1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/block.hpp"
  39 #include "opto/c2compiler.hpp"
  40 #include "opto/callGenerator.hpp"
  41 #include "opto/callnode.hpp"
  42 #include "opto/castnode.hpp"
  43 #include "opto/cfgnode.hpp"
  44 #include "opto/chaitin.hpp"
  45 #include "opto/compile.hpp"
  46 #include "opto/connode.hpp"
  47 #include "opto/convertnode.hpp"
  48 #include "opto/divnode.hpp"
  49 #include "opto/escape.hpp"
  50 #include "opto/idealGraphPrinter.hpp"
  51 #include "opto/loopnode.hpp"
  52 #include "opto/machnode.hpp"
  53 #include "opto/macro.hpp"
  54 #include "opto/matcher.hpp"
  55 #include "opto/mathexactnode.hpp"
  56 #include "opto/memnode.hpp"
  57 #include "opto/mulnode.hpp"
  58 #include "opto/narrowptrnode.hpp"
  59 #include "opto/node.hpp"
  60 #include "opto/opcodes.hpp"
  61 #include "opto/output.hpp"
  62 #include "opto/parse.hpp"
  63 #include "opto/phaseX.hpp"
  64 #include "opto/rootnode.hpp"
  65 #include "opto/runtime.hpp"
  66 #include "opto/stringopts.hpp"
  67 #include "opto/type.hpp"
  68 #include "opto/vectornode.hpp"
  69 #include "runtime/arguments.hpp"
  70 #include "runtime/sharedRuntime.hpp"
  71 #include "runtime/signature.hpp"
  72 #include "runtime/stubRoutines.hpp"
  73 #include "runtime/timer.hpp"
  74 #include "utilities/copy.hpp"
  75 
  76 
  77 // -------------------- Compile::mach_constant_base_node -----------------------
  78 // Constant table base node singleton.
  79 MachConstantBaseNode* Compile::mach_constant_base_node() {
  80   if (_mach_constant_base_node == NULL) {
  81     _mach_constant_base_node = new MachConstantBaseNode();
  82     _mach_constant_base_node->add_req(C->root());
  83   }
  84   return _mach_constant_base_node;
  85 }
  86 
  87 
  88 /// Support for intrinsics.
  89 
  90 // Return the index at which m must be inserted (or already exists).
  91 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
  92 class IntrinsicDescPair {
  93  private:
  94   ciMethod* _m;
  95   bool _is_virtual;
  96  public:
  97   IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
  98   static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
  99     ciMethod* m= elt->method();
 100     ciMethod* key_m = key->_m;
 101     if (key_m < m)      return -1;
 102     else if (key_m > m) return 1;
 103     else {
 104       bool is_virtual = elt->is_virtual();
 105       bool key_virtual = key->_is_virtual;
 106       if (key_virtual < is_virtual)      return -1;
 107       else if (key_virtual > is_virtual) return 1;
 108       else                               return 0;
 109     }
 110   }
 111 };
 112 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
 113 #ifdef ASSERT
 114   for (int i = 1; i < _intrinsics->length(); i++) {
 115     CallGenerator* cg1 = _intrinsics->at(i-1);
 116     CallGenerator* cg2 = _intrinsics->at(i);
 117     assert(cg1->method() != cg2->method()
 118            ? cg1->method()     < cg2->method()
 119            : cg1->is_virtual() < cg2->is_virtual(),
 120            "compiler intrinsics list must stay sorted");
 121   }
 122 #endif
 123   IntrinsicDescPair pair(m, is_virtual);
 124   return _intrinsics->find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
 125 }
 126 
 127 void Compile::register_intrinsic(CallGenerator* cg) {
 128   if (_intrinsics == NULL) {
 129     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 130   }
 131   int len = _intrinsics->length();
 132   bool found = false;
 133   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
 134   assert(!found, "registering twice");
 135   _intrinsics->insert_before(index, cg);
 136   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 137 }
 138 
 139 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 140   assert(m->is_loaded(), "don't try this on unloaded methods");
 141   if (_intrinsics != NULL) {
 142     bool found = false;
 143     int index = intrinsic_insertion_index(m, is_virtual, found);
 144      if (found) {
 145       return _intrinsics->at(index);
 146     }
 147   }
 148   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 149   if (m->intrinsic_id() != vmIntrinsics::_none &&
 150       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 151     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 152     if (cg != NULL) {
 153       // Save it for next time:
 154       register_intrinsic(cg);
 155       return cg;
 156     } else {
 157       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 158     }
 159   }
 160   return NULL;
 161 }
 162 
 163 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 164 // in library_call.cpp.
 165 
 166 
 167 #ifndef PRODUCT
 168 // statistics gathering...
 169 
 170 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 171 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 172 
 173 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 174   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 175   int oflags = _intrinsic_hist_flags[id];
 176   assert(flags != 0, "what happened?");
 177   if (is_virtual) {
 178     flags |= _intrinsic_virtual;
 179   }
 180   bool changed = (flags != oflags);
 181   if ((flags & _intrinsic_worked) != 0) {
 182     juint count = (_intrinsic_hist_count[id] += 1);
 183     if (count == 1) {
 184       changed = true;           // first time
 185     }
 186     // increment the overall count also:
 187     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 188   }
 189   if (changed) {
 190     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 191       // Something changed about the intrinsic's virtuality.
 192       if ((flags & _intrinsic_virtual) != 0) {
 193         // This is the first use of this intrinsic as a virtual call.
 194         if (oflags != 0) {
 195           // We already saw it as a non-virtual, so note both cases.
 196           flags |= _intrinsic_both;
 197         }
 198       } else if ((oflags & _intrinsic_both) == 0) {
 199         // This is the first use of this intrinsic as a non-virtual
 200         flags |= _intrinsic_both;
 201       }
 202     }
 203     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 204   }
 205   // update the overall flags also:
 206   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 207   return changed;
 208 }
 209 
 210 static char* format_flags(int flags, char* buf) {
 211   buf[0] = 0;
 212   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 213   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 214   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 215   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 216   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 217   if (buf[0] == 0)  strcat(buf, ",");
 218   assert(buf[0] == ',', "must be");
 219   return &buf[1];
 220 }
 221 
 222 void Compile::print_intrinsic_statistics() {
 223   char flagsbuf[100];
 224   ttyLocker ttyl;
 225   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 226   tty->print_cr("Compiler intrinsic usage:");
 227   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 228   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 229   #define PRINT_STAT_LINE(name, c, f) \
 230     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 231   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 232     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 233     int   flags = _intrinsic_hist_flags[id];
 234     juint count = _intrinsic_hist_count[id];
 235     if ((flags | count) != 0) {
 236       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 237     }
 238   }
 239   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 240   if (xtty != NULL)  xtty->tail("statistics");
 241 }
 242 
 243 void Compile::print_statistics() {
 244   { ttyLocker ttyl;
 245     if (xtty != NULL)  xtty->head("statistics type='opto'");
 246     Parse::print_statistics();
 247     PhaseCCP::print_statistics();
 248     PhaseRegAlloc::print_statistics();
 249     Scheduling::print_statistics();
 250     PhasePeephole::print_statistics();
 251     PhaseIdealLoop::print_statistics();
 252     if (xtty != NULL)  xtty->tail("statistics");
 253   }
 254   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 255     // put this under its own <statistics> element.
 256     print_intrinsic_statistics();
 257   }
 258 }
 259 #endif //PRODUCT
 260 
 261 // Support for bundling info
 262 Bundle* Compile::node_bundling(const Node *n) {
 263   assert(valid_bundle_info(n), "oob");
 264   return &_node_bundling_base[n->_idx];
 265 }
 266 
 267 bool Compile::valid_bundle_info(const Node *n) {
 268   return (_node_bundling_limit > n->_idx);
 269 }
 270 
 271 
 272 void Compile::gvn_replace_by(Node* n, Node* nn) {
 273   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 274     Node* use = n->last_out(i);
 275     bool is_in_table = initial_gvn()->hash_delete(use);
 276     uint uses_found = 0;
 277     for (uint j = 0; j < use->len(); j++) {
 278       if (use->in(j) == n) {
 279         if (j < use->req())
 280           use->set_req(j, nn);
 281         else
 282           use->set_prec(j, nn);
 283         uses_found++;
 284       }
 285     }
 286     if (is_in_table) {
 287       // reinsert into table
 288       initial_gvn()->hash_find_insert(use);
 289     }
 290     record_for_igvn(use);
 291     i -= uses_found;    // we deleted 1 or more copies of this edge
 292   }
 293 }
 294 
 295 
 296 static inline bool not_a_node(const Node* n) {
 297   if (n == NULL)                   return true;
 298   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 299   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 300   return false;
 301 }
 302 
 303 // Identify all nodes that are reachable from below, useful.
 304 // Use breadth-first pass that records state in a Unique_Node_List,
 305 // recursive traversal is slower.
 306 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 307   int estimated_worklist_size = live_nodes();
 308   useful.map( estimated_worklist_size, NULL );  // preallocate space
 309 
 310   // Initialize worklist
 311   if (root() != NULL)     { useful.push(root()); }
 312   // If 'top' is cached, declare it useful to preserve cached node
 313   if( cached_top_node() ) { useful.push(cached_top_node()); }
 314 
 315   // Push all useful nodes onto the list, breadthfirst
 316   for( uint next = 0; next < useful.size(); ++next ) {
 317     assert( next < unique(), "Unique useful nodes < total nodes");
 318     Node *n  = useful.at(next);
 319     uint max = n->len();
 320     for( uint i = 0; i < max; ++i ) {
 321       Node *m = n->in(i);
 322       if (not_a_node(m))  continue;
 323       useful.push(m);
 324     }
 325   }
 326 }
 327 
 328 // Update dead_node_list with any missing dead nodes using useful
 329 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 330 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 331   uint max_idx = unique();
 332   VectorSet& useful_node_set = useful.member_set();
 333 
 334   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 335     // If node with index node_idx is not in useful set,
 336     // mark it as dead in dead node list.
 337     if (! useful_node_set.test(node_idx) ) {
 338       record_dead_node(node_idx);
 339     }
 340   }
 341 }
 342 
 343 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 344   int shift = 0;
 345   for (int i = 0; i < inlines->length(); i++) {
 346     CallGenerator* cg = inlines->at(i);
 347     CallNode* call = cg->call_node();
 348     if (shift > 0) {
 349       inlines->at_put(i-shift, cg);
 350     }
 351     if (!useful.member(call)) {
 352       shift++;
 353     }
 354   }
 355   inlines->trunc_to(inlines->length()-shift);
 356 }
 357 
 358 // Disconnect all useless nodes by disconnecting those at the boundary.
 359 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 360   uint next = 0;
 361   while (next < useful.size()) {
 362     Node *n = useful.at(next++);
 363     if (n->is_SafePoint()) {
 364       // We're done with a parsing phase. Replaced nodes are not valid
 365       // beyond that point.
 366       n->as_SafePoint()->delete_replaced_nodes();
 367     }
 368     // Use raw traversal of out edges since this code removes out edges
 369     int max = n->outcnt();
 370     for (int j = 0; j < max; ++j) {
 371       Node* child = n->raw_out(j);
 372       if (! useful.member(child)) {
 373         assert(!child->is_top() || child != top(),
 374                "If top is cached in Compile object it is in useful list");
 375         // Only need to remove this out-edge to the useless node
 376         n->raw_del_out(j);
 377         --j;
 378         --max;
 379       }
 380     }
 381     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 382       record_for_igvn(n->unique_out());
 383     }
 384   }
 385   // Remove useless macro and predicate opaq nodes
 386   for (int i = C->macro_count()-1; i >= 0; i--) {
 387     Node* n = C->macro_node(i);
 388     if (!useful.member(n)) {
 389       remove_macro_node(n);
 390     }
 391   }
 392   // Remove useless CastII nodes with range check dependency
 393   for (int i = range_check_cast_count() - 1; i >= 0; i--) {
 394     Node* cast = range_check_cast_node(i);
 395     if (!useful.member(cast)) {
 396       remove_range_check_cast(cast);
 397     }
 398   }
 399   // Remove useless expensive node
 400   for (int i = C->expensive_count()-1; i >= 0; i--) {
 401     Node* n = C->expensive_node(i);
 402     if (!useful.member(n)) {
 403       remove_expensive_node(n);
 404     }
 405   }
 406   // clean up the late inline lists
 407   remove_useless_late_inlines(&_string_late_inlines, useful);
 408   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 409   remove_useless_late_inlines(&_late_inlines, useful);
 410   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 411 }
 412 
 413 //------------------------------frame_size_in_words-----------------------------
 414 // frame_slots in units of words
 415 int Compile::frame_size_in_words() const {
 416   // shift is 0 in LP32 and 1 in LP64
 417   const int shift = (LogBytesPerWord - LogBytesPerInt);
 418   int words = _frame_slots >> shift;
 419   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 420   return words;
 421 }
 422 
 423 // To bang the stack of this compiled method we use the stack size
 424 // that the interpreter would need in case of a deoptimization. This
 425 // removes the need to bang the stack in the deoptimization blob which
 426 // in turn simplifies stack overflow handling.
 427 int Compile::bang_size_in_bytes() const {
 428   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
 429 }
 430 
 431 // ============================================================================
 432 //------------------------------CompileWrapper---------------------------------
 433 class CompileWrapper : public StackObj {
 434   Compile *const _compile;
 435  public:
 436   CompileWrapper(Compile* compile);
 437 
 438   ~CompileWrapper();
 439 };
 440 
 441 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 442   // the Compile* pointer is stored in the current ciEnv:
 443   ciEnv* env = compile->env();
 444   assert(env == ciEnv::current(), "must already be a ciEnv active");
 445   assert(env->compiler_data() == NULL, "compile already active?");
 446   env->set_compiler_data(compile);
 447   assert(compile == Compile::current(), "sanity");
 448 
 449   compile->set_type_dict(NULL);
 450   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 451   compile->clone_map().set_clone_idx(0);
 452   compile->set_type_hwm(NULL);
 453   compile->set_type_last_size(0);
 454   compile->set_last_tf(NULL, NULL);
 455   compile->set_indexSet_arena(NULL);
 456   compile->set_indexSet_free_block_list(NULL);
 457   compile->init_type_arena();
 458   Type::Initialize(compile);
 459   _compile->set_scratch_buffer_blob(NULL);
 460   _compile->begin_method();
 461   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
 462 }
 463 CompileWrapper::~CompileWrapper() {
 464   _compile->end_method();
 465   if (_compile->scratch_buffer_blob() != NULL)
 466     BufferBlob::free(_compile->scratch_buffer_blob());
 467   _compile->env()->set_compiler_data(NULL);
 468 }
 469 
 470 
 471 //----------------------------print_compile_messages---------------------------
 472 void Compile::print_compile_messages() {
 473 #ifndef PRODUCT
 474   // Check if recompiling
 475   if (_subsume_loads == false && PrintOpto) {
 476     // Recompiling without allowing machine instructions to subsume loads
 477     tty->print_cr("*********************************************************");
 478     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 479     tty->print_cr("*********************************************************");
 480   }
 481   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 482     // Recompiling without escape analysis
 483     tty->print_cr("*********************************************************");
 484     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 485     tty->print_cr("*********************************************************");
 486   }
 487   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 488     // Recompiling without boxing elimination
 489     tty->print_cr("*********************************************************");
 490     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 491     tty->print_cr("*********************************************************");
 492   }
 493   if (C->directive()->BreakAtCompileOption) {
 494     // Open the debugger when compiling this method.
 495     tty->print("### Breaking when compiling: ");
 496     method()->print_short_name();
 497     tty->cr();
 498     BREAKPOINT;
 499   }
 500 
 501   if( PrintOpto ) {
 502     if (is_osr_compilation()) {
 503       tty->print("[OSR]%3d", _compile_id);
 504     } else {
 505       tty->print("%3d", _compile_id);
 506     }
 507   }
 508 #endif
 509 }
 510 
 511 
 512 //-----------------------init_scratch_buffer_blob------------------------------
 513 // Construct a temporary BufferBlob and cache it for this compile.
 514 void Compile::init_scratch_buffer_blob(int const_size) {
 515   // If there is already a scratch buffer blob allocated and the
 516   // constant section is big enough, use it.  Otherwise free the
 517   // current and allocate a new one.
 518   BufferBlob* blob = scratch_buffer_blob();
 519   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 520     // Use the current blob.
 521   } else {
 522     if (blob != NULL) {
 523       BufferBlob::free(blob);
 524     }
 525 
 526     ResourceMark rm;
 527     _scratch_const_size = const_size;
 528     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 529     blob = BufferBlob::create("Compile::scratch_buffer", size);
 530     // Record the buffer blob for next time.
 531     set_scratch_buffer_blob(blob);
 532     // Have we run out of code space?
 533     if (scratch_buffer_blob() == NULL) {
 534       // Let CompilerBroker disable further compilations.
 535       record_failure("Not enough space for scratch buffer in CodeCache");
 536       return;
 537     }
 538   }
 539 
 540   // Initialize the relocation buffers
 541   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 542   set_scratch_locs_memory(locs_buf);
 543 }
 544 
 545 
 546 //-----------------------scratch_emit_size-------------------------------------
 547 // Helper function that computes size by emitting code
 548 uint Compile::scratch_emit_size(const Node* n) {
 549   // Start scratch_emit_size section.
 550   set_in_scratch_emit_size(true);
 551 
 552   // Emit into a trash buffer and count bytes emitted.
 553   // This is a pretty expensive way to compute a size,
 554   // but it works well enough if seldom used.
 555   // All common fixed-size instructions are given a size
 556   // method by the AD file.
 557   // Note that the scratch buffer blob and locs memory are
 558   // allocated at the beginning of the compile task, and
 559   // may be shared by several calls to scratch_emit_size.
 560   // The allocation of the scratch buffer blob is particularly
 561   // expensive, since it has to grab the code cache lock.
 562   BufferBlob* blob = this->scratch_buffer_blob();
 563   assert(blob != NULL, "Initialize BufferBlob at start");
 564   assert(blob->size() > MAX_inst_size, "sanity");
 565   relocInfo* locs_buf = scratch_locs_memory();
 566   address blob_begin = blob->content_begin();
 567   address blob_end   = (address)locs_buf;
 568   assert(blob->contains(blob_end), "sanity");
 569   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 570   buf.initialize_consts_size(_scratch_const_size);
 571   buf.initialize_stubs_size(MAX_stubs_size);
 572   assert(locs_buf != NULL, "sanity");
 573   int lsize = MAX_locs_size / 3;
 574   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 575   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 576   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 577   // Mark as scratch buffer.
 578   buf.consts()->set_scratch_emit();
 579   buf.insts()->set_scratch_emit();
 580   buf.stubs()->set_scratch_emit();
 581 
 582   // Do the emission.
