1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_CMS_COMPACTIBLEFREELISTSPACE_HPP
  26 #define SHARE_VM_GC_CMS_COMPACTIBLEFREELISTSPACE_HPP
  27 
  28 #include "gc/cms/adaptiveFreeList.hpp"
  29 #include "gc/cms/promotionInfo.hpp"
  30 #include "gc/shared/blockOffsetTable.hpp"
  31 #include "gc/shared/cardTable.hpp"
  32 #include "gc/shared/space.hpp"
  33 #include "logging/log.hpp"
  34 #include "memory/binaryTreeDictionary.hpp"
  35 #include "memory/freeList.hpp"
  36 
  37 // Classes in support of keeping track of promotions into a non-Contiguous
  38 // space, in this case a CompactibleFreeListSpace.
  39 
  40 // Forward declarations
  41 class CMSCollector;
  42 class CompactibleFreeListSpace;
  43 class ConcurrentMarkSweepGeneration;
  44 class BlkClosure;
  45 class BlkClosureCareful;
  46 class FreeChunk;
  47 class UpwardsObjectClosure;
  48 class ObjectClosureCareful;
  49 class Klass;
  50 
  51 class LinearAllocBlock VALUE_OBJ_CLASS_SPEC {
  52  public:
  53   LinearAllocBlock() : _ptr(0), _word_size(0), _refillSize(0),
  54     _allocation_size_limit(0) {}
  55   void set(HeapWord* ptr, size_t word_size, size_t refill_size,
  56     size_t allocation_size_limit) {
  57     _ptr = ptr;
  58     _word_size = word_size;
  59     _refillSize = refill_size;
  60     _allocation_size_limit = allocation_size_limit;
  61   }
  62   HeapWord* _ptr;
  63   size_t    _word_size;
  64   size_t    _refillSize;
  65   size_t    _allocation_size_limit;  // Largest size that will be allocated
  66 
  67   void print_on(outputStream* st) const;
  68 };
  69 
  70 // Concrete subclass of CompactibleSpace that implements
  71 // a free list space, such as used in the concurrent mark sweep
  72 // generation.
  73 
  74 class CompactibleFreeListSpace: public CompactibleSpace {
  75   friend class VMStructs;
  76   friend class ConcurrentMarkSweepGeneration;
  77   friend class CMSCollector;
  78   // Local alloc buffer for promotion into this space.
  79   friend class CompactibleFreeListSpaceLAB;
  80   // Allow scan_and_* functions to call (private) overrides of the auxiliary functions on this class
  81   template <typename SpaceType>
  82   friend void CompactibleSpace::scan_and_adjust_pointers(SpaceType* space);
  83   template <typename SpaceType>
  84   friend void CompactibleSpace::scan_and_compact(SpaceType* space);
  85   template <typename SpaceType>
  86   friend void CompactibleSpace::verify_up_to_first_dead(SpaceType* space);
  87   template <typename SpaceType>
  88   friend void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp);
  89 
  90   // "Size" of chunks of work (executed during parallel remark phases
  91   // of CMS collection); this probably belongs in CMSCollector, although
  92   // it's cached here because it's used in
  93   // initialize_sequential_subtasks_for_rescan() which modifies
  94   // par_seq_tasks which also lives in Space. XXX
  95   const size_t _rescan_task_size;
  96   const size_t _marking_task_size;
  97 
  98   // Yet another sequential tasks done structure. This supports
  99   // CMS GC, where we have threads dynamically
 100   // claiming sub-tasks from a larger parallel task.
 101   SequentialSubTasksDone _conc_par_seq_tasks;
 102 
 103   BlockOffsetArrayNonContigSpace _bt;
 104 
 105   CMSCollector* _collector;
 106   ConcurrentMarkSweepGeneration* _old_gen;
 107 
 108   // Data structures for free blocks (used during allocation/sweeping)
 109 
 110   // Allocation is done linearly from two different blocks depending on
 111   // whether the request is small or large, in an effort to reduce
 112   // fragmentation. We assume that any locking for allocation is done
 113   // by the containing generation. Thus, none of the methods in this
 114   // space are re-entrant.
