1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39   friend class Runtime1;      // as_Address()
  40 
  41  public:
  42   // Support for VM calls
  43   //
  44   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  45   // may customize this version by overriding it for its purposes (e.g., to save/restore
  46   // additional registers when doing a VM call).
  47 
  48   virtual void call_VM_leaf_base(
  49     address entry_point,               // the entry point
  50     int     number_of_arguments        // the number of arguments to pop after the call
  51   );
  52 
  53  protected:
  54   // This is the base routine called by the different versions of call_VM. The interpreter
  55   // may customize this version by overriding it for its purposes (e.g., to save/restore
  56   // additional registers when doing a VM call).
  57   //
  58   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  59   // returns the register which contains the thread upon return. If a thread register has been
  60   // specified, the return value will correspond to that register. If no last_java_sp is specified
  61   // (noreg) than rsp will be used instead.
  62   virtual void call_VM_base(           // returns the register containing the thread upon return
  63     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  64     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  65     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  66     address  entry_point,              // the entry point
  67     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  68     bool     check_exceptions          // whether to check for pending exceptions after return
  69   );
  70 
  71   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  72 
  73   // helpers for FPU flag access
  74   // tmp is a temporary register, if none is available use noreg
  75   void save_rax   (Register tmp);
  76   void restore_rax(Register tmp);
  77 
  78  public:
  79   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  80 
  81  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  82  // The implementation is only non-empty for the InterpreterMacroAssembler,
  83  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  84  virtual void check_and_handle_popframe(Register java_thread);
  85  virtual void check_and_handle_earlyret(Register java_thread);
  86 
  87   Address as_Address(AddressLiteral adr);
  88   Address as_Address(ArrayAddress adr);
  89 
  90   // Support for NULL-checks
  91   //
  92   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  93   // If the accessed location is M[reg + offset] and the offset is known, provide the
  94   // offset. No explicit code generation is needed if the offset is within a certain
  95   // range (0 <= offset <= page_size).
  96 
  97   void null_check(Register reg, int offset = -1);
  98   static bool needs_explicit_null_check(intptr_t offset);
  99 
 100   // Required platform-specific helpers for Label::patch_instructions.
 101   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 102   void pd_patch_instruction(address branch, address target) {
 103     unsigned char op = branch[0];
 104     assert(op == 0xE8 /* call */ ||
 105         op == 0xE9 /* jmp */ ||
 106         op == 0xEB /* short jmp */ ||
 107         (op & 0xF0) == 0x70 /* short jcc */ ||
 108         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 109         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 110         "Invalid opcode at patch point");
 111 
 112     if (op == 0xEB || (op & 0xF0) == 0x70) {
 113       // short offset operators (jmp and jcc)
 114       char* disp = (char*) &branch[1];
 115       int imm8 = target - (address) &disp[1];
 116       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
 117       *disp = imm8;
 118     } else {
 119       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 120       int imm32 = target - (address) &disp[1];
 121       *disp = imm32;
 122     }
 123   }
 124 
 125   // The following 4 methods return the offset of the appropriate move instruction
 126 
 127   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 128   int load_unsigned_byte(Register dst, Address src);
 129   int load_unsigned_short(Register dst, Address src);
 130 
 131   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 132   int load_signed_byte(Register dst, Address src);
 133   int load_signed_short(Register dst, Address src);
 134 
 135   // Support for sign-extension (hi:lo = extend_sign(lo))
 136   void extend_sign(Register hi, Register lo);
 137 
 138   // Load and store values by size and signed-ness
 139   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 140   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 141 
 142   // Support for inc/dec with optimal instruction selection depending on value
 143 
 144   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 145   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 146 
 147   void decrementl(Address dst, int value = 1);
 148   void decrementl(Register reg, int value = 1);
 149 
 150   void decrementq(Register reg, int value = 1);
 151   void decrementq(Address dst, int value = 1);
 152 
 153   void incrementl(Address dst, int value = 1);
 154   void incrementl(Register reg, int value = 1);
 155 
 156   void incrementq(Register reg, int value = 1);
 157   void incrementq(Address dst, int value = 1);
 158 
 159   // special instructions for EVEX
 160   void setvectmask(Register dst, Register src);
 161   void restorevectmask();
 162 
 163   // Support optimal SSE move instructions.
 164   void movflt(XMMRegister dst, XMMRegister src) {
 165     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 166     else                       { movss (dst, src); return; }
 167   }
 168   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 169   void movflt(XMMRegister dst, AddressLiteral src);
 170   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 171 
 172   void movdbl(XMMRegister dst, XMMRegister src) {
 173     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 174     else                       { movsd (dst, src); return; }
 175   }
 176 
 177   void movdbl(XMMRegister dst, AddressLiteral src);
 178 
 179   void movdbl(XMMRegister dst, Address src) {
 180     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 181     else                         { movlpd(dst, src); return; }
 182   }
 183   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 184 
 185   void incrementl(AddressLiteral dst);
 186   void incrementl(ArrayAddress dst);
 187 
 188   void incrementq(AddressLiteral dst);
 189 
 190   // Alignment
 191   void align(int modulus);
 192   void align(int modulus, int target);
 193 
 194   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 195   void fat_nop();
 196 
 197   // Stack frame creation/removal
 198   void enter();
 199   void leave();
 200 
 201   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 202   // The pointer will be loaded into the thread register.
 203   void get_thread(Register thread);
 204 
 205 
 206   // Support for VM calls
 207   //
 208   // It is imperative that all calls into the VM are handled via the call_VM macros.
