
7322   }
7323 
7324   // return modrm byte components for operands
7325   return (((dst_enc & 7) << 3) | (src_enc & 7));
7326 }
7327 
7328 
7329 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre,
7330                             VexOpcode opc, InstructionAttr *attributes) {
7331   if (UseAVX > 0) {
7332     int xreg_enc = xreg->encoding();
7333     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
7334     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, attributes);
7335   } else {
7336     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
7337     rex_prefix(adr, xreg, pre, opc, attributes->is_rex_vex_w());
7338   }
7339 }
7340 
7341 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre,
7342                                       VexOpcode opc, InstructionAttr *attributes) {
7343   int dst_enc = dst->encoding();
7344   int src_enc = src->encoding();
7345   if (UseAVX > 0) {
7346     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
7347     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, attributes);
7348   } else {
7349     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
7350     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, attributes->is_rex_vex_w());
7351   }
7352 }
7353 
7354 void Assembler::cmppd(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len) {
7355   assert(VM_Version::supports_avx(), "");
7356   assert(!VM_Version::supports_evex(), "");
7357   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7358   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7359   emit_int8((unsigned char)0xC2);
7360   emit_int8((unsigned char)(0xC0 | encode));
7361   emit_int8((unsigned char)(0xF & cop));
7362 }
7363 
7364 void Assembler::blendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len) {
7365   assert(VM_Version::supports_avx(), "");
7366   assert(!VM_Version::supports_evex(), "");
7367   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7368   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7369   emit_int8((unsigned char)0x4B);
7370   emit_int8((unsigned char)(0xC0 | encode));
7371   int src2_enc = src2->encoding();
7372   emit_int8((unsigned char)(0xF0 & src2_enc<<4));
7373 }
7374 
7375 void Assembler::vpblendd(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len) {
7376   assert(VM_Version::supports_avx2(), "");
7377   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7378   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7379   emit_int8((unsigned char)0x02);
7380   emit_int8((unsigned char)(0xC0 | encode));
7381   emit_int8((unsigned char)imm8);
7382 }
7383 
7384 void Assembler::shlxl(Register dst, Register src1, Register src2) {
7385   assert(VM_Version::supports_bmi2(), "");
7386   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7387   int encode = vex_prefix_and_encode(dst->encoding(), src2->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7388   emit_int8((unsigned char)0xF7);
7389   emit_int8((unsigned char)(0xC0 | encode));
7390 }
7391 
7392 void Assembler::shlxq(Register dst, Register src1, Register src2) {
7393   assert(VM_Version::supports_bmi2(), "");
7394   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7395   int encode = vex_prefix_and_encode(dst->encoding(), src2->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7396   emit_int8((unsigned char)0xF7);
7397   emit_int8((unsigned char)(0xC0 | encode));
7398 }
7399 
7400 #ifndef _LP64
7401 
7402 void Assembler::incl(Register dst) {
7403   // Don't use it directly. Use MacroAssembler::incrementl() instead.
7404   emit_int8(0x40 | dst->encoding());
7405 }
7406 
7407 void Assembler::lea(Register dst, Address src) {
7408   leal(dst, src);
7409 }
7410 
7411 void Assembler::mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec) {
7412   InstructionMark im(this);
7413   emit_int8((unsigned char)0xC7);
7414   emit_operand(rax, dst);
7415   emit_data((int)imm32, rspec, 0);
7416 }
7417 
7418 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
7419   InstructionMark im(this);
7420   int encode = prefix_and_encode(dst->encoding());
7421   emit_int8((unsigned char)(0xB8 | encode));
7422   emit_data((int)imm32, rspec, 0);
7423 }
7424 
7425 void Assembler::popa() { // 32bit
7426   emit_int8(0x61);
7427 }
7428 
7429 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
7430   InstructionMark im(this);
7431   emit_int8(0x68);
7432   emit_data(imm32, rspec, 0);
7433 }
7434 
7435 void Assembler::pusha() { // 32bit
7436   emit_int8(0x60);
7437 }
7438 
7439 void Assembler::set_byte_if_not_zero(Register dst) {
7440   emit_int8(0x0F);
7441   emit_int8((unsigned char)0x95);
7442   emit_int8((unsigned char)(0xE0 | dst->encoding()));
7443 }
7444 
7445 void Assembler::shldl(Register dst, Register src) {
7446   emit_int8(0x0F);
7447   emit_int8((unsigned char)0xA5);
7448   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
7449 }
7450 
7451 // 0F A4 / r ib
7452 void Assembler::shldl(Register dst, Register src, int8_t imm8) {
7453   emit_int8(0x0F);
7454   emit_int8((unsigned char)0xA4);
7455   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
7456   emit_int8(imm8);
7457 }
7458 
7459 void Assembler::shrdl(Register dst, Register src) {
7460   emit_int8(0x0F);
7461   emit_int8((unsigned char)0xAD);
7462   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
7463 }
7464 
7465 #else // LP64
7466 
7467 void Assembler::set_byte_if_not_zero(Register dst) {
7468   int enc = prefix_and_encode(dst->encoding(), true);
7469   emit_int8(0x0F);
7470   emit_int8((unsigned char)0x95);
7471   emit_int8((unsigned char)(0xE0 | enc));
7472 }
7473 
7474 // 64bit only pieces of the assembler
7475 // This should only be used by 64bit instructions that can use rip-relative
7476 // it cannot be used by instructions that want an immediate value.
7477 
7478 bool Assembler::reachable(AddressLiteral adr) {
7479   int64_t disp;
7480   // None will force a 64bit literal to the code stream. Likely a placeholder
7481   // for something that will be patched later and we need to certain it will
7482   // always be reachable.
7483   if (adr.reloc() == relocInfo::none) {
7484     return false;
7485   }
7486   if (adr.reloc() == relocInfo::internal_word_type) {
7487     // This should be rip relative and easily reachable.
7488     return true;
7489   }
7490   if (adr.reloc() == relocInfo::virtual_call_type ||
7491       adr.reloc() == relocInfo::opt_virtual_call_type ||
7492       adr.reloc() == relocInfo::static_call_type ||
7493       adr.reloc() == relocInfo::static_stub_type ) {
7494     // This should be rip relative within the code cache and easily
7495     // reachable until we get huge code caches. (At which point
7496     // ic code is going to have issues).
