1 /*
   2  * Copyright (c) 2005, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "gc/shared/cardTableModRefBS.hpp"
  37 #include "gc/shared/c1BarrierSetCodeGen.hpp"
  38 #include "runtime/arguments.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/stubRoutines.hpp"
  41 #include "runtime/vm_version.hpp"
  42 #include "utilities/bitMap.inline.hpp"
  43 #include "utilities/macros.hpp"
  44 #ifdef TRACE_HAVE_INTRINSICS
  45 #include "trace/traceMacros.hpp"
  46 #endif
  47 
  48 #ifdef ASSERT
  49 #define __ gen()->lir(__FILE__, __LINE__)->
  50 #else
  51 #define __ gen()->lir()->
  52 #endif
  53 
  54 #ifndef PATCHED_ADDR
  55 #define PATCHED_ADDR  (max_jint)
  56 #endif
  57 
  58 void PhiResolverState::reset(int max_vregs) {
  59   // Initialize array sizes
  60   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  61   _virtual_operands.trunc_to(0);
  62   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  63   _other_operands.trunc_to(0);
  64   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  65   _vreg_table.trunc_to(0);
  66 }
  67 
  68 
  69 
  70 //--------------------------------------------------------------
  71 // PhiResolver
  72 
  73 // Resolves cycles:
  74 //
  75 //  r1 := r2  becomes  temp := r1
  76 //  r2 := r1           r1 := r2
  77 //                     r2 := temp
  78 // and orders moves:
  79 //
  80 //  r2 := r3  becomes  r1 := r2
  81 //  r1 := r2           r2 := r3
  82 
  83 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  84  : _gen(gen)
  85  , _state(gen->resolver_state())
  86  , _temp(LIR_OprFact::illegalOpr)
  87 {
  88   // reinitialize the shared state arrays
  89   _state.reset(max_vregs);
  90 }
  91 
  92 
  93 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  94   assert(src->is_valid(), "");
  95   assert(dest->is_valid(), "");
  96   __ move(src, dest);
  97 }
  98 
  99 
 100 void PhiResolver::move_temp_to(LIR_Opr dest) {
 101   assert(_temp->is_valid(), "");
 102   emit_move(_temp, dest);
 103   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 104 }
 105 
 106 
 107 void PhiResolver::move_to_temp(LIR_Opr src) {
 108   assert(_temp->is_illegal(), "");
 109   _temp = _gen->new_register(src->type());
 110   emit_move(src, _temp);
 111 }
 112 
 113 
 114 // Traverse assignment graph in depth first order and generate moves in post order
 115 // ie. two assignments: b := c, a := b start with node c:
 116 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 117 // Generates moves in this order: move b to a and move c to b
 118 // ie. cycle a := b, b := a start with node a
 119 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 120 // Generates moves in this order: move b to temp, move a to b, move temp to a
 121 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 122   if (!dest->visited()) {
 123     dest->set_visited();
 124     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 125       move(dest, dest->destination_at(i));
 126     }
 127   } else if (!dest->start_node()) {
 128     // cylce in graph detected
 129     assert(_loop == NULL, "only one loop valid!");
 130     _loop = dest;
 131     move_to_temp(src->operand());
 132     return;
 133   } // else dest is a start node
 134 
 135   if (!dest->assigned()) {
 136     if (_loop == dest) {
 137       move_temp_to(dest->operand());
 138       dest->set_assigned();
 139     } else if (src != NULL) {
 140       emit_move(src->operand(), dest->operand());
 141       dest->set_assigned();
 142     }
 143   }
 144 }
 145 
 146 
 147 PhiResolver::~PhiResolver() {
 148   int i;
 149   // resolve any cycles in moves from and to virtual registers
 150   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 151     ResolveNode* node = virtual_operands().at(i);
 152     if (!node->visited()) {
 153       _loop = NULL;
 154       move(NULL, node);
 155       node->set_start_node();
 156       assert(_temp->is_illegal(), "move_temp_to() call missing");
 157     }
 158   }
 159 
 160   // generate move for move from non virtual register to abitrary destination
 161   for (i = other_operands().length() - 1; i >= 0; i --) {
 162     ResolveNode* node = other_operands().at(i);
 163     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 164       emit_move(node->operand(), node->destination_at(j)->operand());
 165     }
 166   }
 167 }
 168 
 169 
 170 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 171   ResolveNode* node;
 172   if (opr->is_virtual()) {
 173     int vreg_num = opr->vreg_number();
 174     node = vreg_table().at_grow(vreg_num, NULL);
 175     assert(node == NULL || node->operand() == opr, "");
 176     if (node == NULL) {
 177       node = new ResolveNode(opr);
 178       vreg_table().at_put(vreg_num, node);
 179     }
 180     // Make sure that all virtual operands show up in the list when
 181     // they are used as the source of a move.
 182     if (source && !virtual_operands().contains(node)) {
 183       virtual_operands().append(node);
 184     }
 185   } else {
 186     assert(source, "");
 187     node = new ResolveNode(opr);
 188     other_operands().append(node);
 189   }
 190   return node;
 191 }
 192 
 193 
 194 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 195   assert(dest->is_virtual(), "");
 196   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 197   assert(src->is_valid(), "");
 198   assert(dest->is_valid(), "");
 199   ResolveNode* source = source_node(src);
 200   source->append(destination_node(dest));
 201 }
 202 
 203 
 204 //--------------------------------------------------------------
 205 // LIRItem
 206 
 207 void LIRItem::set_result(LIR_Opr opr) {
 208   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 209   value()->set_operand(opr);
 210 
 211   if (opr->is_virtual()) {
 212     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 213   }
 214 
 215   _result = opr;
 216 }
 217 
 218 void LIRItem::load_item() {
 219   if (result()->is_illegal()) {
 220     // update the items result
 221     _result = value()->operand();
 222   }
 223   if (!result()->is_register()) {
 224     LIR_Opr reg = _gen->new_register(value()->type());
 225     __ move(result(), reg);
 226     if (result()->is_constant()) {
 227       _result = reg;
 228     } else {
 229       set_result(reg);
 230     }
 231   }
 232 }
 233 
 234 
 235 void LIRItem::load_for_store(BasicType type) {
 236   if (_gen->can_store_as_constant(value(), type)) {
 237     _result = value()->operand();
 238     if (!_result->is_constant()) {
 239       _result = LIR_OprFact::value_type(value()->type());
 240     }
 241   } else if (type == T_BYTE || type == T_BOOLEAN) {
 242     load_byte_item();
 243   } else {
 244     load_item();
 245   }
 246 }
 247 
 248 void LIRItem::load_item_force(LIR_Opr reg) {
 249   LIR_Opr r = result();
 250   if (r != reg) {
 251 #if !defined(ARM) && !defined(E500V2)
 252     if (r->type() != reg->type()) {
 253       // moves between different types need an intervening spill slot
 254       r = _gen->force_to_spill(r, reg->type());
 255     }
 256 #endif
 257     __ move(r, reg);
 258     _result = reg;
 259   }
 260 }
 261 
 262 ciObject* LIRItem::get_jobject_constant() const {
 263   ObjectType* oc = type()->as_ObjectType();
 264   if (oc) {
 265     return oc->constant_value();
 266   }
 267   return NULL;
 268 }
 269 
 270 
 271 jint LIRItem::get_jint_constant() const {
 272   assert(is_constant() && value() != NULL, "");
 273   assert(type()->as_IntConstant() != NULL, "type check");
 274   return type()->as_IntConstant()->value();
 275 }
 276 
 277 
 278 jint LIRItem::get_address_constant() const {
 279   assert(is_constant() && value() != NULL, "");
 280   assert(type()->as_AddressConstant() != NULL, "type check");
 281   return type()->as_AddressConstant()->value();
 282 }
 283 
 284 
 285 jfloat LIRItem::get_jfloat_constant() const {
 286   assert(is_constant() && value() != NULL, "");
 287   assert(type()->as_FloatConstant() != NULL, "type check");
 288   return type()->as_FloatConstant()->value();
 289 }
 290 
 291 
 292 jdouble LIRItem::get_jdouble_constant() const {
 293   assert(is_constant() && value() != NULL, "");
 294   assert(type()->as_DoubleConstant() != NULL, "type check");
 295   return type()->as_DoubleConstant()->value();
 296 }
 297 
 298 
 299 jlong LIRItem::get_jlong_constant() const {
 300   assert(is_constant() && value() != NULL, "");
 301   assert(type()->as_LongConstant() != NULL, "type check");
 302   return type()->as_LongConstant()->value();
 303 }
 304 
 305 
 306 
 307 //--------------------------------------------------------------
 308 
 309 
 310 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 311 #ifndef PRODUCT
 312   if (PrintIRWithLIR) {
 313     block->print();
 314   }
 315 #endif
 316 
 317   // set up the list of LIR instructions
 318   assert(block->lir() == NULL, "LIR list already computed for this block");
 319   _lir = new LIR_List(compilation(), block);
 320   block->set_lir(_lir);
 321 
 322   __ branch_destination(block->label());
 323 
 324   if (LIRTraceExecution &&
 325       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 326       !block->is_set(BlockBegin::exception_entry_flag)) {
 327     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 328     trace_block_entry(block);
 329   }
 330 }
 331 
 332 
 333 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 334 #ifndef PRODUCT
 335   if (PrintIRWithLIR) {
 336     tty->cr();
 337   }
 338 #endif
 339 
 340   // LIR_Opr for unpinned constants shouldn't be referenced by other
 341   // blocks so clear them out after processing the block.
 342   for (int i = 0; i < _unpinned_constants.length(); i++) {
 343     _unpinned_constants.at(i)->clear_operand();
 344   }
 345   _unpinned_constants.trunc_to(0);
 346 
 347   // clear our any registers for other local constants
 348   _constants.trunc_to(0);
 349   _reg_for_constants.trunc_to(0);
 350 }
 351 
 352 
 353 void LIRGenerator::block_do(BlockBegin* block) {
 354   CHECK_BAILOUT();
 355 
 356   block_do_prolog(block);
 357   set_block(block);
 358 
 359   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 360     if (instr->is_pinned()) do_root(instr);
 361   }
 362 
 363   set_block(NULL);
 364   block_do_epilog(block);
 365 }
 366 
 367 
 368 //-------------------------LIRGenerator-----------------------------
 369 
 370 // This is where the tree-walk starts; instr must be root;
 371 void LIRGenerator::do_root(Value instr) {
 372   CHECK_BAILOUT();
 373 
 374   InstructionMark im(compilation(), instr);
 375 
 376   assert(instr->is_pinned(), "use only with roots");
 377   assert(instr->subst() == instr, "shouldn't have missed substitution");
 378 
 379   instr->visit(this);
 380 
 381   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 382          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 383 }
 384 
 385 
 386 // This is called for each node in tree; the walk stops if a root is reached
 387 void LIRGenerator::walk(Value instr) {
 388   InstructionMark im(compilation(), instr);
 389   //stop walk when encounter a root
 390   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
 391     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 392   } else {
 393     assert(instr->subst() == instr, "shouldn't have missed substitution");
 394     instr->visit(this);
 395     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 396   }
 397 }
 398 
 399 
 400 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 401   assert(state != NULL, "state must be defined");
 402 
 403 #ifndef PRODUCT
 404   state->verify();
 405 #endif
 406 
 407   ValueStack* s = state;
 408   for_each_state(s) {
 409     if (s->kind() == ValueStack::EmptyExceptionState) {
 410       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 411       continue;
 412     }
 413 
 414     int index;
 415     Value value;
 416     for_each_stack_value(s, index, value) {
 417       assert(value->subst() == value, "missed substitution");
 418       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 419         walk(value);
 420         assert(value->operand()->is_valid(), "must be evaluated now");
 421       }
 422     }
 423 
 424     int bci = s->bci();
 425     IRScope* scope = s->scope();
 426     ciMethod* method = scope->method();
 427 
 428     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 429     if (bci == SynchronizationEntryBCI) {
 430       if (x->as_ExceptionObject() || x->as_Throw()) {
 431         // all locals are dead on exit from the synthetic unlocker
 432         liveness.clear();
 433       } else {
 434         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 435       }
 436     }
 437     if (!liveness.is_valid()) {
 438       // Degenerate or breakpointed method.