 115   enum SomeConstants {
 116     SmallForLinearAlloc = 16,        // size < this then use _sLAB
 117     SmallForDictionary  = 257,       // size < this then use _indexedFreeList
 118     IndexSetSize        = SmallForDictionary  // keep this odd-sized
 119   };
 120   static size_t IndexSetStart;
 121   static size_t IndexSetStride;
 122 
 123  private:
 124   enum FitStrategyOptions {
 125     FreeBlockStrategyNone = 0,
 126     FreeBlockBestFitFirst
 127   };
 128 
 129   PromotionInfo _promoInfo;
 130 
 131   // Helps to impose a global total order on freelistLock ranks;
 132   // assumes that CFLSpace's are allocated in global total order
 133   static int   _lockRank;
 134 
 135   // A lock protecting the free lists and free blocks;
 136   // mutable because of ubiquity of locking even for otherwise const methods
 137   mutable Mutex _freelistLock;
 138   // Locking verifier convenience function
 139   void assert_locked() const PRODUCT_RETURN;
 140   void assert_locked(const Mutex* lock) const PRODUCT_RETURN;
 141 
 142   // Linear allocation blocks
 143   LinearAllocBlock _smallLinearAllocBlock;
 144 
 145   AFLBinaryTreeDictionary* _dictionary;    // Pointer to dictionary for large size blocks
 146 
 147   // Indexed array for small size blocks
 148   AdaptiveFreeList<FreeChunk> _indexedFreeList[IndexSetSize];
 149 
 150   // Allocation strategy
 151   bool _fitStrategy;  // Use best fit strategy
 152 
 153   // This is an address close to the largest free chunk in the heap.
 154   // It is currently assumed to be at the end of the heap.  Free
 155   // chunks with addresses greater than nearLargestChunk are coalesced
 156   // in an effort to maintain a large chunk at the end of the heap.
 157   HeapWord*  _nearLargestChunk;
 158 
 159   // Used to keep track of limit of sweep for the space
 160   HeapWord* _sweep_limit;
 161 
 162   // Used to make the young collector update the mod union table
 163   MemRegionClosure* _preconsumptionDirtyCardClosure;
 164 
 165   // Support for compacting cms
 166   HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
 167   HeapWord* forward(oop q, size_t size, CompactPoint* cp, HeapWord* compact_top);
 168 
 169   // Initialization helpers.
 170   void initializeIndexedFreeListArray();
 171 
 172   // Extra stuff to manage promotion parallelism.
 173 
 174   // A lock protecting the dictionary during par promotion allocation.
 175   mutable Mutex _parDictionaryAllocLock;
 176   Mutex* parDictionaryAllocLock() const { return &_parDictionaryAllocLock; }
 177 
 178   // Locks protecting the exact lists during par promotion allocation.
 179   Mutex* _indexedFreeListParLocks[IndexSetSize];
 180 
 181   // Attempt to obtain up to "n" blocks of the size "word_sz" (which is
 182   // required to be smaller than "IndexSetSize".)  If successful,
 183   // adds them to "fl", which is required to be an empty free list.
 184   // If the count of "fl" is negative, it's absolute value indicates a
 185   // number of free chunks that had been previously "borrowed" from global
 186   // list of size "word_sz", and must now be decremented.
 187   void par_get_chunk_of_blocks(size_t word_sz, size_t n, AdaptiveFreeList<FreeChunk>* fl);
 188 
 189   // Used by par_get_chunk_of_blocks() for the chunks from the
 190   // indexed_free_lists.
 191   bool par_get_chunk_of_blocks_IFL(size_t word_sz, size_t n, AdaptiveFreeList<FreeChunk>* fl);
 192 
 193   // Used by par_get_chunk_of_blocks_dictionary() to get a chunk
 194   // evenly splittable into "n" "word_sz" chunks.  Returns that
 195   // evenly splittable chunk.  May split a larger chunk to get the
 196   // evenly splittable chunk.
 197   FreeChunk* get_n_way_chunk_to_split(size_t word_sz, size_t n);
 198 
 199   // Used by par_get_chunk_of_blocks() for the chunks from the
 200   // dictionary.