7497     return true;
7498   }
7499   if (adr.reloc() != relocInfo::external_word_type &&
7500       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
7501       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
7502       adr.reloc() != relocInfo::runtime_call_type ) {
7503     return false;
7504   }
7505 
7506   // Stress the correction code
7507   if (ForceUnreachable) {
7508     // Must be runtimecall reloc, see if it is in the codecache
7509     // Flipping stuff in the codecache to be unreachable causes issues
7510     // with things like inline caches where the additional instructions
7511     // are not handled.
7512     if (CodeCache::find_blob(adr._target) == NULL) {
7513       return false;
7514     }
7515   }
7516   // For external_word_type/runtime_call_type if it is reachable from where we
7517   // are now (possibly a temp buffer) and where we might end up
7518   // anywhere in the codeCache then we are always reachable.
7519   // This would have to change if we ever save/restore shared code
7520   // to be more pessimistic.
7521   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
7522   if (!is_simm32(disp)) return false;
7523   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
7524   if (!is_simm32(disp)) return false;
7525 
7526   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
7527 
7528   // Because rip relative is a disp + address_of_next_instruction and we
7529   // don't know the value of address_of_next_instruction we apply a fudge factor
7530   // to make sure we will be ok no matter the size of the instruction we get placed into.
7531   // We don't have to fudge the checks above here because they are already worst case.
7532 
7533   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
7534   // + 4 because better safe than sorry.
7535   const int fudge = 12 + 4;
7536   if (disp < 0) {
7537     disp -= fudge;
7538   } else {
7539     disp += fudge;
7540   }
7541   return is_simm32(disp);
7542 }
7543 
7544 // Check if the polling page is not reachable from the code cache using rip-relative
7545 // addressing.
7546 bool Assembler::is_polling_page_far() {
7547   intptr_t addr = (intptr_t)os::get_polling_page();
7548   return ForceUnreachable ||
7549          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
7550          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
7551 }
7552 
7553 void Assembler::emit_data64(jlong data,
7554                             relocInfo::relocType rtype,
7555                             int format) {
7556   if (rtype == relocInfo::none) {
7557     emit_int64(data);
7558   } else {
7559     emit_data64(data, Relocation::spec_simple(rtype), format);
7560   }
7561 }
7562 
7563 void Assembler::emit_data64(jlong data,
7564                             RelocationHolder const& rspec,
7565                             int format) {
7566   assert(imm_operand == 0, "default format must be immediate in this file");
7567   assert(imm_operand == format, "must be immediate");
7568   assert(inst_mark() != NULL, "must be inside InstructionMark");
7569   // Do not use AbstractAssembler::relocate, which is not intended for
7570   // embedded words.  Instead, relocate to the enclosing instruction.
7571   code_section()->relocate(inst_mark(), rspec, format);
7572 #ifdef ASSERT
7573   check_relocation(rspec, format);
7574 #endif
7575   emit_int64(data);
7576 }
7577 
7578 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
7579   if (reg_enc >= 8) {
7580     prefix(REX_B);
7581     reg_enc -= 8;
7582   } else if (byteinst && reg_enc >= 4) {
7583     prefix(REX);
7584   }
7585   return reg_enc;
7586 }
7587 
7588 int Assembler::prefixq_and_encode(int reg_enc) {
7589   if (reg_enc < 8) {
7590     prefix(REX_W);
7591   } else {
7592     prefix(REX_WB);
7593     reg_enc -= 8;
7594   }
7595   return reg_enc;
7596 }
7597 
7598 int Assembler::prefix_and_encode(int dst_enc, bool dst_is_byte, int src_enc, bool src_is_byte) {
7599   if (dst_enc < 8) {
7600     if (src_enc >= 8) {
7601       prefix(REX_B);
7602       src_enc -= 8;
7603     } else if ((src_is_byte && src_enc >= 4) || (dst_is_byte && dst_enc >= 4)) {
7604       prefix(REX);
7605     }
7606   } else {
7607     if (src_enc < 8) {
7608       prefix(REX_R);
7609     } else {
7610       prefix(REX_RB);
7611       src_enc -= 8;
7612     }
7613     dst_enc -= 8;
7614   }
7615   return dst_enc << 3 | src_enc;
7616 }
7617 
7618 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
7619   if (dst_enc < 8) {
7620     if (src_enc < 8) {
7621       prefix(REX_W);
7622     } else {
7623       prefix(REX_WB);
7624       src_enc -= 8;
7625     }
7626   } else {
7627     if (src_enc < 8) {
7628       prefix(REX_WR);
7629     } else {
7630       prefix(REX_WRB);
7631       src_enc -= 8;
7632     }
7633     dst_enc -= 8;
7634   }
7635   return dst_enc << 3 | src_enc;
7636 }
7637 
7638 void Assembler::prefix(Register reg) {
7639   if (reg->encoding() >= 8) {
7640     prefix(REX_B);
7641   }
7642 }
7643 
7644 void Assembler::prefix(Register dst, Register src, Prefix p) {
7645   if (src->encoding() >= 8) {
7646     p = (Prefix)(p | REX_B);
7647   }
7648   if (dst->encoding() >= 8) {
7649     p = (Prefix)( p | REX_R);
7650   }
7651   if (p != Prefix_EMPTY) {
7652     // do not generate an empty prefix
7653     prefix(p);
7654   }
7655 }
7656 
7657 void Assembler::prefix(Register dst, Address adr, Prefix p) {
7658   if (adr.base_needs_rex()) {
7659     if (adr.index_needs_rex()) {
7660       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
7661     } else {
7662       prefix(REX_B);
7663     }
7664   } else {
7665     if (adr.index_needs_rex()) {
7666       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
7667     }
7668   }
7669   if (dst->encoding() >= 8) {
7670     p = (Prefix)(p | REX_R);
7671   }
7672   if (p != Prefix_EMPTY) {
7673     // do not generate an empty prefix
7674     prefix(p);
7675   }
7676 }
7677 
7678 void Assembler::prefix(Address adr) {
7679   if (adr.base_needs_rex()) {
7680     if (adr.index_needs_rex()) {
7681       prefix(REX_XB);
7682     } else {
7683       prefix(REX_B);
7684     }
7685   } else {
7686     if (adr.index_needs_rex()) {
7687       prefix(REX_X);
7688     }
7689   }
7690 }
7691 
7692 void Assembler::prefixq(Address adr) {
7693   if (adr.base_needs_rex()) {
7694     if (adr.index_needs_rex()) {
7695       prefix(REX_WXB);
7696     } else {
7697       prefix(REX_WB);
7698     }
7699   } else {
7700     if (adr.index_needs_rex()) {
7701       prefix(REX_WX);
7702     } else {
7703       prefix(REX_W);
7704     }
7705   }
7706 }
7707 
7708 