 209   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 210   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 211 
 212 
 213   void call_VM(Register oop_result,
 214                address entry_point,
 215                bool check_exceptions = true);
 216   void call_VM(Register oop_result,
 217                address entry_point,
 218                Register arg_1,
 219                bool check_exceptions = true);
 220   void call_VM(Register oop_result,
 221                address entry_point,
 222                Register arg_1, Register arg_2,
 223                bool check_exceptions = true);
 224   void call_VM(Register oop_result,
 225                address entry_point,
 226                Register arg_1, Register arg_2, Register arg_3,
 227                bool check_exceptions = true);
 228 
 229   // Overloadings with last_Java_sp
 230   void call_VM(Register oop_result,
 231                Register last_java_sp,
 232                address entry_point,
 233                int number_of_arguments = 0,
 234                bool check_exceptions = true);
 235   void call_VM(Register oop_result,
 236                Register last_java_sp,
 237                address entry_point,
 238                Register arg_1, bool
 239                check_exceptions = true);
 240   void call_VM(Register oop_result,
 241                Register last_java_sp,
 242                address entry_point,
 243                Register arg_1, Register arg_2,
 244                bool check_exceptions = true);
 245   void call_VM(Register oop_result,
 246                Register last_java_sp,
 247                address entry_point,
 248                Register arg_1, Register arg_2, Register arg_3,
 249                bool check_exceptions = true);
 250 
 251   void get_vm_result  (Register oop_result, Register thread);
 252   void get_vm_result_2(Register metadata_result, Register thread);
 253 
 254   // These always tightly bind to MacroAssembler::call_VM_base
 255   // bypassing the virtual implementation
 256   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 257   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 258   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 259   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 260   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 261 
 262   void call_VM_leaf0(address entry_point);
 263   void call_VM_leaf(address entry_point,
 264                     int number_of_arguments = 0);
 265   void call_VM_leaf(address entry_point,
 266                     Register arg_1);
 267   void call_VM_leaf(address entry_point,
 268                     Register arg_1, Register arg_2);
 269   void call_VM_leaf(address entry_point,
 270                     Register arg_1, Register arg_2, Register arg_3);
 271 
 272   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 273   // bypassing the virtual implementation
 274   void super_call_VM_leaf(address entry_point);
 275   void super_call_VM_leaf(address entry_point, Register arg_1);
 276   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 277   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 278   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 279 
 280   // last Java Frame (fills frame anchor)
 281   void set_last_Java_frame(Register thread,
 282                            Register last_java_sp,
 283                            Register last_java_fp,
 284                            address last_java_pc);
 285 
 286   // thread in the default location (r15_thread on 64bit)
 287   void set_last_Java_frame(Register last_java_sp,
 288                            Register last_java_fp,
 289                            address last_java_pc);
 290 
 291   void reset_last_Java_frame(Register thread, bool clear_fp);
 292 
 293   // thread in the default location (r15_thread on 64bit)
 294   void reset_last_Java_frame(bool clear_fp);
 295 
 296   // jobjects
 297   void resolve_jobject(Register value, Register thread, Register tmp);
 298 
 299   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 300   void c2bool(Register x);
 301 
 302   // C++ bool manipulation
 303 
 304   void movbool(Register dst, Address src);
 305   void movbool(Address dst, bool boolconst);
 306   void movbool(Address dst, Register src);
 307   void testbool(Register dst);
 308 
 309   void load_mirror(Register mirror, Register method);
 310 
 311   // oop manipulations
 312   void load_klass(Register dst, Register src);
 313   void store_klass(Register dst, Register src);
 314 
 315   void load_heap_oop(Register dst, Address src);
 316   void load_heap_oop_not_null(Register dst, Address src);
 317   void store_heap_oop(Address dst, Register src);
 318   void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
 319 
 320   // Used for storing NULL. All other oop constants should be
 321   // stored using routines that take a jobject.
 322   void store_heap_oop_null(Address dst);
 323 
 324   void load_prototype_header(Register dst, Register src);
 325 
 326 #ifdef _LP64
 327   void store_klass_gap(Register dst, Register src);
 328 
 329   // This dummy is to prevent a call to store_heap_oop from
 330   // converting a zero (like NULL) into a Register by giving
 331   // the compiler two choices it can't resolve
 332 
 333   void store_heap_oop(Address dst, void* dummy);
 334 
 335   void encode_heap_oop(Register r);
 336   void decode_heap_oop(Register r);
 337   void encode_heap_oop_not_null(Register r);
 338   void decode_heap_oop_not_null(Register r);
 339   void encode_heap_oop_not_null(Register dst, Register src);
 340   void decode_heap_oop_not_null(Register dst, Register src);
 341 
 342   void set_narrow_oop(Register dst, jobject obj);
 343   void set_narrow_oop(Address dst, jobject obj);
 344   void cmp_narrow_oop(Register dst, jobject obj);
 345   void cmp_narrow_oop(Address dst, jobject obj);
 346 
 347   void encode_klass_not_null(Register r);
 348   void decode_klass_not_null(Register r);
 349   void encode_klass_not_null(Register dst, Register src);
 350   void decode_klass_not_null(Register dst, Register src);
 351   void set_narrow_klass(Register dst, Klass* k);
 352   void set_narrow_klass(Address dst, Klass* k);
 353   void cmp_narrow_klass(Register dst, Klass* k);
 354   void cmp_narrow_klass(Address dst, Klass* k);
 355 
 356   // Returns the byte size of the instructions generated by decode_klass_not_null()
 357   // when compressed klass pointers are being used.
 358   static int instr_size_for_decode_klass_not_null();
 359 
 360   // if heap base register is used - reinit it with the correct value
 361   void reinit_heapbase();
 362 
 363   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 364 
 365 #endif // _LP64
 366 
 367   // Int division/remainder for Java
 368   // (as idivl, but checks for special case as described in JVM spec.)
 369   // returns idivl instruction offset for implicit exception handling
 370   int corrected_idivl(Register reg);
 371 
 372   // Long division/remainder for Java
 373   // (as idivq, but checks for special case as described in JVM spec.)
 374   // returns idivq instruction offset for implicit exception handling
 375   int corrected_idivq(Register reg);
 376 
 377   void int3();
 378 
 379   // Long operation macros for a 32bit cpu
 380   // Long negation for Java
 381   void lneg(Register hi, Register lo);
 382 
 383   // Long multiplication for Java
 384   // (destroys contents of eax, ebx, ecx and edx)
 385   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 386 
 387   // Long shifts for Java
 388   // (semantics as described in JVM spec.)
 389   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 390   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 391 
 392   // Long compare for Java
 393   // (semantics as described in JVM spec.)
 394   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 395 
 396 
 397   // misc
 398 
 399   // Sign extension
 400   void sign_extend_short(Register reg);
 401   void sign_extend_byte(Register reg);
 402 
 403   // Division by power of 2, rounding towards 0
 404   void division_with_shift(Register reg, int shift_value);
 405 
 406   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 407   //
 408   // CF (corresponds to C0) if x < y
 409   // PF (corresponds to C2) if unordered
 410   // ZF (corresponds to C3) if x = y
 411   //
 412   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 413   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 414   void fcmp(Register tmp);
 415   // Variant of the above which allows y to be further down the stack
 416   // and which only pops x and y if specified. If pop_right is
 417   // specified then pop_left must also be specified.