 583 
 584   Label fakeL; // Fake label for branch instructions.
 585   Label*   saveL = NULL;
 586   uint save_bnum = 0;
 587   bool is_branch = n->is_MachBranch();
 588   if (is_branch) {
 589     MacroAssembler masm(&buf);
 590     masm.bind(fakeL);
 591     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 592     n->as_MachBranch()->label_set(&fakeL, 0);
 593   }
 594   n->emit(buf, this->regalloc());
 595 
 596   // Emitting into the scratch buffer should not fail
 597   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
 598 
 599   if (is_branch) // Restore label.
 600     n->as_MachBranch()->label_set(saveL, save_bnum);
 601 
 602   // End scratch_emit_size section.
 603   set_in_scratch_emit_size(false);
 604 
 605   return buf.insts_size();
 606 }
 607 
 608 
 609 // ============================================================================
 610 //------------------------------Compile standard-------------------------------
 611 debug_only( int Compile::_debug_idx = 100000; )
 612 
 613 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 614 // the continuation bci for on stack replacement.
 615 
 616 
 617 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 618                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, DirectiveSet* directive)
 619                 : Phase(Compiler),
 620                   _env(ci_env),
 621                   _directive(directive),
 622                   _log(ci_env->log()),
 623                   _compile_id(ci_env->compile_id()),
 624                   _save_argument_registers(false),
 625                   _stub_name(NULL),
 626                   _stub_function(NULL),
 627                   _stub_entry_point(NULL),
 628                   _method(target),
 629                   _entry_bci(osr_bci),
 630                   _initial_gvn(NULL),
 631                   _for_igvn(NULL),
 632                   _warm_calls(NULL),
 633                   _subsume_loads(subsume_loads),
 634                   _do_escape_analysis(do_escape_analysis),
 635                   _eliminate_boxing(eliminate_boxing),
 636                   _failure_reason(NULL),
 637                   _code_buffer("Compile::Fill_buffer"),
 638                   _orig_pc_slot(0),
 639                   _orig_pc_slot_offset_in_bytes(0),
 640                   _has_method_handle_invokes(false),
 641                   _mach_constant_base_node(NULL),
 642                   _node_bundling_limit(0),
 643                   _node_bundling_base(NULL),
 644                   _java_calls(0),
 645                   _inner_loops(0),
 646                   _scratch_const_size(-1),
 647                   _in_scratch_emit_size(false),
 648                   _dead_node_list(comp_arena()),
 649                   _dead_node_count(0),
 650 #ifndef PRODUCT
 651                   _trace_opto_output(directive->TraceOptoOutputOption),
 652                   _in_dump_cnt(0),
 653                   _printer(IdealGraphPrinter::printer()),
 654 #endif
 655                   _congraph(NULL),
 656                   _comp_arena(mtCompiler),
 657                   _node_arena(mtCompiler),
 658                   _old_arena(mtCompiler),
 659                   _Compile_types(mtCompiler),
 660                   _replay_inline_data(NULL),
 661                   _late_inlines(comp_arena(), 2, 0, NULL),
 662                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 663                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 664                   _late_inlines_pos(0),
 665                   _number_of_mh_late_inlines(0),
 666                   _inlining_progress(false),
 667                   _inlining_incrementally(false),
 668                   _print_inlining_list(NULL),
 669                   _print_inlining_stream(NULL),
 670                   _print_inlining_idx(0),
 671                   _print_inlining_output(NULL),
 672                   _interpreter_frame_size(0),
 673                   _max_node_limit(MaxNodeLimit),
 674                   _has_reserved_stack_access(target->has_reserved_stack_access()) {
 675   C = this;
 676 #ifndef PRODUCT
 677   if (_printer != NULL) {
 678     _printer->set_compile(this);
 679   }
 680 #endif
 681   CompileWrapper cw(this);
 682 
 683   if (CITimeVerbose) {
 684     tty->print(" ");
 685     target->holder()->name()->print();
 686     tty->print(".");
 687     target->print_short_name();
 688     tty->print("  ");
 689   }
 690   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 691   TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
 692 
 693 #ifndef PRODUCT
 694   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
 695   if (!print_opto_assembly) {
 696     bool print_assembly = directive->PrintAssemblyOption;
 697     if (print_assembly && !Disassembler::can_decode()) {
 698       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 699       print_opto_assembly = true;
 700     }
 701   }
 702   set_print_assembly(print_opto_assembly);
 703   set_parsed_irreducible_loop(false);
 704 
 705   if (directive->ReplayInlineOption) {
 706     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 707   }
 708 #endif
 709   set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
 710   set_print_intrinsics(directive->PrintIntrinsicsOption);
 711   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 712 
 713   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 714     // Make sure the method being compiled gets its own MDO,
 715     // so we can at least track the decompile_count().
 716     // Need MDO to record RTM code generation state.
 717     method()->ensure_method_data();
 718   }
 719 
 720   Init(::AliasLevel);
 721 
 722 
 723   print_compile_messages();
 724 
 725   _ilt = InlineTree::build_inline_tree_root();
 726 
 727   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 728   assert(num_alias_types() >= AliasIdxRaw, "");
 729 
 730 #define MINIMUM_NODE_HASH  1023
 731   // Node list that Iterative GVN will start with
 732   Unique_Node_List for_igvn(comp_arena());
 733   set_for_igvn(&for_igvn);
 734 
 735   // GVN that will be run immediately on new nodes
 736   uint estimated_size = method()->code_size()*4+64;
 737   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 738   PhaseGVN gvn(node_arena(), estimated_size);
 739   set_initial_gvn(&gvn);
 740 
 741   print_inlining_init();
 742   { // Scope for timing the parser
 743     TracePhase tp("parse", &timers[_t_parser]);
 744 
 745     // Put top into the hash table ASAP.
 746     initial_gvn()->transform_no_reclaim(top());
 747 
 748     // Set up tf(), start(), and find a CallGenerator.
 749     CallGenerator* cg = NULL;
 750     if (is_osr_compilation()) {
 751       const TypeTuple *domain = StartOSRNode::osr_domain();
 752       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 753       init_tf(TypeFunc::make(domain, range));
 754       StartNode* s = new StartOSRNode(root(), domain);
 755       initial_gvn()->set_type_bottom(s);
 756       init_start(s);
 757       cg = CallGenerator::for_osr(method(), entry_bci());
 758     } else {
 759       // Normal case.
 760       init_tf(TypeFunc::make(method()));
 761       StartNode* s = new StartNode(root(), tf()->domain());
 762       initial_gvn()->set_type_bottom(s);
 763       init_start(s);
 764       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) {
 765         // With java.lang.ref.reference.get() we must go through the
 766         // intrinsic - even when get() is the root
 767         // method of the compile - so that, if necessary, the value in
 768         // the referent field of the reference object gets recorded by
 769         // the pre-barrier code.
 770         cg = find_intrinsic(method(), false);
 771       }
 772       if (cg == NULL) {
 773         float past_uses = method()->interpreter_invocation_count();
 774         float expected_uses = past_uses;
 775         cg = CallGenerator::for_inline(method(), expected_uses);
 776       }
 777     }
 778     if (failing())  return;
 779     if (cg == NULL) {
 780       record_method_not_compilable("cannot parse method");
 781       return;
 782     }
 783     JVMState* jvms = build_start_state(start(), tf());
 784     if ((jvms = cg->generate(jvms)) == NULL) {
 785       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
 786         record_method_not_compilable("method parse failed");
 787       }
 788       return;
 789     }
 790     GraphKit kit(jvms);
 791 
 792     if (!kit.stopped()) {
 793       // Accept return values, and transfer control we know not where.
 794       // This is done by a special, unique ReturnNode bound to root.
 795       return_values(kit.jvms());
 796     }
 797 
 798     if (kit.has_exceptions()) {
 799       // Any exceptions that escape from this call must be rethrown
 800       // to whatever caller is dynamically above us on the stack.
 801       // This is done by a special, unique RethrowNode bound to root.
 802       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 803     }
 804 
 805     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 806 
 807     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 808       inline_string_calls(true);
 809     }
 810 
 811     if (failing())  return;
 812 
 813     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 814 
 815     // Remove clutter produced by parsing.
 816     if (!failing()) {
 817       ResourceMark rm;
 818       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 819     }
 820   }
 821 
 822   // Note:  Large methods are capped off in do_one_bytecode().
 823   if (failing())  return;
 824 
 825   // After parsing, node notes are no longer automagic.
 826   // They must be propagated by register_new_node_with_optimizer(),
 827   // clone(), or the like.
 828   set_default_node_notes(NULL);
 829 
 830   for (;;) {
 831     int successes = Inline_Warm();
 832     if (failing())  return;
 833     if (successes == 0)  break;
 834   }
 835 
 836   // Drain the list.
 837   Finish_Warm();
 838 #ifndef PRODUCT
 839   if (_printer && _printer->should_print(1)) {
 840     _printer->print_inlining();
 841   }
 842 #endif
 843 
 844   if (failing())  return;
 845   NOT_PRODUCT( verify_graph_edges(); )
 846 
 847   // Now optimize
 848   Optimize();
 849   if (failing())  return;
 850   NOT_PRODUCT( verify_graph_edges(); )
 851 
 852 #ifndef PRODUCT
 853   if (PrintIdeal) {
 854     ttyLocker ttyl;  // keep the following output all in one block
 855     // This output goes directly to the tty, not the compiler log.
 856     // To enable tools to match it up with the compilation activity,
 857     // be sure to tag this tty output with the compile ID.
 858     if (xtty != NULL) {
 859       xtty->head("ideal compile_id='%d'%s", compile_id(),
 860                  is_osr_compilation()    ? " compile_kind='osr'" :
 861                  "");
 862     }
 863     root()->dump(9999);
 864     if (xtty != NULL) {
 865       xtty->tail("ideal");
 866     }
 867   }
 868 #endif
 869 
 870   NOT_PRODUCT( verify_barriers(); )
 871 
 872   // Dump compilation data to replay it.
 873   if (directive->DumpReplayOption) {
 874     env()->dump_replay_data(_compile_id);
 875   }
 876   if (directive->DumpInlineOption && (ilt() != NULL)) {
 877     env()->dump_inline_data(_compile_id);
 878   }
 879 
 880   // Now that we know the size of all the monitors we can add a fixed slot
 881   // for the original deopt pc.
 882 
 883   _orig_pc_slot =  fixed_slots();
 884   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 885   set_fixed_slots(next_slot);
 886 
 887   // Compute when to use implicit null checks. Used by matching trap based
 888   // nodes and NullCheck optimization.
 889   set_allowed_deopt_reasons();
 890 
 891   // Now generate code
 892   Code_Gen();
 893   if (failing())  return;
 894 
 895   // Check if we want to skip execution of all compiled code.
 896   {
 897 #ifndef PRODUCT
 898     if (OptoNoExecute) {
 899       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 900       return;
 901     }
 902 #endif
 903     TracePhase tp("install_code", &timers[_t_registerMethod]);
 904 
 905     if (is_osr_compilation()) {
 906       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 907       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 908     } else {
 909       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 910       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 911     }
 912 
 913     env()->register_method(_method, _entry_bci,
 914                            &_code_offsets,
 915                            _orig_pc_slot_offset_in_bytes,
 916                            code_buffer(),
 917                            frame_size_in_words(), _oop_map_set,
 918                            &_handler_table, &_inc_table,
 919                            compiler,
 920                            has_unsafe_access(),
 921                            SharedRuntime::is_wide_vector(max_vector_size()),
 922                            rtm_state()
 923                            );
 924 
 925     if (log() != NULL) // Print code cache state into compiler log
 926       log()->code_cache_state();
 927   }
 928 }
 929 
 930 //------------------------------Compile----------------------------------------
 931 // Compile a runtime stub
 932 Compile::Compile( ciEnv* ci_env,
 933                   TypeFunc_generator generator,
 934                   address stub_function,
 935                   const char *stub_name,
 936                   int is_fancy_jump,
 937                   bool pass_tls,
 938                   bool save_arg_registers,
 939                   bool return_pc,
 940                   DirectiveSet* directive)
 941   : Phase(Compiler),
 942     _env(ci_env),
 943     _directive(directive),
 944     _log(ci_env->log()),
 945     _compile_id(0),
 946     _save_argument_registers(save_arg_registers),
 947     _method(NULL),
 948     _stub_name(stub_name),
 949     _stub_function(stub_function),
 950     _stub_entry_point(NULL),
 951     _entry_bci(InvocationEntryBci),
 952     _initial_gvn(NULL),
 953     _for_igvn(NULL),
 954     _warm_calls(NULL),
 955     _orig_pc_slot(0),
 956     _orig_pc_slot_offset_in_bytes(0),
 957     _subsume_loads(true),
 958     _do_escape_analysis(false),
 959     _eliminate_boxing(false),
 960     _failure_reason(NULL),
 961     _code_buffer("Compile::Fill_buffer"),
 962     _has_method_handle_invokes(false),
 963     _mach_constant_base_node(NULL),
 964     _node_bundling_limit(0),
 965     _node_bundling_base(NULL),
 966     _java_calls(0),
 967     _inner_loops(0),
 968 #ifndef PRODUCT
 969     _trace_opto_output(directive->TraceOptoOutputOption),
 970     _in_dump_cnt(0),
 971     _printer(NULL),
 972 #endif
 973     _comp_arena(mtCompiler),
 974     _node_arena(mtCompiler),
 975     _old_arena(mtCompiler),
 976     _Compile_types(mtCompiler),
 977     _dead_node_list(comp_arena()),
 978     _dead_node_count(0),
 979     _congraph(NULL),
 980     _replay_inline_data(NULL),
 981     _number_of_mh_late_inlines(0),
 982     _inlining_progress(false),
 983     _inlining_incrementally(false),
 984     _print_inlining_list(NULL),
 985     _print_inlining_stream(NULL),
 986     _print_inlining_idx(0),
 987     _print_inlining_output(NULL),
 988     _allowed_reasons(0),
 989     _interpreter_frame_size(0),
 990     _max_node_limit(MaxNodeLimit) {
 991   C = this;
 992 
 993   TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
 994   TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
 995 
 996 #ifndef PRODUCT
 997   set_print_assembly(PrintFrameConverterAssembly);
 998   set_parsed_irreducible_loop(false);
 999 #endif
1000   set_has_irreducible_loop(false); // no loops
1001 
1002   CompileWrapper cw(this);
1003   Init(/*AliasLevel=*/ 0);
1004   init_tf((*generator)());
1005 
1006   {
1007     // The following is a dummy for the sake of GraphKit::gen_stub
1008     Unique_Node_List for_igvn(comp_arena());
1009     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1010     PhaseGVN gvn(Thread::current()->resource_area(),255);
1011     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1012     gvn.transform_no_reclaim(top());
1013 
1014     GraphKit kit;
1015     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1016   }
1017 
1018   NOT_PRODUCT( verify_graph_edges(); )
1019   Code_Gen();
1020   if (failing())  return;
1021 
1022 
1023   // Entry point will be accessed using compile->stub_entry_point();
1024   if (code_buffer() == NULL) {
1025     Matcher::soft_match_failure();
1026   } else {
1027     if (PrintAssembly && (WizardMode || Verbose))
1028       tty->print_cr("### Stub::%s", stub_name);
1029 
1030     if (!failing()) {
1031       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1032 
1033       // Make the NMethod
1034       // For now we mark the frame as never safe for profile stackwalking
1035       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1036                                                       code_buffer(),
1037                                                       CodeOffsets::frame_never_safe,
1038                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1039                                                       frame_size_in_words(),
1040                                                       _oop_map_set,
1041                                                       save_arg_registers);
1042       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1043 
1044       _stub_entry_point = rs->entry_point();
1045     }
1046   }
1047 }
1048 
1049 //------------------------------Init-------------------------------------------
1050 // Prepare for a single compilation
1051 void Compile::Init(int aliaslevel) {
1052   _unique  = 0;
1053   _regalloc = NULL;
1054 
1055   _tf      = NULL;  // filled in later
1056   _top     = NULL;  // cached later
1057   _matcher = NULL;  // filled in later
1058   _cfg     = NULL;  // filled in later
1059 
1060   set_24_bit_selection_and_mode(Use24BitFP, false);
1061 
1062   _node_note_array = NULL;
1063   _default_node_notes = NULL;
1064   DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1065 
1066   _immutable_memory = NULL; // filled in at first inquiry
1067 
1068   // Globally visible Nodes
1069   // First set TOP to NULL to give safe behavior during creation of RootNode
1070   set_cached_top_node(NULL);
1071   set_root(new RootNode());
1072   // Now that you have a Root to point to, create the real TOP
1073   set_cached_top_node( new ConNode(Type::TOP) );
1074   set_recent_alloc(NULL, NULL);
1075 
1076   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1077   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1078   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1079   env()->set_dependencies(new Dependencies(env()));
1080 
1081   _fixed_slots = 0;
1082   set_has_split_ifs(false);
1083   set_has_loops(has_method() && method()->has_loops()); // first approximation
1084   set_has_stringbuilder(false);
1085   set_has_boxed_value(false);
1086   _trap_can_recompile = false;  // no traps emitted yet
1087   _major_progress = true; // start out assuming good things will happen
1088   set_has_unsafe_access(false);
1089   set_max_vector_size(0);
1090   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1091   set_decompile_count(0);
1092 
1093   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1094   set_num_loop_opts(LoopOptsCount);
1095   set_do_inlining(Inline);
1096   set_max_inline_size(MaxInlineSize);
1097   set_freq_inline_size(FreqInlineSize);
1098   set_do_scheduling(OptoScheduling);
1099   set_do_count_invocations(false);
1100   set_do_method_data_update(false);
1101 
1102   set_do_vector_loop(false);
1103 
1104   if (AllowVectorizeOnDemand) {
1105     if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) {
1106       set_do_vector_loop(true);
1107       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1108     } else if (has_method() && method()->name() != 0 &&
1109                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1110       set_do_vector_loop(true);
1111     }
1112   }
1113   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1114   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
1115 
1116   set_age_code(has_method() && method()->profile_aging());
1117   set_rtm_state(NoRTM); // No RTM lock eliding by default
1118   _max_node_limit = _directive->MaxNodeLimitOption;
1119 
1120 #if INCLUDE_RTM_OPT
1121   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1122     int rtm_state = method()->method_data()->rtm_state();
1123     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1124       // Don't generate RTM lock eliding code.
1125       set_rtm_state(NoRTM);
1126     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1127       // Generate RTM lock eliding code without abort ratio calculation code.
1128       set_rtm_state(UseRTM);
1129     } else if (UseRTMDeopt) {
1130       // Generate RTM lock eliding code and include abort ratio calculation
1131       // code if UseRTMDeopt is on.
1132       set_rtm_state(ProfileRTM);
1133     }
1134   }
1135 #endif
1136   if (debug_info()->recording_non_safepoints()) {
1137     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1138                         (comp_arena(), 8, 0, NULL));
1139     set_default_node_notes(Node_Notes::make(this));
1140   }
1141 
1142   // // -- Initialize types before each compile --
1143   // // Update cached type information
1144   // if( _method && _method->constants() )
1145   //   Type::update_loaded_types(_method, _method->constants());
1146 
1147   // Init alias_type map.