 201   void par_get_chunk_of_blocks_dictionary(size_t word_sz, size_t n, AdaptiveFreeList<FreeChunk>* fl);
 202 
 203   // Allocation helper functions
 204   // Allocate using a strategy that takes from the indexed free lists
 205   // first.  This allocation strategy assumes a companion sweeping
 206   // strategy that attempts to keep the needed number of chunks in each
 207   // indexed free lists.
 208   HeapWord* allocate_adaptive_freelists(size_t size);
 209 
 210   // Gets a chunk from the linear allocation block (LinAB).  If there
 211   // is not enough space in the LinAB, refills it.
 212   HeapWord*  getChunkFromLinearAllocBlock(LinearAllocBlock* blk, size_t size);
 213   HeapWord*  getChunkFromSmallLinearAllocBlock(size_t size);
 214   // Get a chunk from the space remaining in the linear allocation block.  Do
 215   // not attempt to refill if the space is not available, return NULL.  Do the
 216   // repairs on the linear allocation block as appropriate.
 217   HeapWord*  getChunkFromLinearAllocBlockRemainder(LinearAllocBlock* blk, size_t size);
 218   inline HeapWord*  getChunkFromSmallLinearAllocBlockRemainder(size_t size);
 219 
 220   // Helper function for getChunkFromIndexedFreeList.
 221   // Replenish the indexed free list for this "size".  Do not take from an
 222   // underpopulated size.
 223   FreeChunk*  getChunkFromIndexedFreeListHelper(size_t size, bool replenish = true);
 224 
 225   // Get a chunk from the indexed free list.  If the indexed free list
 226   // does not have a free chunk, try to replenish the indexed free list
 227   // then get the free chunk from the replenished indexed free list.
 228   inline FreeChunk* getChunkFromIndexedFreeList(size_t size);
 229 
 230   // The returned chunk may be larger than requested (or null).
 231   FreeChunk* getChunkFromDictionary(size_t size);
 232   // The returned chunk is the exact size requested (or null).
 233   FreeChunk* getChunkFromDictionaryExact(size_t size);
 234 
 235   // Find a chunk in the indexed free list that is the best
 236   // fit for size "numWords".
 237   FreeChunk* bestFitSmall(size_t numWords);
 238   // For free list "fl" of chunks of size > numWords,
 239   // remove a chunk, split off a chunk of size numWords
 240   // and return it.  The split off remainder is returned to
 241   // the free lists.  The old name for getFromListGreater
 242   // was lookInListGreater.
 243   FreeChunk* getFromListGreater(AdaptiveFreeList<FreeChunk>* fl, size_t numWords);
 244   // Get a chunk in the indexed free list or dictionary,
 245   // by considering a larger chunk and splitting it.
 246   FreeChunk* getChunkFromGreater(size_t numWords);
 247   //  Verify that the given chunk is in the indexed free lists.
 248   bool verifyChunkInIndexedFreeLists(FreeChunk* fc) const;
 249   // Remove the specified chunk from the indexed free lists.
 250   void       removeChunkFromIndexedFreeList(FreeChunk* fc);
 251   // Remove the specified chunk from the dictionary.
 252   void       removeChunkFromDictionary(FreeChunk* fc);
 253   // Split a free chunk into a smaller free chunk of size "new_size".
 254   // Return the smaller free chunk and return the remainder to the
 255   // free lists.
 256   FreeChunk* splitChunkAndReturnRemainder(FreeChunk* chunk, size_t new_size);
 257   // Add a chunk to the free lists.
 258   void       addChunkToFreeLists(HeapWord* chunk, size_t size);
 259   // Add a chunk to the free lists, preferring to suffix it
 260   // to the last free chunk at end of space if possible, and
 261   // updating the block census stats as well as block offset table.
 262   // Take any locks as appropriate if we are multithreaded.
 263   void       addChunkToFreeListsAtEndRecordingStats(HeapWord* chunk, size_t size);
 264   // Add a free chunk to the indexed free lists.
 265   void       returnChunkToFreeList(FreeChunk* chunk);
 266   // Add a free chunk to the dictionary.
 267   void       returnChunkToDictionary(FreeChunk* chunk);
 268 
 269   // Functions for maintaining the linear allocation buffers (LinAB).
 270   // Repairing a linear allocation block refers to operations
 271   // performed on the remainder of a LinAB after an allocation
 272   // has been made from it.
 273   void       repairLinearAllocationBlocks();
 274   void       repairLinearAllocBlock(LinearAllocBlock* blk);
 275   void       refillLinearAllocBlock(LinearAllocBlock* blk);
 276   void       refillLinearAllocBlockIfNeeded(LinearAllocBlock* blk);
 277   void       refillLinearAllocBlocksIfNeeded();
 278 
 279   void       verify_objects_initialized() const;
 280 
 281   // Statistics reporting helper functions
 282   void       reportFreeListStatistics(const char* title) const;
 283   void       reportIndexedFreeListStatistics(outputStream* st) const;
 284   size_t     maxChunkSizeInIndexedFreeLists() const;
 285   size_t     numFreeBlocksInIndexedFreeLists() const;
 286   // Accessor
 287   HeapWord* unallocated_block() const {
 288     if (BlockOffsetArrayUseUnallocatedBlock) {
 289       HeapWord* ub = _bt.unallocated_block();
 290       assert(ub >= bottom() &&
 291              ub <= end(), "space invariant");
 292       return ub;
 293     } else {
 294       return end();
 295     }
 296   }
 297   void freed(HeapWord* start, size_t size) {
 298     _bt.freed(start, size);
 299   }
 300 
 301   // Auxiliary functions for scan_and_{forward,adjust_pointers,compact} support.
 302   // See comments for CompactibleSpace for more information.
 303   inline HeapWord* scan_limit() const {
 304     return end();
 305   }
 306 
 307   inline bool scanned_block_is_obj(const HeapWord* addr) const {
 308     return CompactibleFreeListSpace::block_is_obj(addr); // Avoid virtual call
 309   }
 310 
 311   inline size_t scanned_block_size(const HeapWord* addr) const {
 312     return CompactibleFreeListSpace::block_size(addr); // Avoid virtual call
 313   }
 314 
 315   inline size_t adjust_obj_size(size_t size) const {
 316     return adjustObjectSize(size);
 317   }
 318 
 319   inline size_t obj_size(const HeapWord* addr) const;
 320 
 321  protected:
 322   // Reset the indexed free list to its initial empty condition.
 323   void resetIndexedFreeListArray();
 324   // Reset to an initial state with a single free block described
 325   // by the MemRegion parameter.
 326   void reset(MemRegion mr);
 327   // Return the total number of words in the indexed free lists.
 328   size_t     totalSizeInIndexedFreeLists() const;
 329 
 330  public:
 331   // Constructor
 332   CompactibleFreeListSpace(BlockOffsetSharedArray* bs, MemRegion mr);
 333   // Accessors
 334   bool bestFitFirst() { return _fitStrategy == FreeBlockBestFitFirst; }
 335   FreeBlockDictionary<FreeChunk>* dictionary() const { return _dictionary; }
 336   HeapWord* nearLargestChunk() const { return _nearLargestChunk; }
 337   void set_nearLargestChunk(HeapWord* v) { _nearLargestChunk = v; }
 338 
 339   // Set CMS global values.
 340   static void set_cms_values();
 341 
 342   // Return the free chunk at the end of the space.  If no such
 343   // chunk exists, return NULL.
 344   FreeChunk* find_chunk_at_end();
 345 
 346   void set_collector(CMSCollector* collector) { _collector = collector; }
 347 
 348   // Support for parallelization of rescan and marking.
 349   const size_t rescan_task_size()  const { return _rescan_task_size;  }
 350   const size_t marking_task_size() const { return _marking_task_size; }
 351   // Return ergonomic max size for CMSRescanMultiple and CMSConcMarkMultiple.
 352   const size_t max_flag_size_for_task_size() const;
 353   SequentialSubTasksDone* conc_par_seq_tasks() {return &_conc_par_seq_tasks; }
 354   void initialize_sequential_subtasks_for_rescan(int n_threads);
 355   void initialize_sequential_subtasks_for_marking(int n_threads,
 356          HeapWord* low = NULL);
 357 
 358   virtual MemRegionClosure* preconsumptionDirtyCardClosure() const {
 359     return _preconsumptionDirtyCardClosure;
 360   }
 361 
 362   void setPreconsumptionDirtyCardClosure(MemRegionClosure* cl) {
 363     _preconsumptionDirtyCardClosure = cl;
 364   }
 365 
 366   // Space enquiries
 367   size_t used() const;
 368   size_t free() const;
 369   size_t max_alloc_in_words() const;
 370   // XXX: should have a less conservative used_region() than that of
 371   // Space; we could consider keeping track of highest allocated
 372   // address and correcting that at each sweep, as the sweeper
 373   // goes through the entire allocated part of the generation. We
 374   // could also use that information to keep the sweeper from
 375   // sweeping more than is necessary. The allocator and sweeper will
 376   // of course need to synchronize on this, since the sweeper will
 377   // try to bump down the address and the allocator will try to bump it up.
 378   // For now, however, we'll just use the default used_region()
 379   // which overestimates the region by returning the entire
 380   // committed region (this is safe, but inefficient).
 381 
 382   // Returns a subregion of the space containing all the objects in
 383   // the space.
 384   MemRegion used_region() const {
 385     return MemRegion(bottom(),
 386                      BlockOffsetArrayUseUnallocatedBlock ?
 387                      unallocated_block() : end());
 388   }
 389 
 390   virtual bool is_free_block(const HeapWord* p) const;
 391 
 392   // Resizing support
 393   void set_end(HeapWord* value);  // override
 394 
 395   // Never mangle CompactibleFreeListSpace
 396   void mangle_unused_area() {}
 397   void mangle_unused_area_complete() {}
 398 
 399   // Mutual exclusion support
 400   Mutex* freelistLock() const { return &_freelistLock; }
 401 
 402   // Iteration support
 403   void oop_iterate(ExtendedOopClosure* cl);
 404 
 405   void object_iterate(ObjectClosure* blk);
 406   // Apply the closure to each object in the space whose references
 407   // point to objects in the heap.  The usage of CompactibleFreeListSpace
 408   // by the ConcurrentMarkSweepGeneration for concurrent GC's allows
 409   // objects in the space with references to objects that are no longer
 410   // valid.  For example, an object may reference another object
 411   // that has already been sweep up (collected).  This method uses
 412   // obj_is_alive() to determine whether it is safe to iterate of
 413   // an object.
 414   void safe_object_iterate(ObjectClosure* blk);
 415 
 416   // Iterate over all objects that intersect with mr, calling "cl->do_object"
 417   // on each.  There is an exception to this: if this closure has already
 418   // been invoked on an object, it may skip such objects in some cases.  This is
 419   // Most likely to happen in an "upwards" (ascending address) iteration of
 420   // MemRegions.
 421   void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
 422 
 423   // Requires that "mr" be entirely within the space.
 424   // Apply "cl->do_object" to all objects that intersect with "mr".
 425   // If the iteration encounters an unparseable portion of the region,
 426   // terminate the iteration and return the address of the start of the
 427   // subregion that isn't done.  Return of "NULL" indicates that the
 428   // iteration completed.
 429   HeapWord* object_iterate_careful_m(MemRegion mr,
 430                                      ObjectClosureCareful* cl);
 431 
 432   // Override: provides a DCTO_CL specific to this kind of space.
 433   DirtyCardToOopClosure* new_dcto_cl(ExtendedOopClosure* cl,
 434                                      CardTable::PrecisionStyle precision,
 435                                      HeapWord* boundary,
 436                                      bool parallel);
 437 
 438   void blk_iterate(BlkClosure* cl);
 439   void blk_iterate_careful(BlkClosureCareful* cl);
 440   HeapWord* block_start_const(const void* p) const;
 441   HeapWord* block_start_careful(const void* p) const;
 442   size_t block_size(const HeapWord* p) const;
 443   size_t block_size_no_stall(HeapWord* p, const CMSCollector* c) const;
 444   bool block_is_obj(const HeapWord* p) const;
 445   bool obj_is_alive(const HeapWord* p) const;
 446   size_t block_size_nopar(const HeapWord* p) const;
 447   bool block_is_obj_nopar(const HeapWord* p) const;
 448 
 449   // Iteration support for promotion
 450   void save_marks();
 451   bool no_allocs_since_save_marks();
 452 
 453   // Iteration support for sweeping
 454   void save_sweep_limit() {
 455     _sweep_limit = BlockOffsetArrayUseUnallocatedBlock ?
 456                    unallocated_block() : end();
 457     log_develop_trace(gc, sweep)(">>>>> Saving sweep limit " PTR_FORMAT
 458                                  "  for space [" PTR_FORMAT "," PTR_FORMAT ") <<<<<<",
 459                                  p2i(_sweep_limit), p2i(bottom()), p2i(end()));
 460   }
 461   NOT_PRODUCT(
 462     void clear_sweep_limit() { _sweep_limit = NULL; }
 463   )
 464   HeapWord* sweep_limit() { return _sweep_limit; }
 465 
 466   // Apply "blk->do_oop" to the addresses of all reference fields in objects
 467   // promoted into this generation since the most recent save_marks() call.
 468   // Fields in objects allocated by applications of the closure
 469   // *are* included in the iteration. Thus, when the iteration completes
 470   // there should be no further such objects remaining.
 471   #define CFLS_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
 472     void oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk);
 473   ALL_SINCE_SAVE_MARKS_CLOSURES(CFLS_OOP_SINCE_SAVE_MARKS_DECL)
 474   #undef CFLS_OOP_SINCE_SAVE_MARKS_DECL
 475 
 476   // Allocation support
 477   HeapWord* allocate(size_t size);
 478   HeapWord* par_allocate(size_t size);
 479 
 480   oop       promote(oop obj, size_t obj_size);
 481   void      gc_prologue();
 482   void      gc_epilogue();
 483 
 484   // This call is used by a containing CMS generation / collector
 485   // to inform the CFLS space that a sweep has been completed
 486   // and that the space can do any related house-keeping functions.
 487   void      sweep_completed();
 488 
 489   // For an object in this space, the mark-word's two
 490   // LSB's having the value [11] indicates that it has been
 491   // promoted since the most recent call to save_marks() on
 492   // this generation and has not subsequently been iterated
 493   // over (using oop_since_save_marks_iterate() above).
 494   // This property holds only for single-threaded collections,
 495   // and is typically used for Cheney scans; for MT scavenges,
 496   // the property holds for all objects promoted during that
 497   // scavenge for the duration of the scavenge and is used
 498   // by card-scanning to avoid scanning objects (being) promoted
 499   // during that scavenge.
 500   bool obj_allocated_since_save_marks(const oop obj) const {
 501     assert(is_in_reserved(obj), "Wrong space?");
 502     return ((PromotedObject*)obj)->hasPromotedMark();
 503   }
 504 
 505   // A worst-case estimate of the space required (in HeapWords) to expand the
 506   // heap when promoting an obj of size obj_size.
 507   size_t expansionSpaceRequired(size_t obj_size) const;
 508 
 509   FreeChunk* allocateScratch(size_t size);
 510 
 511   // Returns true if either the small or large linear allocation buffer is empty.
 512   bool       linearAllocationWouldFail() const;
 513 
 514   // Adjust the chunk for the minimum size.  This version is called in
 515   // most cases in CompactibleFreeListSpace methods.
 516   inline static size_t adjustObjectSize(size_t size) {
 517     return (size_t) align_object_size(MAX2(size, (size_t)MinChunkSize));
 518   }
 519   // This is a virtual version of adjustObjectSize() that is called
 520   // only occasionally when the compaction space changes and the type
 521   // of the new compaction space is is only known to be CompactibleSpace.
 522   size_t adjust_object_size_v(size_t size) const {
 523     return adjustObjectSize(size);
 524   }
 525   // Minimum size of a free block.
 526   virtual size_t minimum_free_block_size() const { return MinChunkSize; }
 527   void      removeFreeChunkFromFreeLists(FreeChunk* chunk);
 528   void      addChunkAndRepairOffsetTable(HeapWord* chunk, size_t size,
 529               bool coalesced);
 530 
 531   // Support for compaction.
 532   void prepare_for_compaction(CompactPoint* cp);
 533   void adjust_pointers();
 534   void compact();
 535   // Reset the space to reflect the fact that a compaction of the
 536   // space has been done.
 537   virtual void reset_after_compaction();
 538 
 539   // Debugging support.
 540   void print()                            const;
 541   void print_on(outputStream* st)         const;
 542   void prepare_for_verify();
 543   void verify()                           const;
 544   void verifyFreeLists()                  const PRODUCT_RETURN;
 545   void verifyIndexedFreeLists()           const;
 546   void verifyIndexedFreeList(size_t size) const;
 547   // Verify that the given chunk is in the free lists:
 548   // i.e. either the binary tree dictionary, the indexed free lists
 549   // or the linear allocation block.
 550   bool verify_chunk_in_free_list(FreeChunk* fc) const;
 551   // Verify that the given chunk is the linear allocation block.
 552   bool verify_chunk_is_linear_alloc_block(FreeChunk* fc) const;
 553   // Do some basic checks on the the free lists.
 554   void check_free_list_consistency()      const PRODUCT_RETURN;
 555 
 556   // Printing support
 557   void dump_at_safepoint_with_locks(CMSCollector* c, outputStream* st);
 558   void print_indexed_free_lists(outputStream* st) const;
 559   void print_dictionary_free_lists(outputStream* st) const;
 560   void print_promo_info_blocks(outputStream* st) const;
 561 
 562   NOT_PRODUCT (
 563     void initializeIndexedFreeListArrayReturnedBytes();
 564     size_t sumIndexedFreeListArrayReturnedBytes();
 565     // Return the total number of chunks in the indexed free lists.
 566     size_t totalCountInIndexedFreeLists() const;
 567     // Return the total number of chunks in the space.
 568     size_t totalCount();
 569   )
 570 
 571   // The census consists of counts of the quantities such as
 572   // the current count of the free chunks, number of chunks
 573   // created as a result of the split of a larger chunk or
 574   // coalescing of smaller chucks, etc.  The counts in the
 575   // census is used to make decisions on splitting and
 576   // coalescing of chunks during the sweep of garbage.
 577 
 578   // Print the statistics for the free lists.
 579   void printFLCensus(size_t sweep_count) const;
 580 
 581   // Statistics functions
 582   // Initialize census for lists before the sweep.
 583   void beginSweepFLCensus(float inter_sweep_current,
 584                           float inter_sweep_estimate,
 585                           float intra_sweep_estimate);
 586   // Set the surplus for each of the free lists.
 587   void setFLSurplus();
 588   // Set the hint for each of the free lists.
 589   void setFLHints();
 590   // Clear the census for each of the free lists.
 591   void clearFLCensus();
 592   // Perform functions for the census after the end of the sweep.
 593   void endSweepFLCensus(size_t sweep_count);
 594   // Return true if the count of free chunks is greater
 595   // than the desired number of free chunks.
 596   bool coalOverPopulated(size_t size);
 597 
 598 // Record (for each size):
 599 //
 600 //   split-births = #chunks added due to splits in (prev-sweep-end,
 601 //      this-sweep-start)
 602 //   split-deaths = #chunks removed for splits in (prev-sweep-end,
 603 //      this-sweep-start)
 604 //   num-curr     = #chunks at start of this sweep
 605 //   num-prev     = #chunks at end of previous sweep
 606 //
 607 // The above are quantities that are measured. Now define:
 608 //
 609 //   num-desired := num-prev + split-births - split-deaths - num-curr
 610 //
 611 // Roughly, num-prev + split-births is the supply,
 612 // split-deaths is demand due to other sizes
 613 // and num-curr is what we have left.
 614 //
 615 // Thus, num-desired is roughly speaking the "legitimate demand"
 616 // for blocks of this size and what we are striving to reach at the
 617 // end of the current sweep.
 618 //
 619 // For a given list, let num-len be its current population.
 620 // Define, for a free list of a given size:
 621 //
 622 //   coal-overpopulated := num-len >= num-desired * coal-surplus
 623 // (coal-surplus is set to 1.05, i.e. we allow a little slop when
 624 // coalescing -- we do not coalesce unless we think that the current
 625 // supply has exceeded the estimated demand by more than 5%).
 626 //
 627 // For the set of sizes in the binary tree, which is neither dense nor
 628 // closed, it may be the case that for a particular size we have never
 629 // had, or do not now have, or did not have at the previous sweep,
 630 // chunks of that size. We need to extend the definition of
 631 // coal-overpopulated to such sizes as well:
 632 //
 633 //   For a chunk in/not in the binary tree, extend coal-overpopulated
 634 //   defined above to include all sizes as follows:
 635 //
 636 //   . a size that is non-existent is coal-overpopulated
 637 //   . a size that has a num-desired <= 0 as defined above is
 638 //     coal-overpopulated.
 639 //
 640 // Also define, for a chunk heap-offset C and mountain heap-offset M:
 641 //
 642 //   close-to-mountain := C >= 0.99 * M
 643 //
 644 // Now, the coalescing strategy is:
 645 //
 646 //    Coalesce left-hand chunk with right-hand chunk if and
 647 //    only if:
 648 //
 649 //      EITHER
 650 //        . left-hand chunk is of a size that is coal-overpopulated
 651 //      OR
 652 //        . right-hand chunk is close-to-mountain
 653   void smallCoalBirth(size_t size);
 654   void smallCoalDeath(size_t size);
 655   void coalBirth(size_t size);
 656   void coalDeath(size_t size);
 657   void smallSplitBirth(size_t size);
 658   void smallSplitDeath(size_t size);
 659   void split_birth(size_t size);
 660   void splitDeath(size_t size);
 661   void split(size_t from, size_t to1);
 662 
 663   double flsFrag() const;
 664 };
 665 
 666 // A parallel-GC-thread-local allocation buffer for allocation into a
 667 // CompactibleFreeListSpace.
 668 class CompactibleFreeListSpaceLAB : public CHeapObj<mtGC> {
 669   // The space that this buffer allocates into.
 670   CompactibleFreeListSpace* _cfls;
 671 
 672   // Our local free lists.
 673   AdaptiveFreeList<FreeChunk> _indexedFreeList[CompactibleFreeListSpace::IndexSetSize];
 674 
 675   // Initialized from a command-line arg.
 676 
 677   // Allocation statistics in support of dynamic adjustment of
 678   // #blocks to claim per get_from_global_pool() call below.
 679   static AdaptiveWeightedAverage
 680                  _blocks_to_claim  [CompactibleFreeListSpace::IndexSetSize];
 681   static size_t _global_num_blocks [CompactibleFreeListSpace::IndexSetSize];
 682   static uint   _global_num_workers[CompactibleFreeListSpace::IndexSetSize];
 683   size_t        _num_blocks        [CompactibleFreeListSpace::IndexSetSize];
 684 
 685   // Internal work method
 686   void get_from_global_pool(size_t word_sz, AdaptiveFreeList<FreeChunk>* fl);
 687 
 688 public:
 689   static const int _default_dynamic_old_plab_size = 16;
 690   static const int _default_static_old_plab_size  = 50;
 691 
 692   CompactibleFreeListSpaceLAB(CompactibleFreeListSpace* cfls);
 693 
 694   // Allocate and return a block of the given size, or else return NULL.
 695   HeapWord* alloc(size_t word_sz);
 696 
 697   // Return any unused portions of the buffer to the global pool.
 698   void retire(int tid);
 699 
 700   // Dynamic OldPLABSize sizing
 701   static void compute_desired_plab_size();
 702   // When the settings are modified from default static initialization
 703   static void modify_initialization(size_t n, unsigned wt);
 704 };
 705 
 706 size_t PromotionInfo::refillSize() const {
 707   const size_t CMSSpoolBlockSize = 256;
 708   const size_t sz = heap_word_size(sizeof(SpoolBlock) + sizeof(markOop)
 709                                    * CMSSpoolBlockSize);
 710   return CompactibleFreeListSpace::adjustObjectSize(sz);
 711 }
 712 
 713 #endif // SHARE_VM_GC_CMS_COMPACTIBLEFREELISTSPACE_HPP