 418   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 419 
 420   // Floating-point comparison for Java
 421   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 422   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 423   // (semantics as described in JVM spec.)
 424   void fcmp2int(Register dst, bool unordered_is_less);
 425   // Variant of the above which allows y to be further down the stack
 426   // and which only pops x and y if specified. If pop_right is
 427   // specified then pop_left must also be specified.
 428   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 429 
 430   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 431   // tmp is a temporary register, if none is available use noreg
 432   void fremr(Register tmp);
 433 
 434   // dst = c = a * b + c
 435   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 436   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 437 
 438 
 439   // same as fcmp2int, but using SSE2
 440   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 441   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 442 
 443   // branch to L if FPU flag C2 is set/not set
 444   // tmp is a temporary register, if none is available use noreg
 445   void jC2 (Register tmp, Label& L);
 446   void jnC2(Register tmp, Label& L);
 447 
 448   // Pop ST (ffree & fincstp combined)
 449   void fpop();
 450 
 451   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 452   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 453   void load_float(Address src);
 454 
 455   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 456   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 457   void store_float(Address dst);
 458 
 459   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 460   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 461   void load_double(Address src);
 462 
 463   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 464   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 465   void store_double(Address dst);
 466 
 467   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
 468   void push_fTOS();
 469 
 470   // pops double TOS element from CPU stack and pushes on FPU stack
 471   void pop_fTOS();
 472 
 473   void empty_FPU_stack();
 474 
 475   void push_IU_state();
 476   void pop_IU_state();
 477 
 478   void push_FPU_state();
 479   void pop_FPU_state();
 480 
 481   void push_CPU_state();
 482   void pop_CPU_state();
 483 
 484   // Round up to a power of two
 485   void round_to(Register reg, int modulus);
 486 
 487   // Callee saved registers handling
 488   void push_callee_saved_registers();
 489   void pop_callee_saved_registers();
 490 
 491   // allocation
 492   void eden_allocate(
 493     Register obj,                      // result: pointer to object after successful allocation
 494     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 495     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 496     Register t1,                       // temp register
 497     Label&   slow_case                 // continuation point if fast allocation fails
 498   );
 499   void tlab_allocate(
 500     Register obj,                      // result: pointer to object after successful allocation
 501     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 502     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 503     Register t1,                       // temp register
 504     Register t2,                       // temp register
 505     Label&   slow_case                 // continuation point if fast allocation fails
 506   );
 507   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
 508   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 509 
 510   void incr_allocated_bytes(Register thread,
 511                             Register var_size_in_bytes, int con_size_in_bytes,
 512                             Register t1 = noreg);
 513 
 514   // interface method calling
 515   void lookup_interface_method(Register recv_klass,
 516                                Register intf_klass,
 517                                RegisterOrConstant itable_index,
 518                                Register method_result,
 519                                Register scan_temp,
 520                                Label& no_such_interface);
 521 
 522   // virtual method calling
 523   void lookup_virtual_method(Register recv_klass,
 524                              RegisterOrConstant vtable_index,
 525                              Register method_result);
 526 
 527   // Test sub_klass against super_klass, with fast and slow paths.
 528 
 529   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 530   // One of the three labels can be NULL, meaning take the fall-through.
 531   // If super_check_offset is -1, the value is loaded up from super_klass.
 532   // No registers are killed, except temp_reg.
 533   void check_klass_subtype_fast_path(Register sub_klass,
 534                                      Register super_klass,
 535                                      Register temp_reg,
 536                                      Label* L_success,
 537                                      Label* L_failure,
 538                                      Label* L_slow_path,
 539                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 540 
 541   // The rest of the type check; must be wired to a corresponding fast path.
 542   // It does not repeat the fast path logic, so don't use it standalone.
 543   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 544   // Updates the sub's secondary super cache as necessary.
 545   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 546   void check_klass_subtype_slow_path(Register sub_klass,
 547                                      Register super_klass,
 548                                      Register temp_reg,
 549                                      Register temp2_reg,
 550                                      Label* L_success,
 551                                      Label* L_failure,
 552                                      bool set_cond_codes = false);
 553 
 554   // Simplified, combined version, good for typical uses.
 555   // Falls through on failure.
 556   void check_klass_subtype(Register sub_klass,
 557                            Register super_klass,
 558                            Register temp_reg,
 559                            Label& L_success);
 560 
 561   // method handles (JSR 292)
 562   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 563 
 564   //----
 565   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 566 
 567   // Debugging
 568 
 569   // only if +VerifyOops
 570   // TODO: Make these macros with file and line like sparc version!
 571   void verify_oop(Register reg, const char* s = "broken oop");
 572   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 573 
 574   // TODO: verify method and klass metadata (compare against vptr?)
 575   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 576   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 577 
 578 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 579 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 580 
 581   // only if +VerifyFPU
 582   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 583 
 584   // Verify or restore cpu control state after JNI call
 585   void restore_cpu_control_state_after_jni();
 586 
 587   // prints msg, dumps registers and stops execution
 588   void stop(const char* msg);
 589 
 590   // prints msg and continues
 591   void warn(const char* msg);
 592 
 593   // dumps registers and other state
 594   void print_state();
 595 
 596   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 597   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 598   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 599   static void print_state64(int64_t pc, int64_t regs[]);
 600 
 601   void os_breakpoint();
 602 
 603   void untested()                                { stop("untested"); }
 604 
 605   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
 606 
 607   void should_not_reach_here()                   { stop("should not reach here"); }
 608 
 609   void print_CPU_state();
 610 
 611   // Stack overflow checking
 612   void bang_stack_with_offset(int offset) {
 613     // stack grows down, caller passes positive offset
 614     assert(offset > 0, "must bang with negative offset");
 615     movl(Address(rsp, (-offset)), rax);
 616   }
 617 
 618   // Writes to stack successive pages until offset reached to check for
 619   // stack overflow + shadow pages.  Also, clobbers tmp
 620   void bang_stack_size(Register size, Register tmp);
 621 
 622   // Check for reserved stack access in method being exited (for JIT)
 623   void reserved_stack_check();
 624 
 625   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 626                                                 Register tmp,
 627                                                 int offset);
 628 
 629   // Support for serializing memory accesses between threads
 630   void serialize_memory(Register thread, Register tmp);
 631 
 632   void verify_tlab();
 633 
 634   // Biased locking support
 635   // lock_reg and obj_reg must be loaded up with the appropriate values.
