< prev index next >

src/share/vm/gc/shared/cardTableModRefBS.cpp

Print this page
rev 12906 : [mq]: gc_interface

*** 21,529 **** * questions. * */ #include "precompiled.hpp" #include "gc/shared/cardTableModRefBS.inline.hpp" - #include "gc/shared/collectedHeap.hpp" - #include "gc/shared/genCollectedHeap.hpp" - #include "gc/shared/space.inline.hpp" - #include "memory/virtualspace.hpp" - #include "logging/log.hpp" - #include "services/memTracker.hpp" - #include "utilities/macros.hpp" // This kind of "BarrierSet" allows a "CollectedHeap" to detect and // enumerate ref fields that have been modified (since the last // enumeration.) ! size_t CardTableModRefBS::compute_byte_map_size() ! { ! assert(_guard_index == cards_required(_whole_heap.word_size()) - 1, ! "uninitialized, check declaration order"); ! assert(_page_size != 0, "uninitialized, check declaration order"); ! const size_t granularity = os::vm_allocation_granularity(); ! return align_size_up(_guard_index + 1, MAX2(_page_size, granularity)); } ! CardTableModRefBS::CardTableModRefBS( ! MemRegion whole_heap, ! const BarrierSet::FakeRtti& fake_rtti) : ! ModRefBarrierSet(fake_rtti.add_tag(BarrierSet::CardTableModRef)), ! _whole_heap(whole_heap), ! _guard_index(0), ! _guard_region(), ! _last_valid_index(0), ! _page_size(os::vm_page_size()), ! _byte_map_size(0), ! _covered(NULL), ! _committed(NULL), ! _cur_covered_regions(0), ! _byte_map(NULL), ! byte_map_base(NULL) ! { ! assert((uintptr_t(_whole_heap.start()) & (card_size - 1)) == 0, "heap must start at card boundary"); ! assert((uintptr_t(_whole_heap.end()) & (card_size - 1)) == 0, "heap must end at card boundary"); ! ! assert(card_size <= 512, "card_size must be less than 512"); // why? ! ! _covered = new MemRegion[_max_covered_regions]; ! if (_covered == NULL) { ! vm_exit_during_initialization("Could not allocate card table covered region set."); ! } } ! void CardTableModRefBS::initialize() { ! _guard_index = cards_required(_whole_heap.word_size()) - 1; ! _last_valid_index = _guard_index - 1; ! ! _byte_map_size = compute_byte_map_size(); ! ! HeapWord* low_bound = _whole_heap.start(); ! HeapWord* high_bound = _whole_heap.end(); ! ! _cur_covered_regions = 0; ! _committed = new MemRegion[_max_covered_regions]; ! if (_committed == NULL) { ! vm_exit_during_initialization("Could not allocate card table committed region set."); ! } ! ! const size_t rs_align = _page_size == (size_t) os::vm_page_size() ? 0 : ! MAX2(_page_size, (size_t) os::vm_allocation_granularity()); ! ReservedSpace heap_rs(_byte_map_size, rs_align, false); ! ! MemTracker::record_virtual_memory_type((address)heap_rs.base(), mtGC); ! ! os::trace_page_sizes("Card Table", _guard_index + 1, _guard_index + 1, ! _page_size, heap_rs.base(), heap_rs.size()); ! if (!heap_rs.is_reserved()) { ! vm_exit_during_initialization("Could not reserve enough space for the " ! "card marking array"); ! } ! ! // The assembler store_check code will do an unsigned shift of the oop, ! // then add it to byte_map_base, i.e. ! // ! // _byte_map = byte_map_base + (uintptr_t(low_bound) >> card_shift) ! _byte_map = (jbyte*) heap_rs.base(); ! byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift); ! assert(byte_for(low_bound) == &_byte_map[0], "Checking start of map"); ! assert(byte_for(high_bound-1) <= &_byte_map[_last_valid_index], "Checking end of map"); ! ! jbyte* guard_card = &_byte_map[_guard_index]; ! uintptr_t guard_page = align_size_down((uintptr_t)guard_card, _page_size); ! _guard_region = MemRegion((HeapWord*)guard_page, _page_size); ! os::commit_memory_or_exit((char*)guard_page, _page_size, _page_size, ! !ExecMem, "card table last card"); ! *guard_card = last_card; ! ! log_trace(gc, barrier)("CardTableModRefBS::CardTableModRefBS: "); ! log_trace(gc, barrier)(" &_byte_map[0]: " INTPTR_FORMAT " &_byte_map[_last_valid_index]: " INTPTR_FORMAT, ! p2i(&_byte_map[0]), p2i(&_byte_map[_last_valid_index])); ! log_trace(gc, barrier)(" byte_map_base: " INTPTR_FORMAT, p2i(byte_map_base)); } ! CardTableModRefBS::~CardTableModRefBS() { ! if (_covered) { ! delete[] _covered; ! _covered = NULL; ! } ! if (_committed) { ! delete[] _committed; ! _committed = NULL; ! } ! } ! ! int CardTableModRefBS::find_covering_region_by_base(HeapWord* base) { ! int i; ! for (i = 0; i < _cur_covered_regions; i++) { ! if (_covered[i].start() == base) return i; ! if (_covered[i].start() > base) break; ! } ! // If we didn't find it, create a new one. ! assert(_cur_covered_regions < _max_covered_regions, ! "too many covered regions"); ! // Move the ones above up, to maintain sorted order. ! for (int j = _cur_covered_regions; j > i; j--) { ! _covered[j] = _covered[j-1]; ! _committed[j] = _committed[j-1]; ! } ! int res = i; ! _cur_covered_regions++; ! _covered[res].set_start(base); ! _covered[res].set_word_size(0); ! jbyte* ct_start = byte_for(base); ! uintptr_t ct_start_aligned = align_size_down((uintptr_t)ct_start, _page_size); ! _committed[res].set_start((HeapWord*)ct_start_aligned); ! _committed[res].set_word_size(0); ! return res; ! } ! ! int CardTableModRefBS::find_covering_region_containing(HeapWord* addr) { ! for (int i = 0; i < _cur_covered_regions; i++) { ! if (_covered[i].contains(addr)) { ! return i; ! } ! } ! assert(0, "address outside of heap?"); ! return -1; } ! HeapWord* CardTableModRefBS::largest_prev_committed_end(int ind) const { ! HeapWord* max_end = NULL; ! for (int j = 0; j < ind; j++) { ! HeapWord* this_end = _committed[j].end(); ! if (this_end > max_end) max_end = this_end; ! } ! return max_end; } ! MemRegion CardTableModRefBS::committed_unique_to_self(int self, ! MemRegion mr) const { ! MemRegion result = mr; ! for (int r = 0; r < _cur_covered_regions; r += 1) { ! if (r != self) { ! result = result.minus(_committed[r]); ! } ! } ! // Never include the guard page. ! result = result.minus(_guard_region); ! return result; ! } ! ! void CardTableModRefBS::resize_covered_region(MemRegion new_region) { ! // We don't change the start of a region, only the end. ! assert(_whole_heap.contains(new_region), ! "attempt to cover area not in reserved area"); ! debug_only(verify_guard();) ! // collided is true if the expansion would push into another committed region ! debug_only(bool collided = false;) ! int const ind = find_covering_region_by_base(new_region.start()); ! MemRegion const old_region = _covered[ind]; ! assert(old_region.start() == new_region.start(), "just checking"); ! if (new_region.word_size() != old_region.word_size()) { ! // Commit new or uncommit old pages, if necessary. ! MemRegion cur_committed = _committed[ind]; ! // Extend the end of this _committed region ! // to cover the end of any lower _committed regions. ! // This forms overlapping regions, but never interior regions. ! HeapWord* const max_prev_end = largest_prev_committed_end(ind); ! if (max_prev_end > cur_committed.end()) { ! cur_committed.set_end(max_prev_end); ! } ! // Align the end up to a page size (starts are already aligned). ! jbyte* const new_end = byte_after(new_region.last()); ! HeapWord* new_end_aligned = ! (HeapWord*) align_size_up((uintptr_t)new_end, _page_size); ! assert(new_end_aligned >= (HeapWord*) new_end, ! "align up, but less"); ! // Check the other regions (excludes "ind") to ensure that ! // the new_end_aligned does not intrude onto the committed ! // space