1148   if (!_do_escape_analysis && aliaslevel == 3)
1149     aliaslevel = 2;  // No unique types without escape analysis
1150   _AliasLevel = aliaslevel;
1151   const int grow_ats = 16;
1152   _max_alias_types = grow_ats;
1153   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1154   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1155   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1156   {
1157     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1158   }
1159   // Initialize the first few types.
1160   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1161   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1162   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1163   _num_alias_types = AliasIdxRaw+1;
1164   // Zero out the alias type cache.
1165   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1166   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1167   probe_alias_cache(NULL)->_index = AliasIdxTop;
1168 
1169   _intrinsics = NULL;
1170   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1171   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1172   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1173   _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1174   register_library_intrinsics();
1175 }
1176 
1177 //---------------------------init_start----------------------------------------
1178 // Install the StartNode on this compile object.
1179 void Compile::init_start(StartNode* s) {
1180   if (failing())
1181     return; // already failing
1182   assert(s == start(), "");
1183 }
1184 
1185 /**
1186  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1187  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1188  * the ideal graph.
1189  */
1190 StartNode* Compile::start() const {
1191   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
1192   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1193     Node* start = root()->fast_out(i);
1194     if (start->is_Start()) {
1195       return start->as_Start();
1196     }
1197   }
1198   fatal("Did not find Start node!");
1199   return NULL;
1200 }
1201 
1202 //-------------------------------immutable_memory-------------------------------------
1203 // Access immutable memory
1204 Node* Compile::immutable_memory() {
1205   if (_immutable_memory != NULL) {
1206     return _immutable_memory;
1207   }
1208   StartNode* s = start();
1209   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1210     Node *p = s->fast_out(i);
1211     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1212       _immutable_memory = p;
1213       return _immutable_memory;
1214     }
1215   }
1216   ShouldNotReachHere();
1217   return NULL;
1218 }
1219 
1220 //----------------------set_cached_top_node------------------------------------
1221 // Install the cached top node, and make sure Node::is_top works correctly.
1222 void Compile::set_cached_top_node(Node* tn) {
1223   if (tn != NULL)  verify_top(tn);
1224   Node* old_top = _top;
1225   _top = tn;
1226   // Calling Node::setup_is_top allows the nodes the chance to adjust
1227   // their _out arrays.
1228   if (_top != NULL)     _top->setup_is_top();
1229   if (old_top != NULL)  old_top->setup_is_top();
1230   assert(_top == NULL || top()->is_top(), "");
1231 }
1232 
1233 #ifdef ASSERT
1234 uint Compile::count_live_nodes_by_graph_walk() {
1235   Unique_Node_List useful(comp_arena());
1236   // Get useful node list by walking the graph.
1237   identify_useful_nodes(useful);
1238   return useful.size();
1239 }
1240 
1241 void Compile::print_missing_nodes() {
1242 
1243   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1244   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1245     return;
1246   }
1247 
1248   // This is an expensive function. It is executed only when the user
1249   // specifies VerifyIdealNodeCount option or otherwise knows the
1250   // additional work that needs to be done to identify reachable nodes
1251   // by walking the flow graph and find the missing ones using
1252   // _dead_node_list.
1253 
1254   Unique_Node_List useful(comp_arena());
1255   // Get useful node list by walking the graph.
1256   identify_useful_nodes(useful);
1257 
1258   uint l_nodes = C->live_nodes();
1259   uint l_nodes_by_walk = useful.size();
1260 
1261   if (l_nodes != l_nodes_by_walk) {
1262     if (_log != NULL) {
1263       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1264       _log->stamp();
1265       _log->end_head();
1266     }
1267     VectorSet& useful_member_set = useful.member_set();
1268     int last_idx = l_nodes_by_walk;
1269     for (int i = 0; i < last_idx; i++) {
1270       if (useful_member_set.test(i)) {
1271         if (_dead_node_list.test(i)) {
1272           if (_log != NULL) {
1273             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1274           }
1275           if (PrintIdealNodeCount) {
1276             // Print the log message to tty
1277               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1278               useful.at(i)->dump();
1279           }
1280         }
1281       }
1282       else if (! _dead_node_list.test(i)) {
1283         if (_log != NULL) {
1284           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1285         }
1286         if (PrintIdealNodeCount) {
1287           // Print the log message to tty
1288           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1289         }
1290       }
1291     }
1292     if (_log != NULL) {
1293       _log->tail("mismatched_nodes");
1294     }
1295   }
1296 }
1297 void Compile::record_modified_node(Node* n) {
1298   if (_modified_nodes != NULL && !_inlining_incrementally &&
1299       n->outcnt() != 0 && !n->is_Con()) {
1300     _modified_nodes->push(n);
1301   }
1302 }
1303 
1304 void Compile::remove_modified_node(Node* n) {
1305   if (_modified_nodes != NULL) {
1306     _modified_nodes->remove(n);
1307   }
1308 }
1309 #endif
1310 
1311 #ifndef PRODUCT
1312 void Compile::verify_top(Node* tn) const {
1313   if (tn != NULL) {
1314     assert(tn->is_Con(), "top node must be a constant");
1315     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1316     assert(tn->in(0) != NULL, "must have live top node");
1317   }
1318 }
1319 #endif
1320 
1321 
1322 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1323 
1324 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1325   guarantee(arr != NULL, "");
1326   int num_blocks = arr->length();
1327   if (grow_by < num_blocks)  grow_by = num_blocks;
1328   int num_notes = grow_by * _node_notes_block_size;
1329   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1330   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1331   while (num_notes > 0) {
1332     arr->append(notes);
1333     notes     += _node_notes_block_size;
1334     num_notes -= _node_notes_block_size;
1335   }
1336   assert(num_notes == 0, "exact multiple, please");
1337 }
1338 
1339 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1340   if (source == NULL || dest == NULL)  return false;
1341 
1342   if (dest->is_Con())
1343     return false;               // Do not push debug info onto constants.
1344 
1345 #ifdef ASSERT
1346   // Leave a bread crumb trail pointing to the original node:
1347   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1348     dest->set_debug_orig(source);
1349   }
1350 #endif
1351 
1352   if (node_note_array() == NULL)
1353     return false;               // Not collecting any notes now.
1354 
1355   // This is a copy onto a pre-existing node, which may already have notes.
1356   // If both nodes have notes, do not overwrite any pre-existing notes.
1357   Node_Notes* source_notes = node_notes_at(source->_idx);
1358   if (source_notes == NULL || source_notes->is_clear())  return false;
1359   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1360   if (dest_notes == NULL || dest_notes->is_clear()) {
1361     return set_node_notes_at(dest->_idx, source_notes);
1362   }
1363 
1364   Node_Notes merged_notes = (*source_notes);
1365   // The order of operations here ensures that dest notes will win...
1366   merged_notes.update_from(dest_notes);
1367   return set_node_notes_at(dest->_idx, &merged_notes);
1368 }
1369 
1370 
1371 //--------------------------allow_range_check_smearing-------------------------
1372 // Gating condition for coalescing similar range checks.
1373 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1374 // single covering check that is at least as strong as any of them.
1375 // If the optimization succeeds, the simplified (strengthened) range check
1376 // will always succeed.  If it fails, we will deopt, and then give up
1377 // on the optimization.
1378 bool Compile::allow_range_check_smearing() const {
1379   // If this method has already thrown a range-check,
1380   // assume it was because we already tried range smearing
1381   // and it failed.
1382   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1383   return !already_trapped;
1384 }
1385 
1386 
1387 //------------------------------flatten_alias_type-----------------------------
1388 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1389   int offset = tj->offset();
1390   TypePtr::PTR ptr = tj->ptr();
1391 
1392   // Known instance (scalarizable allocation) alias only with itself.
1393   bool is_known_inst = tj->isa_oopptr() != NULL &&
1394                        tj->is_oopptr()->is_known_instance();
1395 
1396   // Process weird unsafe references.
1397   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1398     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1399     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1400     tj = TypeOopPtr::BOTTOM;
1401     ptr = tj->ptr();
1402     offset = tj->offset();
1403   }
1404 
1405   // Array pointers need some flattening
1406   const TypeAryPtr *ta = tj->isa_aryptr();
1407   if (ta && ta->is_stable()) {
1408     // Erase stability property for alias analysis.
1409     tj = ta = ta->cast_to_stable(false);
1410   }
1411   if( ta && is_known_inst ) {
1412     if ( offset != Type::OffsetBot &&
1413          offset > arrayOopDesc::length_offset_in_bytes() ) {
1414       offset = Type::OffsetBot; // Flatten constant access into array body only
1415       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1416     }
1417   } else if( ta && _AliasLevel >= 2 ) {
1418     // For arrays indexed by constant indices, we flatten the alias
1419     // space to include all of the array body.  Only the header, klass
1420     // and array length can be accessed un-aliased.
1421     if( offset != Type::OffsetBot ) {
1422       if( ta->const_oop() ) { // MethodData* or Method*
1423         offset = Type::OffsetBot;   // Flatten constant access into array body
1424         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1425       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1426         // range is OK as-is.
1427         tj = ta = TypeAryPtr::RANGE;
1428       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1429         tj = TypeInstPtr::KLASS; // all klass loads look alike
1430         ta = TypeAryPtr::RANGE; // generic ignored junk
1431         ptr = TypePtr::BotPTR;
1432       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1433         tj = TypeInstPtr::MARK;
1434         ta = TypeAryPtr::RANGE; // generic ignored junk
1435         ptr = TypePtr::BotPTR;
1436       } else {                  // Random constant offset into array body
1437         offset = Type::OffsetBot;   // Flatten constant access into array body
1438         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1439       }
1440     }
1441     // Arrays of fixed size alias with arrays of unknown size.
1442     if (ta->size() != TypeInt::POS) {
1443       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1444       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1445     }
1446     // Arrays of known objects become arrays of unknown objects.
1447     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1448       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1449       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1450     }
1451     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1452       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1453       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1454     }
1455     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1456     // cannot be distinguished by bytecode alone.
1457     if (ta->elem() == TypeInt::BOOL) {
1458       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1459       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1460       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1461     }
1462     // During the 2nd round of IterGVN, NotNull castings are removed.
1463     // Make sure the Bottom and NotNull variants alias the same.
1464     // Also, make sure exact and non-exact variants alias the same.
1465     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1466       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1467     }
1468   }
1469 
1470   // Oop pointers need some flattening
1471   const TypeInstPtr *to = tj->isa_instptr();
1472   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1473     ciInstanceKlass *k = to->klass()->as_instance_klass();
1474     if( ptr == TypePtr::Constant ) {
1475       if (to->klass() != ciEnv::current()->Class_klass() ||
1476           offset < k->size_helper() * wordSize) {
1477         // No constant oop pointers (such as Strings); they alias with
1478         // unknown strings.
1479         assert(!is_known_inst, "not scalarizable allocation");
1480         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1481       }
1482     } else if( is_known_inst ) {
1483       tj = to; // Keep NotNull and klass_is_exact for instance type
1484     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1485       // During the 2nd round of IterGVN, NotNull castings are removed.
1486       // Make sure the Bottom and NotNull variants alias the same.
1487       // Also, make sure exact and non-exact variants alias the same.
1488       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1489     }
1490     if (to->speculative() != NULL) {
1491       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1492     }
1493     // Canonicalize the holder of this field
1494     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1495       // First handle header references such as a LoadKlassNode, even if the
1496       // object's klass is unloaded at compile time (4965979).
1497       if (!is_known_inst) { // Do it only for non-instance types
1498         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1499       }
1500     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1501       // Static fields are in the space above the normal instance
1502       // fields in the java.lang.Class instance.
1503       if (to->klass() != ciEnv::current()->Class_klass()) {
1504         to = NULL;
1505         tj = TypeOopPtr::BOTTOM;
1506         offset = tj->offset();
1507       }
1508     } else {
1509       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1510       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1511         if( is_known_inst ) {
1512           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1513         } else {
1514           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1515         }
1516       }
1517     }
1518   }
1519 
1520   // Klass pointers to object array klasses need some flattening
1521   const TypeKlassPtr *tk = tj->isa_klassptr();
1522   if( tk ) {
1523     // If we are referencing a field within a Klass, we need
1524     // to assume the worst case of an Object.  Both exact and
1525     // inexact types must flatten to the same alias class so
1526     // use NotNull as the PTR.
1527     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1528 
1529       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1530                                    TypeKlassPtr::OBJECT->klass(),
1531                                    offset);
1532     }
1533 
1534     ciKlass* klass = tk->klass();
1535     if( klass->is_obj_array_klass() ) {
1536       ciKlass* k = TypeAryPtr::OOPS->klass();
1537       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1538         k = TypeInstPtr::BOTTOM->klass();
1539       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1540     }
1541 
1542     // Check for precise loads from the primary supertype array and force them
1543     // to the supertype cache alias index.  Check for generic array loads from
1544     // the primary supertype array and also force them to the supertype cache
1545     // alias index.  Since the same load can reach both, we need to merge
1546     // these 2 disparate memories into the same alias class.  Since the
1547     // primary supertype array is read-only, there's no chance of confusion
1548     // where we bypass an array load and an array store.
1549     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1550     if (offset == Type::OffsetBot ||
1551         (offset >= primary_supers_offset &&
1552          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1553         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1554       offset = in_bytes(Klass::secondary_super_cache_offset());
1555       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1556     }
1557   }
1558 
1559   // Flatten all Raw pointers together.
1560   if (tj->base() == Type::RawPtr)
1561     tj = TypeRawPtr::BOTTOM;
1562 
1563   if (tj->base() == Type::AnyPtr)
1564     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1565 
1566   // Flatten all to bottom for now
1567   switch( _AliasLevel ) {
1568   case 0:
1569     tj = TypePtr::BOTTOM;
1570     break;
1571   case 1:                       // Flatten to: oop, static, field or array
1572     switch (tj->base()) {
1573     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1574     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1575     case Type::AryPtr:   // do not distinguish arrays at all
1576     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1577     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1578     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1579     default: ShouldNotReachHere();
1580     }
1581     break;
1582   case 2:                       // No collapsing at level 2; keep all splits
1583   case 3:                       // No collapsing at level 3; keep all splits
1584     break;
1585   default:
1586     Unimplemented();
1587   }
1588 
1589   offset = tj->offset();
1590   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1591 
1592   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1593           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1594           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1595           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1596           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1597           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1598           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1599           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1600   assert( tj->ptr() != TypePtr::TopPTR &&
1601           tj->ptr() != TypePtr::AnyNull &&
1602           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1603 //    assert( tj->ptr() != TypePtr::Constant ||
1604 //            tj->base() == Type::RawPtr ||
1605 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1606 
1607   return tj;
1608 }
1609 
1610 void Compile::AliasType::Init(int i, const TypePtr* at) {
1611   _index = i;
1612   _adr_type = at;
1613   _field = NULL;
1614   _element = NULL;
1615   _is_rewritable = true; // default
1616   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1617   if (atoop != NULL && atoop->is_known_instance()) {
1618     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1619     _general_index = Compile::current()->get_alias_index(gt);
1620   } else {
1621     _general_index = 0;
1622   }
1623 }
1624 
1625 BasicType Compile::AliasType::basic_type() const {
1626   if (element() != NULL) {
1627     const Type* element = adr_type()->is_aryptr()->elem();
1628     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1629   } if (field() != NULL) {
1630     return field()->layout_type();
1631   } else {
1632     return T_ILLEGAL; // unknown
1633   }
1634 }
1635 
1636 //---------------------------------print_on------------------------------------
1637 #ifndef PRODUCT
1638 void Compile::AliasType::print_on(outputStream* st) {
1639   if (index() < 10)
1640         st->print("@ <%d> ", index());
1641   else  st->print("@ <%d>",  index());
1642   st->print(is_rewritable() ? "   " : " RO");
1643   int offset = adr_type()->offset();
1644   if (offset == Type::OffsetBot)
1645         st->print(" +any");
1646   else  st->print(" +%-3d", offset);
1647   st->print(" in ");
1648   adr_type()->dump_on(st);
1649   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1650   if (field() != NULL && tjp) {
1651     if (tjp->klass()  != field()->holder() ||
1652         tjp->offset() != field()->offset_in_bytes()) {
1653       st->print(" != ");
1654       field()->print();
1655       st->print(" ***");
1656     }
1657   }
1658 }
1659 
1660 void print_alias_types() {
1661   Compile* C = Compile::current();
1662   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1663   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1664     C->alias_type(idx)->print_on(tty);
1665     tty->cr();
1666   }
1667 }
1668 #endif
1669 
1670 
1671 //----------------------------probe_alias_cache--------------------------------
1672 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1673   intptr_t key = (intptr_t) adr_type;
1674   key ^= key >> logAliasCacheSize;
1675   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1676 }
1677 
1678 
1679 //-----------------------------grow_alias_types--------------------------------
1680 void Compile::grow_alias_types() {
1681   const int old_ats  = _max_alias_types; // how many before?
1682   const int new_ats  = old_ats;          // how many more?
1683   const int grow_ats = old_ats+new_ats;  // how many now?
1684   _max_alias_types = grow_ats;
1685   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1686   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1687   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1688   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1689 }
1690 
1691 
1692 //--------------------------------find_alias_type------------------------------
1693 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1694   if (_AliasLevel == 0)
1695     return alias_type(AliasIdxBot);
1696 
1697   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1698   if (ace->_adr_type == adr_type) {
1699     return alias_type(ace->_index);
1700   }
1701 
1702   // Handle special cases.
1703   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1704   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1705 
1706   // Do it the slow way.
1707   const TypePtr* flat = flatten_alias_type(adr_type);
1708 
1709 #ifdef ASSERT
1710   {
1711     ResourceMark rm;
1712     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1713            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1714     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1715            Type::str(adr_type));
1716     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1717       const TypeOopPtr* foop = flat->is_oopptr();
1718       // Scalarizable allocations have exact klass always.
1719       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1720       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1721       assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1722              Type::str(foop), Type::str(xoop));
1723     }
1724   }
1725 #endif
1726 
1727   int idx = AliasIdxTop;
1728   for (int i = 0; i < num_alias_types(); i++) {
1729     if (alias_type(i)->adr_type() == flat) {
1730       idx = i;
1731       break;
1732     }
1733   }
1734 
1735   if (idx == AliasIdxTop) {
1736     if (no_create)  return NULL;
1737     // Grow the array if necessary.
1738     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1739     // Add a new alias type.
1740     idx = _num_alias_types++;
1741     _alias_types[idx]->Init(idx, flat);
1742     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1743     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1744     if (flat->isa_instptr()) {
1745       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1746           && flat->is_instptr()->klass() == env()->Class_klass())
1747         alias_type(idx)->set_rewritable(false);
1748     }
1749     if (flat->isa_aryptr()) {
1750 #ifdef ASSERT
1751       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1752       // (T_BYTE has the weakest alignment and size restrictions...)
1753       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1754 #endif
1755       if (flat->offset() == TypePtr::OffsetBot) {
1756         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1757       }
1758     }
1759     if (flat->isa_klassptr()) {
1760       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1761         alias_type(idx)->set_rewritable(false);
1762       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1763         alias_type(idx)->set_rewritable(false);
1764       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1765         alias_type(idx)->set_rewritable(false);
1766       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1767         alias_type(idx)->set_rewritable(false);
1768     }
1769     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1770     // but the base pointer type is not distinctive enough to identify
1771     // references into JavaThread.)
1772 
1773     // Check for final fields.
1774     const TypeInstPtr* tinst = flat->isa_instptr();
1775     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1776       ciField* field;
1777       if (tinst->const_oop() != NULL &&
1778           tinst->klass() == ciEnv::current()->Class_klass() &&
1779           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1780         // static field
1781         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1782         field = k->get_field_by_offset(tinst->offset(), true);
1783       } else {
1784         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1785         field = k->get_field_by_offset(tinst->offset(), false);
1786       }
1787       assert(field == NULL ||
1788              original_field == NULL ||
1789              (field->holder() == original_field->holder() &&
1790               field->offset() == original_field->offset() &&
1791               field->is_static() == original_field->is_static()), "wrong field?");
1792       // Set field() and is_rewritable() attributes.
1793       if (field != NULL)  alias_type(idx)->set_field(field);
1794     }
1795   }
1796 
1797   // Fill the cache for next time.
1798   ace->_adr_type = adr_type;
1799   ace->_index    = idx;
1800   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1801 
1802   // Might as well try to fill the cache for the flattened version, too.
1803   AliasCacheEntry* face = probe_alias_cache(flat);
1804   if (face->_adr_type == NULL) {
1805     face->_adr_type = flat;
1806     face->_index    = idx;
1807     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1808   }
1809 
1810   return alias_type(idx);
1811 }
1812 
1813 
1814 Compile::AliasType* Compile::alias_type(ciField* field) {
1815   const TypeOopPtr* t;
1816   if (field->is_static())
1817     t = TypeInstPtr::make(field->holder()->java_mirror());
1818   else
1819     t = TypeOopPtr::make_from_klass_raw(field->holder());
1820   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1821   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1822   return atp;
1823 }
1824 
1825 
1826 //------------------------------have_alias_type--------------------------------
1827 bool Compile::have_alias_type(const TypePtr* adr_type) {
1828   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1829   if (ace->_adr_type == adr_type) {
1830     return true;
1831   }
1832 
1833   // Handle special cases.
1834   if (adr_type == NULL)             return true;
1835   if (adr_type == TypePtr::BOTTOM)  return true;
1836 
1837   return find_alias_type(adr_type, true, NULL) != NULL;
1838 }
1839 
1840 //-----------------------------must_alias--------------------------------------
1841 // True if all values of the given address type are in the given alias category.
1842 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1843   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1844   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1845   if (alias_idx == AliasIdxTop)         return false; // the empty category
1846   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1847 
1848   // the only remaining possible overlap is identity
1849   int adr_idx = get_alias_index(adr_type);
1850   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1851   assert(adr_idx == alias_idx ||
1852          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1853           && adr_type                       != TypeOopPtr::BOTTOM),
1854          "should not be testing for overlap with an unsafe pointer");
1855   return adr_idx == alias_idx;
1856 }
1857 
1858 //------------------------------can_alias--------------------------------------
1859 // True if any values of the given address type are in the given alias category.
1860 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1861   if (alias_idx == AliasIdxTop)         return false; // the empty category
1862   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1863   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1864   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1865 
1866   // the only remaining possible overlap is identity
1867   int adr_idx = get_alias_index(adr_type);
1868   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1869   return adr_idx == alias_idx;
1870 }
1871 
1872 
1873 
1874 //---------------------------pop_warm_call-------------------------------------
1875 WarmCallInfo* Compile::pop_warm_call() {
1876   WarmCallInfo* wci = _warm_calls;
1877   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1878   return wci;
1879 }
1880 
1881 //----------------------------Inline_Warm--------------------------------------
1882 int Compile::Inline_Warm() {
1883   // If there is room, try to inline some more warm call sites.
1884   // %%% Do a graph index compaction pass when we think we're out of space?
1885   if (!InlineWarmCalls)  return 0;
1886 
1887   int calls_made_hot = 0;
1888   int room_to_grow   = NodeCountInliningCutoff - unique();
1889   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1890   int amount_grown   = 0;
1891   WarmCallInfo* call;
1892   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1893     int est_size = (int)call->size();
1894     if (est_size > (room_to_grow - amount_grown)) {
1895       // This one won't fit anyway.  Get rid of it.
1896       call->make_cold();
1897       continue;
1898     }
1899     call->make_hot();
1900     calls_made_hot++;
1901     amount_grown   += est_size;
1902     amount_to_grow -= est_size;
1903   }
1904 
1905   if (calls_made_hot > 0)  set_major_progress();
1906   return calls_made_hot;
1907 }
1908 
1909 
1910 //----------------------------Finish_Warm--------------------------------------
1911 void Compile::Finish_Warm() {
1912   if (!InlineWarmCalls)  return;
1913   if (failing())  return;
1914   if (warm_calls() == NULL)  return;
1915 
1916   // Clean up loose ends, if we are out of space for inlining.
1917   WarmCallInfo* call;
1918   while ((call = pop_warm_call()) != NULL) {
1919     call->make_cold();
1920   }
1921 }
1922 
1923 //---------------------cleanup_loop_predicates-----------------------
1924 // Remove the opaque nodes that protect the predicates so that all unused
1925 // checks and uncommon_traps will be eliminated from the ideal graph
1926 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1927   if (predicate_count()==0) return;
1928   for (int i = predicate_count(); i > 0; i--) {
1929     Node * n = predicate_opaque1_node(i-1);
1930     assert(n->Opcode() == Op_Opaque1, "must be");
1931     igvn.replace_node(n, n->in(1));
1932   }
1933   assert(predicate_count()==0, "should be clean!");
1934 }
1935 
1936 void Compile::add_range_check_cast(Node* n) {
1937   assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1938   assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
1939   _range_check_casts->append(n);
1940 }
1941 
1942 // Remove all range check dependent CastIINodes.
1943 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
1944   for (int i = range_check_cast_count(); i > 0; i--) {
1945     Node* cast = range_check_cast_node(i-1);
1946     assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1947     igvn.replace_node(cast, cast->in(1));
1948   }
1949   assert(range_check_cast_count() == 0, "should be empty");
1950 }
1951 
1952 // StringOpts and late inlining of string methods
1953 void Compile::inline_string_calls(bool parse_time) {
1954   {
1955     // remove useless nodes to make the usage analysis simpler
1956     ResourceMark rm;
1957     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1958   }
1959 
1960   {
1961     ResourceMark rm;
1962     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1963     PhaseStringOpts pso(initial_gvn(), for_igvn());
1964     print_method(PHASE_AFTER_STRINGOPTS, 3);
1965   }
1966 
1967   // now inline anything that we skipped the first time around
1968   if (!parse_time) {
1969     _late_inlines_pos = _late_inlines.length();
1970   }
1971 
1972   while (_string_late_inlines.length() > 0) {
1973     CallGenerator* cg = _string_late_inlines.pop();
1974     cg->do_late_inline();
1975     if (failing())  return;
1976   }
1977   _string_late_inlines.trunc_to(0);
1978 }
1979 
1980 // Late inlining of boxing methods
1981 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1982   if (_boxing_late_inlines.length() > 0) {
1983     assert(has_boxed_value(), "inconsistent");
1984 
1985     PhaseGVN* gvn = initial_gvn();
1986     set_inlining_incrementally(true);
1987 
1988     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1989     for_igvn()->clear();
1990     gvn->replace_with(&igvn);
1991 
1992     _late_inlines_pos = _late_inlines.length();
1993 
1994     while (_boxing_late_inlines.length() > 0) {
1995       CallGenerator* cg = _boxing_late_inlines.pop();
1996       cg->do_late_inline();
1997       if (failing())  return;
1998     }
1999     _boxing_late_inlines.trunc_to(0);
2000 
2001     {
2002       ResourceMark rm;
2003       PhaseRemoveUseless pru(gvn, for_igvn());
2004     }
2005 
2006     igvn = PhaseIterGVN(gvn);
2007     igvn.optimize();
2008 
2009     set_inlining_progress(false);
2010     set_inlining_incrementally(false);
2011   }
2012 }
2013 
2014 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
2015   assert(IncrementalInline, "incremental inlining should be on");
2016   PhaseGVN* gvn = initial_gvn();
2017 
2018   set_inlining_progress(false);
2019   for_igvn()->clear();
2020   gvn->replace_with(&igvn);
2021 
2022   {
2023     TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
2024     int i = 0;
2025     for (; i <_late_inlines.length() && !inlining_progress(); i++) {
2026       CallGenerator* cg = _late_inlines.at(i);
2027       _late_inlines_pos = i+1;
2028       cg->do_late_inline();
2029       if (failing())  return;
2030     }
2031     int j = 0;
2032     for (; i < _late_inlines.length(); i++, j++) {
2033       _late_inlines.at_put(j, _late_inlines.at(i));
2034     }
2035     _late_inlines.trunc_to(j);
2036   }
2037 
2038   {
2039     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2040     ResourceMark rm;
2041     PhaseRemoveUseless pru(gvn, for_igvn());
2042   }
2043 
2044   {
2045     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2046     igvn = PhaseIterGVN(gvn);
2047   }
2048 }
2049 
2050 // Perform incremental inlining until bound on number of live nodes is reached
2051 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2052   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
2053 
2054   PhaseGVN* gvn = initial_gvn();
2055 
2056   set_inlining_incrementally(true);
2057   set_inlining_progress(true);
2058   uint low_live_nodes = 0;
2059 
2060   while(inlining_progress() && _late_inlines.length() > 0) {
2061 
2062     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2063       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2064         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2065         // PhaseIdealLoop is expensive so we only try it once we are
2066         // out of live nodes and we only try it again if the previous
2067         // helped got the number of nodes down significantly
2068         PhaseIdealLoop ideal_loop( igvn, false, true );
2069         if (failing())  return;
2070         low_live_nodes = live_nodes();
2071         _major_progress = true;
2072       }
2073 
2074       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2075         break;
2076       }
2077     }
2078 
2079     inline_incrementally_one(igvn);
2080 
2081     if (failing())  return;
2082 
2083     {
2084       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2085       igvn.optimize();
2086     }
2087 
2088     if (failing())  return;
2089   }
2090 
2091   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2092 
2093   if (_string_late_inlines.length() > 0) {
2094     assert(has_stringbuilder(), "inconsistent");
2095     for_igvn()->clear();
2096     initial_gvn()->replace_with(&igvn);
2097 
2098     inline_string_calls(false);
2099 
2100     if (failing())  return;
2101 
2102     {
2103       TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2104       ResourceMark rm;
2105       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2106     }
2107 
2108     {
2109       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2110       igvn = PhaseIterGVN(gvn);
2111       igvn.optimize();
2112     }
2113   }
2114 
2115   set_inlining_incrementally(false);
2116 }
2117 
2118 
2119 //------------------------------Optimize---------------------------------------
2120 // Given a graph, optimize it.
2121 void Compile::Optimize() {
2122   TracePhase tp("optimizer", &timers[_t_optimizer]);
2123 
2124 #ifndef PRODUCT
2125   if (_directive->BreakAtCompileOption) {
2126     BREAKPOINT;
2127   }
2128 
2129 #endif
2130 
2131   ResourceMark rm;
2132   int          loop_opts_cnt;
2133 
2134   print_inlining_reinit();
2135 
2136   NOT_PRODUCT( verify_graph_edges(); )
2137 
2138   print_method(PHASE_AFTER_PARSING);
2139 
2140  {
2141   // Iterative Global Value Numbering, including ideal transforms
2142   // Initialize IterGVN with types and values from parse-time GVN
2143   PhaseIterGVN igvn(initial_gvn());
2144 #ifdef ASSERT
2145   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2146 #endif
2147   {
2148     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2149     igvn.optimize();
2150   }
2151 
2152   print_method(PHASE_ITER_GVN1, 2);
2153 
2154   if (failing())  return;
2155 
2156   inline_incrementally(igvn);
2157 
2158   print_method(PHASE_INCREMENTAL_INLINE, 2);
2159 
2160   if (failing())  return;
2161 
2162   if (eliminate_boxing()) {
2163     // Inline valueOf() methods now.
2164     inline_boxing_calls(igvn);
2165 
2166     if (AlwaysIncrementalInline) {
2167       inline_incrementally(igvn);
2168     }
2169 
2170     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2171 
2172     if (failing())  return;
2173   }
2174 
2175   // Remove the speculative part of types and clean up the graph from
2176   // the extra CastPP nodes whose only purpose is to carry them. Do
2177   // that early so that optimizations are not disrupted by the extra
2178   // CastPP nodes.
2179   remove_speculative_types(igvn);
2180 
2181   // No more new expensive nodes will be added to the list from here
2182   // so keep only the actual candidates for optimizations.
2183   cleanup_expensive_nodes(igvn);
2184 
2185   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2186     Compile::TracePhase tp("", &timers[_t_renumberLive]);
2187     initial_gvn()->replace_with(&igvn);
2188     for_igvn()->clear();
2189     Unique_Node_List new_worklist(C->comp_arena());
2190     {
2191       ResourceMark rm;
2192       PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2193     }
2194     set_for_igvn(&new_worklist);
2195     igvn = PhaseIterGVN(initial_gvn());
2196     igvn.optimize();
2197   }
2198 
2199   // Perform escape analysis
2200   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2201     if (has_loops()) {
2202       // Cleanup graph (remove dead nodes).
2203       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2204       PhaseIdealLoop ideal_loop( igvn, false, true );
2205       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2206       if (failing())  return;
2207     }
2208     ConnectionGraph::do_analysis(this, &igvn);
2209 
2210     if (failing())  return;
2211 
2212     // Optimize out fields loads from scalar replaceable allocations.
2213     igvn.optimize();
2214     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2215 
2216     if (failing())  return;
2217 
2218     if (congraph() != NULL && macro_count() > 0) {
2219       TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2220       PhaseMacroExpand mexp(igvn);
2221       mexp.eliminate_macro_nodes();
2222       igvn.set_delay_transform(false);
2223 
2224       igvn.optimize();
2225       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2226 
2227       if (failing())  return;
2228     }
2229   }
2230 
2231   // Loop transforms on the ideal graph.  Range Check Elimination,
2232   // peeling, unrolling, etc.
2233 
2234   // Set loop opts counter
2235   loop_opts_cnt = num_loop_opts();
2236   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2237     {
2238       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2239       PhaseIdealLoop ideal_loop( igvn, true );
2240       loop_opts_cnt--;
2241       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2242       if (failing())  return;
2243     }
2244     // Loop opts pass if partial peeling occurred in previous pass
2245     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2246       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2247       PhaseIdealLoop ideal_loop( igvn, false );
2248       loop_opts_cnt--;
2249       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2250       if (failing())  return;
2251     }
2252     // Loop opts pass for loop-unrolling before CCP
2253     if(major_progress() && (loop_opts_cnt > 0)) {
2254       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2255       PhaseIdealLoop ideal_loop( igvn, false );
2256       loop_opts_cnt--;
2257       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2258     }
2259     if (!failing()) {
2260       // Verify that last round of loop opts produced a valid graph
2261       TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2262       PhaseIdealLoop::verify(igvn);
2263     }
2264   }
2265   if (failing())  return;
2266 
2267   // Conditional Constant Propagation;
2268   PhaseCCP ccp( &igvn );
2269   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2270   {
2271     TracePhase tp("ccp", &timers[_t_ccp]);
2272     ccp.do_transform();
2273   }
2274   print_method(PHASE_CPP1, 2);
2275 
2276   assert( true, "Break here to ccp.dump_old2new_map()");
2277 
2278   // Iterative Global Value Numbering, including ideal transforms
2279   {
2280     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2281     igvn = ccp;
2282     igvn.optimize();
2283   }
2284 
2285   print_method(PHASE_ITER_GVN2, 2);
2286 
2287   if (failing())  return;
2288 
2289   // Loop transforms on the ideal graph.  Range Check Elimination,
2290   // peeling, unrolling, etc.
2291   if(loop_opts_cnt > 0) {
2292     debug_only( int cnt = 0; );
2293     while(major_progress() && (loop_opts_cnt > 0)) {
2294       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2295       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2296       PhaseIdealLoop ideal_loop( igvn, true);
2297       loop_opts_cnt--;
2298       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2299       if (failing())  return;
2300     }
2301   }
2302   // Ensure that major progress is now clear
2303   C->clear_major_progress();
2304 
2305   {
2306     // Verify that all previous optimizations produced a valid graph
2307     // at least to this point, even if no loop optimizations were done.
2308     TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2309     PhaseIdealLoop::verify(igvn);
2310   }
2311 
2312   if (range_check_cast_count() > 0) {
2313     // No more loop optimizations. Remove all range check dependent CastIINodes.
2314     C->remove_range_check_casts(igvn);
2315     igvn.optimize();
2316   }
2317 
2318   {
2319     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2320     PhaseMacroExpand  mex(igvn);
2321     if (mex.expand_macro_nodes()) {
2322       assert(failing(), "must bail out w/ explicit message");
2323       return;
2324     }
2325   }
2326 
2327   DEBUG_ONLY( _modified_nodes = NULL; )
2328  } // (End scope of igvn; run destructor if necessary for asserts.)
2329 
2330  process_print_inlining();
2331  // A method with only infinite loops has no edges entering loops from root
2332  {
2333    TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2334    if (final_graph_reshaping()) {
2335      assert(failing(), "must bail out w/ explicit message");
2336      return;
2337    }
2338  }
2339 
2340  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2341 }
2342 
2343 
2344 //------------------------------Code_Gen---------------------------------------
2345 // Given a graph, generate code for it
2346 void Compile::Code_Gen() {
2347   if (failing()) {
2348     return;
2349   }
2350 
2351   // Perform instruction selection.  You might think we could reclaim Matcher
2352   // memory PDQ, but actually the Matcher is used in generating spill code.
2353   // Internals of the Matcher (including some VectorSets) must remain live
2354   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2355   // set a bit in reclaimed memory.
2356 
2357   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2358   // nodes.  Mapping is only valid at the root of each matched subtree.
2359   NOT_PRODUCT( verify_graph_edges(); )
2360 
2361   Matcher matcher;
2362   _matcher = &matcher;
2363   {
2364     TracePhase tp("matcher", &timers[_t_matcher]);
2365     matcher.match();
2366   }
2367   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2368   // nodes.  Mapping is only valid at the root of each matched subtree.
2369   NOT_PRODUCT( verify_graph_edges(); )
2370 
2371   // If you have too many nodes, or if matching has failed, bail out
2372   check_node_count(0, "out of nodes matching instructions");
2373   if (failing()) {
2374     return;
2375   }
2376 
2377   // Build a proper-looking CFG
2378   PhaseCFG cfg(node_arena(), root(), matcher);
2379   _cfg = &cfg;
2380   {
2381     TracePhase tp("scheduler", &timers[_t_scheduler]);
2382     bool success = cfg.do_global_code_motion();
2383     if (!success) {
2384       return;
2385     }
2386 
2387     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2388     NOT_PRODUCT( verify_graph_edges(); )
2389     debug_only( cfg.verify(); )
2390   }
2391 
2392   PhaseChaitin regalloc(unique(), cfg, matcher, false);
2393   _regalloc = &regalloc;
2394   {
2395     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2396     // Perform register allocation.  After Chaitin, use-def chains are
2397     // no longer accurate (at spill code) and so must be ignored.
2398     // Node->LRG->reg mappings are still accurate.
2399     _regalloc->Register_Allocate();
2400 
2401     // Bail out if the allocator builds too many nodes
2402     if (failing()) {
2403       return;
2404     }
2405   }
2406 
2407   // Prior to register allocation we kept empty basic blocks in case the
2408   // the allocator needed a place to spill.  After register allocation we
2409   // are not adding any new instructions.  If any basic block is empty, we
2410   // can now safely remove it.
2411   {
2412     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2413     cfg.remove_empty_blocks();
2414     if (do_freq_based_layout()) {
2415       PhaseBlockLayout layout(cfg);
2416     } else {
2417       cfg.set_loop_alignment();
2418     }
2419     cfg.fixup_flow();
2420   }
2421 
2422   // Apply peephole optimizations
2423   if( OptoPeephole ) {
2424     TracePhase tp("peephole", &timers[_t_peephole]);
2425     PhasePeephole peep( _regalloc, cfg);
2426     peep.do_transform();
2427   }
2428 
2429   // Do late expand if CPU requires this.
2430   if (Matcher::require_postalloc_expand) {
2431     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2432     cfg.postalloc_expand(_regalloc);
2433   }
2434 
2435   // Convert Nodes to instruction bits in a buffer
2436   {
2437     TraceTime tp("output", &timers[_t_output], CITime);
2438     Output();
2439   }
2440 
2441   print_method(PHASE_FINAL_CODE);
2442 
2443   // He's dead, Jim.
2444   _cfg     = (PhaseCFG*)0xdeadbeef;
2445   _regalloc = (PhaseChaitin*)0xdeadbeef;
2446 }
2447 
2448 
2449 //------------------------------dump_asm---------------------------------------
2450 // Dump formatted assembly
2451 #ifndef PRODUCT
2452 void Compile::dump_asm(int *pcs, uint pc_limit) {
2453   bool cut_short = false;
2454   tty->print_cr("#");
2455   tty->print("#  ");  _tf->dump();  tty->cr();
2456   tty->print_cr("#");
2457 
2458   // For all blocks
2459   int pc = 0x0;                 // Program counter
2460   char starts_bundle = ' ';
2461   _regalloc->dump_frame();
2462 
2463   Node *n = NULL;
2464   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2465     if (VMThread::should_terminate()) {
2466       cut_short = true;
2467       break;
2468     }
2469     Block* block = _cfg->get_block(i);
2470     if (block->is_connector() && !Verbose) {
2471       continue;
2472     }
2473     n = block->head();
2474     if (pcs && n->_idx < pc_limit) {
2475       tty->print("%3.3x   ", pcs[n->_idx]);
2476     } else {
2477       tty->print("      ");
2478     }
2479     block->dump_head(_cfg);
2480     if (block->is_connector()) {
2481       tty->print_cr("        # Empty connector block");
2482     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2483       tty->print_cr("        # Block is sole successor of call");
2484     }
2485 
2486     // For all instructions
2487     Node *delay = NULL;
2488     for (uint j = 0; j < block->number_of_nodes(); j++) {
2489       if (VMThread::should_terminate()) {
2490         cut_short = true;
2491         break;
2492       }
2493       n = block->get_node(j);
2494       if (valid_bundle_info(n)) {
2495         Bundle* bundle = node_bundling(n);
2496         if (bundle->used_in_unconditional_delay()) {
2497           delay = n;
2498           continue;
2499         }
2500         if (bundle->starts_bundle()) {
2501           starts_bundle = '+';
2502         }
2503       }
2504 
2505       if (WizardMode) {
2506         n->dump();
2507       }
2508 
2509       if( !n->is_Region() &&    // Dont print in the Assembly
2510           !n->is_Phi() &&       // a few noisely useless nodes
2511           !n->is_Proj() &&
2512           !n->is_MachTemp() &&
2513           !n->is_SafePointScalarObject() &&
2514           !n->is_Catch() &&     // Would be nice to print exception table targets
2515           !n->is_MergeMem() &&  // Not very interesting
2516           !n->is_top() &&       // Debug info table constants
2517           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2518           ) {
2519         if (pcs && n->_idx < pc_limit)
2520           tty->print("%3.3x", pcs[n->_idx]);
2521         else
2522           tty->print("   ");
2523         tty->print(" %c ", starts_bundle);
2524         starts_bundle = ' ';
2525         tty->print("\t");
2526         n->format(_regalloc, tty);
2527         tty->cr();
2528       }
2529 
2530       // If we have an instruction with a delay slot, and have seen a delay,
2531       // then back up and print it
2532       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2533         assert(delay != NULL, "no unconditional delay instruction");
2534         if (WizardMode) delay->dump();
2535 
2536         if (node_bundling(delay)->starts_bundle())
2537           starts_bundle = '+';
2538         if (pcs && n->_idx < pc_limit)
2539           tty->print("%3.3x", pcs[n->_idx]);
2540         else
2541           tty->print("   ");
2542         tty->print(" %c ", starts_bundle);
2543         starts_bundle = ' ';
2544         tty->print("\t");
2545         delay->format(_regalloc, tty);
2546         tty->cr();
2547         delay = NULL;
2548       }
2549 
2550       // Dump the exception table as well
2551       if( n->is_Catch() && (Verbose || WizardMode) ) {
2552         // Print the exception table for this offset
2553         _handler_table.print_subtable_for(pc);
2554       }
2555     }
2556 
2557     if (pcs && n->_idx < pc_limit)
2558       tty->print_cr("%3.3x", pcs[n->_idx]);
2559     else
2560       tty->cr();
2561 
2562     assert(cut_short || delay == NULL, "no unconditional delay branch");
2563 
2564   } // End of per-block dump
2565   tty->cr();
2566 
2567   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2568 }
2569 #endif
2570 
2571 //------------------------------Final_Reshape_Counts---------------------------
2572 // This class defines counters to help identify when a method
2573 // may/must be executed using hardware with only 24-bit precision.
2574 struct Final_Reshape_Counts : public StackObj {
2575   int  _call_count;             // count non-inlined 'common' calls
2576   int  _float_count;            // count float ops requiring 24-bit precision
2577   int  _double_count;           // count double ops requiring more precision
2578   int  _java_call_count;        // count non-inlined 'java' calls
2579   int  _inner_loop_count;       // count loops which need alignment
2580   VectorSet _visited;           // Visitation flags
2581   Node_List _tests;             // Set of IfNodes & PCTableNodes
2582 
2583   Final_Reshape_Counts() :
2584     _call_count(0), _float_count(0), _double_count(0),
2585     _java_call_count(0), _inner_loop_count(0),
2586     _visited( Thread::current()->resource_area() ) { }
2587 
2588   void inc_call_count  () { _call_count  ++; }
2589   void inc_float_count () { _float_count ++; }
2590   void inc_double_count() { _double_count++; }
2591   void inc_java_call_count() { _java_call_count++; }
2592   void inc_inner_loop_count() { _inner_loop_count++; }
2593 
2594   int  get_call_count  () const { return _call_count  ; }
2595   int  get_float_count () const { return _float_count ; }
2596   int  get_double_count() const { return _double_count; }
2597   int  get_java_call_count() const { return _java_call_count; }
2598   int  get_inner_loop_count() const { return _inner_loop_count; }
2599 };
2600 
2601 #ifdef ASSERT
2602 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2603   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2604   // Make sure the offset goes inside the instance layout.
2605   return k->contains_field_offset(tp->offset());
2606   // Note that OffsetBot and OffsetTop are very negative.
2607 }
2608 #endif
2609 
2610 // Eliminate trivially redundant StoreCMs and accumulate their
2611 // precedence edges.
2612 void Compile::eliminate_redundant_card_marks(Node* n) {
2613   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2614   if (n->in(MemNode::Address)->outcnt() > 1) {
2615     // There are multiple users of the same address so it might be
2616     // possible to eliminate some of the StoreCMs
2617     Node* mem = n->in(MemNode::Memory);
2618     Node* adr = n->in(MemNode::Address);
2619     Node* val = n->in(MemNode::ValueIn);
2620     Node* prev = n;
2621     bool done = false;
2622     // Walk the chain of StoreCMs eliminating ones that match.  As
2623     // long as it's a chain of single users then the optimization is
2624     // safe.  Eliminating partially redundant StoreCMs would require
2625     // cloning copies down the other paths.
2626     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2627       if (adr == mem->in(MemNode::Address) &&
2628           val == mem->in(MemNode::ValueIn)) {
2629         // redundant StoreCM
2630         if (mem->req() > MemNode::OopStore) {
2631           // Hasn't been processed by this code yet.
2632           n->add_prec(mem->in(MemNode::OopStore));
2633         } else {
2634           // Already converted to precedence edge
2635           for (uint i = mem->req(); i < mem->len(); i++) {
2636             // Accumulate any precedence edges
2637             if (mem->in(i) != NULL) {
2638               n->add_prec(mem->in(i));
2639             }
2640           }
2641           // Everything above this point has been processed.
2642           done = true;
2643         }
2644         // Eliminate the previous StoreCM
2645         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2646         assert(mem->outcnt() == 0, "should be dead");
2647         mem->disconnect_inputs(NULL, this);
2648       } else {
2649         prev = mem;
2650       }
2651       mem = prev->in(MemNode::Memory);
2652     }
2653   }
2654 }
2655 
2656 //------------------------------final_graph_reshaping_impl----------------------
2657 // Implement items 1-5 from final_graph_reshaping below.
2658 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2659 
2660   if ( n->outcnt() == 0 ) return; // dead node
2661   uint nop = n->Opcode();
2662 
2663   // Check for 2-input instruction with "last use" on right input.
2664   // Swap to left input.  Implements item (2).
2665   if( n->req() == 3 &&          // two-input instruction
2666       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2667       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2668       n->in(2)->outcnt() == 1 &&// right use IS a last use
2669       !n->in(2)->is_Con() ) {   // right use is not a constant
2670     // Check for commutative opcode
2671     switch( nop ) {
2672     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2673     case Op_MaxI:  case Op_MinI:
2674     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2675     case Op_AndL:  case Op_XorL:  case Op_OrL:
2676     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2677       // Move "last use" input to left by swapping inputs
2678       n->swap_edges(1, 2);
2679       break;
2680     }
2681     default:
2682       break;
2683     }
2684   }
2685 
2686 #ifdef ASSERT
2687   if( n->is_Mem() ) {
2688     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2689     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2690             // oop will be recorded in oop map if load crosses safepoint
2691             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2692                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2693             "raw memory operations should have control edge");
2694   }
2695 #endif
2696   // Count FPU ops and common calls, implements item (3)
2697   switch( nop ) {
2698   // Count all float operations that may use FPU
2699   case Op_AddF:
2700   case Op_SubF:
2701   case Op_MulF:
2702   case Op_DivF:
2703   case Op_NegF:
2704   case Op_ModF:
2705   case Op_ConvI2F:
2706   case Op_ConF:
2707   case Op_CmpF:
2708   case Op_CmpF3:
2709   // case Op_ConvL2F: // longs are split into 32-bit halves
2710     frc.inc_float_count();
2711     break;
2712 
2713   case Op_ConvF2D:
2714   case Op_ConvD2F:
2715     frc.inc_float_count();
2716     frc.inc_double_count();
2717     break;
2718 
2719   // Count all double operations that may use FPU
2720   case Op_AddD:
2721   case Op_SubD:
2722   case Op_MulD:
2723   case Op_DivD:
2724   case Op_NegD:
2725   case Op_ModD:
2726   case Op_ConvI2D:
2727   case Op_ConvD2I:
2728   // case Op_ConvL2D: // handled by leaf call
2729   // case Op_ConvD2L: // handled by leaf call
2730   case Op_ConD:
2731   case Op_CmpD:
2732   case Op_CmpD3:
2733     frc.inc_double_count();
2734     break;
2735   case Op_Opaque1:              // Remove Opaque Nodes before matching
2736   case Op_Opaque2:              // Remove Opaque Nodes before matching
2737   case Op_Opaque3:
2738     n->subsume_by(n->in(1), this);
2739     break;
2740   case Op_CallStaticJava:
2741   case Op_CallJava:
2742   case Op_CallDynamicJava:
2743     frc.inc_java_call_count(); // Count java call site;
2744   case Op_CallRuntime:
2745   case Op_CallLeaf:
2746   case Op_CallLeafNoFP: {
2747     assert( n->is_Call(), "" );
2748     CallNode *call = n->as_Call();
2749     // Count call sites where the FP mode bit would have to be flipped.
2750     // Do not count uncommon runtime calls:
2751     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2752     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2753     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2754       frc.inc_call_count();   // Count the call site
2755     } else {                  // See if uncommon argument is shared
2756       Node *n = call->in(TypeFunc::Parms);
2757       int nop = n->Opcode();
2758       // Clone shared simple arguments to uncommon calls, item (1).
2759       if( n->outcnt() > 1 &&
2760           !n->is_Proj() &&
2761           nop != Op_CreateEx &&
2762           nop != Op_CheckCastPP &&
2763           nop != Op_DecodeN &&
2764           nop != Op_DecodeNKlass &&
2765           !n->is_Mem() ) {
2766         Node *x = n->clone();
2767         call->set_req( TypeFunc::Parms, x );
2768       }
2769     }
2770     break;
2771   }
2772 
2773   case Op_StoreD:
2774   case Op_LoadD:
2775   case Op_LoadD_unaligned:
2776     frc.inc_double_count();
2777     goto handle_mem;
2778   case Op_StoreF:
2779   case Op_LoadF:
2780     frc.inc_float_count();
2781     goto handle_mem;
2782 
2783   case Op_StoreCM:
2784     {
2785       // Convert OopStore dependence into precedence edge
2786       Node* prec = n->in(MemNode::OopStore);
2787       n->del_req(MemNode::OopStore);
2788       n->add_prec(prec);
2789       eliminate_redundant_card_marks(n);
2790     }
2791 
2792     // fall through
2793 
2794   case Op_StoreB:
2795   case Op_StoreC:
2796   case Op_StorePConditional:
2797   case Op_StoreI:
2798   case Op_StoreL:
2799   case Op_StoreIConditional:
2800   case Op_StoreLConditional:
2801   case Op_CompareAndSwapB:
2802   case Op_CompareAndSwapS:
2803   case Op_CompareAndSwapI:
2804   case Op_CompareAndSwapL:
2805   case Op_CompareAndSwapP:
2806   case Op_CompareAndSwapN:
2807   case Op_WeakCompareAndSwapB:
2808   case Op_WeakCompareAndSwapS:
2809   case Op_WeakCompareAndSwapI:
2810   case Op_WeakCompareAndSwapL:
2811   case Op_WeakCompareAndSwapP:
2812   case Op_WeakCompareAndSwapN:
2813   case Op_CompareAndExchangeB:
2814   case Op_CompareAndExchangeS:
2815   case Op_CompareAndExchangeI:
2816   case Op_CompareAndExchangeL:
2817   case Op_CompareAndExchangeP:
2818   case Op_CompareAndExchangeN:
2819   case Op_GetAndAddS:
2820   case Op_GetAndAddB:
2821   case Op_GetAndAddI:
2822   case Op_GetAndAddL:
2823   case Op_GetAndSetS:
2824   case Op_GetAndSetB:
2825   case Op_GetAndSetI:
2826   case Op_GetAndSetL:
2827   case Op_GetAndSetP:
2828   case Op_GetAndSetN:
2829   case Op_StoreP:
2830   case Op_StoreN:
2831   case Op_StoreNKlass:
2832   case Op_LoadB:
2833   case Op_LoadUB:
2834   case Op_LoadUS:
2835   case Op_LoadI:
2836   case Op_LoadKlass:
2837   case Op_LoadNKlass:
2838   case Op_LoadL:
2839   case Op_LoadL_unaligned:
2840   case Op_LoadPLocked:
2841   case Op_LoadP:
2842   case Op_LoadN:
2843   case Op_LoadRange:
2844   case Op_LoadS: {
2845   handle_mem:
2846 #ifdef ASSERT
2847     if( VerifyOptoOopOffsets ) {
2848       assert( n->is_Mem(), "" );
2849       MemNode *mem  = (MemNode*)n;
2850       // Check to see if address types have grounded out somehow.
2851       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2852       assert( !tp || oop_offset_is_sane(tp), "" );
2853     }
2854 #endif
2855     break;
2856   }
2857 
2858   case Op_AddP: {               // Assert sane base pointers
2859     Node *addp = n->in(AddPNode::Address);
2860     assert( !addp->is_AddP() ||
2861             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2862             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2863             "Base pointers must match (addp %u)", addp->_idx );
2864 #ifdef _LP64
2865     if ((UseCompressedOops || UseCompressedClassPointers) &&
2866         addp->Opcode() == Op_ConP &&
2867         addp == n->in(AddPNode::Base) &&
2868         n->in(AddPNode::Offset)->is_Con()) {
2869       // If the transformation of ConP to ConN+DecodeN is beneficial depends
2870       // on the platform and on the compressed oops mode.
2871       // Use addressing with narrow klass to load with offset on x86.
2872       // Some platforms can use the constant pool to load ConP.
2873       // Do this transformation here since IGVN will convert ConN back to ConP.
2874       const Type* t = addp->bottom_type();
2875       bool is_oop   = t->isa_oopptr() != NULL;
2876       bool is_klass = t->isa_klassptr() != NULL;
2877 
2878       if ((is_oop   && Matcher::const_oop_prefer_decode()  ) ||
2879           (is_klass && Matcher::const_klass_prefer_decode())) {
2880         Node* nn = NULL;
2881 
2882         int op = is_oop ? Op_ConN : Op_ConNKlass;
2883 
2884         // Look for existing ConN node of the same exact type.
2885         Node* r  = root();
2886         uint cnt = r->outcnt();
2887         for (uint i = 0; i < cnt; i++) {
2888           Node* m = r->raw_out(i);
2889           if (m!= NULL && m->Opcode() == op &&
2890               m->bottom_type()->make_ptr() == t) {
2891             nn = m;
2892             break;
2893           }
2894         }
2895         if (nn != NULL) {
2896           // Decode a narrow oop to match address
2897           // [R12 + narrow_oop_reg<<3 + offset]
2898           if (is_oop) {
2899             nn = new DecodeNNode(nn, t);
2900           } else {
2901             nn = new DecodeNKlassNode(nn, t);
2902           }
2903           // Check for succeeding AddP which uses the same Base.
2904           // Otherwise we will run into the assertion above when visiting that guy.
2905           for (uint i = 0; i < n->outcnt(); ++i) {
2906             Node *out_i = n->raw_out(i);
2907             if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
2908               out_i->set_req(AddPNode::Base, nn);
2909 #ifdef ASSERT
2910               for (uint j = 0; j < out_i->outcnt(); ++j) {
2911                 Node *out_j = out_i->raw_out(j);
2912                 assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
2913                        "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
2914               }
2915 #endif
2916             }
2917           }
2918           n->set_req(AddPNode::Base, nn);
2919           n->set_req(AddPNode::Address, nn);
2920           if (addp->outcnt() == 0) {
2921             addp->disconnect_inputs(NULL, this);
2922           }
2923         }
2924       }
2925     }
2926 #endif
2927     // platform dependent reshaping of the address expression
2928     reshape_address(n->as_AddP());
2929     break;
2930   }
2931 
2932   case Op_CastPP: {
2933     // Remove CastPP nodes to gain more freedom during scheduling but
2934     // keep the dependency they encode as control or precedence edges
2935     // (if control is set already) on memory operations. Some CastPP
2936     // nodes don't have a control (don't carry a dependency): skip
2937     // those.
2938     if (n->in(0) != NULL) {
2939       ResourceMark rm;
2940       Unique_Node_List wq;
2941       wq.push(n);
2942       for (uint next = 0; next < wq.size(); ++next) {
2943         Node *m = wq.at(next);
2944         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
2945           Node* use = m->fast_out(i);
2946           if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
2947             use->ensure_control_or_add_prec(n->in(0));
2948           } else {
2949             switch(use->Opcode()) {
2950             case Op_AddP:
2951             case Op_DecodeN:
2952             case Op_DecodeNKlass:
2953             case Op_CheckCastPP:
2954             case Op_CastPP:
2955               wq.push(use);
2956               break;
2957             }
2958           }
2959         }
2960       }
2961     }
2962     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
2963     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2964       Node* in1 = n->in(1);
2965       const Type* t = n->bottom_type();
2966       Node* new_in1 = in1->clone();
2967       new_in1->as_DecodeN()->set_type(t);
2968 
2969       if (!Matcher::narrow_oop_use_complex_address()) {
2970         //
2971         // x86, ARM and friends can handle 2 adds in addressing mode
2972         // and Matcher can fold a DecodeN node into address by using
2973         // a narrow oop directly and do implicit NULL check in address:
2974         //
2975         // [R12 + narrow_oop_reg<<3 + offset]
2976         // NullCheck narrow_oop_reg
2977         //
2978         // On other platforms (Sparc) we have to keep new DecodeN node and
2979         // use it to do implicit NULL check in address:
2980         //
2981         // decode_not_null narrow_oop_reg, base_reg
2982         // [base_reg + offset]
2983         // NullCheck base_reg
2984         //
2985         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2986         // to keep the information to which NULL check the new DecodeN node
2987         // corresponds to use it as value in implicit_null_check().
2988         //
2989         new_in1->set_req(0, n->in(0));
2990       }
2991 
2992       n->subsume_by(new_in1, this);
2993       if (in1->outcnt() == 0) {
2994         in1->disconnect_inputs(NULL, this);
2995       }
2996     } else {
2997       n->subsume_by(n->in(1), this);
2998       if (n->outcnt() == 0) {
2999         n->disconnect_inputs(NULL, this);
3000       }
3001     }
3002     break;
3003   }
3004 #ifdef _LP64
3005   case Op_CmpP:
3006     // Do this transformation here to preserve CmpPNode::sub() and
3007     // other TypePtr related Ideal optimizations (for example, ptr nullness).
3008     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3009       Node* in1 = n->in(1);
3010       Node* in2 = n->in(2);
3011       if (!in1->is_DecodeNarrowPtr()) {
3012         in2 = in1;
3013         in1 = n->in(2);
3014       }
3015       assert(in1->is_DecodeNarrowPtr(), "sanity");
3016 
3017       Node* new_in2 = NULL;
3018       if (in2->is_DecodeNarrowPtr()) {
3019         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3020         new_in2 = in2->in(1);
3021       } else if (in2->Opcode() == Op_ConP) {
3022         const Type* t = in2->bottom_type();
3023         if (t == TypePtr::NULL_PTR) {
3024           assert(in1->is_DecodeN(), "compare klass to null?");
3025           // Don't convert CmpP null check into CmpN if compressed
3026           // oops implicit null check is not generated.
3027           // This will allow to generate normal oop implicit null check.
3028           if (Matcher::gen_narrow_oop_implicit_null_checks())
3029             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3030           //
3031           // This transformation together with CastPP transformation above
3032           // will generated code for implicit NULL checks for compressed oops.
3033           //
3034           // The original code after Optimize()
3035           //
3036           //    LoadN memory, narrow_oop_reg
3037           //    decode narrow_oop_reg, base_reg
3038           //    CmpP base_reg, NULL
3039           //    CastPP base_reg // NotNull
3040           //    Load [base_reg + offset], val_reg
3041           //
3042           // after these transformations will be
3043           //
3044           //    LoadN memory, narrow_oop_reg
3045           //    CmpN narrow_oop_reg, NULL
3046           //    decode_not_null narrow_oop_reg, base_reg
3047           //    Load [base_reg + offset], val_reg
3048           //
3049           // and the uncommon path (== NULL) will use narrow_oop_reg directly
3050           // since narrow oops can be used in debug info now (see the code in
3051           // final_graph_reshaping_walk()).
3052           //
3053           // At the end the code will be matched to
3054           // on x86:
3055           //
3056           //    Load_narrow_oop memory, narrow_oop_reg
3057           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3058           //    NullCheck narrow_oop_reg
3059           //
3060           // and on sparc:
3061           //
3062           //    Load_narrow_oop memory, narrow_oop_reg
3063           //    decode_not_null narrow_oop_reg, base_reg
3064           //    Load [base_reg + offset], val_reg
3065           //    NullCheck base_reg
3066           //
3067         } else if (t->isa_oopptr()) {
3068           new_in2 = ConNode::make(t->make_narrowoop());
3069         } else if (t->isa_klassptr()) {
3070           new_in2 = ConNode::make(t->make_narrowklass());
3071         }
3072       }
3073       if (new_in2 != NULL) {
3074         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3075         n->subsume_by(cmpN, this);
3076         if (in1->outcnt() == 0) {
3077           in1->disconnect_inputs(NULL, this);
3078         }
3079         if (in2->outcnt() == 0) {
3080           in2->disconnect_inputs(NULL, this);
3081         }
3082       }
3083     }
3084     break;
3085 
3086   case Op_DecodeN:
3087   case Op_DecodeNKlass:
3088     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3089     // DecodeN could be pinned when it can't be fold into
3090     // an address expression, see the code for Op_CastPP above.
3091     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3092     break;
3093 
3094   case Op_EncodeP:
3095   case Op_EncodePKlass: {
3096     Node* in1 = n->in(1);
3097     if (in1->is_DecodeNarrowPtr()) {
3098       n->subsume_by(in1->in(1), this);
3099     } else if (in1->Opcode() == Op_ConP) {
3100       const Type* t = in1->bottom_type();
3101       if (t == TypePtr::NULL_PTR) {
3102         assert(t->isa_oopptr(), "null klass?");
3103         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3104       } else if (t->isa_oopptr()) {
3105         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3106       } else if (t->isa_klassptr()) {
3107         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3108       }
3109     }
3110     if (in1->outcnt() == 0) {
3111       in1->disconnect_inputs(NULL, this);
3112     }
3113     break;
3114   }
3115 
3116   case Op_Proj: {
3117     if (OptimizeStringConcat) {
3118       ProjNode* p = n->as_Proj();
3119       if (p->_is_io_use) {
3120         // Separate projections were used for the exception path which
3121         // are normally removed by a late inline.  If it wasn't inlined
3122         // then they will hang around and should just be replaced with
3123         // the original one.
3124         Node* proj = NULL;
3125         // Replace with just one
3126         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3127           Node *use = i.get();
3128           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3129             proj = use;
3130             break;
3131           }
3132         }
3133         assert(proj != NULL, "must be found");
3134         p->subsume_by(proj, this);
3135       }
3136     }
3137     break;
3138   }
3139 
3140   case Op_Phi:
3141     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3142       // The EncodeP optimization may create Phi with the same edges
3143       // for all paths. It is not handled well by Register Allocator.
3144       Node* unique_in = n->in(1);
3145       assert(unique_in != NULL, "");
3146       uint cnt = n->req();
3147       for (uint i = 2; i < cnt; i++) {
3148         Node* m = n->in(i);
3149         assert(m != NULL, "");
3150         if (unique_in != m)
3151           unique_in = NULL;
3152       }
3153       if (unique_in != NULL) {
3154         n->subsume_by(unique_in, this);
3155       }
3156     }
3157     break;
3158 
3159 #endif
3160 
3161 #ifdef ASSERT
3162   case Op_CastII:
3163     // Verify that all range check dependent CastII nodes were removed.
3164     if (n->isa_CastII()->has_range_check()) {
3165       n->dump(3);
3166       assert(false, "Range check dependent CastII node was not removed");
3167     }
3168     break;
3169 #endif
3170 
3171   case Op_ModI:
3172     if (UseDivMod) {
3173       // Check if a%b and a/b both exist
3174       Node* d = n->find_similar(Op_DivI);
3175       if (d) {
3176         // Replace them with a fused divmod if supported
3177         if (Matcher::has_match_rule(Op_DivModI)) {
3178           DivModINode* divmod = DivModINode::make(n);
3179           d->subsume_by(divmod->div_proj(), this);
3180           n->subsume_by(divmod->mod_proj(), this);
3181         } else {
3182           // replace a%b with a-((a/b)*b)
3183           Node* mult = new MulINode(d, d->in(2));
3184           Node* sub  = new SubINode(d->in(1), mult);
3185           n->subsume_by(sub, this);
3186         }
3187       }
3188     }
3189     break;
3190 
3191   case Op_ModL:
3192     if (UseDivMod) {
3193       // Check if a%b and a/b both exist
3194       Node* d = n->find_similar(Op_DivL);
3195       if (d) {
3196         // Replace them with a fused divmod if supported
3197         if (Matcher::has_match_rule(Op_DivModL)) {
3198           DivModLNode* divmod = DivModLNode::make(n);
3199           d->subsume_by(divmod->div_proj(), this);
3200           n->subsume_by(divmod->mod_proj(), this);
3201         } else {
3202           // replace a%b with a-((a/b)*b)
3203           Node* mult = new MulLNode(d, d->in(2));
3204           Node* sub  = new SubLNode(d->in(1), mult);
3205           n->subsume_by(sub, this);
3206         }
3207       }
3208     }
3209     break;
3210 
3211   case Op_LoadVector:
3212   case Op_StoreVector:
3213     break;
3214 
3215   case Op_AddReductionVI:
3216   case Op_AddReductionVL:
3217   case Op_AddReductionVF:
3218   case Op_AddReductionVD:
3219   case Op_MulReductionVI:
3220   case Op_MulReductionVL:
3221   case Op_MulReductionVF:
3222   case Op_MulReductionVD:
3223     break;
3224 
3225   case Op_PackB:
3226   case Op_PackS:
3227   case Op_PackI:
3228   case Op_PackF:
3229   case Op_PackL:
3230   case Op_PackD:
3231     if (n->req()-1 > 2) {
3232       // Replace many operand PackNodes with a binary tree for matching
3233       PackNode* p = (PackNode*) n;
3234       Node* btp = p->binary_tree_pack(1, n->req());
3235       n->subsume_by(btp, this);
3236     }
3237     break;
3238   case Op_Loop:
3239   case Op_CountedLoop:
3240     if (n->as_Loop()->is_inner_loop()) {
3241       frc.inc_inner_loop_count();
3242     }
3243     break;
3244   case Op_LShiftI:
3245   case Op_RShiftI:
3246   case Op_URShiftI:
3247   case Op_LShiftL:
3248   case Op_RShiftL:
3249   case Op_URShiftL:
3250     if (Matcher::need_masked_shift_count) {
3251       // The cpu's shift instructions don't restrict the count to the
3252       // lower 5/6 bits. We need to do the masking ourselves.
3253       Node* in2 = n->in(2);
3254       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3255       const TypeInt* t = in2->find_int_type();
3256       if (t != NULL && t->is_con()) {
3257         juint shift = t->get_con();
3258         if (shift > mask) { // Unsigned cmp
3259           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3260         }
3261       } else {
3262         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3263           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3264           n->set_req(2, shift);
3265         }
3266       }
3267       if (in2->outcnt() == 0) { // Remove dead node
3268         in2->disconnect_inputs(NULL, this);
3269       }
3270     }
3271     break;
3272   case Op_MemBarStoreStore:
3273   case Op_MemBarRelease:
3274     // Break the link with AllocateNode: it is no longer useful and
3275     // confuses register allocation.
3276     if (n->req() > MemBarNode::Precedent) {
3277       n->set_req(MemBarNode::Precedent, top());
3278     }
3279     break;
3280   case Op_RangeCheck: {
3281     RangeCheckNode* rc = n->as_RangeCheck();
3282     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3283     n->subsume_by(iff, this);
3284     frc._tests.push(iff);
3285     break;
3286   }
3287   case Op_ConvI2L: {
3288     if (!Matcher::convi2l_type_required) {
3289       // Code generation on some platforms doesn't need accurate
3290       // ConvI2L types. Widening the type can help remove redundant
3291       // address computations.
3292       n->as_Type()->set_type(TypeLong::INT);
3293       ResourceMark rm;
3294       Node_List wq;
3295       wq.push(n);
3296       for (uint next = 0; next < wq.size(); next++) {
3297         Node *m = wq.at(next);
3298 
3299         for(;;) {
3300           // Loop over all nodes with identical inputs edges as m
3301           Node* k = m->find_similar(m->Opcode());
3302           if (k == NULL) {
3303             break;
3304           }
3305           // Push their uses so we get a chance to remove node made
3306           // redundant
3307           for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3308             Node* u = k->fast_out(i);
3309             assert(!wq.contains(u), "shouldn't process one node several times");
3310             if (u->Opcode() == Op_LShiftL ||
3311                 u->Opcode() == Op_AddL ||
3312                 u->Opcode() == Op_SubL ||
3313                 u->Opcode() == Op_AddP) {
3314               wq.push(u);
3315             }
3316           }
3317           // Replace all nodes with identical edges as m with m
3318           k->subsume_by(m, this);
3319         }
3320       }
3321     }
3322     break;
3323   }
3324   default:
3325     assert( !n->is_Call(), "" );
3326     assert( !n->is_Mem(), "" );
3327     assert( nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3328     break;
3329   }
3330 
3331   // Collect CFG split points
3332   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
3333     frc._tests.push(n);
3334   }
3335 }
3336 
3337 //------------------------------final_graph_reshaping_walk---------------------
3338 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3339 // requires that the walk visits a node's inputs before visiting the node.
3340 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3341   ResourceArea *area = Thread::current()->resource_area();
3342   Unique_Node_List sfpt(area);
3343 
3344   frc._visited.set(root->_idx); // first, mark node as visited
3345   uint cnt = root->req();
3346   Node *n = root;
3347   uint  i = 0;
3348   while (true) {
3349     if (i < cnt) {
3350       // Place all non-visited non-null inputs onto stack
3351       Node* m = n->in(i);
3352       ++i;
3353       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3354         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3355           // compute worst case interpreter size in case of a deoptimization
3356           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3357 
3358           sfpt.push(m);
3359         }
3360         cnt = m->req();
3361         nstack.push(n, i); // put on stack parent and next input's index
3362         n = m;
3363         i = 0;
3364       }
3365     } else {
3366       // Now do post-visit work
3367       final_graph_reshaping_impl( n, frc );
3368       if (nstack.is_empty())
3369         break;             // finished
3370       n = nstack.node();   // Get node from stack
3371       cnt = n->req();
3372       i = nstack.index();
3373       nstack.pop();        // Shift to the next node on stack
3374     }
3375   }
3376 
3377   // Skip next transformation if compressed oops are not used.
3378   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3379       (!UseCompressedOops && !UseCompressedClassPointers))
3380     return;
3381 
3382   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3383   // It could be done for an uncommon traps or any safepoints/calls
3384   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3385   while (sfpt.size() > 0) {
3386     n = sfpt.pop();
3387     JVMState *jvms = n->as_SafePoint()->jvms();
3388     assert(jvms != NULL, "sanity");
3389     int start = jvms->debug_start();
3390     int end   = n->req();
3391     bool is_uncommon = (n->is_CallStaticJava() &&
3392                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3393     for (int j = start; j < end; j++) {
3394       Node* in = n->in(j);
3395       if (in->is_DecodeNarrowPtr()) {
3396         bool safe_to_skip = true;
3397         if (!is_uncommon ) {
3398           // Is it safe to skip?
3399           for (uint i = 0; i < in->outcnt(); i++) {
3400             Node* u = in->raw_out(i);
3401             if (!u->is_SafePoint() ||
3402                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3403               safe_to_skip = false;
3404             }
3405           }
3406         }
3407         if (safe_to_skip) {
3408           n->set_req(j, in->in(1));
3409         }
3410         if (in->outcnt() == 0) {
3411           in->disconnect_inputs(NULL, this);
3412         }
3413       }
3414     }
3415   }
3416 }
3417 
3418 //------------------------------final_graph_reshaping--------------------------
3419 // Final Graph Reshaping.
3420 //
3421 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3422 //     and not commoned up and forced early.  Must come after regular
3423 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3424 //     inputs to Loop Phis; these will be split by the allocator anyways.
3425 //     Remove Opaque nodes.
3426 // (2) Move last-uses by commutative operations to the left input to encourage
3427 //     Intel update-in-place two-address operations and better register usage
3428 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3429 //     calls canonicalizing them back.
3430 // (3) Count the number of double-precision FP ops, single-precision FP ops
3431 //     and call sites.  On Intel, we can get correct rounding either by
3432 //     forcing singles to memory (requires extra stores and loads after each
3433 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3434 //     clearing the mode bit around call sites).  The mode bit is only used
3435 //     if the relative frequency of single FP ops to calls is low enough.
3436 //     This is a key transform for SPEC mpeg_audio.
3437 // (4) Detect infinite loops; blobs of code reachable from above but not
3438 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3439 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3440 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3441 //     Detection is by looking for IfNodes where only 1 projection is
3442 //     reachable from below or CatchNodes missing some targets.
3443 // (5) Assert for insane oop offsets in debug mode.
3444 
3445 bool Compile::final_graph_reshaping() {
3446   // an infinite loop may have been eliminated by the optimizer,
3447   // in which case the graph will be empty.
3448   if (root()->req() == 1) {
3449     record_method_not_compilable("trivial infinite loop");
3450     return true;
3451   }
3452 
3453   // Expensive nodes have their control input set to prevent the GVN
3454   // from freely commoning them. There's no GVN beyond this point so
3455   // no need to keep the control input. We want the expensive nodes to
3456   // be freely moved to the least frequent code path by gcm.
3457   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3458   for (int i = 0; i < expensive_count(); i++) {
3459     _expensive_nodes->at(i)->set_req(0, NULL);
3460   }
3461 
3462   Final_Reshape_Counts frc;
3463 
3464   // Visit everybody reachable!
3465   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3466   Node_Stack nstack(live_nodes() >> 1);
3467   final_graph_reshaping_walk(nstack, root(), frc);
3468 
3469   // Check for unreachable (from below) code (i.e., infinite loops).
3470   for( uint i = 0; i < frc._tests.size(); i++ ) {
3471     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3472     // Get number of CFG targets.
3473     // Note that PCTables include exception targets after calls.
3474     uint required_outcnt = n->required_outcnt();
3475     if (n->outcnt() != required_outcnt) {
3476       // Check for a few special cases.  Rethrow Nodes never take the
3477       // 'fall-thru' path, so expected kids is 1 less.
3478       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3479         if (n->in(0)->in(0)->is_Call()) {
3480           CallNode *call = n->in(0)->in(0)->as_Call();
3481           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3482             required_outcnt--;      // Rethrow always has 1 less kid
3483           } else if (call->req() > TypeFunc::Parms &&
3484                      call->is_CallDynamicJava()) {
3485             // Check for null receiver. In such case, the optimizer has
3486             // detected that the virtual call will always result in a null
3487             // pointer exception. The fall-through projection of this CatchNode
3488             // will not be populated.
3489             Node *arg0 = call->in(TypeFunc::Parms);
3490             if (arg0->is_Type() &&
3491                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3492               required_outcnt--;
3493             }
3494           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3495                      call->req() > TypeFunc::Parms+1 &&
3496                      call->is_CallStaticJava()) {
3497             // Check for negative array length. In such case, the optimizer has
3498             // detected that the allocation attempt will always result in an
3499             // exception. There is no fall-through projection of this CatchNode .
3500             Node *arg1 = call->in(TypeFunc::Parms+1);
3501             if (arg1->is_Type() &&
3502                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3503               required_outcnt--;
3504             }
3505           }
3506         }
3507       }
3508       // Recheck with a better notion of 'required_outcnt'
3509       if (n->outcnt() != required_outcnt) {
3510         record_method_not_compilable("malformed control flow");
3511         return true;            // Not all targets reachable!
3512       }
3513     }
3514     // Check that I actually visited all kids.  Unreached kids
3515     // must be infinite loops.
3516     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3517       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3518         record_method_not_compilable("infinite loop");
3519         return true;            // Found unvisited kid; must be unreach
3520       }
3521   }
3522 
3523   // If original bytecodes contained a mixture of floats and doubles
3524   // check if the optimizer has made it homogenous, item (3).
3525   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3526       frc.get_float_count() > 32 &&
3527       frc.get_double_count() == 0 &&
3528       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3529     set_24_bit_selection_and_mode( false,  true );
3530   }
3531 
3532   set_java_calls(frc.get_java_call_count());
3533   set_inner_loops(frc.get_inner_loop_count());
3534 
3535   // No infinite loops, no reason to bail out.
3536   return false;
3537 }
3538 
3539 //-----------------------------too_many_traps----------------------------------
3540 // Report if there are too many traps at the current method and bci.
3541 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3542 bool Compile::too_many_traps(ciMethod* method,
3543                              int bci,
3544                              Deoptimization::DeoptReason reason) {
3545   ciMethodData* md = method->method_data();
3546   if (md->is_empty()) {
3547     // Assume the trap has not occurred, or that it occurred only
3548     // because of a transient condition during start-up in the interpreter.
3549     return false;
3550   }
3551   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3552   if (md->has_trap_at(bci, m, reason) != 0) {
3553     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3554     // Also, if there are multiple reasons, or if there is no per-BCI record,
3555     // assume the worst.
3556     if (log())
3557       log()->elem("observe trap='%s' count='%d'",
3558                   Deoptimization::trap_reason_name(reason),
3559                   md->trap_count(reason));
3560     return true;
3561   } else {
3562     // Ignore method/bci and see if there have been too many globally.
3563     return too_many_traps(reason, md);
3564   }
3565 }
3566 
3567 // Less-accurate variant which does not require a method and bci.
3568 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3569                              ciMethodData* logmd) {
3570   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3571     // Too many traps globally.
3572     // Note that we use cumulative trap_count, not just md->trap_count.
3573     if (log()) {
3574       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3575       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3576                   Deoptimization::trap_reason_name(reason),
3577                   mcount, trap_count(reason));
3578     }
3579     return true;
3580   } else {
3581     // The coast is clear.
3582     return false;
3583   }
3584 }
3585 
3586 //--------------------------too_many_recompiles--------------------------------
3587 // Report if there are too many recompiles at the current method and bci.
3588 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3589 // Is not eager to return true, since this will cause the compiler to use
3590 // Action_none for a trap point, to avoid too many recompilations.
3591 bool Compile::too_many_recompiles(ciMethod* method,
3592                                   int bci,
3593                                   Deoptimization::DeoptReason reason) {
3594   ciMethodData* md = method->method_data();
3595   if (md->is_empty()) {
3596     // Assume the trap has not occurred, or that it occurred only
3597     // because of a transient condition during start-up in the interpreter.
3598     return false;
3599   }
3600   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3601   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3602   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3603   Deoptimization::DeoptReason per_bc_reason
3604     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3605   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3606   if ((per_bc_reason == Deoptimization::Reason_none
3607        || md->has_trap_at(bci, m, reason) != 0)
3608       // The trap frequency measure we care about is the recompile count:
3609       && md->trap_recompiled_at(bci, m)
3610       && md->overflow_recompile_count() >= bc_cutoff) {
3611     // Do not emit a trap here if it has already caused recompilations.
3612     // Also, if there are multiple reasons, or if there is no per-BCI record,
3613     // assume the worst.
3614     if (log())
3615       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3616                   Deoptimization::trap_reason_name(reason),
3617                   md->trap_count(reason),
3618                   md->overflow_recompile_count());
3619     return true;
3620   } else if (trap_count(reason) != 0
3621              && decompile_count() >= m_cutoff) {
3622     // Too many recompiles globally, and we have seen this sort of trap.
3623     // Use cumulative decompile_count, not just md->decompile_count.
3624     if (log())
3625       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3626                   Deoptimization::trap_reason_name(reason),
3627                   md->trap_count(reason), trap_count(reason),
3628                   md->decompile_count(), decompile_count());
3629     return true;
3630   } else {
3631     // The coast is clear.
3632     return false;
3633   }
3634 }
3635 
3636 // Compute when not to trap. Used by matching trap based nodes and
3637 // NullCheck optimization.
3638 void Compile::set_allowed_deopt_reasons() {
3639   _allowed_reasons = 0;
3640   if (is_method_compilation()) {
3641     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3642       assert(rs < BitsPerInt, "recode bit map");
3643       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3644         _allowed_reasons |= nth_bit(rs);
3645       }
3646     }
3647   }
3648 }
3649 
3650 #ifndef PRODUCT
3651 //------------------------------verify_graph_edges---------------------------
3652 // Walk the Graph and verify that there is a one-to-one correspondence
3653 // between Use-Def edges and Def-Use edges in the graph.
3654 void Compile::verify_graph_edges(bool no_dead_code) {
3655   if (VerifyGraphEdges) {
3656     ResourceArea *area = Thread::current()->resource_area();
3657     Unique_Node_List visited(area);
3658     // Call recursive graph walk to check edges
3659     _root->verify_edges(visited);
3660     if (no_dead_code) {
3661       // Now make sure that no visited node is used by an unvisited node.
3662       bool dead_nodes = false;
3663       Unique_Node_List checked(area);
3664       while (visited.size() > 0) {
3665         Node* n = visited.pop();
3666         checked.push(n);
3667         for (uint i = 0; i < n->outcnt(); i++) {
3668           Node* use = n->raw_out(i);
3669           if (checked.member(use))  continue;  // already checked
3670           if (visited.member(use))  continue;  // already in the graph
3671           if (use->is_Con())        continue;  // a dead ConNode is OK
3672           // At this point, we have found a dead node which is DU-reachable.
3673           if (!dead_nodes) {
3674             tty->print_cr("*** Dead nodes reachable via DU edges:");
3675             dead_nodes = true;
3676           }
3677           use->dump(2);
3678           tty->print_cr("---");
3679           checked.push(use);  // No repeats; pretend it is now checked.
3680         }
3681       }
3682       assert(!dead_nodes, "using nodes must be reachable from root");
3683     }
3684   }
3685 }
3686 
3687 // Verify GC barriers consistency
3688 // Currently supported:
3689 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3690 void Compile::verify_barriers() {
3691   if (UseG1GC) {
3692     // Verify G1 pre-barriers
3693     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_active());
3694 
3695     ResourceArea *area = Thread::current()->resource_area();
3696     Unique_Node_List visited(area);
3697     Node_List worklist(area);
3698     // We're going to walk control flow backwards starting from the Root
3699     worklist.push(_root);
3700     while (worklist.size() > 0) {
3701       Node* x = worklist.pop();
3702       if (x == NULL || x == top()) continue;
3703       if (visited.member(x)) {
3704         continue;
3705       } else {
3706         visited.push(x);
3707       }
3708 
3709       if (x->is_Region()) {
3710         for (uint i = 1; i < x->req(); i++) {
3711           worklist.push(x->in(i));
3712         }
3713       } else {
3714         worklist.push(x->in(0));
3715         // We are looking for the pattern:
3716         //                            /->ThreadLocal
3717         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3718         //              \->ConI(0)
3719         // We want to verify that the If and the LoadB have the same control
3720         // See GraphKit::g1_write_barrier_pre()
3721         if (x->is_If()) {
3722           IfNode *iff = x->as_If();
3723           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3724             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3725             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3726                 && cmp->in(1)->is_Load()) {
3727               LoadNode* load = cmp->in(1)->as_Load();
3728               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3729                   && load->in(2)->in(3)->is_Con()
3730                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3731 
3732                 Node* if_ctrl = iff->in(0);
3733                 Node* load_ctrl = load->in(0);
3734 
3735                 if (if_ctrl != load_ctrl) {
3736                   // Skip possible CProj->NeverBranch in infinite loops
3737                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3738                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3739                     if_ctrl = if_ctrl->in(0)->in(0);
3740                   }
3741                 }
3742                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3743               }
3744             }
3745           }
3746         }
3747       }
3748     }
3749   }
3750 }
3751 
3752 #endif
3753 
3754 // The Compile object keeps track of failure reasons separately from the ciEnv.
3755 // This is required because there is not quite a 1-1 relation between the
3756 // ciEnv and its compilation task and the Compile object.  Note that one
3757 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3758 // to backtrack and retry without subsuming loads.  Other than this backtracking
3759 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3760 // by the logic in C2Compiler.
3761 void Compile::record_failure(const char* reason) {
3762   if (log() != NULL) {
3763     log()->elem("failure reason='%s' phase='compile'", reason);
3764   }
3765   if (_failure_reason == NULL) {
3766     // Record the first failure reason.
3767     _failure_reason = reason;
3768   }
3769 
3770   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3771     C->print_method(PHASE_FAILURE);
3772   }
3773   _root = NULL;  // flush the graph, too
3774 }
3775 
3776 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
3777   : TraceTime(name, accumulator, CITime, CITimeVerbose),
3778     _phase_name(name), _dolog(CITimeVerbose)
3779 {
3780   if (_dolog) {
3781     C = Compile::current();
3782     _log = C->log();
3783   } else {
3784     C = NULL;
3785     _log = NULL;
3786   }
3787   if (_log != NULL) {
3788     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3789     _log->stamp();
3790     _log->end_head();
3791   }
3792 }
3793 
3794 Compile::TracePhase::~TracePhase() {
3795 
3796   C = Compile::current();
3797   if (_dolog) {
3798     _log = C->log();
3799   } else {
3800     _log = NULL;
3801   }
3802 
3803 #ifdef ASSERT
3804   if (PrintIdealNodeCount) {
3805     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3806                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3807   }
3808 
3809   if (VerifyIdealNodeCount) {
3810     Compile::current()->print_missing_nodes();
3811   }
3812 #endif
3813 
3814   if (_log != NULL) {
3815     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3816   }
3817 }
3818 
3819 //=============================================================================
3820 // Two Constant's are equal when the type and the value are equal.
3821 bool Compile::Constant::operator==(const Constant& other) {
3822   if (type()          != other.type()         )  return false;
3823   if (can_be_reused() != other.can_be_reused())  return false;
3824   // For floating point values we compare the bit pattern.
3825   switch (type()) {
3826   case T_INT:
3827   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3828   case T_LONG:
3829   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3830   case T_OBJECT:
3831   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3832   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3833   case T_METADATA: return (_v._metadata == other._v._metadata);
3834   default: ShouldNotReachHere();
3835   }
3836   return false;
3837 }
3838 
3839 static int type_to_size_in_bytes(BasicType t) {
3840   switch (t) {
3841   case T_INT:     return sizeof(jint   );
3842   case T_LONG:    return sizeof(jlong  );
3843   case T_FLOAT:   return sizeof(jfloat );
3844   case T_DOUBLE:  return sizeof(jdouble);
3845   case T_METADATA: return sizeof(Metadata*);
3846     // We use T_VOID as marker for jump-table entries (labels) which
3847     // need an internal word relocation.
3848   case T_VOID:
3849   case T_ADDRESS:
3850   case T_OBJECT:  return sizeof(jobject);
3851   }
3852 
3853   ShouldNotReachHere();
3854   return -1;
3855 }
3856 
3857 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3858   // sort descending
3859   if (a->freq() > b->freq())  return -1;
3860   if (a->freq() < b->freq())  return  1;
3861   return 0;
3862 }
3863 
3864 void Compile::ConstantTable::calculate_offsets_and_size() {
3865   // First, sort the array by frequencies.
3866   _constants.sort(qsort_comparator);
3867 
3868 #ifdef ASSERT
3869   // Make sure all jump-table entries were sorted to the end of the
3870   // array (they have a negative frequency).
3871   bool found_void = false;
3872   for (int i = 0; i < _constants.length(); i++) {
3873     Constant con = _constants.at(i);
3874     if (con.type() == T_VOID)
3875       found_void = true;  // jump-tables
3876     else
3877       assert(!found_void, "wrong sorting");
3878   }
3879 #endif
3880 
3881   int offset = 0;
3882   for (int i = 0; i < _constants.length(); i++) {
3883     Constant* con = _constants.adr_at(i);
3884 
3885     // Align offset for type.
3886     int typesize = type_to_size_in_bytes(con->type());
3887     offset = align_size_up(offset, typesize);
3888     con->set_offset(offset);   // set constant's offset
3889 
3890     if (con->type() == T_VOID) {
3891       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3892       offset = offset + typesize * n->outcnt();  // expand jump-table
3893     } else {
3894       offset = offset + typesize;
3895     }
3896   }
3897 
3898   // Align size up to the next section start (which is insts; see
3899   // CodeBuffer::align_at_start).
3900   assert(_size == -1, "already set?");
3901   _size = align_size_up(offset, CodeEntryAlignment);
3902 }
3903 
3904 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3905   MacroAssembler _masm(&cb);
3906   for (int i = 0; i < _constants.length(); i++) {
3907     Constant con = _constants.at(i);
3908     address constant_addr = NULL;
3909     switch (con.type()) {
3910     case T_INT:    constant_addr = _masm.int_constant(   con.get_jint()   ); break;
3911     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3912     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3913     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3914     case T_OBJECT: {
3915       jobject obj = con.get_jobject();
3916       int oop_index = _masm.oop_recorder()->find_index(obj);
3917       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3918       break;
3919     }
3920     case T_ADDRESS: {
3921       address addr = (address) con.get_jobject();
3922       constant_addr = _masm.address_constant(addr);
3923       break;
3924     }
3925     // We use T_VOID as marker for jump-table entries (labels) which
3926     // need an internal word relocation.
3927     case T_VOID: {
3928       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3929       // Fill the jump-table with a dummy word.  The real value is
3930       // filled in later in fill_jump_table.
3931       address dummy = (address) n;
3932       constant_addr = _masm.address_constant(dummy);
3933       // Expand jump-table
3934       for (uint i = 1; i < n->outcnt(); i++) {
3935         address temp_addr = _masm.address_constant(dummy + i);
3936         assert(temp_addr, "consts section too small");
3937       }
3938       break;
3939     }
3940     case T_METADATA: {
3941       Metadata* obj = con.get_metadata();
3942       int metadata_index = _masm.oop_recorder()->find_index(obj);
3943       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3944       break;
3945     }
3946     default: ShouldNotReachHere();
3947     }
3948     assert(constant_addr, "consts section too small");
3949     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
3950             "must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset()));
3951   }
3952 }
3953 
3954 int Compile::ConstantTable::find_offset(Constant& con) const {
3955   int idx = _constants.find(con);
3956   assert(idx != -1, "constant must be in constant table");
3957   int offset = _constants.at(idx).offset();
3958   assert(offset != -1, "constant table not emitted yet?");
3959   return offset;
3960 }
3961 
3962 void Compile::ConstantTable::add(Constant& con) {
3963   if (con.can_be_reused()) {
3964     int idx = _constants.find(con);
3965     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3966       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3967       return;
3968     }
3969   }
3970   (void) _constants.append(con);
3971 }
3972 
3973 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3974   Block* b = Compile::current()->cfg()->get_block_for_node(n);
3975   Constant con(type, value, b->_freq);
3976   add(con);
3977   return con;
3978 }
3979 
3980 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3981   Constant con(metadata);
3982   add(con);
3983   return con;
3984 }
3985 
3986 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3987   jvalue value;
3988   BasicType type = oper->type()->basic_type();
3989   switch (type) {
3990   case T_LONG:    value.j = oper->constantL(); break;
3991   case T_FLOAT:   value.f = oper->constantF(); break;
3992   case T_DOUBLE:  value.d = oper->constantD(); break;
3993   case T_OBJECT:
3994   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3995   case T_METADATA: return add((Metadata*)oper->constant()); break;
3996   default: guarantee(false, "unhandled type: %s", type2name(type));
3997   }
3998   return add(n, type, value);
3999 }
4000 
4001 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
4002   jvalue value;
4003   // We can use the node pointer here to identify the right jump-table
4004   // as this method is called from Compile::Fill_buffer right before
4005   // the MachNodes are emitted and the jump-table is filled (means the
4006   // MachNode pointers do not change anymore).
4007   value.l = (jobject) n;
4008   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
4009   add(con);
4010   return con;
4011 }
4012 
4013 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
4014   // If called from Compile::scratch_emit_size do nothing.
4015   if (Compile::current()->in_scratch_emit_size())  return;
4016 
4017   assert(labels.is_nonempty(), "must be");
4018   assert((uint) labels.length() == n->outcnt(), "must be equal: %d == %d", labels.length(), n->outcnt());
4019 
4020   // Since MachConstantNode::constant_offset() also contains
4021   // table_base_offset() we need to subtract the table_base_offset()
4022   // to get the plain offset into the constant table.
4023   int offset = n->constant_offset() - table_base_offset();
4024 
4025   MacroAssembler _masm(&cb);
4026   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
4027 
4028   for (uint i = 0; i < n->outcnt(); i++) {
4029     address* constant_addr = &jump_table_base[i];
4030     assert(*constant_addr == (((address) n) + i), "all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i));
4031     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
4032     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
4033   }
4034 }
4035 
4036 //----------------------------static_subtype_check-----------------------------
4037 // Shortcut important common cases when superklass is exact:
4038 // (0) superklass is java.lang.Object (can occur in reflective code)
4039 // (1) subklass is already limited to a subtype of superklass => always ok
4040 // (2) subklass does not overlap with superklass => always fail
4041 // (3) superklass has NO subtypes and we can check with a simple compare.
4042 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
4043   if (StressReflectiveCode) {
4044     return SSC_full_test;       // Let caller generate the general case.
4045   }
4046 
4047   if (superk == env()->Object_klass()) {
4048     return SSC_always_true;     // (0) this test cannot fail
4049   }
4050 
4051   ciType* superelem = superk;
4052   if (superelem->is_array_klass())
4053     superelem = superelem->as_array_klass()->base_element_type();
4054 
4055   if (!subk->is_interface()) {  // cannot trust static interface types yet
4056     if (subk->is_subtype_of(superk)) {
4057       return SSC_always_true;   // (1) false path dead; no dynamic test needed
4058     }
4059     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
4060         !superk->is_subtype_of(subk)) {
4061       return SSC_always_false;
4062     }
4063   }
4064 
4065   // If casting to an instance klass, it must have no subtypes
4066   if (superk->is_interface()) {
4067     // Cannot trust interfaces yet.
4068     // %%% S.B. superk->nof_implementors() == 1
4069   } else if (superelem->is_instance_klass()) {
4070     ciInstanceKlass* ik = superelem->as_instance_klass();
4071     if (!ik->has_subklass() && !ik->is_interface()) {
4072       if (!ik->is_final()) {
4073         // Add a dependency if there is a chance of a later subclass.
4074         dependencies()->assert_leaf_type(ik);
4075       }
4076       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4077     }
4078   } else {
4079     // A primitive array type has no subtypes.
4080     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4081   }
4082 
4083   return SSC_full_test;
4084 }
4085 
4086 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4087 #ifdef _LP64
4088   // The scaled index operand to AddP must be a clean 64-bit value.
4089   // Java allows a 32-bit int to be incremented to a negative
4090   // value, which appears in a 64-bit register as a large
4091   // positive number.  Using that large positive number as an
4092   // operand in pointer arithmetic has bad consequences.
4093   // On the other hand, 32-bit overflow is rare, and the possibility
4094   // can often be excluded, if we annotate the ConvI2L node with
4095   // a type assertion that its value is known to be a small positive
4096   // number.  (The prior range check has ensured this.)
4097   // This assertion is used by ConvI2LNode::Ideal.
4098   int index_max = max_jint - 1;  // array size is max_jint, index is one less
4099   if (sizetype != NULL) index_max = sizetype->_hi - 1;
4100   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4101   idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4102 #endif
4103   return idx;
4104 }
4105 
4106 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4107 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
4108   if (ctrl != NULL) {
4109     // Express control dependency by a CastII node with a narrow type.
4110     value = new CastIINode(value, itype, false, true /* range check dependency */);
4111     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4112     // node from floating above the range check during loop optimizations. Otherwise, the
4113     // ConvI2L node may be eliminated independently of the range check, causing the data path
4114     // to become TOP while the control path is still there (although it's unreachable).
4115     value->set_req(0, ctrl);
4116     // Save CastII node to remove it after loop optimizations.
4117     phase->C->add_range_check_cast(value);
4118     value = phase->transform(value);
4119   }
4120   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4121   return phase->transform(new ConvI2LNode(value, ltype));
4122 }
4123 
4124 // The message about the current inlining is accumulated in
4125 // _print_inlining_stream and transfered into the _print_inlining_list
4126 // once we know whether inlining succeeds or not. For regular
4127 // inlining, messages are appended to the buffer pointed by
4128 // _print_inlining_idx in the _print_inlining_list. For late inlining,
4129 // a new buffer is added after _print_inlining_idx in the list. This
4130 // way we can update the inlining message for late inlining call site
4131 // when the inlining is attempted again.
4132 void Compile::print_inlining_init() {
4133   if (print_inlining() || print_intrinsics()) {
4134     _print_inlining_stream = new stringStream();
4135     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
4136   }
4137 }
4138 
4139 void Compile::print_inlining_reinit() {
4140   if (print_inlining() || print_intrinsics()) {
4141     // Re allocate buffer when we change ResourceMark
4142     _print_inlining_stream = new stringStream();
4143   }
4144 }
4145 
4146 void Compile::print_inlining_reset() {
4147   _print_inlining_stream->reset();
4148 }
4149 
4150 void Compile::print_inlining_commit() {
4151   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
4152   // Transfer the message from _print_inlining_stream to the current
4153   // _print_inlining_list buffer and clear _print_inlining_stream.
4154   _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
4155   print_inlining_reset();
4156 }
4157 
4158 void Compile::print_inlining_push() {
4159   // Add new buffer to the _print_inlining_list at current position
4160   _print_inlining_idx++;
4161   _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
4162 }
4163 
4164 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
4165   return _print_inlining_list->at(_print_inlining_idx);
4166 }
4167 
4168 void Compile::print_inlining_update(CallGenerator* cg) {
4169   if (print_inlining() || print_intrinsics()) {
4170     if (!cg->is_late_inline()) {
4171       if (print_inlining_current().cg() != NULL) {
4172         print_inlining_push();
4173       }
4174       print_inlining_commit();
4175     } else {
4176       if (print_inlining_current().cg() != cg &&
4177           (print_inlining_current().cg() != NULL ||
4178            print_inlining_current().ss()->size() != 0)) {
4179         print_inlining_push();
4180       }
4181       print_inlining_commit();
4182       print_inlining_current().set_cg(cg);
4183     }
4184   }
4185 }
4186 
4187 void Compile::print_inlining_move_to(CallGenerator* cg) {
4188   // We resume inlining at a late inlining call site. Locate the
4189   // corresponding inlining buffer so that we can update it.
4190   if (print_inlining()) {
4191     for (int i = 0; i < _print_inlining_list->length(); i++) {
4192       if (_print_inlining_list->adr_at(i)->cg() == cg) {
4193         _print_inlining_idx = i;
4194         return;
4195       }
4196     }
4197     ShouldNotReachHere();
4198   }
4199 }
4200 
4201 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4202   if (print_inlining()) {
4203     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4204     assert(print_inlining_current().cg() == cg, "wrong entry");
4205     // replace message with new message
4206     _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
4207     print_inlining_commit();
4208     print_inlining_current().set_cg(cg);
4209   }
4210 }
4211 
4212 void Compile::print_inlining_assert_ready() {
4213   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
4214 }
4215 
4216 void Compile::process_print_inlining() {
4217   bool do_print_inlining = print_inlining() || print_intrinsics();
4218   if (do_print_inlining || log() != NULL) {
4219     // Print inlining message for candidates that we couldn't inline
4220     // for lack of space
4221     for (int i = 0; i < _late_inlines.length(); i++) {
4222       CallGenerator* cg = _late_inlines.at(i);
4223       if (!cg->is_mh_late_inline()) {
4224         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
4225         if (do_print_inlining) {
4226           cg->print_inlining_late(msg);
4227         }
4228         log_late_inline_failure(cg, msg);
4229       }
4230     }
4231   }
4232   if (do_print_inlining) {
4233     ResourceMark rm;
4234     stringStream ss;
4235     for (int i = 0; i < _print_inlining_list->length(); i++) {
4236       ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
4237     }
4238     size_t end = ss.size();
4239     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4240     strncpy(_print_inlining_output, ss.base(), end+1);
4241     _print_inlining_output[end] = 0;
4242   }
4243 }
4244 
4245 void Compile::dump_print_inlining() {
4246   if (_print_inlining_output != NULL) {
4247     tty->print_raw(_print_inlining_output);
4248   }
4249 }
4250 
4251 void Compile::log_late_inline(CallGenerator* cg) {
4252   if (log() != NULL) {
4253     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4254                 cg->unique_id());
4255     JVMState* p = cg->call_node()->jvms();
4256     while (p != NULL) {
4257       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4258       p = p->caller();
4259     }
4260     log()->tail("late_inline");
4261   }
4262 }
4263 
4264 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4265   log_late_inline(cg);
4266   if (log() != NULL) {
4267     log()->inline_fail(msg);
4268   }
4269 }
4270 
4271 void Compile::log_inline_id(CallGenerator* cg) {
4272   if (log() != NULL) {
4273     // The LogCompilation tool needs a unique way to identify late
4274     // inline call sites. This id must be unique for this call site in
4275     // this compilation. Try to have it unique across compilations as
4276     // well because it can be convenient when grepping through the log
4277     // file.
4278     // Distinguish OSR compilations from others in case CICountOSR is
4279     // on.
4280     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4281     cg->set_unique_id(id);
4282     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4283   }
4284 }
4285 
4286 void Compile::log_inline_failure(const char* msg) {
4287   if (C->log() != NULL) {
4288     C->log()->inline_fail(msg);
4289   }
4290 }
4291 
4292 
4293 // Dump inlining replay data to the stream.
4294 // Don't change thread state and acquire any locks.
4295 void Compile::dump_inline_data(outputStream* out) {
4296   InlineTree* inl_tree = ilt();
4297   if (inl_tree != NULL) {
4298     out->print(" inline %d", inl_tree->count());
4299     inl_tree->dump_replay_data(out);
4300   }
4301 }
4302 
4303 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4304   if (n1->Opcode() < n2->Opcode())      return -1;
4305   else if (n1->Opcode() > n2->Opcode()) return 1;
4306 
4307   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4308   for (uint i = 1; i < n1->req(); i++) {
4309     if (n1->in(i) < n2->in(i))      return -1;
4310     else if (n1->in(i) > n2->in(i)) return 1;
4311   }
4312 
4313   return 0;
4314 }
4315 
4316 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4317   Node* n1 = *n1p;
4318   Node* n2 = *n2p;
4319 
4320   return cmp_expensive_nodes(n1, n2);
4321 }
4322 
4323 void Compile::sort_expensive_nodes() {
4324   if (!expensive_nodes_sorted()) {
4325     _expensive_nodes->sort(cmp_expensive_nodes);
4326   }
4327 }
4328 
4329 bool Compile::expensive_nodes_sorted() const {
4330   for (int i = 1; i < _expensive_nodes->length(); i++) {
4331     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4332       return false;
4333     }
4334   }
4335   return true;
4336 }
4337 
4338 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4339   if (_expensive_nodes->length() == 0) {
4340     return false;
4341   }
4342 
4343   assert(OptimizeExpensiveOps, "optimization off?");
4344 
4345   // Take this opportunity to remove dead nodes from the list
4346   int j = 0;
4347   for (int i = 0; i < _expensive_nodes->length(); i++) {
4348     Node* n = _expensive_nodes->at(i);
4349     if (!n->is_unreachable(igvn)) {
4350       assert(n->is_expensive(), "should be expensive");
4351       _expensive_nodes->at_put(j, n);
4352       j++;
4353     }
4354   }
4355   _expensive_nodes->trunc_to(j);
4356 
4357   // Then sort the list so that similar nodes are next to each other
4358   // and check for at least two nodes of identical kind with same data
4359   // inputs.
4360   sort_expensive_nodes();
4361 
4362   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4363     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4364       return true;
4365     }
4366   }
4367 
4368   return false;
4369 }
4370 
4371 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4372   if (_expensive_nodes->length() == 0) {
4373     return;
4374   }
4375 
4376   assert(OptimizeExpensiveOps, "optimization off?");
4377 
4378   // Sort to bring similar nodes next to each other and clear the
4379   // control input of nodes for which there's only a single copy.
4380   sort_expensive_nodes();
4381 
4382   int j = 0;
4383   int identical = 0;
4384   int i = 0;
4385   bool modified = false;
4386   for (; i < _expensive_nodes->length()-1; i++) {
4387     assert(j <= i, "can't write beyond current index");
4388     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4389       identical++;
4390       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4391       continue;
4392     }
4393     if (identical > 0) {
4394       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4395       identical = 0;
4396     } else {
4397       Node* n = _expensive_nodes->at(i);
4398       igvn.replace_input_of(n, 0, NULL);
4399       igvn.hash_insert(n);
4400       modified = true;
4401     }
4402   }
4403   if (identical > 0) {
4404     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4405   } else if (_expensive_nodes->length() >= 1) {
4406     Node* n = _expensive_nodes->at(i);
4407     igvn.replace_input_of(n, 0, NULL);
4408     igvn.hash_insert(n);
4409     modified = true;
4410   }
4411   _expensive_nodes->trunc_to(j);
4412   if (modified) {
4413     igvn.optimize();
4414   }
4415 }
4416 
4417 void Compile::add_expensive_node(Node * n) {
4418   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4419   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4420   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4421   if (OptimizeExpensiveOps) {
4422     _expensive_nodes->append(n);
4423   } else {
4424     // Clear control input and let IGVN optimize expensive nodes if
4425     // OptimizeExpensiveOps is off.
4426     n->set_req(0, NULL);
4427   }
4428 }
4429 
4430 /**
4431  * Remove the speculative part of types and clean up the graph
4432  */
4433 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4434   if (UseTypeSpeculation) {
4435     Unique_Node_List worklist;
4436     worklist.push(root());
4437     int modified = 0;
4438     // Go over all type nodes that carry a speculative type, drop the
4439     // speculative part of the type and enqueue the node for an igvn
4440     // which may optimize it out.
4441     for (uint next = 0; next < worklist.size(); ++next) {
4442       Node *n  = worklist.at(next);
4443       if (n->is_Type()) {
4444         TypeNode* tn = n->as_Type();
4445         const Type* t = tn->type();
4446         const Type* t_no_spec = t->remove_speculative();
4447         if (t_no_spec != t) {
4448           bool in_hash = igvn.hash_delete(n);
4449           assert(in_hash, "node should be in igvn hash table");
4450           tn->set_type(t_no_spec);
4451           igvn.hash_insert(n);
4452           igvn._worklist.push(n); // give it a chance to go away
4453           modified++;
4454         }
4455       }
4456       uint max = n->len();
4457       for( uint i = 0; i < max; ++i ) {
4458         Node *m = n->in(i);
4459         if (not_a_node(m))  continue;
4460         worklist.push(m);
4461       }
4462     }
4463     // Drop the speculative part of all types in the igvn's type table
4464     igvn.remove_speculative_types();
4465     if (modified > 0) {
4466       igvn.optimize();
4467     }
4468 #ifdef ASSERT
4469     // Verify that after the IGVN is over no speculative type has resurfaced
4470     worklist.clear();
4471     worklist.push(root());
4472     for (uint next = 0; next < worklist.size(); ++next) {
4473       Node *n  = worklist.at(next);
4474       const Type* t = igvn.type_or_null(n);
4475       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4476       if (n->is_Type()) {
4477         t = n->as_Type()->type();
4478         assert(t == t->remove_speculative(), "no more speculative types");
4479       }
4480       uint max = n->len();
4481       for( uint i = 0; i < max; ++i ) {
4482         Node *m = n->in(i);
4483         if (not_a_node(m))  continue;
4484         worklist.push(m);
4485       }
4486     }
4487     igvn.check_no_speculative_types();
4488 #endif
4489   }
4490 }
4491 
4492 // Auxiliary method to support randomized stressing/fuzzing.
4493 //
4494 // This method can be called the arbitrary number of times, with current count
4495 // as the argument. The logic allows selecting a single candidate from the
4496 // running list of candidates as follows:
4497 //    int count = 0;
4498 //    Cand* selected = null;
4499 //    while(cand = cand->next()) {
4500 //      if (randomized_select(++count)) {
4501 //        selected = cand;
4502 //      }
4503 //    }
4504 //
4505 // Including count equalizes the chances any candidate is "selected".
4506 // This is useful when we don't have the complete list of candidates to choose
4507 // from uniformly. In this case, we need to adjust the randomicity of the
4508 // selection, or else we will end up biasing the selection towards the latter
4509 // candidates.
4510 //
4511 // Quick back-envelope calculation shows that for the list of n candidates
4512 // the equal probability for the candidate to persist as "best" can be
4513 // achieved by replacing it with "next" k-th candidate with the probability
4514 // of 1/k. It can be easily shown that by the end of the run, the
4515 // probability for any candidate is converged to 1/n, thus giving the
4516 // uniform distribution among all the candidates.
4517 //
4518 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4519 #define RANDOMIZED_DOMAIN_POW 29
4520 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4521 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4522 bool Compile::randomized_select(int count) {
4523   assert(count > 0, "only positive");
4524   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4525 }
4526 
4527 CloneMap&     Compile::clone_map()                 { return _clone_map; }
4528 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
4529 
4530 void NodeCloneInfo::dump() const {
4531   tty->print(" {%d:%d} ", idx(), gen());
4532 }
4533 
4534 void CloneMap::clone(Node* old, Node* nnn, int gen) {
4535   uint64_t val = value(old->_idx);
4536   NodeCloneInfo cio(val);
4537   assert(val != 0, "old node should be in the map");
4538   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
4539   insert(nnn->_idx, cin.get());
4540 #ifndef PRODUCT
4541   if (is_debug()) {
4542     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
4543   }
4544 #endif
4545 }
4546 
4547 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
4548   NodeCloneInfo cio(value(old->_idx));
4549   if (cio.get() == 0) {
4550     cio.set(old->_idx, 0);
4551     insert(old->_idx, cio.get());
4552 #ifndef PRODUCT
4553     if (is_debug()) {
4554       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
4555     }
4556 #endif
4557   }
4558   clone(old, nnn, gen);
4559 }
4560 
4561 int CloneMap::max_gen() const {
4562   int g = 0;
4563   DictI di(_dict);
4564   for(; di.test(); ++di) {
4565     int t = gen(di._key);
4566     if (g < t) {
4567       g = t;
4568 #ifndef PRODUCT
4569       if (is_debug()) {
4570         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
4571       }
4572 #endif
4573     }
4574   }
4575   return g;
4576 }
4577 
4578 void CloneMap::dump(node_idx_t key) const {
4579   uint64_t val = value(key);
4580   if (val != 0) {
4581     NodeCloneInfo ni(val);
4582     ni.dump();
4583   }
4584 }