 439       bailout("Degenerate or breakpointed method");
 440     } else {
 441       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 442       for_each_local_value(s, index, value) {
 443         assert(value->subst() == value, "missed substition");
 444         if (liveness.at(index) && !value->type()->is_illegal()) {
 445           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 446             walk(value);
 447             assert(value->operand()->is_valid(), "must be evaluated now");
 448           }
 449         } else {
 450           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 451           s->invalidate_local(index);
 452         }
 453       }
 454     }
 455   }
 456 
 457   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 458 }
 459 
 460 
 461 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 462   return state_for(x, x->exception_state());
 463 }
 464 
 465 
 466 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 467   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
 468    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 469    * the class. */
 470   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
 471     assert(info != NULL, "info must be set if class is not loaded");
 472     __ klass2reg_patch(NULL, r, info);
 473   } else {
 474     // no patching needed
 475     __ metadata2reg(obj->constant_encoding(), r);
 476   }
 477 }
 478 
 479 
 480 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 481                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 482   CodeStub* stub = new RangeCheckStub(range_check_info, index);
 483   if (index->is_constant()) {
 484     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 485                 index->as_jint(), null_check_info);
 486     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 487   } else {
 488     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 489                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 490     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 491   }
 492 }
 493 
 494 
 495 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 496   CodeStub* stub = new RangeCheckStub(info, index, true);
 497   if (index->is_constant()) {
 498     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 499     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 500   } else {
 501     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 502                 java_nio_Buffer::limit_offset(), T_INT, info);
 503     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 504   }
 505   __ move(index, result);
 506 }
 507 
 508 
 509 
 510 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 511   LIR_Opr result_op = result;
 512   LIR_Opr left_op   = left;
 513   LIR_Opr right_op  = right;
 514 
 515   if (TwoOperandLIRForm && left_op != result_op) {
 516     assert(right_op != result_op, "malformed");
 517     __ move(left_op, result_op);
 518     left_op = result_op;
 519   }
 520 
 521   switch(code) {
 522     case Bytecodes::_dadd:
 523     case Bytecodes::_fadd:
 524     case Bytecodes::_ladd:
 525     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 526     case Bytecodes::_fmul:
 527     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 528 
 529     case Bytecodes::_dmul:
 530       {
 531         if (is_strictfp) {
 532           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 533         } else {
 534           __ mul(left_op, right_op, result_op); break;
 535         }
 536       }
 537       break;
 538 
 539     case Bytecodes::_imul:
 540       {
 541         bool    did_strength_reduce = false;
 542 
 543         if (right->is_constant()) {
 544           int c = right->as_jint();
 545           if (is_power_of_2(c)) {
 546             // do not need tmp here
 547             __ shift_left(left_op, exact_log2(c), result_op);
 548             did_strength_reduce = true;
 549           } else {
 550             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 551           }
 552         }
 553         // we couldn't strength reduce so just emit the multiply
 554         if (!did_strength_reduce) {
 555           __ mul(left_op, right_op, result_op);
 556         }
 557       }
 558       break;
 559 
 560     case Bytecodes::_dsub:
 561     case Bytecodes::_fsub:
 562     case Bytecodes::_lsub:
 563     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 564 
 565     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 566     // ldiv and lrem are implemented with a direct runtime call
 567 
 568     case Bytecodes::_ddiv:
 569       {
 570         if (is_strictfp) {
 571           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 572         } else {
 573           __ div (left_op, right_op, result_op); break;
 574         }
 575       }
 576       break;
 577 
 578     case Bytecodes::_drem:
 579     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 580 
 581     default: ShouldNotReachHere();
 582   }
 583 }
 584 
 585 
 586 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 587   arithmetic_op(code, result, left, right, false, tmp);
 588 }
 589 
 590 
 591 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 592   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 593 }
 594 
 595 
 596 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 597   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 598 }
 599 
 600 
 601 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 602 
 603   if (TwoOperandLIRForm && value != result_op
 604       // Only 32bit right shifts require two operand form on S390.
 605       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 606     assert(count != result_op, "malformed");
 607     __ move(value, result_op);
 608     value = result_op;
 609   }
 610 
 611   assert(count->is_constant() || count->is_register(), "must be");
 612   switch(code) {
 613   case Bytecodes::_ishl:
 614   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 615   case Bytecodes::_ishr:
 616   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 617   case Bytecodes::_iushr:
 618   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 619   default: ShouldNotReachHere();
 620   }
 621 }
 622 
 623 
 624 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 625   if (TwoOperandLIRForm && left_op != result_op) {
 626     assert(right_op != result_op, "malformed");
 627     __ move(left_op, result_op);
 628     left_op = result_op;
 629   }
 630 
 631   switch(code) {
 632     case Bytecodes::_iand:
 633     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 634 
 635     case Bytecodes::_ior:
 636     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 637 
 638     case Bytecodes::_ixor:
 639     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 640 
 641     default: ShouldNotReachHere();
 642   }
 643 }
 644 
 645 
 646 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 647   if (!GenerateSynchronizationCode) return;
 648   // for slow path, use debug info for state after successful locking
 649   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 650   __ load_stack_address_monitor(monitor_no, lock);
 651   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 652   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 653 }
 654 
 655 
 656 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 657   if (!GenerateSynchronizationCode) return;
 658   // setup registers
 659   LIR_Opr hdr = lock;
 660   lock = new_hdr;
 661   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 662   __ load_stack_address_monitor(monitor_no, lock);
 663   __ unlock_object(hdr, object, lock, scratch, slow_path);
 664 }
 665 
 666 #ifndef PRODUCT
 667 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 668   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 669     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 670   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
 671     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 672   }
 673 }
 674 #endif
 675 
 676 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 677   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 678   // If klass is not loaded we do not know if the klass has finalizers:
 679   if (UseFastNewInstance && klass->is_loaded()
 680       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 681 
 682     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 683 
 684     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 685 
 686     assert(klass->is_loaded(), "must be loaded");
 687     // allocate space for instance
 688     assert(klass->size_helper() >= 0, "illegal instance size");
 689     const int instance_size = align_object_size(klass->size_helper());
 690     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 691                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 692   } else {
 693     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 694     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 695     __ branch_destination(slow_path->continuation());
 696   }
 697 }
 698 
 699 
 700 static bool is_constant_zero(Instruction* inst) {
 701   IntConstant* c = inst->type()->as_IntConstant();
 702   if (c) {
 703     return (c->value() == 0);
 704   }
 705   return false;
 706 }
 707 
 708 
 709 static bool positive_constant(Instruction* inst) {
 710   IntConstant* c = inst->type()->as_IntConstant();
 711   if (c) {
 712     return (c->value() >= 0);
 713   }
 714   return false;
 715 }
 716 
 717 
 718 static ciArrayKlass* as_array_klass(ciType* type) {
 719   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 720     return (ciArrayKlass*)type;
 721   } else {
 722     return NULL;
 723   }
 724 }
 725 
 726 static ciType* phi_declared_type(Phi* phi) {
 727   ciType* t = phi->operand_at(0)->declared_type();
 728   if (t == NULL) {
 729     return NULL;
 730   }
 731   for(int i = 1; i < phi->operand_count(); i++) {
 732     if (t != phi->operand_at(i)->declared_type()) {
 733       return NULL;
 734     }
 735   }
 736   return t;
 737 }
 738 
 739 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 740   Instruction* src     = x->argument_at(0);
 741   Instruction* src_pos = x->argument_at(1);
 742   Instruction* dst     = x->argument_at(2);
 743   Instruction* dst_pos = x->argument_at(3);
 744   Instruction* length  = x->argument_at(4);
 745 
 746   // first try to identify the likely type of the arrays involved
 747   ciArrayKlass* expected_type = NULL;
 748   bool is_exact = false, src_objarray = false, dst_objarray = false;
 749   {
 750     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 751     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 752     Phi* phi;
 753     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 754       src_declared_type = as_array_klass(phi_declared_type(phi));
 755     }
 756     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 757     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 758     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 759       dst_declared_type = as_array_klass(phi_declared_type(phi));
 760     }
 761 
 762     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 763       // the types exactly match so the type is fully known
 764       is_exact = true;
 765       expected_type = src_exact_type;
 766     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 767       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 768       ciArrayKlass* src_type = NULL;
 769       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 770         src_type = (ciArrayKlass*) src_exact_type;
 771       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 772         src_type = (ciArrayKlass*) src_declared_type;
 773       }
 774       if (src_type != NULL) {
 775         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 776           is_exact = true;
 777           expected_type = dst_type;
 778         }
 779       }
 780     }
 781     // at least pass along a good guess
 782     if (expected_type == NULL) expected_type = dst_exact_type;
 783     if (expected_type == NULL) expected_type = src_declared_type;
 784     if (expected_type == NULL) expected_type = dst_declared_type;
 785 
 786     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 787     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 788   }
 789 
 790   // if a probable array type has been identified, figure out if any
 791   // of the required checks for a fast case can be elided.
 792   int flags = LIR_OpArrayCopy::all_flags;
 793 
 794   if (!src_objarray)
 795     flags &= ~LIR_OpArrayCopy::src_objarray;
 796   if (!dst_objarray)
 797     flags &= ~LIR_OpArrayCopy::dst_objarray;
 798 
 799   if (!x->arg_needs_null_check(0))
 800     flags &= ~LIR_OpArrayCopy::src_null_check;
 801   if (!x->arg_needs_null_check(2))
 802     flags &= ~LIR_OpArrayCopy::dst_null_check;
 803 
 804 
 805   if (expected_type != NULL) {
 806     Value length_limit = NULL;
 807 
 808     IfOp* ifop = length->as_IfOp();
 809     if (ifop != NULL) {
 810       // look for expressions like min(v, a.length) which ends up as
 811       //   x > y ? y : x  or  x >= y ? y : x
 812       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 813           ifop->x() == ifop->fval() &&
 814           ifop->y() == ifop->tval()) {
 815         length_limit = ifop->y();
 816       }
 817     }
 818 
 819     // try to skip null checks and range checks
 820     NewArray* src_array = src->as_NewArray();
 821     if (src_array != NULL) {
 822       flags &= ~LIR_OpArrayCopy::src_null_check;
 823       if (length_limit != NULL &&
 824           src_array->length() == length_limit &&
 825           is_constant_zero(src_pos)) {
 826         flags &= ~LIR_OpArrayCopy::src_range_check;
 827       }
 828     }
 829 
 830     NewArray* dst_array = dst->as_NewArray();
 831     if (dst_array != NULL) {
 832       flags &= ~LIR_OpArrayCopy::dst_null_check;
 833       if (length_limit != NULL &&
 834           dst_array->length() == length_limit &&
 835           is_constant_zero(dst_pos)) {
 836         flags &= ~LIR_OpArrayCopy::dst_range_check;
 837       }
 838     }
 839 
 840     // check from incoming constant values
 841     if (positive_constant(src_pos))
 842       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 843     if (positive_constant(dst_pos))
 844       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 845     if (positive_constant(length))
 846       flags &= ~LIR_OpArrayCopy::length_positive_check;
 847 
 848     // see if the range check can be elided, which might also imply
 849     // that src or dst is non-null.
 850     ArrayLength* al = length->as_ArrayLength();
 851     if (al != NULL) {
 852       if (al->array() == src) {
 853         // it's the length of the source array
 854         flags &= ~LIR_OpArrayCopy::length_positive_check;
 855         flags &= ~LIR_OpArrayCopy::src_null_check;
 856         if (is_constant_zero(src_pos))
 857           flags &= ~LIR_OpArrayCopy::src_range_check;
 858       }
 859       if (al->array() == dst) {
 860         // it's the length of the destination array
 861         flags &= ~LIR_OpArrayCopy::length_positive_check;
 862         flags &= ~LIR_OpArrayCopy::dst_null_check;
 863         if (is_constant_zero(dst_pos))
 864           flags &= ~LIR_OpArrayCopy::dst_range_check;
 865       }
 866     }
 867     if (is_exact) {
 868       flags &= ~LIR_OpArrayCopy::type_check;
 869     }
 870   }
 871 
 872   IntConstant* src_int = src_pos->type()->as_IntConstant();
 873   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 874   if (src_int && dst_int) {
 875     int s_offs = src_int->value();
 876     int d_offs = dst_int->value();
 877     if (src_int->value() >= dst_int->value()) {
 878       flags &= ~LIR_OpArrayCopy::overlapping;
 879     }
 880     if (expected_type != NULL) {
 881       BasicType t = expected_type->element_type()->basic_type();
 882       int element_size = type2aelembytes(t);
 883       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 884           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 885         flags &= ~LIR_OpArrayCopy::unaligned;
 886       }
 887     }
 888   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 889     // src and dest positions are the same, or dst is zero so assume
 890     // nonoverlapping copy.
 891     flags &= ~LIR_OpArrayCopy::overlapping;
 892   }
 893 
 894   if (src == dst) {
 895     // moving within a single array so no type checks are needed
 896     if (flags & LIR_OpArrayCopy::type_check) {
 897       flags &= ~LIR_OpArrayCopy::type_check;
 898     }
 899   }
 900   *flagsp = flags;
 901   *expected_typep = (ciArrayKlass*)expected_type;
 902 }
 903 
 904 
 905 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 906   assert(opr->is_register(), "why spill if item is not register?");
 907 
 908   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 909     LIR_Opr result = new_register(T_FLOAT);
 910     set_vreg_flag(result, must_start_in_memory);
 911     assert(opr->is_register(), "only a register can be spilled");
 912     assert(opr->value_type()->is_float(), "rounding only for floats available");
 913     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 914     return result;
 915   }
 916   return opr;
 917 }
 918 
 919 
 920 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 921   assert(type2size[t] == type2size[value->type()],
 922          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 923   if (!value->is_register()) {
 924     // force into a register
 925     LIR_Opr r = new_register(value->type());
 926     __ move(value, r);
 927     value = r;
 928   }
 929 
 930   // create a spill location
 931   LIR_Opr tmp = new_register(t);
 932   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 933 
 934   // move from register to spill
 935   __ move(value, tmp);
 936   return tmp;
 937 }
 938 
 939 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 940   if (if_instr->should_profile()) {
 941     ciMethod* method = if_instr->profiled_method();
 942     assert(method != NULL, "method should be set if branch is profiled");
 943     ciMethodData* md = method->method_data_or_null();
 944     assert(md != NULL, "Sanity");
 945     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 946     assert(data != NULL, "must have profiling data");
 947     assert(data->is_BranchData(), "need BranchData for two-way branches");
 948     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 949     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 950     if (if_instr->is_swapped()) {
 951       int t = taken_count_offset;
 952       taken_count_offset = not_taken_count_offset;
 953       not_taken_count_offset = t;
 954     }
 955 
 956     LIR_Opr md_reg = new_register(T_METADATA);
 957     __ metadata2reg(md->constant_encoding(), md_reg);
 958 
 959     LIR_Opr data_offset_reg = new_pointer_register();
 960     __ cmove(lir_cond(cond),
 961              LIR_OprFact::intptrConst(taken_count_offset),
 962              LIR_OprFact::intptrConst(not_taken_count_offset),
 963              data_offset_reg, as_BasicType(if_instr->x()->type()));
 964 
 965     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 966     LIR_Opr data_reg = new_pointer_register();
 967     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 968     __ move(data_addr, data_reg);
 969     // Use leal instead of add to avoid destroying condition codes on x86
 970     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 971     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 972     __ move(data_reg, data_addr);
 973   }
 974 }
 975 
 976 // Phi technique:
 977 // This is about passing live values from one basic block to the other.