of another region. ! int ri = 0; ! for (ri = ind + 1; ri < _cur_covered_regions; ri++) { ! if (new_end_aligned > _committed[ri].start()) { ! assert(new_end_aligned <= _committed[ri].end(), ! "An earlier committed region can't cover a later committed region"); ! // Any region containing the new end ! // should start at or beyond the region found (ind) ! // for the new end (committed regions are not expected to ! // be proper subsets of other committed regions). ! assert(_committed[ri].start() >= _committed[ind].start(), ! "New end of committed region is inconsistent"); ! new_end_aligned = _committed[ri].start(); ! // new_end_aligned can be equal to the start of its ! // committed region (i.e., of "ind") if a second ! // region following "ind" also start at the same location ! // as "ind". ! assert(new_end_aligned >= _committed[ind].start(), ! "New end of committed region is before start"); ! debug_only(collided = true;) ! // Should only collide with 1 region ! break; ! } ! } ! #ifdef ASSERT ! for (++ri; ri < _cur_covered_regions; ri++) { ! assert(!_committed[ri].contains(new_end_aligned), ! "New end of committed region is in a second committed region"); ! } ! #endif ! // The guard page is always committed and should not be committed over. ! // "guarded" is used for assertion checking below and recalls the fact ! // that the would-be end of the new committed region would have ! // penetrated the guard page. ! HeapWord* new_end_for_commit = new_end_aligned; ! ! DEBUG_ONLY(bool guarded = false;) ! if (new_end_for_commit > _guard_region.start()) { ! new_end_for_commit = _guard_region.start(); ! DEBUG_ONLY(guarded = true;) ! } ! ! if (new_end_for_commit > cur_committed.end()) { ! // Must commit new pages. ! MemRegion const new_committed = ! MemRegion(cur_committed.end(), new_end_for_commit); ! ! assert(!new_committed.is_empty(), "Region should not be empty here"); ! os::commit_memory_or_exit((char*)new_committed.start(), ! new_committed.byte_size(), _page_size, ! !ExecMem, "card table expansion"); ! // Use new_end_aligned (as opposed to new_end_for_commit) because ! // the cur_committed region may include the guard region. ! } else if (new_end_aligned < cur_committed.end()) { ! // Must uncommit pages. ! MemRegion const uncommit_region = ! committed_unique_to_self(ind, MemRegion(new_end_aligned, ! cur_committed.end())); ! if (!uncommit_region.is_empty()) { ! // It is not safe to uncommit cards if the boundary between ! // the generations is moving. A shrink can uncommit cards ! // owned by generation A but being used by generation B. ! if (!UseAdaptiveGCBoundary) { ! if (!os::uncommit_memory((char*)uncommit_region.start(), ! uncommit_region.byte_size())) { ! assert(false, "Card table contraction failed"); ! // The call failed so don't change the end of the ! // committed region. This is better than taking the ! // VM down. ! new_end_aligned = _committed[ind].end(); ! } ! } else { ! new_end_aligned = _committed[ind].end(); ! } ! } ! } ! // In any case, we can reset the end of the current committed entry. ! _committed[ind].set_end(new_end_aligned); ! ! #ifdef ASSERT ! // Check that the last card in the new region is committed according ! // to the tables. ! bool covered = false; ! for (int cr = 0; cr < _cur_covered_regions; cr++) { ! if (_committed[cr].contains(new_end - 1)) { ! covered = true; ! break; ! } ! } ! assert(covered, "Card for end of new region not committed"); ! #endif ! ! // The default of 0 is not necessarily clean cards. ! jbyte* entry; ! if (old_region.last() < _whole_heap.start()) { ! entry = byte_for(_whole_heap.start()); ! } else { ! entry = byte_after(old_region.last()); ! } ! assert(index_for(new_region.last()) < _guard_index, ! "The guard card will be overwritten"); ! // This line commented out cleans the newly expanded region and ! // not the aligned up expanded region. ! // jbyte* const end = byte_after(new_region.last()); ! jbyte* const end = (jbyte*) new_end_for_commit; ! assert((end >= byte_after(new_region.last())) || collided || guarded, ! "Expect to be beyond new region unless impacting another region"); ! // do nothing if we resized downward. ! #ifdef ASSERT ! for (int ri = 0; ri < _cur_covered_regions; ri++) { ! if (ri != ind) { ! // The end of the new committed region should not ! // be in any existing region unless it matches ! // the start of the next region. ! assert(!_committed[ri].contains(end) || ! (_committed[ri].start() == (HeapWord*) end), ! "Overlapping committed regions"); ! } ! } #endif - if (entry < end) { - memset(entry, clean_card, pointer_delta(end, entry, sizeof(jbyte))); - } - } - // In any case, the covered size changes. - _covered[ind].set_word_size(new_region.word_size()); - - log_trace(gc, barrier)("CardTableModRefBS::resize_covered_region: "); - log_trace(gc, barrier)(" _covered[%d].start(): " INTPTR_FORMAT " _covered[%d].last(): " INTPTR_FORMAT, - ind, p2i(_covered[ind].start()), ind, p2i(_covered[ind].last())); - log_trace(gc, barrier)(" _committed[%d].start(): " INTPTR_FORMAT " _committed[%d].last(): " INTPTR_FORMAT, - ind, p2i(_committed[ind].start()), ind, p2i(_committed[ind].last())); - log_trace(gc, barrier)(" byte_for(start): " INTPTR_FORMAT " byte_for(last): " INTPTR_FORMAT, - p2i(byte_for(_covered[ind].start())), p2i(byte_for(_covered[ind].last()))); - log_trace(gc, barrier)(" addr_for(start): " INTPTR_FORMAT " addr_for(last): " INTPTR_FORMAT, - p2i(addr_for((jbyte*) _committed[ind].start())), p2i(addr_for((jbyte*) _committed[ind].last()))); - - // Touch the last card of the covered region to show that it - // is committed (or SEGV). - debug_only((void) (*byte_for(_covered[ind].last()));) - debug_only(verify_guard();) - } - - // Note that these versions are precise! The scanning code has to handle the - // fact that the write barrier may be either precise or imprecise. - - void CardTableModRefBS::write_ref_field_work(void* field, oop newVal, bool release) { - inline_write_ref_field(field, newVal, release); } ! void CardTableModRefBS::dirty_MemRegion(MemRegion mr) { ! assert((HeapWord*)align_size_down((uintptr_t)mr.start(), HeapWordSize) == mr.start(), "Unaligned start"); ! assert((HeapWord*)align_size_up ((uintptr_t)mr.end(), HeapWordSize) == mr.end(), "Unaligned end" ); ! jbyte* cur = byte_for(mr.start()); ! jbyte* last = byte_after(mr.last()); ! while (cur < last) { ! *cur = dirty_card; ! cur++; ! } } void CardTableModRefBS::invalidate(MemRegion mr) { ! assert((HeapWord*)align_size_down((uintptr_t)mr.start(), HeapWordSize) == mr.start(), "Unaligned start"); ! assert((HeapWord*)align_size_up ((uintptr_t)mr.end(), HeapWordSize) == mr.end(), "Unaligned end" ); ! for (int i = 0; i < _cur_covered_regions; i++) { ! MemRegion mri = mr.intersection(_covered[i]); ! if (!mri.is_empty()) dirty_MemRegion(mri); ! } ! } ! ! void CardTableModRefBS::clear_MemRegion(MemRegion mr) { ! // Be conservative: only clean cards entirely contained within the ! // region. ! jbyte* cur; ! if (mr.start() == _whole_heap.start()) { ! cur = byte_for(mr.start()); ! } else { ! assert(mr.start() > _whole_heap.start(), "mr is not covered."); ! cur = byte_after(mr.start() - 1); ! } ! jbyte* last = byte_after(mr.last()); ! memset(cur, clean_card, pointer_delta(last, cur, sizeof(jbyte))); ! } ! ! void CardTableModRefBS::clear(MemRegion mr) { ! for (int i = 0; i < _cur_covered_regions; i++) { ! MemRegion mri = mr.intersection(_covered[i]); ! if (!mri.is_empty()) clear_MemRegion(mri); ! } ! } ! ! void CardTableModRefBS::dirty(MemRegion mr) { ! jbyte* first = byte_for(mr.start()); ! jbyte* last = byte_after(mr.last()); ! memset(first, dirty_card, last-first); ! } ! ! // Unlike several other card table methods, dirty_card_iterate() ! // iterates over dirty cards ranges in increasing address order. ! void CardTableModRefBS::dirty_card_iterate(MemRegion mr, ! MemRegionClosure* cl) { ! for (int i = 0; i < _cur_covered_regions; i++) { ! MemRegion mri = mr.intersection(_covered[i]); ! if (!mri.is_empty()) { ! jbyte *cur_entry, *next_entry, *limit; ! for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last()); ! cur_entry <= limit; ! cur_entry = next_entry) { ! next_entry = cur_entry + 1; ! if (*cur_entry == dirty_card) { ! size_t dirty_cards; ! // Accumulate maximal dirty card range, starting at cur_entry ! for (dirty_cards = 1; ! next_entry <= limit && *next_entry == dirty_card; ! dirty_cards++, next_entry++); ! MemRegion cur_cards(addr_for(cur_entry), ! dirty_cards*card_size_in_words); ! cl->do_MemRegion(cur_cards); ! } ! } ! } ! } ! } ! ! MemRegion CardTableModRefBS::dirty_card_range_after_reset(MemRegion mr, ! bool reset, ! int reset_val) { ! for (int i = 0; i < _cur_covered_regions; i++) { ! MemRegion mri = mr.intersection(_covered[i]); ! if (!mri.is_empty()) { ! jbyte* cur_entry, *next_entry, *limit; ! for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last()); ! cur_entry <= limit; ! cur_entry = next_entry) { ! next_entry = cur_entry + 1; ! if (*cur_entry == dirty_card) { ! size_t dirty_cards; ! // Accumulate maximal dirty card range, starting at cur_entry ! for (dirty_cards = 1; ! next_entry <= limit && *next_entry == dirty_card; ! dirty_cards++, next_entry++); ! MemRegion cur_cards(addr_for(cur_entry), ! dirty_cards*card_size_in_words); ! if (reset) { ! for (size_t i = 0; i < dirty_cards; i++) { ! cur_entry[i] = reset_val; ! } ! } ! return cur_cards; ! } ! } ! } ! } ! return MemRegion(mr.end(), mr.end()); } ! uintx CardTableModRefBS::ct_max_alignment_constraint() { ! return card_size * os::vm_page_size(); ! } ! ! void CardTableModRefBS::verify_guard() { ! // For product build verification ! guarantee(_byte_map[_guard_index] == last_card, ! "card table guard has been modified"); ! } ! ! void CardTableModRefBS::verify() { ! verify_guard(); } ! #ifndef PRODUCT ! void CardTableModRefBS::verify_region(MemRegion mr, ! jbyte val, bool val_equals) { ! jbyte* start = byte_for(mr.start()); ! jbyte* end = byte_for(mr.last()); ! bool failures = false; ! for (jbyte* curr = start; curr <= end; ++curr) { ! jbyte curr_val = *curr; ! bool failed = (val_equals) ? (curr_val != val) : (curr_val == val); ! if (failed) { ! if (!failures) { ! log_error(gc, verify)("== CT verification failed: [" INTPTR_FORMAT "," INTPTR_FORMAT "]", p2i(start), p2i(end)); ! log_error(gc, verify)("== %sexpecting value: %d", (val_equals) ? "" : "not ", val); ! failures = true; ! } ! log_error(gc, verify)("== card " PTR_FORMAT " [" PTR_FORMAT "," PTR_FORMAT "], val: %d", ! p2i(curr), p2i(addr_for(curr)), ! p2i((HeapWord*) (((size_t) addr_for(curr)) + card_size)), ! (int) curr_val); } } - guarantee(!failures, "there should not have been any failures"); } ! void CardTableModRefBS::verify_not_dirty_region(MemRegion mr) { ! verify_region(mr, dirty_card, false /* val_equals */); ! } ! ! void CardTableModRefBS::verify_dirty_region(MemRegion mr) { ! verify_region(mr, dirty_card, true /* val_equals */); ! } #endif - - void CardTableModRefBS::print_on(outputStream* st) const { - st->print_cr("Card table byte_map: [" INTPTR_FORMAT "," INTPTR_FORMAT "] byte_map_base: " INTPTR_FORMAT, - p2i(_byte_map), p2i(_byte_map + _byte_map_size), p2i(byte_map_base)); } --- 21,200 ---- * questions. * */ #include "precompiled.hpp" + #include "gc/shared/cardTableModRefBSCodeGen.hpp" + #include "gc/shared/c1CardTableModRefBSCodeGen.hpp" + #include "gc/shared/c2CardTableModRefBSCodeGen.hpp" #include "gc/shared/cardTableModRefBS.inline.hpp" // This kind of "BarrierSet" allows a "CollectedHeap" to detect and // enumerate ref fields that have been modified (since the last // enumeration.) ! void CardTableModRefBS::write_region(MemRegion mr) { ! _card_table->dirty_MemRegion(mr); } ! void CardTableModRefBS::write_ref_array_region(MemRegion mr) { ! _card_table->dirty_MemRegion(mr); } ! BarrierSetCodeGen* CardTableModRefBS::make_code_gen() { ! return new CardTableModRefBSCodeGen(); } ! C1BarrierSetCodeGen* CardTableModRefBS::make_c1_code_gen() { ! return new C1CardTableModRefBSCodeGen(); } ! C2BarrierSetCodeGen* CardTableModRefBS::make_c2_code_gen() { ! return new C2CardTableModRefBSCodeGen(); } ! void CardTableModRefBS::initialize() { ! ModRefBarrierSet::initialize(); ! // Used for ReduceInitialCardMarks (when COMPILER2 or JVMCI is used); ! // otherwise remains unused. ! #if defined(COMPILER2) || INCLUDE_JVMCI ! _can_elide_tlab_store_barriers = can_elide_tlab_store_barriers(); ! _defer_initial_card_mark = is_server_compilation_mode_vm() && ReduceInitialCardMarks && _can_elide_tlab_store_barriers ! && (DeferInitialCardMark || card_mark_must_follow_store()); ! #else ! assert(_defer_initial_card_mark == false, "Who would set it?"); ! assert(_can_elide_tlab_store_barriers == false, "Who would set it?"); #endif } + CardTableModRefBS::CardTableModRefBS( + CardTable* card_table, + const BarrierSet::FakeRtti& fake_rtti) : + ModRefBarrierSet(fake_rtti.add_tag(BarrierSet::CardTableModRef)), + _defer_initial_card_mark(false), + _can_elide_tlab_store_barriers(false), + _card_table(card_table) + {} + + CardTableModRefBS::CardTableModRefBS(CardTable* card_table) : + ModRefBarrierSet(BarrierSet::FakeRtti(BarrierSet::CardTableModRef)), + _defer_initial_card_mark(false), + _can_elide_tlab_store_barriers(false), + _card_table(card_table) + {} ! CardTableModRefBS::~CardTableModRefBS() { ! delete _card_table; } void CardTableModRefBS::invalidate(MemRegion mr) { ! _card_table->invalidate(mr); } ! void CardTableModRefBS::print_on(outputStream* st) const { ! _card_table->print_on(st); } ! // Helper for ReduceInitialCardMarks. For performance, ! // compiled code may elide card-marks for initializing stores ! // to a newly allocated object along the fast-path. We ! // compensate for such elided card-marks as follows: ! // (a) Generational, non-concurrent collectors, such as ! // GenCollectedHeap(ParNew,DefNew,Tenured) and ! // ParallelScavengeHeap(ParallelGC, ParallelOldGC) ! // need the card-mark if and only if the region is ! // in the old gen, and do not care if the card-mark ! // succeeds or precedes the initializing stores themselves, ! // so long as the card-mark is completed before the next ! // scavenge. For all these cases, we can do a card mark ! // at the point at which we do a slow path allocation ! // in the old gen, i.e. in this call. ! // (b) GenCollectedHeap(ConcurrentMarkSweepGeneration) requires ! // in addition that the card-mark for an old gen allocated ! // object strictly follow any associated initializing stores. ! // In these cases, the memRegion remembered below is ! // used to card-mark the entire region either just before the next ! // slow-path allocation by this thread or just before the