7709 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
7710   if (reg->encoding() < 8) {
7711     if (adr.base_needs_rex()) {
7712       if (adr.index_needs_rex()) {
7713         prefix(REX_XB);
7714       } else {
7715         prefix(REX_B);
7716       }
7717     } else {
7718       if (adr.index_needs_rex()) {
7719         prefix(REX_X);
7720       } else if (byteinst && reg->encoding() >= 4 ) {
7721         prefix(REX);
7722       }
7723     }
7724   } else {
7725     if (adr.base_needs_rex()) {
7726       if (adr.index_needs_rex()) {
7727         prefix(REX_RXB);
7728       } else {
7729         prefix(REX_RB);
7730       }
7731     } else {
7732       if (adr.index_needs_rex()) {
7733         prefix(REX_RX);
7734       } else {
7735         prefix(REX_R);
7736       }
7737     }
7738   }
7739 }
7740 
7741 void Assembler::prefixq(Address adr, Register src) {
7742   if (src->encoding() < 8) {
7743     if (adr.base_needs_rex()) {
7744       if (adr.index_needs_rex()) {
7745         prefix(REX_WXB);
7746       } else {
7747         prefix(REX_WB);
7748       }
7749     } else {
7750       if (adr.index_needs_rex()) {
7751         prefix(REX_WX);
7752       } else {
7753         prefix(REX_W);
7754       }
7755     }
7756   } else {
7757     if (adr.base_needs_rex()) {
7758       if (adr.index_needs_rex()) {
7759         prefix(REX_WRXB);
7760       } else {
7761         prefix(REX_WRB);
7762       }
7763     } else {
7764       if (adr.index_needs_rex()) {
7765         prefix(REX_WRX);
7766       } else {
7767         prefix(REX_WR);
7768       }
7769     }
7770   }
7771 }
7772 
7773 void Assembler::prefix(Address adr, XMMRegister reg) {
7774   if (reg->encoding() < 8) {
7775     if (adr.base_needs_rex()) {
7776       if (adr.index_needs_rex()) {
7777         prefix(REX_XB);
7778       } else {
7779         prefix(REX_B);
7780       }
7781     } else {
7782       if (adr.index_needs_rex()) {
7783         prefix(REX_X);
7784       }
7785     }
7786   } else {
7787     if (adr.base_needs_rex()) {
7788       if (adr.index_needs_rex()) {
7789         prefix(REX_RXB);
7790       } else {
7791         prefix(REX_RB);
7792       }
7793     } else {
7794       if (adr.index_needs_rex()) {
7795         prefix(REX_RX);
7796       } else {
7797         prefix(REX_R);
7798       }
7799     }
7800   }
7801 }
7802 
7803 void Assembler::prefixq(Address adr, XMMRegister src) {
7804   if (src->encoding() < 8) {
7805     if (adr.base_needs_rex()) {
7806       if (adr.index_needs_rex()) {
7807         prefix(REX_WXB);
7808       } else {
7809         prefix(REX_WB);
7810       }
7811     } else {
7812       if (adr.index_needs_rex()) {
7813         prefix(REX_WX);
7814       } else {
7815         prefix(REX_W);
7816       }
7817     }
7818   } else {
7819     if (adr.base_needs_rex()) {
7820       if (adr.index_needs_rex()) {
7821         prefix(REX_WRXB);
7822       } else {
7823         prefix(REX_WRB);
7824       }
7825     } else {
7826       if (adr.index_needs_rex()) {
7827         prefix(REX_WRX);
7828       } else {
7829         prefix(REX_WR);
7830       }
7831     }
7832   }
7833 }
7834 
7835 void Assembler::adcq(Register dst, int32_t imm32) {
7836   (void) prefixq_and_encode(dst->encoding());
7837   emit_arith(0x81, 0xD0, dst, imm32);
7838 }
7839 
7840 void Assembler::adcq(Register dst, Address src) {
7841   InstructionMark im(this);
7842   prefixq(src, dst);
7843   emit_int8(0x13);
7844   emit_operand(dst, src);
7845 }
7846 
7847 void Assembler::adcq(Register dst, Register src) {
7848   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7849   emit_arith(0x13, 0xC0, dst, src);
7850 }
7851 
7852 void Assembler::addq(Address dst, int32_t imm32) {
7853   InstructionMark im(this);
7854   prefixq(dst);
7855   emit_arith_operand(0x81, rax, dst,imm32);
7856 }
7857 
7858 void Assembler::addq(Address dst, Register src) {
7859   InstructionMark im(this);
7860   prefixq(dst, src);
7861   emit_int8(0x01);
7862   emit_operand(src, dst);
7863 }
7864 
7865 void Assembler::addq(Register dst, int32_t imm32) {
7866   (void) prefixq_and_encode(dst->encoding());
7867   emit_arith(0x81, 0xC0, dst, imm32);
7868 }
7869 
7870 void Assembler::addq(Register dst, Address src) {
7871   InstructionMark im(this);
7872   prefixq(src, dst);
7873   emit_int8(0x03);
7874   emit_operand(dst, src);
7875 }
7876 
7877 void Assembler::addq(Register dst, Register src) {
7878   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7879   emit_arith(0x03, 0xC0, dst, src);
7880 }
7881 
7882 void Assembler::adcxq(Register dst, Register src) {
7883   //assert(VM_Version::supports_adx(), "adx instructions not supported");
7884   emit_int8((unsigned char)0x66);
7885   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7886   emit_int8(0x0F);
7887   emit_int8(0x38);
7888   emit_int8((unsigned char)0xF6);
7889   emit_int8((unsigned char)(0xC0 | encode));
7890 }
7891 
7892 void Assembler::adoxq(Register dst, Register src) {
7893   //assert(VM_Version::supports_adx(), "adx instructions not supported");
7894   emit_int8((unsigned char)0xF3);
7895   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7896   emit_int8(0x0F);
7897   emit_int8(0x38);
7898   emit_int8((unsigned char)0xF6);
7899   emit_int8((unsigned char)(0xC0 | encode));
7900 }
7901 
7902 void Assembler::andq(Address dst, int32_t imm32) {
7903   InstructionMark im(this);
7904   prefixq(dst);
7905   emit_int8((unsigned char)0x81);
7906   emit_operand(rsp, dst, 4);
7907   emit_int32(imm32);
7908 }
7909 
7910 void Assembler::andq(Register dst, int32_t imm32) {
7911   (void) prefixq_and_encode(dst->encoding());
7912   emit_arith(0x81, 0xE0, dst, imm32);
7913 }
7914 
7915 void Assembler::andq(Register dst, Address src) {
7916   InstructionMark im(this);
7917   prefixq(src, dst);
7918   emit_int8(0x23);
7919   emit_operand(dst, src);
7920 }
7921 
7922 void Assembler::andq(Register dst, Register src) {
7923   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7924   emit_arith(0x23, 0xC0, dst, src);
7925 }
7926 
7927 void Assembler::andnq(Register dst, Register src1, Register src2) {
7928   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7929   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7930   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7931   emit_int8((unsigned char)0xF2);
7932   emit_int8((unsigned char)(0xC0 | encode));
7933 }
7934 
7935 void Assembler::andnq(Register dst, Register src1, Address src2) {
7936   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7937   InstructionMark im(this);
7938   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7939   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7940   emit_int8((unsigned char)0xF2);