 978 // In code generated with Java it is rather rare that more than one
 979 // value is on the stack from one basic block to the other.
 980 // We optimize our technique for efficient passing of one value
 981 // (of type long, int, double..) but it can be extended.
 982 // When entering or leaving a basic block, all registers and all spill
 983 // slots are release and empty. We use the released registers
 984 // and spill slots to pass the live values from one block
 985 // to the other. The topmost value, i.e., the value on TOS of expression
 986 // stack is passed in registers. All other values are stored in spilling
 987 // area. Every Phi has an index which designates its spill slot
 988 // At exit of a basic block, we fill the register(s) and spill slots.
 989 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 990 // and locks necessary registers and spilling slots.
 991 
 992 
 993 // move current value to referenced phi function
 994 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 995   Phi* phi = sux_val->as_Phi();
 996   // cur_val can be null without phi being null in conjunction with inlining
 997   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
 998     Phi* cur_phi = cur_val->as_Phi();
 999     if (cur_phi != NULL && cur_phi->is_illegal()) {
1000       // Phi and local would need to get invalidated
1001       // (which is unexpected for Linear Scan).
1002       // But this case is very rare so we simply bail out.
1003       bailout("propagation of illegal phi");
1004       return;
1005     }
1006     LIR_Opr operand = cur_val->operand();
1007     if (operand->is_illegal()) {
1008       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1009              "these can be produced lazily");
1010       operand = operand_for_instruction(cur_val);
1011     }
1012     resolver->move(operand, operand_for_instruction(phi));
1013   }
1014 }
1015 
1016 
1017 // Moves all stack values into their PHI position
1018 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1019   BlockBegin* bb = block();
1020   if (bb->number_of_sux() == 1) {
1021     BlockBegin* sux = bb->sux_at(0);
1022     assert(sux->number_of_preds() > 0, "invalid CFG");
1023 
1024     // a block with only one predecessor never has phi functions
1025     if (sux->number_of_preds() > 1) {
1026       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1027       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1028 
1029       ValueStack* sux_state = sux->state();
1030       Value sux_value;
1031       int index;
1032 
1033       assert(cur_state->scope() == sux_state->scope(), "not matching");
1034       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1035       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1036 
1037       for_each_stack_value(sux_state, index, sux_value) {
1038         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1039       }
1040 
1041       for_each_local_value(sux_state, index, sux_value) {
1042         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1043       }
1044 
1045       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1046     }
1047   }
1048 }
1049 
1050 
1051 LIR_Opr LIRGenerator::new_register(BasicType type) {
1052   int vreg = _virtual_register_number;
1053   // add a little fudge factor for the bailout, since the bailout is
1054   // only checked periodically.  This gives a few extra registers to
1055   // hand out before we really run out, which helps us keep from
1056   // tripping over assertions.
1057   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1058     bailout("out of virtual registers");
1059     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1060       // wrap it around
1061       _virtual_register_number = LIR_OprDesc::vreg_base;
1062     }
1063   }
1064   _virtual_register_number += 1;
1065   return LIR_OprFact::virtual_register(vreg, type);
1066 }
1067 
1068 
1069 // Try to lock using register in hint
1070 LIR_Opr LIRGenerator::rlock(Value instr) {
1071   return new_register(instr->type());
1072 }
1073 
1074 
1075 // does an rlock and sets result
1076 LIR_Opr LIRGenerator::rlock_result(Value x) {
1077   LIR_Opr reg = rlock(x);
1078   set_result(x, reg);
1079   return reg;
1080 }
1081 
1082 
1083 // does an rlock and sets result
1084 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1085   LIR_Opr reg;
1086   switch (type) {
1087   case T_BYTE:
1088   case T_BOOLEAN:
1089     reg = rlock_byte(type);
1090     break;
1091   default:
1092     reg = rlock(x);
1093     break;
1094   }
1095 
1096   set_result(x, reg);
1097   return reg;
1098 }
1099 
1100 
1101 //---------------------------------------------------------------------
1102 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1103   ObjectType* oc = value->type()->as_ObjectType();
1104   if (oc) {
1105     return oc->constant_value();
1106   }
1107   return NULL;
1108 }
1109 
1110 
1111 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1112   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1113   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1114 
1115   // no moves are created for phi functions at the begin of exception
1116   // handlers, so assign operands manually here
1117   for_each_phi_fun(block(), phi,
1118                    operand_for_instruction(phi));
1119 
1120   LIR_Opr thread_reg = getThreadPointer();
1121   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1122                exceptionOopOpr());
1123   __ move_wide(LIR_OprFact::oopConst(NULL),
1124                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1125   __ move_wide(LIR_OprFact::oopConst(NULL),
1126                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1127 
1128   LIR_Opr result = new_register(T_OBJECT);
1129   __ move(exceptionOopOpr(), result);
1130   set_result(x, result);
1131 }
1132 
1133 
1134 //----------------------------------------------------------------------
1135 //----------------------------------------------------------------------
1136 //----------------------------------------------------------------------
1137 //----------------------------------------------------------------------
1138 //                        visitor functions
1139 //----------------------------------------------------------------------
1140 //----------------------------------------------------------------------
1141 //----------------------------------------------------------------------
1142 //----------------------------------------------------------------------
1143 
1144 void LIRGenerator::do_Phi(Phi* x) {
1145   // phi functions are never visited directly
1146   ShouldNotReachHere();
1147 }
1148 
1149 
1150 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1151 void LIRGenerator::do_Constant(Constant* x) {
1152   if (x->state_before() != NULL) {
1153     // Any constant with a ValueStack requires patching so emit the patch here
1154     LIR_Opr reg = rlock_result(x);
1155     CodeEmitInfo* info = state_for(x, x->state_before());
1156     __ oop2reg_patch(NULL, reg, info);
1157   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1158     if (!x->is_pinned()) {
1159       // unpinned constants are handled specially so that they can be
1160       // put into registers when they are used multiple times within a
1161       // block.  After the block completes their operand will be
1162       // cleared so that other blocks can't refer to that register.
1163       set_result(x, load_constant(x));
1164     } else {
1165       LIR_Opr res = x->operand();
1166       if (!res->is_valid()) {
1167         res = LIR_OprFact::value_type(x->type());
1168       }
1169       if (res->is_constant()) {
1170         LIR_Opr reg = rlock_result(x);
1171         __ move(res, reg);
1172       } else {
1173         set_result(x, res);
1174       }
1175     }
1176   } else {
1177     set_result(x, LIR_OprFact::value_type(x->type()));
1178   }
1179 }
1180 
1181 
1182 void LIRGenerator::do_Local(Local* x) {
1183   // operand_for_instruction has the side effect of setting the result
1184   // so there's no need to do it here.
1185   operand_for_instruction(x);
1186 }
1187 
1188 
1189 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1190   Unimplemented();
1191 }
1192 
1193 
1194 void LIRGenerator::do_Return(Return* x) {
1195   if (compilation()->env()->dtrace_method_probes()) {
1196     BasicTypeList signature;
1197     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1198     signature.append(T_METADATA); // Method*
1199     LIR_OprList* args = new LIR_OprList();
1200     args->append(getThreadPointer());
1201     LIR_Opr meth = new_register(T_METADATA);
1202     __ metadata2reg(method()->constant_encoding(), meth);
1203     args->append(meth);
1204     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1205   }
1206 
1207   if (x->type()->is_void()) {
1208     __ return_op(LIR_OprFact::illegalOpr);
1209   } else {
1210     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1211     LIRItem result(x->result(), this);
1212 
1213     result.load_item_force(reg);
1214     __ return_op(result.result());
1215   }
1216   set_no_result(x);
1217 }
1218 
1219 // Examble: ref.get()
1220 // Combination of LoadField and g1 pre-write barrier
1221 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1222 
1223   const int referent_offset = java_lang_ref_Reference::referent_offset;
1224   guarantee(referent_offset > 0, "referent offset not initialized");
1225 
1226   assert(x->number_of_arguments() == 1, "wrong type");
1227 
1228   LIRItem reference(x->argument_at(0), this);
1229   reference.load_item();
1230 
1231   // need to perform the null check on the reference objecy
1232   CodeEmitInfo* info = NULL;
1233   if (x->needs_null_check()) {
1234     info = state_for(x);
1235   }
1236 
1237   C1DecoratorSet decorators = C1_ACCESS_ON_HEAP | C1_ACCESS_ON_WEAK;
1238   LIR_Opr result = access_load_at(decorators, as_BasicType(x->type()),
1239                                   reference, LIR_OprFact::intConst(referent_offset),
1240                                   NULL, NULL);
1241   set_result(x, result);
1242 }
1243 
1244 // Example: clazz.isInstance(object)
1245 void LIRGenerator::do_isInstance(Intrinsic* x) {
1246   assert(x->number_of_arguments() == 2, "wrong type");
1247 
1248   // TODO could try to substitute this node with an equivalent InstanceOf
1249   // if clazz is known to be a constant Class. This will pick up newly found
1250   // constants after HIR construction. I'll leave this to a future change.
1251 
1252   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1253   // could follow the aastore example in a future change.
1254 
1255   LIRItem clazz(x->argument_at(0), this);
1256   LIRItem object(x->argument_at(1), this);
1257   clazz.load_item();
1258   object.load_item();
1259   LIR_Opr result = rlock_result(x);
1260 
1261   // need to perform null check on clazz
1262   if (x->needs_null_check()) {
1263     CodeEmitInfo* info = state_for(x);
1264     __ null_check(clazz.result(), info);
1265   }
1266 
1267   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1268                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1269                                      x->type(),
1270                                      NULL); // NULL CodeEmitInfo results in a leaf call
1271   __ move(call_result, result);
1272 }
1273 
1274 // Example: object.getClass ()
1275 void LIRGenerator::do_getClass(Intrinsic* x) {
1276   assert(x->number_of_arguments() == 1, "wrong type");
1277 
1278   LIRItem rcvr(x->argument_at(0), this);
1279   rcvr.load_item();
1280   LIR_Opr temp = new_register(T_METADATA);
1281   LIR_Opr result = rlock_result(x);
1282 
1283   // need to perform the null check on the rcvr
1284   CodeEmitInfo* info = NULL;
1285   if (x->needs_null_check()) {
1286     info = state_for(x);
1287   }
1288 
1289   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1290   // meaning of these two is mixed up (see JDK-8026837).
1291   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1292   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
1293 }
1294 
1295 // java.lang.Class::isPrimitive()
1296 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1297   assert(x->number_of_arguments() == 1, "wrong type");
1298 
1299   LIRItem rcvr(x->argument_at(0), this);
1300   rcvr.load_item();
1301   LIR_Opr temp = new_register(T_METADATA);
1302   LIR_Opr result = rlock_result(x);
1303 
1304   CodeEmitInfo* info = NULL;
1305   if (x->needs_null_check()) {
1306     info = state_for(x);
1307   }
1308 
1309   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1310   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::intConst(0));
1311   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1312 }
1313 
1314 
1315 // Example: Thread.currentThread()
1316 void LIRGenerator::do_currentThread(Intrinsic* x) {
1317   assert(x->number_of_arguments() == 0, "wrong type");
1318   LIR_Opr reg = rlock_result(x);
1319   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1320 }
1321 
1322 
1323 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1324   assert(x->number_of_arguments() == 1, "wrong type");
1325   LIRItem receiver(x->argument_at(0), this);
1326 
1327   receiver.load_item();
1328   BasicTypeList signature;
1329   signature.append(T_OBJECT); // receiver
1330   LIR_OprList* args = new LIR_OprList();
1331   args->append(receiver.result());
1332   CodeEmitInfo* info = state_for(x, x->state());
1333   call_runtime(&signature, args,
1334                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1335                voidType, info);
1336 
1337   set_no_result(x);
1338 }
1339 
1340 
1341 //------------------------local access--------------------------------------
1342 
1343 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1344   if (x->operand()->is_illegal()) {
1345     Constant* c = x->as_Constant();
1346     if (c != NULL) {
1347       x->set_operand(LIR_OprFact::value_type(c->type()));
1348     } else {
1349       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1350       // allocate a virtual register for this local or phi
1351       x->set_operand(rlock(x));
1352       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1353     }
1354   }
1355   return x->operand();
1356 }
1357 
1358 
1359 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1360   if (opr->is_virtual()) {
1361     return instruction_for_vreg(opr->vreg_number());
1362   }
1363   return NULL;
1364 }
1365 
1366 
1367 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1368   if (reg_num < _instruction_for_operand.length()) {
1369     return _instruction_for_operand.at(reg_num);
1370   }
1371   return NULL;
1372 }
1373 
1374 
1375 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1376   if (_vreg_flags.size_in_bits() == 0) {
1377     BitMap2D temp(100, num_vreg_flags);
1378     _vreg_flags = temp;
1379   }
1380   _vreg_flags.at_put_grow(vreg_num, f, true);
1381 }
1382 
1383 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1384   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1385     return false;
1386   }
1387   return _vreg_flags.at(vreg_num, f);
1388 }
1389 
1390 
1391 // Block local constant handling.  This code is useful for keeping
1392 // unpinned constants and constants which aren't exposed in the IR in
1393 // registers.  Unpinned Constant instructions have their operands
1394 // cleared when the block is finished so that other blocks can't end
1395 // up referring to their registers.