 636   // swap_reg must be rax, and is killed.
 637   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 638   // be killed; if not supplied, push/pop will be used internally to
 639   // allocate a temporary (inefficient, avoid if possible).
 640   // Optional slow case is for implementations (interpreter and C1) which branch to
 641   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 642   // Returns offset of first potentially-faulting instruction for null
 643   // check info (currently consumed only by C1). If
 644   // swap_reg_contains_mark is true then returns -1 as it is assumed
 645   // the calling code has already passed any potential faults.
 646   int biased_locking_enter(Register lock_reg, Register obj_reg,
 647                            Register swap_reg, Register tmp_reg,
 648                            bool swap_reg_contains_mark,
 649                            Label& done, Label* slow_case = NULL,
 650                            BiasedLockingCounters* counters = NULL);
 651   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 652 #ifdef COMPILER2
 653   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
 654   // See full desription in macroAssembler_x86.cpp.
 655   void fast_lock(Register obj, Register box, Register tmp,
 656                  Register scr, Register cx1, Register cx2,
 657                  BiasedLockingCounters* counters,
 658                  RTMLockingCounters* rtm_counters,
 659                  RTMLockingCounters* stack_rtm_counters,
 660                  Metadata* method_data,
 661                  bool use_rtm, bool profile_rtm);
 662   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
 663 #if INCLUDE_RTM_OPT
 664   void rtm_counters_update(Register abort_status, Register rtm_counters);
 665   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
 666   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
 667                                    RTMLockingCounters* rtm_counters,
 668                                    Metadata* method_data);
 669   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
 670                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 671   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
 672   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
 673   void rtm_stack_locking(Register obj, Register tmp, Register scr,
 674                          Register retry_on_abort_count,
 675                          RTMLockingCounters* stack_rtm_counters,
 676                          Metadata* method_data, bool profile_rtm,
 677                          Label& DONE_LABEL, Label& IsInflated);
 678   void rtm_inflated_locking(Register obj, Register box, Register tmp,
 679                             Register scr, Register retry_on_busy_count,
 680                             Register retry_on_abort_count,
 681                             RTMLockingCounters* rtm_counters,
 682                             Metadata* method_data, bool profile_rtm,
 683                             Label& DONE_LABEL);
 684 #endif
 685 #endif
 686 
 687   Condition negate_condition(Condition cond);
 688 
 689   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 690   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 691   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 692   // here in MacroAssembler. The major exception to this rule is call
 693 
 694   // Arithmetics
 695 
 696 
 697   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 698   void addptr(Address dst, Register src);
 699 
 700   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 701   void addptr(Register dst, int32_t src);
 702   void addptr(Register dst, Register src);
 703   void addptr(Register dst, RegisterOrConstant src) {
 704     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 705     else                   addptr(dst,       src.as_register());
 706   }
 707 
 708   void andptr(Register dst, int32_t src);
 709   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 710 
 711   void cmp8(AddressLiteral src1, int imm);
 712 
 713   // renamed to drag out the casting of address to int32_t/intptr_t
 714   void cmp32(Register src1, int32_t imm);
 715 
 716   void cmp32(AddressLiteral src1, int32_t imm);
 717   // compare reg - mem, or reg - &mem
 718   void cmp32(Register src1, AddressLiteral src2);
 719 
 720   void cmp32(Register src1, Address src2);
 721 
 722 #ifndef _LP64
 723   void cmpklass(Address dst, Metadata* obj);
 724   void cmpklass(Register dst, Metadata* obj);
 725   void cmpoop(Address dst, jobject obj);
 726   void cmpoop(Register dst, jobject obj);
 727 #endif // _LP64
 728 
 729   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 730   void cmpptr(Address src1, AddressLiteral src2);
 731 
 732   void cmpptr(Register src1, AddressLiteral src2);
 733 
 734   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 735   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 736   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 737 
 738   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 739   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 740 
 741   // cmp64 to avoild hiding cmpq
 742   void cmp64(Register src1, AddressLiteral src);
 743 
 744   void cmpxchgptr(Register reg, Address adr);
 745 
 746   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 747 
 748 
 749   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 750   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 751 
 752 
 753   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 754 
 755   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 756 
 757   void shlptr(Register dst, int32_t shift);
 758   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 759 
 760   void shrptr(Register dst, int32_t shift);
 761   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 762 
 763   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 764   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 765 
 766   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 767 
 768   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 769   void subptr(Register dst, int32_t src);
 770   // Force generation of a 4 byte immediate value even if it fits into 8bit
 771   void subptr_imm32(Register dst, int32_t src);
 772   void subptr(Register dst, Register src);
 773   void subptr(Register dst, RegisterOrConstant src) {
 774     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 775     else                   subptr(dst,       src.as_register());
 776   }
 777 
 778   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 779   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 780 
 781   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 782   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 783 
 784   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 785 
 786 
 787 
 788   // Helper functions for statistics gathering.
 789   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 790   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 791   // Unconditional atomic increment.
 792   void atomic_incl(Address counter_addr);
 793   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 794 #ifdef _LP64
 795   void atomic_incq(Address counter_addr);
 796   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 797 #endif
 798   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 799   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 800 
 801   void lea(Register dst, AddressLiteral adr);
 802   void lea(Address dst, AddressLiteral adr);
 803   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 804 
 805   void leal32(Register dst, Address src) { leal(dst, src); }
 806 
 807   // Import other testl() methods from the parent class or else
 808   // they will be hidden by the following overriding declaration.
 809   using Assembler::testl;
 810   void testl(Register dst, AddressLiteral src);
 811 
 812   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 813   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 814   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 815   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 816 
 817   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 818   void testptr(Register src1, Register src2);
 819 
 820   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 821   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 822 
 823   // Calls
 824 
 825   void call(Label& L, relocInfo::relocType rtype);
 826   void call(Register entry);
 827 
 828   // NOTE: this call transfers to the effective address of entry NOT
 829   // the address contained by entry. This is because this is more natural
 830   // for jumps/calls.
 831   void call(AddressLiteral entry);
 832 
 833   // Emit the CompiledIC call idiom
 834   void ic_call(address entry, jint method_index = 0);
 835 
 836   // Jumps
 837 
 838   // NOTE: these jumps tranfer to the effective address of dst NOT
 839   // the address contained by dst. This is because this is more natural
 840   // for jumps/calls.
