1 /*
   2  * Copyright (c) 2002, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/vmSymbols.hpp"
  27 #include "gc/shared/collectedHeap.hpp"
  28 #include "interpreter/bytecodeHistogram.hpp"
  29 #include "interpreter/bytecodeInterpreter.hpp"
  30 #include "interpreter/bytecodeInterpreter.inline.hpp"
  31 #include "interpreter/bytecodeInterpreterProfiling.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/interpreterRuntime.hpp"
  34 #include "logging/log.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/methodCounters.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "oops/objArrayOop.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "prims/jvmtiExport.hpp"
  41 #include "prims/jvmtiThreadState.hpp"
  42 #include "runtime/access.inline.hpp"
  43 #include "runtime/atomic.hpp"
  44 #include "runtime/biasedLocking.hpp"
  45 #include "runtime/frame.inline.hpp"
  46 #include "runtime/handles.inline.hpp"
  47 #include "runtime/interfaceSupport.hpp"
  48 #include "runtime/orderAccess.inline.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 #include "runtime/threadCritical.hpp"
  51 #include "utilities/exceptions.hpp"
  52 
  53 // no precompiled headers
  54 #ifdef CC_INTERP
  55 
  56 /*
  57  * USELABELS - If using GCC, then use labels for the opcode dispatching
  58  * rather -then a switch statement. This improves performance because it
  59  * gives us the opportunity to have the instructions that calculate the
  60  * next opcode to jump to be intermixed with the rest of the instructions
  61  * that implement the opcode (see UPDATE_PC_AND_TOS_AND_CONTINUE macro).
  62  */
  63 #undef USELABELS
  64 #ifdef __GNUC__
  65 /*
  66    ASSERT signifies debugging. It is much easier to step thru bytecodes if we
  67    don't use the computed goto approach.
  68 */
  69 #ifndef ASSERT
  70 #define USELABELS
  71 #endif
  72 #endif
  73 
  74 #undef CASE
  75 #ifdef USELABELS
  76 #define CASE(opcode) opc ## opcode
  77 #define DEFAULT opc_default
  78 #else
  79 #define CASE(opcode) case Bytecodes:: opcode
  80 #define DEFAULT default
  81 #endif
  82 
  83 /*
  84  * PREFETCH_OPCCODE - Some compilers do better if you prefetch the next
  85  * opcode before going back to the top of the while loop, rather then having
  86  * the top of the while loop handle it. This provides a better opportunity
  87  * for instruction scheduling. Some compilers just do this prefetch
  88  * automatically. Some actually end up with worse performance if you
  89  * force the prefetch. Solaris gcc seems to do better, but cc does worse.
  90  */
  91 #undef PREFETCH_OPCCODE
  92 #define PREFETCH_OPCCODE
  93 
  94 /*
  95   Interpreter safepoint: it is expected that the interpreter will have no live
  96   handles of its own creation live at an interpreter safepoint. Therefore we
  97   run a HandleMarkCleaner and trash all handles allocated in the call chain
  98   since the JavaCalls::call_helper invocation that initiated the chain.
  99   There really shouldn't be any handles remaining to trash but this is cheap
 100   in relation to a safepoint.
 101 */
 102 #define SAFEPOINT                                                                 \
 103     if ( SafepointSynchronize::is_synchronizing()) {                              \
 104         {                                                                         \
 105           /* zap freed handles rather than GC'ing them */                         \
 106           HandleMarkCleaner __hmc(THREAD);                                        \
 107         }                                                                         \
 108         CALL_VM(SafepointSynchronize::block(THREAD), handle_exception);           \
 109     }
 110 
 111 /*
 112  * VM_JAVA_ERROR - Macro for throwing a java exception from
 113  * the interpreter loop. Should really be a CALL_VM but there
 114  * is no entry point to do the transition to vm so we just
 115  * do it by hand here.
 116  */
 117 #define VM_JAVA_ERROR_NO_JUMP(name, msg, note_a_trap)                             \
 118     DECACHE_STATE();                                                              \
 119     SET_LAST_JAVA_FRAME();                                                        \
 120     {                                                                             \
 121        InterpreterRuntime::note_a_trap(THREAD, istate->method(), BCI());          \
 122        ThreadInVMfromJava trans(THREAD);                                          \
 123        Exceptions::_throw_msg(THREAD, __FILE__, __LINE__, name, msg);             \
 124     }                                                                             \
 125     RESET_LAST_JAVA_FRAME();                                                      \
 126     CACHE_STATE();
 127 
 128 // Normal throw of a java error.
 129 #define VM_JAVA_ERROR(name, msg, note_a_trap)                                     \
 130     VM_JAVA_ERROR_NO_JUMP(name, msg, note_a_trap)                                 \
 131     goto handle_exception;
 132 
 133 #ifdef PRODUCT
 134 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)
 135 #else
 136 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)                                                          \
 137 {                                                                                                    \
 138     BytecodeCounter::_counter_value++;                                                               \
 139     BytecodeHistogram::_counters[(Bytecodes::Code)opcode]++;                                         \
 140     if (StopInterpreterAt && StopInterpreterAt == BytecodeCounter::_counter_value) os::breakpoint(); \
 141     if (TraceBytecodes) {                                                                            \
 142       CALL_VM((void)InterpreterRuntime::trace_bytecode(THREAD, 0,                    \
 143                                         topOfStack[Interpreter::expr_index_at(1)],   \
 144                                         topOfStack[Interpreter::expr_index_at(2)]),  \
 145                                         handle_exception);                           \
 146     }                                                                                \
 147 }
 148 #endif
 149 
 150 #undef DEBUGGER_SINGLE_STEP_NOTIFY
 151 #ifdef VM_JVMTI
 152 /* NOTE: (kbr) This macro must be called AFTER the PC has been
 153    incremented. JvmtiExport::at_single_stepping_point() may cause a
 154    breakpoint opcode to get inserted at the current PC to allow the
 155    debugger to coalesce single-step events.
 156 
 157    As a result if we call at_single_stepping_point() we refetch opcode
 158    to get the current opcode. This will override any other prefetching
 159    that might have occurred.
 160 */
 161 #define DEBUGGER_SINGLE_STEP_NOTIFY()                                            \
 162 {                                                                                \
 163       if (_jvmti_interp_events) {                                                \
 164         if (JvmtiExport::should_post_single_step()) {                            \
 165           DECACHE_STATE();                                                       \
 166           SET_LAST_JAVA_FRAME();                                                 \
 167           ThreadInVMfromJava trans(THREAD);                                      \
 168           JvmtiExport::at_single_stepping_point(THREAD,                          \
 169                                           istate->method(),                      \
 170                                           pc);                                   \
 171           RESET_LAST_JAVA_FRAME();                                               \
 172           CACHE_STATE();                                                         \
 173           if (THREAD->pop_frame_pending() &&                                     \
 174               !THREAD->pop_frame_in_process()) {                                 \
 175             goto handle_Pop_Frame;                                               \
 176           }                                                                      \
 177           if (THREAD->jvmti_thread_state() &&                                    \
 178               THREAD->jvmti_thread_state()->is_earlyret_pending()) {             \
 179             goto handle_Early_Return;                                            \
 180           }                                                                      \
 181           opcode = *pc;                                                          \
 182         }                                                                        \
 183       }                                                                          \
 184 }
 185 #else
 186 #define DEBUGGER_SINGLE_STEP_NOTIFY()
 187 #endif
 188 
 189 /*
 190  * CONTINUE - Macro for executing the next opcode.
 191  */
 192 #undef CONTINUE
 193 #ifdef USELABELS
 194 // Have to do this dispatch this way in C++ because otherwise gcc complains about crossing an
 195 // initialization (which is is the initialization of the table pointer...)
 196 #define DISPATCH(opcode) goto *(void*)dispatch_table[opcode]
 197 #define CONTINUE {                              \
 198         opcode = *pc;                           \
 199         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 200         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 201         DISPATCH(opcode);                       \
 202     }
 203 #else
 204 #ifdef PREFETCH_OPCCODE
 205 #define CONTINUE {                              \
 206         opcode = *pc;                           \
 207         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 208         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 209         continue;                               \
 210     }
 211 #else
 212 #define CONTINUE {                              \
 213         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 214         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 215         continue;                               \
 216     }
 217 #endif
 218 #endif
 219 
 220 
 221 #define UPDATE_PC(opsize) {pc += opsize; }
 222 /*
 223  * UPDATE_PC_AND_TOS - Macro for updating the pc and topOfStack.
 224  */
 225 #undef UPDATE_PC_AND_TOS
 226 #define UPDATE_PC_AND_TOS(opsize, stack) \
 227     {pc += opsize; MORE_STACK(stack); }
 228 
 229 /*
 230  * UPDATE_PC_AND_TOS_AND_CONTINUE - Macro for updating the pc and topOfStack,
 231  * and executing the next opcode. It's somewhat similar to the combination
 232  * of UPDATE_PC_AND_TOS and CONTINUE, but with some minor optimizations.
 233  */
 234 #undef UPDATE_PC_AND_TOS_AND_CONTINUE
 235 #ifdef USELABELS
 236 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 237         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 238         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 239         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 240         DISPATCH(opcode);                                       \
 241     }
 242 
 243 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 244         pc += opsize; opcode = *pc;                             \
 245         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 246         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 247         DISPATCH(opcode);                                       \
 248     }
 249 #else
 250 #ifdef PREFETCH_OPCCODE
 251 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 252         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 253         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 254         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 255         goto do_continue;                                       \
 256     }
 257 
 258 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 259         pc += opsize; opcode = *pc;                             \
 260         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 261         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 262         goto do_continue;                                       \
 263     }
 264 #else
 265 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
 266         pc += opsize; MORE_STACK(stack);                \
 267         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 268         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 269         goto do_continue;                               \
 270     }
 271 
 272 #define UPDATE_PC_AND_CONTINUE(opsize) {                \
 273         pc += opsize;                                   \
 274         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 275         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 276         goto do_continue;                               \
 277     }
 278 #endif /* PREFETCH_OPCCODE */
 279 #endif /* USELABELS */
 280 
 281 // About to call a new method, update the save the adjusted pc and return to frame manager
 282 #define UPDATE_PC_AND_RETURN(opsize)  \
 283    DECACHE_TOS();                     \
 284    istate->set_bcp(pc+opsize);        \
 285    return;
 286 
 287 
 288 #define METHOD istate->method()
 289 #define GET_METHOD_COUNTERS(res)    \
 290   res = METHOD->method_counters();  \
 291   if (res == NULL) {                \
 292     CALL_VM(res = InterpreterRuntime::build_method_counters(THREAD, METHOD), handle_exception); \
 293   }
 294 
 295 #define OSR_REQUEST(res, branch_pc) \
 296             CALL_VM(res=InterpreterRuntime::frequency_counter_overflow(THREAD, branch_pc), handle_exception);
 297 /*
 298  * For those opcodes that need to have a GC point on a backwards branch
 299  */
 300 
 301 // Backedge counting is kind of strange. The asm interpreter will increment
 302 // the backedge counter as a separate counter but it does it's comparisons
 303 // to the sum (scaled) of invocation counter and backedge count to make
 304 // a decision. Seems kind of odd to sum them together like that
 305 
 306 // skip is delta from current bcp/bci for target, branch_pc is pre-branch bcp
 307 
 308 
 309 #define DO_BACKEDGE_CHECKS(skip, branch_pc)                                                         \
 310     if ((skip) <= 0) {                                                                              \
 311       MethodCounters* mcs;                                                                          \
 312       GET_METHOD_COUNTERS(mcs);                                                                     \
 313       if (UseLoopCounter) {                                                                         \
 314         bool do_OSR = UseOnStackReplacement;                                                        \
 315         mcs->backedge_counter()->increment();                                                       \
 316         if (ProfileInterpreter) {                                                                   \
 317           BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);                                   \
 318           /* Check for overflow against MDO count. */                                               \
 319           do_OSR = do_OSR                                                                           \
 320             && (mdo_last_branch_taken_count >= (uint)InvocationCounter::InterpreterBackwardBranchLimit)\
 321             /* When ProfileInterpreter is on, the backedge_count comes     */                       \
 322             /* from the methodDataOop, which value does not get reset on   */                       \
 323             /* the call to frequency_counter_overflow(). To avoid          */                       \
 324             /* excessive calls to the overflow routine while the method is */                       \
 325             /* being compiled, add a second test to make sure the overflow */                       \
 326             /* function is called only once every overflow_frequency.      */                       \
 327             && (!(mdo_last_branch_taken_count & 1023));                                             \
 328         } else {                                                                                    \
 329           /* check for overflow of backedge counter */                                              \
 330           do_OSR = do_OSR                                                                           \
 331             && mcs->invocation_counter()->reached_InvocationLimit(mcs->backedge_counter());         \
 332         }                                                                                           \
 333         if (do_OSR) {                                                                               \
 334           nmethod* osr_nmethod;                                                                     \
 335           OSR_REQUEST(osr_nmethod, branch_pc);                                                      \
 336           if (osr_nmethod != NULL && osr_nmethod->is_in_use()) {                                    \
 337             intptr_t* buf;                                                                          \
 338             /* Call OSR migration with last java frame only, no checks. */                          \
 339             CALL_VM_NAKED_LJF(buf=SharedRuntime::OSR_migration_begin(THREAD));                      \
 340             istate->set_msg(do_osr);                                                                \
 341             istate->set_osr_buf((address)buf);                                                      \
 342             istate->set_osr_entry(osr_nmethod->osr_entry());                                        \
 343             return;                                                                                 \
 344           }                                                                                         \
 345         }                                                                                           \
 346       }  /* UseCompiler ... */                                                                      \
 347       SAFEPOINT;                                                                                    \
 348     }
 349 
 350 /*
 351  * For those opcodes that need to have a GC point on a backwards branch
 352  */
 353 
 354 /*
 355  * Macros for caching and flushing the interpreter state. Some local
 356  * variables need to be flushed out to the frame before we do certain
 357  * things (like pushing frames or becomming gc safe) and some need to
 358  * be recached later (like after popping a frame). We could use one
 359  * macro to cache or decache everything, but this would be less then
 360  * optimal because we don't always need to cache or decache everything
 361  * because some things we know are already cached or decached.
 362  */
 363 #undef DECACHE_TOS
 364 #undef CACHE_TOS
 365 #undef CACHE_PREV_TOS
 366 #define DECACHE_TOS()    istate->set_stack(topOfStack);
 367 
 368 #define CACHE_TOS()      topOfStack = (intptr_t *)istate->stack();
 369 
 370 #undef DECACHE_PC
 371 #undef CACHE_PC
 372 #define DECACHE_PC()    istate->set_bcp(pc);
 373 #define CACHE_PC()      pc = istate->bcp();
 374 #define CACHE_CP()      cp = istate->constants();
 375 #define CACHE_LOCALS()  locals = istate->locals();
 376 #undef CACHE_FRAME
 377 #define CACHE_FRAME()
 378 
 379 // BCI() returns the current bytecode-index.
 380 #undef  BCI
 381 #define BCI()           ((int)(intptr_t)(pc - (intptr_t)istate->method()->code_base()))
 382 
 383 /*
 384  * CHECK_NULL - Macro for throwing a NullPointerException if the object
 385  * passed is a null ref.
 386  * On some architectures/platforms it should be possible to do this implicitly
 387  */
 388 #undef CHECK_NULL
 389 #define CHECK_NULL(obj_)                                                                         \
 390         if ((obj_) == NULL) {                                                                    \
 391           VM_JAVA_ERROR(vmSymbols::java_lang_NullPointerException(), NULL, note_nullCheck_trap); \
 392         }                                                                                        \
 393         VERIFY_OOP(obj_)
 394 
 395 #define VMdoubleConstZero() 0.0
 396 #define VMdoubleConstOne() 1.0
 397 #define VMlongConstZero() (max_jlong-max_jlong)
 398 #define VMlongConstOne() ((max_jlong-max_jlong)+1)
 399 
 400 /*
 401  * Alignment
 402  */
 403 #define VMalignWordUp(val)          (((uintptr_t)(val) + 3) & ~3)
 404 
 405 // Decache the interpreter state that interpreter modifies directly (i.e. GC is indirect mod)
 406 #define DECACHE_STATE() DECACHE_PC(); DECACHE_TOS();
 407 
 408 // Reload interpreter state after calling the VM or a possible GC
 409 #define CACHE_STATE()   \
 410         CACHE_TOS();    \
 411         CACHE_PC();     \
 412         CACHE_CP();     \
 413         CACHE_LOCALS();
 414 
 415 // Call the VM with last java frame only.
 416 #define CALL_VM_NAKED_LJF(func)                                    \
 417         DECACHE_STATE();                                           \
 418         SET_LAST_JAVA_FRAME();                                     \
 419         func;                                                      \
 420         RESET_LAST_JAVA_FRAME();                                   \
 421         CACHE_STATE();
 422 
 423 // Call the VM. Don't check for pending exceptions.
 424 #define CALL_VM_NOCHECK(func)                                      \
 425         CALL_VM_NAKED_LJF(func)                                    \
 426         if (THREAD->pop_frame_pending() &&                         \
 427             !THREAD->pop_frame_in_process()) {                     \
 428           goto handle_Pop_Frame;                                   \
 429         }                                                          \
 430         if (THREAD->jvmti_thread_state() &&                        \
 431             THREAD->jvmti_thread_state()->is_earlyret_pending()) { \
 432           goto handle_Early_Return;                                \
 433         }
 434 
 435 // Call the VM and check for pending exceptions
 436 #define CALL_VM(func, label) {                                     \
 437           CALL_VM_NOCHECK(func);                                   \
 438           if (THREAD->has_pending_exception()) goto label;         \
 439         }
 440 
 441 /*
 442  * BytecodeInterpreter::run(interpreterState istate)
 443  * BytecodeInterpreter::runWithChecks(interpreterState istate)
 444  *
 445  * The real deal. This is where byte codes actually get interpreted.