1396 
1397 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1398   assert(!x->is_pinned(), "only for unpinned constants");
1399   _unpinned_constants.append(x);
1400   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1401 }
1402 
1403 
1404 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1405   BasicType t = c->type();
1406   for (int i = 0; i < _constants.length(); i++) {
1407     LIR_Const* other = _constants.at(i);
1408     if (t == other->type()) {
1409       switch (t) {
1410       case T_INT:
1411       case T_FLOAT:
1412         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1413         break;
1414       case T_LONG:
1415       case T_DOUBLE:
1416         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1417         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1418         break;
1419       case T_OBJECT:
1420         if (c->as_jobject() != other->as_jobject()) continue;
1421         break;
1422       }
1423       return _reg_for_constants.at(i);
1424     }
1425   }
1426 
1427   LIR_Opr result = new_register(t);
1428   __ move((LIR_Opr)c, result);
1429   _constants.append(c);
1430   _reg_for_constants.append(result);
1431   return result;
1432 }
1433 
1434 //------------------------field access--------------------------------------
1435 
1436 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1437   assert(x->number_of_arguments() == 4, "wrong type");
1438   LIRItem obj   (x->argument_at(0), this);  // object
1439   LIRItem offset(x->argument_at(1), this);  // offset of field
1440   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1441   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1442   assert(obj.type()->tag() == objectTag, "invalid type");
1443 
1444   // In 64bit the type can be long, sparc doesn't have this assert
1445   // assert(offset.type()->tag() == intTag, "invalid type");
1446 
1447   assert(cmp.type()->tag() == type->tag(), "invalid type");
1448   assert(val.type()->tag() == type->tag(), "invalid type");
1449 
1450   C1DecoratorSet decorators = C1_ACCESS_ON_HEAP | C1_MO_VOLATILE;
1451   LIR_Opr result = access_cas_at(decorators, as_BasicType(type),
1452                                  obj, offset, cmp, val);
1453   set_result(x, result);
1454 }
1455 
1456 // Comment copied form templateTable_i486.cpp
1457 // ----------------------------------------------------------------------------
1458 // Volatile variables demand their effects be made known to all CPU's in
1459 // order.  Store buffers on most chips allow reads & writes to reorder; the
1460 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1461 // memory barrier (i.e., it's not sufficient that the interpreter does not
1462 // reorder volatile references, the hardware also must not reorder them).
1463 //
1464 // According to the new Java Memory Model (JMM):
1465 // (1) All volatiles are serialized wrt to each other.
1466 // ALSO reads & writes act as aquire & release, so:
1467 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1468 // the read float up to before the read.  It's OK for non-volatile memory refs
1469 // that happen before the volatile read to float down below it.
1470 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1471 // that happen BEFORE the write float down to after the write.  It's OK for
1472 // non-volatile memory refs that happen after the volatile write to float up
1473 // before it.
1474 //
1475 // We only put in barriers around volatile refs (they are expensive), not
1476 // _between_ memory refs (that would require us to track the flavor of the
1477 // previous memory refs).  Requirements (2) and (3) require some barriers
1478 // before volatile stores and after volatile loads.  These nearly cover
1479 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1480 // case is placed after volatile-stores although it could just as well go
1481 // before volatile-loads.
1482 
1483 
1484 void LIRGenerator::do_StoreField(StoreField* x) {
1485   bool needs_patching = x->needs_patching();
1486   bool is_volatile = x->field()->is_volatile();
1487   BasicType field_type = x->field_type();
1488 
1489   CodeEmitInfo* info = NULL;
1490   if (needs_patching) {
1491     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1492     info = state_for(x, x->state_before());
1493   } else if (x->needs_null_check()) {
1494     NullCheck* nc = x->explicit_null_check();
1495     if (nc == NULL) {
1496       info = state_for(x);
1497     } else {
1498       info = state_for(nc);
1499     }
1500   }
1501 
1502 
1503   LIRItem object(x->obj(), this);
1504   LIRItem value(x->value(),  this);
1505 
1506   object.load_item();
1507 
1508   if (is_volatile || needs_patching) {
1509     // load item if field is volatile (fewer special cases for volatiles)
1510     // load item if field not initialized
1511     // load item if field not constant
1512     // because of code patching we cannot inline constants
1513     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1514       value.load_byte_item();
1515     } else  {
1516       value.load_item();
1517     }
1518   } else {
1519     value.load_for_store(field_type);
1520   }
1521 
1522   set_no_result(x);
1523 
1524 #ifndef PRODUCT
1525   if (PrintNotLoaded && needs_patching) {
1526     tty->print_cr("   ###class not loaded at store_%s bci %d",
1527                   x->is_static() ?  "static" : "field", x->printable_bci());
1528   }
1529 #endif
1530 
1531   if (x->needs_null_check() &&
1532       (needs_patching ||
1533        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1534     // Emit an explicit null check because the offset is too large.
1535     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1536     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1537     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1538   }
1539 
1540   C1DecoratorSet decorators = C1_ACCESS_ON_HEAP;
1541   if (is_volatile) {
1542     decorators |= C1_MO_VOLATILE;
1543   }
1544   if (needs_patching) {
1545     decorators |= C1_NEEDS_PATCHING;
1546   }
1547 
1548   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()), value.result(), info ? new CodeEmitInfo(info) : NULL, info);
1549 }
1550 
1551 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1552   assert(x->is_pinned(),"");
1553   bool needs_range_check = x->compute_needs_range_check();
1554   bool use_length = x->length() != NULL;
1555   bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
1556   bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
1557                                          !get_jobject_constant(x->value())->is_null_object() ||
1558                                          x->should_profile());
1559 
1560   LIRItem array(x->array(), this);
1561   LIRItem index(x->index(), this);
1562   LIRItem value(x->value(), this);
1563   LIRItem length(this);
1564 
1565   array.load_item();
1566   index.load_nonconstant();
1567 
1568   if (use_length && needs_range_check) {
1569     length.set_instruction(x->length());
1570     length.load_item();
1571 
1572   }
1573   if (needs_store_check || x->check_boolean()) {
1574     value.load_item();
1575   } else {
1576     value.load_for_store(x->elt_type());
1577   }
1578 
1579   set_no_result(x);
1580 
1581   // the CodeEmitInfo must be duplicated for each different
1582   // LIR-instruction because spilling can occur anywhere between two
1583   // instructions and so the debug information must be different
1584   CodeEmitInfo* range_check_info = state_for(x);
1585   CodeEmitInfo* null_check_info = NULL;
1586   if (x->needs_null_check()) {
1587     null_check_info = new CodeEmitInfo(range_check_info);
1588   }
1589 
1590   if (GenerateRangeChecks && needs_range_check) {
1591     if (use_length) {
1592       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1593       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1594     } else {
1595       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1596       // range_check also does the null check
1597       null_check_info = NULL;
1598     }
1599   }
1600 
1601   if (GenerateArrayStoreCheck && needs_store_check) {
1602     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1603     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1604   }
1605 
1606   C1DecoratorSet decorators = C1_ACCESS_ON_HEAP | C1_ACCESS_ON_ARRAY;
1607   if (x->elt_type() == T_BOOLEAN && x->check_boolean()) {
1608     decorators |= C1_MASK_BOOLEAN;
1609   }
1610 
1611   access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), NULL, null_check_info);
1612 }
1613 
1614 LIR_Opr LIRGenerator::access_cas_at(C1DecoratorSet decorators, BasicType type,
1615                                     LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1616   BarrierSet *bs = Universe::heap()->barrier_set();
1617   C1BarrierSetCodeGen *code_gen = bs->c1_code_gen();
1618   return code_gen->cas_at(this, decorators, type,
1619                           base, offset, cmp_value, new_value);
1620 
1621 }
1622 
1623 LIR_Opr LIRGenerator::access_swap_at(C1DecoratorSet decorators, BasicType type,
1624                                      LIRItem& base, LIRItem& offset, LIRItem& value) {
1625   BarrierSet *bs = Universe::heap()->barrier_set();
1626   C1BarrierSetCodeGen *code_gen = bs->c1_code_gen();
1627   return code_gen->swap_at(this, decorators, type,
1628                            base, offset, value);
1629 }
1630 
1631 LIR_Opr LIRGenerator::access_add_at(C1DecoratorSet decorators, BasicType type,
1632                                     LIRItem& base, LIRItem& offset, LIRItem& value) {
1633   BarrierSet *bs = Universe::heap()->barrier_set();
1634   C1BarrierSetCodeGen *code_gen = bs->c1_code_gen();
1635   return code_gen->add_at(this, decorators, type,
1636                           base, offset, value);
1637 }
1638 
1639 void LIRGenerator::access_store_at(C1DecoratorSet decorators, BasicType type,
1640                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1641                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1642   BarrierSet *bs = Universe::heap()->barrier_set();
1643   C1BarrierSetCodeGen *code_gen = bs->c1_code_gen();
1644   code_gen->store_at(this, decorators, type,
1645                      base, offset, value, patch_info, store_emit_info);
1646 }
1647 
1648 LIR_Opr LIRGenerator::access_load_at(C1DecoratorSet decorators, BasicType type,
1649                                      LIRItem& base, LIR_Opr offset,
1650                                      CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1651   BarrierSet *bs = Universe::heap()->barrier_set();
1652   C1BarrierSetCodeGen *code_gen = bs->c1_code_gen();
1653   return code_gen->load_at(this, decorators, type,
1654                            base, offset, patch_info, load_emit_info);
1655 }
1656 
1657 void LIRGenerator::do_LoadField(LoadField* x) {
1658   bool needs_patching = x->needs_patching();
1659   bool is_volatile = x->field()->is_volatile();
1660   BasicType field_type = x->field_type();
1661 
1662   CodeEmitInfo* info = NULL;
1663   if (needs_patching) {
1664     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1665     info = state_for(x, x->state_before());
1666   } else if (x->needs_null_check()) {
1667     NullCheck* nc = x->explicit_null_check();
1668     if (nc == NULL) {
1669       info = state_for(x);
1670     } else {
1671       info = state_for(nc);
1672     }
1673   }
1674 
1675   LIRItem object(x->obj(), this);
1676 
1677   object.load_item();
1678 
1679 #ifndef PRODUCT
1680   if (PrintNotLoaded && needs_patching) {
1681     tty->print_cr("   ###class not loaded at load_%s bci %d",
1682                   x->is_static() ?  "static" : "field", x->printable_bci());
1683   }
1684 #endif
1685 
1686   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1687   if (x->needs_null_check() &&
1688       (needs_patching ||
1689        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1690        stress_deopt)) {
1691     LIR_Opr obj = object.result();
1692     if (stress_deopt) {
1693       obj = new_register(T_OBJECT);
1694       __ move(LIR_OprFact::oopConst(NULL), obj);
1695     }
1696     // Emit an explicit null check because the offset is too large.
1697     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1698     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1699     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1700   }
1701 
1702   LIR_Opr reg = rlock_result(x, field_type);
1703   LIR_Address* address;
1704   if (needs_patching) {
1705     // we need to patch the offset in the instruction so don't allow
1706     // generate_address to try to be smart about emitting the -1.
1707     // Otherwise the patching code won't know how to find the
1708     // instruction to patch.
1709     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1710   } else {
1711     address = generate_address(object.result(), x->offset(), field_type);
1712   }
1713 
1714   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile && os::is_MP()) {
1715     __ membar();
1716   }
1717 
1718   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1719   if (needs_atomic_access && !needs_patching) {
1720     volatile_field_load(address, reg, info);
1721   } else {
1722     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1723     __ load(address, reg, info, patch_code);
1724   }
1725 
1726   if (is_volatile && os::is_MP()) {
1727     __ membar_acquire();
1728   }
1729 }
1730 
1731 
1732 //------------------------java.nio.Buffer.checkIndex------------------------
1733 
1734 // int java.nio.Buffer.checkIndex(int)
1735 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1736   // NOTE: by the time we are in checkIndex() we are guaranteed that
1737   // the buffer is non-null (because checkIndex is package-private and
1738   // only called from within other methods in the buffer).