 841   void jump(AddressLiteral dst);
 842   void jump_cc(Condition cc, AddressLiteral dst);
 843 
 844   // 32bit can do a case table jump in one instruction but we no longer allow the base
 845   // to be installed in the Address class. This jump will tranfers to the address
 846   // contained in the location described by entry (not the address of entry)
 847   void jump(ArrayAddress entry);
 848 
 849   // Floating
 850 
 851   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 852   void andpd(XMMRegister dst, AddressLiteral src);
 853   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 854 
 855   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 856   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 857   void andps(XMMRegister dst, AddressLiteral src);
 858 
 859   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 860   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 861   void comiss(XMMRegister dst, AddressLiteral src);
 862 
 863   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 864   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 865   void comisd(XMMRegister dst, AddressLiteral src);
 866 
 867   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 868   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 869 
 870   void fldcw(Address src) { Assembler::fldcw(src); }
 871   void fldcw(AddressLiteral src);
 872 
 873   void fld_s(int index)   { Assembler::fld_s(index); }
 874   void fld_s(Address src) { Assembler::fld_s(src); }
 875   void fld_s(AddressLiteral src);
 876 
 877   void fld_d(Address src) { Assembler::fld_d(src); }
 878   void fld_d(AddressLiteral src);
 879 
 880   void fld_x(Address src) { Assembler::fld_x(src); }
 881   void fld_x(AddressLiteral src);
 882 
 883   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 884   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 885 
 886   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 887   void ldmxcsr(AddressLiteral src);
 888 
 889 #ifdef _LP64
 890  private:
 891   void sha256_AVX2_one_round_compute(
 892     Register  reg_old_h,
 893     Register  reg_a,
 894     Register  reg_b,
 895     Register  reg_c,
 896     Register  reg_d,
 897     Register  reg_e,
 898     Register  reg_f,
 899     Register  reg_g,
 900     Register  reg_h,
 901     int iter);
 902   void sha256_AVX2_four_rounds_compute_first(int start);
 903   void sha256_AVX2_four_rounds_compute_last(int start);
 904   void sha256_AVX2_one_round_and_sched(
 905         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
 906         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
 907         XMMRegister xmm_2,     /* ymm6 */
 908         XMMRegister xmm_3,     /* ymm7 */
 909         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
 910         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
 911         Register    reg_c,      /* edi */
 912         Register    reg_d,      /* esi */
 913         Register    reg_e,      /* r8d */
 914         Register    reg_f,      /* r9d */
 915         Register    reg_g,      /* r10d */
 916         Register    reg_h,      /* r11d */
 917         int iter);
 918 
 919   void addm(int disp, Register r1, Register r2);
 920 
 921  public:
 922   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 923                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 924                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 925                    bool multi_block, XMMRegister shuf_mask);
 926 #endif
 927 
 928 #ifdef _LP64
 929  private:
 930   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
 931                                      Register e, Register f, Register g, Register h, int iteration);
 932 
 933   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 934                                           Register a, Register b, Register c, Register d, Register e, Register f,
 935                                           Register g, Register h, int iteration);
 936 
 937   void addmq(int disp, Register r1, Register r2);
 938  public:
 939   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 940                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 941                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
 942                    XMMRegister shuf_mask);
 943 #endif
 944 
 945   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
 946                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
 947                  Register buf, Register state, Register ofs, Register limit, Register rsp,
 948                  bool multi_block);
 949 
 950 #ifdef _LP64
 951   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 952                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 953                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 954                    bool multi_block, XMMRegister shuf_mask);
 955 #else
 956   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 957                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 958                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 959                    bool multi_block);
 960 #endif
 961 
 962   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 963                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 964                 Register rax, Register rcx, Register rdx, Register tmp);
 965 
 966 #ifdef _LP64
 967   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 968                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 969                 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
 970 
 971   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 972                   XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 973                   Register rax, Register rcx, Register rdx, Register r11);
 974 
 975   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
 976                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
 977                 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
 978 
 979   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 980                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 981                 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
 982                 Register tmp3, Register tmp4);
 983 
 984   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 985                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 986                 Register rax, Register rcx, Register rdx, Register tmp1,
 987                 Register tmp2, Register tmp3, Register tmp4);
 988   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 989                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 990                 Register rax, Register rcx, Register rdx, Register tmp1,
 991                 Register tmp2, Register tmp3, Register tmp4);
 992 #else
 993   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 994                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 995                 Register rax, Register rcx, Register rdx, Register tmp1);
 996 
 997   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 998                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 999                 Register rax, Register rcx, Register rdx, Register tmp);
1000 
1001   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1002                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1003                 Register rdx, Register tmp);
1004 
1005   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1006                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1007                 Register rax, Register rbx, Register rdx);
1008 
1009   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1010                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1011                 Register rax, Register rcx, Register rdx, Register tmp);
1012 
1013   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1014                         Register edx, Register ebx, Register esi, Register edi,
1015                         Register ebp, Register esp);
1016 
1017   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1018                          Register esi, Register edi, Register ebp, Register esp);
1019 
1020   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1021                         Register edx, Register ebx, Register esi, Register edi,
1022                         Register ebp, Register esp);
1023 
1024   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1025                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1026                 Register rax, Register rcx, Register rdx, Register tmp);
1027 #endif
1028 
1029   void increase_precision();
1030   void restore_precision();
1031 
1032 private:
1033 
1034   // these are private because users should be doing movflt/movdbl
1035 
1036   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
1037   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1038   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
1039   void movss(XMMRegister dst, AddressLiteral src);
1040 
1041   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
1042   void movlpd(XMMRegister dst, AddressLiteral src);
1043 
1044 public:
1045 
