1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
  27 
  28 #include "gc/shared/gcCause.hpp"
  29 #include "gc/shared/gcWhen.hpp"
  30 #include "memory/allocation.hpp"
  31 #include "runtime/handles.hpp"
  32 #include "runtime/perfData.hpp"
  33 #include "runtime/safepoint.hpp"
  34 #include "utilities/events.hpp"
  35 
  36 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
  37 // is an abstract class: there may be many different kinds of heaps.  This
  38 // class defines the functions that a heap must implement, and contains
  39 // infrastructure common to all heaps.
  40 
  41 class AdaptiveSizePolicy;
  42 class BarrierSet;
  43 class CollectorPolicy;
  44 class GCHeapSummary;
  45 class GCTimer;
  46 class GCTracer;
  47 class MetaspaceSummary;
  48 class Thread;
  49 class ThreadClosure;
  50 class VirtualSpaceSummary;
  51 class nmethod;
  52 
  53 class GCMessage : public FormatBuffer<1024> {
  54  public:
  55   bool is_before;
  56 
  57  public:
  58   GCMessage() {}
  59 };
  60 
  61 class CollectedHeap;
  62 
  63 class GCHeapLog : public EventLogBase<GCMessage> {
  64  private:
  65   void log_heap(CollectedHeap* heap, bool before);
  66 
  67  public:
  68   GCHeapLog() : EventLogBase<GCMessage>("GC Heap History") {}
  69 
  70   void log_heap_before(CollectedHeap* heap) {
  71     log_heap(heap, true);
  72   }
  73   void log_heap_after(CollectedHeap* heap) {
  74     log_heap(heap, false);
  75   }
  76 };
  77 
  78 //
  79 // CollectedHeap
  80 //   GenCollectedHeap
  81 //   G1CollectedHeap
  82 //   ParallelScavengeHeap
  83 //
  84 class CollectedHeap : public CHeapObj<mtInternal> {
  85   friend class VMStructs;
  86   friend class JVMCIVMStructs;
  87   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
  88 
  89  private:
  90 #ifdef ASSERT
  91   static int       _fire_out_of_memory_count;
  92 #endif
  93 
  94   GCHeapLog* _gc_heap_log;
  95 
  96   MemRegion _reserved;
  97 
  98  protected:
  99   BarrierSet* _barrier_set;
 100   bool _is_gc_active;
 101 
 102   // Used for filler objects (static, but initialized in ctor).
 103   static size_t _filler_array_max_size;
 104 
 105   unsigned int _total_collections;          // ... started
 106   unsigned int _total_full_collections;     // ... started
 107   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
 108   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
 109 
 110   // Reason for current garbage collection.  Should be set to
 111   // a value reflecting no collection between collections.
 112   GCCause::Cause _gc_cause;
 113   GCCause::Cause _gc_lastcause;
 114   PerfStringVariable* _perf_gc_cause;
 115   PerfStringVariable* _perf_gc_lastcause;
 116 
 117   // Constructor
 118   CollectedHeap();
 119 
 120   // Do common initializations that must follow instance construction,
 121   // for example, those needing virtual calls.
 122   // This code could perhaps be moved into initialize() but would
 123   // be slightly more awkward because we want the latter to be a
 124   // pure virtual.
 125   void pre_initialize();
 126 
 127   // Create a new tlab. All TLAB allocations must go through this.
 128   virtual HeapWord* allocate_new_tlab(size_t size);
 129 
 130   // Accumulate statistics on all tlabs.
 131   virtual void accumulate_statistics_all_tlabs();
 132 
 133   // Reinitialize tlabs before resuming mutators.
 134   virtual void resize_all_tlabs();
 135 
 136   // Allocate from the current thread's TLAB, with broken-out slow path.
 137   inline static HeapWord* allocate_from_tlab(Klass* klass, Thread* thread, size_t size);
 138   static HeapWord* allocate_from_tlab_slow(Klass* klass, Thread* thread, size_t size);
 139 
 140   // Allocate an uninitialized block of the given size, or returns NULL if
 141   // this is impossible.