 446  * Basically it's a big while loop that iterates until we return from
 447  * the method passed in.
 448  *
 449  * The runWithChecks is used if JVMTI is enabled.
 450  *
 451  */
 452 #if defined(VM_JVMTI)
 453 void
 454 BytecodeInterpreter::runWithChecks(interpreterState istate) {
 455 #else
 456 void
 457 BytecodeInterpreter::run(interpreterState istate) {
 458 #endif
 459 
 460   // In order to simplify some tests based on switches set at runtime
 461   // we invoke the interpreter a single time after switches are enabled
 462   // and set simpler to to test variables rather than method calls or complex
 463   // boolean expressions.
 464 
 465   static int initialized = 0;
 466   static int checkit = 0;
 467   static intptr_t* c_addr = NULL;
 468   static intptr_t  c_value;
 469 
 470   if (checkit && *c_addr != c_value) {
 471     os::breakpoint();
 472   }
 473 #ifdef VM_JVMTI
 474   static bool _jvmti_interp_events = 0;
 475 #endif
 476 
 477   static int _compiling;  // (UseCompiler || CountCompiledCalls)
 478 
 479 #ifdef ASSERT
 480   if (istate->_msg != initialize) {
 481     assert(labs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + 1), "bad stack limit");
 482 #ifndef SHARK
 483     IA32_ONLY(assert(istate->_stack_limit == istate->_thread->last_Java_sp() + 1, "wrong"));
 484 #endif // !SHARK
 485   }
 486   // Verify linkages.
 487   interpreterState l = istate;
 488   do {
 489     assert(l == l->_self_link, "bad link");
 490     l = l->_prev_link;
 491   } while (l != NULL);
 492   // Screwups with stack management usually cause us to overwrite istate
 493   // save a copy so we can verify it.
 494   interpreterState orig = istate;
 495 #endif
 496 
 497   register intptr_t*        topOfStack = (intptr_t *)istate->stack(); /* access with STACK macros */
 498   register address          pc = istate->bcp();
 499   register jubyte opcode;
 500   register intptr_t*        locals = istate->locals();
 501   register ConstantPoolCache*    cp = istate->constants(); // method()->constants()->cache()
 502 #ifdef LOTS_OF_REGS
 503   register JavaThread*      THREAD = istate->thread();
 504 #else
 505 #undef THREAD
 506 #define THREAD istate->thread()
 507 #endif
 508 
 509 #ifdef USELABELS
 510   const static void* const opclabels_data[256] = {
 511 /* 0x00 */ &&opc_nop,     &&opc_aconst_null,&&opc_iconst_m1,&&opc_iconst_0,
 512 /* 0x04 */ &&opc_iconst_1,&&opc_iconst_2,   &&opc_iconst_3, &&opc_iconst_4,
 513 /* 0x08 */ &&opc_iconst_5,&&opc_lconst_0,   &&opc_lconst_1, &&opc_fconst_0,
 514 /* 0x0C */ &&opc_fconst_1,&&opc_fconst_2,   &&opc_dconst_0, &&opc_dconst_1,
 515 
 516 /* 0x10 */ &&opc_bipush, &&opc_sipush, &&opc_ldc,    &&opc_ldc_w,
 517 /* 0x14 */ &&opc_ldc2_w, &&opc_iload,  &&opc_lload,  &&opc_fload,
 518 /* 0x18 */ &&opc_dload,  &&opc_aload,  &&opc_iload_0,&&opc_iload_1,
 519 /* 0x1C */ &&opc_iload_2,&&opc_iload_3,&&opc_lload_0,&&opc_lload_1,
 520 
 521 /* 0x20 */ &&opc_lload_2,&&opc_lload_3,&&opc_fload_0,&&opc_fload_1,
 522 /* 0x24 */ &&opc_fload_2,&&opc_fload_3,&&opc_dload_0,&&opc_dload_1,
 523 /* 0x28 */ &&opc_dload_2,&&opc_dload_3,&&opc_aload_0,&&opc_aload_1,
 524 /* 0x2C */ &&opc_aload_2,&&opc_aload_3,&&opc_iaload, &&opc_laload,
 525 
 526 /* 0x30 */ &&opc_faload,  &&opc_daload,  &&opc_aaload,  &&opc_baload,
 527 /* 0x34 */ &&opc_caload,  &&opc_saload,  &&opc_istore,  &&opc_lstore,
 528 /* 0x38 */ &&opc_fstore,  &&opc_dstore,  &&opc_astore,  &&opc_istore_0,
 529 /* 0x3C */ &&opc_istore_1,&&opc_istore_2,&&opc_istore_3,&&opc_lstore_0,
 530 
 531 /* 0x40 */ &&opc_lstore_1,&&opc_lstore_2,&&opc_lstore_3,&&opc_fstore_0,
 532 /* 0x44 */ &&opc_fstore_1,&&opc_fstore_2,&&opc_fstore_3,&&opc_dstore_0,
 533 /* 0x48 */ &&opc_dstore_1,&&opc_dstore_2,&&opc_dstore_3,&&opc_astore_0,
 534 /* 0x4C */ &&opc_astore_1,&&opc_astore_2,&&opc_astore_3,&&opc_iastore,
 535 
 536 /* 0x50 */ &&opc_lastore,&&opc_fastore,&&opc_dastore,&&opc_aastore,
 537 /* 0x54 */ &&opc_bastore,&&opc_castore,&&opc_sastore,&&opc_pop,
 538 /* 0x58 */ &&opc_pop2,   &&opc_dup,    &&opc_dup_x1, &&opc_dup_x2,
 539 /* 0x5C */ &&opc_dup2,   &&opc_dup2_x1,&&opc_dup2_x2,&&opc_swap,
 540 
 541 /* 0x60 */ &&opc_iadd,&&opc_ladd,&&opc_fadd,&&opc_dadd,
 542 /* 0x64 */ &&opc_isub,&&opc_lsub,&&opc_fsub,&&opc_dsub,
 543 /* 0x68 */ &&opc_imul,&&opc_lmul,&&opc_fmul,&&opc_dmul,
 544 /* 0x6C */ &&opc_idiv,&&opc_ldiv,&&opc_fdiv,&&opc_ddiv,
 545 
 546 /* 0x70 */ &&opc_irem, &&opc_lrem, &&opc_frem,&&opc_drem,
 547 /* 0x74 */ &&opc_ineg, &&opc_lneg, &&opc_fneg,&&opc_dneg,
 548 /* 0x78 */ &&opc_ishl, &&opc_lshl, &&opc_ishr,&&opc_lshr,
 549 /* 0x7C */ &&opc_iushr,&&opc_lushr,&&opc_iand,&&opc_land,
 550 
 551 /* 0x80 */ &&opc_ior, &&opc_lor,&&opc_ixor,&&opc_lxor,
 552 /* 0x84 */ &&opc_iinc,&&opc_i2l,&&opc_i2f, &&opc_i2d,
 553 /* 0x88 */ &&opc_l2i, &&opc_l2f,&&opc_l2d, &&opc_f2i,
 554 /* 0x8C */ &&opc_f2l, &&opc_f2d,&&opc_d2i, &&opc_d2l,
 555 
 556 /* 0x90 */ &&opc_d2f,  &&opc_i2b,  &&opc_i2c,  &&opc_i2s,
 557 /* 0x94 */ &&opc_lcmp, &&opc_fcmpl,&&opc_fcmpg,&&opc_dcmpl,
 558 /* 0x98 */ &&opc_dcmpg,&&opc_ifeq, &&opc_ifne, &&opc_iflt,
 559 /* 0x9C */ &&opc_ifge, &&opc_ifgt, &&opc_ifle, &&opc_if_icmpeq,
 560 
 561 /* 0xA0 */ &&opc_if_icmpne,&&opc_if_icmplt,&&opc_if_icmpge,  &&opc_if_icmpgt,
 562 /* 0xA4 */ &&opc_if_icmple,&&opc_if_acmpeq,&&opc_if_acmpne,  &&opc_goto,
 563 /* 0xA8 */ &&opc_jsr,      &&opc_ret,      &&opc_tableswitch,&&opc_lookupswitch,
 564 /* 0xAC */ &&opc_ireturn,  &&opc_lreturn,  &&opc_freturn,    &&opc_dreturn,
 565 
 566 /* 0xB0 */ &&opc_areturn,     &&opc_return,         &&opc_getstatic,    &&opc_putstatic,
 567 /* 0xB4 */ &&opc_getfield,    &&opc_putfield,       &&opc_invokevirtual,&&opc_invokespecial,
 568 /* 0xB8 */ &&opc_invokestatic,&&opc_invokeinterface,&&opc_invokedynamic,&&opc_new,
 569 /* 0xBC */ &&opc_newarray,    &&opc_anewarray,      &&opc_arraylength,  &&opc_athrow,
 570 
 571 /* 0xC0 */ &&opc_checkcast,   &&opc_instanceof,     &&opc_monitorenter, &&opc_monitorexit,
 572 /* 0xC4 */ &&opc_wide,        &&opc_multianewarray, &&opc_ifnull,       &&opc_ifnonnull,
 573 /* 0xC8 */ &&opc_goto_w,      &&opc_jsr_w,          &&opc_breakpoint,   &&opc_default,
 574 /* 0xCC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 575 
 576 /* 0xD0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 577 /* 0xD4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 578 /* 0xD8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 579 /* 0xDC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 580 
 581 /* 0xE0 */ &&opc_default,     &&opc_default,        &&opc_default,         &&opc_default,
 582 /* 0xE4 */ &&opc_default,     &&opc_default,        &&opc_fast_aldc,    &&opc_fast_aldc_w,
 583 /* 0xE8 */ &&opc_return_register_finalizer,
 584                               &&opc_invokehandle,   &&opc_default,      &&opc_default,
 585 /* 0xEC */ &&opc_default,     &&opc_default,        &&opc_default,         &&opc_default,
 586 
 587 /* 0xF0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 588 /* 0xF4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 589 /* 0xF8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 590 /* 0xFC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default
 591   };
 592   register uintptr_t *dispatch_table = (uintptr_t*)&opclabels_data[0];
 593 #endif /* USELABELS */
 594 
 595 #ifdef ASSERT
 596   // this will trigger a VERIFY_OOP on entry
 597   if (istate->msg() != initialize && ! METHOD->is_static()) {
 598     oop rcvr = LOCALS_OBJECT(0);
 599     VERIFY_OOP(rcvr);
 600   }
 601 #endif
 602 // #define HACK
 603 #ifdef HACK
 604   bool interesting = false;
 605 #endif // HACK
 606 
 607   /* QQQ this should be a stack method so we don't know actual direction */
 608   guarantee(istate->msg() == initialize ||
 609          topOfStack >= istate->stack_limit() &&
 610          topOfStack < istate->stack_base(),
 611          "Stack top out of range");
 612 
 613 #ifdef CC_INTERP_PROFILE
 614   // MethodData's last branch taken count.
 615   uint mdo_last_branch_taken_count = 0;
 616 #else
 617   const uint mdo_last_branch_taken_count = 0;
 618 #endif
 619 
 620   switch (istate->msg()) {
 621     case initialize: {
 622       if (initialized++) ShouldNotReachHere(); // Only one initialize call.
 623       _compiling = (UseCompiler || CountCompiledCalls);
 624 #ifdef VM_JVMTI
 625       _jvmti_interp_events = JvmtiExport::can_post_interpreter_events();
 626 #endif
 627       return;
 628     }
 629     break;
 630     case method_entry: {
 631       THREAD->set_do_not_unlock();
 632       // count invocations
 633       assert(initialized, "Interpreter not initialized");
 634       if (_compiling) {
 635         MethodCounters* mcs;
 636         GET_METHOD_COUNTERS(mcs);
 637 #if COMPILER2_OR_JVMCI
 638         if (ProfileInterpreter) {
 639           METHOD->increment_interpreter_invocation_count(THREAD);
 640         }
 641 #endif
 642         mcs->invocation_counter()->increment();
 643         if (mcs->invocation_counter()->reached_InvocationLimit(mcs->backedge_counter())) {
 644           CALL_VM((void)InterpreterRuntime::frequency_counter_overflow(THREAD, NULL), handle_exception);
 645           // We no longer retry on a counter overflow.
 646         }
 647         // Get or create profile data. Check for pending (async) exceptions.
 648         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 649         SAFEPOINT;
 650       }
 651 
 652       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 653         // initialize
 654         os::breakpoint();
 655       }
 656 
 657 #ifdef HACK
 658       {
 659         ResourceMark rm;
 660         char *method_name = istate->method()->name_and_sig_as_C_string();
 661         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
 662           tty->print_cr("entering: depth %d bci: %d",
 663                          (istate->_stack_base - istate->_stack),
 664                          istate->_bcp - istate->_method->code_base());
 665           interesting = true;
 666         }
 667       }
 668 #endif // HACK
 669 
 670       // Lock method if synchronized.
 671       if (METHOD->is_synchronized()) {
 672         // oop rcvr = locals[0].j.r;
 673         oop rcvr;
 674         if (METHOD->is_static()) {
 675           rcvr = METHOD->constants()->pool_holder()->java_mirror();
 676         } else {
 677           rcvr = LOCALS_OBJECT(0);
 678           VERIFY_OOP(rcvr);
 679         }
 680         // The initial monitor is ours for the taking.
 681         // Monitor not filled in frame manager any longer as this caused race condition with biased locking.
 682         BasicObjectLock* mon = &istate->monitor_base()[-1];
 683         mon->set_obj(rcvr);
 684         bool success = false;
 685         uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
 686         markOop mark = rcvr->mark();
 687         intptr_t hash = (intptr_t) markOopDesc::no_hash;
 688         // Implies UseBiasedLocking.
 689         if (mark->has_bias_pattern()) {
 690           uintptr_t thread_ident;
 691           uintptr_t anticipated_bias_locking_value;
 692           thread_ident = (uintptr_t)istate->thread();
 693           anticipated_bias_locking_value =
 694             (((uintptr_t)rcvr->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
 695             ~((uintptr_t) markOopDesc::age_mask_in_place);
 696 
 697           if (anticipated_bias_locking_value == 0) {
 698             // Already biased towards this thread, nothing to do.
 699             if (PrintBiasedLockingStatistics) {
 700               (* BiasedLocking::biased_lock_entry_count_addr())++;
 701             }
 702             success = true;
 703           } else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
 704             // Try to revoke bias.
 705             markOop header = rcvr->klass()->prototype_header();
 706             if (hash != markOopDesc::no_hash) {
 707               header = header->copy_set_hash(hash);
 708             }
 709             if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), mark) == mark) {
 710               if (PrintBiasedLockingStatistics)
 711                 (*BiasedLocking::revoked_lock_entry_count_addr())++;
 712             }
 713           } else if ((anticipated_bias_locking_value & epoch_mask_in_place) != 0) {
 714             // Try to rebias.
 715             markOop new_header = (markOop) ( (intptr_t) rcvr->klass()->prototype_header() | thread_ident);
 716             if (hash != markOopDesc::no_hash) {
 717               new_header = new_header->copy_set_hash(hash);
 718             }
 719             if (Atomic::cmpxchg_ptr((void*)new_header, rcvr->mark_addr(), mark) == mark) {
 720               if (PrintBiasedLockingStatistics) {
 721                 (* BiasedLocking::rebiased_lock_entry_count_addr())++;
 722               }
 723             } else {
 724               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 725             }
 726             success = true;
 727           } else {
 728             // Try to bias towards thread in case object is anonymously biased.
 729             markOop header = (markOop) ((uintptr_t) mark &
 730                                         ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
 731                                          (uintptr_t)markOopDesc::age_mask_in_place | epoch_mask_in_place));
 732             if (hash != markOopDesc::no_hash) {
 733               header = header->copy_set_hash(hash);
 734             }
 735             markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
 736             // Debugging hint.
 737             DEBUG_ONLY(mon->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
 738             if (Atomic::cmpxchg_ptr((void*)new_header, rcvr->mark_addr(), header) == header) {
 739               if (PrintBiasedLockingStatistics) {
 740                 (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
 741               }
 742             } else {
 743               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 744             }
 745             success = true;
 746           }
 747         }
 748 
 749         // Traditional lightweight locking.
 750         if (!success) {
 751           markOop displaced = rcvr->mark()->set_unlocked();
 752           mon->lock()->set_displaced_header(displaced);
 753           bool call_vm = UseHeavyMonitors;
 754           if (call_vm || Atomic::cmpxchg_ptr(mon, rcvr->mark_addr(), displaced) != displaced) {
 755             // Is it simple recursive case?
 756             if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 757               mon->lock()->set_displaced_header(NULL);
 758             } else {
 759               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 760             }
 761           }
 762         }
 763       }
 764       THREAD->clr_do_not_unlock();
 765 
 766       // Notify jvmti
 767 #ifdef VM_JVMTI
 768       if (_jvmti_interp_events) {
 769         // Whenever JVMTI puts a thread in interp_only_mode, method
 770         // entry/exit events are sent for that thread to track stack depth.
 771         if (THREAD->is_interp_only_mode()) {
 772           CALL_VM(InterpreterRuntime::post_method_entry(THREAD),
 773                   handle_exception);
 774         }
 775       }
 776 #endif /* VM_JVMTI */
 777 
 778       goto run;
 779     }
 780 
 781     case popping_frame: {
 782       // returned from a java call to pop the frame, restart the call
 783       // clear the message so we don't confuse ourselves later
 784       assert(THREAD->pop_frame_in_process(), "wrong frame pop state");
 785       istate->set_msg(no_request);
 786       if (_compiling) {
 787         // Set MDX back to the ProfileData of the invoke bytecode that will be
 788         // restarted.
 789         SET_MDX(NULL);
 790         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 791       }
 792       THREAD->clr_pop_frame_in_process();
 793       goto run;
 794     }
 795 
 796     case method_resume: {
 797       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 798         // resume
 799         os::breakpoint();
 800       }
 801 #ifdef HACK
 802       {
 803         ResourceMark rm;
 804         char *method_name = istate->method()->name_and_sig_as_C_string();
 805         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
 806           tty->print_cr("resume: depth %d bci: %d",
 807                          (istate->_stack_base - istate->_stack) ,
 808                          istate->_bcp - istate->_method->code_base());
 809           interesting = true;
 810         }
 811       }
 812 #endif // HACK
 813       // returned from a java call, continue executing.
 814       if (THREAD->pop_frame_pending() && !THREAD->pop_frame_in_process()) {
 815         goto handle_Pop_Frame;
 816       }
 817       if (THREAD->jvmti_thread_state() &&
 818           THREAD->jvmti_thread_state()->is_earlyret_pending()) {
 819         goto handle_Early_Return;
 820       }
 821 
 822       if (THREAD->has_pending_exception()) goto handle_exception;
 823       // Update the pc by the saved amount of the invoke bytecode size
 824       UPDATE_PC(istate->bcp_advance());
 825 
 826       if (_compiling) {
 827         // Get or create profile data. Check for pending (async) exceptions.
 828         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 829       }
 830       goto run;
 831     }
 832 
 833     case deopt_resume2: {
 834       // Returned from an opcode that will reexecute. Deopt was
 835       // a result of a PopFrame request.
 836       //
 837 
 838       if (_compiling) {
 839         // Get or create profile data. Check for pending (async) exceptions.
 840         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 841       }
 842       goto run;
 843     }
 844 
 845     case deopt_resume: {
 846       // Returned from an opcode that has completed. The stack has
 847       // the result all we need to do is skip across the bytecode
 848       // and continue (assuming there is no exception pending)
 849       //
 850       // compute continuation length
 851       //
 852       // Note: it is possible to deopt at a return_register_finalizer opcode
 853       // because this requires entering the vm to do the registering. While the
 854       // opcode is complete we can't advance because there are no more opcodes
 855       // much like trying to deopt at a poll return. In that has we simply
 856       // get out of here
 857       //
 858       if ( Bytecodes::code_at(METHOD, pc) == Bytecodes::_return_register_finalizer) {
 859         // this will do the right thing even if an exception is pending.
 860         goto handle_return;
 861       }
 862       UPDATE_PC(Bytecodes::length_at(METHOD, pc));
 863       if (THREAD->has_pending_exception()) goto handle_exception;
 864 
 865       if (_compiling) {
 866         // Get or create profile data. Check for pending (async) exceptions.
 867         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 868       }
 869       goto run;
 870     }
 871     case got_monitors: {
 872       // continue locking now that we have a monitor to use
 873       // we expect to find newly allocated monitor at the "top" of the monitor stack.
 874       oop lockee = STACK_OBJECT(-1);
 875       VERIFY_OOP(lockee);
 876       // derefing's lockee ought to provoke implicit null check
 877       // find a free monitor
 878       BasicObjectLock* entry = (BasicObjectLock*) istate->stack_base();
 879       assert(entry->obj() == NULL, "Frame manager didn't allocate the monitor");
 880       entry->set_obj(lockee);
 881       bool success = false;
 882       uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
 883 
 884       markOop mark = lockee->mark();
 885       intptr_t hash = (intptr_t) markOopDesc::no_hash;
 886       // implies UseBiasedLocking
 887       if (mark->has_bias_pattern()) {
 888         uintptr_t thread_ident;
 889         uintptr_t anticipated_bias_locking_value;
 890         thread_ident = (uintptr_t)istate->thread();
 891         anticipated_bias_locking_value =
 892           (((uintptr_t)lockee->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
 893           ~((uintptr_t) markOopDesc::age_mask_in_place);
 894 
 895         if  (anticipated_bias_locking_value == 0) {
 896           // already biased towards this thread, nothing to do
 897           if (PrintBiasedLockingStatistics) {
 898             (* BiasedLocking::biased_lock_entry_count_addr())++;
 899           }
 900           success = true;
 901         } else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
 902           // try revoke bias
 903           markOop header = lockee->klass()->prototype_header();
 904           if (hash != markOopDesc::no_hash) {
 905             header = header->copy_set_hash(hash);
 906           }
 907           if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), mark) == mark) {
 908             if (PrintBiasedLockingStatistics) {
 909               (*BiasedLocking::revoked_lock_entry_count_addr())++;
 910             }
 911           }
 912         } else if ((anticipated_bias_locking_value & epoch_mask_in_place) !=0) {
 913           // try rebias
 914           markOop new_header = (markOop) ( (intptr_t) lockee->klass()->prototype_header() | thread_ident);
 915           if (hash != markOopDesc::no_hash) {
 916                 new_header = new_header->copy_set_hash(hash);
 917           }
 918           if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), mark) == mark) {
 919             if (PrintBiasedLockingStatistics) {
 920               (* BiasedLocking::rebiased_lock_entry_count_addr())++;
 921             }
 922           } else {
 923             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 924           }
 925           success = true;
 926         } else {
 927           // try to bias towards thread in case object is anonymously biased
 928           markOop header = (markOop) ((uintptr_t) mark & ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
 929                                                           (uintptr_t)markOopDesc::age_mask_in_place | epoch_mask_in_place));
 930           if (hash != markOopDesc::no_hash) {
 931             header = header->copy_set_hash(hash);
 932           }
 933           markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
 934           // debugging hint
 935           DEBUG_ONLY(entry->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
 936           if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), header) == header) {
 937             if (PrintBiasedLockingStatistics) {
 938               (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
 939             }
 940           } else {
 941             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 942           }
 943           success = true;
 944         }
 945       }
 946 
 947       // traditional lightweight locking
 948       if (!success) {
 949         markOop displaced = lockee->mark()->set_unlocked();
 950         entry->lock()->set_displaced_header(displaced);
 951         bool call_vm = UseHeavyMonitors;
 952         if (call_vm || Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
 953           // Is it simple recursive case?
 954           if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 955             entry->lock()->set_displaced_header(NULL);
 956           } else {
 957             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 958           }
 959         }
 960       }
 961       UPDATE_PC_AND_TOS(1, -1);
 962       goto run;
 963     }
 964     default: {
 965       fatal("Unexpected message from frame manager");
 966     }
 967   }
 968 
 969 run:
 970 
 971   DO_UPDATE_INSTRUCTION_COUNT(*pc)
 972   DEBUGGER_SINGLE_STEP_NOTIFY();
 973 #ifdef PREFETCH_OPCCODE
 974   opcode = *pc;  /* prefetch first opcode */
 975 #endif
 976 
 977 #ifndef USELABELS
 978   while (1)
 979 #endif
 980   {
 981 #ifndef PREFETCH_OPCCODE
 982       opcode = *pc;
 983 #endif
 984       // Seems like this happens twice per opcode. At worst this is only
 985       // need at entry to the loop.
 986       // DEBUGGER_SINGLE_STEP_NOTIFY();
 987       /* Using this labels avoids double breakpoints when quickening and
 988        * when returing from transition frames.
 989        */
 990   opcode_switch:
 991       assert(istate == orig, "Corrupted istate");
 992       /* QQQ Hmm this has knowledge of direction, ought to be a stack method */
 993       assert(topOfStack >= istate->stack_limit(), "Stack overrun");
 994       assert(topOfStack < istate->stack_base(), "Stack underrun");
 995 
 996 #ifdef USELABELS
 997       DISPATCH(opcode);
 998 #else
 999       switch (opcode)
1000 #endif
1001       {
1002       CASE(_nop):
1003           UPDATE_PC_AND_CONTINUE(1);
1004 
1005           /* Push miscellaneous constants onto the stack. */
1006 
1007       CASE(_aconst_null):
1008           SET_STACK_OBJECT(NULL, 0);
1009           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1010 
1011 #undef  OPC_CONST_n
1012 #define OPC_CONST_n(opcode, const_type, value)                          \
1013       CASE(opcode):                                                     \
1014           SET_STACK_ ## const_type(value, 0);                           \
1015           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1016 
1017           OPC_CONST_n(_iconst_m1,   INT,       -1);
1018           OPC_CONST_n(_iconst_0,    INT,        0);
1019           OPC_CONST_n(_iconst_1,    INT,        1);
1020           OPC_CONST_n(_iconst_2,    INT,        2);
1021           OPC_CONST_n(_iconst_3,    INT,        3);
1022           OPC_CONST_n(_iconst_4,    INT,        4);
1023           OPC_CONST_n(_iconst_5,    INT,        5);
1024           OPC_CONST_n(_fconst_0,    FLOAT,      0.0);
1025           OPC_CONST_n(_fconst_1,    FLOAT,      1.0);
1026           OPC_CONST_n(_fconst_2,    FLOAT,      2.0);
1027 
1028 #undef  OPC_CONST2_n
1029 #define OPC_CONST2_n(opcname, value, key, kind)                         \
1030       CASE(_##opcname):                                                 \
1031       {                                                                 \
1032           SET_STACK_ ## kind(VM##key##Const##value(), 1);               \
1033           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
1034       }
1035          OPC_CONST2_n(dconst_0, Zero, double, DOUBLE);
1036          OPC_CONST2_n(dconst_1, One,  double, DOUBLE);
1037          OPC_CONST2_n(lconst_0, Zero, long, LONG);
1038          OPC_CONST2_n(lconst_1, One,  long, LONG);
1039 
1040          /* Load constant from constant pool: */
1041 
1042           /* Push a 1-byte signed integer value onto the stack. */
1043       CASE(_bipush):
1044           SET_STACK_INT((jbyte)(pc[1]), 0);
1045           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1046 
1047           /* Push a 2-byte signed integer constant onto the stack. */
1048       CASE(_sipush):
1049           SET_STACK_INT((int16_t)Bytes::get_Java_u2(pc + 1), 0);
1050           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
1051 
1052           /* load from local variable */
1053 
1054       CASE(_aload):
1055           VERIFY_OOP(LOCALS_OBJECT(pc[1]));
1056           SET_STACK_OBJECT(LOCALS_OBJECT(pc[1]), 0);
1057           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1058 
1059       CASE(_iload):
1060       CASE(_fload):
1061           SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
1062           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1063 
1064       CASE(_lload):
1065           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(pc[1]), 1);
1066           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
1067 
1068       CASE(_dload):
1069           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(pc[1]), 1);
1070           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
1071 
1072 #undef  OPC_LOAD_n
1073 #define OPC_LOAD_n(num)                                                 \
1074       CASE(_aload_##num):                                               \
1075           VERIFY_OOP(LOCALS_OBJECT(num));                               \
1076           SET_STACK_OBJECT(LOCALS_OBJECT(num), 0);                      \
1077           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
1078                                                                         \
1079       CASE(_iload_##num):                                               \
1080       CASE(_fload_##num):                                               \
1081           SET_STACK_SLOT(LOCALS_SLOT(num), 0);                          \
1082           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
1083                                                                         \
1084       CASE(_lload_##num):                                               \
1085           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(num), 1);             \
1086           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
1087       CASE(_dload_##num):                                               \
1088           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(num), 1);         \
1089           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1090 
1091           OPC_LOAD_n(0);
1092           OPC_LOAD_n(1);
1093           OPC_LOAD_n(2);
1094           OPC_LOAD_n(3);
1095 
1096           /* store to a local variable */
1097 
1098       CASE(_astore):
1099           astore(topOfStack, -1, locals, pc[1]);
1100           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1101 
1102       CASE(_istore):
1103       CASE(_fstore):
1104           SET_LOCALS_SLOT(STACK_SLOT(-1), pc[1]);
1105           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1106 
1107       CASE(_lstore):
1108           SET_LOCALS_LONG(STACK_LONG(-1), pc[1]);
1109           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1110 
1111       CASE(_dstore):
1112           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), pc[1]);
1113           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1114 
1115       CASE(_wide): {
1116           uint16_t reg = Bytes::get_Java_u2(pc + 2);
1117 
1118           opcode = pc[1];
1119 
1120           // Wide and it's sub-bytecode are counted as separate instructions. If we
1121           // don't account for this here, the bytecode trace skips the next bytecode.
1122           DO_UPDATE_INSTRUCTION_COUNT(opcode);
1123 
1124           switch(opcode) {
1125               case Bytecodes::_aload:
1126                   VERIFY_OOP(LOCALS_OBJECT(reg));
1127                   SET_STACK_OBJECT(LOCALS_OBJECT(reg), 0);
1128                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1129 
1130               case Bytecodes::_iload:
1131               case Bytecodes::_fload:
1132                   SET_STACK_SLOT(LOCALS_SLOT(reg), 0);
1133                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1134 
1135               case Bytecodes::_lload:
1136                   SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1137                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1138 
1139               case Bytecodes::_dload:
1140                   SET_STACK_DOUBLE_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1141                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1142 
1143               case Bytecodes::_astore:
1144                   astore(topOfStack, -1, locals, reg);
1145                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1146 
1147               case Bytecodes::_istore:
1148               case Bytecodes::_fstore:
1149                   SET_LOCALS_SLOT(STACK_SLOT(-1), reg);
1150                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1151 
1152               case Bytecodes::_lstore:
1153                   SET_LOCALS_LONG(STACK_LONG(-1), reg);
1154                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1155 
1156               case Bytecodes::_dstore:
1157                   SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), reg);
1158                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1159 
1160               case Bytecodes::_iinc: {
1161                   int16_t offset = (int16_t)Bytes::get_Java_u2(pc+4);
1162                   // Be nice to see what this generates.... QQQ
1163                   SET_LOCALS_INT(LOCALS_INT(reg) + offset, reg);
1164                   UPDATE_PC_AND_CONTINUE(6);
1165               }
1166               case Bytecodes::_ret:
1167                   // Profile ret.
1168                   BI_PROFILE_UPDATE_RET(/*bci=*/((int)(intptr_t)(LOCALS_ADDR(reg))));
1169                   // Now, update the pc.
1170                   pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(reg));
1171                   UPDATE_PC_AND_CONTINUE(0);
1172               default:
1173                   VM_JAVA_ERROR(vmSymbols::java_lang_InternalError(), "undefined opcode", note_no_trap);
1174           }
1175       }
1176 
1177 
1178 #undef  OPC_STORE_n
1179 #define OPC_STORE_n(num)                                                \
1180       CASE(_astore_##num):                                              \
1181           astore(topOfStack, -1, locals, num);                          \
1182           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1183       CASE(_istore_##num):                                              \
1184       CASE(_fstore_##num):                                              \
1185           SET_LOCALS_SLOT(STACK_SLOT(-1), num);                         \
1186           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1187 
1188           OPC_STORE_n(0);
1189           OPC_STORE_n(1);
1190           OPC_STORE_n(2);
1191           OPC_STORE_n(3);
1192 
1193 #undef  OPC_DSTORE_n
1194 #define OPC_DSTORE_n(num)                                               \
1195       CASE(_dstore_##num):                                              \
1196           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), num);                     \
1197           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1198       CASE(_lstore_##num):                                              \
1199           SET_LOCALS_LONG(STACK_LONG(-1), num);                         \
1200           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1201 
1202           OPC_DSTORE_n(0);
1203           OPC_DSTORE_n(1);
1204           OPC_DSTORE_n(2);
1205           OPC_DSTORE_n(3);
1206 
1207           /* stack pop, dup, and insert opcodes */
1208 
1209 
1210       CASE(_pop):                /* Discard the top item on the stack */
1211           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1212 
1213 
1214       CASE(_pop2):               /* Discard the top 2 items on the stack */
1215           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1216 
1217 
1218       CASE(_dup):               /* Duplicate the top item on the stack */
1219           dup(topOfStack);
1220           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1221 
1222       CASE(_dup2):              /* Duplicate the top 2 items on the stack */
1223           dup2(topOfStack);
1224           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1225 
1226       CASE(_dup_x1):    /* insert top word two down */
1227           dup_x1(topOfStack);
1228           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1229 
1230       CASE(_dup_x2):    /* insert top word three down  */
1231           dup_x2(topOfStack);
1232           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1233 
1234       CASE(_dup2_x1):   /* insert top 2 slots three down */
1235           dup2_x1(topOfStack);
1236           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1237 
1238       CASE(_dup2_x2):   /* insert top 2 slots four down */
1239           dup2_x2(topOfStack);
1240           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1241 
1242       CASE(_swap): {        /* swap top two elements on the stack */
1243           swap(topOfStack);
1244           UPDATE_PC_AND_CONTINUE(1);
1245       }
1246 
1247           /* Perform various binary integer operations */
1248 
1249 #undef  OPC_INT_BINARY
1250 #define OPC_INT_BINARY(opcname, opname, test)                           \
1251       CASE(_i##opcname):                                                \
1252           if (test && (STACK_INT(-1) == 0)) {                           \
1253               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1254                             "/ by zero", note_div0Check_trap);          \
1255           }                                                             \
1256           SET_STACK_INT(VMint##opname(STACK_INT(-2),                    \
1257                                       STACK_INT(-1)),                   \
1258                                       -2);                              \
1259           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1260       CASE(_l##opcname):                                                \
1261       {                                                                 \
1262           if (test) {                                                   \
1263             jlong l1 = STACK_LONG(-1);                                  \
1264             if (VMlongEqz(l1)) {                                        \
1265               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1266                             "/ by long zero", note_div0Check_trap);     \
1267             }                                                           \
1268           }                                                             \
1269           /* First long at (-1,-2) next long at (-3,-4) */              \
1270           SET_STACK_LONG(VMlong##opname(STACK_LONG(-3),                 \
1271                                         STACK_LONG(-1)),                \
1272                                         -3);                            \
1273           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1274       }
1275 
1276       OPC_INT_BINARY(add, Add, 0);
1277       OPC_INT_BINARY(sub, Sub, 0);
1278       OPC_INT_BINARY(mul, Mul, 0);
1279       OPC_INT_BINARY(and, And, 0);
1280       OPC_INT_BINARY(or,  Or,  0);
1281       OPC_INT_BINARY(xor, Xor, 0);
1282       OPC_INT_BINARY(div, Div, 1);
1283       OPC_INT_BINARY(rem, Rem, 1);
1284 
1285 
1286       /* Perform various binary floating number operations */
1287       /* On some machine/platforms/compilers div zero check can be implicit */
1288 
1289 #undef  OPC_FLOAT_BINARY
1290 #define OPC_FLOAT_BINARY(opcname, opname)                                  \
1291       CASE(_d##opcname): {                                                 \
1292           SET_STACK_DOUBLE(VMdouble##opname(STACK_DOUBLE(-3),              \
1293                                             STACK_DOUBLE(-1)),             \
1294                                             -3);                           \
1295           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                           \
1296       }                                                                    \
1297       CASE(_f##opcname):                                                   \
1298           SET_STACK_FLOAT(VMfloat##opname(STACK_FLOAT(-2),                 \
1299                                           STACK_FLOAT(-1)),                \
1300                                           -2);                             \
1301           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1302 
1303 
1304      OPC_FLOAT_BINARY(add, Add);
1305      OPC_FLOAT_BINARY(sub, Sub);
1306      OPC_FLOAT_BINARY(mul, Mul);
1307      OPC_FLOAT_BINARY(div, Div);
1308      OPC_FLOAT_BINARY(rem, Rem);
1309 
1310       /* Shift operations
1311        * Shift left int and long: ishl, lshl
1312        * Logical shift right int and long w/zero extension: iushr, lushr
1313        * Arithmetic shift right int and long w/sign extension: ishr, lshr
1314        */
1315 
1316 #undef  OPC_SHIFT_BINARY
1317 #define OPC_SHIFT_BINARY(opcname, opname)                               \
1318       CASE(_i##opcname):                                                \
1319          SET_STACK_INT(VMint##opname(STACK_INT(-2),                     \
1320                                      STACK_INT(-1)),                    \
1321                                      -2);                               \
1322          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1323       CASE(_l##opcname):                                                \
1324       {                                                                 \
1325          SET_STACK_LONG(VMlong##opname(STACK_LONG(-2),                  \
1326                                        STACK_INT(-1)),                  \
1327                                        -2);                             \
1328          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1329       }
1330 
1331       OPC_SHIFT_BINARY(shl, Shl);
1332       OPC_SHIFT_BINARY(shr, Shr);
1333       OPC_SHIFT_BINARY(ushr, Ushr);
1334 
1335      /* Increment local variable by constant */
1336       CASE(_iinc):
1337       {
1338           // locals[pc[1]].j.i += (jbyte)(pc[2]);
1339           SET_LOCALS_INT(LOCALS_INT(pc[1]) + (jbyte)(pc[2]), pc[1]);
1340           UPDATE_PC_AND_CONTINUE(3);
1341       }
1342 
1343      /* negate the value on the top of the stack */
1344 
1345       CASE(_ineg):
1346          SET_STACK_INT(VMintNeg(STACK_INT(-1)), -1);
1347          UPDATE_PC_AND_CONTINUE(1);
1348 
1349       CASE(_fneg):
1350          SET_STACK_FLOAT(VMfloatNeg(STACK_FLOAT(-1)), -1);
1351          UPDATE_PC_AND_CONTINUE(1);
1352 
1353       CASE(_lneg):
1354       {
1355          SET_STACK_LONG(VMlongNeg(STACK_LONG(-1)), -1);
1356          UPDATE_PC_AND_CONTINUE(1);
1357       }
1358 
1359       CASE(_dneg):
1360       {
1361          SET_STACK_DOUBLE(VMdoubleNeg(STACK_DOUBLE(-1)), -1);
1362          UPDATE_PC_AND_CONTINUE(1);
1363       }
1364 
1365       /* Conversion operations */
1366 
1367       CASE(_i2f):       /* convert top of stack int to float */
1368          SET_STACK_FLOAT(VMint2Float(STACK_INT(-1)), -1);
1369          UPDATE_PC_AND_CONTINUE(1);
1370 
1371       CASE(_i2l):       /* convert top of stack int to long */
1372       {
1373           // this is ugly QQQ
1374           jlong r = VMint2Long(STACK_INT(-1));
1375           MORE_STACK(-1); // Pop
1376           SET_STACK_LONG(r, 1);
1377 
1378           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1379       }
1380 
1381       CASE(_i2d):       /* convert top of stack int to double */
1382       {
1383           // this is ugly QQQ (why cast to jlong?? )
1384           jdouble r = (jlong)STACK_INT(-1);
1385           MORE_STACK(-1); // Pop
1386           SET_STACK_DOUBLE(r, 1);
1387 
1388           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1389       }
1390 
1391       CASE(_l2i):       /* convert top of stack long to int */
1392       {
1393           jint r = VMlong2Int(STACK_LONG(-1));
1394           MORE_STACK(-2); // Pop
1395           SET_STACK_INT(r, 0);
1396           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1397       }
1398 
1399       CASE(_l2f):   /* convert top of stack long to float */
1400       {
1401           jlong r = STACK_LONG(-1);
1402           MORE_STACK(-2); // Pop
1403           SET_STACK_FLOAT(VMlong2Float(r), 0);
1404           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1405       }
1406 
1407       CASE(_l2d):       /* convert top of stack long to double */
1408       {
1409           jlong r = STACK_LONG(-1);
1410           MORE_STACK(-2); // Pop
1411           SET_STACK_DOUBLE(VMlong2Double(r), 1);
1412           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1413       }
1414 
1415       CASE(_f2i):  /* Convert top of stack float to int */
1416           SET_STACK_INT(SharedRuntime::f2i(STACK_FLOAT(-1)), -1);
1417           UPDATE_PC_AND_CONTINUE(1);
1418 
1419       CASE(_f2l):  /* convert top of stack float to long */
1420       {
1421           jlong r = SharedRuntime::f2l(STACK_FLOAT(-1));
1422           MORE_STACK(-1); // POP
1423           SET_STACK_LONG(r, 1);
1424           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1425       }
1426 
1427       CASE(_f2d):  /* convert top of stack float to double */
1428       {
1429           jfloat f;
1430           jdouble r;
1431           f = STACK_FLOAT(-1);
1432           r = (jdouble) f;
1433           MORE_STACK(-1); // POP
1434           SET_STACK_DOUBLE(r, 1);
1435           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1436       }
1437 
1438       CASE(_d2i): /* convert top of stack double to int */
1439       {
1440           jint r1 = SharedRuntime::d2i(STACK_DOUBLE(-1));
1441           MORE_STACK(-2);
1442           SET_STACK_INT(r1, 0);
1443           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1444       }
1445 
1446       CASE(_d2f): /* convert top of stack double to float */
1447       {
1448           jfloat r1 = VMdouble2Float(STACK_DOUBLE(-1));
1449           MORE_STACK(-2);
1450           SET_STACK_FLOAT(r1, 0);
1451           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1452       }
1453 
1454       CASE(_d2l): /* convert top of stack double to long */
1455       {
1456           jlong r1 = SharedRuntime::d2l(STACK_DOUBLE(-1));
1457           MORE_STACK(-2);
1458           SET_STACK_LONG(r1, 1);
1459           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1460       }
1461 
1462       CASE(_i2b):
1463           SET_STACK_INT(VMint2Byte(STACK_INT(-1)), -1);
1464           UPDATE_PC_AND_CONTINUE(1);
1465 
1466       CASE(_i2c):
1467           SET_STACK_INT(VMint2Char(STACK_INT(-1)), -1);
1468           UPDATE_PC_AND_CONTINUE(1);
1469 
1470       CASE(_i2s):
1471           SET_STACK_INT(VMint2Short(STACK_INT(-1)), -1);
1472           UPDATE_PC_AND_CONTINUE(1);
1473 
1474       /* comparison operators */
1475 
1476 
1477 #define COMPARISON_OP(name, comparison)                                      \
1478       CASE(_if_icmp##name): {                                                \
1479           const bool cmp = (STACK_INT(-2) comparison STACK_INT(-1));         \
1480           int skip = cmp                                                     \
1481                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1482           address branch_pc = pc;                                            \
1483           /* Profile branch. */                                              \
1484           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1485           UPDATE_PC_AND_TOS(skip, -2);                                       \
1486           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1487           CONTINUE;                                                          \
1488       }                                                                      \
1489       CASE(_if##name): {                                                     \
1490           const bool cmp = (STACK_INT(-1) comparison 0);                     \
1491           int skip = cmp                                                     \
1492                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1493           address branch_pc = pc;                                            \
1494           /* Profile branch. */                                              \
1495           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1496           UPDATE_PC_AND_TOS(skip, -1);                                       \
1497           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1498           CONTINUE;                                                          \
1499       }
1500 
1501 #define COMPARISON_OP2(name, comparison)                                     \
1502       COMPARISON_OP(name, comparison)                                        \
1503       CASE(_if_acmp##name): {                                                \
1504           const bool cmp = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1));   \
1505           int skip = cmp                                                     \
1506                        ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;            \
1507           address branch_pc = pc;                                            \
1508           /* Profile branch. */                                              \
1509           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1510           UPDATE_PC_AND_TOS(skip, -2);                                       \
1511           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1512           CONTINUE;                                                          \
1513       }
1514 
1515 #define NULL_COMPARISON_NOT_OP(name)                                         \
1516       CASE(_if##name): {                                                     \
1517           const bool cmp = (!(STACK_OBJECT(-1) == NULL));                    \
1518           int skip = cmp                                                     \
1519                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1520           address branch_pc = pc;                                            \
1521           /* Profile branch. */                                              \
1522           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1523           UPDATE_PC_AND_TOS(skip, -1);                                       \
1524           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1525           CONTINUE;                                                          \
1526       }
1527 
1528 #define NULL_COMPARISON_OP(name)                                             \
1529       CASE(_if##name): {                                                     \
1530           const bool cmp = ((STACK_OBJECT(-1) == NULL));                     \
1531           int skip = cmp                                                     \
1532                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1533           address branch_pc = pc;                                            \
1534           /* Profile branch. */                                              \
1535           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1536           UPDATE_PC_AND_TOS(skip, -1);                                       \
1537           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1538           CONTINUE;                                                          \
1539       }
1540       COMPARISON_OP(lt, <);
1541       COMPARISON_OP(gt, >);
1542       COMPARISON_OP(le, <=);
1543       COMPARISON_OP(ge, >=);
1544       COMPARISON_OP2(eq, ==);  /* include ref comparison */
1545       COMPARISON_OP2(ne, !=);  /* include ref comparison */
1546       NULL_COMPARISON_OP(null);
1547       NULL_COMPARISON_NOT_OP(nonnull);
1548 
1549       /* Goto pc at specified offset in switch table. */
1550 
1551       CASE(_tableswitch): {
1552           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1553           int32_t  key  = STACK_INT(-1);
1554           int32_t  low  = Bytes::get_Java_u4((address)&lpc[1]);
1555           int32_t  high = Bytes::get_Java_u4((address)&lpc[2]);
1556           int32_t  skip;
1557           key -= low;
1558           if (((uint32_t) key > (uint32_t)(high - low))) {
1559             key = -1;
1560             skip = Bytes::get_Java_u4((address)&lpc[0]);
1561           } else {
1562             skip = Bytes::get_Java_u4((address)&lpc[key + 3]);
1563           }
1564           // Profile switch.
1565           BI_PROFILE_UPDATE_SWITCH(/*switch_index=*/key);
1566           // Does this really need a full backedge check (osr)?
1567           address branch_pc = pc;
1568           UPDATE_PC_AND_TOS(skip, -1);
1569           DO_BACKEDGE_CHECKS(skip, branch_pc);
1570           CONTINUE;
1571       }
1572 
1573       /* Goto pc whose table entry matches specified key. */
1574 
1575       CASE(_lookupswitch): {
1576           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1577           int32_t  key  = STACK_INT(-1);
1578           int32_t  skip = Bytes::get_Java_u4((address) lpc); /* default amount */
1579           // Remember index.
1580           int      index = -1;
1581           int      newindex = 0;
1582           int32_t  npairs = Bytes::get_Java_u4((address) &lpc[1]);
1583           while (--npairs >= 0) {
1584             lpc += 2;
1585             if (key == (int32_t)Bytes::get_Java_u4((address)lpc)) {
1586               skip = Bytes::get_Java_u4((address)&lpc[1]);
1587               index = newindex;
1588               break;
1589             }
1590             newindex += 1;
1591           }
1592           // Profile switch.
1593           BI_PROFILE_UPDATE_SWITCH(/*switch_index=*/index);
1594           address branch_pc = pc;
1595           UPDATE_PC_AND_TOS(skip, -1);
1596           DO_BACKEDGE_CHECKS(skip, branch_pc);
1597           CONTINUE;
1598       }
1599 
1600       CASE(_fcmpl):
1601       CASE(_fcmpg):
1602       {
1603           SET_STACK_INT(VMfloatCompare(STACK_FLOAT(-2),
1604                                         STACK_FLOAT(-1),
1605                                         (opcode == Bytecodes::_fcmpl ? -1 : 1)),
1606                         -2);
1607           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1608       }
1609 
1610       CASE(_dcmpl):
1611       CASE(_dcmpg):
1612       {
1613           int r = VMdoubleCompare(STACK_DOUBLE(-3),
1614                                   STACK_DOUBLE(-1),
1615                                   (opcode == Bytecodes::_dcmpl ? -1 : 1));
1616           MORE_STACK(-4); // Pop
1617           SET_STACK_INT(r, 0);
1618           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1619       }
1620 
1621       CASE(_lcmp):
1622       {
1623           int r = VMlongCompare(STACK_LONG(-3), STACK_LONG(-1));
1624           MORE_STACK(-4);
1625           SET_STACK_INT(r, 0);
1626           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1627       }
1628 
1629 
1630       /* Return from a method */
1631 
1632       CASE(_areturn):
1633       CASE(_ireturn):
1634       CASE(_freturn):
1635       {
1636           // Allow a safepoint before returning to frame manager.
1637           SAFEPOINT;
1638 
1639           goto handle_return;
1640       }
1641 
1642       CASE(_lreturn):
1643       CASE(_dreturn):
1644       {
1645           // Allow a safepoint before returning to frame manager.
1646           SAFEPOINT;
1647           goto handle_return;
1648       }
1649 
1650       CASE(_return_register_finalizer): {
1651 
1652           oop rcvr = LOCALS_OBJECT(0);
1653           VERIFY_OOP(rcvr);
1654           if (rcvr->klass()->has_finalizer()) {
1655             CALL_VM(InterpreterRuntime::register_finalizer(THREAD, rcvr), handle_exception);
1656           }
1657           goto handle_return;
1658       }
1659       CASE(_return): {
1660 
1661           // Allow a safepoint before returning to frame manager.
1662           SAFEPOINT;
1663           goto handle_return;
1664       }
1665 
1666       /* Array access byte-codes */
1667 
1668       /* Every array access byte-code starts out like this */
1669 //        arrayOopDesc* arrObj = (arrayOopDesc*)STACK_OBJECT(arrayOff);
1670 #define ARRAY_INTRO(arrayOff)                                                  \
1671       arrayOop arrObj = (arrayOop)STACK_OBJECT(arrayOff);                      \
1672       jint     index  = STACK_INT(arrayOff + 1);                               \
1673       char message[jintAsStringSize];                                          \
1674       CHECK_NULL(arrObj);                                                      \
1675       if ((uint32_t)index >= (uint32_t)arrObj->length()) {                     \
1676           sprintf(message, "%d", index);                                       \
1677           VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), \
1678                         message, note_rangeCheck_trap);                        \
1679       }
1680 
1681       /* 32-bit loads. These handle conversion from < 32-bit types */
1682 #define ARRAY_LOADTO32(T, T2, format, stackRes, extra)                                \
1683       {                                                                               \
1684           ARRAY_INTRO(-2);                                                            \
1685           (void)extra;                                                                \
1686           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), \
1687                            -2);                                                       \
1688           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                                      \
1689       }
1690 
1691       /* 64-bit loads */
1692 #define ARRAY_LOADTO64(T,T2, stackRes, extra)                                              \
1693       {                                                                                    \
1694           ARRAY_INTRO(-2);                                                                 \
1695           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), -1); \
1696           (void)extra;                                                                     \
1697           UPDATE_PC_AND_CONTINUE(1);                                                       \
1698       }
1699 
1700       CASE(_iaload):
1701           ARRAY_LOADTO32(T_INT, jint,   "%d",   STACK_INT, 0);
1702       CASE(_faload):
1703           ARRAY_LOADTO32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1704       CASE(_aaload): {
1705           ARRAY_INTRO(-2);
1706           SET_STACK_OBJECT(((objArrayOop) arrObj)->obj_at(index), -2);
1707           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1708       }
1709       CASE(_baload):
1710           ARRAY_LOADTO32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1711       CASE(_caload):
1712           ARRAY_LOADTO32(T_CHAR,  jchar, "%d",   STACK_INT, 0);
1713       CASE(_saload):
1714           ARRAY_LOADTO32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1715       CASE(_laload):
1716           ARRAY_LOADTO64(T_LONG, jlong, STACK_LONG, 0);
1717       CASE(_daload):
1718           ARRAY_LOADTO64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1719 
1720       /* 32-bit stores. These handle conversion to < 32-bit types */
1721 #define ARRAY_STOREFROM32(T, T2, format, stackSrc, extra)                            \
1722       {                                                                              \
1723           ARRAY_INTRO(-3);                                                           \
1724           (void)extra;                                                               \
1725           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1726           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);                                     \
1727       }
1728 
1729       /* 64-bit stores */
1730 #define ARRAY_STOREFROM64(T, T2, stackSrc, extra)                                    \
1731       {                                                                              \
1732           ARRAY_INTRO(-4);                                                           \
1733           (void)extra;                                                               \
1734           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1735           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -4);                                     \
1736       }
1737 
1738       CASE(_iastore):
1739           ARRAY_STOREFROM32(T_INT, jint,   "%d",   STACK_INT, 0);
1740       CASE(_fastore):
1741           ARRAY_STOREFROM32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1742       /*
1743        * This one looks different because of the assignability check
1744        */
1745       CASE(_aastore): {
1746           oop rhsObject = STACK_OBJECT(-1);
1747           VERIFY_OOP(rhsObject);
1748           ARRAY_INTRO( -3);
1749           // arrObj, index are set
1750           if (rhsObject != NULL) {
1751             /* Check assignability of rhsObject into arrObj */
1752             Klass* rhsKlass = rhsObject->klass(); // EBX (subclass)
1753             Klass* elemKlass = ObjArrayKlass::cast(arrObj->klass())->element_klass(); // superklass EAX
1754             //
1755             // Check for compatibilty. This check must not GC!!
1756             // Seems way more expensive now that we must dispatch
1757             //
1758             if (rhsKlass != elemKlass && !rhsKlass->is_subtype_of(elemKlass)) { // ebx->is...
1759               // Decrement counter if subtype check failed.
1760               BI_PROFILE_SUBTYPECHECK_FAILED(rhsKlass);
1761               VM_JAVA_ERROR(vmSymbols::java_lang_ArrayStoreException(), "", note_arrayCheck_trap);
1762             }
1763             // Profile checkcast with null_seen and receiver.
1764             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/false, rhsKlass);
1765           } else {
1766             // Profile checkcast with null_seen and receiver.
1767             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/true, NULL);
1768           }
1769           ((objArrayOop) arrObj)->obj_at_put(index, rhsObject);
1770           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1771       }
1772       CASE(_bastore): {
1773           ARRAY_INTRO(-3);
1774           int item = STACK_INT(-1);
1775           // if it is a T_BOOLEAN array, mask the stored value to 0/1
1776           if (arrObj->klass() == Universe::boolArrayKlassObj()) {
1777             item &= 1;
1778           } else {
1779             assert(arrObj->klass() == Universe::byteArrayKlassObj(),
1780                    "should be byte array otherwise");
1781           }
1782           ((typeArrayOop)arrObj)->byte_at_put(index, item);
1783           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1784       }
1785       CASE(_castore):
1786           ARRAY_STOREFROM32(T_CHAR, jchar,  "%d",   STACK_INT, 0);
1787       CASE(_sastore):
1788           ARRAY_STOREFROM32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1789       CASE(_lastore):
1790           ARRAY_STOREFROM64(T_LONG, jlong, STACK_LONG, 0);
1791       CASE(_dastore):
1792           ARRAY_STOREFROM64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1793 
1794       CASE(_arraylength):
1795       {
1796           arrayOop ary = (arrayOop) STACK_OBJECT(-1);
1797           CHECK_NULL(ary);
1798           SET_STACK_INT(ary->length(), -1);
1799           UPDATE_PC_AND_CONTINUE(1);
1800       }
1801 
1802       /* monitorenter and monitorexit for locking/unlocking an object */
1803 
1804       CASE(_monitorenter): {
1805         oop lockee = STACK_OBJECT(-1);
1806         // derefing's lockee ought to provoke implicit null check
1807         CHECK_NULL(lockee);
1808         // find a free monitor or one already allocated for this object
1809         // if we find a matching object then we need a new monitor
1810         // since this is recursive enter
1811         BasicObjectLock* limit = istate->monitor_base();
1812         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1813         BasicObjectLock* entry = NULL;
1814         while (most_recent != limit ) {
1815           if (most_recent->obj() == NULL) entry = most_recent;
1816           else if (most_recent->obj() == lockee) break;
1817           most_recent++;
1818         }
1819         if (entry != NULL) {
1820           entry->set_obj(lockee);
1821           int success = false;
1822           uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
1823 
1824           markOop mark = lockee->mark();
1825           intptr_t hash = (intptr_t) markOopDesc::no_hash;
1826           // implies UseBiasedLocking
1827           if (mark->has_bias_pattern()) {
1828             uintptr_t thread_ident;
1829             uintptr_t anticipated_bias_locking_value;
1830             thread_ident = (uintptr_t)istate->thread();
1831             anticipated_bias_locking_value =
1832               (((uintptr_t)lockee->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
1833               ~((uintptr_t) markOopDesc::age_mask_in_place);
1834 
1835             if  (anticipated_bias_locking_value == 0) {
1836               // already biased towards this thread, nothing to do
1837               if (PrintBiasedLockingStatistics) {
1838                 (* BiasedLocking::biased_lock_entry_count_addr())++;
1839               }
1840               success = true;
1841             }
1842             else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
1843               // try revoke bias
1844               markOop header = lockee->klass()->prototype_header();
1845               if (hash != markOopDesc::no_hash) {
1846                 header = header->copy_set_hash(hash);
1847               }
1848               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), mark) == mark) {
1849                 if (PrintBiasedLockingStatistics)
1850                   (*BiasedLocking::revoked_lock_entry_count_addr())++;
1851               }
1852             }
1853             else if ((anticipated_bias_locking_value & epoch_mask_in_place) !=0) {
1854               // try rebias
1855               markOop new_header = (markOop) ( (intptr_t) lockee->klass()->prototype_header() | thread_ident);
1856               if (hash != markOopDesc::no_hash) {
1857                 new_header = new_header->copy_set_hash(hash);
1858               }
1859               if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), mark) == mark) {
1860                 if (PrintBiasedLockingStatistics)
1861                   (* BiasedLocking::rebiased_lock_entry_count_addr())++;
1862               }
1863               else {
1864                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1865               }
1866               success = true;
1867             }
1868             else {
1869               // try to bias towards thread in case object is anonymously biased
1870               markOop header = (markOop) ((uintptr_t) mark & ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
1871                                                               (uintptr_t)markOopDesc::age_mask_in_place |
1872                                                               epoch_mask_in_place));
1873               if (hash != markOopDesc::no_hash) {
1874                 header = header->copy_set_hash(hash);
1875               }
1876               markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
1877               // debugging hint
1878               DEBUG_ONLY(entry->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
1879               if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), header) == header) {
1880                 if (PrintBiasedLockingStatistics)
1881                   (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
1882               }
1883               else {
1884                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1885               }
1886               success = true;
1887             }
1888           }
1889 
1890           // traditional lightweight locking
1891           if (!success) {
1892             markOop displaced = lockee->mark()->set_unlocked();
1893             entry->lock()->set_displaced_header(displaced);
1894             bool call_vm = UseHeavyMonitors;
1895             if (call_vm || Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
1896               // Is it simple recursive case?
1897               if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
1898                 entry->lock()->set_displaced_header(NULL);
1899               } else {
1900                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1901               }
1902             }
1903           }
1904           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1905         } else {
1906           istate->set_msg(more_monitors);
1907           UPDATE_PC_AND_RETURN(0); // Re-execute
1908         }
1909       }
1910 
1911       CASE(_monitorexit): {
1912         oop lockee = STACK_OBJECT(-1);
1913         CHECK_NULL(lockee);
1914         // derefing's lockee ought to provoke implicit null check
1915         // find our monitor slot
1916         BasicObjectLock* limit = istate->monitor_base();
1917         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1918         while (most_recent != limit ) {
1919           if ((most_recent)->obj() == lockee) {
1920             BasicLock* lock = most_recent->lock();
1921             markOop header = lock->displaced_header();
1922             most_recent->set_obj(NULL);
1923             if (!lockee->mark()->has_bias_pattern()) {
1924               bool call_vm = UseHeavyMonitors;
1925               // If it isn't recursive we either must swap old header or call the runtime
1926               if (header != NULL || call_vm) {
1927                 if (call_vm || Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
1928                   // restore object for the slow case
1929                   most_recent->set_obj(lockee);
1930                   CALL_VM(InterpreterRuntime::monitorexit(THREAD, most_recent), handle_exception);
1931                 }
1932               }
1933             }
1934             UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1935           }
1936           most_recent++;
1937         }
1938         // Need to throw illegal monitor state exception
1939         CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception);
1940         ShouldNotReachHere();
1941       }
1942 
1943       /* All of the non-quick opcodes. */
1944 
1945       /* -Set clobbersCpIndex true if the quickened opcode clobbers the
1946        *  constant pool index in the instruction.
1947        */
1948       CASE(_getfield):
1949       CASE(_getstatic):
1950         {
1951           u2 index;
1952           ConstantPoolCacheEntry* cache;
1953           index = Bytes::get_native_u2(pc+1);
1954 
1955           // QQQ Need to make this as inlined as possible. Probably need to
1956           // split all the bytecode cases out so c++ compiler has a chance
1957           // for constant prop to fold everything possible away.
1958 
1959           cache = cp->entry_at(index);
1960           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
1961             CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
1962                     handle_exception);
1963             cache = cp->entry_at(index);
1964           }
1965 
1966 #ifdef VM_JVMTI
1967           if (_jvmti_interp_events) {
1968             int *count_addr;
1969             oop obj;
1970             // Check to see if a field modification watch has been set
1971             // before we take the time to call into the VM.
1972             count_addr = (int *)JvmtiExport::get_field_access_count_addr();
1973             if ( *count_addr > 0 ) {
1974               if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1975                 obj = (oop)NULL;
1976               } else {
1977                 obj = (oop) STACK_OBJECT(-1);
1978                 VERIFY_OOP(obj);
1979               }
1980               CALL_VM(InterpreterRuntime::post_field_access(THREAD,
1981                                           obj,
1982                                           cache),
1983                                           handle_exception);
1984             }
1985           }
1986 #endif /* VM_JVMTI */
1987 
1988           oop obj;
1989           if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1990             Klass* k = cache->f1_as_klass();
1991             obj = k->java_mirror();
1992             MORE_STACK(1);  // Assume single slot push
1993           } else {
1994             obj = (oop) STACK_OBJECT(-1);
1995             CHECK_NULL(obj);
1996           }
1997 
1998           //
1999           // Now store the result on the stack
2000           //
2001           TosState tos_type = cache->flag_state();
2002           int field_offset = cache->f2_as_index();
2003           if (cache->is_volatile()) {
2004             if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2005               OrderAccess::fence();
2006             }
2007             if (tos_type == atos) {
2008               VERIFY_OOP(obj->obj_field_acquire(field_offset));
2009               SET_STACK_OBJECT(obj->obj_field_acquire(field_offset), -1);
2010             } else if (tos_type == itos) {
2011               SET_STACK_INT(obj->int_field_acquire(field_offset), -1);
2012             } else if (tos_type == ltos) {
2013               SET_STACK_LONG(obj->long_field_acquire(field_offset), 0);
2014               MORE_STACK(1);
2015             } else if (tos_type == btos || tos_type == ztos) {
2016               SET_STACK_INT(obj->byte_field_acquire(field_offset), -1);
2017             } else if (tos_type == ctos) {
2018               SET_STACK_INT(obj->char_field_acquire(field_offset), -1);
2019             } else if (tos_type == stos) {
2020               SET_STACK_INT(obj->short_field_acquire(field_offset), -1);
2021             } else if (tos_type == ftos) {
2022               SET_STACK_FLOAT(obj->float_field_acquire(field_offset), -1);
2023             } else {
2024               SET_STACK_DOUBLE(obj->double_field_acquire(field_offset), 0);
2025               MORE_STACK(1);
2026             }
2027           } else {
2028             if (tos_type == atos) {
2029               VERIFY_OOP(obj->obj_field(field_offset));
2030               SET_STACK_OBJECT(obj->obj_field(field_offset), -1);
2031             } else if (tos_type == itos) {
2032               SET_STACK_INT(obj->int_field(field_offset), -1);
2033             } else if (tos_type == ltos) {
2034               SET_STACK_LONG(obj->long_field(field_offset), 0);
2035               MORE_STACK(1);
2036             } else if (tos_type == btos || tos_type == ztos) {
2037               SET_STACK_INT(obj->byte_field(field_offset), -1);
2038             } else if (tos_type == ctos) {
2039               SET_STACK_INT(obj->char_field(field_offset), -1);
2040             } else if (tos_type == stos) {
2041               SET_STACK_INT(obj->short_field(field_offset), -1);
2042             } else if (tos_type == ftos) {
2043               SET_STACK_FLOAT(obj->float_field(field_offset), -1);
2044             } else {
2045               SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
2046               MORE_STACK(1);
2047             }
2048           }
2049 
2050           UPDATE_PC_AND_CONTINUE(3);
2051          }
2052 
2053       CASE(_putfield):
2054       CASE(_putstatic):
2055         {
2056           u2 index = Bytes::get_native_u2(pc+1);
2057           ConstantPoolCacheEntry* cache = cp->entry_at(index);
2058           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2059             CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2060                     handle_exception);
2061             cache = cp->entry_at(index);
2062           }
2063 
2064 #ifdef VM_JVMTI
2065           if (_jvmti_interp_events) {
2066             int *count_addr;
2067             oop obj;
2068             // Check to see if a field modification watch has been set
2069             // before we take the time to call into the VM.
2070             count_addr = (int *)JvmtiExport::get_field_modification_count_addr();
2071             if ( *count_addr > 0 ) {
2072               if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
2073                 obj = (oop)NULL;
2074               }
2075               else {
2076                 if (cache->is_long() || cache->is_double()) {
2077                   obj = (oop) STACK_OBJECT(-3);
2078                 } else {
2079                   obj = (oop) STACK_OBJECT(-2);
2080                 }
2081                 VERIFY_OOP(obj);
2082               }
2083 
2084               CALL_VM(InterpreterRuntime::post_field_modification(THREAD,
2085                                           obj,
2086                                           cache,
2087                                           (jvalue *)STACK_SLOT(-1)),
2088                                           handle_exception);
2089             }
2090           }
2091 #endif /* VM_JVMTI */
2092 
2093           // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2094           // out so c++ compiler has a chance for constant prop to fold everything possible away.
2095 
2096           oop obj;
2097           int count;
2098           TosState tos_type = cache->flag_state();
2099 
2100           count = -1;
2101           if (tos_type == ltos || tos_type == dtos) {
2102             --count;
2103           }
2104           if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
2105             Klass* k = cache->f1_as_klass();
2106             obj = k->java_mirror();
2107           } else {
2108             --count;
2109             obj = (oop) STACK_OBJECT(count);
2110             CHECK_NULL(obj);
2111           }
2112 
2113           //
2114           // Now store the result
2115           //
2116           int field_offset = cache->f2_as_index();
2117           if (cache->is_volatile()) {
2118             if (tos_type == itos) {
2119               obj->release_int_field_put(field_offset, STACK_INT(-1));
2120             } else if (tos_type == atos) {
2121               VERIFY_OOP(STACK_OBJECT(-1));
2122               obj->release_obj_field_put(field_offset, STACK_OBJECT(-1));
2123             } else if (tos_type == btos) {
2124               obj->release_byte_field_put(field_offset, STACK_INT(-1));
2125             } else if (tos_type == ztos) {
2126               int bool_field = STACK_INT(-1);  // only store LSB
2127               obj->release_byte_field_put(field_offset, (bool_field & 1));
2128             } else if (tos_type == ltos) {
2129               obj->release_long_field_put(field_offset, STACK_LONG(-1));
2130             } else if (tos_type == ctos) {
2131               obj->release_char_field_put(field_offset, STACK_INT(-1));
2132             } else if (tos_type == stos) {
2133               obj->release_short_field_put(field_offset, STACK_INT(-1));
2134             } else if (tos_type == ftos) {
2135               obj->release_float_field_put(field_offset, STACK_FLOAT(-1));
2136             } else {
2137               obj->release_double_field_put(field_offset, STACK_DOUBLE(-1));
2138             }
2139             OrderAccess::storeload();
2140           } else {
2141             if (tos_type == itos) {
2142               obj->int_field_put(field_offset, STACK_INT(-1));
2143             } else if (tos_type == atos) {
2144               VERIFY_OOP(STACK_OBJECT(-1));
2145               obj->obj_field_put(field_offset, STACK_OBJECT(-1));
2146             } else if (tos_type == btos) {
2147               obj->byte_field_put(field_offset, STACK_INT(-1));
2148             } else if (tos_type == ztos) {
2149               int bool_field = STACK_INT(-1);  // only store LSB
2150               obj->byte_field_put(field_offset, (bool_field & 1));
2151             } else if (tos_type == ltos) {
2152               obj->long_field_put(field_offset, STACK_LONG(-1));
2153             } else if (tos_type == ctos) {
2154               obj->char_field_put(field_offset, STACK_INT(-1));
2155             } else if (tos_type == stos) {
2156               obj->short_field_put(field_offset, STACK_INT(-1));
2157             } else if (tos_type == ftos) {
2158               obj->float_field_put(field_offset, STACK_FLOAT(-1));
2159             } else {
2160               obj->double_field_put(field_offset, STACK_DOUBLE(-1));
2161             }
2162           }
2163 
2164           UPDATE_PC_AND_TOS_AND_CONTINUE(3, count);
2165         }
2166 
2167       CASE(_new): {
2168         u2 index = Bytes::get_Java_u2(pc+1);
2169         ConstantPool* constants = istate->method()->constants();
2170         if (!constants->tag_at(index).is_unresolved_klass()) {
2171           // Make sure klass is initialized and doesn't have a finalizer
2172           Klass* entry = constants->slot_at(index).get_klass();
2173           InstanceKlass* ik = InstanceKlass::cast(entry);
2174           if (ik->is_initialized() && ik->can_be_fastpath_allocated() ) {
2175             size_t obj_size = ik->size_helper();
2176             oop result = NULL;
2177             // If the TLAB isn't pre-zeroed then we'll have to do it
2178             bool need_zero = !ZeroTLAB;
2179             if (UseTLAB) {
2180               result = (oop) THREAD->tlab().allocate(obj_size);
2181             }
2182             // Disable non-TLAB-based fast-path, because profiling requires that all
2183             // allocations go through InterpreterRuntime::_new() if THREAD->tlab().allocate
2184             // returns NULL.
2185 #ifndef CC_INTERP_PROFILE
2186             if (result == NULL) {
2187               need_zero = true;
2188               // Try allocate in shared eden
2189             retry:
2190               HeapWord* compare_to = *Universe::heap()->top_addr();
2191               HeapWord* new_top = compare_to + obj_size;
2192               if (new_top <= *Universe::heap()->end_addr()) {
2193                 if (Atomic::cmpxchg_ptr(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) {
2194                   goto retry;
2195                 }
2196                 result = (oop) compare_to;
2197               }
2198             }
2199 #endif
2200             if (result != NULL) {
2201               // Initialize object (if nonzero size and need) and then the header
2202               if (need_zero ) {
2203                 HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize;
2204                 obj_size -= sizeof(oopDesc) / oopSize;
2205                 if (obj_size > 0 ) {
2206                   memset(to_zero, 0, obj_size * HeapWordSize);
2207                 }
2208               }
2209               if (UseBiasedLocking) {
2210                 result->set_mark(ik->prototype_header());
2211               } else {
2212                 result->set_mark(markOopDesc::prototype());
2213               }
2214               result->set_klass_gap(0);
2215               result->set_klass(ik);
2216               // Must prevent reordering of stores for object initialization
2217               // with stores that publish the new object.
2218               OrderAccess::storestore();
2219               SET_STACK_OBJECT(result, 0);
2220               UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2221             }
2222           }
2223         }
2224         // Slow case allocation
2225         CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
2226                 handle_exception);
2227         // Must prevent reordering of stores for object initialization
2228         // with stores that publish the new object.
2229         OrderAccess::storestore();
2230         SET_STACK_OBJECT(THREAD->vm_result(), 0);
2231         THREAD->set_vm_result(NULL);
2232         UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2233       }
2234       CASE(_anewarray): {
2235         u2 index = Bytes::get_Java_u2(pc+1);
2236         jint size = STACK_INT(-1);
2237         CALL_VM(InterpreterRuntime::anewarray(THREAD, METHOD->constants(), index, size),
2238                 handle_exception);
2239         // Must prevent reordering of stores for object initialization
2240         // with stores that publish the new object.
2241         OrderAccess::storestore();
2242         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2243         THREAD->set_vm_result(NULL);
2244         UPDATE_PC_AND_CONTINUE(3);
2245       }
2246       CASE(_multianewarray): {
2247         jint dims = *(pc+3);
2248         jint size = STACK_INT(-1);
2249         // stack grows down, dimensions are up!
2250         jint *dimarray =
2251                    (jint*)&topOfStack[dims * Interpreter::stackElementWords+
2252                                       Interpreter::stackElementWords-1];
2253         //adjust pointer to start of stack element
2254         CALL_VM(InterpreterRuntime::multianewarray(THREAD, dimarray),
2255                 handle_exception);
2256         // Must prevent reordering of stores for object initialization
2257         // with stores that publish the new object.
2258         OrderAccess::storestore();
2259         SET_STACK_OBJECT(THREAD->vm_result(), -dims);
2260         THREAD->set_vm_result(NULL);
2261         UPDATE_PC_AND_TOS_AND_CONTINUE(4, -(dims-1));
2262       }
2263       CASE(_checkcast):
2264           if (STACK_OBJECT(-1) != NULL) {
2265             VERIFY_OOP(STACK_OBJECT(-1));
2266             u2 index = Bytes::get_Java_u2(pc+1);
2267             // Constant pool may have actual klass or unresolved klass. If it is
2268             // unresolved we must resolve it.
2269             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2270               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2271             }
2272             Klass* klassOf = (Klass*) METHOD->constants()->slot_at(index).get_klass();
2273             Klass* objKlass = STACK_OBJECT(-1)->klass(); // ebx
2274             //
2275             // Check for compatibilty. This check must not GC!!
2276             // Seems way more expensive now that we must dispatch.
2277             //
2278             if (objKlass != klassOf && !objKlass->is_subtype_of(klassOf)) {
2279               // Decrement counter at checkcast.
2280               BI_PROFILE_SUBTYPECHECK_FAILED(objKlass);
2281               ResourceMark rm(THREAD);
2282               char* message = SharedRuntime::generate_class_cast_message(
2283                 objKlass, klassOf);
2284               VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message, note_classCheck_trap);
2285             }
2286             // Profile checkcast with null_seen and receiver.
2287             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/false, objKlass);
2288           } else {
2289             // Profile checkcast with null_seen and receiver.
2290             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/true, NULL);
2291           }
2292           UPDATE_PC_AND_CONTINUE(3);
2293 
2294       CASE(_instanceof):
2295           if (STACK_OBJECT(-1) == NULL) {
2296             SET_STACK_INT(0, -1);
2297             // Profile instanceof with null_seen and receiver.
2298             BI_PROFILE_UPDATE_INSTANCEOF(/*null_seen=*/true, NULL);
2299           } else {
2300             VERIFY_OOP(STACK_OBJECT(-1));
2301             u2 index = Bytes::get_Java_u2(pc+1);
2302             // Constant pool may have actual klass or unresolved klass. If it is
2303             // unresolved we must resolve it.
2304             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2305               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2306             }
2307             Klass* klassOf = (Klass*) METHOD->constants()->slot_at(index).get_klass();
2308             Klass* objKlass = STACK_OBJECT(-1)->klass();
2309             //
2310             // Check for compatibilty. This check must not GC!!
2311             // Seems way more expensive now that we must dispatch.
2312             //
2313             if ( objKlass == klassOf || objKlass->is_subtype_of(klassOf)) {
2314               SET_STACK_INT(1, -1);
2315             } else {
2316               SET_STACK_INT(0, -1);
2317               // Decrement counter at checkcast.
2318               BI_PROFILE_SUBTYPECHECK_FAILED(objKlass);
2319             }
2320             // Profile instanceof with null_seen and receiver.
2321             BI_PROFILE_UPDATE_INSTANCEOF(/*null_seen=*/false, objKlass);
2322           }
2323           UPDATE_PC_AND_CONTINUE(3);
2324 
2325       CASE(_ldc_w):
2326       CASE(_ldc):
2327         {
2328           u2 index;
2329           bool wide = false;
2330           int incr = 2; // frequent case
2331           if (opcode == Bytecodes::_ldc) {
2332             index = pc[1];
2333           } else {
2334             index = Bytes::get_Java_u2(pc+1);
2335             incr = 3;
2336             wide = true;
2337           }
2338 
2339           ConstantPool* constants = METHOD->constants();
2340           switch (constants->tag_at(index).value()) {
2341           case JVM_CONSTANT_Integer:
2342             SET_STACK_INT(constants->int_at(index), 0);
2343             break;
2344 
2345           case JVM_CONSTANT_Float:
2346             SET_STACK_FLOAT(constants->float_at(index), 0);
2347             break;
2348 
2349           case JVM_CONSTANT_String:
2350             {
2351               oop result = constants->resolved_references()->obj_at(index);
2352               if (result == NULL) {
2353                 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception);
2354                 SET_STACK_OBJECT(THREAD->vm_result(), 0);
2355                 THREAD->set_vm_result(NULL);
2356               } else {
2357                 VERIFY_OOP(result);
2358                 SET_STACK_OBJECT(result, 0);
2359               }
2360             break;
2361             }
2362 
2363           case JVM_CONSTANT_Class:
2364             VERIFY_OOP(constants->resolved_klass_at(index)->java_mirror());
2365             SET_STACK_OBJECT(constants->resolved_klass_at(index)->java_mirror(), 0);
2366             break;
2367 
2368           case JVM_CONSTANT_UnresolvedClass:
2369           case JVM_CONSTANT_UnresolvedClassInError:
2370             CALL_VM(InterpreterRuntime::ldc(THREAD, wide), handle_exception);
2371             SET_STACK_OBJECT(THREAD->vm_result(), 0);
2372             THREAD->set_vm_result(NULL);
2373             break;
2374 
2375           default:  ShouldNotReachHere();
2376           }
2377           UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2378         }
2379 
2380       CASE(_ldc2_w):
2381         {
2382           u2 index = Bytes::get_Java_u2(pc+1);
2383 
2384           ConstantPool* constants = METHOD->constants();
2385           switch (constants->tag_at(index).value()) {
2386 
2387           case JVM_CONSTANT_Long:
2388              SET_STACK_LONG(constants->long_at(index), 1);
2389             break;
2390 
2391           case JVM_CONSTANT_Double:
2392              SET_STACK_DOUBLE(constants->double_at(index), 1);
2393             break;
2394           default:  ShouldNotReachHere();
2395           }
2396           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 2);
2397         }
2398 
2399       CASE(_fast_aldc_w):
2400       CASE(_fast_aldc): {
2401         u2 index;
2402         int incr;
2403         if (opcode == Bytecodes::_fast_aldc) {
2404           index = pc[1];
2405           incr = 2;
2406         } else {
2407           index = Bytes::get_native_u2(pc+1);
2408           incr = 3;
2409         }
2410 
2411         // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
2412         // This kind of CP cache entry does not need to match the flags byte, because
2413         // there is a 1-1 relation between bytecode type and CP entry type.
2414         ConstantPool* constants = METHOD->constants();
2415         oop result = constants->resolved_references()->obj_at(index);
2416         if (result == NULL) {
2417           CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode),
2418                   handle_exception);
2419           result = THREAD->vm_result();
2420         }
2421 
2422         VERIFY_OOP(result);
2423         SET_STACK_OBJECT(result, 0);
2424         UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2425       }
2426 
2427       CASE(_invokedynamic): {
2428 
2429         u4 index = Bytes::get_native_u4(pc+1);
2430         ConstantPoolCacheEntry* cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2431 
2432         // We are resolved if the resolved_references field contains a non-null object (CallSite, etc.)
2433         // This kind of CP cache entry does not need to match the flags byte, because
2434         // there is a 1-1 relation between bytecode type and CP entry type.
2435         if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2436           CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2437                   handle_exception);
2438           cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2439         }
2440 
2441         Method* method = cache->f1_as_method();
2442         if (VerifyOops) method->verify();
2443 
2444         if (cache->has_appendix()) {
2445           ConstantPool* constants = METHOD->constants();
2446           SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
2447           MORE_STACK(1);
2448         }
2449 
2450         istate->set_msg(call_method);
2451         istate->set_callee(method);
2452         istate->set_callee_entry_point(method->from_interpreted_entry());
2453         istate->set_bcp_advance(5);
2454 
2455         // Invokedynamic has got a call counter, just like an invokestatic -> increment!
2456         BI_PROFILE_UPDATE_CALL();
2457 
2458         UPDATE_PC_AND_RETURN(0); // I'll be back...
2459       }
2460 
2461       CASE(_invokehandle): {
2462 
2463         u2 index = Bytes::get_native_u2(pc+1);
2464         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2465 
2466         if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2467           CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2468                   handle_exception);
2469           cache = cp->entry_at(index);
2470         }
2471 
2472         Method* method = cache->f1_as_method();
2473         if (VerifyOops) method->verify();
2474 
2475         if (cache->has_appendix()) {
2476           ConstantPool* constants = METHOD->constants();
2477           SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
2478           MORE_STACK(1);
2479         }
2480 
2481         istate->set_msg(call_method);
2482         istate->set_callee(method);
2483         istate->set_callee_entry_point(method->from_interpreted_entry());
2484         istate->set_bcp_advance(3);
2485 
2486         // Invokehandle has got a call counter, just like a final call -> increment!
2487         BI_PROFILE_UPDATE_FINALCALL();
2488 
2489         UPDATE_PC_AND_RETURN(0); // I'll be back...
2490       }
2491 
2492       CASE(_invokeinterface): {
2493         u2 index = Bytes::get_native_u2(pc+1);
2494 
2495         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2496         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2497 
2498         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2499         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2500           CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2501                   handle_exception);
2502           cache = cp->entry_at(index);
2503         }
2504 
2505         istate->set_msg(call_method);
2506 
2507         // Special case of invokeinterface called for virtual method of
2508         // java.lang.Object.  See cpCacheOop.cpp for details.
2509         // This code isn't produced by javac, but could be produced by
2510         // another compliant java compiler.
2511         if (cache->is_forced_virtual()) {
2512           Method* callee;
2513           CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2514           if (cache->is_vfinal()) {
2515             callee = cache->f2_as_vfinal_method();
2516             // Profile 'special case of invokeinterface' final call.
2517             BI_PROFILE_UPDATE_FINALCALL();
2518           } else {
2519             // Get receiver.
2520             int parms = cache->parameter_size();
2521             // Same comments as invokevirtual apply here.
2522             oop rcvr = STACK_OBJECT(-parms);
2523             VERIFY_OOP(rcvr);
2524             Klass* rcvrKlass = rcvr->klass();
2525             callee = (Method*) rcvrKlass->method_at_vtable(cache->f2_as_index());
2526             // Profile 'special case of invokeinterface' virtual call.
2527             BI_PROFILE_UPDATE_VIRTUALCALL(rcvrKlass);
2528           }
2529           istate->set_callee(callee);
2530           istate->set_callee_entry_point(callee->from_interpreted_entry());
2531 #ifdef VM_JVMTI
2532           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2533             istate->set_callee_entry_point(callee->interpreter_entry());
2534           }
2535 #endif /* VM_JVMTI */
2536           istate->set_bcp_advance(5);
2537           UPDATE_PC_AND_RETURN(0); // I'll be back...
2538         }
2539 
2540         // this could definitely be cleaned up QQQ
2541         Method* callee;
2542         Klass* iclass = cache->f1_as_klass();
2543         // InstanceKlass* interface = (InstanceKlass*) iclass;
2544         // get receiver
2545         int parms = cache->parameter_size();
2546         oop rcvr = STACK_OBJECT(-parms);
2547         CHECK_NULL(rcvr);
2548         InstanceKlass* int2 = (InstanceKlass*) rcvr->klass();
2549         itableOffsetEntry* ki = (itableOffsetEntry*) int2->start_of_itable();
2550         int i;
2551         for ( i = 0 ; i < int2->itable_length() ; i++, ki++ ) {
2552           if (ki->interface_klass() == iclass) break;
2553         }
2554         // If the interface isn't found, this class doesn't implement this
2555         // interface.  The link resolver checks this but only for the first
2556         // time this interface is called.
2557         if (i == int2->itable_length()) {
2558           VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), "", note_no_trap);
2559         }
2560         int mindex = cache->f2_as_index();
2561         itableMethodEntry* im = ki->first_method_entry(rcvr->klass());
2562         callee = im[mindex].method();
2563         if (callee == NULL) {
2564           VM_JAVA_ERROR(vmSymbols::java_lang_AbstractMethodError(), "", note_no_trap);
2565         }
2566 
2567         // Profile virtual call.
2568         BI_PROFILE_UPDATE_VIRTUALCALL(rcvr->klass());
2569 
2570         istate->set_callee(callee);
2571         istate->set_callee_entry_point(callee->from_interpreted_entry());
2572 #ifdef VM_JVMTI
2573         if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2574           istate->set_callee_entry_point(callee->interpreter_entry());
2575         }
2576 #endif /* VM_JVMTI */
2577         istate->set_bcp_advance(5);
2578         UPDATE_PC_AND_RETURN(0); // I'll be back...
2579       }
2580 
2581       CASE(_invokevirtual):
2582       CASE(_invokespecial):
2583       CASE(_invokestatic): {
2584         u2 index = Bytes::get_native_u2(pc+1);
2585 
2586         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2587         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2588         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2589 
2590         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2591           CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2592                   handle_exception);
2593           cache = cp->entry_at(index);
2594         }
2595 
2596         istate->set_msg(call_method);
2597         {
2598           Method* callee;
2599           if ((Bytecodes::Code)opcode == Bytecodes::_invokevirtual) {
2600             CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2601             if (cache->is_vfinal()) {
2602               callee = cache->f2_as_vfinal_method();
2603               // Profile final call.
2604               BI_PROFILE_UPDATE_FINALCALL();
2605             } else {
2606               // get receiver
2607               int parms = cache->parameter_size();
2608               // this works but needs a resourcemark and seems to create a vtable on every call:
2609               // Method* callee = rcvr->klass()->vtable()->method_at(cache->f2_as_index());
2610               //
2611               // this fails with an assert
2612               // InstanceKlass* rcvrKlass = InstanceKlass::cast(STACK_OBJECT(-parms)->klass());
2613               // but this works
2614               oop rcvr = STACK_OBJECT(-parms);
2615               VERIFY_OOP(rcvr);
2616               Klass* rcvrKlass = rcvr->klass();
2617               /*
2618                 Executing this code in java.lang.String:
2619                     public String(char value[]) {
2620                           this.count = value.length;
2621                           this.value = (char[])value.clone();
2622                      }
2623 
2624                  a find on rcvr->klass() reports:
2625                  {type array char}{type array class}
2626                   - klass: {other class}
2627 
2628                   but using InstanceKlass::cast(STACK_OBJECT(-parms)->klass()) causes in assertion failure
2629                   because rcvr->klass()->is_instance_klass() == 0
2630                   However it seems to have a vtable in the right location. Huh?
2631                   Because vtables have the same offset for ArrayKlass and InstanceKlass.
2632               */
2633               callee = (Method*) rcvrKlass->method_at_vtable(cache->f2_as_index());
2634               // Profile virtual call.
2635               BI_PROFILE_UPDATE_VIRTUALCALL(rcvrKlass);
2636             }
2637           } else {
2638             if ((Bytecodes::Code)opcode == Bytecodes::_invokespecial) {
2639               CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2640             }
2641             callee = cache->f1_as_method();
2642 
2643             // Profile call.
2644             BI_PROFILE_UPDATE_CALL();
2645           }
2646 
2647           istate->set_callee(callee);
2648           istate->set_callee_entry_point(callee->from_interpreted_entry());
2649 #ifdef VM_JVMTI
2650           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2651             istate->set_callee_entry_point(callee->interpreter_entry());
2652           }
2653 #endif /* VM_JVMTI */
2654           istate->set_bcp_advance(3);
2655           UPDATE_PC_AND_RETURN(0); // I'll be back...
2656         }
2657       }
2658 
2659       /* Allocate memory for a new java object. */
2660 
2661       CASE(_newarray): {
2662         BasicType atype = (BasicType) *(pc+1);
2663         jint size = STACK_INT(-1);
2664         CALL_VM(InterpreterRuntime::newarray(THREAD, atype, size),
2665                 handle_exception);
2666         // Must prevent reordering of stores for object initialization
2667         // with stores that publish the new object.
2668         OrderAccess::storestore();
2669         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2670         THREAD->set_vm_result(NULL);
2671 
2672         UPDATE_PC_AND_CONTINUE(2);
2673       }
2674 
2675       /* Throw an exception. */
2676 
2677       CASE(_athrow): {
2678           oop except_oop = STACK_OBJECT(-1);
2679           CHECK_NULL(except_oop);
2680           // set pending_exception so we use common code
2681           THREAD->set_pending_exception(except_oop, NULL, 0);
2682           goto handle_exception;
2683       }
2684 
2685       /* goto and jsr. They are exactly the same except jsr pushes
2686        * the address of the next instruction first.
2687        */
2688 
2689       CASE(_jsr): {
2690           /* push bytecode index on stack */
2691           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 3), 0);
2692           MORE_STACK(1);
2693           /* FALL THROUGH */
2694       }
2695 
2696       CASE(_goto):
2697       {
2698           int16_t offset = (int16_t)Bytes::get_Java_u2(pc + 1);
2699           // Profile jump.
2700           BI_PROFILE_UPDATE_JUMP();
2701           address branch_pc = pc;
2702           UPDATE_PC(offset);
2703           DO_BACKEDGE_CHECKS(offset, branch_pc);
2704           CONTINUE;
2705       }
2706 
2707       CASE(_jsr_w): {
2708           /* push return address on the stack */
2709           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 5), 0);
2710           MORE_STACK(1);
2711           /* FALL THROUGH */
2712       }
2713 
2714       CASE(_goto_w):
2715       {
2716           int32_t offset = Bytes::get_Java_u4(pc + 1);
2717           // Profile jump.
2718           BI_PROFILE_UPDATE_JUMP();
2719           address branch_pc = pc;
2720           UPDATE_PC(offset);
2721           DO_BACKEDGE_CHECKS(offset, branch_pc);
2722           CONTINUE;
2723       }
2724 
2725       /* return from a jsr or jsr_w */
2726 
2727       CASE(_ret): {
2728           // Profile ret.
2729           BI_PROFILE_UPDATE_RET(/*bci=*/((int)(intptr_t)(LOCALS_ADDR(pc[1]))));
2730           // Now, update the pc.
2731           pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(pc[1]));
2732           UPDATE_PC_AND_CONTINUE(0);
2733       }
2734 
2735       /* debugger breakpoint */
2736 
2737       CASE(_breakpoint): {
2738           Bytecodes::Code original_bytecode;
2739           DECACHE_STATE();
2740           SET_LAST_JAVA_FRAME();
2741           original_bytecode = InterpreterRuntime::get_original_bytecode_at(THREAD,
2742                               METHOD, pc);
2743           RESET_LAST_JAVA_FRAME();
2744           CACHE_STATE();
2745           if (THREAD->has_pending_exception()) goto handle_exception;
2746             CALL_VM(InterpreterRuntime::_breakpoint(THREAD, METHOD, pc),
2747                                                     handle_exception);
2748 
2749           opcode = (jubyte)original_bytecode;
2750           goto opcode_switch;
2751       }
2752 
2753       DEFAULT:
2754           fatal("Unimplemented opcode %d = %s", opcode,
2755                 Bytecodes::name((Bytecodes::Code)opcode));
2756           goto finish;
2757 
2758       } /* switch(opc) */
2759 
2760 
2761 #ifdef USELABELS
2762     check_for_exception:
2763 #endif
2764     {
2765       if (!THREAD->has_pending_exception()) {
2766         CONTINUE;
2767       }
2768       /* We will be gcsafe soon, so flush our state. */
2769       DECACHE_PC();
2770       goto handle_exception;
2771     }
2772   do_continue: ;
2773 
2774   } /* while (1) interpreter loop */
2775 
2776 
2777   // An exception exists in the thread state see whether this activation can handle it
2778   handle_exception: {
2779 
2780     HandleMarkCleaner __hmc(THREAD);
2781     Handle except_oop(THREAD, THREAD->pending_exception());
2782     // Prevent any subsequent HandleMarkCleaner in the VM
2783     // from freeing the except_oop handle.
2784     HandleMark __hm(THREAD);
2785 
2786     THREAD->clear_pending_exception();
2787     assert(except_oop(), "No exception to process");
2788     intptr_t continuation_bci;
2789     // expression stack is emptied
2790     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2791     CALL_VM(continuation_bci = (intptr_t)InterpreterRuntime::exception_handler_for_exception(THREAD, except_oop()),
2792             handle_exception);
2793 
2794     except_oop = THREAD->vm_result();
2795     THREAD->set_vm_result(NULL);
2796     if (continuation_bci >= 0) {
2797       // Place exception on top of stack
2798       SET_STACK_OBJECT(except_oop(), 0);
2799       MORE_STACK(1);
2800       pc = METHOD->code_base() + continuation_bci;
2801       if (log_is_enabled(Info, exceptions)) {
2802         ResourceMark rm(THREAD);
2803         stringStream tempst;
2804         tempst.print("interpreter method <%s>\n"
2805                      " at bci %d, continuing at %d for thread " INTPTR_FORMAT,
2806                      METHOD->print_value_string(),
2807                      (int)(istate->bcp() - METHOD->code_base()),
2808                      (int)continuation_bci, p2i(THREAD));
2809         Exceptions::log_exception(except_oop, tempst);
2810       }
2811       // for AbortVMOnException flag
2812       Exceptions::debug_check_abort(except_oop);
2813 
2814       // Update profiling data.
2815       BI_PROFILE_ALIGN_TO_CURRENT_BCI();
2816       goto run;
2817     }
2818     if (log_is_enabled(Info, exceptions)) {
2819       ResourceMark rm;
2820       stringStream tempst;
2821       tempst.print("interpreter method <%s>\n"
2822              " at bci %d, unwinding for thread " INTPTR_FORMAT,
2823              METHOD->print_value_string(),
2824              (int)(istate->bcp() - METHOD->code_base()),
2825              p2i(THREAD));
2826       Exceptions::log_exception(except_oop, tempst);
2827     }
2828     // for AbortVMOnException flag
2829     Exceptions::debug_check_abort(except_oop);
2830 
2831     // No handler in this activation, unwind and try again
2832     THREAD->set_pending_exception(except_oop(), NULL, 0);
2833     goto handle_return;
2834   }  // handle_exception:
2835 
2836   // Return from an interpreter invocation with the result of the interpretation
2837   // on the top of the Java Stack (or a pending exception)
2838 
2839   handle_Pop_Frame: {
2840 
2841     // We don't really do anything special here except we must be aware
2842     // that we can get here without ever locking the method (if sync).
2843     // Also we skip the notification of the exit.
2844 
2845     istate->set_msg(popping_frame);
2846     // Clear pending so while the pop is in process
2847     // we don't start another one if a call_vm is done.
2848     THREAD->clr_pop_frame_pending();
2849     // Let interpreter (only) see the we're in the process of popping a frame
2850     THREAD->set_pop_frame_in_process();
2851 
2852     goto handle_return;
2853 
2854   } // handle_Pop_Frame
2855 
2856   // ForceEarlyReturn ends a method, and returns to the caller with a return value
2857   // given by the invoker of the early return.
2858   handle_Early_Return: {
2859 
2860     istate->set_msg(early_return);
2861 
2862     // Clear expression stack.
2863     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2864 
2865     JvmtiThreadState *ts = THREAD->jvmti_thread_state();
2866 
2867     // Push the value to be returned.
2868     switch (istate->method()->result_type()) {
2869       case T_BOOLEAN:
2870       case T_SHORT:
2871       case T_BYTE:
2872       case T_CHAR:
2873       case T_INT:
2874         SET_STACK_INT(ts->earlyret_value().i, 0);
2875         MORE_STACK(1);
2876         break;
2877       case T_LONG:
2878         SET_STACK_LONG(ts->earlyret_value().j, 1);
2879         MORE_STACK(2);
2880         break;
2881       case T_FLOAT:
2882         SET_STACK_FLOAT(ts->earlyret_value().f, 0);
2883         MORE_STACK(1);
2884         break;
2885       case T_DOUBLE:
2886         SET_STACK_DOUBLE(ts->earlyret_value().d, 1);
2887         MORE_STACK(2);
2888         break;
2889       case T_ARRAY:
2890       case T_OBJECT:
2891         SET_STACK_OBJECT(ts->earlyret_oop(), 0);
2892         MORE_STACK(1);
2893         break;
2894     }
2895 
2896     ts->clr_earlyret_value();
2897     ts->set_earlyret_oop(NULL);
2898     ts->clr_earlyret_pending();
2899 
2900     // Fall through to handle_return.
2901 
2902   } // handle_Early_Return
2903 
2904   handle_return: {
2905     // A storestore barrier is required to order initialization of
2906     // final fields with publishing the reference to the object that
2907     // holds the field. Without the barrier the value of final fields
2908     // can be observed to change.
2909     OrderAccess::storestore();
2910 
2911     DECACHE_STATE();
2912 
2913     bool suppress_error = istate->msg() == popping_frame || istate->msg() == early_return;
2914     bool suppress_exit_event = THREAD->has_pending_exception() || istate->msg() == popping_frame;
2915     Handle original_exception(THREAD, THREAD->pending_exception());
2916     Handle illegal_state_oop(THREAD, NULL);
2917 
2918     // We'd like a HandleMark here to prevent any subsequent HandleMarkCleaner
2919     // in any following VM entries from freeing our live handles, but illegal_state_oop
2920     // isn't really allocated yet and so doesn't become live until later and
2921     // in unpredicatable places. Instead we must protect the places where we enter the
2922     // VM. It would be much simpler (and safer) if we could allocate a real handle with
2923     // a NULL oop in it and then overwrite the oop later as needed. This isn't
2924     // unfortunately isn't possible.
2925 
2926     THREAD->clear_pending_exception();
2927 
2928     //
2929     // As far as we are concerned we have returned. If we have a pending exception
2930     // that will be returned as this invocation's result. However if we get any
2931     // exception(s) while checking monitor state one of those IllegalMonitorStateExceptions
2932     // will be our final result (i.e. monitor exception trumps a pending exception).
2933     //
2934 
2935     // If we never locked the method (or really passed the point where we would have),
2936     // there is no need to unlock it (or look for other monitors), since that
2937     // could not have happened.
2938 
2939     if (THREAD->do_not_unlock()) {
2940 
2941       // Never locked, reset the flag now because obviously any caller must
2942       // have passed their point of locking for us to have gotten here.
2943 
2944       THREAD->clr_do_not_unlock();
2945     } else {
2946       // At this point we consider that we have returned. We now check that the
2947       // locks were properly block structured. If we find that they were not
2948       // used properly we will return with an illegal monitor exception.
2949       // The exception is checked by the caller not the callee since this
2950       // checking is considered to be part of the invocation and therefore
2951       // in the callers scope (JVM spec 8.13).
2952       //
2953       // Another weird thing to watch for is if the method was locked
2954       // recursively and then not exited properly. This means we must
2955       // examine all the entries in reverse time(and stack) order and
2956       // unlock as we find them. If we find the method monitor before
2957       // we are at the initial entry then we should throw an exception.
2958       // It is not clear the template based interpreter does this
2959       // correctly
2960 
2961       BasicObjectLock* base = istate->monitor_base();
2962       BasicObjectLock* end = (BasicObjectLock*) istate->stack_base();
2963       bool method_unlock_needed = METHOD->is_synchronized();
2964       // We know the initial monitor was used for the method don't check that
2965       // slot in the loop
2966       if (method_unlock_needed) base--;
2967 
2968       // Check all the monitors to see they are unlocked. Install exception if found to be locked.
2969       while (end < base) {
2970         oop lockee = end->obj();
2971         if (lockee != NULL) {
2972           BasicLock* lock = end->lock();
2973           markOop header = lock->displaced_header();
2974           end->set_obj(NULL);
2975 
2976           if (!lockee->mark()->has_bias_pattern()) {
2977             // If it isn't recursive we either must swap old header or call the runtime
2978             if (header != NULL) {
2979               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
2980                 // restore object for the slow case
2981                 end->set_obj(lockee);
2982                 {
2983                   // Prevent any HandleMarkCleaner from freeing our live handles
2984                   HandleMark __hm(THREAD);
2985                   CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, end));
2986                 }
2987               }
2988             }
2989           }
2990           // One error is plenty
2991           if (illegal_state_oop() == NULL && !suppress_error) {
2992             {
2993               // Prevent any HandleMarkCleaner from freeing our live handles
2994               HandleMark __hm(THREAD);
2995               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
2996             }
2997             assert(THREAD->has_pending_exception(), "Lost our exception!");
2998             illegal_state_oop = THREAD->pending_exception();
2999             THREAD->clear_pending_exception();
3000           }
3001         }
3002         end++;
3003       }
3004       // Unlock the method if needed
3005       if (method_unlock_needed) {
3006         if (base->obj() == NULL) {
3007           // The method is already unlocked this is not good.
3008           if (illegal_state_oop() == NULL && !suppress_error) {
3009             {
3010               // Prevent any HandleMarkCleaner from freeing our live handles
3011               HandleMark __hm(THREAD);
3012               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
3013             }
3014             assert(THREAD->has_pending_exception(), "Lost our exception!");
3015             illegal_state_oop = THREAD->pending_exception();
3016             THREAD->clear_pending_exception();
3017           }
3018         } else {
3019           //
3020           // The initial monitor is always used for the method
3021           // However if that slot is no longer the oop for the method it was unlocked
3022           // and reused by something that wasn't unlocked!
3023           //
3024           // deopt can come in with rcvr dead because c2 knows
3025           // its value is preserved in the monitor. So we can't use locals[0] at all
3026           // and must use first monitor slot.
3027           //
3028           oop rcvr = base->obj();
3029           if (rcvr == NULL) {
3030             if (!suppress_error) {
3031               VM_JAVA_ERROR_NO_JUMP(vmSymbols::java_lang_NullPointerException(), "", note_nullCheck_trap);
3032               illegal_state_oop = THREAD->pending_exception();
3033               THREAD->clear_pending_exception();
3034             }
3035           } else if (UseHeavyMonitors) {
3036             {
3037               // Prevent any HandleMarkCleaner from freeing our live handles.
3038               HandleMark __hm(THREAD);
3039               CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
3040             }
3041             if (THREAD->has_pending_exception()) {
3042               if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
3043               THREAD->clear_pending_exception();
3044             }
3045           } else {
3046             BasicLock* lock = base->lock();
3047             markOop header = lock->displaced_header();
3048             base->set_obj(NULL);
3049 
3050             if (!rcvr->mark()->has_bias_pattern()) {
3051               base->set_obj(NULL);
3052               // If it isn't recursive we either must swap old header or call the runtime
3053               if (header != NULL) {
3054                 if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), lock) != lock) {
3055                   // restore object for the slow case
3056                   base->set_obj(rcvr);
3057                   {
3058                     // Prevent any HandleMarkCleaner from freeing our live handles
3059                     HandleMark __hm(THREAD);
3060                     CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
3061                   }
3062                   if (THREAD->has_pending_exception()) {
3063                     if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
3064                     THREAD->clear_pending_exception();
3065                   }
3066                 }
3067               }
3068             }
3069           }
3070         }
3071       }
3072     }
3073     // Clear the do_not_unlock flag now.
3074     THREAD->clr_do_not_unlock();
3075 
3076     //
3077     // Notify jvmti/jvmdi
3078     //
3079     // NOTE: we do not notify a method_exit if we have a pending exception,
3080     // including an exception we generate for unlocking checks.  In the former
3081     // case, JVMDI has already been notified by our call for the exception handler
3082     // and in both cases as far as JVMDI is concerned we have already returned.
3083     // If we notify it again JVMDI will be all confused about how many frames
3084     // are still on the stack (4340444).
3085     //
3086     // NOTE Further! It turns out the the JVMTI spec in fact expects to see
3087     // method_exit events whenever we leave an activation unless it was done
3088     // for popframe. This is nothing like jvmdi. However we are passing the
3089     // tests at the moment (apparently because they are jvmdi based) so rather
3090     // than change this code and possibly fail tests we will leave it alone
3091     // (with this note) in anticipation of changing the vm and the tests
3092     // simultaneously.
3093 
3094 
3095     //
3096     suppress_exit_event = suppress_exit_event || illegal_state_oop() != NULL;
3097 
3098 
3099 
3100 #ifdef VM_JVMTI
3101       if (_jvmti_interp_events) {
3102         // Whenever JVMTI puts a thread in interp_only_mode, method
3103         // entry/exit events are sent for that thread to track stack depth.
3104         if ( !suppress_exit_event && THREAD->is_interp_only_mode() ) {
3105           {
3106             // Prevent any HandleMarkCleaner from freeing our live handles
3107             HandleMark __hm(THREAD);
3108             CALL_VM_NOCHECK(InterpreterRuntime::post_method_exit(THREAD));
3109           }
3110         }
3111       }
3112 #endif /* VM_JVMTI */
3113 
3114     //
3115     // See if we are returning any exception
3116     // A pending exception that was pending prior to a possible popping frame
3117     // overrides the popping frame.
3118     //
3119     assert(!suppress_error || (suppress_error && illegal_state_oop() == NULL), "Error was not suppressed");
3120     if (illegal_state_oop() != NULL || original_exception() != NULL) {
3121       // Inform the frame manager we have no result.
3122       istate->set_msg(throwing_exception);
3123       if (illegal_state_oop() != NULL)
3124         THREAD->set_pending_exception(illegal_state_oop(), NULL, 0);
3125       else
3126         THREAD->set_pending_exception(original_exception(), NULL, 0);
3127       UPDATE_PC_AND_RETURN(0);
3128     }
3129 
3130     if (istate->msg() == popping_frame) {
3131       // Make it simpler on the assembly code and set the message for the frame pop.
3132       // returns
3133       if (istate->prev() == NULL) {
3134         // We must be returning to a deoptimized frame (because popframe only happens between
3135         // two interpreted frames). We need to save the current arguments in C heap so that
3136         // the deoptimized frame when it restarts can copy the arguments to its expression
3137         // stack and re-execute the call. We also have to notify deoptimization that this
3138         // has occurred and to pick the preserved args copy them to the deoptimized frame's
3139         // java expression stack. Yuck.
3140         //
3141         THREAD->popframe_preserve_args(in_ByteSize(METHOD->size_of_parameters() * wordSize),
3142                                 LOCALS_SLOT(METHOD->size_of_parameters() - 1));
3143         THREAD->set_popframe_condition_bit(JavaThread::popframe_force_deopt_reexecution_bit);
3144       }
3145     } else {
3146       istate->set_msg(return_from_method);
3147     }
3148 
3149     // Normal return
3150     // Advance the pc and return to frame manager
3151     UPDATE_PC_AND_RETURN(1);
3152   } /* handle_return: */
3153 
3154 // This is really a fatal error return
3155 
3156 finish:
3157   DECACHE_TOS();
3158   DECACHE_PC();
3159 
3160   return;
3161 }
3162 
3163 /*
3164  * All the code following this point is only produced once and is not present
3165  * in the JVMTI version of the interpreter
3166 */
3167 
3168 #ifndef VM_JVMTI
3169 
3170 // This constructor should only be used to contruct the object to signal
3171 // interpreter initialization. All other instances should be created by
3172 // the frame manager.
3173 BytecodeInterpreter::BytecodeInterpreter(messages msg) {
3174   if (msg != initialize) ShouldNotReachHere();
3175   _msg = msg;
3176   _self_link = this;
3177   _prev_link = NULL;
3178 }
3179 
3180 // Inline static functions for Java Stack and Local manipulation
3181 
3182 // The implementations are platform dependent. We have to worry about alignment
3183 // issues on some machines which can change on the same platform depending on
3184 // whether it is an LP64 machine also.
3185 address BytecodeInterpreter::stack_slot(intptr_t *tos, int offset) {
3186   return (address) tos[Interpreter::expr_index_at(-offset)];
3187 }
3188 
3189 jint BytecodeInterpreter::stack_int(intptr_t *tos, int offset) {
3190   return *((jint*) &tos[Interpreter::expr_index_at(-offset)]);
3191 }
3192 
3193 jfloat BytecodeInterpreter::stack_float(intptr_t *tos, int offset) {
3194   return *((jfloat *) &tos[Interpreter::expr_index_at(-offset)]);
3195 }
3196 
3197 oop BytecodeInterpreter::stack_object(intptr_t *tos, int offset) {
3198   return cast_to_oop(tos [Interpreter::expr_index_at(-offset)]);
3199 }
3200 
3201 jdouble BytecodeInterpreter::stack_double(intptr_t *tos, int offset) {
3202   return ((VMJavaVal64*) &tos[Interpreter::expr_index_at(-offset)])->d;
3203 }
3204 
3205 jlong BytecodeInterpreter::stack_long(intptr_t *tos, int offset) {
3206   return ((VMJavaVal64 *) &tos[Interpreter::expr_index_at(-offset)])->l;
3207 }
3208 
3209 // only used for value types
3210 void BytecodeInterpreter::set_stack_slot(intptr_t *tos, address value,
3211                                                         int offset) {
3212   *((address *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3213 }
3214 
3215 void BytecodeInterpreter::set_stack_int(intptr_t *tos, int value,
3216                                                        int offset) {
3217   *((jint *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3218 }
3219 
3220 void BytecodeInterpreter::set_stack_float(intptr_t *tos, jfloat value,
3221                                                          int offset) {
3222   *((jfloat *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3223 }
3224 
3225 void BytecodeInterpreter::set_stack_object(intptr_t *tos, oop value,
3226                                                           int offset) {
3227   *((oop *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3228 }
3229 
3230 // needs to be platform dep for the 32 bit platforms.
3231 void BytecodeInterpreter::set_stack_double(intptr_t *tos, jdouble value,
3232                                                           int offset) {
3233   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d = value;
3234 }
3235 
3236 void BytecodeInterpreter::set_stack_double_from_addr(intptr_t *tos,
3237                                               address addr, int offset) {
3238   (((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d =
3239                         ((VMJavaVal64*)addr)->d);
3240 }
3241 
3242 void BytecodeInterpreter::set_stack_long(intptr_t *tos, jlong value,
3243                                                         int offset) {
3244   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
3245   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l = value;
3246 }
3247 
3248 void BytecodeInterpreter::set_stack_long_from_addr(intptr_t *tos,
3249                                             address addr, int offset) {
3250   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
3251   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l =
3252                         ((VMJavaVal64*)addr)->l;
3253 }
3254 
3255 // Locals
3256 
3257 address BytecodeInterpreter::locals_slot(intptr_t* locals, int offset) {
3258   return (address)locals[Interpreter::local_index_at(-offset)];
3259 }
3260 jint BytecodeInterpreter::locals_int(intptr_t* locals, int offset) {
3261   return (jint)locals[Interpreter::local_index_at(-offset)];
3262 }
3263 jfloat BytecodeInterpreter::locals_float(intptr_t* locals, int offset) {
3264   return (jfloat)locals[Interpreter::local_index_at(-offset)];
3265 }
3266 oop BytecodeInterpreter::locals_object(intptr_t* locals, int offset) {
3267   return cast_to_oop(locals[Interpreter::local_index_at(-offset)]);
3268 }
3269 jdouble BytecodeInterpreter::locals_double(intptr_t* locals, int offset) {
3270   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d;
3271 }
3272 jlong BytecodeInterpreter::locals_long(intptr_t* locals, int offset) {
3273   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l;
3274 }
3275 
3276 // Returns the address of locals value.
3277 address BytecodeInterpreter::locals_long_at(intptr_t* locals, int offset) {
3278   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
3279 }
3280 address BytecodeInterpreter::locals_double_at(intptr_t* locals, int offset) {
3281   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
3282 }
3283 
3284 // Used for local value or returnAddress
3285 void BytecodeInterpreter::set_locals_slot(intptr_t *locals,
3286                                    address value, int offset) {
3287   *((address*)&locals[Interpreter::local_index_at(-offset)]) = value;
3288 }
3289 void BytecodeInterpreter::set_locals_int(intptr_t *locals,
3290                                    jint value, int offset) {
3291   *((jint *)&locals[Interpreter::local_index_at(-offset)]) = value;
3292 }
3293 void BytecodeInterpreter::set_locals_float(intptr_t *locals,
3294                                    jfloat value, int offset) {
3295   *((jfloat *)&locals[Interpreter::local_index_at(-offset)]) = value;
3296 }
3297 void BytecodeInterpreter::set_locals_object(intptr_t *locals,
3298                                    oop value, int offset) {
3299   *((oop *)&locals[Interpreter::local_index_at(-offset)]) = value;
3300 }
3301 void BytecodeInterpreter::set_locals_double(intptr_t *locals,
3302                                    jdouble value, int offset) {
3303   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = value;
3304 }
3305 void BytecodeInterpreter::set_locals_long(intptr_t *locals,
3306                                    jlong value, int offset) {
3307   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = value;
3308 }
3309 void BytecodeInterpreter::set_locals_double_from_addr(intptr_t *locals,
3310                                    address addr, int offset) {
3311   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = ((VMJavaVal64*)addr)->d;
3312 }
3313 void BytecodeInterpreter::set_locals_long_from_addr(intptr_t *locals,
3314                                    address addr, int offset) {
3315   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = ((VMJavaVal64*)addr)->l;
3316 }
3317 
3318 void BytecodeInterpreter::astore(intptr_t* tos,    int stack_offset,
3319                           intptr_t* locals, int locals_offset) {
3320   intptr_t value = tos[Interpreter::expr_index_at(-stack_offset)];
3321   locals[Interpreter::local_index_at(-locals_offset)] = value;
3322 }
3323 
3324 
3325 void BytecodeInterpreter::copy_stack_slot(intptr_t *tos, int from_offset,
3326                                    int to_offset) {
3327   tos[Interpreter::expr_index_at(-to_offset)] =
3328                       (intptr_t)tos[Interpreter::expr_index_at(-from_offset)];
3329 }
3330 
3331 void BytecodeInterpreter::dup(intptr_t *tos) {
3332   copy_stack_slot(tos, -1, 0);
3333 }
3334 void BytecodeInterpreter::dup2(intptr_t *tos) {
3335   copy_stack_slot(tos, -2, 0);
3336   copy_stack_slot(tos, -1, 1);
3337 }
3338 
3339 void BytecodeInterpreter::dup_x1(intptr_t *tos) {
3340   /* insert top word two down */
3341   copy_stack_slot(tos, -1, 0);
3342   copy_stack_slot(tos, -2, -1);
3343   copy_stack_slot(tos, 0, -2);
3344 }
3345 
3346 void BytecodeInterpreter::dup_x2(intptr_t *tos) {
3347   /* insert top word three down  */
3348   copy_stack_slot(tos, -1, 0);
3349   copy_stack_slot(tos, -2, -1);
3350   copy_stack_slot(tos, -3, -2);
3351   copy_stack_slot(tos, 0, -3);
3352 }
3353 void BytecodeInterpreter::dup2_x1(intptr_t *tos) {
3354   /* insert top 2 slots three down */
3355   copy_stack_slot(tos, -1, 1);
3356   copy_stack_slot(tos, -2, 0);
3357   copy_stack_slot(tos, -3, -1);
3358   copy_stack_slot(tos, 1, -2);
3359   copy_stack_slot(tos, 0, -3);
3360 }
3361 void BytecodeInterpreter::dup2_x2(intptr_t *tos) {
3362   /* insert top 2 slots four down */
3363   copy_stack_slot(tos, -1, 1);
3364   copy_stack_slot(tos, -2, 0);
3365   copy_stack_slot(tos, -3, -1);
3366   copy_stack_slot(tos, -4, -2);
3367   copy_stack_slot(tos, 1, -3);
3368   copy_stack_slot(tos, 0, -4);
3369 }
3370 
3371 
3372 void BytecodeInterpreter::swap(intptr_t *tos) {
3373   // swap top two elements
3374   intptr_t val = tos[Interpreter::expr_index_at(1)];
3375   // Copy -2 entry to -1
3376   copy_stack_slot(tos, -2, -1);
3377   // Store saved -1 entry into -2
3378   tos[Interpreter::expr_index_at(2)] = val;
3379 }
3380 // --------------------------------------------------------------------------------
3381 // Non-product code
3382 #ifndef PRODUCT
3383 
3384 const char* BytecodeInterpreter::C_msg(BytecodeInterpreter::messages msg) {
3385   switch (msg) {
3386      case BytecodeInterpreter::no_request:  return("no_request");
3387      case BytecodeInterpreter::initialize:  return("initialize");
3388      // status message to C++ interpreter
3389      case BytecodeInterpreter::method_entry:  return("method_entry");
3390      case BytecodeInterpreter::method_resume:  return("method_resume");
3391      case BytecodeInterpreter::got_monitors:  return("got_monitors");
3392      case BytecodeInterpreter::rethrow_exception:  return("rethrow_exception");
3393      // requests to frame manager from C++ interpreter
3394      case BytecodeInterpreter::call_method:  return("call_method");
3395      case BytecodeInterpreter::return_from_method:  return("return_from_method");
3396      case BytecodeInterpreter::more_monitors:  return("more_monitors");
3397      case BytecodeInterpreter::throwing_exception:  return("throwing_exception");
3398      case BytecodeInterpreter::popping_frame:  return("popping_frame");
3399      case BytecodeInterpreter::do_osr:  return("do_osr");
3400      // deopt
3401      case BytecodeInterpreter::deopt_resume:  return("deopt_resume");
3402      case BytecodeInterpreter::deopt_resume2:  return("deopt_resume2");
3403      default: return("BAD MSG");
3404   }
3405 }
3406 void
3407 BytecodeInterpreter::print() {
3408   tty->print_cr("thread: " INTPTR_FORMAT, (uintptr_t) this->_thread);
3409   tty->print_cr("bcp: " INTPTR_FORMAT, (uintptr_t) this->_bcp);
3410   tty->print_cr("locals: " INTPTR_FORMAT, (uintptr_t) this->_locals);
3411   tty->print_cr("constants: " INTPTR_FORMAT, (uintptr_t) this->_constants);
3412   {
3413     ResourceMark rm;
3414     char *method_name = _method->name_and_sig_as_C_string();
3415     tty->print_cr("method: " INTPTR_FORMAT "[ %s ]",  (uintptr_t) this->_method, method_name);
3416   }
3417   tty->print_cr("mdx: " INTPTR_FORMAT, (uintptr_t) this->_mdx);
3418   tty->print_cr("stack: " INTPTR_FORMAT, (uintptr_t) this->_stack);
3419   tty->print_cr("msg: %s", C_msg(this->_msg));
3420   tty->print_cr("result_to_call._callee: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee);
3421   tty->print_cr("result_to_call._callee_entry_point: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee_entry_point);
3422   tty->print_cr("result_to_call._bcp_advance: %d ", this->_result._to_call._bcp_advance);
3423   tty->print_cr("osr._osr_buf: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_buf);
3424   tty->print_cr("osr._osr_entry: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_entry);
3425   tty->print_cr("prev_link: " INTPTR_FORMAT, (uintptr_t) this->_prev_link);
3426   tty->print_cr("native_mirror: " INTPTR_FORMAT, (uintptr_t) p2i(this->_oop_temp));
3427   tty->print_cr("stack_base: " INTPTR_FORMAT, (uintptr_t) this->_stack_base);
3428   tty->print_cr("stack_limit: " INTPTR_FORMAT, (uintptr_t) this->_stack_limit);
3429   tty->print_cr("monitor_base: " INTPTR_FORMAT, (uintptr_t) this->_monitor_base);
3430 #ifdef SPARC
3431   tty->print_cr("last_Java_pc: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_pc);
3432   tty->print_cr("frame_bottom: " INTPTR_FORMAT, (uintptr_t) this->_frame_bottom);
3433   tty->print_cr("&native_fresult: " INTPTR_FORMAT, (uintptr_t) &this->_native_fresult);
3434   tty->print_cr("native_lresult: " INTPTR_FORMAT, (uintptr_t) this->_native_lresult);
3435 #endif
3436 #if !defined(ZERO) && defined(PPC)
3437   tty->print_cr("last_Java_fp: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_fp);
3438 #endif // !ZERO
3439   tty->print_cr("self_link: " INTPTR_FORMAT, (uintptr_t) this->_self_link);
3440 }
3441 
3442 extern "C" {
3443   void PI(uintptr_t arg) {
3444     ((BytecodeInterpreter*)arg)->print();
3445   }
3446 }
3447 #endif // PRODUCT
3448 
3449 #endif // JVMTI
3450 #endif // CC_INTERP