1046   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1047   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1048   void addsd(XMMRegister dst, AddressLiteral src);
1049 
1050   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1051   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1052   void addss(XMMRegister dst, AddressLiteral src);
1053 
1054   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1055   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1056   void addpd(XMMRegister dst, AddressLiteral src);
1057 
1058   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1059   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1060   void divsd(XMMRegister dst, AddressLiteral src);
1061 
1062   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1063   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1064   void divss(XMMRegister dst, AddressLiteral src);
1065 
1066   // Move Unaligned Double Quadword
1067   void movdqu(Address     dst, XMMRegister src);
1068   void movdqu(XMMRegister dst, Address src);
1069   void movdqu(XMMRegister dst, XMMRegister src);
1070   void movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg = rscratch1);
1071   // AVX Unaligned forms
1072   void vmovdqu(Address     dst, XMMRegister src);
1073   void vmovdqu(XMMRegister dst, Address src);
1074   void vmovdqu(XMMRegister dst, XMMRegister src);
1075   void vmovdqu(XMMRegister dst, AddressLiteral src);
1076 
1077   // Move Aligned Double Quadword
1078   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1079   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1080   void movdqa(XMMRegister dst, AddressLiteral src);
1081 
1082   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1083   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1084   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1085   void movsd(XMMRegister dst, AddressLiteral src);
1086 
1087   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1088   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1089   void mulpd(XMMRegister dst, AddressLiteral src);
1090 
1091   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1092   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1093   void mulsd(XMMRegister dst, AddressLiteral src);
1094 
1095   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1096   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1097   void mulss(XMMRegister dst, AddressLiteral src);
1098 
1099   // Carry-Less Multiplication Quadword
1100   void pclmulldq(XMMRegister dst, XMMRegister src) {
1101     // 0x00 - multiply lower 64 bits [0:63]
1102     Assembler::pclmulqdq(dst, src, 0x00);
1103   }
1104   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1105     // 0x11 - multiply upper 64 bits [64:127]
1106     Assembler::pclmulqdq(dst, src, 0x11);
1107   }
1108 
1109   void pcmpeqb(XMMRegister dst, XMMRegister src);
1110   void pcmpeqw(XMMRegister dst, XMMRegister src);
1111 
1112   void pcmpestri(XMMRegister dst, Address src, int imm8);
1113   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1114 
1115   void pmovzxbw(XMMRegister dst, XMMRegister src);
1116   void pmovzxbw(XMMRegister dst, Address src);
1117 
1118   void pmovmskb(Register dst, XMMRegister src);
1119 
1120   void ptest(XMMRegister dst, XMMRegister src);
1121 
1122   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1123   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1124   void sqrtsd(XMMRegister dst, AddressLiteral src);
1125 
1126   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1127   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1128   void sqrtss(XMMRegister dst, AddressLiteral src);
1129 
1130   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1131   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1132   void subsd(XMMRegister dst, AddressLiteral src);
1133 
1134   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1135   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1136   void subss(XMMRegister dst, AddressLiteral src);
1137 
1138   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1139   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1140   void ucomiss(XMMRegister dst, AddressLiteral src);
1141 
1142   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1143   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1144   void ucomisd(XMMRegister dst, AddressLiteral src);
1145 
1146   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1147   void xorpd(XMMRegister dst, XMMRegister src);
1148   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1149   void xorpd(XMMRegister dst, AddressLiteral src);
1150 
1151   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1152   void xorps(XMMRegister dst, XMMRegister src);
1153   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1154   void xorps(XMMRegister dst, AddressLiteral src);
1155 
1156   // Shuffle Bytes
1157   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1158   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1159   void pshufb(XMMRegister dst, AddressLiteral src);
1160   // AVX 3-operands instructions
1161 
1162   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1163   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1164   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1165 
1166   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1167   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1168   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1169 
1170   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1171   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1172 
1173   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1174   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1175 
1176   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1177   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1178 
1179   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1180   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1181   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1182 
1183   void vpbroadcastw(XMMRegister dst, XMMRegister src);
1184 
1185   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1186   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1187 
1188   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1189   void vpmovmskb(Register dst, XMMRegister src);
1190 
1191   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1192   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1193 
1194   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1195   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1196 
1197   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1198   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1199 
1200   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1201   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1202 
1203   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1204   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1205 
1206   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1207   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1208 
1209   void vptest(XMMRegister dst, XMMRegister src);
1210 
1211   void punpcklbw(XMMRegister dst, XMMRegister src);
1212   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1213 
1214   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1215   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1216 
1217   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1218   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1219   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1220 
1221   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1222   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1223   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1224 
1225   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1226   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1227   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1228 
1229   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1230   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1231   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1232 
1233   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1234   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1235   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1236 
1237   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1238   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1239   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1240 
1241   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1242   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1243   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1244 
1245   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1246   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1247   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1248 
1249   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1250   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1251 
1252   // AVX Vector instructions
1253 
1254   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1255   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1256   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1257 