 142   inline static HeapWord* common_mem_allocate_noinit(Klass* klass, size_t size, TRAPS);
 143 
 144   // Like allocate_init, but the block returned by a successful allocation
 145   // is guaranteed initialized to zeros.
 146   inline static HeapWord* common_mem_allocate_init(Klass* klass, size_t size, TRAPS);
 147 
 148   // Helper functions for (VM) allocation.
 149   inline static void post_allocation_setup_common(Klass* klass, HeapWord* obj);
 150   inline static void post_allocation_setup_no_klass_install(Klass* klass,
 151                                                             HeapWord* objPtr);
 152 
 153   inline static void post_allocation_setup_obj(Klass* klass, HeapWord* obj, int size);
 154 
 155   inline static void post_allocation_setup_array(Klass* klass,
 156                                                  HeapWord* obj, int length);
 157 
 158   inline static void post_allocation_setup_class(Klass* klass, HeapWord* obj, int size);
 159 
 160   // Clears an allocated object.
 161   inline static void init_obj(HeapWord* obj, size_t size);
 162 
 163   // Filler object utilities.
 164   static inline size_t filler_array_hdr_size();
 165   static inline size_t filler_array_min_size();
 166 
 167   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
 168   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
 169 
 170   // Fill with a single array; caller must ensure filler_array_min_size() <=
 171   // words <= filler_array_max_size().
 172   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
 173 
 174   // Fill with a single object (either an int array or a java.lang.Object).
 175   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
 176 
 177   virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 178 
 179   // Verification functions
 180   virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
 181     PRODUCT_RETURN;
 182   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
 183     PRODUCT_RETURN;
 184   debug_only(static void check_for_valid_allocation_state();)
 185 
 186  public:
 187   enum Name {
 188     GenCollectedHeap,
 189     ParallelScavengeHeap,
 190     G1CollectedHeap
 191   };
 192 
 193   static inline size_t filler_array_max_size() {
 194     return _filler_array_max_size;
 195   }
 196 
 197   virtual Name kind() const = 0;
 198 
 199   virtual const char* name() const = 0;
 200 
 201   /**
 202    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
 203    * and JNI_OK on success.
 204    */
 205   virtual jint initialize() = 0;
 206 
 207   // In many heaps, there will be a need to perform some initialization activities
 208   // after the Universe is fully formed, but before general heap allocation is allowed.
 209   // This is the correct place to place such initialization methods.
 210   virtual void post_initialize() = 0;
 211 
 212   // Stop any onging concurrent work and prepare for exit.
 213   virtual void stop() {}
 214 
 215   // Stop and resume concurrent GC threads interfering with safepoint operations
 216   virtual void safepoint_synchronize_begin() {}
 217   virtual void safepoint_synchronize_end() {}
 218 
 219   void initialize_reserved_region(HeapWord *start, HeapWord *end);
 220   MemRegion reserved_region() const { return _reserved; }
 221   address base() const { return (address)reserved_region().start(); }
 222 
 223   virtual size_t capacity() const = 0;
 224   virtual size_t used() const = 0;
 225 
 226   // Return "true" if the part of the heap that allocates Java
 227   // objects has reached the maximal committed limit that it can
 228   // reach, without a garbage collection.
 229   virtual bool is_maximal_no_gc() const = 0;
 230 
 231   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
 232   // memory that the vm could make available for storing 'normal' java objects.
 233   // This is based on the reserved address space, but should not include space
 234   // that the vm uses internally for bookkeeping or temporary storage
 235   // (e.g., in the case of the young gen, one of the survivor
 236   // spaces).
 237   virtual size_t max_capacity() const = 0;
 238 
 239   // Returns "TRUE" if "p" points into the reserved area of the heap.
 240   bool is_in_reserved(const void* p) const {
 241     return _reserved.contains(p);
 242   }
 243 
 244   bool is_in_reserved_or_null(const void* p) const {
 245     return p == NULL || is_in_reserved(p);
 246   }
 247 
 248   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 249   // This method can be expensive so avoid using it in performance critical
 250   // code.
