1 /*
   2  * Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "gc/shared/collectedHeap.inline.hpp"
  33 #include "gc/shared/collectorCounters.hpp"
  34 #include "gc/shared/gcId.hpp"
  35 #include "gc/shared/gcLocker.inline.hpp"
  36 #include "gc/shared/gcTrace.hpp"
  37 #include "gc/shared/gcTraceTime.inline.hpp"
  38 #include "gc/shared/genCollectedHeap.hpp"
  39 #include "gc/shared/genOopClosures.inline.hpp"
  40 #include "gc/shared/generationSpec.hpp"
  41 #include "gc/shared/space.hpp"
  42 #include "gc/shared/strongRootsScope.hpp"
  43 #include "gc/shared/vmGCOperations.hpp"
  44 #include "gc/shared/workgroup.hpp"
  45 #include "memory/filemap.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "runtime/biasedLocking.hpp"
  49 #include "runtime/fprofiler.hpp"
  50 #include "runtime/handles.hpp"
  51 #include "runtime/handles.inline.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/vmThread.hpp"
  54 #include "services/management.hpp"
  55 #include "services/memoryService.hpp"
  56 #include "utilities/macros.hpp"
  57 #include "utilities/stack.inline.hpp"
  58 #include "utilities/vmError.hpp"
  59 #if INCLUDE_ALL_GCS
  60 #include "gc/cms/concurrentMarkSweepThread.hpp"
  61 #include "gc/cms/vmCMSOperations.hpp"
  62 #endif // INCLUDE_ALL_GCS
  63 
  64 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
  65 
  66 // The set of potentially parallel tasks in root scanning.
  67 enum GCH_strong_roots_tasks {
  68   GCH_PS_Universe_oops_do,
  69   GCH_PS_JNIHandles_oops_do,
  70   GCH_PS_ObjectSynchronizer_oops_do,
  71   GCH_PS_FlatProfiler_oops_do,
  72   GCH_PS_Management_oops_do,
  73   GCH_PS_SystemDictionary_oops_do,
  74   GCH_PS_ClassLoaderDataGraph_oops_do,
  75   GCH_PS_jvmti_oops_do,
  76   GCH_PS_CodeCache_oops_do,
  77   GCH_PS_aot_oops_do,
  78   GCH_PS_younger_gens,
  79   // Leave this one last.
  80   GCH_PS_NumElements
  81 };
  82 
  83 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
  84   CollectedHeap(),
  85   _rem_set(NULL),
  86   _gen_policy(policy),
  87   _process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
  88   _full_collections_completed(0)
  89 {
  90   assert(policy != NULL, "Sanity check");
  91   if (UseConcMarkSweepGC) {
  92     _workers = new WorkGang("GC Thread", ParallelGCThreads,
  93                             /* are_GC_task_threads */true,
  94                             /* are_ConcurrentGC_threads */false);
  95     _workers->initialize_workers();
  96   } else {
  97     // Serial GC does not use workers.
  98     _workers = NULL;
  99   }
 100 }
 101 
 102 jint GenCollectedHeap::initialize() {
 103   CollectedHeap::pre_initialize();
 104 
 105   // While there are no constraints in the GC code that HeapWordSize
 106   // be any particular value, there are multiple other areas in the
 107   // system which believe this to be true (e.g. oop->object_size in some
 108   // cases incorrectly returns the size in wordSize units rather than
 109   // HeapWordSize).
 110   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
 111 
 112   // Allocate space for the heap.
 113 
 114   char* heap_address;
 115   ReservedSpace heap_rs;
 116 
 117   size_t heap_alignment = collector_policy()->heap_alignment();
 118 
 119   heap_address = allocate(heap_alignment, &heap_rs);
 120 
 121   if (!heap_rs.is_reserved()) {
 122     vm_shutdown_during_initialization(
 123       "Could not reserve enough space for object heap");
 124     return JNI_ENOMEM;
 125   }
 126 
 127   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
 128 
 129   _rem_set = new CardTableRS(reserved_region());
 130   _rem_set->initialize();
 131   CardTableModRefBS *bs = new CardTableModRefBS(_rem_set);
 132   bs->initialize();
 133   set_barrier_set(bs);
 134 
 135   ReservedSpace young_rs = heap_rs.first_part(gen_policy()->young_gen_spec()->max_size(), false, false);
 136   _young_gen = gen_policy()->young_gen_spec()->init(young_rs, rem_set());
 137   heap_rs = heap_rs.last_part(gen_policy()->young_gen_spec()->max_size());
 138 
 139   ReservedSpace old_rs = heap_rs.first_part(gen_policy()->old_gen_spec()->max_size(), false, false);
 140   _old_gen = gen_policy()->old_gen_spec()->init(old_rs, rem_set());
 141   clear_incremental_collection_failed();
 142 
 143 #if INCLUDE_ALL_GCS
 144   // If we are running CMS, create the collector responsible
 145   // for collecting the CMS generations.
 146   if (collector_policy()->is_concurrent_mark_sweep_policy()) {
 147     bool success = create_cms_collector();
 148     if (!success) return JNI_ENOMEM;
 149   }
 150 #endif // INCLUDE_ALL_GCS
 151 
 152   return JNI_OK;
 153 }
 154 
 155 char* GenCollectedHeap::allocate(size_t alignment,
 156                                  ReservedSpace* heap_rs){
 157   // Now figure out the total size.
 158   const size_t pageSize = UseLargePages ? os::large_page_size() : os::vm_page_size();
 159   assert(alignment % pageSize == 0, "Must be");
 160 
 161   GenerationSpec* young_spec = gen_policy()->young_gen_spec();
 162   GenerationSpec* old_spec = gen_policy()->old_gen_spec();
 163 
 164   // Check for overflow.