1739   assert(x->number_of_arguments() == 2, "wrong type");
1740   LIRItem buf  (x->argument_at(0), this);
1741   LIRItem index(x->argument_at(1), this);
1742   buf.load_item();
1743   index.load_item();
1744 
1745   LIR_Opr result = rlock_result(x);
1746   if (GenerateRangeChecks) {
1747     CodeEmitInfo* info = state_for(x);
1748     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1749     if (index.result()->is_constant()) {
1750       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1751       __ branch(lir_cond_belowEqual, T_INT, stub);
1752     } else {
1753       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1754                   java_nio_Buffer::limit_offset(), T_INT, info);
1755       __ branch(lir_cond_aboveEqual, T_INT, stub);
1756     }
1757     __ move(index.result(), result);
1758   } else {
1759     // Just load the index into the result register
1760     __ move(index.result(), result);
1761   }
1762 }
1763 
1764 
1765 //------------------------array access--------------------------------------
1766 
1767 
1768 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1769   LIRItem array(x->array(), this);
1770   array.load_item();
1771   LIR_Opr reg = rlock_result(x);
1772 
1773   CodeEmitInfo* info = NULL;
1774   if (x->needs_null_check()) {
1775     NullCheck* nc = x->explicit_null_check();
1776     if (nc == NULL) {
1777       info = state_for(x);
1778     } else {
1779       info = state_for(nc);
1780     }
1781     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1782       LIR_Opr obj = new_register(T_OBJECT);
1783       __ move(LIR_OprFact::oopConst(NULL), obj);
1784       __ null_check(obj, new CodeEmitInfo(info));
1785     }
1786   }
1787   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1788 }
1789 
1790 
1791 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1792   bool use_length = x->length() != NULL;
1793   LIRItem array(x->array(), this);
1794   LIRItem index(x->index(), this);
1795   LIRItem length(this);
1796   bool needs_range_check = x->compute_needs_range_check();
1797 
1798   if (use_length && needs_range_check) {
1799     length.set_instruction(x->length());
1800     length.load_item();
1801   }
1802 
1803   array.load_item();
1804   if (index.is_constant() && can_inline_as_constant(x->index())) {
1805     // let it be a constant
1806     index.dont_load_item();
1807   } else {
1808     index.load_item();
1809   }
1810 
1811   CodeEmitInfo* range_check_info = state_for(x);
1812   CodeEmitInfo* null_check_info = NULL;
1813   if (x->needs_null_check()) {
1814     NullCheck* nc = x->explicit_null_check();
1815     if (nc != NULL) {
1816       null_check_info = state_for(nc);
1817     } else {
1818       null_check_info = range_check_info;
1819     }
1820     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1821       LIR_Opr obj = new_register(T_OBJECT);
1822       __ move(LIR_OprFact::oopConst(NULL), obj);
1823       __ null_check(obj, new CodeEmitInfo(null_check_info));
1824     }
1825   }
1826 
1827   // emit array address setup early so it schedules better
1828   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1829 
1830   if (GenerateRangeChecks && needs_range_check) {
1831     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1832       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
1833     } else if (use_length) {
1834       // TODO: use a (modified) version of array_range_check that does not require a
1835       //       constant length to be loaded to a register
1836       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1837       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1838     } else {
1839       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1840       // The range check performs the null check, so clear it out for the load
1841       null_check_info = NULL;
1842     }
1843   }
1844 
1845   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1846 }
1847 
1848 
1849 void LIRGenerator::do_NullCheck(NullCheck* x) {
1850   if (x->can_trap()) {
1851     LIRItem value(x->obj(), this);
1852     value.load_item();
1853     CodeEmitInfo* info = state_for(x);
1854     __ null_check(value.result(), info);
1855   }
1856 }
1857 
1858 
1859 void LIRGenerator::do_TypeCast(TypeCast* x) {
1860   LIRItem value(x->obj(), this);
1861   value.load_item();
1862   // the result is the same as from the node we are casting
1863   set_result(x, value.result());
1864 }
1865 
1866 
1867 void LIRGenerator::do_Throw(Throw* x) {
1868   LIRItem exception(x->exception(), this);
1869   exception.load_item();
1870   set_no_result(x);
1871   LIR_Opr exception_opr = exception.result();
1872   CodeEmitInfo* info = state_for(x, x->state());
1873 
1874 #ifndef PRODUCT
1875   if (PrintC1Statistics) {
1876     increment_counter(Runtime1::throw_count_address(), T_INT);
1877   }
1878 #endif
1879 
1880   // check if the instruction has an xhandler in any of the nested scopes
1881   bool unwind = false;
1882   if (info->exception_handlers()->length() == 0) {
1883     // this throw is not inside an xhandler
1884     unwind = true;
1885   } else {
1886     // get some idea of the throw type
1887     bool type_is_exact = true;
1888     ciType* throw_type = x->exception()->exact_type();
1889     if (throw_type == NULL) {
1890       type_is_exact = false;
1891       throw_type = x->exception()->declared_type();
1892     }
1893     if (throw_type != NULL && throw_type->is_instance_klass()) {
1894       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
1895       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
1896     }
1897   }
1898 
1899   // do null check before moving exception oop into fixed register
1900   // to avoid a fixed interval with an oop during the null check.
1901   // Use a copy of the CodeEmitInfo because debug information is
1902   // different for null_check and throw.
1903   if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
1904     // if the exception object wasn't created using new then it might be null.
1905     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
1906   }
1907 
1908   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
1909     // we need to go through the exception lookup path to get JVMTI
1910     // notification done
1911     unwind = false;
1912   }
1913 
1914   // move exception oop into fixed register
1915   __ move(exception_opr, exceptionOopOpr());
1916 
1917   if (unwind) {
1918     __ unwind_exception(exceptionOopOpr());
1919   } else {
1920     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
1921   }
1922 }
1923 
1924 
1925 void LIRGenerator::do_RoundFP(RoundFP* x) {
1926   LIRItem input(x->input(), this);
1927   input.load_item();
1928   LIR_Opr input_opr = input.result();
1929   assert(input_opr->is_register(), "why round if value is not in a register?");
1930   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
1931   if (input_opr->is_single_fpu()) {
1932     set_result(x, round_item(input_opr)); // This code path not currently taken
1933   } else {
1934     LIR_Opr result = new_register(T_DOUBLE);
1935     set_vreg_flag(result, must_start_in_memory);
1936     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
1937     set_result(x, result);
1938   }
1939 }
1940 
1941 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
1942 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
1943 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
1944   LIRItem base(x->base(), this);
1945   LIRItem idx(this);
1946 
1947   base.load_item();
1948   if (x->has_index()) {
1949     idx.set_instruction(x->index());
1950     idx.load_nonconstant();
1951   }
1952 
1953   LIR_Opr reg = rlock_result(x, x->basic_type());
1954 
1955   int   log2_scale = 0;
1956   if (x->has_index()) {
1957     log2_scale = x->log2_scale();
1958   }
1959 
1960   assert(!x->has_index() || idx.value() == x->index(), "should match");
1961 
1962   LIR_Opr base_op = base.result();
1963   LIR_Opr index_op = idx.result();
1964 #ifndef _LP64
1965   if (base_op->type() == T_LONG) {
1966     base_op = new_register(T_INT);
1967     __ convert(Bytecodes::_l2i, base.result(), base_op);
1968   }
1969   if (x->has_index()) {
1970     if (index_op->type() == T_LONG) {
1971       LIR_Opr long_index_op = index_op;
1972       if (index_op->is_constant()) {
1973         long_index_op = new_register(T_LONG);
1974         __ move(index_op, long_index_op);
1975       }
1976       index_op = new_register(T_INT);
1977       __ convert(Bytecodes::_l2i, long_index_op, index_op);
1978     } else {
1979       assert(x->index()->type()->tag() == intTag, "must be");
1980     }
1981   }
1982   // At this point base and index should be all ints.
1983   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
1984   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
1985 #else
1986   if (x->has_index()) {
1987     if (index_op->type() == T_INT) {
1988       if (!index_op->is_constant()) {
1989         index_op = new_register(T_LONG);
1990         __ convert(Bytecodes::_i2l, idx.result(), index_op);
1991       }
1992     } else {
1993       assert(index_op->type() == T_LONG, "must be");
1994       if (index_op->is_constant()) {
1995         index_op = new_register(T_LONG);
1996         __ move(idx.result(), index_op);
1997       }
1998     }
1999   }
2000   // At this point base is a long non-constant
2001   // Index is a long register or a int constant.
2002   // We allow the constant to stay an int because that would allow us a more compact encoding by
2003   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2004   // move it into a register first.
2005   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2006   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2007                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2008 #endif
2009 
2010   BasicType dst_type = x->basic_type();
2011 
2012   LIR_Address* addr;
2013   if (index_op->is_constant()) {
2014     assert(log2_scale == 0, "must not have a scale");
2015     assert(index_op->type() == T_INT, "only int constants supported");
2016     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2017   } else {
2018 #ifdef X86
2019     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2020 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2021     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2022 #else
2023     if (index_op->is_illegal() || log2_scale == 0) {
2024       addr = new LIR_Address(base_op, index_op, dst_type);
2025     } else {
2026       LIR_Opr tmp = new_pointer_register();
2027       __ shift_left(index_op, log2_scale, tmp);
2028       addr = new LIR_Address(base_op, tmp, dst_type);
2029     }
2030 #endif
2031   }
2032 
2033   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2034     __ unaligned_move(addr, reg);
2035   } else {
2036     if (dst_type == T_OBJECT && x->is_wide()) {
2037       __ move_wide(addr, reg);
2038     } else {
2039       __ move(addr, reg);
2040     }
2041   }
2042 }
2043 
2044 
2045 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2046   int  log2_scale = 0;
2047   BasicType type = x->basic_type();
2048 
2049   if (x->has_index()) {
2050     log2_scale = x->log2_scale();
2051   }
2052 
2053   LIRItem base(x->base(), this);
2054   LIRItem value(x->value(), this);
2055   LIRItem idx(this);
2056 
2057   base.load_item();
2058   if (x->has_index()) {
2059     idx.set_instruction(x->index());
2060     idx.load_item();
2061   }
2062 
2063   if (type == T_BYTE || type == T_BOOLEAN) {
2064     value.load_byte_item();
2065   } else {
2066     value.load_item();
2067   }
2068 
2069   set_no_result(x);
2070 
2071   LIR_Opr base_op = base.result();
2072   LIR_Opr index_op = idx.result();
2073 
2074 #ifdef GENERATE_ADDRESS_IS_PREFERRED
2075   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2076 #else
2077 #ifndef _LP64
2078   if (base_op->type() == T_LONG) {
2079     base_op = new_register(T_INT);
2080     __ convert(Bytecodes::_l2i, base.result(), base_op);
2081   }
2082   if (x->has_index()) {
2083     if (index_op->type() == T_LONG) {
2084       index_op = new_register(T_INT);
2085       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2086     }
2087   }
2088   // At this point base and index should be all ints and not constants
2089   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2090   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2091 #else
2092   if (x->has_index()) {
2093     if (index_op->type() == T_INT) {
2094       index_op = new_register(T_LONG);
2095       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2096     }
2097   }
2098   // At this point base and index are long and non-constant
2099   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2100   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2101 #endif
2102 
2103   if (log2_scale != 0) {
2104     // temporary fix (platform dependent code without shift on Intel would be better)
2105     // TODO: ARM also allows embedded shift in the address
2106     LIR_Opr tmp = new_pointer_register();
2107     if (TwoOperandLIRForm) {
2108       __ move(index_op, tmp);
2109       index_op = tmp;
2110     }
2111     __ shift_left(index_op, log2_scale, tmp);
2112     if (!TwoOperandLIRForm) {
2113       index_op = tmp;
2114     }
2115   }
2116 
2117   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2118 #endif // !GENERATE_ADDRESS_IS_PREFERRED
2119   __ move(value.result(), addr);
2120 }
2121 
2122 
2123 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2124   BasicType type = x->basic_type();
2125   LIRItem src(x->object(), this);
2126   LIRItem off(x->offset(), this);
2127 
2128   off.load_item();
2129   src.load_item();
2130 
2131   C1DecoratorSet decorators = C1_ACCESS_ON_HEAP | C1_ACCESS_ON_ANONYMOUS;
2132 
2133   if (type == T_BOOLEAN) {
2134     decorators |= C1_MASK_BOOLEAN;
2135   }
2136   if (x->is_volatile()) {
2137     decorators |= C1_MO_VOLATILE;
2138   }
2139 
2140   LIR_Opr result = access_load_at(decorators, type,
2141                                   src, off.result(),
2142                                   NULL, NULL);
2143   set_result(x, result);
2144 }
2145 
2146 
2147 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2148   BasicType type = x->basic_type();
2149   LIRItem src(x->object(), this);
2150   LIRItem off(x->offset(), this);
2151   LIRItem data(x->value(), this);
2152 
2153   src.load_item();
2154   if (type == T_BOOLEAN || type == T_BYTE) {
2155     data.load_byte_item();
2156   } else {
2157     data.load_item();
2158   }
2159   off.load_item();
2160 
2161   set_no_result(x);
2162 
2163   C1DecoratorSet decorators = C1_ACCESS_ON_HEAP | C1_ACCESS_ON_ANONYMOUS;
2164   if (type == T_BOOLEAN) {
2165     decorators |= C1_MASK_BOOLEAN;
2166   }
2167   if (x->is_volatile()) {
2168     decorators |= C1_MO_VOLATILE;
2169   }
2170   access_store_at(decorators, type, src, off.result(), data.result(), NULL, NULL);
2171 }
2172 
2173 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
2174   BasicType type = x->basic_type();
2175   LIRItem src(x->object(), this);
2176   LIRItem off(x->offset(), this);
2177   LIRItem value(x->value(), this);
2178 
2179   C1DecoratorSet decorators = C1_ACCESS_ON_HEAP | C1_ACCESS_ON_ANONYMOUS | C1_MO_VOLATILE;
2180 
2181   LIR_Opr result;
2182   if (x->is_add()) {
2183     result = access_add_at(decorators, type, src, off, value);
2184   } else {
2185     result = access_swap_at(decorators, type, src, off, value);
2186   }
2187   set_result(x, result);
2188 }
2189 
2190 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2191   int lng = x->length();
2192 
2193   for (int i = 0; i < lng; i++) {
2194     SwitchRange* one_range = x->at(i);
2195     int low_key = one_range->low_key();
2196     int high_key = one_range->high_key();
2197     BlockBegin* dest = one_range->sux();
2198     if (low_key == high_key) {
2199       __ cmp(lir_cond_equal, value, low_key);
2200       __ branch(lir_cond_equal, T_INT, dest);
2201     } else if (high_key - low_key == 1) {
2202       __ cmp(lir_cond_equal, value, low_key);
2203       __ branch(lir_cond_equal, T_INT, dest);
2204       __ cmp(lir_cond_equal, value, high_key);
2205       __ branch(lir_cond_equal, T_INT, dest);
2206     } else {
2207       LabelObj* L = new LabelObj();
2208       __ cmp(lir_cond_less, value, low_key);
2209       __ branch(lir_cond_less, T_INT, L->label());
2210       __ cmp(lir_cond_lessEqual, value, high_key);
2211       __ branch(lir_cond_lessEqual, T_INT, dest);
2212       __ branch_destination(L->label());
2213     }
2214   }
2215   __ jump(default_sux);
2216 }
2217 
2218 
2219 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2220   SwitchRangeList* res = new SwitchRangeList();
2221   int len = x->length();
2222   if (len > 0) {
2223     BlockBegin* sux = x->sux_at(0);
2224     int key = x->lo_key();
2225     BlockBegin* default_sux = x->default_sux();
2226     SwitchRange* range = new SwitchRange(key, sux);
2227     for (int i = 0; i < len; i++, key++) {
2228       BlockBegin* new_sux = x->sux_at(i);
2229       if (sux == new_sux) {
2230         // still in same range
2231         range->set_high_key(key);
2232       } else {
2233         // skip tests which explicitly dispatch to the default
2234         if (sux != default_sux) {
2235           res->append(range);
2236         }
2237         range = new SwitchRange(key, new_sux);
2238       }
2239       sux = new_sux;
2240     }
2241     if (res->length() == 0 || res->last() != range)  res->append(range);
2242   }
2243   return res;
2244 }
2245 
2246 
2247 // we expect the keys to be sorted by increasing value
2248 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2249   SwitchRangeList* res = new SwitchRangeList();
2250   int len = x->length();
2251   if (len > 0) {
2252     BlockBegin* default_sux = x->default_sux();
2253     int key = x->key_at(0);
2254     BlockBegin* sux = x->sux_at(0);
2255     SwitchRange* range = new SwitchRange(key, sux);
2256     for (int i = 1; i < len; i++) {
2257       int new_key = x->key_at(i);
2258       BlockBegin* new_sux = x->sux_at(i);
2259       if (key+1 == new_key && sux == new_sux) {
2260         // still in same range
2261         range->set_high_key(new_key);
2262       } else {
2263         // skip tests which explicitly dispatch to the default
2264         if (range->sux() != default_sux) {
2265           res->append(range);
2266         }
2267         range = new SwitchRange(new_key, new_sux);
2268       }
2269       key = new_key;
2270       sux = new_sux;
2271     }
2272     if (res->length() == 0 || res->last() != range)  res->append(range);
2273   }
2274   return res;
2275 }
2276 
2277 
2278 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2279   LIRItem tag(x->tag(), this);
2280   tag.load_item();
2281   set_no_result(x);
2282 
2283   if (x->is_safepoint()) {
2284     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2285   }
2286 
2287   // move values into phi locations
2288   move_to_phi(x->state());
2289 
2290   int lo_key = x->lo_key();
2291   int hi_key = x->hi_key();
2292   int len = x->length();
2293   LIR_Opr value = tag.result();
2294   if (UseTableRanges) {
2295     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2296   } else {
2297     for (int i = 0; i < len; i++) {
2298       __ cmp(lir_cond_equal, value, i + lo_key);
2299       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2300     }
2301     __ jump(x->default_sux());
2302   }
2303 }
2304 
2305 
2306 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2307   LIRItem tag(x->tag(), this);
2308   tag.load_item();
2309   set_no_result(x);
2310 
2311   if (x->is_safepoint()) {
2312     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2313   }
2314 
2315   // move values into phi locations
2316   move_to_phi(x->state());
2317 
2318   LIR_Opr value = tag.result();
2319   if (UseTableRanges) {
2320     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2321   } else {
2322     int len = x->length();
2323     for (int i = 0; i < len; i++) {
2324       __ cmp(lir_cond_equal, value, x->key_at(i));
2325       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2326     }
2327     __ jump(x->default_sux());
2328   }
2329 }
2330 
2331 
2332 void LIRGenerator::do_Goto(Goto* x) {
2333   set_no_result(x);
2334 
2335   if (block()->next()->as_OsrEntry()) {
2336     // need to free up storage used for OSR entry point
2337     LIR_Opr osrBuffer = block()->next()->operand();
2338     BasicTypeList signature;
2339     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2340     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2341     __ move(osrBuffer, cc->args()->at(0));
2342     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2343                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2344   }
2345 
2346   if (x->is_safepoint()) {
2347     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2348 
2349     // increment backedge counter if needed
2350     CodeEmitInfo* info = state_for(x, state);
2351     increment_backedge_counter(info, x->profiled_bci());
2352     CodeEmitInfo* safepoint_info = state_for(x, state);
2353     __ safepoint(safepoint_poll_register(), safepoint_info);
2354   }
2355 
2356   // Gotos can be folded Ifs, handle this case.