7941   emit_operand(dst, src2);
7942 }
7943 
7944 void Assembler::bsfq(Register dst, Register src) {
7945   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7946   emit_int8(0x0F);
7947   emit_int8((unsigned char)0xBC);
7948   emit_int8((unsigned char)(0xC0 | encode));
7949 }
7950 
7951 void Assembler::bsrq(Register dst, Register src) {
7952   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7953   emit_int8(0x0F);
7954   emit_int8((unsigned char)0xBD);
7955   emit_int8((unsigned char)(0xC0 | encode));
7956 }
7957 
7958 void Assembler::bswapq(Register reg) {
7959   int encode = prefixq_and_encode(reg->encoding());
7960   emit_int8(0x0F);
7961   emit_int8((unsigned char)(0xC8 | encode));
7962 }
7963 
7964 void Assembler::blsiq(Register dst, Register src) {
7965   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7966   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7967   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7968   emit_int8((unsigned char)0xF3);
7969   emit_int8((unsigned char)(0xC0 | encode));
7970 }
7971 
7972 void Assembler::blsiq(Register dst, Address src) {
7973   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7974   InstructionMark im(this);
7975   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7976   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7977   emit_int8((unsigned char)0xF3);
7978   emit_operand(rbx, src);
7979 }
7980 
7981 void Assembler::blsmskq(Register dst, Register src) {
7982   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7983   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7984   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7985   emit_int8((unsigned char)0xF3);
7986   emit_int8((unsigned char)(0xC0 | encode));
7987 }
7988 
7989 void Assembler::blsmskq(Register dst, Address src) {
7990   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7991   InstructionMark im(this);
7992   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7993   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7994   emit_int8((unsigned char)0xF3);
7995   emit_operand(rdx, src);
7996 }
7997 
7998 void Assembler::blsrq(Register dst, Register src) {
7999   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8000   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8001   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8002   emit_int8((unsigned char)0xF3);
8003   emit_int8((unsigned char)(0xC0 | encode));
8004 }
8005 
8006 void Assembler::blsrq(Register dst, Address src) {
8007   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8008   InstructionMark im(this);
8009   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8010   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8011   emit_int8((unsigned char)0xF3);
8012   emit_operand(rcx, src);
8013 }
8014 
8015 void Assembler::cdqq() {
8016   prefix(REX_W);
8017   emit_int8((unsigned char)0x99);
8018 }
8019 
8020 void Assembler::clflush(Address adr) {
8021   prefix(adr);
8022   emit_int8(0x0F);
8023   emit_int8((unsigned char)0xAE);
8024   emit_operand(rdi, adr);
8025 }
8026 
8027 void Assembler::cmovq(Condition cc, Register dst, Register src) {
8028   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8029   emit_int8(0x0F);
8030   emit_int8(0x40 | cc);
8031   emit_int8((unsigned char)(0xC0 | encode));
8032 }
8033 
8034 void Assembler::cmovq(Condition cc, Register dst, Address src) {
8035   InstructionMark im(this);
8036   prefixq(src, dst);
8037   emit_int8(0x0F);
8038   emit_int8(0x40 | cc);
8039   emit_operand(dst, src);
8040 }
8041 
8042 void Assembler::cmpq(Address dst, int32_t imm32) {
8043   InstructionMark im(this);
8044   prefixq(dst);
8045   emit_int8((unsigned char)0x81);
8046   emit_operand(rdi, dst, 4);
8047   emit_int32(imm32);
8048 }
8049 
8050 void Assembler::cmpq(Register dst, int32_t imm32) {
8051   (void) prefixq_and_encode(dst->encoding());
8052   emit_arith(0x81, 0xF8, dst, imm32);
8053 }
8054 
8055 void Assembler::cmpq(Address dst, Register src) {
8056   InstructionMark im(this);
8057   prefixq(dst, src);
8058   emit_int8(0x3B);
8059   emit_operand(src, dst);
8060 }
8061 
8062 void Assembler::cmpq(Register dst, Register src) {
8063   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8064   emit_arith(0x3B, 0xC0, dst, src);
8065 }
8066 
8067 void Assembler::cmpq(Register dst, Address  src) {
8068   InstructionMark im(this);
8069   prefixq(src, dst);
8070   emit_int8(0x3B);
8071   emit_operand(dst, src);
8072 }
8073 
8074 void Assembler::cmpxchgq(Register reg, Address adr) {
8075   InstructionMark im(this);
8076   prefixq(adr, reg);
8077   emit_int8(0x0F);
8078   emit_int8((unsigned char)0xB1);
8079   emit_operand(reg, adr);
8080 }
8081 
8082 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
8083   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8084   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8085   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
8086   emit_int8(0x2A);
8087   emit_int8((unsigned char)(0xC0 | encode));
8088 }
8089 
8090 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
8091   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8092   InstructionMark im(this);
8093   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8094   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
8095   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
8096   emit_int8(0x2A);
8097   emit_operand(dst, src);
8098 }
8099 
8100 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
8101   NOT_LP64(assert(VM_Version::supports_sse(), ""));
8102   InstructionMark im(this);
8103   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8104   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
8105   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
8106   emit_int8(0x2A);
8107   emit_operand(dst, src);
8108 }
8109 
8110 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
8111   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8112   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8113   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
8114   emit_int8(0x2C);
8115   emit_int8((unsigned char)(0xC0 | encode));
8116 }
8117 
8118 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
8119   NOT_LP64(assert(VM_Version::supports_sse(), ""));
8120   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8121   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
8122   emit_int8(0x2C);
8123   emit_int8((unsigned char)(0xC0 | encode));
8124 }
8125 
8126 void Assembler::decl(Register dst) {
8127   // Don't use it directly. Use MacroAssembler::decrementl() instead.
8128   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
8129   int encode = prefix_and_encode(dst->encoding());
8130   emit_int8((unsigned char)0xFF);
8131   emit_int8((unsigned char)(0xC8 | encode));
8132 }
8133 
8134 void Assembler::decq(Register dst) {
8135   // Don't use it directly. Use MacroAssembler::decrementq() instead.
8136   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
8137   int encode = prefixq_and_encode(dst->encoding());
8138   emit_int8((unsigned char)0xFF);
8139   emit_int8(0xC8 | encode);
8140 }
8141 
8142 void Assembler::decq(Address dst) {
8143   // Don't use it directly. Use MacroAssembler::decrementq() instead.
8144   InstructionMark im(this);
8145   prefixq(dst);
8146   emit_int8((unsigned char)0xFF);
8147   emit_operand(rcx, dst);
8148 }
8149 
8150 void Assembler::fxrstor(Address src) {
8151   prefixq(src);
8152   emit_int8(0x0F);
8153   emit_int8((unsigned char)0xAE);
8154   emit_operand(as_Register(1), src);
8155 }
8156 
8157 void Assembler::xrstor(Address src) {
8158   prefixq(src);
8159   emit_int8(0x0F);
8160   emit_int8((unsigned char)0xAE);
8161   emit_operand(as_Register(5), src);
8162 }
8163 
8164 void Assembler::fxsave(Address dst) {
8165   prefixq(dst);
8166   emit_int8(0x0F);
8167   emit_int8((unsigned char)0xAE);
8168   emit_operand(as_Register(0), dst);
8169 }
8170 
8171 void Assembler::xsave(Address dst) {
8172   prefixq(dst);
8173   emit_int8(0x0F);
8174   emit_int8((unsigned char)0xAE);
8175   emit_operand(as_Register(4), dst);
8176 }
8177 
8178 void Assembler::idivq(Register src) {
8179   int encode = prefixq_and_encode(src->encoding());
8180   emit_int8((unsigned char)0xF7);
8181   emit_int8((unsigned char)(0xF8 | encode));
8182 }
8183 
8184 void Assembler::imulq(Register dst, Register src) {
8185   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8186   emit_int8(0x0F);
8187   emit_int8((unsigned char)0xAF);
8188   emit_int8((unsigned char)(0xC0 | encode));
8189 }
8190 
8191 void Assembler::imulq(Register dst, Register src, int value) {
8192   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8193   if (is8bit(value)) {
8194     emit_int8(0x6B);
8195     emit_int8((unsigned char)(0xC0 | encode));
8196     emit_int8(value & 0xFF);
8197   } else {
8198     emit_int8(0x69);
8199     emit_int8((unsigned char)(0xC0 | encode));
8200     emit_int32(value);
8201   }
8202 }
8203 
8204 void Assembler::imulq(Register dst, Address src) {
8205   InstructionMark im(this);
8206   prefixq(src, dst);
8207   emit_int8(0x0F);
8208   emit_int8((unsigned char) 0xAF);
8209   emit_operand(dst, src);
8210 }
8211 
8212 void Assembler::incl(Register dst) {
8213   // Don't use it directly. Use MacroAssembler::incrementl() instead.
8214   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
8215   int encode = prefix_and_encode(dst->encoding());
8216   emit_int8((unsigned char)0xFF);
8217   emit_int8((unsigned char)(0xC0 | encode));
8218 }
8219 
8220 void Assembler::incq(Register dst) {
8221   // Don't use it directly. Use MacroAssembler::incrementq() instead.
8222   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
8223   int encode = prefixq_and_encode(dst->encoding());
8224   emit_int8((unsigned char)0xFF);
8225   emit_int8((unsigned char)(0xC0 | encode));
8226 }
8227 
8228 void Assembler::incq(Address dst) {
8229   // Don't use it directly. Use MacroAssembler::incrementq() instead.
8230   InstructionMark im(this);
8231   prefixq(dst);
8232   emit_int8((unsigned char)0xFF);
8233   emit_operand(rax, dst);
8234 }
8235 
8236 void Assembler::lea(Register dst, Address src) {
8237   leaq(dst, src);
8238 }
8239 
8240 void Assembler::leaq(Register dst, Address src) {
8241   InstructionMark im(this);
8242   prefixq(src, dst);
8243   emit_int8((unsigned char)0x8D);
8244   emit_operand(dst, src);
8245 }
8246 
8247 void Assembler::mov64(Register dst, int64_t imm64) {
8248   InstructionMark im(this);
8249   int encode = prefixq_and_encode(dst->encoding());
8250   emit_int8((unsigned char)(0xB8 | encode));
8251   emit_int64(imm64);
8252 }
8253 
8254 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
8255   InstructionMark im(this);
8256   int encode = prefixq_and_encode(dst->encoding());
8257   emit_int8(0xB8 | encode);
8258   emit_data64(imm64, rspec);
8259 }
8260 
8261 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
8262   InstructionMark im(this);
8263   int encode = prefix_and_encode(dst->encoding());
8264   emit_int8((unsigned char)(0xB8 | encode));
8265   emit_data((int)imm32, rspec, narrow_oop_operand);
8266 }
8267 
8268 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
8269   InstructionMark im(this);
8270   prefix(dst);
8271   emit_int8((unsigned char)0xC7);
8272   emit_operand(rax, dst, 4);
8273   emit_data((int)imm32, rspec, narrow_oop_operand);
8274 }
8275 
8276 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
8277   InstructionMark im(this);
8278   int encode = prefix_and_encode(src1->encoding());
8279   emit_int8((unsigned char)0x81);
8280   emit_int8((unsigned char)(0xF8 | encode));
8281   emit_data((int)imm32, rspec, narrow_oop_operand);
8282 }
8283 
8284 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
8285   InstructionMark im(this);
8286   prefix(src1);
8287   emit_int8((unsigned char)0x81);
8288   emit_operand(rax, src1, 4);
8289   emit_data((int)imm32, rspec, narrow_oop_operand);
8290 }
8291 
8292 void Assembler::lzcntq(Register dst, Register src) {
8293   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
8294   emit_int8((unsigned char)0xF3);
8295   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8296   emit_int8(0x0F);
8297   emit_int8((unsigned char)0xBD);
8298   emit_int8((unsigned char)(0xC0 | encode));
8299 }
8300 
8301 void Assembler::movdq(XMMRegister dst, Register src) {
8302   // table D-1 says MMX/SSE2
8303   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8304   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8305   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
8306   emit_int8(0x6E);
8307   emit_int8((unsigned char)(0xC0 | encode));
8308 }
8309 
8310 void Assembler::movdq(Register dst, XMMRegister src) {
8311   // table D-1 says MMX/SSE2
8312   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8313   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8314   // swap src/dst to get correct prefix
8315   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
8316   emit_int8(0x7E);
8317   emit_int8((unsigned char)(0xC0 | encode));
8318 }
8319 
8320 void Assembler::movq(Register dst, Register src) {
8321   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8322   emit_int8((unsigned char)0x8B);
8323   emit_int8((unsigned char)(0xC0 | encode));
8324 }
8325 
8326 void Assembler::movq(Register dst, Address src) {
8327   InstructionMark im(this);
8328   prefixq(src, dst);
8329   emit_int8((unsigned char)0x8B);
8330   emit_operand(dst, src);
8331 }
8332 
8333 void Assembler::movq(Address dst, Register src) {
8334   InstructionMark im(this);
8335   prefixq(dst, src);
8336   emit_int8((unsigned char)0x89);
8337   emit_operand(src, dst);
8338 }
8339 
8340 void Assembler::movsbq(Register dst, Address src) {
8341   InstructionMark im(this);
8342   prefixq(src, dst);
8343   emit_int8(0x0F);
8344   emit_int8((unsigned char)0xBE);
8345   emit_operand(dst, src);
8346 }
8347 
8348 void Assembler::movsbq(Register dst, Register src) {
8349   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8350   emit_int8(0x0F);
8351   emit_int8((unsigned char)0xBE);
8352   emit_int8((unsigned char)(0xC0 | encode));
8353 }
8354 
8355 void Assembler::movslq(Register dst, int32_t imm32) {
8356   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
8357   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
8358   // as a result we shouldn't use until tested at runtime...
8359   ShouldNotReachHere();
8360   InstructionMark im(this);
8361   int encode = prefixq_and_encode(dst->encoding());
8362   emit_int8((unsigned char)(0xC7 | encode));
8363   emit_int32(imm32);
8364 }
8365 
8366 void Assembler::movslq(Address dst, int32_t imm32) {
8367   assert(is_simm32(imm32), "lost bits");
8368   InstructionMark im(this);
8369   prefixq(dst);
8370   emit_int8((unsigned char)0xC7);
8371   emit_operand(rax, dst, 4);
8372   emit_int32(imm32);
8373 }
8374 
8375 void Assembler::movslq(Register dst, Address src) {
8376   InstructionMark im(this);
8377   prefixq(src, dst);
8378   emit_int8(0x63);
8379   emit_operand(dst, src);
8380 }
8381 
8382 void Assembler::movslq(Register dst, Register src) {
8383   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8384   emit_int8(0x63);
8385   emit_int8((unsigned char)(0xC0 | encode));
8386 }
8387 
8388 void Assembler::movswq(Register dst, Address src) {
8389   InstructionMark im(this);
8390   prefixq(src, dst);
8391   emit_int8(0x0F);
8392   emit_int8((unsigned char)0xBF);
8393   emit_operand(dst, src);
8394 }
8395 
8396 void Assembler::movswq(Register dst, Register src) {
8397   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8398   emit_int8((unsigned char)0x0F);
8399   emit_int8((unsigned char)0xBF);
8400   emit_int8((unsigned char)(0xC0 | encode));
8401 }
8402 
8403 void Assembler::movzbq(Register dst, Address src) {
8404   InstructionMark im(this);
8405   prefixq(src, dst);
8406   emit_int8((unsigned char)0x0F);
8407   emit_int8((unsigned char)0xB6);
8408   emit_operand(dst, src);
8409 }
8410 
8411 void Assembler::movzbq(Register dst, Register src) {
8412   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8413   emit_int8(0x0F);
8414   emit_int8((unsigned char)0xB6);
8415   emit_int8(0xC0 | encode);
8416 }
8417 
8418 void Assembler::movzwq(Register dst, Address src) {
8419   InstructionMark im(this);
8420   prefixq(src, dst);
8421   emit_int8((unsigned char)0x0F);
8422   emit_int8((unsigned char)0xB7);
8423   emit_operand(dst, src);
8424 }
8425 
8426 void Assembler::movzwq(Register dst, Register src) {
8427   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8428   emit_int8((unsigned char)0x0F);
8429   emit_int8((unsigned char)0xB7);
8430   emit_int8((unsigned char)(0xC0 | encode));
8431 }
8432 
8433 void Assembler::mulq(Address src) {
8434   InstructionMark im(this);
8435   prefixq(src);
8436   emit_int8((unsigned char)0xF7);
8437   emit_operand(rsp, src);
8438 }
8439 
8440 void Assembler::mulq(Register src) {
8441   int encode = prefixq_and_encode(src->encoding());
8442   emit_int8((unsigned char)0xF7);
8443   emit_int8((unsigned char)(0xE0 | encode));
8444 }
8445 
8446 void Assembler::mulxq(Register dst1, Register dst2, Register src) {
8447   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8448   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8449   int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_38, &attributes);
8450   emit_int8((unsigned char)0xF6);
8451   emit_int8((unsigned char)(0xC0 | encode));
8452 }
8453 
8454 void Assembler::negq(Register dst) {
8455   int encode = prefixq_and_encode(dst->encoding());
8456   emit_int8((unsigned char)0xF7);
8457   emit_int8((unsigned char)(0xD8 | encode));
8458 }
8459 