 251   virtual bool is_in(const void* p) const = 0;
 252 
 253   DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == NULL || is_in(p); })
 254 
 255   // Let's define some terms: a "closed" subset of a heap is one that
 256   //
 257   // 1) contains all currently-allocated objects, and
 258   //
 259   // 2) is closed under reference: no object in the closed subset
 260   //    references one outside the closed subset.
 261   //
 262   // Membership in a heap's closed subset is useful for assertions.
 263   // Clearly, the entire heap is a closed subset, so the default
 264   // implementation is to use "is_in_reserved".  But this may not be too
 265   // liberal to perform useful checking.  Also, the "is_in" predicate
 266   // defines a closed subset, but may be too expensive, since "is_in"
 267   // verifies that its argument points to an object head.  The
 268   // "closed_subset" method allows a heap to define an intermediate
 269   // predicate, allowing more precise checking than "is_in_reserved" at
 270   // lower cost than "is_in."
 271 
 272   // One important case is a heap composed of disjoint contiguous spaces,
 273   // such as the Garbage-First collector.  Such heaps have a convenient
 274   // closed subset consisting of the allocated portions of those
 275   // contiguous spaces.
 276 
 277   // Return "TRUE" iff the given pointer points into the heap's defined
 278   // closed subset (which defaults to the entire heap).
 279   virtual bool is_in_closed_subset(const void* p) const {
 280     return is_in_reserved(p);
 281   }
 282 
 283   bool is_in_closed_subset_or_null(const void* p) const {
 284     return p == NULL || is_in_closed_subset(p);
 285   }
 286 
 287   // An object is scavengable if its location may move during a scavenge.
 288   // (A scavenge is a GC which is not a full GC.)
 289   virtual bool is_scavengable(const void *p) = 0;
 290 
 291   void set_gc_cause(GCCause::Cause v) {
 292      if (UsePerfData) {
 293        _gc_lastcause = _gc_cause;
 294        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
 295        _perf_gc_cause->set_value(GCCause::to_string(v));
 296      }
 297     _gc_cause = v;
 298   }
 299   GCCause::Cause gc_cause() { return _gc_cause; }
 300 
 301   // General obj/array allocation facilities.
 302   inline static oop obj_allocate(Klass* klass, int size, TRAPS);
 303   inline static oop array_allocate(Klass* klass, int size, int length, TRAPS);
 304   inline static oop array_allocate_nozero(Klass* klass, int size, int length, TRAPS);
 305   inline static oop class_allocate(Klass* klass, int size, TRAPS);
 306 
 307   // Raw memory allocation facilities
 308   // The obj and array allocate methods are covers for these methods.
 309   // mem_allocate() should never be
 310   // called to allocate TLABs, only individual objects.
 311   virtual HeapWord* mem_allocate(size_t size,
 312                                  bool* gc_overhead_limit_was_exceeded) = 0;
 313 
 314   // Utilities for turning raw memory into filler objects.
 315   //
 316   // min_fill_size() is the smallest region that can be filled.
 317   // fill_with_objects() can fill arbitrary-sized regions of the heap using
 318   // multiple objects.  fill_with_object() is for regions known to be smaller
 319   // than the largest array of integers; it uses a single object to fill the
 320   // region and has slightly less overhead.
 321   static size_t min_fill_size() {
 322     return size_t(align_object_size(oopDesc::header_size()));
 323   }
 324 
 325   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
 326 
 327   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
 328   static void fill_with_object(MemRegion region, bool zap = true) {
 329     fill_with_object(region.start(), region.word_size(), zap);
 330   }
 331   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
 332     fill_with_object(start, pointer_delta(end, start), zap);
 333   }
 334 
 335   // Return the address "addr" aligned by "alignment_in_bytes" if such
 336   // an address is below "end".  Return NULL otherwise.