2357   if (x->should_profile()) {
2358     ciMethod* method = x->profiled_method();
2359     assert(method != NULL, "method should be set if branch is profiled");
2360     ciMethodData* md = method->method_data_or_null();
2361     assert(md != NULL, "Sanity");
2362     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2363     assert(data != NULL, "must have profiling data");
2364     int offset;
2365     if (x->direction() == Goto::taken) {
2366       assert(data->is_BranchData(), "need BranchData for two-way branches");
2367       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2368     } else if (x->direction() == Goto::not_taken) {
2369       assert(data->is_BranchData(), "need BranchData for two-way branches");
2370       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2371     } else {
2372       assert(data->is_JumpData(), "need JumpData for branches");
2373       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2374     }
2375     LIR_Opr md_reg = new_register(T_METADATA);
2376     __ metadata2reg(md->constant_encoding(), md_reg);
2377 
2378     increment_counter(new LIR_Address(md_reg, offset,
2379                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2380   }
2381 
2382   // emit phi-instruction move after safepoint since this simplifies
2383   // describing the state as the safepoint.
2384   move_to_phi(x->state());
2385 
2386   __ jump(x->default_sux());
2387 }
2388 
2389 /**
2390  * Emit profiling code if needed for arguments, parameters, return value types
2391  *
2392  * @param md                    MDO the code will update at runtime
2393  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2394  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2395  * @param profiled_k            current profile
2396  * @param obj                   IR node for the object to be profiled
2397  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2398  *                              Set once we find an update to make and use for next ones.
2399  * @param not_null              true if we know obj cannot be null
2400  * @param signature_at_call_k   signature at call for obj
2401  * @param callee_signature_k    signature of callee for obj
2402  *                              at call and callee signatures differ at method handle call
2403  * @return                      the only klass we know will ever be seen at this profile point
2404  */
2405 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2406                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2407                                     ciKlass* callee_signature_k) {
2408   ciKlass* result = NULL;
2409   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2410   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2411   // known not to be null or null bit already set and already set to
2412   // unknown: nothing we can do to improve profiling
2413   if (!do_null && !do_update) {
2414     return result;
2415   }
2416 
2417   ciKlass* exact_klass = NULL;
2418   Compilation* comp = Compilation::current();
2419   if (do_update) {
2420     // try to find exact type, using CHA if possible, so that loading
2421     // the klass from the object can be avoided
2422     ciType* type = obj->exact_type();
2423     if (type == NULL) {
2424       type = obj->declared_type();
2425       type = comp->cha_exact_type(type);
2426     }
2427     assert(type == NULL || type->is_klass(), "type should be class");
2428     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2429 
2430     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2431   }
2432 
2433   if (!do_null && !do_update) {
2434     return result;
2435   }
2436 
2437   ciKlass* exact_signature_k = NULL;
2438   if (do_update) {
2439     // Is the type from the signature exact (the only one possible)?
2440     exact_signature_k = signature_at_call_k->exact_klass();
2441     if (exact_signature_k == NULL) {
2442       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2443     } else {
2444       result = exact_signature_k;
2445       // Known statically. No need to emit any code: prevent
2446       // LIR_Assembler::emit_profile_type() from emitting useless code
2447       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2448     }
2449     // exact_klass and exact_signature_k can be both non NULL but
2450     // different if exact_klass is loaded after the ciObject for
2451     // exact_signature_k is created.
2452     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2453       // sometimes the type of the signature is better than the best type
2454       // the compiler has
2455       exact_klass = exact_signature_k;
2456     }
2457     if (callee_signature_k != NULL &&
2458         callee_signature_k != signature_at_call_k) {
2459       ciKlass* improved_klass = callee_signature_k->exact_klass();
2460       if (improved_klass == NULL) {
2461         improved_klass = comp->cha_exact_type(callee_signature_k);
2462       }
2463       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2464         exact_klass = exact_signature_k;
2465       }
2466     }
2467     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2468   }
2469 
2470   if (!do_null && !do_update) {
2471     return result;
2472   }
2473 
2474   if (mdp == LIR_OprFact::illegalOpr) {
2475     mdp = new_register(T_METADATA);
2476     __ metadata2reg(md->constant_encoding(), mdp);
2477     if (md_base_offset != 0) {
2478       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2479       mdp = new_pointer_register();
2480       __ leal(LIR_OprFact::address(base_type_address), mdp);
2481     }
2482   }
2483   LIRItem value(obj, this);
2484   value.load_item();
2485   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2486                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2487   return result;
2488 }
2489 
2490 // profile parameters on entry to the root of the compilation
2491 void LIRGenerator::profile_parameters(Base* x) {
2492   if (compilation()->profile_parameters()) {
2493     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2494     ciMethodData* md = scope()->method()->method_data_or_null();
2495     assert(md != NULL, "Sanity");
2496 
2497     if (md->parameters_type_data() != NULL) {
2498       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2499       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2500       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2501       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2502         LIR_Opr src = args->at(i);
2503         assert(!src->is_illegal(), "check");
2504         BasicType t = src->type();
2505         if (t == T_OBJECT || t == T_ARRAY) {
2506           intptr_t profiled_k = parameters->type(j);
2507           Local* local = x->state()->local_at(java_index)->as_Local();
2508           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2509                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2510                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2511           // If the profile is known statically set it once for all and do not emit any code
2512           if (exact != NULL) {
2513             md->set_parameter_type(j, exact);
2514           }
2515           j++;
2516         }
2517         java_index += type2size[t];
2518       }
2519     }
2520   }
2521 }
2522 
2523 void LIRGenerator::do_Base(Base* x) {
2524   __ std_entry(LIR_OprFact::illegalOpr);
2525   // Emit moves from physical registers / stack slots to virtual registers
2526   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2527   IRScope* irScope = compilation()->hir()->top_scope();
2528   int java_index = 0;
2529   for (int i = 0; i < args->length(); i++) {
2530     LIR_Opr src = args->at(i);
2531     assert(!src->is_illegal(), "check");
2532     BasicType t = src->type();
2533 
2534     // Types which are smaller than int are passed as int, so
2535     // correct the type which passed.
2536     switch (t) {
2537     case T_BYTE:
2538     case T_BOOLEAN:
2539     case T_SHORT:
2540     case T_CHAR:
2541       t = T_INT;
2542       break;
2543     }
2544 
2545     LIR_Opr dest = new_register(t);
2546     __ move(src, dest);
2547 
2548     // Assign new location to Local instruction for this local
2549     Local* local = x->state()->local_at(java_index)->as_Local();
2550     assert(local != NULL, "Locals for incoming arguments must have been created");
2551 #ifndef __SOFTFP__
2552     // The java calling convention passes double as long and float as int.
2553     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2554 #endif // __SOFTFP__
2555     local->set_operand(dest);
2556     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2557     java_index += type2size[t];
2558   }
2559 
2560   if (compilation()->env()->dtrace_method_probes()) {
2561     BasicTypeList signature;
2562     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2563     signature.append(T_METADATA); // Method*
2564     LIR_OprList* args = new LIR_OprList();
2565     args->append(getThreadPointer());
2566     LIR_Opr meth = new_register(T_METADATA);
2567     __ metadata2reg(method()->constant_encoding(), meth);
2568     args->append(meth);
2569     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2570   }
2571 
2572   if (method()->is_synchronized()) {
2573     LIR_Opr obj;
2574     if (method()->is_static()) {
2575       obj = new_register(T_OBJECT);
2576       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2577     } else {
2578       Local* receiver = x->state()->local_at(0)->as_Local();
2579       assert(receiver != NULL, "must already exist");
2580       obj = receiver->operand();
2581     }
2582     assert(obj->is_valid(), "must be valid");
2583 
2584     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2585       LIR_Opr lock = syncLockOpr();
2586       __ load_stack_address_monitor(0, lock);
2587 
2588       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2589       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2590 
2591       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2592       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2593     }
2594   }
2595   if (compilation()->age_code()) {
2596     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2597     decrement_age(info);
2598   }
2599   // increment invocation counters if needed
2600   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2601     profile_parameters(x);
2602     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2603     increment_invocation_counter(info);
2604   }
2605 
2606   // all blocks with a successor must end with an unconditional jump
2607   // to the successor even if they are consecutive
2608   __ jump(x->default_sux());
2609 }
2610 
2611 
2612 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2613   // construct our frame and model the production of incoming pointer
2614   // to the OSR buffer.
2615   __ osr_entry(LIR_Assembler::osrBufferPointer());
2616   LIR_Opr result = rlock_result(x);
2617   __ move(LIR_Assembler::osrBufferPointer(), result);
2618 }
2619 
2620 
2621 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2622   assert(args->length() == arg_list->length(),
2623          "args=%d, arg_list=%d", args->length(), arg_list->length());
2624   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2625     LIRItem* param = args->at(i);
2626     LIR_Opr loc = arg_list->at(i);
2627     if (loc->is_register()) {
2628       param->load_item_force(loc);
2629     } else {
2630       LIR_Address* addr = loc->as_address_ptr();
2631       param->load_for_store(addr->type());
2632       if (addr->type() == T_OBJECT) {
2633         __ move_wide(param->result(), addr);
2634       } else
2635         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2636           __ unaligned_move(param->result(), addr);
2637         } else {
2638           __ move(param->result(), addr);
2639         }
2640     }
2641   }
2642 
2643   if (x->has_receiver()) {
2644     LIRItem* receiver = args->at(0);
2645     LIR_Opr loc = arg_list->at(0);
2646     if (loc->is_register()) {
2647       receiver->load_item_force(loc);
2648     } else {
2649       assert(loc->is_address(), "just checking");
2650       receiver->load_for_store(T_OBJECT);
2651       __ move_wide(receiver->result(), loc->as_address_ptr());
2652     }
2653   }
2654 }
2655 
2656 
2657 // Visits all arguments, returns appropriate items without loading them
2658 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2659   LIRItemList* argument_items = new LIRItemList();
2660   if (x->has_receiver()) {
2661     LIRItem* receiver = new LIRItem(x->receiver(), this);
2662     argument_items->append(receiver);
2663   }
2664   for (int i = 0; i < x->number_of_arguments(); i++) {
2665     LIRItem* param = new LIRItem(x->argument_at(i), this);
2666     argument_items->append(param);
2667   }
2668   return argument_items;
2669 }
2670 
2671 
2672 // The invoke with receiver has following phases:
2673 //   a) traverse and load/lock receiver;
2674 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2675 //   c) push receiver on stack
2676 //   d) load each of the items and push on stack
2677 //   e) unlock receiver
2678 //   f) move receiver into receiver-register %o0
2679 //   g) lock result registers and emit call operation
2680 //
2681 // Before issuing a call, we must spill-save all values on stack
2682 // that are in caller-save register. "spill-save" moves those registers
2683 // either in a free callee-save register or spills them if no free
2684 // callee save register is available.