1258   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1259   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1260   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1261 
1262   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1263     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1264       Assembler::vpxor(dst, nds, src, vector_len);
1265     else
1266       Assembler::vxorpd(dst, nds, src, vector_len);
1267   }
1268   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1269     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1270       Assembler::vpxor(dst, nds, src, vector_len);
1271     else
1272       Assembler::vxorpd(dst, nds, src, vector_len);
1273   }
1274 
1275   // Simple version for AVX2 256bit vectors
1276   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1277   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1278 
1279   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1280     if (UseAVX > 2) {
1281       Assembler::vinserti32x4(dst, dst, src, imm8);
1282     } else if (UseAVX > 1) {
1283       // vinserti128 is available only in AVX2
1284       Assembler::vinserti128(dst, nds, src, imm8);
1285     } else {
1286       Assembler::vinsertf128(dst, nds, src, imm8);
1287     }
1288   }
1289 
1290   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1291     if (UseAVX > 2) {
1292       Assembler::vinserti32x4(dst, dst, src, imm8);
1293     } else if (UseAVX > 1) {
1294       // vinserti128 is available only in AVX2
1295       Assembler::vinserti128(dst, nds, src, imm8);
1296     } else {
1297       Assembler::vinsertf128(dst, nds, src, imm8);
1298     }
1299   }
1300 
1301   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1302     if (UseAVX > 2) {
1303       Assembler::vextracti32x4(dst, src, imm8);
1304     } else if (UseAVX > 1) {
1305       // vextracti128 is available only in AVX2
1306       Assembler::vextracti128(dst, src, imm8);
1307     } else {
1308       Assembler::vextractf128(dst, src, imm8);
1309     }
1310   }
1311 
1312   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1313     if (UseAVX > 2) {
1314       Assembler::vextracti32x4(dst, src, imm8);
1315     } else if (UseAVX > 1) {
1316       // vextracti128 is available only in AVX2
1317       Assembler::vextracti128(dst, src, imm8);
1318     } else {
1319       Assembler::vextractf128(dst, src, imm8);
1320     }
1321   }
1322 
1323   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1324   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1325     vinserti128(dst, dst, src, 1);
1326   }
1327   void vinserti128_high(XMMRegister dst, Address src) {
1328     vinserti128(dst, dst, src, 1);
1329   }
1330   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1331     vextracti128(dst, src, 1);
1332   }
1333   void vextracti128_high(Address dst, XMMRegister src) {
1334     vextracti128(dst, src, 1);
1335   }
1336 
1337   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1338     if (UseAVX > 2) {
1339       Assembler::vinsertf32x4(dst, dst, src, 1);
1340     } else {
1341       Assembler::vinsertf128(dst, dst, src, 1);
1342     }
1343   }
1344 
1345   void vinsertf128_high(XMMRegister dst, Address src) {
1346     if (UseAVX > 2) {
1347       Assembler::vinsertf32x4(dst, dst, src, 1);
1348     } else {
1349       Assembler::vinsertf128(dst, dst, src, 1);
1350     }
1351   }
1352 
1353   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1354     if (UseAVX > 2) {
1355       Assembler::vextractf32x4(dst, src, 1);
1356     } else {
1357       Assembler::vextractf128(dst, src, 1);
1358     }
1359   }
1360 
1361   void vextractf128_high(Address dst, XMMRegister src) {
1362     if (UseAVX > 2) {
1363       Assembler::vextractf32x4(dst, src, 1);
1364     } else {
1365       Assembler::vextractf128(dst, src, 1);
1366     }
1367   }
1368 
1369   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1370   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1371     Assembler::vinserti64x4(dst, dst, src, 1);
1372   }
1373   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1374     Assembler::vinsertf64x4(dst, dst, src, 1);
1375   }
1376   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1377     Assembler::vextracti64x4(dst, src, 1);
1378   }
1379   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1380     Assembler::vextractf64x4(dst, src, 1);
1381   }
1382   void vextractf64x4_high(Address dst, XMMRegister src) {
1383     Assembler::vextractf64x4(dst, src, 1);
1384   }
1385   void vinsertf64x4_high(XMMRegister dst, Address src) {
1386     Assembler::vinsertf64x4(dst, dst, src, 1);
1387   }
1388 
1389   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1390   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1391     vinserti128(dst, dst, src, 0);
1392   }
1393   void vinserti128_low(XMMRegister dst, Address src) {
1394     vinserti128(dst, dst, src, 0);
1395   }
1396   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1397     vextracti128(dst, src, 0);
1398   }
1399   void vextracti128_low(Address dst, XMMRegister src) {
1400     vextracti128(dst, src, 0);
1401   }
1402 
1403   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1404     if (UseAVX > 2) {
1405       Assembler::vinsertf32x4(dst, dst, src, 0);
1406     } else {
1407       Assembler::vinsertf128(dst, dst, src, 0);
1408     }
1409   }
1410 
1411   void vinsertf128_low(XMMRegister dst, Address src) {
1412     if (UseAVX > 2) {
1413       Assembler::vinsertf32x4(dst, dst, src, 0);
1414     } else {
1415       Assembler::vinsertf128(dst, dst, src, 0);
1416     }
1417   }
1418 
1419   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1420     if (UseAVX > 2) {
1421       Assembler::vextractf32x4(dst, src, 0);
1422     } else {
1423       Assembler::vextractf128(dst, src, 0);
1424     }
1425   }
1426 
1427   void vextractf128_low(Address dst, XMMRegister src) {
1428     if (UseAVX > 2) {
1429       Assembler::vextractf32x4(dst, src, 0);
1430     } else {
1431       Assembler::vextractf128(dst, src, 0);
1432     }
1433   }
1434 
1435   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1436   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1437     Assembler::vinserti64x4(dst, dst, src, 0);
1438   }
1439   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1440     Assembler::vinsertf64x4(dst, dst, src, 0);
1441   }
1442   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1443     Assembler::vextracti64x4(dst, src, 0);
1444   }
1445   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1446     Assembler::vextractf64x4(dst, src, 0);
1447   }
1448   void vextractf64x4_low(Address dst, XMMRegister src) {
1449     Assembler::vextractf64x4(dst, src, 0);
1450   }
1451   void vinsertf64x4_low(XMMRegister dst, Address src) {
1452     Assembler::vinsertf64x4(dst, dst, src, 0);
1453   }
1454 
1455   // Carry-Less Multiplication Quadword
1456   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1457     // 0x00 - multiply lower 64 bits [0:63]
1458     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1459   }
1460   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1461     // 0x11 - multiply upper 64 bits [64:127]
1462     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1463   }
1464 
1465   // Data
1466 
1467   void cmov32( Condition cc, Register dst, Address  src);
1468   void cmov32( Condition cc, Register dst, Register src);
1469 
1470   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1471 
1472   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1473   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1474 
1475   void movoop(Register dst, jobject obj);
1476   void movoop(Address dst, jobject obj);
1477 
1478   void mov_metadata(Register dst, Metadata* obj);
1479   void mov_metadata(Address dst, Metadata* obj);
1480 
1481   void movptr(ArrayAddress dst, Register src);
1482   // can this do an lea?
1483   void movptr(Register dst, ArrayAddress src);
1484 
1485   void movptr(Register dst, Address src);
1486 
1487 #ifdef _LP64
1488   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1489 #else
1490   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1491 #endif
1492 
1493   void movptr(Register dst, intptr_t src);
1494   void movptr(Register dst, Register src);
1495   void movptr(Address dst, intptr_t src);
1496 
1497   void movptr(Address dst, Register src);
1498 
1499   void movptr(Register dst, RegisterOrConstant src) {
1500     if (src.is_constant()) movptr(dst, src.as_constant());
1501     else                   movptr(dst, src.as_register());
1502   }
1503 
1504 #ifdef _LP64
1505   // Generally the next two are only used for moving NULL
1506   // Although there are situations in initializing the mark word where
1507   // they could be used. They are dangerous.
1508 
1509   // They only exist on LP64 so that int32_t and intptr_t are not the same
1510   // and we have ambiguous declarations.
1511 
1512   void movptr(Address dst, int32_t imm32);
1513   void movptr(Register dst, int32_t imm32);
1514 #endif // _LP64
1515 
1516   // to avoid hiding movl
1517   void mov32(AddressLiteral dst, Register src);
1518   void mov32(Register dst, AddressLiteral src);
1519 
1520   // to avoid hiding movb
1521   void movbyte(ArrayAddress dst, int src);
1522 
1523   // Import other mov() methods from the parent class or else
1524   // they will be hidden by the following overriding declaration.