8460 void Assembler::notq(Register dst) {
8461   int encode = prefixq_and_encode(dst->encoding());
8462   emit_int8((unsigned char)0xF7);
8463   emit_int8((unsigned char)(0xD0 | encode));
8464 }
8465 
8466 void Assembler::orq(Address dst, int32_t imm32) {
8467   InstructionMark im(this);
8468   prefixq(dst);
8469   emit_int8((unsigned char)0x81);
8470   emit_operand(rcx, dst, 4);
8471   emit_int32(imm32);
8472 }
8473 
8474 void Assembler::orq(Register dst, int32_t imm32) {
8475   (void) prefixq_and_encode(dst->encoding());
8476   emit_arith(0x81, 0xC8, dst, imm32);
8477 }
8478 
8479 void Assembler::orq(Register dst, Address src) {
8480   InstructionMark im(this);
8481   prefixq(src, dst);
8482   emit_int8(0x0B);
8483   emit_operand(dst, src);
8484 }
8485 
8486 void Assembler::orq(Register dst, Register src) {
8487   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8488   emit_arith(0x0B, 0xC0, dst, src);
8489 }
8490 
8491 void Assembler::popa() { // 64bit
8492   movq(r15, Address(rsp, 0));
8493   movq(r14, Address(rsp, wordSize));
8494   movq(r13, Address(rsp, 2 * wordSize));
8495   movq(r12, Address(rsp, 3 * wordSize));
8496   movq(r11, Address(rsp, 4 * wordSize));
8497   movq(r10, Address(rsp, 5 * wordSize));
8498   movq(r9,  Address(rsp, 6 * wordSize));
8499   movq(r8,  Address(rsp, 7 * wordSize));
8500   movq(rdi, Address(rsp, 8 * wordSize));
8501   movq(rsi, Address(rsp, 9 * wordSize));
8502   movq(rbp, Address(rsp, 10 * wordSize));
8503   // skip rsp
8504   movq(rbx, Address(rsp, 12 * wordSize));
8505   movq(rdx, Address(rsp, 13 * wordSize));
8506   movq(rcx, Address(rsp, 14 * wordSize));
8507   movq(rax, Address(rsp, 15 * wordSize));
8508 
8509   addq(rsp, 16 * wordSize);
8510 }
8511 
8512 void Assembler::popcntq(Register dst, Address src) {
8513   assert(VM_Version::supports_popcnt(), "must support");
8514   InstructionMark im(this);
8515   emit_int8((unsigned char)0xF3);
8516   prefixq(src, dst);
8517   emit_int8((unsigned char)0x0F);
8518   emit_int8((unsigned char)0xB8);
8519   emit_operand(dst, src);
8520 }
8521 
8522 void Assembler::popcntq(Register dst, Register src) {
8523   assert(VM_Version::supports_popcnt(), "must support");
8524   emit_int8((unsigned char)0xF3);
8525   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8526   emit_int8((unsigned char)0x0F);
8527   emit_int8((unsigned char)0xB8);
8528   emit_int8((unsigned char)(0xC0 | encode));
8529 }
8530 
8531 void Assembler::popq(Address dst) {
8532   InstructionMark im(this);
8533   prefixq(dst);
8534   emit_int8((unsigned char)0x8F);
8535   emit_operand(rax, dst);
8536 }
8537 
8538 void Assembler::pusha() { // 64bit
8539   // we have to store original rsp.  ABI says that 128 bytes
8540   // below rsp are local scratch.
8541   movq(Address(rsp, -5 * wordSize), rsp);
8542 
8543   subq(rsp, 16 * wordSize);
8544 
8545   movq(Address(rsp, 15 * wordSize), rax);
8546   movq(Address(rsp, 14 * wordSize), rcx);
8547   movq(Address(rsp, 13 * wordSize), rdx);
8548   movq(Address(rsp, 12 * wordSize), rbx);
8549   // skip rsp
8550   movq(Address(rsp, 10 * wordSize), rbp);
8551   movq(Address(rsp, 9 * wordSize), rsi);
8552   movq(Address(rsp, 8 * wordSize), rdi);
8553   movq(Address(rsp, 7 * wordSize), r8);
8554   movq(Address(rsp, 6 * wordSize), r9);
8555   movq(Address(rsp, 5 * wordSize), r10);
8556   movq(Address(rsp, 4 * wordSize), r11);
8557   movq(Address(rsp, 3 * wordSize), r12);
8558   movq(Address(rsp, 2 * wordSize), r13);
8559   movq(Address(rsp, wordSize), r14);
8560   movq(Address(rsp, 0), r15);
8561 }
8562 
8563 void Assembler::pushq(Address src) {
8564   InstructionMark im(this);
8565   prefixq(src);
8566   emit_int8((unsigned char)0xFF);
8567   emit_operand(rsi, src);
8568 }
8569 
8570 void Assembler::rclq(Register dst, int imm8) {
8571   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8572   int encode = prefixq_and_encode(dst->encoding());
8573   if (imm8 == 1) {
8574     emit_int8((unsigned char)0xD1);
8575     emit_int8((unsigned char)(0xD0 | encode));
8576   } else {
8577     emit_int8((unsigned char)0xC1);
8578     emit_int8((unsigned char)(0xD0 | encode));
8579     emit_int8(imm8);
8580   }
8581 }
8582 
8583 void Assembler::rcrq(Register dst, int imm8) {
8584   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8585   int encode = prefixq_and_encode(dst->encoding());
8586   if (imm8 == 1) {
8587     emit_int8((unsigned char)0xD1);
8588     emit_int8((unsigned char)(0xD8 | encode));
8589   } else {
8590     emit_int8((unsigned char)0xC1);
8591     emit_int8((unsigned char)(0xD8 | encode));
8592     emit_int8(imm8);
8593   }
8594 }
8595 
8596 void Assembler::rorq(Register dst, int imm8) {
8597   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8598   int encode = prefixq_and_encode(dst->encoding());
8599   if (imm8 == 1) {
8600     emit_int8((unsigned char)0xD1);
8601     emit_int8((unsigned char)(0xC8 | encode));
8602   } else {
8603     emit_int8((unsigned char)0xC1);
8604     emit_int8((unsigned char)(0xc8 | encode));
8605     emit_int8(imm8);
8606   }
8607 }
8608 
8609 void Assembler::rorxq(Register dst, Register src, int imm8) {
8610   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8611   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8612   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, &attributes);
8613   emit_int8((unsigned char)0xF0);
8614   emit_int8((unsigned char)(0xC0 | encode));
8615   emit_int8(imm8);
8616 }
8617 
8618 void Assembler::rorxd(Register dst, Register src, int imm8) {
8619   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8620   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8621   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, &attributes);
8622   emit_int8((unsigned char)0xF0);
8623   emit_int8((unsigned char)(0xC0 | encode));
8624   emit_int8(imm8);
8625 }
8626 
8627 void Assembler::sarq(Register dst, int imm8) {
8628   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8629   int encode = prefixq_and_encode(dst->encoding());
8630   if (imm8 == 1) {
8631     emit_int8((unsigned char)0xD1);
8632     emit_int8((unsigned char)(0xF8 | encode));
8633   } else {
8634     emit_int8((unsigned char)0xC1);
8635     emit_int8((unsigned char)(0xF8 | encode));
8636     emit_int8(imm8);
8637   }
8638 }
8639 
8640 void Assembler::sarq(Register dst) {
8641   int encode = prefixq_and_encode(dst->encoding());
8642   emit_int8((unsigned char)0xD3);
8643   emit_int8((unsigned char)(0xF8 | encode));
8644 }
8645 
8646 void Assembler::sbbq(Address dst, int32_t imm32) {
8647   InstructionMark im(this);
8648   prefixq(dst);
8649   emit_arith_operand(0x81, rbx, dst, imm32);
8650 }
8651 
8652 void Assembler::sbbq(Register dst, int32_t imm32) {
8653   (void) prefixq_and_encode(dst->encoding());
8654   emit_arith(0x81, 0xD8, dst, imm32);
8655 }
8656 
8657 void Assembler::sbbq(Register dst, Address src) {
8658   InstructionMark im(this);
8659   prefixq(src, dst);
8660   emit_int8(0x1B);
8661   emit_operand(dst, src);
8662 }
8663 
8664 void Assembler::sbbq(Register dst, Register src) {
8665   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8666   emit_arith(0x1B, 0xC0, dst, src);
8667 }
8668 
8669 void Assembler::shlq(Register dst, int imm8) {
8670   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8671   int encode = prefixq_and_encode(dst->encoding());
8672   if (imm8 == 1) {
8673     emit_int8((unsigned char)0xD1);
8674     emit_int8((unsigned char)(0xE0 | encode));
8675   } else {
8676     emit_int8((unsigned char)0xC1);
8677     emit_int8((unsigned char)(0xE0 | encode));
8678     emit_int8(imm8);
8679   }
8680 }
8681 
8682 void Assembler::shlq(Register dst) {
8683   int encode = prefixq_and_encode(dst->encoding());
8684   emit_int8((unsigned char)0xD3);
8685   emit_int8((unsigned char)(0xE0 | encode));
8686 }
8687 
8688 void Assembler::shrq(Register dst, int imm8) {
8689   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8690   int encode = prefixq_and_encode(dst->encoding());
8691   emit_int8((unsigned char)0xC1);
8692   emit_int8((unsigned char)(0xE8 | encode));
8693   emit_int8(imm8);
8694 }
8695 
8696 void Assembler::shrq(Register dst) {
8697   int encode = prefixq_and_encode(dst->encoding());
8698   emit_int8((unsigned char)0xD3);
8699   emit_int8(0xE8 | encode);
8700 }
8701 
8702 void Assembler::subq(Address dst, int32_t imm32) {
8703   InstructionMark im(this);
8704   prefixq(dst);
8705   emit_arith_operand(0x81, rbp, dst, imm32);
8706 }
8707 
8708 void Assembler::subq(Address dst, Register src) {
8709   InstructionMark im(this);
8710   prefixq(dst, src);
8711   emit_int8(0x29);
8712   emit_operand(src, dst);
8713 }
8714 
8715 void Assembler::subq(Register dst, int32_t imm32) {
8716   (void) prefixq_and_encode(dst->encoding());
8717   emit_arith(0x81, 0xE8, dst, imm32);
8718 }
8719 
8720 // Force generation of a 4 byte immediate value even if it fits into 8bit
8721 void Assembler::subq_imm32(Register dst, int32_t imm32) {
8722   (void) prefixq_and_encode(dst->encoding());
8723   emit_arith_imm32(0x81, 0xE8, dst, imm32);
8724 }
8725 
8726 void Assembler::subq(Register dst, Address src) {
8727   InstructionMark im(this);
8728   prefixq(src, dst);
8729   emit_int8(0x2B);
8730   emit_operand(dst, src);
8731 }
8732 
8733 void Assembler::subq(Register dst, Register src) {
8734   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8735   emit_arith(0x2B, 0xC0, dst, src);
8736 }
8737 
8738 void Assembler::testq(Register dst, int32_t imm32) {
8739   // not using emit_arith because test
8740   // doesn't support sign-extension of
8741   // 8bit operands
8742   int encode = dst->encoding();
8743   if (encode == 0) {
8744     prefix(REX_W);
8745     emit_int8((unsigned char)0xA9);
8746   } else {
8747     encode = prefixq_and_encode(encode);
8748     emit_int8((unsigned char)0xF7);
8749     emit_int8((unsigned char)(0xC0 | encode));
8750   }
8751   emit_int32(imm32);
8752 }
8753 
8754 void Assembler::testq(Register dst, Register src) {
8755   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8756   emit_arith(0x85, 0xC0, dst, src);
8757 }
8758 
8759 void Assembler::xaddq(Address dst, Register src) {
8760   InstructionMark im(this);
8761   prefixq(dst, src);
8762   emit_int8(0x0F);
8763   emit_int8((unsigned char)0xC1);
8764   emit_operand(src, dst);
8765 }
8766 
8767 void Assembler::xchgq(Register dst, Address src) {
8768   InstructionMark im(this);
8769   prefixq(src, dst);
8770   emit_int8((unsigned char)0x87);
8771   emit_operand(dst, src);
8772 }
8773 
8774 void Assembler::xchgq(Register dst, Register src) {
8775   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8776   emit_int8((unsigned char)0x87);
8777   emit_int8((unsigned char)(0xc0 | encode));
8778 }
8779 
8780 void Assembler::xorq(Register dst, Register src) {
8781   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8782   emit_arith(0x33, 0xC0, dst, src);
8783 }
8784 
8785 void Assembler::xorq(Register dst, Address src) {
8786   InstructionMark im(this);
8787   prefixq(src, dst);
8788   emit_int8(0x33);
8789   emit_operand(dst, src);
8790 }
8791 
8792 #endif // !LP64