2685 //
2686 // The problem is where to invoke spill-save.
2687 // - if invoked between e) and f), we may lock callee save
2688 //   register in "spill-save" that destroys the receiver register
2689 //   before f) is executed
2690 // - if we rearrange f) to be earlier (by loading %o0) it
2691 //   may destroy a value on the stack that is currently in %o0
2692 //   and is waiting to be spilled
2693 // - if we keep the receiver locked while doing spill-save,
2694 //   we cannot spill it as it is spill-locked
2695 //
2696 void LIRGenerator::do_Invoke(Invoke* x) {
2697   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2698 
2699   LIR_OprList* arg_list = cc->args();
2700   LIRItemList* args = invoke_visit_arguments(x);
2701   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2702 
2703   // setup result register
2704   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2705   if (x->type() != voidType) {
2706     result_register = result_register_for(x->type());
2707   }
2708 
2709   CodeEmitInfo* info = state_for(x, x->state());
2710 
2711   invoke_load_arguments(x, args, arg_list);
2712 
2713   if (x->has_receiver()) {
2714     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2715     receiver = args->at(0)->result();
2716   }
2717 
2718   // emit invoke code
2719   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2720 
2721   // JSR 292
2722   // Preserve the SP over MethodHandle call sites, if needed.
2723   ciMethod* target = x->target();
2724   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2725                                   target->is_method_handle_intrinsic() ||
2726                                   target->is_compiled_lambda_form());
2727   if (is_method_handle_invoke) {
2728     info->set_is_method_handle_invoke(true);
2729     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2730         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2731     }
2732   }
2733 
2734   switch (x->code()) {
2735     case Bytecodes::_invokestatic:
2736       __ call_static(target, result_register,
2737                      SharedRuntime::get_resolve_static_call_stub(),
2738                      arg_list, info);
2739       break;
2740     case Bytecodes::_invokespecial:
2741     case Bytecodes::_invokevirtual:
2742     case Bytecodes::_invokeinterface:
2743       // for loaded and final (method or class) target we still produce an inline cache,
2744       // in order to be able to call mixed mode
2745       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
2746         __ call_opt_virtual(target, receiver, result_register,
2747                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2748                             arg_list, info);
2749       } else if (x->vtable_index() < 0) {
2750         __ call_icvirtual(target, receiver, result_register,
2751                           SharedRuntime::get_resolve_virtual_call_stub(),
2752                           arg_list, info);
2753       } else {
2754         int entry_offset = in_bytes(Klass::vtable_start_offset()) + x->vtable_index() * vtableEntry::size_in_bytes();
2755         int vtable_offset = entry_offset + vtableEntry::method_offset_in_bytes();
2756         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
2757       }
2758       break;
2759     case Bytecodes::_invokedynamic: {
2760       __ call_dynamic(target, receiver, result_register,
2761                       SharedRuntime::get_resolve_static_call_stub(),
2762                       arg_list, info);
2763       break;
2764     }
2765     default:
2766       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
2767       break;
2768   }
2769 
2770   // JSR 292
2771   // Restore the SP after MethodHandle call sites, if needed.
2772   if (is_method_handle_invoke
2773       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2774     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2775   }
2776 
2777   if (x->type()->is_float() || x->type()->is_double()) {
2778     // Force rounding of results from non-strictfp when in strictfp
2779     // scope (or when we don't know the strictness of the callee, to
2780     // be safe.)
2781     if (method()->is_strict()) {
2782       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
2783         result_register = round_item(result_register);
2784       }
2785     }
2786   }
2787 
2788   if (result_register->is_valid()) {
2789     LIR_Opr result = rlock_result(x);
2790     __ move(result_register, result);
2791   }
2792 }
2793 
2794 
2795 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2796   assert(x->number_of_arguments() == 1, "wrong type");
2797   LIRItem value       (x->argument_at(0), this);
2798   LIR_Opr reg = rlock_result(x);
2799   value.load_item();
2800   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2801   __ move(tmp, reg);
2802 }
2803 
2804 
2805 
2806 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2807 void LIRGenerator::do_IfOp(IfOp* x) {
2808 #ifdef ASSERT
2809   {
2810     ValueTag xtag = x->x()->type()->tag();
2811     ValueTag ttag = x->tval()->type()->tag();
2812     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2813     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2814     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2815   }
2816 #endif
2817 
2818   LIRItem left(x->x(), this);
2819   LIRItem right(x->y(), this);
2820   left.load_item();
2821   if (can_inline_as_constant(right.value())) {
2822     right.dont_load_item();
2823   } else {
2824     right.load_item();
2825   }
2826 
2827   LIRItem t_val(x->tval(), this);
2828   LIRItem f_val(x->fval(), this);
2829   t_val.dont_load_item();
2830   f_val.dont_load_item();
2831   LIR_Opr reg = rlock_result(x);
2832 
2833   __ cmp(lir_cond(x->cond()), left.result(), right.result());
2834   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
2835 }
2836 
2837 #ifdef TRACE_HAVE_INTRINSICS
2838 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
2839   CodeEmitInfo* info = state_for(x);
2840   CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
2841 
2842   assert(info != NULL, "must have info");
2843   LIRItem arg(x->argument_at(0), this);
2844 
2845   arg.load_item();
2846   LIR_Opr klass = new_register(T_METADATA);
2847   __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), klass, info);
2848   LIR_Opr id = new_register(T_LONG);
2849   ByteSize offset = TRACE_KLASS_TRACE_ID_OFFSET;
2850   LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
2851 
2852   __ move(trace_id_addr, id);
2853   __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
2854   __ store(id, trace_id_addr);
2855 
2856 #ifdef TRACE_ID_META_BITS
2857   __ logical_and(id, LIR_OprFact::longConst(~TRACE_ID_META_BITS), id);
2858 #endif
2859 #ifdef TRACE_ID_CLASS_SHIFT
2860   __ unsigned_shift_right(id, TRACE_ID_CLASS_SHIFT, id);
2861 #endif
2862 
2863   __ move(id, rlock_result(x));
2864 }
2865 
2866 void LIRGenerator::do_getBufferWriter(Intrinsic* x) {
2867   LabelObj* L_end = new LabelObj();
2868 
2869   LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(),
2870                                            in_bytes(TRACE_THREAD_DATA_WRITER_OFFSET),
2871                                            T_OBJECT);
2872   LIR_Opr result = rlock_result(x);
2873   __ move_wide(jobj_addr, result);
2874   __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(NULL));
2875   __ branch(lir_cond_equal, T_OBJECT, L_end->label());
2876   __ move_wide(new LIR_Address(result, T_OBJECT), result);
2877 
2878   __ branch_destination(L_end->label());
2879 }
2880 
2881 #endif
2882 
2883 
2884 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
2885   assert(x->number_of_arguments() == 0, "wrong type");
2886   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
2887   BasicTypeList signature;
2888   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2889   LIR_Opr reg = result_register_for(x->type());
2890   __ call_runtime_leaf(routine, getThreadTemp(),
2891                        reg, new LIR_OprList());
2892   LIR_Opr result = rlock_result(x);
2893   __ move(reg, result);
2894 }
2895 
2896 
2897 
2898 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2899   switch (x->id()) {
2900   case vmIntrinsics::_intBitsToFloat      :
2901   case vmIntrinsics::_doubleToRawLongBits :
2902   case vmIntrinsics::_longBitsToDouble    :
2903   case vmIntrinsics::_floatToRawIntBits   : {
2904     do_FPIntrinsics(x);
2905     break;
2906   }
2907 
2908 #ifdef TRACE_HAVE_INTRINSICS
2909   case vmIntrinsics::_getClassId:
2910     do_ClassIDIntrinsic(x);
2911     break;
2912   case vmIntrinsics::_getBufferWriter:
2913     do_getBufferWriter(x);
2914     break;
2915   case vmIntrinsics::_counterTime:
2916     do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), x);
2917     break;
2918 #endif
2919 
2920   case vmIntrinsics::_currentTimeMillis:
2921     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
2922     break;
2923 
2924   case vmIntrinsics::_nanoTime:
2925     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
2926     break;
2927 
2928   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
2929   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
2930   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
2931   case vmIntrinsics::_getClass:       do_getClass(x);      break;
2932   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
2933 
2934   case vmIntrinsics::_dlog:           // fall through
2935   case vmIntrinsics::_dlog10:         // fall through
2936   case vmIntrinsics::_dabs:           // fall through
2937   case vmIntrinsics::_dsqrt:          // fall through
2938   case vmIntrinsics::_dtan:           // fall through
2939   case vmIntrinsics::_dsin :          // fall through
2940   case vmIntrinsics::_dcos :          // fall through
2941   case vmIntrinsics::_dexp :          // fall through
2942   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
2943   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
2944 
2945   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
2946   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
2947 
2948   // java.nio.Buffer.checkIndex
2949   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
2950 
2951   case vmIntrinsics::_compareAndSwapObject:
2952     do_CompareAndSwap(x, objectType);
2953     break;
2954   case vmIntrinsics::_compareAndSwapInt:
2955     do_CompareAndSwap(x, intType);
2956     break;
2957   case vmIntrinsics::_compareAndSwapLong:
2958     do_CompareAndSwap(x, longType);
2959     break;
2960 
2961   case vmIntrinsics::_loadFence :
2962     if (os::is_MP()) __ membar_acquire();
2963     break;
2964   case vmIntrinsics::_storeFence:
2965     if (os::is_MP()) __ membar_release();
2966     break;
2967   case vmIntrinsics::_fullFence :
2968     if (os::is_MP()) __ membar();
2969     break;
2970   case vmIntrinsics::_onSpinWait:
2971     __ on_spin_wait();
2972     break;
2973   case vmIntrinsics::_Reference_get:
2974     do_Reference_get(x);
2975     break;
2976 
2977   case vmIntrinsics::_updateCRC32:
2978   case vmIntrinsics::_updateBytesCRC32:
2979   case vmIntrinsics::_updateByteBufferCRC32:
2980     do_update_CRC32(x);
2981     break;
2982 
2983   case vmIntrinsics::_updateBytesCRC32C:
2984   case vmIntrinsics::_updateDirectByteBufferCRC32C:
2985     do_update_CRC32C(x);
2986     break;
2987 
2988   case vmIntrinsics::_vectorizedMismatch:
2989     do_vectorizedMismatch(x);
2990     break;
2991 
2992   default: ShouldNotReachHere(); break;
2993   }
2994 }
2995 
2996 void LIRGenerator::profile_arguments(ProfileCall* x) {
2997   if (compilation()->profile_arguments()) {
2998     int bci = x->bci_of_invoke();
2999     ciMethodData* md = x->method()->method_data_or_null();
3000     ciProfileData* data = md->bci_to_data(bci);
3001     if (data != NULL) {
3002       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3003           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3004         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3005         int base_offset = md->byte_offset_of_slot(data, extra);
3006         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3007         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3008 
3009         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3010         int start = 0;
3011         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3012         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3013           // first argument is not profiled at call (method handle invoke)
3014           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3015           start = 1;
3016         }
3017         ciSignature* callee_signature = x->callee()->signature();
3018         // method handle call to virtual method
3019         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3020         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3021 
3022         bool ignored_will_link;
3023         ciSignature* signature_at_call = NULL;
3024         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3025         ciSignatureStream signature_at_call_stream(signature_at_call);
3026 
3027         // if called through method handle invoke, some arguments may have been popped
3028         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3029           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3030           ciKlass* exact = profile_type(md, base_offset, off,
3031               args->type(i), x->profiled_arg_at(i+start), mdp,
3032               !x->arg_needs_null_check(i+start),
3033               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3034           if (exact != NULL) {
3035             md->set_argument_type(bci, i, exact);
3036           }
3037         }
3038       } else {
3039 #ifdef ASSERT
3040         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3041         int n = x->nb_profiled_args();
3042         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3043             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3044             "only at JSR292 bytecodes");
3045 #endif
3046       }
3047     }
3048   }
3049 }
3050 
3051 // profile parameters on entry to an inlined method
3052 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3053   if (compilation()->profile_parameters() && x->inlined()) {
3054     ciMethodData* md = x->callee()->method_data_or_null();
3055     if (md != NULL) {
3056       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3057       if (parameters_type_data != NULL) {
3058         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3059         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3060         bool has_receiver = !x->callee()->is_static();
3061         ciSignature* sig = x->callee()->signature();
3062         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3063         int i = 0; // to iterate on the Instructions
3064         Value arg = x->recv();
3065         bool not_null = false;
3066         int bci = x->bci_of_invoke();
3067         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3068         // The first parameter is the receiver so that's what we start
3069         // with if it exists. One exception is method handle call to
3070         // virtual method: the receiver is in the args list
3071         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3072           i = 1;
3073           arg = x->profiled_arg_at(0);
3074           not_null = !x->arg_needs_null_check(0);
3075         }
3076         int k = 0; // to iterate on the profile data
3077         for (;;) {
3078           intptr_t profiled_k = parameters->type(k);
3079           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3080                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3081                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3082           // If the profile is known statically set it once for all and do not emit any code
3083           if (exact != NULL) {
3084             md->set_parameter_type(k, exact);
3085           }
3086           k++;
3087           if (k >= parameters_type_data->number_of_parameters()) {
3088 #ifdef ASSERT
3089             int extra = 0;
3090             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3091                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3092                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3093               extra += 1;
3094             }
3095             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3096 #endif
3097             break;
3098           }
3099           arg = x->profiled_arg_at(i);
3100           not_null = !x->arg_needs_null_check(i);
3101           i++;
3102         }
3103       }
3104     }
3105   }
3106 }
3107 
3108 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3109   // Need recv in a temporary register so it interferes with the other temporaries
3110   LIR_Opr recv = LIR_OprFact::illegalOpr;
3111   LIR_Opr mdo = new_register(T_OBJECT);
3112   // tmp is used to hold the counters on SPARC
3113   LIR_Opr tmp = new_pointer_register();
3114 
3115   if (x->nb_profiled_args() > 0) {
3116     profile_arguments(x);
3117   }
3118 
3119   // profile parameters on inlined method entry including receiver
3120   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3121     profile_parameters_at_call(x);
3122   }
3123 
3124   if (x->recv() != NULL) {
3125     LIRItem value(x->recv(), this);
3126     value.load_item();
3127     recv = new_register(T_OBJECT);
3128     __ move(value.result(), recv);
3129   }
3130   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3131 }
3132 
3133 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3134   int bci = x->bci_of_invoke();
3135   ciMethodData* md = x->method()->method_data_or_null();
3136   ciProfileData* data = md->bci_to_data(bci);
3137   if (data != NULL) {
3138     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3139     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3140     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3141 
3142     bool ignored_will_link;
3143     ciSignature* signature_at_call = NULL;
3144     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3145 
3146     // The offset within the MDO of the entry to update may be too large
3147     // to be used in load/store instructions on some platforms. So have
3148     // profile_type() compute the address of the profile in a register.