1525   using Assembler::movdl;
1526   using Assembler::movq;
1527   void movdl(XMMRegister dst, AddressLiteral src);
1528   void movq(XMMRegister dst, AddressLiteral src);
1529 
1530   // Can push value or effective address
1531   void pushptr(AddressLiteral src);
1532 
1533   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1534   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1535 
1536   void pushoop(jobject obj);
1537   void pushklass(Metadata* obj);
1538 
1539   // sign extend as need a l to ptr sized element
1540   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1541   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1542 
1543   // C2 compiled method's prolog code.
1544   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b);
1545 
1546   // clear memory of size 'cnt' qwords, starting at 'base';
1547   // if 'is_large' is set, do not try to produce short loop
1548   void clear_mem(Register base, Register cnt, Register rtmp, bool is_large);
1549 
1550 #ifdef COMPILER2
1551   void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1552                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1553 
1554   // IndexOf strings.
1555   // Small strings are loaded through stack if they cross page boundary.
1556   void string_indexof(Register str1, Register str2,
1557                       Register cnt1, Register cnt2,
1558                       int int_cnt2,  Register result,
1559                       XMMRegister vec, Register tmp,
1560                       int ae);
1561 
1562   // IndexOf for constant substrings with size >= 8 elements
1563   // which don't need to be loaded through stack.
1564   void string_indexofC8(Register str1, Register str2,
1565                       Register cnt1, Register cnt2,
1566                       int int_cnt2,  Register result,
1567                       XMMRegister vec, Register tmp,
1568                       int ae);
1569 
1570     // Smallest code: we don't need to load through stack,
1571     // check string tail.
1572 
1573   // helper function for string_compare
1574   void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1575                           Address::ScaleFactor scale, Address::ScaleFactor scale1,
1576                           Address::ScaleFactor scale2, Register index, int ae);
1577   // Compare strings.
1578   void string_compare(Register str1, Register str2,
1579                       Register cnt1, Register cnt2, Register result,
1580                       XMMRegister vec1, int ae);
1581 
1582   // Search for Non-ASCII character (Negative byte value) in a byte array,
1583   // return true if it has any and false otherwise.
1584   void has_negatives(Register ary1, Register len,
1585                      Register result, Register tmp1,
1586                      XMMRegister vec1, XMMRegister vec2);
1587 
1588   // Compare char[] or byte[] arrays.
1589   void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1590                      Register limit, Register result, Register chr,
1591                      XMMRegister vec1, XMMRegister vec2, bool is_char);
1592 
1593 #endif
1594 
1595   // Fill primitive arrays
1596   void generate_fill(BasicType t, bool aligned,
1597                      Register to, Register value, Register count,
1598                      Register rtmp, XMMRegister xtmp);
1599 
1600   void encode_iso_array(Register src, Register dst, Register len,
1601                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1602                         XMMRegister tmp4, Register tmp5, Register result);
1603 
1604 #ifdef _LP64
1605   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1606   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1607                              Register y, Register y_idx, Register z,
1608                              Register carry, Register product,
1609                              Register idx, Register kdx);
1610   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1611                               Register yz_idx, Register idx,
1612                               Register carry, Register product, int offset);
1613   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1614                                     Register carry, Register carry2,
1615                                     Register idx, Register jdx,
1616                                     Register yz_idx1, Register yz_idx2,
1617                                     Register tmp, Register tmp3, Register tmp4);
1618   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1619                                Register yz_idx, Register idx, Register jdx,
1620                                Register carry, Register product,
1621                                Register carry2);
1622   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1623                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1624   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1625                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1626   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1627                             Register tmp2);
1628   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1629                        Register rdxReg, Register raxReg);
1630   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1631   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1632                        Register tmp3, Register tmp4);
1633   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1634                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1635 
1636   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1637                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1638                Register raxReg);
1639   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1640                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1641                Register raxReg);
1642   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1643                            Register result, Register tmp1, Register tmp2,
1644                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1645 #endif
1646 
1647   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1648   void update_byte_crc32(Register crc, Register val, Register table);
1649   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1650   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1651   // Note on a naming convention:
1652   // Prefix w = register only used on a Westmere+ architecture
1653   // Prefix n = register only used on a Nehalem architecture
1654 #ifdef _LP64
1655   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1656                        Register tmp1, Register tmp2, Register tmp3);
1657 #else
1658   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1659                        Register tmp1, Register tmp2, Register tmp3,
1660                        XMMRegister xtmp1, XMMRegister xtmp2);
1661 #endif
1662   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1663                         Register in_out,
1664                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1665                         XMMRegister w_xtmp2,
1666                         Register tmp1,
1667                         Register n_tmp2, Register n_tmp3);
1668   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1669                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1670                        Register tmp1, Register tmp2,
1671                        Register n_tmp3);
1672   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1673                          Register in_out1, Register in_out2, Register in_out3,
1674                          Register tmp1, Register tmp2, Register tmp3,
1675                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1676                          Register tmp4, Register tmp5,
1677                          Register n_tmp6);
1678   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1679                             Register tmp1, Register tmp2, Register tmp3,
1680                             Register tmp4, Register tmp5, Register tmp6,
1681                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1682                             bool is_pclmulqdq_supported);
1683   // Fold 128-bit data chunk
1684   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1685   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1686   // Fold 8-bit data
1687   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1688   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1689 
1690   // Compress char[] array to byte[].
1691   void char_array_compress(Register src, Register dst, Register len,
1692                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1693                            XMMRegister tmp4, Register tmp5, Register result);
1694 
1695   // Inflate byte[] array to char[].
1696   void byte_array_inflate(Register src, Register dst, Register len,
1697                           XMMRegister tmp1, Register tmp2);
1698 
1699 };
1700 
1701 /**
1702  * class SkipIfEqual:
1703  *
1704  * Instantiating this class will result in assembly code being output that will
1705  * jump around any code emitted between the creation of the instance and it's
1706  * automatic destruction at the end of a scope block, depending on the value of
1707  * the flag passed to the constructor, which will be checked at run-time.
1708  */
1709 class SkipIfEqual {
1710  private:
1711   MacroAssembler* _masm;
1712   Label _label;
1713 
1714  public:
1715    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1716    ~SkipIfEqual();
1717 };
1718 
1719 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP