1 /*
   2  * Copyright (c) 2014, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/altHashing.hpp"
  27 #include "classfile/javaClasses.inline.hpp"
  28 #include "gc/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc/g1/g1BarrierSet.hpp"
  30 #include "gc/g1/g1StringDedup.hpp"
  31 #include "gc/g1/g1StringDedupTable.hpp"
  32 #include "gc/shared/gcLocker.hpp"
  33 #include "logging/log.hpp"
  34 #include "memory/padded.inline.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "oops/typeArrayOop.hpp"
  37 #include "runtime/mutexLocker.hpp"
  38 
  39 //
  40 // List of deduplication table entries. Links table
  41 // entries together using their _next fields.
  42 //
  43 class G1StringDedupEntryList : public CHeapObj<mtGC> {
  44 private:
  45   G1StringDedupEntry* _list;
  46   size_t              _length;
  47 
  48 public:
  49   G1StringDedupEntryList() :
  50     _list(NULL),
  51     _length(0) {
  52   }
  53 
  54   void add(G1StringDedupEntry* entry) {
  55     entry->set_next(_list);
  56     _list = entry;
  57     _length++;
  58   }
  59 
  60   G1StringDedupEntry* remove() {
  61     G1StringDedupEntry* entry = _list;
  62     if (entry != NULL) {
  63       _list = entry->next();
  64       _length--;
  65     }
  66     return entry;
  67   }
  68 
  69   G1StringDedupEntry* remove_all() {
  70     G1StringDedupEntry* list = _list;
  71     _list = NULL;
  72     return list;
  73   }
  74 
  75   size_t length() {
  76     return _length;
  77   }
  78 };
  79 
  80 //
  81 // Cache of deduplication table entries. This cache provides fast allocation and
  82 // reuse of table entries to lower the pressure on the underlying allocator.
  83 // But more importantly, it provides fast/deferred freeing of table entries. This
  84 // is important because freeing of table entries is done during stop-the-world
  85 // phases and it is not uncommon for large number of entries to be freed at once.
  86 // Tables entries that are freed during these phases are placed onto a freelist in
  87 // the cache. The deduplication thread, which executes in a concurrent phase, will
  88 // later reuse or free the underlying memory for these entries.
  89 //
  90 // The cache allows for single-threaded allocations and multi-threaded frees.
  91 // Allocations are synchronized by StringDedupTable_lock as part of a table
  92 // modification.
  93 //
  94 class G1StringDedupEntryCache : public CHeapObj<mtGC> {
  95 private:
  96   // One cache/overflow list per GC worker to allow lock less freeing of
  97   // entries while doing a parallel scan of the table. Using PaddedEnd to
  98   // avoid false sharing.
  99   size_t                             _nlists;
 100   size_t                             _max_list_length;
 101   PaddedEnd<G1StringDedupEntryList>* _cached;
 102   PaddedEnd<G1StringDedupEntryList>* _overflowed;
 103 
 104 public:
 105   G1StringDedupEntryCache(size_t max_size);
 106   ~G1StringDedupEntryCache();
 107 
 108   // Set max number of table entries to cache.
 109   void set_max_size(size_t max_size);
 110 
 111   // Get a table entry from the cache, or allocate a new entry if the cache is empty.
 112   G1StringDedupEntry* alloc();
 113 
 114   // Insert a table entry into the cache.
 115   void free(G1StringDedupEntry* entry, uint worker_id);
 116 
 117   // Returns current number of entries in the cache.
 118   size_t size();
 119 
 120   // Deletes overflowed entries.
 121   void delete_overflowed();
 122 };
 123 
 124 G1StringDedupEntryCache::G1StringDedupEntryCache(size_t max_size) :
 125   _nlists(ParallelGCThreads),
 126   _max_list_length(0),
 127   _cached(PaddedArray<G1StringDedupEntryList, mtGC>::create_unfreeable((uint)_nlists)),
 128   _overflowed(PaddedArray<G1StringDedupEntryList, mtGC>::create_unfreeable((uint)_nlists)) {
 129   set_max_size(max_size);
 130 }
 131 
 132 G1StringDedupEntryCache::~G1StringDedupEntryCache() {
 133   ShouldNotReachHere();
 134 }
 135 
 136 void G1StringDedupEntryCache::set_max_size(size_t size) {
 137   _max_list_length = size / _nlists;
 138 }
 139 
 140 G1StringDedupEntry* G1StringDedupEntryCache::alloc() {
 141   for (size_t i = 0; i < _nlists; i++) {
 142     G1StringDedupEntry* entry = _cached[i].remove();
 143     if (entry != NULL) {
 144       return entry;
 145     }
 146   }
 147   return new G1StringDedupEntry();
 148 }
 149 
 150 void G1StringDedupEntryCache::free(G1StringDedupEntry* entry, uint worker_id) {
 151   assert(entry->obj() != NULL, "Double free");
 152   assert(worker_id < _nlists, "Invalid worker id");
 153 
 154   entry->set_obj(NULL);
 155   entry->set_hash(0);
 156 
 157   if (_cached[worker_id].length() < _max_list_length) {
 158     // Cache is not full
 159     _cached[worker_id].add(entry);
 160   } else {
 161     // Cache is full, add to overflow list for later deletion
 162     _overflowed[worker_id].add(entry);
 163   }
 164 }
 165 
 166 size_t G1StringDedupEntryCache::size() {
 167   size_t size = 0;
 168   for (size_t i = 0; i < _nlists; i++) {
 169     size += _cached[i].length();
 170   }
 171   return size;
 172 }
 173 
 174 void G1StringDedupEntryCache::delete_overflowed() {
 175   double start = os::elapsedTime();
 176   uintx count = 0;
 177 
 178   for (size_t i = 0; i < _nlists; i++) {
 179     G1StringDedupEntry* entry;
 180 
 181     {
 182       // The overflow list can be modified during safepoints, therefore
 183       // we temporarily join the suspendible thread set while removing
 184       // all entries from the list.
 185       SuspendibleThreadSetJoiner sts_join;
 186       entry = _overflowed[i].remove_all();
 187     }
 188 
 189     // Delete all entries
 190     while (entry != NULL) {
 191       G1StringDedupEntry* next = entry->next();
 192       delete entry;
 193       entry = next;
 194       count++;
 195     }
 196   }
 197 
 198   double end = os::elapsedTime();
 199   log_trace(gc, stringdedup)("Deleted " UINTX_FORMAT " entries, " G1_STRDEDUP_TIME_FORMAT_MS,
 200                              count, G1_STRDEDUP_TIME_PARAM_MS(end - start));
 201 }
 202 
 203 G1StringDedupTable*      G1StringDedupTable::_table = NULL;
 204 G1StringDedupEntryCache* G1StringDedupTable::_entry_cache = NULL;
 205 
 206 const size_t             G1StringDedupTable::_min_size = (1 << 10);   // 1024
 207 const size_t             G1StringDedupTable::_max_size = (1 << 24);   // 16777216
 208 const double             G1StringDedupTable::_grow_load_factor = 2.0; // Grow table at 200% load
 209 const double             G1StringDedupTable::_shrink_load_factor = _grow_load_factor / 3.0; // Shrink table at 67% load
 210 const double             G1StringDedupTable::_max_cache_factor = 0.1; // Cache a maximum of 10% of the table size
 211 const uintx              G1StringDedupTable::_rehash_multiple = 60;   // Hash bucket has 60 times more collisions than expected
 212 const uintx              G1StringDedupTable::_rehash_threshold = (uintx)(_rehash_multiple * _grow_load_factor);
 213 
 214 uintx                    G1StringDedupTable::_entries_added = 0;
 215 uintx                    G1StringDedupTable::_entries_removed = 0;
 216 uintx                    G1StringDedupTable::_resize_count = 0;
 217 uintx                    G1StringDedupTable::_rehash_count = 0;
 218 
 219 G1StringDedupTable::G1StringDedupTable(size_t size, jint hash_seed) :
 220   _size(size),
 221   _entries(0),
 222   _grow_threshold((uintx)(size * _grow_load_factor)),
 223   _shrink_threshold((uintx)(size * _shrink_load_factor)),
 224   _rehash_needed(false),
 225   _hash_seed(hash_seed) {
 226   assert(is_power_of_2(size), "Table size must be a power of 2");
 227   _buckets = NEW_C_HEAP_ARRAY(G1StringDedupEntry*, _size, mtGC);
 228   memset(_buckets, 0, _size * sizeof(G1StringDedupEntry*));
 229 }
 230 
 231 G1StringDedupTable::~G1StringDedupTable() {
 232   FREE_C_HEAP_ARRAY(G1StringDedupEntry*, _buckets);
 233 }
 234 
 235 void G1StringDedupTable::create() {
 236   assert(_table == NULL, "One string deduplication table allowed");
 237   _entry_cache = new G1StringDedupEntryCache(_min_size * _max_cache_factor);
 238   _table = new G1StringDedupTable(_min_size);
 239 }
 240 
 241 void G1StringDedupTable::add(typeArrayOop value, bool latin1, unsigned int hash, G1StringDedupEntry** list) {
 242   G1StringDedupEntry* entry = _entry_cache->alloc();
 243   entry->set_obj(value);
 244   entry->set_hash(hash);
 245   entry->set_latin1(latin1);
 246   entry->set_next(*list);
 247   *list = entry;
 248   _entries++;
 249 }
 250 
 251 void G1StringDedupTable::remove(G1StringDedupEntry** pentry, uint worker_id) {
 252   G1StringDedupEntry* entry = *pentry;
 253   *pentry = entry->next();
 254   _entry_cache->free(entry, worker_id);
 255 }
 256 
 257 void G1StringDedupTable::transfer(G1StringDedupEntry** pentry, G1StringDedupTable* dest) {
 258   G1StringDedupEntry* entry = *pentry;
 259   *pentry = entry->next();
 260   unsigned int hash = entry->hash();
 261   size_t index = dest->hash_to_index(hash);
 262   G1StringDedupEntry** list = dest->bucket(index);
 263   entry->set_next(*list);
 264   *list = entry;
 265 }
 266 
 267 bool G1StringDedupTable::equals(typeArrayOop value1, typeArrayOop value2) {
 268   return (value1 == value2 ||
 269           (value1->length() == value2->length() &&
 270            (!memcmp(value1->base(T_BYTE),
 271                     value2->base(T_BYTE),
 272                     value1->length() * sizeof(jbyte)))));
 273 }
 274 
 275 typeArrayOop G1StringDedupTable::lookup(typeArrayOop value, bool latin1, unsigned int hash,
 276                                         G1StringDedupEntry** list, uintx &count) {
 277   for (G1StringDedupEntry* entry = *list; entry != NULL; entry = entry->next()) {
 278     if (entry->hash() == hash && entry->latin1() == latin1) {
 279       typeArrayOop existing_value = entry->obj();
 280       if (equals(value, existing_value)) {
 281         // Match found
 282         return existing_value;
 283       }
 284     }
 285     count++;
 286   }
 287 
 288   // Not found
 289   return NULL;
 290 }
 291 
 292 typeArrayOop G1StringDedupTable::lookup_or_add_inner(typeArrayOop value, bool latin1, unsigned int hash) {
 293   size_t index = hash_to_index(hash);
 294   G1StringDedupEntry** list = bucket(index);
 295   uintx count = 0;
 296 
 297   // Lookup in list
 298   typeArrayOop existing_value = lookup(value, latin1, hash, list, count);
 299 
 300   // Check if rehash is needed
 301   if (count > _rehash_threshold) {
 302     _rehash_needed = true;
 303   }
 304 
 305   if (existing_value == NULL) {
 306     // Not found, add new entry
 307     add(value, latin1, hash, list);
 308 
 309     // Update statistics
 310     _entries_added++;
 311   }
 312 
 313   return existing_value;
 314 }
 315 
 316 unsigned int G1StringDedupTable::hash_code(typeArrayOop value, bool latin1) {
 317   unsigned int hash;
 318   int length = value->length();
 319   if (latin1) {
 320     const jbyte* data = (jbyte*)value->base(T_BYTE);
 321     if (use_java_hash()) {
 322       hash = java_lang_String::hash_code(data, length);
 323     } else {
 324       hash = AltHashing::murmur3_32(_table->_hash_seed, data, length);
 325     }
 326   } else {
 327     length /= sizeof(jchar) / sizeof(jbyte); // Convert number of bytes to number of chars
 328     const jchar* data = (jchar*)value->base(T_CHAR);
 329     if (use_java_hash()) {
 330       hash = java_lang_String::hash_code(data, length);
 331     } else {
 332       hash = AltHashing::murmur3_32(_table->_hash_seed, data, length);
 333     }
 334   }
 335 
 336   return hash;
 337 }
 338 
 339 void G1StringDedupTable::deduplicate(oop java_string, G1StringDedupStat& stat) {
 340   assert(java_lang_String::is_instance(java_string), "Must be a string");
 341   NoSafepointVerifier nsv;
 342 
 343   stat.inc_inspected();
 344 
 345   typeArrayOop value = java_lang_String::value(java_string);
 346   if (value == NULL) {
 347     // String has no value
 348     stat.inc_skipped();
 349     return;
 350   }
 351 
 352   bool latin1 = java_lang_String::is_latin1(java_string);
 353   unsigned int hash = 0;
 354 
 355   if (use_java_hash()) {
 356     // Get hash code from cache
 357     hash = java_lang_String::hash(java_string);
 358   }
 359 
 360   if (hash == 0) {
 361     // Compute hash
 362     hash = hash_code(value, latin1);
 363     stat.inc_hashed();
 364 
 365     if (use_java_hash() && hash != 0) {
 366       // Store hash code in cache
 367       java_lang_String::set_hash(java_string, hash);
 368     }
 369   }
 370 
 371   typeArrayOop existing_value = lookup_or_add(value, latin1, hash);
 372   if (existing_value == value) {
 373     // Same value, already known
 374     stat.inc_known();
 375     return;
 376   }
 377 
 378   // Get size of value array
 379   uintx size_in_bytes = value->size() * HeapWordSize;
 380   stat.inc_new(size_in_bytes);
 381 
 382   if (existing_value != NULL) {
 383     // Enqueue the reference to make sure it is kept alive. Concurrent mark might
 384     // otherwise declare it dead if there are no other strong references to this object.
 385     G1BarrierSet::satb_enqueue(existing_value);
 386 
 387     // Existing value found, deduplicate string
 388     java_lang_String::set_value(java_string, existing_value);
 389 
 390     if (G1CollectedHeap::heap()->is_in_young(value)) {
 391       stat.inc_deduped_young(size_in_bytes);
 392     } else {
 393       stat.inc_deduped_old(size_in_bytes);
 394     }
 395   }
 396 }
 397 
 398 G1StringDedupTable* G1StringDedupTable::prepare_resize() {
 399   size_t size = _table->_size;
 400 
 401   // Check if the hashtable needs to be resized
 402   if (_table->_entries > _table->_grow_threshold) {
 403     // Grow table, double the size
 404     size *= 2;
 405     if (size > _max_size) {
 406       // Too big, don't resize
 407       return NULL;
 408     }
 409   } else if (_table->_entries < _table->_shrink_threshold) {
 410     // Shrink table, half the size
 411     size /= 2;
 412     if (size < _min_size) {
 413       // Too small, don't resize
 414       return NULL;
 415     }
 416   } else if (StringDeduplicationResizeALot) {
 417     // Force grow
 418     size *= 2;
 419     if (size > _max_size) {
 420       // Too big, force shrink instead
 421       size /= 4;
 422     }
 423   } else {
 424     // Resize not needed
 425     return NULL;
 426   }
 427 
 428   // Update statistics
 429   _resize_count++;
 430 
 431   // Update max cache size
 432   _entry_cache->set_max_size(size * _max_cache_factor);
 433 
 434   // Allocate the new table. The new table will be populated by workers
 435   // calling unlink_or_oops_do() and finally installed by finish_resize().
 436   return new G1StringDedupTable(size, _table->_hash_seed);
 437 }
 438 
 439 void G1StringDedupTable::finish_resize(G1StringDedupTable* resized_table) {
 440   assert(resized_table != NULL, "Invalid table");
 441 
 442   resized_table->_entries = _table->_entries;
 443 
 444   // Free old table
 445   delete _table;
 446 
 447   // Install new table
 448   _table = resized_table;
 449 }
 450 
 451 void G1StringDedupTable::unlink_or_oops_do(G1StringDedupUnlinkOrOopsDoClosure* cl, uint worker_id) {
 452   // The table is divided into partitions to allow lock-less parallel processing by
 453   // multiple worker threads. A worker thread first claims a partition, which ensures
 454   // exclusive access to that part of the table, then continues to process it. To allow
 455   // shrinking of the table in parallel we also need to make sure that the same worker
 456   // thread processes all partitions where entries will hash to the same destination
 457   // partition. Since the table size is always a power of two and we always shrink by
 458   // dividing the table in half, we know that for a given partition there is only one
 459   // other partition whoes entries will hash to the same destination partition. That
 460   // other partition is always the sibling partition in the second half of the table.
 461   // For example, if the table is divided into 8 partitions, the sibling of partition 0
 462   // is partition 4, the sibling of partition 1 is partition 5, etc.
 463   size_t table_half = _table->_size / 2;
 464 
 465   // Let each partition be one page worth of buckets
 466   size_t partition_size = MIN2(table_half, os::vm_page_size() / sizeof(G1StringDedupEntry*));
 467   assert(table_half % partition_size == 0, "Invalid partition size");
 468 
 469   // Number of entries removed during the scan
 470   uintx removed = 0;
 471 
 472   for (;;) {
 473     // Grab next partition to scan
 474     size_t partition_begin = cl->claim_table_partition(partition_size);
 475     size_t partition_end = partition_begin + partition_size;
 476     if (partition_begin >= table_half) {
 477       // End of table
 478       break;
 479     }
 480 
 481     // Scan the partition followed by the sibling partition in the second half of the table
 482     removed += unlink_or_oops_do(cl, partition_begin, partition_end, worker_id);
 483     removed += unlink_or_oops_do(cl, table_half + partition_begin, table_half + partition_end, worker_id);
 484   }
 485 
 486   // Delayed update to avoid contention on the table lock
 487   if (removed > 0) {
 488     MutexLockerEx ml(StringDedupTable_lock, Mutex::_no_safepoint_check_flag);
 489     _table->_entries -= removed;
 490     _entries_removed += removed;
 491   }
 492 }
 493 
 494 uintx G1StringDedupTable::unlink_or_oops_do(G1StringDedupUnlinkOrOopsDoClosure* cl,
 495                                             size_t partition_begin,
 496                                             size_t partition_end,
 497                                             uint worker_id) {
 498   uintx removed = 0;
 499   for (size_t bucket = partition_begin; bucket < partition_end; bucket++) {
 500     G1StringDedupEntry** entry = _table->bucket(bucket);
 501     while (*entry != NULL) {
 502       oop* p = (oop*)(*entry)->obj_addr();
 503       if (cl->is_alive(*p)) {
 504         cl->keep_alive(p);
 505         if (cl->is_resizing()) {
 506           // We are resizing the table, transfer entry to the new table
 507           _table->transfer(entry, cl->resized_table());
 508         } else {
 509           if (cl->is_rehashing()) {
 510             // We are rehashing the table, rehash the entry but keep it
 511             // in the table. We can't transfer entries into the new table
 512             // at this point since we don't have exclusive access to all
 513             // destination partitions. finish_rehash() will do a single
 514             // threaded transfer of all entries.
 515             typeArrayOop value = (typeArrayOop)*p;
 516             bool latin1 = (*entry)->latin1();
 517             unsigned int hash = hash_code(value, latin1);
 518             (*entry)->set_hash(hash);
 519           }
 520 
 521           // Move to next entry
 522           entry = (*entry)->next_addr();
 523         }
 524       } else {
 525         // Not alive, remove entry from table
 526         _table->remove(entry, worker_id);
 527         removed++;
 528       }
 529     }
 530   }
 531 
 532   return removed;
 533 }
 534 
 535 G1StringDedupTable* G1StringDedupTable::prepare_rehash() {
 536   if (!_table->_rehash_needed && !StringDeduplicationRehashALot) {
 537     // Rehash not needed
 538     return NULL;
 539   }
 540 
 541   // Update statistics
 542   _rehash_count++;
 543 
 544   // Compute new hash seed
 545   _table->_hash_seed = AltHashing::compute_seed();
 546 
 547   // Allocate the new table, same size and hash seed
 548   return new G1StringDedupTable(_table->_size, _table->_hash_seed);
 549 }
 550 
 551 void G1StringDedupTable::finish_rehash(G1StringDedupTable* rehashed_table) {
 552   assert(rehashed_table != NULL, "Invalid table");
 553 
 554   // Move all newly rehashed entries into the correct buckets in the new table
 555   for (size_t bucket = 0; bucket < _table->_size; bucket++) {
 556     G1StringDedupEntry** entry = _table->bucket(bucket);
 557     while (*entry != NULL) {
 558       _table->transfer(entry, rehashed_table);
 559     }
 560   }
 561 
 562   rehashed_table->_entries = _table->_entries;
 563 
 564   // Free old table
 565   delete _table;
 566 
 567   // Install new table
 568   _table = rehashed_table;
 569 }
 570 
 571 void G1StringDedupTable::verify() {
 572   for (size_t bucket = 0; bucket < _table->_size; bucket++) {
 573     // Verify entries
 574     G1StringDedupEntry** entry = _table->bucket(bucket);
 575     while (*entry != NULL) {
 576       typeArrayOop value = (*entry)->obj();
 577       guarantee(value != NULL, "Object must not be NULL");
 578       guarantee(G1CollectedHeap::heap()->is_in_reserved(value), "Object must be on the heap");
 579       guarantee(!value->is_forwarded(), "Object must not be forwarded");
 580       guarantee(value->is_typeArray(), "Object must be a typeArrayOop");
 581       bool latin1 = (*entry)->latin1();
 582       unsigned int hash = hash_code(value, latin1);
 583       guarantee((*entry)->hash() == hash, "Table entry has inorrect hash");
 584       guarantee(_table->hash_to_index(hash) == bucket, "Table entry has incorrect index");
 585       entry = (*entry)->next_addr();
 586     }
 587 
 588     // Verify that we do not have entries with identical oops or identical arrays.
 589     // We only need to compare entries in the same bucket. If the same oop or an
 590     // identical array has been inserted more than once into different/incorrect
 591     // buckets the verification step above will catch that.
 592     G1StringDedupEntry** entry1 = _table->bucket(bucket);
 593     while (*entry1 != NULL) {
 594       typeArrayOop value1 = (*entry1)->obj();
 595       bool latin1_1 = (*entry1)->latin1();
 596       G1StringDedupEntry** entry2 = (*entry1)->next_addr();
 597       while (*entry2 != NULL) {
 598         typeArrayOop value2 = (*entry2)->obj();
 599         bool latin1_2 = (*entry2)->latin1();
 600         guarantee(latin1_1 != latin1_2 || !equals(value1, value2), "Table entries must not have identical arrays");
 601         entry2 = (*entry2)->next_addr();
 602       }
 603       entry1 = (*entry1)->next_addr();
 604     }
 605   }
 606 }
 607 
 608 void G1StringDedupTable::clean_entry_cache() {
 609   _entry_cache->delete_overflowed();
 610 }
 611 
 612 void G1StringDedupTable::print_statistics() {
 613   Log(gc, stringdedup) log;
 614   log.debug("  Table");
 615   log.debug("    Memory Usage: " G1_STRDEDUP_BYTES_FORMAT_NS,
 616             G1_STRDEDUP_BYTES_PARAM(_table->_size * sizeof(G1StringDedupEntry*) + (_table->_entries + _entry_cache->size()) * sizeof(G1StringDedupEntry)));
 617   log.debug("    Size: " SIZE_FORMAT ", Min: " SIZE_FORMAT ", Max: " SIZE_FORMAT, _table->_size, _min_size, _max_size);
 618   log.debug("    Entries: " UINTX_FORMAT ", Load: " G1_STRDEDUP_PERCENT_FORMAT_NS ", Cached: " UINTX_FORMAT ", Added: " UINTX_FORMAT ", Removed: " UINTX_FORMAT,
 619             _table->_entries, (double)_table->_entries / (double)_table->_size * 100.0, _entry_cache->size(), _entries_added, _entries_removed);
 620   log.debug("    Resize Count: " UINTX_FORMAT ", Shrink Threshold: " UINTX_FORMAT "(" G1_STRDEDUP_PERCENT_FORMAT_NS "), Grow Threshold: " UINTX_FORMAT "(" G1_STRDEDUP_PERCENT_FORMAT_NS ")",
 621             _resize_count, _table->_shrink_threshold, _shrink_load_factor * 100.0, _table->_grow_threshold, _grow_load_factor * 100.0);
 622   log.debug("    Rehash Count: " UINTX_FORMAT ", Rehash Threshold: " UINTX_FORMAT ", Hash Seed: 0x%x", _rehash_count, _rehash_threshold, _table->_hash_seed);
 623   log.debug("    Age Threshold: " UINTX_FORMAT, StringDeduplicationAgeThreshold);
 624 }