3149     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3150         ret->type(), x->ret(), mdp,
3151         !x->needs_null_check(),
3152         signature_at_call->return_type()->as_klass(),
3153         x->callee()->signature()->return_type()->as_klass());
3154     if (exact != NULL) {
3155       md->set_return_type(bci, exact);
3156     }
3157   }
3158 }
3159 
3160 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3161   // We can safely ignore accessors here, since c2 will inline them anyway,
3162   // accessors are also always mature.
3163   if (!x->inlinee()->is_accessor()) {
3164     CodeEmitInfo* info = state_for(x, x->state(), true);
3165     // Notify the runtime very infrequently only to take care of counter overflows
3166     int freq_log = Tier23InlineeNotifyFreqLog;
3167     double scale;
3168     if (_method->has_option_value("CompileThresholdScaling", scale)) {
3169       freq_log = Arguments::scaled_freq_log(freq_log, scale);
3170     }
3171     increment_event_counter_impl(info, x->inlinee(), right_n_bits(freq_log), InvocationEntryBci, false, true);
3172   }
3173 }
3174 
3175 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
3176   int freq_log = 0;
3177   int level = compilation()->env()->comp_level();
3178   if (level == CompLevel_limited_profile) {
3179     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3180   } else if (level == CompLevel_full_profile) {
3181     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3182   } else {
3183     ShouldNotReachHere();
3184   }
3185   // Increment the appropriate invocation/backedge counter and notify the runtime.
3186   double scale;
3187   if (_method->has_option_value("CompileThresholdScaling", scale)) {
3188     freq_log = Arguments::scaled_freq_log(freq_log, scale);
3189   }
3190   increment_event_counter_impl(info, info->scope()->method(), right_n_bits(freq_log), bci, backedge, true);
3191 }
3192 
3193 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3194   ciMethod* method = info->scope()->method();
3195   MethodCounters* mc_adr = method->ensure_method_counters();
3196   if (mc_adr != NULL) {
3197     LIR_Opr mc = new_pointer_register();
3198     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3199     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3200     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3201     LIR_Opr result = new_register(T_INT);
3202     __ load(counter, result);
3203     __ sub(result, LIR_OprFact::intConst(1), result);
3204     __ store(result, counter);
3205     // DeoptimizeStub will reexecute from the current state in code info.
3206     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3207                                          Deoptimization::Action_make_not_entrant);
3208     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3209     __ branch(lir_cond_lessEqual, T_INT, deopt);
3210   }
3211 }
3212 
3213 
3214 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3215                                                 ciMethod *method, int frequency,
3216                                                 int bci, bool backedge, bool notify) {
3217   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3218   int level = _compilation->env()->comp_level();
3219   assert(level > CompLevel_simple, "Shouldn't be here");
3220 
3221   int offset = -1;
3222   LIR_Opr counter_holder = NULL;
3223   if (level == CompLevel_limited_profile) {
3224     MethodCounters* counters_adr = method->ensure_method_counters();
3225     if (counters_adr == NULL) {
3226       bailout("method counters allocation failed");
3227       return;
3228     }
3229     counter_holder = new_pointer_register();
3230     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3231     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3232                                  MethodCounters::invocation_counter_offset());
3233   } else if (level == CompLevel_full_profile) {
3234     counter_holder = new_register(T_METADATA);
3235     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3236                                  MethodData::invocation_counter_offset());
3237     ciMethodData* md = method->method_data_or_null();
3238     assert(md != NULL, "Sanity");
3239     __ metadata2reg(md->constant_encoding(), counter_holder);
3240   } else {
3241     ShouldNotReachHere();
3242   }
3243   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3244   LIR_Opr result = new_register(T_INT);
3245   __ load(counter, result);
3246   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3247   __ store(result, counter);
3248   if (notify && (!backedge || UseOnStackReplacement)) {
3249     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3250     // The bci for info can point to cmp for if's we want the if bci
3251     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3252     int freq = frequency << InvocationCounter::count_shift;
3253     if (freq == 0) {
3254       __ branch(lir_cond_always, T_ILLEGAL, overflow);
3255     } else {
3256       LIR_Opr mask = load_immediate(freq, T_INT);
3257       __ logical_and(result, mask, result);
3258       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3259       __ branch(lir_cond_equal, T_INT, overflow);
3260     }
3261     __ branch_destination(overflow->continuation());
3262   }
3263 }
3264 
3265 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3266   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3267   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3268 
3269   if (x->pass_thread()) {
3270     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3271     args->append(getThreadPointer());
3272   }
3273 
3274   for (int i = 0; i < x->number_of_arguments(); i++) {
3275     Value a = x->argument_at(i);
3276     LIRItem* item = new LIRItem(a, this);
3277     item->load_item();
3278     args->append(item->result());
3279     signature->append(as_BasicType(a->type()));
3280   }
3281 
3282   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3283   if (x->type() == voidType) {
3284     set_no_result(x);
3285   } else {
3286     __ move(result, rlock_result(x));
3287   }
3288 }
3289 
3290 #ifdef ASSERT
3291 void LIRGenerator::do_Assert(Assert *x) {
3292   ValueTag tag = x->x()->type()->tag();
3293   If::Condition cond = x->cond();
3294 
3295   LIRItem xitem(x->x(), this);
3296   LIRItem yitem(x->y(), this);
3297   LIRItem* xin = &xitem;
3298   LIRItem* yin = &yitem;
3299 
3300   assert(tag == intTag, "Only integer assertions are valid!");
3301 
3302   xin->load_item();
3303   yin->dont_load_item();
3304 
3305   set_no_result(x);
3306 
3307   LIR_Opr left = xin->result();
3308   LIR_Opr right = yin->result();
3309 
3310   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3311 }
3312 #endif
3313 
3314 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3315 
3316 
3317   Instruction *a = x->x();
3318   Instruction *b = x->y();
3319   if (!a || StressRangeCheckElimination) {
3320     assert(!b || StressRangeCheckElimination, "B must also be null");
3321 
3322     CodeEmitInfo *info = state_for(x, x->state());
3323     CodeStub* stub = new PredicateFailedStub(info);
3324 
3325     __ jump(stub);
3326   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3327     int a_int = a->type()->as_IntConstant()->value();
3328     int b_int = b->type()->as_IntConstant()->value();
3329 
3330     bool ok = false;
3331 
3332     switch(x->cond()) {
3333       case Instruction::eql: ok = (a_int == b_int); break;
3334       case Instruction::neq: ok = (a_int != b_int); break;
3335       case Instruction::lss: ok = (a_int < b_int); break;
3336       case Instruction::leq: ok = (a_int <= b_int); break;
3337       case Instruction::gtr: ok = (a_int > b_int); break;
3338       case Instruction::geq: ok = (a_int >= b_int); break;
3339       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3340       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3341       default: ShouldNotReachHere();
3342     }
3343 
3344     if (ok) {
3345 
3346       CodeEmitInfo *info = state_for(x, x->state());
3347       CodeStub* stub = new PredicateFailedStub(info);
3348 
3349       __ jump(stub);
3350     }
3351   } else {
3352 
3353     ValueTag tag = x->x()->type()->tag();
3354     If::Condition cond = x->cond();
3355     LIRItem xitem(x->x(), this);
3356     LIRItem yitem(x->y(), this);
3357     LIRItem* xin = &xitem;
3358     LIRItem* yin = &yitem;
3359 
3360     assert(tag == intTag, "Only integer deoptimizations are valid!");
3361 
3362     xin->load_item();
3363     yin->dont_load_item();
3364     set_no_result(x);
3365 
3366     LIR_Opr left = xin->result();
3367     LIR_Opr right = yin->result();
3368 
3369     CodeEmitInfo *info = state_for(x, x->state());
3370     CodeStub* stub = new PredicateFailedStub(info);
3371 
3372     __ cmp(lir_cond(cond), left, right);
3373     __ branch(lir_cond(cond), right->type(), stub);
3374   }
3375 }
3376 
3377 
3378 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3379   LIRItemList args(1);
3380   LIRItem value(arg1, this);
3381   args.append(&value);
3382   BasicTypeList signature;
3383   signature.append(as_BasicType(arg1->type()));
3384 
3385   return call_runtime(&signature, &args, entry, result_type, info);
3386 }
3387 
3388 
3389 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3390   LIRItemList args(2);
3391   LIRItem value1(arg1, this);
3392   LIRItem value2(arg2, this);
3393   args.append(&value1);
3394   args.append(&value2);
3395   BasicTypeList signature;
3396   signature.append(as_BasicType(arg1->type()));
3397   signature.append(as_BasicType(arg2->type()));
3398 
3399   return call_runtime(&signature, &args, entry, result_type, info);
3400 }
3401 
3402 
3403 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3404                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3405   // get a result register
3406   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3407   LIR_Opr result = LIR_OprFact::illegalOpr;
3408   if (result_type->tag() != voidTag) {
3409     result = new_register(result_type);
3410     phys_reg = result_register_for(result_type);
3411   }
3412 
3413   // move the arguments into the correct location
3414   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3415   assert(cc->length() == args->length(), "argument mismatch");
3416   for (int i = 0; i < args->length(); i++) {
3417     LIR_Opr arg = args->at(i);
3418     LIR_Opr loc = cc->at(i);
3419     if (loc->is_register()) {
3420       __ move(arg, loc);
3421     } else {
3422       LIR_Address* addr = loc->as_address_ptr();
3423 //           if (!can_store_as_constant(arg)) {
3424 //             LIR_Opr tmp = new_register(arg->type());
3425 //             __ move(arg, tmp);
3426 //             arg = tmp;
3427 //           }
3428       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3429         __ unaligned_move(arg, addr);
3430       } else {
3431         __ move(arg, addr);
3432       }
3433     }
3434   }
3435 
3436   if (info) {
3437     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3438   } else {
3439     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3440   }
3441   if (result->is_valid()) {
3442     __ move(phys_reg, result);
3443   }
3444   return result;
3445 }
3446 
3447 
3448 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3449                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3450   // get a result register
3451   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3452   LIR_Opr result = LIR_OprFact::illegalOpr;
3453   if (result_type->tag() != voidTag) {
3454     result = new_register(result_type);
3455     phys_reg = result_register_for(result_type);
3456   }
3457 
3458   // move the arguments into the correct location
3459   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3460 
3461   assert(cc->length() == args->length(), "argument mismatch");
3462   for (int i = 0; i < args->length(); i++) {
3463     LIRItem* arg = args->at(i);
3464     LIR_Opr loc = cc->at(i);
3465     if (loc->is_register()) {
3466       arg->load_item_force(loc);
3467     } else {
3468       LIR_Address* addr = loc->as_address_ptr();
3469       arg->load_for_store(addr->type());
3470       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3471         __ unaligned_move(arg->result(), addr);
3472       } else {
3473         __ move(arg->result(), addr);
3474       }
3475     }
3476   }
3477 
3478   if (info) {
3479     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3480   } else {
3481     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3482   }
3483   if (result->is_valid()) {
3484     __ move(phys_reg, result);
3485   }
3486   return result;
3487 }
3488 
3489 void LIRGenerator::do_MemBar(MemBar* x) {
3490   if (os::is_MP()) {
3491     LIR_Code code = x->code();
3492     switch(code) {
3493       case lir_membar_acquire   : __ membar_acquire(); break;
3494       case lir_membar_release   : __ membar_release(); break;
3495       case lir_membar           : __ membar(); break;
3496       case lir_membar_loadload  : __ membar_loadload(); break;
3497       case lir_membar_storestore: __ membar_storestore(); break;
3498       case lir_membar_loadstore : __ membar_loadstore(); break;
3499       case lir_membar_storeload : __ membar_storeload(); break;
3500       default                   : ShouldNotReachHere(); break;
3501     }
3502   }
3503 }
3504 
3505 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3506   LIR_Opr value_fixed = rlock_byte(T_BYTE);
3507   if (TwoOperandLIRForm) {
3508     __ move(value, value_fixed);
3509     __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3510   } else {
3511     __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3512   }
3513   LIR_Opr klass = new_register(T_METADATA);
3514   __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
3515   null_check_info = NULL;
3516   LIR_Opr layout = new_register(T_INT);
3517   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3518   int diffbit = Klass::layout_helper_boolean_diffbit();
3519   __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3520   __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3521   __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3522   value = value_fixed;
3523   return value;
3524 }
3525 
3526 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3527   if (x->check_boolean()) {
3528     value = mask_boolean(array, value, null_check_info);
3529   }
3530   return value;
3531 }