 165   size_t total_reserved = young_spec->max_size() + old_spec->max_size();
 166   if (total_reserved < young_spec->max_size()) {
 167     vm_exit_during_initialization("The size of the object heap + VM data exceeds "
 168                                   "the maximum representable size");
 169   }
 170   assert(total_reserved % alignment == 0,
 171          "Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 172          SIZE_FORMAT, total_reserved, alignment);
 173 
 174   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
 175 
 176   os::trace_page_sizes("Heap",
 177                        collector_policy()->min_heap_byte_size(),
 178                        total_reserved,
 179                        alignment,
 180                        heap_rs->base(),
 181                        heap_rs->size());
 182 
 183   return heap_rs->base();
 184 }
 185 
 186 void GenCollectedHeap::post_initialize() {
 187   ref_processing_init();
 188   assert((_young_gen->kind() == Generation::DefNew) ||
 189          (_young_gen->kind() == Generation::ParNew),
 190     "Wrong youngest generation type");
 191   DefNewGeneration* def_new_gen = (DefNewGeneration*)_young_gen;
 192 
 193   assert(_old_gen->kind() == Generation::ConcurrentMarkSweep ||
 194          _old_gen->kind() == Generation::MarkSweepCompact,
 195     "Wrong generation kind");
 196 
 197   _gen_policy->initialize_size_policy(def_new_gen->eden()->capacity(),
 198                                       _old_gen->capacity(),
 199                                       def_new_gen->from()->capacity());
 200   _gen_policy->initialize_gc_policy_counters();
 201 }
 202 
 203 void GenCollectedHeap::ref_processing_init() {
 204   _young_gen->ref_processor_init();
 205   _old_gen->ref_processor_init();
 206 }
 207 
 208 size_t GenCollectedHeap::capacity() const {
 209   return _young_gen->capacity() + _old_gen->capacity();
 210 }
 211 
 212 size_t GenCollectedHeap::used() const {
 213   return _young_gen->used() + _old_gen->used();
 214 }
 215 
 216 void GenCollectedHeap::save_used_regions() {
 217   _old_gen->save_used_region();
 218   _young_gen->save_used_region();
 219 }
 220 
 221 size_t GenCollectedHeap::max_capacity() const {
 222   return _young_gen->max_capacity() + _old_gen->max_capacity();
 223 }
 224 
 225 // Update the _full_collections_completed counter
 226 // at the end of a stop-world full GC.
 227 unsigned int GenCollectedHeap::update_full_collections_completed() {
 228   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 229   assert(_full_collections_completed <= _total_full_collections,
 230          "Can't complete more collections than were started");
 231   _full_collections_completed = _total_full_collections;
 232   ml.notify_all();
 233   return _full_collections_completed;
 234 }
 235 
 236 // Update the _full_collections_completed counter, as appropriate,
 237 // at the end of a concurrent GC cycle. Note the conditional update
 238 // below to allow this method to be called by a concurrent collector
 239 // without synchronizing in any manner with the VM thread (which
 240 // may already have initiated a STW full collection "concurrently").
 241 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 242   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 243   assert((_full_collections_completed <= _total_full_collections) &&
 244          (count <= _total_full_collections),
 245          "Can't complete more collections than were started");
 246   if (count > _full_collections_completed) {
 247     _full_collections_completed = count;
 248     ml.notify_all();
 249   }
 250   return _full_collections_completed;
 251 }
 252 
 253 
 254 #ifndef PRODUCT
 255 // Override of memory state checking method in CollectedHeap:
 256 // Some collectors (CMS for example) can't have badHeapWordVal written
 257 // in the first two words of an object. (For instance , in the case of
 258 // CMS these words hold state used to synchronize between certain
 259 // (concurrent) GC steps and direct allocating mutators.)
 260 // The skip_header_HeapWords() method below, allows us to skip
 261 // over the requisite number of HeapWord's. Note that (for
 262 // generational collectors) this means that those many words are
 263 // skipped in each object, irrespective of the generation in which
 264 // that object lives. The resultant loss of precision seems to be
 265 // harmless and the pain of avoiding that imprecision appears somewhat
 266 // higher than we are prepared to pay for such rudimentary debugging
 267 // support.
 268 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 269                                                          size_t size) {
 270   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 271     // We are asked to check a size in HeapWords,
 272     // but the memory is mangled in juint words.
 273     juint* start = (juint*) (addr + skip_header_HeapWords());
 274     juint* end   = (juint*) (addr + size);
 275     for (juint* slot = start; slot < end; slot += 1) {
 276       assert(*slot == badHeapWordVal,
 277              "Found non badHeapWordValue in pre-allocation check");
 278     }
 279   }
 280 }
 281 #endif
 282 
 283 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 284                                                bool is_tlab,
 285                                                bool first_only) {
 286   HeapWord* res = NULL;
 287 
 288   if (_young_gen->should_allocate(size, is_tlab)) {
 289     res = _young_gen->allocate(size, is_tlab);
 290     if (res != NULL || first_only) {
 291       return res;
 292     }
 293   }
 294 
 295   if (_old_gen->should_allocate(size, is_tlab)) {
 296     res = _old_gen->allocate(size, is_tlab);
 297   }
 298 
 299   return res;
 300 }
 301 
 302 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 303                                          bool* gc_overhead_limit_was_exceeded) {
 304   return gen_policy()->mem_allocate_work(size,
 305                                          false /* is_tlab */,
 306                                          gc_overhead_limit_was_exceeded);
 307 }
 308 
 309 bool GenCollectedHeap::must_clear_all_soft_refs() {
 310   return _gc_cause == GCCause::_metadata_GC_clear_soft_refs ||
 311          _gc_cause == GCCause::_wb_full_gc;
 312 }
 313 
 314 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
 315   if (!UseConcMarkSweepGC) {
 316     return false;
 317   }
 318 
 319   switch (cause) {
 320     case GCCause::_gc_locker:           return GCLockerInvokesConcurrent;
 321     case GCCause::_java_lang_system_gc:
 322     case GCCause::_dcmd_gc_run:         return ExplicitGCInvokesConcurrent;
 323     default:                            return false;
 324   }
 325 }
 326 
 327 void GenCollectedHeap::collect_generation(Generation* gen, bool full, size_t size,
 328                                           bool is_tlab, bool run_verification, bool clear_soft_refs,
 329                                           bool restore_marks_for_biased_locking) {
 330   FormatBuffer<> title("Collect gen: %s", gen->short_name());
 331   GCTraceTime(Trace, gc, phases) t1(title);
 332   TraceCollectorStats tcs(gen->counters());
 333   TraceMemoryManagerStats tmms(gen->kind(),gc_cause());
 334 
 335   gen->stat_record()->invocations++;
 336   gen->stat_record()->accumulated_time.start();
 337 
 338   // Must be done anew before each collection because
 339   // a previous collection will do mangling and will
 340   // change top of some spaces.
 341   record_gen_tops_before_GC();
 342 
 343   log_trace(gc)("%s invoke=%d size=" SIZE_FORMAT, heap()->is_young_gen(gen) ? "Young" : "Old", gen->stat_record()->invocations, size * HeapWordSize);
 344 
 345   if (run_verification && VerifyBeforeGC) {
 346     HandleMark hm;  // Discard invalid handles created during verification
 347     Universe::verify("Before GC");
 348   }
 349   COMPILER2_PRESENT(DerivedPointerTable::clear());
 350 
 351   if (restore_marks_for_biased_locking) {
 352     // We perform this mark word preservation work lazily
 353     // because it's only at this point that we know whether we
 354     // absolutely have to do it; we want to avoid doing it for
 355     // scavenge-only collections where it's unnecessary
 356     BiasedLocking::preserve_marks();
 357   }
 358 
 359   // Do collection work
 360   {
 361     // Note on ref discovery: For what appear to be historical reasons,
 362     // GCH enables and disabled (by enqueing) refs discovery.
 363     // In the future this should be moved into the generation's
 364     // collect method so that ref discovery and enqueueing concerns
 365     // are local to a generation. The collect method could return
 366     // an appropriate indication in the case that notification on
 367     // the ref lock was needed. This will make the treatment of
 368     // weak refs more uniform (and indeed remove such concerns
 369     // from GCH). XXX
 370 
 371     HandleMark hm;  // Discard invalid handles created during gc
 372     save_marks();   // save marks for all gens
 373     // We want to discover references, but not process them yet.
 374     // This mode is disabled in process_discovered_references if the
 375     // generation does some collection work, or in
 376     // enqueue_discovered_references if the generation returns
 377     // without doing any work.
 378     ReferenceProcessor* rp = gen->ref_processor();
 379     // If the discovery of ("weak") refs in this generation is
 380     // atomic wrt other collectors in this configuration, we
 381     // are guaranteed to have empty discovered ref lists.
 382     if (rp->discovery_is_atomic()) {
 383       rp->enable_discovery();
 384       rp->setup_policy(clear_soft_refs);
 385     } else {
 386       // collect() below will enable discovery as appropriate
 387     }
 388     gen->collect(full, clear_soft_refs, size, is_tlab);
 389     if (!rp->enqueuing_is_done()) {
 390       rp->enqueue_discovered_references();
 391     } else {
 392       rp->set_enqueuing_is_done(false);
 393     }
 394     rp->verify_no_references_recorded();
 395   }
 396 
 397   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 398 
 399   gen->stat_record()->accumulated_time.stop();
 400 
 401   update_gc_stats(gen, full);
 402 
 403   if (run_verification && VerifyAfterGC) {
 404     HandleMark hm;  // Discard invalid handles created during verification
 405     Universe::verify("After GC");
 406   }
 407 }
 408 
 409 void GenCollectedHeap::do_collection(bool           full,
 410                                      bool           clear_all_soft_refs,
 411                                      size_t         size,
 412                                      bool           is_tlab,
 413                                      GenerationType max_generation) {
 414   ResourceMark rm;
 415   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 416 
 417   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 418   assert(my_thread->is_VM_thread() ||
 419          my_thread->is_ConcurrentGC_thread(),
 420          "incorrect thread type capability");
 421   assert(Heap_lock->is_locked(),
 422          "the requesting thread should have the Heap_lock");
 423   guarantee(!is_gc_active(), "collection is not reentrant");
 424 
 425   if (GCLocker::check_active_before_gc()) {
 426     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 427   }
 428 
 429   GCIdMarkAndRestore gc_id_mark;
 430 
 431   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 432                           collector_policy()->should_clear_all_soft_refs();
 433 
 434   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
 435 
 436   const size_t metadata_prev_used = MetaspaceAux::used_bytes();
 437 
 438   print_heap_before_gc();
 439 
 440   {
 441     FlagSetting fl(_is_gc_active, true);
 442 
 443     bool complete = full && (max_generation == OldGen);
 444     bool old_collects_young = complete && !ScavengeBeforeFullGC;
 445     bool do_young_collection = !old_collects_young && _young_gen->should_collect(full, size, is_tlab);
 446 
 447     FormatBuffer<> gc_string("%s", "Pause ");
 448     if (do_young_collection) {
 449       gc_string.append("Young");
 450     } else {
 451       gc_string.append("Full");
 452     }
 453 
 454     GCTraceCPUTime tcpu;
 455     GCTraceTime(Info, gc) t(gc_string, NULL, gc_cause(), true);
 456 
 457     gc_prologue(complete);
 458     increment_total_collections(complete);
 459 
 460     size_t young_prev_used = _young_gen->used();
 461     size_t old_prev_used = _old_gen->used();
 462 
 463     bool run_verification = total_collections() >= VerifyGCStartAt;
 464 
 465     bool prepared_for_verification = false;
 466     bool collected_old = false;
 467 
 468     if (do_young_collection) {
 469       if (run_verification && VerifyGCLevel <= 0 && VerifyBeforeGC) {
 470         prepare_for_verify();
 471         prepared_for_verification = true;
 472       }
 473 
 474       collect_generation(_young_gen,
 475                          full,
 476                          size,
 477                          is_tlab,
 478                          run_verification && VerifyGCLevel <= 0,
 479                          do_clear_all_soft_refs,
 480                          false);
 481 
 482       if (size > 0 && (!is_tlab || _young_gen->supports_tlab_allocation()) &&
 483           size * HeapWordSize <= _young_gen->unsafe_max_alloc_nogc()) {
 484         // Allocation request was met by young GC.
 485         size = 0;
 486       }
 487     }
 488 
 489     bool must_restore_marks_for_biased_locking = false;
 490 
 491     if (max_generation == OldGen && _old_gen->should_collect(full, size, is_tlab)) {
 492       if (!complete) {
 493         // The full_collections increment was missed above.
 494         increment_total_full_collections();
 495       }
 496 
 497       if (!prepared_for_verification && run_verification &&
 498           VerifyGCLevel <= 1 && VerifyBeforeGC) {
 499         prepare_for_verify();
 500       }
 501 
 502       if (do_young_collection) {
 503         // We did a young GC. Need a new GC id for the old GC.
 504         GCIdMarkAndRestore gc_id_mark;
 505         GCTraceTime(Info, gc) t("Pause Full", NULL, gc_cause(), true);
 506         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 507       } else {
 508         // No young GC done. Use the same GC id as was set up earlier in this method.
 509         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 510       }
 511 
 512       must_restore_marks_for_biased_locking = true;
 513       collected_old = true;
 514     }
 515 
 516     // Update "complete" boolean wrt what actually transpired --
 517     // for instance, a promotion failure could have led to
 518     // a whole heap collection.
 519     complete = complete || collected_old;
 520 
 521     print_heap_change(young_prev_used, old_prev_used);
 522     MetaspaceAux::print_metaspace_change(metadata_prev_used);
 523 
 524     // Adjust generation sizes.
 525     if (collected_old) {
 526       _old_gen->compute_new_size();
 527     }
 528     _young_gen->compute_new_size();
 529 
 530     if (complete) {
 531       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 532       ClassLoaderDataGraph::purge();
 533       MetaspaceAux::verify_metrics();
 534       // Resize the metaspace capacity after full collections
 535       MetaspaceGC::compute_new_size();
 536       update_full_collections_completed();
 537     }
 538 
 539     // Track memory usage and detect low memory after GC finishes
 540     MemoryService::track_memory_usage();
 541 
 542     gc_epilogue(complete);
 543 
 544     if (must_restore_marks_for_biased_locking) {
 545       BiasedLocking::restore_marks();
 546     }
 547   }
 548 
 549   print_heap_after_gc();
 550 
 551 #ifdef TRACESPINNING
 552   ParallelTaskTerminator::print_termination_counts();
 553 #endif
 554 }
 555 
 556 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 557   return gen_policy()->satisfy_failed_allocation(size, is_tlab);
 558 }
 559 
 560 #ifdef ASSERT
 561 class AssertNonScavengableClosure: public OopClosure {
 562 public:
 563   virtual void do_oop(oop* p) {
 564     assert(!GenCollectedHeap::heap()->is_in_partial_collection(*p),
 565       "Referent should not be scavengable.");  }
 566   virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
 567 };
 568 static AssertNonScavengableClosure assert_is_non_scavengable_closure;
 569 #endif
 570 
 571 void GenCollectedHeap::process_roots(StrongRootsScope* scope,
 572                                      ScanningOption so,
 573                                      OopClosure* strong_roots,
 574                                      OopClosure* weak_roots,
 575                                      CLDClosure* strong_cld_closure,
 576                                      CLDClosure* weak_cld_closure,
 577                                      CodeBlobToOopClosure* code_roots) {
 578   // General roots.
 579   assert(Threads::thread_claim_parity() != 0, "must have called prologue code");
 580   assert(code_roots != NULL, "code root closure should always be set");
 581   // _n_termination for _process_strong_tasks should be set up stream
 582   // in a method not running in a GC worker.  Otherwise the GC worker
 583   // could be trying to change the termination condition while the task
 584   // is executing in another GC worker.
 585 
 586   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ClassLoaderDataGraph_oops_do)) {
 587     ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure);
 588   }
 589 
 590   // Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway
 591   CodeBlobToOopClosure* roots_from_code_p = (so & SO_AllCodeCache) ? NULL : code_roots;
 592 
 593   bool is_par = scope->n_threads() > 1;
 594   Threads::possibly_parallel_oops_do(is_par, strong_roots, roots_from_code_p);
 595 
 596   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Universe_oops_do)) {
 597     Universe::oops_do(strong_roots);
 598   }
 599   // Global (strong) JNI handles
 600   if (!_process_strong_tasks->is_task_claimed(GCH_PS_JNIHandles_oops_do)) {
 601     JNIHandles::oops_do(strong_roots);
 602   }
 603 
 604   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ObjectSynchronizer_oops_do)) {
 605     ObjectSynchronizer::oops_do(strong_roots);
 606   }
 607   if (!_process_strong_tasks->is_task_claimed(GCH_PS_FlatProfiler_oops_do)) {
 608     FlatProfiler::oops_do(strong_roots);
 609   }
 610   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Management_oops_do)) {
 611     Management::oops_do(strong_roots);
 612   }
 613   if (!_process_strong_tasks->is_task_claimed(GCH_PS_jvmti_oops_do)) {
 614     JvmtiExport::oops_do(strong_roots);
 615   }
 616   if (UseAOT && !_process_strong_tasks->is_task_claimed(GCH_PS_aot_oops_do)) {
 617     AOTLoader::oops_do(strong_roots);
 618   }
 619 
 620   if (!_process_strong_tasks->is_task_claimed(GCH_PS_SystemDictionary_oops_do)) {
 621     SystemDictionary::roots_oops_do(strong_roots, weak_roots);
 622   }
 623 
 624   if (!_process_strong_tasks->is_task_claimed(GCH_PS_CodeCache_oops_do)) {
 625     if (so & SO_ScavengeCodeCache) {
 626       assert(code_roots != NULL, "must supply closure for code cache");
 627 
 628       // We only visit parts of the CodeCache when scavenging.
 629       CodeCache::scavenge_root_nmethods_do(code_roots);
 630     }
 631     if (so & SO_AllCodeCache) {
 632       assert(code_roots != NULL, "must supply closure for code cache");
 633 
 634       // CMSCollector uses this to do intermediate-strength collections.
 635       // We scan the entire code cache, since CodeCache::do_unloading is not called.
 636       CodeCache::blobs_do(code_roots);
 637     }
 638     // Verify that the code cache contents are not subject to
 639     // movement by a scavenging collection.
 640     DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, !CodeBlobToOopClosure::FixRelocations));
 641     DEBUG_ONLY(CodeCache::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable));
 642   }
 643 }
 644 
 645 void GenCollectedHeap::process_string_table_roots(StrongRootsScope* scope,
 646                                                   OopClosure* root_closure) {
 647   assert(root_closure != NULL, "Must be set");
 648   // All threads execute the following. A specific chunk of buckets
 649   // from the StringTable are the individual tasks.
 650   if (scope->n_threads() > 1) {
 651     StringTable::possibly_parallel_oops_do(root_closure);
 652   } else {
 653     StringTable::oops_do(root_closure);
 654   }
 655 }
 656 
 657 void GenCollectedHeap::young_process_roots(StrongRootsScope* scope,
 658                                            OopsInGenClosure* root_closure,
 659                                            OopsInGenClosure* old_gen_closure,
 660                                            CLDClosure* cld_closure) {
 661   MarkingCodeBlobClosure mark_code_closure(root_closure, CodeBlobToOopClosure::FixRelocations);
 662 
 663   process_roots(scope, SO_ScavengeCodeCache, root_closure, root_closure,
 664                 cld_closure, cld_closure, &mark_code_closure);
 665   process_string_table_roots(scope, root_closure);
 666 
 667   if (!_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 668     root_closure->reset_generation();
 669   }
 670 
 671   // When collection is parallel, all threads get to cooperate to do
 672   // old generation scanning.
 673   old_gen_closure->set_generation(_old_gen);
 674   rem_set()->younger_refs_iterate(_old_gen, old_gen_closure, scope->n_threads());
 675   old_gen_closure->reset_generation();
 676 
 677   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 678 }
 679 
 680 void GenCollectedHeap::cms_process_roots(StrongRootsScope* scope,
 681                                          bool young_gen_as_roots,
 682                                          ScanningOption so,
 683                                          bool only_strong_roots,
 684                                          OopsInGenClosure* root_closure,
 685                                          CLDClosure* cld_closure) {
 686   MarkingCodeBlobClosure mark_code_closure(root_closure, !CodeBlobToOopClosure::FixRelocations);
 687   OopsInGenClosure* weak_roots = only_strong_roots ? NULL : root_closure;
 688   CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
 689 
 690   process_roots(scope, so, root_closure, weak_roots, cld_closure, weak_cld_closure, &mark_code_closure);
 691   if (!only_strong_roots) {
 692     process_string_table_roots(scope, root_closure);
 693   }
 694 
 695   if (young_gen_as_roots &&
 696       !_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 697     root_closure->set_generation(_young_gen);
 698     _young_gen->oop_iterate(root_closure);
 699     root_closure->reset_generation();
 700   }
 701 
 702   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 703 }
 704 
 705 void GenCollectedHeap::full_process_roots(StrongRootsScope* scope,
 706                                           bool is_adjust_phase,
 707                                           ScanningOption so,
 708                                           bool only_strong_roots,
 709                                           OopsInGenClosure* root_closure,
 710                                           CLDClosure* cld_closure) {
 711   MarkingCodeBlobClosure mark_code_closure(root_closure, is_adjust_phase);
 712   OopsInGenClosure* weak_roots = only_strong_roots ? NULL : root_closure;
 713   CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
 714 
 715   process_roots(scope, so, root_closure, weak_roots, cld_closure, weak_cld_closure, &mark_code_closure);
 716   if (is_adjust_phase) {
 717     // We never treat the string table as roots during marking
 718     // for the full gc, so we only need to process it during
 719     // the adjust phase.
 720     process_string_table_roots(scope, root_closure);
 721   }
 722 
 723   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 724 }
 725 
 726 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
 727   JNIHandles::weak_oops_do(root_closure);
 728   _young_gen->ref_processor()->weak_oops_do(root_closure);
 729   _old_gen->ref_processor()->weak_oops_do(root_closure);
 730 }
 731 
 732 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
 733 void GenCollectedHeap::                                                 \
 734 oop_since_save_marks_iterate(GenerationType gen,                        \
 735                              OopClosureType* cur,                       \
 736                              OopClosureType* older) {                   \
 737   if (gen == YoungGen) {                              \
 738     _young_gen->oop_since_save_marks_iterate##nv_suffix(cur);           \
 739     _old_gen->oop_since_save_marks_iterate##nv_suffix(older);           \
 740   } else {                                                              \
 741     _old_gen->oop_since_save_marks_iterate##nv_suffix(cur);             \
 742   }                                                                     \
 743 }
 744 
 745 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
 746 
 747 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
 748 
 749 bool GenCollectedHeap::no_allocs_since_save_marks() {
 750   return _young_gen->no_allocs_since_save_marks() &&
 751          _old_gen->no_allocs_since_save_marks();
 752 }
 753 
 754 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 755   return _young_gen->supports_inline_contig_alloc();
 756 }
 757 
 758 HeapWord* volatile* GenCollectedHeap::top_addr() const {
 759   return _young_gen->top_addr();
 760 }
 761 
 762 HeapWord** GenCollectedHeap::end_addr() const {
 763   return _young_gen->end_addr();
 764 }
 765 
 766 // public collection interfaces
 767 
 768 void GenCollectedHeap::collect(GCCause::Cause cause) {
 769   if (should_do_concurrent_full_gc(cause)) {
 770 #if INCLUDE_ALL_GCS
 771     // Mostly concurrent full collection.
 772     collect_mostly_concurrent(cause);
 773 #else  // INCLUDE_ALL_GCS
 774     ShouldNotReachHere();
 775 #endif // INCLUDE_ALL_GCS
 776   } else if (cause == GCCause::_wb_young_gc) {
 777     // Young collection for the WhiteBox API.
 778     collect(cause, YoungGen);
 779   } else {
 780 #ifdef ASSERT
 781   if (cause == GCCause::_scavenge_alot) {
 782     // Young collection only.
 783     collect(cause, YoungGen);
 784   } else {
 785     // Stop-the-world full collection.
 786     collect(cause, OldGen);
 787   }
 788 #else
 789     // Stop-the-world full collection.
 790     collect(cause, OldGen);
 791 #endif
 792   }
 793 }
 794 
 795 void GenCollectedHeap::collect(GCCause::Cause cause, GenerationType max_generation) {
 796   // The caller doesn't have the Heap_lock
 797   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 798   MutexLocker ml(Heap_lock);
 799   collect_locked(cause, max_generation);
 800 }
 801 
 802 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 803   // The caller has the Heap_lock
 804   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 805   collect_locked(cause, OldGen);
 806 }
 807 
 808 // this is the private collection interface
 809 // The Heap_lock is expected to be held on entry.
 810 
 811 void GenCollectedHeap::collect_locked(GCCause::Cause cause, GenerationType max_generation) {
 812   // Read the GC count while holding the Heap_lock
 813   unsigned int gc_count_before      = total_collections();
 814   unsigned int full_gc_count_before = total_full_collections();
 815   {
 816     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 817     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 818                          cause, max_generation);
 819     VMThread::execute(&op);
 820   }
 821 }
 822 
 823 #if INCLUDE_ALL_GCS
 824 bool GenCollectedHeap::create_cms_collector() {
 825 
 826   assert(_old_gen->kind() == Generation::ConcurrentMarkSweep,
 827          "Unexpected generation kinds");
 828   // Skip two header words in the block content verification
 829   NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
 830   assert(_gen_policy->is_concurrent_mark_sweep_policy(), "Unexpected policy type");
 831   CMSCollector* collector =
 832     new CMSCollector((ConcurrentMarkSweepGeneration*)_old_gen,
 833                      _rem_set,
 834                      _gen_policy->as_concurrent_mark_sweep_policy());
 835 
 836   if (collector == NULL || !collector->completed_initialization()) {
 837     if (collector) {
 838       delete collector;  // Be nice in embedded situation
 839     }
 840     vm_shutdown_during_initialization("Could not create CMS collector");
 841     return false;
 842   }
 843   return true;  // success
 844 }
 845 
 846 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
 847   assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
 848 
 849   MutexLocker ml(Heap_lock);
 850   // Read the GC counts while holding the Heap_lock
 851   unsigned int full_gc_count_before = total_full_collections();
 852   unsigned int gc_count_before      = total_collections();
 853   {
 854     MutexUnlocker mu(Heap_lock);
 855     VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
 856     VMThread::execute(&op);
 857   }
 858 }
 859 #endif // INCLUDE_ALL_GCS
 860 
 861 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 862    do_full_collection(clear_all_soft_refs, OldGen);
 863 }
 864 
 865 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 866                                           GenerationType last_generation) {
 867   GenerationType local_last_generation;
 868   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
 869       gc_cause() == GCCause::_gc_locker) {
 870     local_last_generation = YoungGen;
 871   } else {
 872     local_last_generation = last_generation;
 873   }
 874 
 875   do_collection(true,                   // full
 876                 clear_all_soft_refs,    // clear_all_soft_refs
 877                 0,                      // size
 878                 false,                  // is_tlab
 879                 local_last_generation); // last_generation
 880   // Hack XXX FIX ME !!!
 881   // A scavenge may not have been attempted, or may have
 882   // been attempted and failed, because the old gen was too full
 883   if (local_last_generation == YoungGen && gc_cause() == GCCause::_gc_locker &&
 884       incremental_collection_will_fail(false /* don't consult_young */)) {
 885     log_debug(gc, jni)("GC locker: Trying a full collection because scavenge failed");
 886     // This time allow the old gen to be collected as well
 887     do_collection(true,                // full
 888                   clear_all_soft_refs, // clear_all_soft_refs
 889                   0,                   // size
 890                   false,               // is_tlab
 891                   OldGen);             // last_generation
 892   }
 893 }
 894 
 895 bool GenCollectedHeap::is_in_young(oop p) {
 896   bool result = ((HeapWord*)p) < _old_gen->reserved().start();
 897   assert(result == _young_gen->is_in_reserved(p),
 898          "incorrect test - result=%d, p=" INTPTR_FORMAT, result, p2i((void*)p));
 899   return result;
 900 }
 901 
 902 // Returns "TRUE" iff "p" points into the committed areas of the heap.
 903 bool GenCollectedHeap::is_in(const void* p) const {
 904   return _young_gen->is_in(p) || _old_gen->is_in(p);
 905 }
 906 
 907 #ifdef ASSERT
 908 // Don't implement this by using is_in_young().  This method is used
 909 // in some cases to check that is_in_young() is correct.
 910 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
 911   assert(is_in_reserved(p) || p == NULL,
 912     "Does not work if address is non-null and outside of the heap");
 913   return p < _young_gen->reserved().end() && p != NULL;
 914 }
 915 #endif
 916 
 917 void GenCollectedHeap::oop_iterate_no_header(OopClosure* cl) {
 918   NoHeaderExtendedOopClosure no_header_cl(cl);
 919   oop_iterate(&no_header_cl);
 920 }
 921 
 922 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
 923   _young_gen->oop_iterate(cl);
 924   _old_gen->oop_iterate(cl);
 925 }
 926 
 927 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
 928   _young_gen->object_iterate(cl);
 929   _old_gen->object_iterate(cl);
 930 }
 931 
 932 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
 933   _young_gen->safe_object_iterate(cl);
 934   _old_gen->safe_object_iterate(cl);
 935 }
 936 
 937 Space* GenCollectedHeap::space_containing(const void* addr) const {
 938   Space* res = _young_gen->space_containing(addr);
 939   if (res != NULL) {
 940     return res;
 941   }
 942   res = _old_gen->space_containing(addr);
 943   assert(res != NULL, "Could not find containing space");
 944   return res;
 945 }
 946 
 947 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
 948   assert(is_in_reserved(addr), "block_start of address outside of heap");
 949   if (_young_gen->is_in_reserved(addr)) {
 950     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 951     return _young_gen->block_start(addr);
 952   }
 953 
 954   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 955   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 956   return _old_gen->block_start(addr);
 957 }
 958 
 959 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
 960   assert(is_in_reserved(addr), "block_size of address outside of heap");
 961   if (_young_gen->is_in_reserved(addr)) {
 962     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 963     return _young_gen->block_size(addr);
 964   }
 965 
 966   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 967   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 968   return _old_gen->block_size(addr);
 969 }
 970 
 971 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
 972   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
 973   assert(block_start(addr) == addr, "addr must be a block start");
 974   if (_young_gen->is_in_reserved(addr)) {
 975     return _young_gen->block_is_obj(addr);
 976   }
 977 
 978   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 979   return _old_gen->block_is_obj(addr);
 980 }
 981 
 982 bool GenCollectedHeap::supports_tlab_allocation() const {
 983   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 984   return _young_gen->supports_tlab_allocation();
 985 }
 986 
 987 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
 988   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 989   if (_young_gen->supports_tlab_allocation()) {
 990     return _young_gen->tlab_capacity();
 991   }
 992   return 0;
 993 }
 994 
 995 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
 996   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 997   if (_young_gen->supports_tlab_allocation()) {
 998     return _young_gen->tlab_used();
 999   }
1000   return 0;
1001 }
1002 
1003 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
1004   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1005   if (_young_gen->supports_tlab_allocation()) {
1006     return _young_gen->unsafe_max_tlab_alloc();
1007   }
1008   return 0;
1009 }
1010 
1011 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
1012   bool gc_overhead_limit_was_exceeded;
1013   return gen_policy()->mem_allocate_work(size /* size */,
1014                                          true /* is_tlab */,
1015                                          &gc_overhead_limit_was_exceeded);
1016 }
1017 
1018 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
1019 // from the list headed by "*prev_ptr".
1020 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
1021   bool first = true;
1022   size_t min_size = 0;   // "first" makes this conceptually infinite.
1023   ScratchBlock **smallest_ptr, *smallest;
1024   ScratchBlock  *cur = *prev_ptr;
1025   while (cur) {
1026     assert(*prev_ptr == cur, "just checking");
1027     if (first || cur->num_words < min_size) {
1028       smallest_ptr = prev_ptr;
1029       smallest     = cur;
1030       min_size     = smallest->num_words;
1031       first        = false;
1032     }
1033     prev_ptr = &cur->next;
1034     cur     =  cur->next;
1035   }
1036   smallest      = *smallest_ptr;
1037   *smallest_ptr = smallest->next;
1038   return smallest;
1039 }
1040 
1041 // Sort the scratch block list headed by res into decreasing size order,
1042 // and set "res" to the result.
1043 static void sort_scratch_list(ScratchBlock*& list) {
1044   ScratchBlock* sorted = NULL;
1045   ScratchBlock* unsorted = list;
1046   while (unsorted) {
1047     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
1048     smallest->next  = sorted;
1049     sorted          = smallest;
1050   }
1051   list = sorted;
1052 }
1053 
1054 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
1055                                                size_t max_alloc_words) {
1056   ScratchBlock* res = NULL;
1057   _young_gen->contribute_scratch(res, requestor, max_alloc_words);
1058   _old_gen->contribute_scratch(res, requestor, max_alloc_words);
1059   sort_scratch_list(res);
1060   return res;
1061 }
1062 
1063 void GenCollectedHeap::release_scratch() {
1064   _young_gen->reset_scratch();
1065   _old_gen->reset_scratch();
1066 }
1067 
1068 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
1069   void do_generation(Generation* gen) {
1070     gen->prepare_for_verify();
1071   }
1072 };
1073 
1074 void GenCollectedHeap::prepare_for_verify() {
1075   ensure_parsability(false);        // no need to retire TLABs
1076   GenPrepareForVerifyClosure blk;
1077   generation_iterate(&blk, false);
1078 }
1079 
1080 void GenCollectedHeap::generation_iterate(GenClosure* cl,
1081                                           bool old_to_young) {
1082   if (old_to_young) {
1083     cl->do_generation(_old_gen);
1084     cl->do_generation(_young_gen);
1085   } else {
1086     cl->do_generation(_young_gen);
1087     cl->do_generation(_old_gen);
1088   }
1089 }
1090 
1091 bool GenCollectedHeap::is_maximal_no_gc() const {
1092   return _young_gen->is_maximal_no_gc() && _old_gen->is_maximal_no_gc();
1093 }
1094 
1095 void GenCollectedHeap::save_marks() {
1096   _young_gen->save_marks();
1097   _old_gen->save_marks();
1098 }
1099 
1100 GenCollectedHeap* GenCollectedHeap::heap() {
1101   CollectedHeap* heap = Universe::heap();
1102   assert(heap != NULL, "Uninitialized access to GenCollectedHeap::heap()");
1103   assert(heap->kind() == CollectedHeap::GenCollectedHeap, "Not a GenCollectedHeap");
1104   return (GenCollectedHeap*)heap;
1105 }
1106 
1107 void GenCollectedHeap::prepare_for_compaction() {
1108   // Start by compacting into same gen.
1109   CompactPoint cp(_old_gen);
1110   _old_gen->prepare_for_compaction(&cp);
1111   _young_gen->prepare_for_compaction(&cp);
1112 }
1113 
1114 void GenCollectedHeap::verify(VerifyOption option /* ignored */) {
1115   log_debug(gc, verify)("%s", _old_gen->name());
1116   _old_gen->verify();
1117 
1118   log_debug(gc, verify)("%s", _old_gen->name());
1119   _young_gen->verify();
1120 
1121   log_debug(gc, verify)("RemSet");
1122   rem_set()->verify();
1123 }
1124 
1125 void GenCollectedHeap::print_on(outputStream* st) const {
1126   _young_gen->print_on(st);
1127   _old_gen->print_on(st);
1128   MetaspaceAux::print_on(st);
1129 }
1130 
1131 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1132   if (workers() != NULL) {
1133     workers()->threads_do(tc);
1134   }
1135 #if INCLUDE_ALL_GCS
1136   if (UseConcMarkSweepGC) {
1137     ConcurrentMarkSweepThread::threads_do(tc);
1138   }
1139 #endif // INCLUDE_ALL_GCS
1140 }
1141 
1142 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1143 #if INCLUDE_ALL_GCS
1144   if (UseConcMarkSweepGC) {
1145     workers()->print_worker_threads_on(st);
1146     ConcurrentMarkSweepThread::print_all_on(st);
1147   }
1148 #endif // INCLUDE_ALL_GCS
1149 }
1150 
1151 void GenCollectedHeap::print_on_error(outputStream* st) const {
1152   this->CollectedHeap::print_on_error(st);
1153 
1154 #if INCLUDE_ALL_GCS
1155   if (UseConcMarkSweepGC) {
1156     st->cr();
1157     CMSCollector::print_on_error(st);
1158   }
1159 #endif // INCLUDE_ALL_GCS
1160 }
1161 
1162 void GenCollectedHeap::print_tracing_info() const {
1163   if (TraceYoungGenTime) {
1164     _young_gen->print_summary_info();
1165   }
1166   if (TraceOldGenTime) {
1167     _old_gen->print_summary_info();
1168   }
1169 }
1170 
1171 void GenCollectedHeap::print_heap_change(size_t young_prev_used, size_t old_prev_used) const {
1172   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1173                      _young_gen->short_name(), young_prev_used / K, _young_gen->used() /K, _young_gen->capacity() /K);
1174   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1175                      _old_gen->short_name(), old_prev_used / K, _old_gen->used() /K, _old_gen->capacity() /K);
1176 }
1177 
1178 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1179  private:
1180   bool _full;
1181  public:
1182   void do_generation(Generation* gen) {
1183     gen->gc_prologue(_full);
1184   }
1185   GenGCPrologueClosure(bool full) : _full(full) {};
1186 };
1187 
1188 void GenCollectedHeap::gc_prologue(bool full) {
1189   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1190 
1191   always_do_update_barrier = false;
1192   // Fill TLAB's and such
1193   CollectedHeap::accumulate_statistics_all_tlabs();
1194   ensure_parsability(true);   // retire TLABs
1195 
1196   // Walk generations
1197   GenGCPrologueClosure blk(full);
1198   generation_iterate(&blk, false);  // not old-to-young.
1199 };
1200 
1201 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1202  private:
1203   bool _full;
1204  public:
1205   void do_generation(Generation* gen) {
1206     gen->gc_epilogue(_full);
1207   }
1208   GenGCEpilogueClosure(bool full) : _full(full) {};
1209 };
1210 
1211 void GenCollectedHeap::gc_epilogue(bool full) {
1212 #if defined(COMPILER2) || INCLUDE_JVMCI
1213   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1214   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1215   guarantee(is_client_compilation_mode_vm() || actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1216 #endif /* COMPILER2 || INCLUDE_JVMCI */
1217 
1218   resize_all_tlabs();
1219 
1220   GenGCEpilogueClosure blk(full);
1221   generation_iterate(&blk, false);  // not old-to-young.
1222 
1223   if (!CleanChunkPoolAsync) {
1224     Chunk::clean_chunk_pool();
1225   }
1226 
1227   MetaspaceCounters::update_performance_counters();
1228   CompressedClassSpaceCounters::update_performance_counters();
1229 
1230   always_do_update_barrier = UseConcMarkSweepGC;
1231 };
1232 
1233 #ifndef PRODUCT
1234 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1235  private:
1236  public:
1237   void do_generation(Generation* gen) {
1238     gen->record_spaces_top();
1239   }
1240 };
1241 
1242 void GenCollectedHeap::record_gen_tops_before_GC() {
1243   if (ZapUnusedHeapArea) {
1244     GenGCSaveTopsBeforeGCClosure blk;
1245     generation_iterate(&blk, false);  // not old-to-young.
1246   }
1247 }
1248 #endif  // not PRODUCT
1249 
1250 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1251  public:
1252   void do_generation(Generation* gen) {
1253     gen->ensure_parsability();
1254   }
1255 };
1256 
1257 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1258   CollectedHeap::ensure_parsability(retire_tlabs);
1259   GenEnsureParsabilityClosure ep_cl;
1260   generation_iterate(&ep_cl, false);
1261 }
1262 
1263 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1264                                               oop obj,
1265                                               size_t obj_size) {
1266   guarantee(old_gen == _old_gen, "We only get here with an old generation");
1267   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1268   HeapWord* result = NULL;
1269 
1270   result = old_gen->expand_and_allocate(obj_size, false);
1271 
1272   if (result != NULL) {
1273     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1274   }
1275   return oop(result);
1276 }
1277 
1278 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1279   jlong _time;   // in ms
1280   jlong _now;    // in ms
1281 
1282  public:
1283   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1284 
1285   jlong time() { return _time; }
1286 
1287   void do_generation(Generation* gen) {
1288     _time = MIN2(_time, gen->time_of_last_gc(_now));
1289   }
1290 };
1291 
1292 jlong GenCollectedHeap::millis_since_last_gc() {
1293   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1294   // provided the underlying platform provides such a time source
1295   // (and it is bug free). So we still have to guard against getting
1296   // back a time later than 'now'.
1297   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1298   GenTimeOfLastGCClosure tolgc_cl(now);
1299   // iterate over generations getting the oldest
1300   // time that a generation was collected
1301   generation_iterate(&tolgc_cl, false);
1302 
1303   jlong retVal = now - tolgc_cl.time();
1304   if (retVal < 0) {
1305     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
1306        ". returning zero instead.", retVal);
1307     return 0;
1308   }
1309   return retVal;
1310 }
1311 
1312 void GenCollectedHeap::stop() {
1313 #if INCLUDE_ALL_GCS
1314   if (UseConcMarkSweepGC) {
1315     ConcurrentMarkSweepThread::cmst()->stop();
1316   }
1317 #endif
1318 }
1319 
1320 void GenCollectedHeap::safepoint_synchronize_begin() {
1321 #if INCLUDE_ALL_GCS
1322   if (UseConcMarkSweepGC) {
1323     ConcurrentMarkSweepThread::synchronize(false);
1324   }
1325 #endif
1326 }
1327 
1328 void GenCollectedHeap::safepoint_synchronize_end() {
1329 #if INCLUDE_ALL_GCS
1330   if (UseConcMarkSweepGC) {
1331     ConcurrentMarkSweepThread::desynchronize(false);
1332   }
1333 #endif
1334 }