next scavenge or ! // CMS-associated safepoint, whichever of these events happens first. ! // (The implicit assumption is that the object has been fully ! // initialized by this point, a fact that we assert when doing the ! // card-mark.) ! // (c) G1CollectedHeap(G1) uses two kinds of write barriers. When a ! // G1 concurrent marking is in progress an SATB (pre-write-)barrier ! // is used to remember the pre-value of any store. Initializing ! // stores will not need this barrier, so we need not worry about ! // compensating for the missing pre-barrier here. Turning now ! // to the post-barrier, we note that G1 needs a RS update barrier ! // which simply enqueues a (sequence of) dirty cards which may ! // optionally be refined by the concurrent update threads. Note ! // that this barrier need only be applied to a non-young write, ! // but, like in CMS, because of the presence of concurrent refinement ! // (much like CMS' precleaning), must strictly follow the oop-store. ! // Thus, using the same protocol for maintaining the intended ! // invariants turns out, serendepitously, to be the same for both ! // G1 and CMS. ! // ! // For any future collector, this code should be reexamined with ! // that specific collector in mind, and the documentation above suitably ! // extended and updated. ! void CardTableModRefBS::new_deferred_store_barrier(JavaThread* thread, oop new_obj) { ! // If a previous card-mark was deferred, flush it now. ! flush_deferred_store_barrier(thread); ! if (new_obj->is_typeArray() || _card_table->is_in_young(new_obj)) { ! // Arrays of non-references don't need a post-barrier. ! // The deferred_card_mark region should be empty ! // following the flush above. ! assert(thread->deferred_card_mark().is_empty(), "Error"); ! } else { ! MemRegion mr((HeapWord*)new_obj, new_obj->size()); ! assert(!mr.is_empty(), "Error"); ! if (_defer_initial_card_mark) { ! // Defer the card mark ! thread->set_deferred_card_mark(mr); ! } else { ! // Do the card mark ! write_region(mr); } } } ! void CardTableModRefBS::flush_deferred_store_barrier(JavaThread* thread) { ! MemRegion deferred = thread->deferred_card_mark(); ! if (!deferred.is_empty()) { ! assert(_defer_initial_card_mark, "Otherwise should be empty"); ! { ! // Verify that the storage points to a parsable object in heap ! DEBUG_ONLY(oop old_obj = oop(deferred.start());) ! assert(!_card_table->is_in_young(old_obj), ! "Else should have been filtered in new_deferred_store_barrier()"); ! assert(old_obj->is_oop(true), "Not an oop"); ! assert(deferred.word_size() == (size_t)(old_obj->size()), ! "Mismatch: multiple objects?"); ! } ! write_region(deferred); ! // "Clear" the deferred_card_mark field ! thread->set_deferred_card_mark(MemRegion()); ! } ! assert(thread->deferred_card_mark().is_empty(), "invariant"); ! } ! ! void CardTableModRefBS::on_destroy_thread(JavaThread* thread) { ! ModRefBarrierSet::on_destroy_thread(thread); ! flush_deferred_store_barrier(thread); ! } ! ! void CardTableModRefBS::make_parsable(JavaThread* thread) { ! ModRefBarrierSet::make_parsable(thread); ! #if defined(COMPILER2) || INCLUDE_JVMCI ! // The deferred store barriers must all have been flushed to the ! // card-table (or other remembered set structure) before GC starts ! // processing the card-table (or other remembered set). ! if (_defer_initial_card_mark) flush_deferred_store_barrier(thread); ! #else ! assert(!_defer_initial_card_mark, "Should be false"); ! assert(thread->deferred_card_mark().is_empty(), "Should be empty"); #endif } + bool CardTableModRefBS::card_mark_must_follow_store() const { + return _card_table->scanned_concurrently(); + }
< prev index next >