 337   inline static HeapWord* align_allocation_or_fail(HeapWord* addr,
 338                                                    HeapWord* end,
 339                                                    unsigned short alignment_in_bytes);
 340 
 341   // Some heaps may offer a contiguous region for shared non-blocking
 342   // allocation, via inlined code (by exporting the address of the top and
 343   // end fields defining the extent of the contiguous allocation region.)
 344 
 345   // This function returns "true" iff the heap supports this kind of
 346   // allocation.  (Default is "no".)
 347   virtual bool supports_inline_contig_alloc() const {
 348     return false;
 349   }
 350   // These functions return the addresses of the fields that define the
 351   // boundaries of the contiguous allocation area.  (These fields should be
 352   // physically near to one another.)
 353   virtual HeapWord* volatile* top_addr() const {
 354     guarantee(false, "inline contiguous allocation not supported");
 355     return NULL;
 356   }
 357   virtual HeapWord** end_addr() const {
 358     guarantee(false, "inline contiguous allocation not supported");
 359     return NULL;
 360   }
 361 
 362   // Some heaps may be in an unparseable state at certain times between
 363   // collections. This may be necessary for efficient implementation of
 364   // certain allocation-related activities. Calling this function before
 365   // attempting to parse a heap ensures that the heap is in a parsable
 366   // state (provided other concurrent activity does not introduce
 367   // unparsability). It is normally expected, therefore, that this
 368   // method is invoked with the world stopped.
 369   // NOTE: if you override this method, make sure you call
 370   // super::ensure_parsability so that the non-generational
 371   // part of the work gets done. See implementation of
 372   // CollectedHeap::ensure_parsability and, for instance,
 373   // that of GenCollectedHeap::ensure_parsability().
 374   // The argument "retire_tlabs" controls whether existing TLABs
 375   // are merely filled or also retired, thus preventing further
 376   // allocation from them and necessitating allocation of new TLABs.
 377   virtual void ensure_parsability(bool retire_tlabs);
 378 
 379   // Section on thread-local allocation buffers (TLABs)
 380   // If the heap supports thread-local allocation buffers, it should override
 381   // the following methods:
 382   // Returns "true" iff the heap supports thread-local allocation buffers.
 383   // The default is "no".
 384   virtual bool supports_tlab_allocation() const = 0;
 385 
 386   // The amount of space available for thread-local allocation buffers.
 387   virtual size_t tlab_capacity(Thread *thr) const = 0;
 388 
 389   // The amount of used space for thread-local allocation buffers for the given thread.
 390   virtual size_t tlab_used(Thread *thr) const = 0;
 391 
 392   virtual size_t max_tlab_size() const;
 393 
 394   virtual void verify_nmethod_roots(nmethod* nmethod);
 395 
 396   // An estimate of the maximum allocation that could be performed
 397   // for thread-local allocation buffers without triggering any
 398   // collection or expansion activity.
 399   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
 400     guarantee(false, "thread-local allocation buffers not supported");
 401     return 0;
 402   }
 403 
 404   // Perform a collection of the heap; intended for use in implementing
 405   // "System.gc".  This probably implies as full a collection as the
 406   // "CollectedHeap" supports.
 407   virtual void collect(GCCause::Cause cause) = 0;
 408 
 409   // Perform a full collection
 410   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
 411 
 412   // This interface assumes that it's being called by the
 413   // vm thread. It collects the heap assuming that the
 414   // heap lock is already held and that we are executing in
 415   // the context of the vm thread.
 416   virtual void collect_as_vm_thread(GCCause::Cause cause);
 417 
 418   // Returns the barrier set for this heap
 419   BarrierSet* barrier_set() { return _barrier_set; }
 420   void set_barrier_set(BarrierSet* barrier_set);
 421 
 422   // Returns "true" iff there is a stop-world GC in progress.  (I assume
 423   // that it should answer "false" for the concurrent part of a concurrent
 424   // collector -- dld).
 425   bool is_gc_active() const { return _is_gc_active; }
 426 
 427   // Total number of GC collections (started)
 428   unsigned int total_collections() const { return _total_collections; }
 429   unsigned int total_full_collections() const { return _total_full_collections;}
 430 
 431   // Increment total number of GC collections (started)
 432   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
 433   void increment_total_collections(bool full = false) {
 434     _total_collections++;
 435     if (full) {
 436       increment_total_full_collections();
 437     }
 438   }
 439 
 440   void increment_total_full_collections() { _total_full_collections++; }
 441 
 442   // Return the AdaptiveSizePolicy for the heap.
 443   virtual AdaptiveSizePolicy* size_policy() = 0;
 444 
 445   // Return the CollectorPolicy for the heap
 446   virtual CollectorPolicy* collector_policy() const = 0;
 447 
 448   // Iterate over all objects, calling "cl.do_object" on each.
 449   virtual void object_iterate(ObjectClosure* cl) = 0;
 450 
 451   // Similar to object_iterate() except iterates only
 452   // over live objects.
 453   virtual void safe_object_iterate(ObjectClosure* cl) = 0;
 454 
 455   // NOTE! There is no requirement that a collector implement these
 456   // functions.
 457   //
 458   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 459   // each address in the (reserved) heap is a member of exactly
 460   // one block.  The defining characteristic of a block is that it is
 461   // possible to find its size, and thus to progress forward to the next
 462   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 463   // represent Java objects, or they might be free blocks in a
 464   // free-list-based heap (or subheap), as long as the two kinds are
 465   // distinguishable and the size of each is determinable.
 466 
 467   // Returns the address of the start of the "block" that contains the
 468   // address "addr".  We say "blocks" instead of "object" since some heaps
 469   // may not pack objects densely; a chunk may either be an object or a
 470   // non-object.
 471   virtual HeapWord* block_start(const void* addr) const = 0;
 472 
 473   // Requires "addr" to be the start of a chunk, and returns its size.
 474   // "addr + size" is required to be the start of a new chunk, or the end
 475   // of the active area of the heap.
 476   virtual size_t block_size(const HeapWord* addr) const = 0;
 477 
 478   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 479   // the block is an object.
 480   virtual bool block_is_obj(const HeapWord* addr) const = 0;
 481 
 482   // Returns the longest time (in ms) that has elapsed since the last
 483   // time that any part of the heap was examined by a garbage collection.
 484   virtual jlong millis_since_last_gc() = 0;
 485 
 486   // Perform any cleanup actions necessary before allowing a verification.
 487   virtual void prepare_for_verify() = 0;
 488 
 489   // Generate any dumps preceding or following a full gc
 490  private:
 491   void full_gc_dump(GCTimer* timer, bool before);
 492  public:
 493   void pre_full_gc_dump(GCTimer* timer);
 494   void post_full_gc_dump(GCTimer* timer);
 495 
 496   VirtualSpaceSummary create_heap_space_summary();
 497   GCHeapSummary create_heap_summary();
 498 
 499   MetaspaceSummary create_metaspace_summary();
 500 
 501   // Print heap information on the given outputStream.
 502   virtual void print_on(outputStream* st) const = 0;
 503   // The default behavior is to call print_on() on tty.
 504   virtual void print() const {
 505     print_on(tty);
 506   }
 507   // Print more detailed heap information on the given
 508   // outputStream. The default behavior is to call print_on(). It is
 509   // up to each subclass to override it and add any additional output
 510   // it needs.
 511   virtual void print_extended_on(outputStream* st) const {
 512     print_on(st);
 513   }
 514 
 515   virtual void print_on_error(outputStream* st) const;
 516 
 517   // Print all GC threads (other than the VM thread)
 518   // used by this heap.
 519   virtual void print_gc_threads_on(outputStream* st) const = 0;
 520   // The default behavior is to call print_gc_threads_on() on tty.
 521   void print_gc_threads() {
 522     print_gc_threads_on(tty);
 523   }
 524   // Iterator for all GC threads (other than VM thread)
 525   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
 526 
 527   // Print any relevant tracing info that flags imply.
 528   // Default implementation does nothing.
 529   virtual void print_tracing_info() const = 0;
 530 
 531   void print_heap_before_gc();
 532   void print_heap_after_gc();
 533 
 534   // Registering and unregistering an nmethod (compiled code) with the heap.
 535   // Override with specific mechanism for each specialized heap type.
 536   virtual void register_nmethod(nmethod* nm);
 537   virtual void unregister_nmethod(nmethod* nm);
 538 
 539   void trace_heap_before_gc(const GCTracer* gc_tracer);
 540   void trace_heap_after_gc(const GCTracer* gc_tracer);
 541 
 542   // Heap verification
 543   virtual void verify(VerifyOption option) = 0;
 544 
 545   // Return true if concurrent phase control (via
 546   // request_concurrent_phase_control) is supported by this collector.
 547   // The default implementation returns false.
 548   virtual bool supports_concurrent_phase_control() const;
 549 
 550   // Return a NULL terminated array of concurrent phase names provided
 551   // by this collector.  Supports Whitebox testing.  These are the
 552   // names recognized by request_concurrent_phase(). The default
 553   // implementation returns an array of one NULL element.
 554   virtual const char* const* concurrent_phases() const;
 555 
 556   // Request the collector enter the indicated concurrent phase, and
 557   // wait until it does so.  Supports WhiteBox testing.  Only one
 558   // request may be active at a time.  Phases are designated by name;
 559   // the set of names and their meaning is GC-specific.  Once the
 560   // requested phase has been reached, the collector will attempt to
 561   // avoid transitioning to a new phase until a new request is made.
 562   // [Note: A collector might not be able to remain in a given phase.
 563   // For example, a full collection might cancel an in-progress
 564   // concurrent collection.]
 565   //
 566   // Returns true when the phase is reached.  Returns false for an
 567   // unknown phase.  The default implementation returns false.
 568   virtual bool request_concurrent_phase(const char* phase);
 569 
 570   // Non product verification and debugging.
 571 #ifndef PRODUCT
 572   // Support for PromotionFailureALot.  Return true if it's time to cause a
 573   // promotion failure.  The no-argument version uses
 574   // this->_promotion_failure_alot_count as the counter.
 575   inline bool promotion_should_fail(volatile size_t* count);
 576   inline bool promotion_should_fail();
 577 
 578   // Reset the PromotionFailureALot counters.  Should be called at the end of a
 579   // GC in which promotion failure occurred.
 580   inline void reset_promotion_should_fail(volatile size_t* count);
 581   inline void reset_promotion_should_fail();
 582 #endif  // #ifndef PRODUCT
 583 
 584 #ifdef ASSERT
 585   static int fired_fake_oom() {
 586     return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
 587   }
 588 #endif
 589 
 590  public:
 591   // Copy the current allocation context statistics for the specified contexts.
 592   // For each context in contexts, set the corresponding entries in the totals
 593   // and accuracy arrays to the current values held by the statistics.  Each
 594   // array should be of length len.
 595   // Returns true if there are more stats available.
 596   virtual bool copy_allocation_context_stats(const jint* contexts,
 597                                              jlong* totals,
 598                                              jbyte* accuracy,
 599                                              jint len) {
 600     return false;
 601   }
 602 
 603 };
 604 
 605 // Class to set and reset the GC cause for a CollectedHeap.
 606 
 607 class GCCauseSetter : StackObj {
 608   CollectedHeap* _heap;
 609   GCCause::Cause _previous_cause;
 610  public:
 611   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
 612     assert(SafepointSynchronize::is_at_safepoint(),
 613            "This method manipulates heap state without locking");
 614     _heap = heap;
 615     _previous_cause = _heap->gc_cause();
 616     _heap->set_gc_cause(cause);
 617   }
 618 
 619   ~GCCauseSetter() {
 620     assert(SafepointSynchronize::is_at_safepoint(),
 621           "This method manipulates heap state without locking");
 622     _heap->set_gc_cause(_previous_cause);
 623   }
 624 };
 625 
 626 #endif // SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP