1 /*
   2  * Copyright (c) 2005, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/shared/c2BarrierSetCodeGen.hpp"
  29 #include "libadt/vectset.hpp"
  30 #include "memory/allocation.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "opto/c2compiler.hpp"
  33 #include "opto/arraycopynode.hpp"
  34 #include "opto/callnode.hpp"
  35 #include "opto/cfgnode.hpp"
  36 #include "opto/compile.hpp"
  37 #include "opto/escape.hpp"
  38 #include "opto/phaseX.hpp"
  39 #include "opto/movenode.hpp"
  40 #include "opto/rootnode.hpp"
  41 
  42 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
  43   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
  44   _in_worklist(C->comp_arena()),
  45   _next_pidx(0),
  46   _collecting(true),
  47   _verify(false),
  48   _compile(C),
  49   _igvn(igvn),
  50   _node_map(C->comp_arena()) {
  51   // Add unknown java object.
  52   add_java_object(C->top(), PointsToNode::GlobalEscape);
  53   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
  54   // Add ConP(#NULL) and ConN(#NULL) nodes.
  55   Node* oop_null = igvn->zerocon(T_OBJECT);
  56   assert(oop_null->_idx < nodes_size(), "should be created already");
  57   add_java_object(oop_null, PointsToNode::NoEscape);
  58   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
  59   if (UseCompressedOops) {
  60     Node* noop_null = igvn->zerocon(T_NARROWOOP);
  61     assert(noop_null->_idx < nodes_size(), "should be created already");
  62     map_ideal_node(noop_null, null_obj);
  63   }
  64   _pcmp_neq = NULL; // Should be initialized
  65   _pcmp_eq  = NULL;
  66 }
  67 
  68 bool ConnectionGraph::has_candidates(Compile *C) {
  69   // EA brings benefits only when the code has allocations and/or locks which
  70   // are represented by ideal Macro nodes.
  71   int cnt = C->macro_count();
  72   for (int i = 0; i < cnt; i++) {
  73     Node *n = C->macro_node(i);
  74     if (n->is_Allocate())
  75       return true;
  76     if (n->is_Lock()) {
  77       Node* obj = n->as_Lock()->obj_node()->uncast();
  78       if (!(obj->is_Parm() || obj->is_Con()))
  79         return true;
  80     }
  81     if (n->is_CallStaticJava() &&
  82         n->as_CallStaticJava()->is_boxing_method()) {
  83       return true;
  84     }
  85   }
  86   return false;
  87 }
  88 
  89 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
  90   Compile::TracePhase tp("escapeAnalysis", &Phase::timers[Phase::_t_escapeAnalysis]);
  91   ResourceMark rm;
  92 
  93   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
  94   // to create space for them in ConnectionGraph::_nodes[].
  95   Node* oop_null = igvn->zerocon(T_OBJECT);
  96   Node* noop_null = igvn->zerocon(T_NARROWOOP);
  97   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
  98   // Perform escape analysis
  99   if (congraph->compute_escape()) {
 100     // There are non escaping objects.
 101     C->set_congraph(congraph);
 102   }
 103   // Cleanup.
 104   if (oop_null->outcnt() == 0)
 105     igvn->hash_delete(oop_null);
 106   if (noop_null->outcnt() == 0)
 107     igvn->hash_delete(noop_null);
 108 }
 109 
 110 bool ConnectionGraph::compute_escape() {
 111   Compile* C = _compile;
 112   PhaseGVN* igvn = _igvn;
 113 
 114   // Worklists used by EA.
 115   Unique_Node_List delayed_worklist;
 116   GrowableArray<Node*> alloc_worklist;
 117   GrowableArray<Node*> ptr_cmp_worklist;
 118   GrowableArray<Node*> storestore_worklist;
 119   GrowableArray<ArrayCopyNode*> arraycopy_worklist;
 120   GrowableArray<PointsToNode*>   ptnodes_worklist;
 121   GrowableArray<JavaObjectNode*> java_objects_worklist;
 122   GrowableArray<JavaObjectNode*> non_escaped_worklist;
 123   GrowableArray<FieldNode*>      oop_fields_worklist;
 124   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 125 
 126   { Compile::TracePhase tp("connectionGraph", &Phase::timers[Phase::_t_connectionGraph]);
 127 
 128   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 129   ideal_nodes.map(C->live_nodes(), NULL);  // preallocate space
 130   // Initialize worklist
 131   if (C->root() != NULL) {
 132     ideal_nodes.push(C->root());
 133   }
 134   // Processed ideal nodes are unique on ideal_nodes list
 135   // but several ideal nodes are mapped to the phantom_obj.
 136   // To avoid duplicated entries on the following worklists
 137   // add the phantom_obj only once to them.
 138   ptnodes_worklist.append(phantom_obj);
 139   java_objects_worklist.append(phantom_obj);
 140   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 141     Node* n = ideal_nodes.at(next);
 142     // Create PointsTo nodes and add them to Connection Graph. Called
 143     // only once per ideal node since ideal_nodes is Unique_Node list.
 144     add_node_to_connection_graph(n, &delayed_worklist);
 145     PointsToNode* ptn = ptnode_adr(n->_idx);
 146     if (ptn != NULL && ptn != phantom_obj) {
 147       ptnodes_worklist.append(ptn);
 148       if (ptn->is_JavaObject()) {
 149         java_objects_worklist.append(ptn->as_JavaObject());
 150         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 151             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 152           // Only allocations and java static calls results are interesting.
 153           non_escaped_worklist.append(ptn->as_JavaObject());
 154         }
 155       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 156         oop_fields_worklist.append(ptn->as_Field());
 157       }
 158     }
 159     if (n->is_MergeMem()) {
 160       // Collect all MergeMem nodes to add memory slices for
 161       // scalar replaceable objects in split_unique_types().
 162       _mergemem_worklist.append(n->as_MergeMem());
 163     } else if (OptimizePtrCompare && n->is_Cmp() &&
 164                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
 165       // Collect compare pointers nodes.
 166       ptr_cmp_worklist.append(n);
 167     } else if (n->is_MemBarStoreStore()) {
 168       // Collect all MemBarStoreStore nodes so that depending on the
 169       // escape status of the associated Allocate node some of them
 170       // may be eliminated.
 171       storestore_worklist.append(n);
 172     } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
 173                (n->req() > MemBarNode::Precedent)) {
 174       record_for_optimizer(n);
 175 #ifdef ASSERT
 176     } else if (n->is_AddP()) {
 177       // Collect address nodes for graph verification.
 178       addp_worklist.append(n);
 179 #endif
 180     } else if (n->is_ArrayCopy()) {
 181       // Keep a list of ArrayCopy nodes so if one of its input is non
 182       // escaping, we can record a unique type
 183       arraycopy_worklist.append(n->as_ArrayCopy());
 184     }
 185     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 186       Node* m = n->fast_out(i);   // Get user
 187       ideal_nodes.push(m);
 188     }
 189   }
 190   if (non_escaped_worklist.length() == 0) {
 191     _collecting = false;
 192     return false; // Nothing to do.
 193   }
 194   // Add final simple edges to graph.
 195   while(delayed_worklist.size() > 0) {
 196     Node* n = delayed_worklist.pop();
 197     add_final_edges(n);
 198   }
 199   int ptnodes_length = ptnodes_worklist.length();
 200 
 201 #ifdef ASSERT
 202   if (VerifyConnectionGraph) {
 203     // Verify that no new simple edges could be created and all
 204     // local vars has edges.
 205     _verify = true;
 206     for (int next = 0; next < ptnodes_length; ++next) {
 207       PointsToNode* ptn = ptnodes_worklist.at(next);
 208       add_final_edges(ptn->ideal_node());
 209       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
 210         ptn->dump();
 211         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
 212       }
 213     }
 214     _verify = false;
 215   }
 216 #endif
 217   // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes
 218   // processing, calls to CI to resolve symbols (types, fields, methods)
 219   // referenced in bytecode. During symbol resolution VM may throw
 220   // an exception which CI cleans and converts to compilation failure.
 221   if (C->failing())  return false;
 222 
 223   // 2. Finish Graph construction by propagating references to all
 224   //    java objects through graph.
 225   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
 226                                  java_objects_worklist, oop_fields_worklist)) {
 227     // All objects escaped or hit time or iterations limits.
 228     _collecting = false;
 229     return false;
 230   }
 231 
 232   // 3. Adjust scalar_replaceable state of nonescaping objects and push
 233   //    scalar replaceable allocations on alloc_worklist for processing
 234   //    in split_unique_types().
 235   int non_escaped_length = non_escaped_worklist.length();
 236   for (int next = 0; next < non_escaped_length; next++) {
 237     JavaObjectNode* ptn = non_escaped_worklist.at(next);
 238     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
 239     Node* n = ptn->ideal_node();
 240     if (n->is_Allocate()) {
 241       n->as_Allocate()->_is_non_escaping = noescape;
 242     }
 243     if (n->is_CallStaticJava()) {
 244       n->as_CallStaticJava()->_is_non_escaping = noescape;
 245     }
 246     if (noescape && ptn->scalar_replaceable()) {
 247       adjust_scalar_replaceable_state(ptn);
 248       if (ptn->scalar_replaceable()) {
 249         alloc_worklist.append(ptn->ideal_node());
 250       }
 251     }
 252   }
 253 
 254 #ifdef ASSERT
 255   if (VerifyConnectionGraph) {
 256     // Verify that graph is complete - no new edges could be added or needed.
 257     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
 258                             java_objects_worklist, addp_worklist);
 259   }
 260   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
 261   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
 262          null_obj->edge_count() == 0 &&
 263          !null_obj->arraycopy_src() &&
 264          !null_obj->arraycopy_dst(), "sanity");
 265 #endif
 266 
 267   _collecting = false;
 268 
 269   } // TracePhase t3("connectionGraph")
 270 
 271   // 4. Optimize ideal graph based on EA information.
 272   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
 273   if (has_non_escaping_obj) {
 274     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
 275   }
 276 
 277 #ifndef PRODUCT
 278   if (PrintEscapeAnalysis) {
 279     dump(ptnodes_worklist); // Dump ConnectionGraph
 280   }
 281 #endif
 282 
 283   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
 284 #ifdef ASSERT
 285   if (VerifyConnectionGraph) {
 286     int alloc_length = alloc_worklist.length();
 287     for (int next = 0; next < alloc_length; ++next) {
 288       Node* n = alloc_worklist.at(next);
 289       PointsToNode* ptn = ptnode_adr(n->_idx);
 290       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
 291     }
 292   }
 293 #endif
 294 
 295   // 5. Separate memory graph for scalar replaceable allcations.
 296   if (has_scalar_replaceable_candidates &&
 297       C->AliasLevel() >= 3 && EliminateAllocations) {
 298     // Now use the escape information to create unique types for
 299     // scalar replaceable objects.
 300     split_unique_types(alloc_worklist, arraycopy_worklist);
 301     if (C->failing())  return false;
 302     C->print_method(PHASE_AFTER_EA, 2);
 303 
 304 #ifdef ASSERT
 305   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 306     tty->print("=== No allocations eliminated for ");
 307     C->method()->print_short_name();
 308     if(!EliminateAllocations) {
 309       tty->print(" since EliminateAllocations is off ===");
 310     } else if(!has_scalar_replaceable_candidates) {
 311       tty->print(" since there are no scalar replaceable candidates ===");
 312     } else if(C->AliasLevel() < 3) {
 313       tty->print(" since AliasLevel < 3 ===");
 314     }
 315     tty->cr();
 316 #endif
 317   }
 318   return has_non_escaping_obj;
 319 }
 320 
 321 // Utility function for nodes that load an object
 322 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 323   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 324   // ThreadLocal has RawPtr type.
 325   const Type* t = _igvn->type(n);
 326   if (t->make_ptr() != NULL) {
 327     Node* adr = n->in(MemNode::Address);
 328 #ifdef ASSERT
 329     if (!adr->is_AddP()) {
 330       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
 331     } else {
 332       assert((ptnode_adr(adr->_idx) == NULL ||
 333               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
 334     }
 335 #endif
 336     add_local_var_and_edge(n, PointsToNode::NoEscape,
 337                            adr, delayed_worklist);
 338   }
 339 }
 340 
 341 // Populate Connection Graph with PointsTo nodes and create simple
 342 // connection graph edges.
 343 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 344   assert(!_verify, "this method should not be called for verification");
 345   PhaseGVN* igvn = _igvn;
 346   uint n_idx = n->_idx;
 347   PointsToNode* n_ptn = ptnode_adr(n_idx);
 348   if (n_ptn != NULL)
 349     return; // No need to redefine PointsTo node during first iteration.
 350 
 351   if (n->is_Call()) {
 352     // Arguments to allocation and locking don't escape.
 353     if (n->is_AbstractLock()) {
 354       // Put Lock and Unlock nodes on IGVN worklist to process them during
 355       // first IGVN optimization when escape information is still available.
 356       record_for_optimizer(n);
 357     } else if (n->is_Allocate()) {
 358       add_call_node(n->as_Call());
 359       record_for_optimizer(n);
 360     } else {
 361       if (n->is_CallStaticJava()) {
 362         const char* name = n->as_CallStaticJava()->_name;
 363         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
 364           return; // Skip uncommon traps
 365       }
 366       // Don't mark as processed since call's arguments have to be processed.
 367       delayed_worklist->push(n);
 368       // Check if a call returns an object.
 369       if ((n->as_Call()->returns_pointer() &&
 370            n->as_Call()->proj_out(TypeFunc::Parms) != NULL) ||
 371           (n->is_CallStaticJava() &&
 372            n->as_CallStaticJava()->is_boxing_method())) {
 373         add_call_node(n->as_Call());
 374       }
 375     }
 376     return;
 377   }
 378   // Put this check here to process call arguments since some call nodes
 379   // point to phantom_obj.
 380   if (n_ptn == phantom_obj || n_ptn == null_obj)
 381     return; // Skip predefined nodes.
 382 
 383   int opcode = n->Opcode();
 384   switch (opcode) {
 385     case Op_AddP: {
 386       Node* base = get_addp_base(n);
 387       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 388       // Field nodes are created for all field types. They are used in
 389       // adjust_scalar_replaceable_state() and split_unique_types().
 390       // Note, non-oop fields will have only base edges in Connection
 391       // Graph because such fields are not used for oop loads and stores.
 392       int offset = address_offset(n, igvn);
 393       add_field(n, PointsToNode::NoEscape, offset);
 394       if (ptn_base == NULL) {
 395         delayed_worklist->push(n); // Process it later.
 396       } else {
 397         n_ptn = ptnode_adr(n_idx);
 398         add_base(n_ptn->as_Field(), ptn_base);
 399       }
 400       break;
 401     }
 402     case Op_CastX2P: {
 403       map_ideal_node(n, phantom_obj);
 404       break;
 405     }
 406     case Op_CastPP:
 407     case Op_CheckCastPP:
 408     case Op_EncodeP:
 409     case Op_DecodeN:
 410     case Op_EncodePKlass:
 411     case Op_DecodeNKlass: {
 412       add_local_var_and_edge(n, PointsToNode::NoEscape,
 413                              n->in(1), delayed_worklist);
 414       break;
 415     }
 416     case Op_CMoveP: {
 417       add_local_var(n, PointsToNode::NoEscape);
 418       // Do not add edges during first iteration because some could be
 419       // not defined yet.
 420       delayed_worklist->push(n);
 421       break;
 422     }
 423     case Op_ConP:
 424     case Op_ConN:
 425     case Op_ConNKlass: {
 426       // assume all oop constants globally escape except for null
 427       PointsToNode::EscapeState es;
 428       const Type* t = igvn->type(n);
 429       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
 430         es = PointsToNode::NoEscape;
 431       } else {
 432         es = PointsToNode::GlobalEscape;
 433       }
 434       add_java_object(n, es);
 435       break;
 436     }
 437     case Op_CreateEx: {
 438       // assume that all exception objects globally escape
 439       map_ideal_node(n, phantom_obj);
 440       break;
 441     }
 442     case Op_LoadKlass:
 443     case Op_LoadNKlass: {
 444       // Unknown class is loaded
 445       map_ideal_node(n, phantom_obj);
 446       break;
 447     }
 448     case Op_LoadP:
 449     case Op_LoadN:
 450     case Op_LoadPLocked: {
 451       add_objload_to_connection_graph(n, delayed_worklist);
 452       break;
 453     }
 454     case Op_Parm: {
 455       map_ideal_node(n, phantom_obj);
 456       break;
 457     }
 458     case Op_PartialSubtypeCheck: {
 459       // Produces Null or notNull and is used in only in CmpP so
 460       // phantom_obj could be used.
 461       map_ideal_node(n, phantom_obj); // Result is unknown
 462       break;
 463     }
 464     case Op_Phi: {
 465       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 466       // ThreadLocal has RawPtr type.
 467       const Type* t = n->as_Phi()->type();
 468       if (t->make_ptr() != NULL) {
 469         add_local_var(n, PointsToNode::NoEscape);
 470         // Do not add edges during first iteration because some could be
 471         // not defined yet.
 472         delayed_worklist->push(n);
 473       }
 474       break;
 475     }
 476     case Op_Proj: {
 477       // we are only interested in the oop result projection from a call
 478       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 479           n->in(0)->as_Call()->returns_pointer()) {
 480         add_local_var_and_edge(n, PointsToNode::NoEscape,
 481                                n->in(0), delayed_worklist);
 482       }
 483       break;
 484     }
 485     case Op_Rethrow: // Exception object escapes
 486     case Op_Return: {
 487       if (n->req() > TypeFunc::Parms &&
 488           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 489         // Treat Return value as LocalVar with GlobalEscape escape state.
 490         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 491                                n->in(TypeFunc::Parms), delayed_worklist);
 492       }
 493       break;
 494     }
 495     case Op_CompareAndExchangeP:
 496     case Op_CompareAndExchangeN:
 497     case Op_GetAndSetP:
 498     case Op_GetAndSetN: {
 499       add_objload_to_connection_graph(n, delayed_worklist);
 500       // fallthrough
 501     }
 502     case Op_StoreP:
 503     case Op_StoreN:
 504     case Op_StoreNKlass:
 505     case Op_StorePConditional:
 506     case Op_WeakCompareAndSwapP:
 507     case Op_WeakCompareAndSwapN:
 508     case Op_CompareAndSwapP:
 509     case Op_CompareAndSwapN: {
 510       Node* adr = n->in(MemNode::Address);
 511       const Type *adr_type = igvn->type(adr);
 512       adr_type = adr_type->make_ptr();
 513       if (adr_type == NULL) {
 514         break; // skip dead nodes
 515       }
 516       if (adr_type->isa_oopptr() ||
 517           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
 518                         (adr_type == TypeRawPtr::NOTNULL &&
 519                          adr->in(AddPNode::Address)->is_Proj() &&
 520                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 521         delayed_worklist->push(n); // Process it later.
 522 #ifdef ASSERT
 523         assert(adr->is_AddP(), "expecting an AddP");
 524         if (adr_type == TypeRawPtr::NOTNULL) {
 525           // Verify a raw address for a store captured by Initialize node.
 526           int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 527           assert(offs != Type::OffsetBot, "offset must be a constant");
 528         }
 529 #endif
 530       } else {
 531         // Ignore copy the displaced header to the BoxNode (OSR compilation).
 532         if (adr->is_BoxLock())
 533           break;
 534         // Stored value escapes in unsafe access.
 535         if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
 536           // Pointer stores in G1 barriers looks like unsafe access.
 537           // Ignore such stores to be able scalar replace non-escaping
 538           // allocations.
 539           if (UseG1GC && adr->is_AddP()) {
 540             Node* base = get_addp_base(adr);
 541             if (base->Opcode() == Op_LoadP &&
 542                 base->in(MemNode::Address)->is_AddP()) {
 543               adr = base->in(MemNode::Address);
 544               Node* tls = get_addp_base(adr);
 545               if (tls->Opcode() == Op_ThreadLocal) {
 546                 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 547                 if (offs == in_bytes(JavaThread::satb_mark_queue_offset() +
 548                                      SATBMarkQueue::byte_offset_of_buf())) {
 549                   break; // G1 pre barrier previous oop value store.
 550                 }
 551                 if (offs == in_bytes(JavaThread::dirty_card_queue_offset() +
 552                                      DirtyCardQueue::byte_offset_of_buf())) {
 553                   break; // G1 post barrier card address store.
 554                 }
 555               }
 556             }
 557           }
 558           delayed_worklist->push(n); // Process unsafe access later.
 559           break;
 560         }
 561 #ifdef ASSERT
 562         n->dump(1);
 563         assert(false, "not unsafe or G1 barrier raw StoreP");
 564 #endif
 565       }
 566       break;
 567     }
 568     case Op_AryEq:
 569     case Op_HasNegatives:
 570     case Op_StrComp:
 571     case Op_StrEquals:
 572     case Op_StrIndexOf:
 573     case Op_StrIndexOfChar:
 574     case Op_StrInflatedCopy:
 575     case Op_StrCompressedCopy:
 576     case Op_EncodeISOArray: {
 577       add_local_var(n, PointsToNode::ArgEscape);
 578       delayed_worklist->push(n); // Process it later.
 579       break;
 580     }
 581     case Op_ThreadLocal: {
 582       add_java_object(n, PointsToNode::ArgEscape);
 583       break;
 584     }
 585     default:
 586       ; // Do nothing for nodes not related to EA.
 587   }
 588   return;
 589 }
 590 
 591 #ifdef ASSERT
 592 #define ELSE_FAIL(name)                               \
 593       /* Should not be called for not pointer type. */  \
 594       n->dump(1);                                       \
 595       assert(false, name);                              \
 596       break;
 597 #else
 598 #define ELSE_FAIL(name) \
 599       break;
 600 #endif
 601 
 602 // Add final simple edges to graph.
 603 void ConnectionGraph::add_final_edges(Node *n) {
 604   PointsToNode* n_ptn = ptnode_adr(n->_idx);
 605 #ifdef ASSERT
 606   if (_verify && n_ptn->is_JavaObject())
 607     return; // This method does not change graph for JavaObject.
 608 #endif
 609 
 610   if (n->is_Call()) {
 611     process_call_arguments(n->as_Call());
 612     return;
 613   }
 614   assert(n->is_Store() || n->is_LoadStore() ||
 615          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
 616          "node should be registered already");
 617   int opcode = n->Opcode();
 618   switch (opcode) {
 619     case Op_AddP: {
 620       Node* base = get_addp_base(n);
 621       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 622       assert(ptn_base != NULL, "field's base should be registered");
 623       add_base(n_ptn->as_Field(), ptn_base);
 624       break;
 625     }
 626     case Op_CastPP:
 627     case Op_CheckCastPP:
 628     case Op_EncodeP:
 629     case Op_DecodeN:
 630     case Op_EncodePKlass:
 631     case Op_DecodeNKlass: {
 632       add_local_var_and_edge(n, PointsToNode::NoEscape,
 633                              n->in(1), NULL);
 634       break;
 635     }
 636     case Op_CMoveP: {
 637       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
 638         Node* in = n->in(i);
 639         if (in == NULL)
 640           continue;  // ignore NULL
 641         Node* uncast_in = in->uncast();
 642         if (uncast_in->is_top() || uncast_in == n)
 643           continue;  // ignore top or inputs which go back this node
 644         PointsToNode* ptn = ptnode_adr(in->_idx);
 645         assert(ptn != NULL, "node should be registered");
 646         add_edge(n_ptn, ptn);
 647       }
 648       break;
 649     }
 650     case Op_LoadP:
 651     case Op_LoadN:
 652     case Op_LoadPLocked: {
 653       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 654       // ThreadLocal has RawPtr type.
 655       const Type* t = _igvn->type(n);
 656       if (t->make_ptr() != NULL) {
 657         Node* adr = n->in(MemNode::Address);
 658         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 659         break;
 660       }
 661       ELSE_FAIL("Op_LoadP");
 662     }
 663     case Op_Phi: {
 664       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 665       // ThreadLocal has RawPtr type.
 666       const Type* t = n->as_Phi()->type();
 667       if (t->make_ptr() != NULL) {
 668         for (uint i = 1; i < n->req(); i++) {
 669           Node* in = n->in(i);
 670           if (in == NULL)
 671             continue;  // ignore NULL
 672           Node* uncast_in = in->uncast();
 673           if (uncast_in->is_top() || uncast_in == n)
 674             continue;  // ignore top or inputs which go back this node
 675           PointsToNode* ptn = ptnode_adr(in->_idx);
 676           assert(ptn != NULL, "node should be registered");
 677           add_edge(n_ptn, ptn);
 678         }
 679         break;
 680       }
 681       ELSE_FAIL("Op_Phi");
 682     }
 683     case Op_Proj: {
 684       // we are only interested in the oop result projection from a call
 685       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 686           n->in(0)->as_Call()->returns_pointer()) {
 687         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
 688         break;
 689       }
 690       ELSE_FAIL("Op_Proj");
 691     }
 692     case Op_Rethrow: // Exception object escapes
 693     case Op_Return: {
 694       if (n->req() > TypeFunc::Parms &&
 695           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 696         // Treat Return value as LocalVar with GlobalEscape escape state.
 697         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 698                                n->in(TypeFunc::Parms), NULL);
 699         break;
 700       }
 701       ELSE_FAIL("Op_Return");
 702     }
 703     case Op_StoreP:
 704     case Op_StoreN:
 705     case Op_StoreNKlass:
 706     case Op_StorePConditional:
 707     case Op_CompareAndExchangeP:
 708     case Op_CompareAndExchangeN:
 709     case Op_CompareAndSwapP:
 710     case Op_CompareAndSwapN:
 711     case Op_WeakCompareAndSwapP:
 712     case Op_WeakCompareAndSwapN:
 713     case Op_GetAndSetP:
 714     case Op_GetAndSetN: {
 715       Node* adr = n->in(MemNode::Address);
 716       const Type *adr_type = _igvn->type(adr);
 717       adr_type = adr_type->make_ptr();
 718 #ifdef ASSERT
 719       if (adr_type == NULL) {
 720         n->dump(1);
 721         assert(adr_type != NULL, "dead node should not be on list");
 722         break;
 723       }
 724 #endif
 725       if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN ||
 726           opcode == Op_CompareAndExchangeN || opcode == Op_CompareAndExchangeP) {
 727         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 728       }
 729       if (adr_type->isa_oopptr() ||
 730           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
 731                         (adr_type == TypeRawPtr::NOTNULL &&
 732                          adr->in(AddPNode::Address)->is_Proj() &&
 733                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 734         // Point Address to Value
 735         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 736         assert(adr_ptn != NULL &&
 737                adr_ptn->as_Field()->is_oop(), "node should be registered");
 738         Node *val = n->in(MemNode::ValueIn);
 739         PointsToNode* ptn = ptnode_adr(val->_idx);
 740         assert(ptn != NULL, "node should be registered");
 741         add_edge(adr_ptn, ptn);
 742         break;
 743       } else if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
 744         // Stored value escapes in unsafe access.
 745         Node *val = n->in(MemNode::ValueIn);
 746         PointsToNode* ptn = ptnode_adr(val->_idx);
 747         assert(ptn != NULL, "node should be registered");
 748         set_escape_state(ptn, PointsToNode::GlobalEscape);
 749         // Add edge to object for unsafe access with offset.
 750         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 751         assert(adr_ptn != NULL, "node should be registered");
 752         if (adr_ptn->is_Field()) {
 753           assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
 754           add_edge(adr_ptn, ptn);
 755         }
 756         break;
 757       }
 758       ELSE_FAIL("Op_StoreP");
 759     }
 760     case Op_AryEq:
 761     case Op_HasNegatives:
 762     case Op_StrComp:
 763     case Op_StrEquals:
 764     case Op_StrIndexOf:
 765     case Op_StrIndexOfChar:
 766     case Op_StrInflatedCopy:
 767     case Op_StrCompressedCopy:
 768     case Op_EncodeISOArray: {
 769       // char[]/byte[] arrays passed to string intrinsic do not escape but
 770       // they are not scalar replaceable. Adjust escape state for them.
 771       // Start from in(2) edge since in(1) is memory edge.
 772       for (uint i = 2; i < n->req(); i++) {
 773         Node* adr = n->in(i);
 774         const Type* at = _igvn->type(adr);
 775         if (!adr->is_top() && at->isa_ptr()) {
 776           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
 777                  at->isa_ptr() != NULL, "expecting a pointer");
 778           if (adr->is_AddP()) {
 779             adr = get_addp_base(adr);
 780           }
 781           PointsToNode* ptn = ptnode_adr(adr->_idx);
 782           assert(ptn != NULL, "node should be registered");
 783           add_edge(n_ptn, ptn);
 784         }
 785       }
 786       break;
 787     }
 788     default: {
 789       // This method should be called only for EA specific nodes which may
 790       // miss some edges when they were created.
 791 #ifdef ASSERT
 792       n->dump(1);
 793 #endif
 794       guarantee(false, "unknown node");
 795     }
 796   }
 797   return;
 798 }
 799 
 800 void ConnectionGraph::add_call_node(CallNode* call) {
 801   assert(call->returns_pointer(), "only for call which returns pointer");
 802   uint call_idx = call->_idx;
 803   if (call->is_Allocate()) {
 804     Node* k = call->in(AllocateNode::KlassNode);
 805     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
 806     assert(kt != NULL, "TypeKlassPtr  required.");
 807     ciKlass* cik = kt->klass();
 808     PointsToNode::EscapeState es = PointsToNode::NoEscape;
 809     bool scalar_replaceable = true;
 810     if (call->is_AllocateArray()) {
 811       if (!cik->is_array_klass()) { // StressReflectiveCode
 812         es = PointsToNode::GlobalEscape;
 813       } else {
 814         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
 815         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
 816           // Not scalar replaceable if the length is not constant or too big.
 817           scalar_replaceable = false;
 818         }
 819       }
 820     } else {  // Allocate instance
 821       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
 822           cik->is_subclass_of(_compile->env()->Reference_klass()) ||
 823          !cik->is_instance_klass() || // StressReflectiveCode
 824          !cik->as_instance_klass()->can_be_instantiated() ||
 825           cik->as_instance_klass()->has_finalizer()) {
 826         es = PointsToNode::GlobalEscape;
 827       }
 828     }
 829     add_java_object(call, es);
 830     PointsToNode* ptn = ptnode_adr(call_idx);
 831     if (!scalar_replaceable && ptn->scalar_replaceable()) {
 832       ptn->set_scalar_replaceable(false);
 833     }
 834   } else if (call->is_CallStaticJava()) {
 835     // Call nodes could be different types:
 836     //
 837     // 1. CallDynamicJavaNode (what happened during call is unknown):
 838     //
 839     //    - mapped to GlobalEscape JavaObject node if oop is returned;
 840     //
 841     //    - all oop arguments are escaping globally;
 842     //
 843     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
 844     //
 845     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
 846     //
 847     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
 848     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
 849     //      during call is returned;
 850     //    - mapped to ArgEscape LocalVar node pointed to object arguments
 851     //      which are returned and does not escape during call;
 852     //
 853     //    - oop arguments escaping status is defined by bytecode analysis;
 854     //
 855     // For a static call, we know exactly what method is being called.
 856     // Use bytecode estimator to record whether the call's return value escapes.
 857     ciMethod* meth = call->as_CallJava()->method();
 858     if (meth == NULL) {
 859       const char* name = call->as_CallStaticJava()->_name;
 860       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
 861       // Returns a newly allocated unescaped object.
 862       add_java_object(call, PointsToNode::NoEscape);
 863       ptnode_adr(call_idx)->set_scalar_replaceable(false);
 864     } else if (meth->is_boxing_method()) {
 865       // Returns boxing object
 866       PointsToNode::EscapeState es;
 867       vmIntrinsics::ID intr = meth->intrinsic_id();
 868       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
 869         // It does not escape if object is always allocated.
 870         es = PointsToNode::NoEscape;
 871       } else {
 872         // It escapes globally if object could be loaded from cache.
 873         es = PointsToNode::GlobalEscape;
 874       }
 875       add_java_object(call, es);
 876     } else {
 877       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
 878       call_analyzer->copy_dependencies(_compile->dependencies());
 879       if (call_analyzer->is_return_allocated()) {
 880         // Returns a newly allocated unescaped object, simply
 881         // update dependency information.
 882         // Mark it as NoEscape so that objects referenced by
 883         // it's fields will be marked as NoEscape at least.
 884         add_java_object(call, PointsToNode::NoEscape);
 885         ptnode_adr(call_idx)->set_scalar_replaceable(false);
 886       } else {
 887         // Determine whether any arguments are returned.
 888         const TypeTuple* d = call->tf()->domain();
 889         bool ret_arg = false;
 890         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 891           if (d->field_at(i)->isa_ptr() != NULL &&
 892               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
 893             ret_arg = true;
 894             break;
 895           }
 896         }
 897         if (ret_arg) {
 898           add_local_var(call, PointsToNode::ArgEscape);
 899         } else {
 900           // Returns unknown object.
 901           map_ideal_node(call, phantom_obj);
 902         }
 903       }
 904     }
 905   } else {
 906     // An other type of call, assume the worst case:
 907     // returned value is unknown and globally escapes.
 908     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
 909     map_ideal_node(call, phantom_obj);
 910   }
 911 }
 912 
 913 void ConnectionGraph::process_call_arguments(CallNode *call) {
 914     bool is_arraycopy = false;
 915     switch (call->Opcode()) {
 916 #ifdef ASSERT
 917     case Op_Allocate:
 918     case Op_AllocateArray:
 919     case Op_Lock:
 920     case Op_Unlock:
 921       assert(false, "should be done already");
 922       break;
 923 #endif
 924     case Op_ArrayCopy:
 925     case Op_CallLeafNoFP:
 926       // Most array copies are ArrayCopy nodes at this point but there
 927       // are still a few direct calls to the copy subroutines (See
 928       // PhaseStringOpts::copy_string())
 929       is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
 930         call->as_CallLeaf()->is_call_to_arraycopystub();
 931       // fall through
 932     case Op_CallLeaf: {
 933       // Stub calls, objects do not escape but they are not scale replaceable.
 934       // Adjust escape state for outgoing arguments.
 935       const TypeTuple * d = call->tf()->domain();
 936       bool src_has_oops = false;
 937       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 938         const Type* at = d->field_at(i);
 939         Node *arg = call->in(i);
 940         if (arg == NULL) {
 941           continue;
 942         }
 943         const Type *aat = _igvn->type(arg);
 944         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
 945           continue;
 946         if (arg->is_AddP()) {
 947           //
 948           // The inline_native_clone() case when the arraycopy stub is called
 949           // after the allocation before Initialize and CheckCastPP nodes.
 950           // Or normal arraycopy for object arrays case.
 951           //
 952           // Set AddP's base (Allocate) as not scalar replaceable since
 953           // pointer to the base (with offset) is passed as argument.
 954           //
 955           arg = get_addp_base(arg);
 956         }
 957         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
 958         assert(arg_ptn != NULL, "should be registered");
 959         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
 960         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
 961           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
 962                  aat->isa_ptr() != NULL, "expecting an Ptr");
 963           bool arg_has_oops = aat->isa_oopptr() &&
 964                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
 965                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
 966           if (i == TypeFunc::Parms) {
 967             src_has_oops = arg_has_oops;
 968           }
 969           //
 970           // src or dst could be j.l.Object when other is basic type array:
 971           //
 972           //   arraycopy(char[],0,Object*,0,size);
 973           //   arraycopy(Object*,0,char[],0,size);
 974           //
 975           // Don't add edges in such cases.
 976           //
 977           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
 978                                        arg_has_oops && (i > TypeFunc::Parms);
 979 #ifdef ASSERT
 980           if (!(is_arraycopy ||
 981                 Universe::heap()->barrier_set()->c2_code_gen()->is_gc_barrier_node(call) ||
 982                 (call->as_CallLeaf()->_name != NULL &&
 983                  (strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
 984                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 ||
 985                   strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 ||
 986                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
 987                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
 988                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
 989                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
 990                   strcmp(call->as_CallLeaf()->_name, "counterMode_AESCrypt") == 0 ||
 991                   strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 ||
 992                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
 993                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
 994                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
 995                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
 996                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
 997                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
 998                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
 999                   strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
1000                   strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
1001                   strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
1002                   strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0 ||
1003                   strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0)
1004                  ))) {
1005             call->dump();
1006             fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name);
1007           }
1008 #endif
1009           // Always process arraycopy's destination object since
1010           // we need to add all possible edges to references in
1011           // source object.
1012           if (arg_esc >= PointsToNode::ArgEscape &&
1013               !arg_is_arraycopy_dest) {
1014             continue;
1015           }
1016           PointsToNode::EscapeState es = PointsToNode::ArgEscape;
1017           if (call->is_ArrayCopy()) {
1018             ArrayCopyNode* ac = call->as_ArrayCopy();
1019             if (ac->is_clonebasic() ||
1020                 ac->is_arraycopy_validated() ||
1021                 ac->is_copyof_validated() ||
1022                 ac->is_copyofrange_validated()) {
1023               es = PointsToNode::NoEscape;
1024             }
1025           }
1026           set_escape_state(arg_ptn, es);
1027           if (arg_is_arraycopy_dest) {
1028             Node* src = call->in(TypeFunc::Parms);
1029             if (src->is_AddP()) {
1030               src = get_addp_base(src);
1031             }
1032             PointsToNode* src_ptn = ptnode_adr(src->_idx);
1033             assert(src_ptn != NULL, "should be registered");
1034             if (arg_ptn != src_ptn) {
1035               // Special arraycopy edge:
1036               // A destination object's field can't have the source object
1037               // as base since objects escape states are not related.
1038               // Only escape state of destination object's fields affects
1039               // escape state of fields in source object.
1040               add_arraycopy(call, es, src_ptn, arg_ptn);
1041             }
1042           }
1043         }
1044       }
1045       break;
1046     }
1047     case Op_CallStaticJava: {
1048       // For a static call, we know exactly what method is being called.
1049       // Use bytecode estimator to record the call's escape affects
1050 #ifdef ASSERT
1051       const char* name = call->as_CallStaticJava()->_name;
1052       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
1053 #endif
1054       ciMethod* meth = call->as_CallJava()->method();
1055       if ((meth != NULL) && meth->is_boxing_method()) {
1056         break; // Boxing methods do not modify any oops.
1057       }
1058       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
1059       // fall-through if not a Java method or no analyzer information
1060       if (call_analyzer != NULL) {
1061         PointsToNode* call_ptn = ptnode_adr(call->_idx);
1062         const TypeTuple* d = call->tf()->domain();
1063         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1064           const Type* at = d->field_at(i);
1065           int k = i - TypeFunc::Parms;
1066           Node* arg = call->in(i);
1067           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
1068           if (at->isa_ptr() != NULL &&
1069               call_analyzer->is_arg_returned(k)) {
1070             // The call returns arguments.
1071             if (call_ptn != NULL) { // Is call's result used?
1072               assert(call_ptn->is_LocalVar(), "node should be registered");
1073               assert(arg_ptn != NULL, "node should be registered");
1074               add_edge(call_ptn, arg_ptn);
1075             }
1076           }
1077           if (at->isa_oopptr() != NULL &&
1078               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
1079             if (!call_analyzer->is_arg_stack(k)) {
1080               // The argument global escapes
1081               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1082             } else {
1083               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
1084               if (!call_analyzer->is_arg_local(k)) {
1085                 // The argument itself doesn't escape, but any fields might
1086                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1087               }
1088             }
1089           }
1090         }
1091         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
1092           // The call returns arguments.
1093           assert(call_ptn->edge_count() > 0, "sanity");
1094           if (!call_analyzer->is_return_local()) {
1095             // Returns also unknown object.
1096             add_edge(call_ptn, phantom_obj);
1097           }
1098         }
1099         break;
1100       }
1101     }
1102     default: {
1103       // Fall-through here if not a Java method or no analyzer information
1104       // or some other type of call, assume the worst case: all arguments
1105       // globally escape.
1106       const TypeTuple* d = call->tf()->domain();
1107       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1108         const Type* at = d->field_at(i);
1109         if (at->isa_oopptr() != NULL) {
1110           Node* arg = call->in(i);
1111           if (arg->is_AddP()) {
1112             arg = get_addp_base(arg);
1113           }
1114           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
1115           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
1116         }
1117       }
1118     }
1119   }
1120 }
1121 
1122 
1123 // Finish Graph construction.
1124 bool ConnectionGraph::complete_connection_graph(
1125                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1126                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1127                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1128                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
1129   // Normally only 1-3 passes needed to build Connection Graph depending
1130   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
1131   // Set limit to 20 to catch situation when something did go wrong and
1132   // bailout Escape Analysis.
1133   // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
1134 #define CG_BUILD_ITER_LIMIT 20
1135 
1136   // Propagate GlobalEscape and ArgEscape escape states and check that
1137   // we still have non-escaping objects. The method pushs on _worklist
1138   // Field nodes which reference phantom_object.
1139   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1140     return false; // Nothing to do.
1141   }
1142   // Now propagate references to all JavaObject nodes.
1143   int java_objects_length = java_objects_worklist.length();
1144   elapsedTimer time;
1145   bool timeout = false;
1146   int new_edges = 1;
1147   int iterations = 0;
1148   do {
1149     while ((new_edges > 0) &&
1150            (iterations++ < CG_BUILD_ITER_LIMIT)) {
1151       double start_time = time.seconds();
1152       time.start();
1153       new_edges = 0;
1154       // Propagate references to phantom_object for nodes pushed on _worklist
1155       // by find_non_escaped_objects() and find_field_value().
1156       new_edges += add_java_object_edges(phantom_obj, false);
1157       for (int next = 0; next < java_objects_length; ++next) {
1158         JavaObjectNode* ptn = java_objects_worklist.at(next);
1159         new_edges += add_java_object_edges(ptn, true);
1160 
1161 #define SAMPLE_SIZE 4
1162         if ((next % SAMPLE_SIZE) == 0) {
1163           // Each 4 iterations calculate how much time it will take
1164           // to complete graph construction.
1165           time.stop();
1166           // Poll for requests from shutdown mechanism to quiesce compiler
1167           // because Connection graph construction may take long time.
1168           CompileBroker::maybe_block();
1169           double stop_time = time.seconds();
1170           double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
1171           double time_until_end = time_per_iter * (double)(java_objects_length - next);
1172           if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
1173             timeout = true;
1174             break; // Timeout
1175           }
1176           start_time = stop_time;
1177           time.start();
1178         }
1179 #undef SAMPLE_SIZE
1180 
1181       }
1182       if (timeout) break;
1183       if (new_edges > 0) {
1184         // Update escape states on each iteration if graph was updated.
1185         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1186           return false; // Nothing to do.
1187         }
1188       }
1189       time.stop();
1190       if (time.seconds() >= EscapeAnalysisTimeout) {
1191         timeout = true;
1192         break;
1193       }
1194     }
1195     if ((iterations < CG_BUILD_ITER_LIMIT) && !timeout) {
1196       time.start();
1197       // Find fields which have unknown value.
1198       int fields_length = oop_fields_worklist.length();
1199       for (int next = 0; next < fields_length; next++) {
1200         FieldNode* field = oop_fields_worklist.at(next);
1201         if (field->edge_count() == 0) {
1202           new_edges += find_field_value(field);
1203           // This code may added new edges to phantom_object.
1204           // Need an other cycle to propagate references to phantom_object.
1205         }
1206       }
1207       time.stop();
1208       if (time.seconds() >= EscapeAnalysisTimeout) {
1209         timeout = true;
1210         break;
1211       }
1212     } else {
1213       new_edges = 0; // Bailout
1214     }
1215   } while (new_edges > 0);
1216 
1217   // Bailout if passed limits.
1218   if ((iterations >= CG_BUILD_ITER_LIMIT) || timeout) {
1219     Compile* C = _compile;
1220     if (C->log() != NULL) {
1221       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
1222       C->log()->text("%s", timeout ? "time" : "iterations");
1223       C->log()->end_elem(" limit'");
1224     }
1225     assert(ExitEscapeAnalysisOnTimeout, "infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
1226            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length());
1227     // Possible infinite build_connection_graph loop,
1228     // bailout (no changes to ideal graph were made).
1229     return false;
1230   }
1231 #ifdef ASSERT
1232   if (Verbose && PrintEscapeAnalysis) {
1233     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
1234                   iterations, nodes_size(), ptnodes_worklist.length());
1235   }
1236 #endif
1237 
1238 #undef CG_BUILD_ITER_LIMIT
1239 
1240   // Find fields initialized by NULL for non-escaping Allocations.
1241   int non_escaped_length = non_escaped_worklist.length();
1242   for (int next = 0; next < non_escaped_length; next++) {
1243     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1244     PointsToNode::EscapeState es = ptn->escape_state();
1245     assert(es <= PointsToNode::ArgEscape, "sanity");
1246     if (es == PointsToNode::NoEscape) {
1247       if (find_init_values(ptn, null_obj, _igvn) > 0) {
1248         // Adding references to NULL object does not change escape states
1249         // since it does not escape. Also no fields are added to NULL object.
1250         add_java_object_edges(null_obj, false);
1251       }
1252     }
1253     Node* n = ptn->ideal_node();
1254     if (n->is_Allocate()) {
1255       // The object allocated by this Allocate node will never be
1256       // seen by an other thread. Mark it so that when it is
1257       // expanded no MemBarStoreStore is added.
1258       InitializeNode* ini = n->as_Allocate()->initialization();
1259       if (ini != NULL)
1260         ini->set_does_not_escape();
1261     }
1262   }
1263   return true; // Finished graph construction.
1264 }
1265 
1266 // Propagate GlobalEscape and ArgEscape escape states to all nodes
1267 // and check that we still have non-escaping java objects.
1268 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
1269                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
1270   GrowableArray<PointsToNode*> escape_worklist;
1271   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
1272   int ptnodes_length = ptnodes_worklist.length();
1273   for (int next = 0; next < ptnodes_length; ++next) {
1274     PointsToNode* ptn = ptnodes_worklist.at(next);
1275     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
1276         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
1277       escape_worklist.push(ptn);
1278     }
1279   }
1280   // Set escape states to referenced nodes (edges list).
1281   while (escape_worklist.length() > 0) {
1282     PointsToNode* ptn = escape_worklist.pop();
1283     PointsToNode::EscapeState es  = ptn->escape_state();
1284     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
1285     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
1286         es >= PointsToNode::ArgEscape) {
1287       // GlobalEscape or ArgEscape state of field means it has unknown value.
1288       if (add_edge(ptn, phantom_obj)) {
1289         // New edge was added
1290         add_field_uses_to_worklist(ptn->as_Field());
1291       }
1292     }
1293     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1294       PointsToNode* e = i.get();
1295       if (e->is_Arraycopy()) {
1296         assert(ptn->arraycopy_dst(), "sanity");
1297         // Propagate only fields escape state through arraycopy edge.
1298         if (e->fields_escape_state() < field_es) {
1299           set_fields_escape_state(e, field_es);
1300           escape_worklist.push(e);
1301         }
1302       } else if (es >= field_es) {
1303         // fields_escape_state is also set to 'es' if it is less than 'es'.
1304         if (e->escape_state() < es) {
1305           set_escape_state(e, es);
1306           escape_worklist.push(e);
1307         }
1308       } else {
1309         // Propagate field escape state.
1310         bool es_changed = false;
1311         if (e->fields_escape_state() < field_es) {
1312           set_fields_escape_state(e, field_es);
1313           es_changed = true;
1314         }
1315         if ((e->escape_state() < field_es) &&
1316             e->is_Field() && ptn->is_JavaObject() &&
1317             e->as_Field()->is_oop()) {
1318           // Change escape state of referenced fields.
1319           set_escape_state(e, field_es);
1320           es_changed = true;
1321         } else if (e->escape_state() < es) {
1322           set_escape_state(e, es);
1323           es_changed = true;
1324         }
1325         if (es_changed) {
1326           escape_worklist.push(e);
1327         }
1328       }
1329     }
1330   }
1331   // Remove escaped objects from non_escaped list.
1332   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
1333     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1334     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
1335       non_escaped_worklist.delete_at(next);
1336     }
1337     if (ptn->escape_state() == PointsToNode::NoEscape) {
1338       // Find fields in non-escaped allocations which have unknown value.
1339       find_init_values(ptn, phantom_obj, NULL);
1340     }
1341   }
1342   return (non_escaped_worklist.length() > 0);
1343 }
1344 
1345 // Add all references to JavaObject node by walking over all uses.
1346 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
1347   int new_edges = 0;
1348   if (populate_worklist) {
1349     // Populate _worklist by uses of jobj's uses.
1350     for (UseIterator i(jobj); i.has_next(); i.next()) {
1351       PointsToNode* use = i.get();
1352       if (use->is_Arraycopy())
1353         continue;
1354       add_uses_to_worklist(use);
1355       if (use->is_Field() && use->as_Field()->is_oop()) {
1356         // Put on worklist all field's uses (loads) and
1357         // related field nodes (same base and offset).
1358         add_field_uses_to_worklist(use->as_Field());
1359       }
1360     }
1361   }
1362   for (int l = 0; l < _worklist.length(); l++) {
1363     PointsToNode* use = _worklist.at(l);
1364     if (PointsToNode::is_base_use(use)) {
1365       // Add reference from jobj to field and from field to jobj (field's base).
1366       use = PointsToNode::get_use_node(use)->as_Field();
1367       if (add_base(use->as_Field(), jobj)) {
1368         new_edges++;
1369       }
1370       continue;
1371     }
1372     assert(!use->is_JavaObject(), "sanity");
1373     if (use->is_Arraycopy()) {
1374       if (jobj == null_obj) // NULL object does not have field edges
1375         continue;
1376       // Added edge from Arraycopy node to arraycopy's source java object
1377       if (add_edge(use, jobj)) {
1378         jobj->set_arraycopy_src();
1379         new_edges++;
1380       }
1381       // and stop here.
1382       continue;
1383     }
1384     if (!add_edge(use, jobj))
1385       continue; // No new edge added, there was such edge already.
1386     new_edges++;
1387     if (use->is_LocalVar()) {
1388       add_uses_to_worklist(use);
1389       if (use->arraycopy_dst()) {
1390         for (EdgeIterator i(use); i.has_next(); i.next()) {
1391           PointsToNode* e = i.get();
1392           if (e->is_Arraycopy()) {
1393             if (jobj == null_obj) // NULL object does not have field edges
1394               continue;
1395             // Add edge from arraycopy's destination java object to Arraycopy node.
1396             if (add_edge(jobj, e)) {
1397               new_edges++;
1398               jobj->set_arraycopy_dst();
1399             }
1400           }
1401         }
1402       }
1403     } else {
1404       // Added new edge to stored in field values.
1405       // Put on worklist all field's uses (loads) and
1406       // related field nodes (same base and offset).
1407       add_field_uses_to_worklist(use->as_Field());
1408     }
1409   }
1410   _worklist.clear();
1411   _in_worklist.Reset();
1412   return new_edges;
1413 }
1414 
1415 // Put on worklist all related field nodes.
1416 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
1417   assert(field->is_oop(), "sanity");
1418   int offset = field->offset();
1419   add_uses_to_worklist(field);
1420   // Loop over all bases of this field and push on worklist Field nodes
1421   // with the same offset and base (since they may reference the same field).
1422   for (BaseIterator i(field); i.has_next(); i.next()) {
1423     PointsToNode* base = i.get();
1424     add_fields_to_worklist(field, base);
1425     // Check if the base was source object of arraycopy and go over arraycopy's
1426     // destination objects since values stored to a field of source object are
1427     // accessable by uses (loads) of fields of destination objects.
1428     if (base->arraycopy_src()) {
1429       for (UseIterator j(base); j.has_next(); j.next()) {
1430         PointsToNode* arycp = j.get();
1431         if (arycp->is_Arraycopy()) {
1432           for (UseIterator k(arycp); k.has_next(); k.next()) {
1433             PointsToNode* abase = k.get();
1434             if (abase->arraycopy_dst() && abase != base) {
1435               // Look for the same arraycopy reference.
1436               add_fields_to_worklist(field, abase);
1437             }
1438           }
1439         }
1440       }
1441     }
1442   }
1443 }
1444 
1445 // Put on worklist all related field nodes.
1446 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
1447   int offset = field->offset();
1448   if (base->is_LocalVar()) {
1449     for (UseIterator j(base); j.has_next(); j.next()) {
1450       PointsToNode* f = j.get();
1451       if (PointsToNode::is_base_use(f)) { // Field
1452         f = PointsToNode::get_use_node(f);
1453         if (f == field || !f->as_Field()->is_oop())
1454           continue;
1455         int offs = f->as_Field()->offset();
1456         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1457           add_to_worklist(f);
1458         }
1459       }
1460     }
1461   } else {
1462     assert(base->is_JavaObject(), "sanity");
1463     if (// Skip phantom_object since it is only used to indicate that
1464         // this field's content globally escapes.
1465         (base != phantom_obj) &&
1466         // NULL object node does not have fields.
1467         (base != null_obj)) {
1468       for (EdgeIterator i(base); i.has_next(); i.next()) {
1469         PointsToNode* f = i.get();
1470         // Skip arraycopy edge since store to destination object field
1471         // does not update value in source object field.
1472         if (f->is_Arraycopy()) {
1473           assert(base->arraycopy_dst(), "sanity");
1474           continue;
1475         }
1476         if (f == field || !f->as_Field()->is_oop())
1477           continue;
1478         int offs = f->as_Field()->offset();
1479         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1480           add_to_worklist(f);
1481         }
1482       }
1483     }
1484   }
1485 }
1486 
1487 // Find fields which have unknown value.
1488 int ConnectionGraph::find_field_value(FieldNode* field) {
1489   // Escaped fields should have init value already.
1490   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
1491   int new_edges = 0;
1492   for (BaseIterator i(field); i.has_next(); i.next()) {
1493     PointsToNode* base = i.get();
1494     if (base->is_JavaObject()) {
1495       // Skip Allocate's fields which will be processed later.
1496       if (base->ideal_node()->is_Allocate())
1497         return 0;
1498       assert(base == null_obj, "only NULL ptr base expected here");
1499     }
1500   }
1501   if (add_edge(field, phantom_obj)) {
1502     // New edge was added
1503     new_edges++;
1504     add_field_uses_to_worklist(field);
1505   }
1506   return new_edges;
1507 }
1508 
1509 // Find fields initializing values for allocations.
1510 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
1511   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
1512   int new_edges = 0;
1513   Node* alloc = pta->ideal_node();
1514   if (init_val == phantom_obj) {
1515     // Do nothing for Allocate nodes since its fields values are
1516     // "known" unless they are initialized by arraycopy/clone.
1517     if (alloc->is_Allocate() && !pta->arraycopy_dst())
1518       return 0;
1519     assert(pta->arraycopy_dst() || alloc->as_CallStaticJava(), "sanity");
1520 #ifdef ASSERT
1521     if (!pta->arraycopy_dst() && alloc->as_CallStaticJava()->method() == NULL) {
1522       const char* name = alloc->as_CallStaticJava()->_name;
1523       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
1524     }
1525 #endif
1526     // Non-escaped allocation returned from Java or runtime call have
1527     // unknown values in fields.
1528     for (EdgeIterator i(pta); i.has_next(); i.next()) {
1529       PointsToNode* field = i.get();
1530       if (field->is_Field() && field->as_Field()->is_oop()) {
1531         if (add_edge(field, phantom_obj)) {
1532           // New edge was added
1533           new_edges++;
1534           add_field_uses_to_worklist(field->as_Field());
1535         }
1536       }
1537     }
1538     return new_edges;
1539   }
1540   assert(init_val == null_obj, "sanity");
1541   // Do nothing for Call nodes since its fields values are unknown.
1542   if (!alloc->is_Allocate())
1543     return 0;
1544 
1545   InitializeNode* ini = alloc->as_Allocate()->initialization();
1546   bool visited_bottom_offset = false;
1547   GrowableArray<int> offsets_worklist;
1548 
1549   // Check if an oop field's initializing value is recorded and add
1550   // a corresponding NULL if field's value if it is not recorded.
1551   // Connection Graph does not record a default initialization by NULL
1552   // captured by Initialize node.
1553   //
1554   for (EdgeIterator i(pta); i.has_next(); i.next()) {
1555     PointsToNode* field = i.get(); // Field (AddP)
1556     if (!field->is_Field() || !field->as_Field()->is_oop())
1557       continue; // Not oop field
1558     int offset = field->as_Field()->offset();
1559     if (offset == Type::OffsetBot) {
1560       if (!visited_bottom_offset) {
1561         // OffsetBot is used to reference array's element,
1562         // always add reference to NULL to all Field nodes since we don't
1563         // known which element is referenced.
1564         if (add_edge(field, null_obj)) {
1565           // New edge was added
1566           new_edges++;
1567           add_field_uses_to_worklist(field->as_Field());
1568           visited_bottom_offset = true;
1569         }
1570       }
1571     } else {
1572       // Check only oop fields.
1573       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
1574       if (adr_type->isa_rawptr()) {
1575 #ifdef ASSERT
1576         // Raw pointers are used for initializing stores so skip it
1577         // since it should be recorded already
1578         Node* base = get_addp_base(field->ideal_node());
1579         assert(adr_type->isa_rawptr() && base->is_Proj() &&
1580                (base->in(0) == alloc),"unexpected pointer type");
1581 #endif
1582         continue;
1583       }
1584       if (!offsets_worklist.contains(offset)) {
1585         offsets_worklist.append(offset);
1586         Node* value = NULL;
1587         if (ini != NULL) {
1588           // StoreP::memory_type() == T_ADDRESS
1589           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
1590           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
1591           // Make sure initializing store has the same type as this AddP.
1592           // This AddP may reference non existing field because it is on a
1593           // dead branch of bimorphic call which is not eliminated yet.
1594           if (store != NULL && store->is_Store() &&
1595               store->as_Store()->memory_type() == ft) {
1596             value = store->in(MemNode::ValueIn);
1597 #ifdef ASSERT
1598             if (VerifyConnectionGraph) {
1599               // Verify that AddP already points to all objects the value points to.
1600               PointsToNode* val = ptnode_adr(value->_idx);
1601               assert((val != NULL), "should be processed already");
1602               PointsToNode* missed_obj = NULL;
1603               if (val->is_JavaObject()) {
1604                 if (!field->points_to(val->as_JavaObject())) {
1605                   missed_obj = val;
1606                 }
1607               } else {
1608                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
1609                   tty->print_cr("----------init store has invalid value -----");
1610                   store->dump();
1611                   val->dump();
1612                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
1613                 }
1614                 for (EdgeIterator j(val); j.has_next(); j.next()) {
1615                   PointsToNode* obj = j.get();
1616                   if (obj->is_JavaObject()) {
1617                     if (!field->points_to(obj->as_JavaObject())) {
1618                       missed_obj = obj;
1619                       break;
1620                     }
1621                   }
1622                 }
1623               }
1624               if (missed_obj != NULL) {
1625                 tty->print_cr("----------field---------------------------------");
1626                 field->dump();
1627                 tty->print_cr("----------missed referernce to object-----------");
1628                 missed_obj->dump();
1629                 tty->print_cr("----------object referernced by init store -----");
1630                 store->dump();
1631                 val->dump();
1632                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
1633               }
1634             }
1635 #endif
1636           } else {
1637             // There could be initializing stores which follow allocation.
1638             // For example, a volatile field store is not collected
1639             // by Initialize node.
1640             //
1641             // Need to check for dependent loads to separate such stores from
1642             // stores which follow loads. For now, add initial value NULL so
1643             // that compare pointers optimization works correctly.
1644           }
1645         }
1646         if (value == NULL) {
1647           // A field's initializing value was not recorded. Add NULL.
1648           if (add_edge(field, null_obj)) {
1649             // New edge was added
1650             new_edges++;
1651             add_field_uses_to_worklist(field->as_Field());
1652           }
1653         }
1654       }
1655     }
1656   }
1657   return new_edges;
1658 }
1659 
1660 // Adjust scalar_replaceable state after Connection Graph is built.
1661 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
1662   // Search for non-escaping objects which are not scalar replaceable
1663   // and mark them to propagate the state to referenced objects.
1664 
1665   // 1. An object is not scalar replaceable if the field into which it is
1666   // stored has unknown offset (stored into unknown element of an array).
1667   //
1668   for (UseIterator i(jobj); i.has_next(); i.next()) {
1669     PointsToNode* use = i.get();
1670     if (use->is_Arraycopy()) {
1671       continue;
1672     }
1673     if (use->is_Field()) {
1674       FieldNode* field = use->as_Field();
1675       assert(field->is_oop() && field->scalar_replaceable(), "sanity");
1676       if (field->offset() == Type::OffsetBot) {
1677         jobj->set_scalar_replaceable(false);
1678         return;
1679       }
1680       // 2. An object is not scalar replaceable if the field into which it is
1681       // stored has multiple bases one of which is null.
1682       if (field->base_count() > 1) {
1683         for (BaseIterator i(field); i.has_next(); i.next()) {
1684           PointsToNode* base = i.get();
1685           if (base == null_obj) {
1686             jobj->set_scalar_replaceable(false);
1687             return;
1688           }
1689         }
1690       }
1691     }
1692     assert(use->is_Field() || use->is_LocalVar(), "sanity");
1693     // 3. An object is not scalar replaceable if it is merged with other objects.
1694     for (EdgeIterator j(use); j.has_next(); j.next()) {
1695       PointsToNode* ptn = j.get();
1696       if (ptn->is_JavaObject() && ptn != jobj) {
1697         // Mark all objects.
1698         jobj->set_scalar_replaceable(false);
1699          ptn->set_scalar_replaceable(false);
1700       }
1701     }
1702     if (!jobj->scalar_replaceable()) {
1703       return;
1704     }
1705   }
1706 
1707   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
1708     if (j.get()->is_Arraycopy()) {
1709       continue;
1710     }
1711 
1712     // Non-escaping object node should point only to field nodes.
1713     FieldNode* field = j.get()->as_Field();
1714     int offset = field->as_Field()->offset();
1715 
1716     // 4. An object is not scalar replaceable if it has a field with unknown
1717     // offset (array's element is accessed in loop).
1718     if (offset == Type::OffsetBot) {
1719       jobj->set_scalar_replaceable(false);
1720       return;
1721     }
1722     // 5. Currently an object is not scalar replaceable if a LoadStore node
1723     // access its field since the field value is unknown after it.
1724     //
1725     Node* n = field->ideal_node();
1726     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1727       if (n->fast_out(i)->is_LoadStore()) {
1728         jobj->set_scalar_replaceable(false);
1729         return;
1730       }
1731     }
1732 
1733     // 6. Or the address may point to more then one object. This may produce
1734     // the false positive result (set not scalar replaceable)
1735     // since the flow-insensitive escape analysis can't separate
1736     // the case when stores overwrite the field's value from the case
1737     // when stores happened on different control branches.
1738     //
1739     // Note: it will disable scalar replacement in some cases:
1740     //
1741     //    Point p[] = new Point[1];
1742     //    p[0] = new Point(); // Will be not scalar replaced
1743     //
1744     // but it will save us from incorrect optimizations in next cases:
1745     //
1746     //    Point p[] = new Point[1];
1747     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1748     //
1749     if (field->base_count() > 1) {
1750       for (BaseIterator i(field); i.has_next(); i.next()) {
1751         PointsToNode* base = i.get();
1752         // Don't take into account LocalVar nodes which
1753         // may point to only one object which should be also
1754         // this field's base by now.
1755         if (base->is_JavaObject() && base != jobj) {
1756           // Mark all bases.
1757           jobj->set_scalar_replaceable(false);
1758           base->set_scalar_replaceable(false);
1759         }
1760       }
1761     }
1762   }
1763 }
1764 
1765 #ifdef ASSERT
1766 void ConnectionGraph::verify_connection_graph(
1767                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1768                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1769                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1770                          GrowableArray<Node*>& addp_worklist) {
1771   // Verify that graph is complete - no new edges could be added.
1772   int java_objects_length = java_objects_worklist.length();
1773   int non_escaped_length  = non_escaped_worklist.length();
1774   int new_edges = 0;
1775   for (int next = 0; next < java_objects_length; ++next) {
1776     JavaObjectNode* ptn = java_objects_worklist.at(next);
1777     new_edges += add_java_object_edges(ptn, true);
1778   }
1779   assert(new_edges == 0, "graph was not complete");
1780   // Verify that escape state is final.
1781   int length = non_escaped_worklist.length();
1782   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
1783   assert((non_escaped_length == non_escaped_worklist.length()) &&
1784          (non_escaped_length == length) &&
1785          (_worklist.length() == 0), "escape state was not final");
1786 
1787   // Verify fields information.
1788   int addp_length = addp_worklist.length();
1789   for (int next = 0; next < addp_length; ++next ) {
1790     Node* n = addp_worklist.at(next);
1791     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
1792     if (field->is_oop()) {
1793       // Verify that field has all bases
1794       Node* base = get_addp_base(n);
1795       PointsToNode* ptn = ptnode_adr(base->_idx);
1796       if (ptn->is_JavaObject()) {
1797         assert(field->has_base(ptn->as_JavaObject()), "sanity");
1798       } else {
1799         assert(ptn->is_LocalVar(), "sanity");
1800         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1801           PointsToNode* e = i.get();
1802           if (e->is_JavaObject()) {
1803             assert(field->has_base(e->as_JavaObject()), "sanity");
1804           }
1805         }
1806       }
1807       // Verify that all fields have initializing values.
1808       if (field->edge_count() == 0) {
1809         tty->print_cr("----------field does not have references----------");
1810         field->dump();
1811         for (BaseIterator i(field); i.has_next(); i.next()) {
1812           PointsToNode* base = i.get();
1813           tty->print_cr("----------field has next base---------------------");
1814           base->dump();
1815           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
1816             tty->print_cr("----------base has fields-------------------------");
1817             for (EdgeIterator j(base); j.has_next(); j.next()) {
1818               j.get()->dump();
1819             }
1820             tty->print_cr("----------base has references---------------------");
1821             for (UseIterator j(base); j.has_next(); j.next()) {
1822               j.get()->dump();
1823             }
1824           }
1825         }
1826         for (UseIterator i(field); i.has_next(); i.next()) {
1827           i.get()->dump();
1828         }
1829         assert(field->edge_count() > 0, "sanity");
1830       }
1831     }
1832   }
1833 }
1834 #endif
1835 
1836 // Optimize ideal graph.
1837 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
1838                                            GrowableArray<Node*>& storestore_worklist) {
1839   Compile* C = _compile;
1840   PhaseIterGVN* igvn = _igvn;
1841   if (EliminateLocks) {
1842     // Mark locks before changing ideal graph.
1843     int cnt = C->macro_count();
1844     for( int i=0; i < cnt; i++ ) {
1845       Node *n = C->macro_node(i);
1846       if (n->is_AbstractLock()) { // Lock and Unlock nodes
1847         AbstractLockNode* alock = n->as_AbstractLock();
1848         if (!alock->is_non_esc_obj()) {
1849           if (not_global_escape(alock->obj_node())) {
1850             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
1851             // The lock could be marked eliminated by lock coarsening
1852             // code during first IGVN before EA. Replace coarsened flag
1853             // to eliminate all associated locks/unlocks.
1854 #ifdef ASSERT
1855             alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
1856 #endif
1857             alock->set_non_esc_obj();
1858           }
1859         }
1860       }
1861     }
1862   }
1863 
1864   if (OptimizePtrCompare) {
1865     // Add ConI(#CC_GT) and ConI(#CC_EQ).
1866     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
1867     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
1868     // Optimize objects compare.
1869     while (ptr_cmp_worklist.length() != 0) {
1870       Node *n = ptr_cmp_worklist.pop();
1871       Node *res = optimize_ptr_compare(n);
1872       if (res != NULL) {
1873 #ifndef PRODUCT
1874         if (PrintOptimizePtrCompare) {
1875           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
1876           if (Verbose) {
1877             n->dump(1);
1878           }
1879         }
1880 #endif
1881         igvn->replace_node(n, res);
1882       }
1883     }
1884     // cleanup
1885     if (_pcmp_neq->outcnt() == 0)
1886       igvn->hash_delete(_pcmp_neq);
1887     if (_pcmp_eq->outcnt()  == 0)
1888       igvn->hash_delete(_pcmp_eq);
1889   }
1890 
1891   // For MemBarStoreStore nodes added in library_call.cpp, check
1892   // escape status of associated AllocateNode and optimize out
1893   // MemBarStoreStore node if the allocated object never escapes.
1894   while (storestore_worklist.length() != 0) {
1895     Node *n = storestore_worklist.pop();
1896     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
1897     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
1898     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
1899     if (not_global_escape(alloc)) {
1900       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
1901       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
1902       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
1903       igvn->register_new_node_with_optimizer(mb);
1904       igvn->replace_node(storestore, mb);
1905     }
1906   }
1907 }
1908 
1909 // Optimize objects compare.
1910 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
1911   assert(OptimizePtrCompare, "sanity");
1912   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
1913   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
1914   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
1915   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
1916   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
1917   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
1918 
1919   // Check simple cases first.
1920   if (jobj1 != NULL) {
1921     if (jobj1->escape_state() == PointsToNode::NoEscape) {
1922       if (jobj1 == jobj2) {
1923         // Comparing the same not escaping object.
1924         return _pcmp_eq;
1925       }
1926       Node* obj = jobj1->ideal_node();
1927       // Comparing not escaping allocation.
1928       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1929           !ptn2->points_to(jobj1)) {
1930         return _pcmp_neq; // This includes nullness check.
1931       }
1932     }
1933   }
1934   if (jobj2 != NULL) {
1935     if (jobj2->escape_state() == PointsToNode::NoEscape) {
1936       Node* obj = jobj2->ideal_node();
1937       // Comparing not escaping allocation.
1938       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1939           !ptn1->points_to(jobj2)) {
1940         return _pcmp_neq; // This includes nullness check.
1941       }
1942     }
1943   }
1944   if (jobj1 != NULL && jobj1 != phantom_obj &&
1945       jobj2 != NULL && jobj2 != phantom_obj &&
1946       jobj1->ideal_node()->is_Con() &&
1947       jobj2->ideal_node()->is_Con()) {
1948     // Klass or String constants compare. Need to be careful with
1949     // compressed pointers - compare types of ConN and ConP instead of nodes.
1950     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
1951     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
1952     if (t1->make_ptr() == t2->make_ptr()) {
1953       return _pcmp_eq;
1954     } else {
1955       return _pcmp_neq;
1956     }
1957   }
1958   if (ptn1->meet(ptn2)) {
1959     return NULL; // Sets are not disjoint
1960   }
1961 
1962   // Sets are disjoint.
1963   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
1964   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
1965   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
1966   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
1967   if (set1_has_unknown_ptr && set2_has_null_ptr ||
1968       set2_has_unknown_ptr && set1_has_null_ptr) {
1969     // Check nullness of unknown object.
1970     return NULL;
1971   }
1972 
1973   // Disjointness by itself is not sufficient since
1974   // alias analysis is not complete for escaped objects.
1975   // Disjoint sets are definitely unrelated only when
1976   // at least one set has only not escaping allocations.
1977   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
1978     if (ptn1->non_escaping_allocation()) {
1979       return _pcmp_neq;
1980     }
1981   }
1982   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
1983     if (ptn2->non_escaping_allocation()) {
1984       return _pcmp_neq;
1985     }
1986   }
1987   return NULL;
1988 }
1989 
1990 // Connection Graph constuction functions.
1991 
1992 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
1993   PointsToNode* ptadr = _nodes.at(n->_idx);
1994   if (ptadr != NULL) {
1995     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
1996     return;
1997   }
1998   Compile* C = _compile;
1999   ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
2000   _nodes.at_put(n->_idx, ptadr);
2001 }
2002 
2003 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
2004   PointsToNode* ptadr = _nodes.at(n->_idx);
2005   if (ptadr != NULL) {
2006     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
2007     return;
2008   }
2009   Compile* C = _compile;
2010   ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
2011   _nodes.at_put(n->_idx, ptadr);
2012 }
2013 
2014 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
2015   PointsToNode* ptadr = _nodes.at(n->_idx);
2016   if (ptadr != NULL) {
2017     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
2018     return;
2019   }
2020   bool unsafe = false;
2021   bool is_oop = is_oop_field(n, offset, &unsafe);
2022   if (unsafe) {
2023     es = PointsToNode::GlobalEscape;
2024   }
2025   Compile* C = _compile;
2026   FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
2027   _nodes.at_put(n->_idx, field);
2028 }
2029 
2030 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
2031                                     PointsToNode* src, PointsToNode* dst) {
2032   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
2033   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
2034   PointsToNode* ptadr = _nodes.at(n->_idx);
2035   if (ptadr != NULL) {
2036     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
2037     return;
2038   }
2039   Compile* C = _compile;
2040   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
2041   _nodes.at_put(n->_idx, ptadr);
2042   // Add edge from arraycopy node to source object.
2043   (void)add_edge(ptadr, src);
2044   src->set_arraycopy_src();
2045   // Add edge from destination object to arraycopy node.
2046   (void)add_edge(dst, ptadr);
2047   dst->set_arraycopy_dst();
2048 }
2049 
2050 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
2051   const Type* adr_type = n->as_AddP()->bottom_type();
2052   BasicType bt = T_INT;
2053   if (offset == Type::OffsetBot) {
2054     // Check only oop fields.
2055     if (!adr_type->isa_aryptr() ||
2056         (adr_type->isa_aryptr()->klass() == NULL) ||
2057          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
2058       // OffsetBot is used to reference array's element. Ignore first AddP.
2059       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
2060         bt = T_OBJECT;
2061       }
2062     }
2063   } else if (offset != oopDesc::klass_offset_in_bytes()) {
2064     if (adr_type->isa_instptr()) {
2065       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
2066       if (field != NULL) {
2067         bt = field->layout_type();
2068       } else {
2069         // Check for unsafe oop field access
2070         if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
2071             n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
2072             n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN)) {
2073           bt = T_OBJECT;
2074           (*unsafe) = true;
2075         }
2076       }
2077     } else if (adr_type->isa_aryptr()) {
2078       if (offset == arrayOopDesc::length_offset_in_bytes()) {
2079         // Ignore array length load.
2080       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
2081         // Ignore first AddP.
2082       } else {
2083         const Type* elemtype = adr_type->isa_aryptr()->elem();
2084         bt = elemtype->array_element_basic_type();
2085       }
2086     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
2087       // Allocation initialization, ThreadLocal field access, unsafe access
2088       if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
2089           n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
2090           n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN)) {
2091         bt = T_OBJECT;
2092       }
2093     }
2094   }
2095   return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
2096 }
2097 
2098 // Returns unique pointed java object or NULL.
2099 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
2100   assert(!_collecting, "should not call when contructed graph");
2101   // If the node was created after the escape computation we can't answer.
2102   uint idx = n->_idx;
2103   if (idx >= nodes_size()) {
2104     return NULL;
2105   }
2106   PointsToNode* ptn = ptnode_adr(idx);
2107   if (ptn->is_JavaObject()) {
2108     return ptn->as_JavaObject();
2109   }
2110   assert(ptn->is_LocalVar(), "sanity");
2111   // Check all java objects it points to.
2112   JavaObjectNode* jobj = NULL;
2113   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2114     PointsToNode* e = i.get();
2115     if (e->is_JavaObject()) {
2116       if (jobj == NULL) {
2117         jobj = e->as_JavaObject();
2118       } else if (jobj != e) {
2119         return NULL;
2120       }
2121     }
2122   }
2123   return jobj;
2124 }
2125 
2126 // Return true if this node points only to non-escaping allocations.
2127 bool PointsToNode::non_escaping_allocation() {
2128   if (is_JavaObject()) {
2129     Node* n = ideal_node();
2130     if (n->is_Allocate() || n->is_CallStaticJava()) {
2131       return (escape_state() == PointsToNode::NoEscape);
2132     } else {
2133       return false;
2134     }
2135   }
2136   assert(is_LocalVar(), "sanity");
2137   // Check all java objects it points to.
2138   for (EdgeIterator i(this); i.has_next(); i.next()) {
2139     PointsToNode* e = i.get();
2140     if (e->is_JavaObject()) {
2141       Node* n = e->ideal_node();
2142       if ((e->escape_state() != PointsToNode::NoEscape) ||
2143           !(n->is_Allocate() || n->is_CallStaticJava())) {
2144         return false;
2145       }
2146     }
2147   }
2148   return true;
2149 }
2150 
2151 // Return true if we know the node does not escape globally.
2152 bool ConnectionGraph::not_global_escape(Node *n) {
2153   assert(!_collecting, "should not call during graph construction");
2154   // If the node was created after the escape computation we can't answer.
2155   uint idx = n->_idx;
2156   if (idx >= nodes_size()) {
2157     return false;
2158   }
2159   PointsToNode* ptn = ptnode_adr(idx);
2160   PointsToNode::EscapeState es = ptn->escape_state();
2161   // If we have already computed a value, return it.
2162   if (es >= PointsToNode::GlobalEscape)
2163     return false;
2164   if (ptn->is_JavaObject()) {
2165     return true; // (es < PointsToNode::GlobalEscape);
2166   }
2167   assert(ptn->is_LocalVar(), "sanity");
2168   // Check all java objects it points to.
2169   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2170     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
2171       return false;
2172   }
2173   return true;
2174 }
2175 
2176 
2177 // Helper functions
2178 
2179 // Return true if this node points to specified node or nodes it points to.
2180 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
2181   if (is_JavaObject()) {
2182     return (this == ptn);
2183   }
2184   assert(is_LocalVar() || is_Field(), "sanity");
2185   for (EdgeIterator i(this); i.has_next(); i.next()) {
2186     if (i.get() == ptn)
2187       return true;
2188   }
2189   return false;
2190 }
2191 
2192 // Return true if one node points to an other.
2193 bool PointsToNode::meet(PointsToNode* ptn) {
2194   if (this == ptn) {
2195     return true;
2196   } else if (ptn->is_JavaObject()) {
2197     return this->points_to(ptn->as_JavaObject());
2198   } else if (this->is_JavaObject()) {
2199     return ptn->points_to(this->as_JavaObject());
2200   }
2201   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
2202   int ptn_count =  ptn->edge_count();
2203   for (EdgeIterator i(this); i.has_next(); i.next()) {
2204     PointsToNode* this_e = i.get();
2205     for (int j = 0; j < ptn_count; j++) {
2206       if (this_e == ptn->edge(j))
2207         return true;
2208     }
2209   }
2210   return false;
2211 }
2212 
2213 #ifdef ASSERT
2214 // Return true if bases point to this java object.
2215 bool FieldNode::has_base(JavaObjectNode* jobj) const {
2216   for (BaseIterator i(this); i.has_next(); i.next()) {
2217     if (i.get() == jobj)
2218       return true;
2219   }
2220   return false;
2221 }
2222 #endif
2223 
2224 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
2225   const Type *adr_type = phase->type(adr);
2226   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
2227       adr->in(AddPNode::Address)->is_Proj() &&
2228       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2229     // We are computing a raw address for a store captured by an Initialize
2230     // compute an appropriate address type. AddP cases #3 and #5 (see below).
2231     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2232     assert(offs != Type::OffsetBot ||
2233            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
2234            "offset must be a constant or it is initialization of array");
2235     return offs;
2236   }
2237   const TypePtr *t_ptr = adr_type->isa_ptr();
2238   assert(t_ptr != NULL, "must be a pointer type");
2239   return t_ptr->offset();
2240 }
2241 
2242 Node* ConnectionGraph::get_addp_base(Node *addp) {
2243   assert(addp->is_AddP(), "must be AddP");
2244   //
2245   // AddP cases for Base and Address inputs:
2246   // case #1. Direct object's field reference:
2247   //     Allocate
2248   //       |
2249   //     Proj #5 ( oop result )
2250   //       |
2251   //     CheckCastPP (cast to instance type)
2252   //      | |
2253   //     AddP  ( base == address )
2254   //
2255   // case #2. Indirect object's field reference:
2256   //      Phi
2257   //       |
2258   //     CastPP (cast to instance type)
2259   //      | |
2260   //     AddP  ( base == address )
2261   //
2262   // case #3. Raw object's field reference for Initialize node:
2263   //      Allocate
2264   //        |
2265   //      Proj #5 ( oop result )
2266   //  top   |
2267   //     \  |
2268   //     AddP  ( base == top )
2269   //
2270   // case #4. Array's element reference:
2271   //   {CheckCastPP | CastPP}
2272   //     |  | |
2273   //     |  AddP ( array's element offset )
2274   //     |  |
2275   //     AddP ( array's offset )
2276   //
2277   // case #5. Raw object's field reference for arraycopy stub call:
2278   //          The inline_native_clone() case when the arraycopy stub is called
2279   //          after the allocation before Initialize and CheckCastPP nodes.
2280   //      Allocate
2281   //        |
2282   //      Proj #5 ( oop result )
2283   //       | |
2284   //       AddP  ( base == address )
2285   //
2286   // case #6. Constant Pool, ThreadLocal, CastX2P or
2287   //          Raw object's field reference:
2288   //      {ConP, ThreadLocal, CastX2P, raw Load}
2289   //  top   |
2290   //     \  |
2291   //     AddP  ( base == top )
2292   //
2293   // case #7. Klass's field reference.
2294   //      LoadKlass
2295   //       | |
2296   //       AddP  ( base == address )
2297   //
2298   // case #8. narrow Klass's field reference.
2299   //      LoadNKlass
2300   //       |
2301   //      DecodeN
2302   //       | |
2303   //       AddP  ( base == address )
2304   //
2305   Node *base = addp->in(AddPNode::Base);
2306   if (base->uncast()->is_top()) { // The AddP case #3 and #6.
2307     base = addp->in(AddPNode::Address);
2308     while (base->is_AddP()) {
2309       // Case #6 (unsafe access) may have several chained AddP nodes.
2310       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
2311       base = base->in(AddPNode::Address);
2312     }
2313     Node* uncast_base = base->uncast();
2314     int opcode = uncast_base->Opcode();
2315     assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
2316            opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
2317            (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
2318            (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
2319   }
2320   return base;
2321 }
2322 
2323 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
2324   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
2325   Node* addp2 = addp->raw_out(0);
2326   if (addp->outcnt() == 1 && addp2->is_AddP() &&
2327       addp2->in(AddPNode::Base) == n &&
2328       addp2->in(AddPNode::Address) == addp) {
2329     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
2330     //
2331     // Find array's offset to push it on worklist first and
2332     // as result process an array's element offset first (pushed second)
2333     // to avoid CastPP for the array's offset.
2334     // Otherwise the inserted CastPP (LocalVar) will point to what
2335     // the AddP (Field) points to. Which would be wrong since
2336     // the algorithm expects the CastPP has the same point as
2337     // as AddP's base CheckCastPP (LocalVar).
2338     //
2339     //    ArrayAllocation
2340     //     |
2341     //    CheckCastPP
2342     //     |
2343     //    memProj (from ArrayAllocation CheckCastPP)
2344     //     |  ||
2345     //     |  ||   Int (element index)
2346     //     |  ||    |   ConI (log(element size))
2347     //     |  ||    |   /
2348     //     |  ||   LShift
2349     //     |  ||  /
2350     //     |  AddP (array's element offset)
2351     //     |  |
2352     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
2353     //     | / /
2354     //     AddP (array's offset)
2355     //      |
2356     //     Load/Store (memory operation on array's element)
2357     //
2358     return addp2;
2359   }
2360   return NULL;
2361 }
2362 
2363 //
2364 // Adjust the type and inputs of an AddP which computes the
2365 // address of a field of an instance
2366 //
2367 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
2368   PhaseGVN* igvn = _igvn;
2369   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
2370   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
2371   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
2372   if (t == NULL) {
2373     // We are computing a raw address for a store captured by an Initialize
2374     // compute an appropriate address type (cases #3 and #5).
2375     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
2376     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
2377     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
2378     assert(offs != Type::OffsetBot, "offset must be a constant");
2379     t = base_t->add_offset(offs)->is_oopptr();
2380   }
2381   int inst_id =  base_t->instance_id();
2382   assert(!t->is_known_instance() || t->instance_id() == inst_id,
2383                              "old type must be non-instance or match new type");
2384 
2385   // The type 't' could be subclass of 'base_t'.
2386   // As result t->offset() could be large then base_t's size and it will
2387   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
2388   // constructor verifies correctness of the offset.
2389   //
2390   // It could happened on subclass's branch (from the type profiling
2391   // inlining) which was not eliminated during parsing since the exactness
2392   // of the allocation type was not propagated to the subclass type check.
2393   //
2394   // Or the type 't' could be not related to 'base_t' at all.
2395   // It could happened when CHA type is different from MDO type on a dead path
2396   // (for example, from instanceof check) which is not collapsed during parsing.
2397   //
2398   // Do nothing for such AddP node and don't process its users since
2399   // this code branch will go away.
2400   //
2401   if (!t->is_known_instance() &&
2402       !base_t->klass()->is_subtype_of(t->klass())) {
2403      return false; // bail out
2404   }
2405   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
2406   // Do NOT remove the next line: ensure a new alias index is allocated
2407   // for the instance type. Note: C++ will not remove it since the call
2408   // has side effect.
2409   int alias_idx = _compile->get_alias_index(tinst);
2410   igvn->set_type(addp, tinst);
2411   // record the allocation in the node map
2412   set_map(addp, get_map(base->_idx));
2413   // Set addp's Base and Address to 'base'.
2414   Node *abase = addp->in(AddPNode::Base);
2415   Node *adr   = addp->in(AddPNode::Address);
2416   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
2417       adr->in(0)->_idx == (uint)inst_id) {
2418     // Skip AddP cases #3 and #5.
2419   } else {
2420     assert(!abase->is_top(), "sanity"); // AddP case #3
2421     if (abase != base) {
2422       igvn->hash_delete(addp);
2423       addp->set_req(AddPNode::Base, base);
2424       if (abase == adr) {
2425         addp->set_req(AddPNode::Address, base);
2426       } else {
2427         // AddP case #4 (adr is array's element offset AddP node)
2428 #ifdef ASSERT
2429         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
2430         assert(adr->is_AddP() && atype != NULL &&
2431                atype->instance_id() == inst_id, "array's element offset should be processed first");
2432 #endif
2433       }
2434       igvn->hash_insert(addp);
2435     }
2436   }
2437   // Put on IGVN worklist since at least addp's type was changed above.
2438   record_for_optimizer(addp);
2439   return true;
2440 }
2441 
2442 //
2443 // Create a new version of orig_phi if necessary. Returns either the newly
2444 // created phi or an existing phi.  Sets create_new to indicate whether a new
2445 // phi was created.  Cache the last newly created phi in the node map.
2446 //
2447 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
2448   Compile *C = _compile;
2449   PhaseGVN* igvn = _igvn;
2450   new_created = false;
2451   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
2452   // nothing to do if orig_phi is bottom memory or matches alias_idx
2453   if (phi_alias_idx == alias_idx) {
2454     return orig_phi;
2455   }
2456   // Have we recently created a Phi for this alias index?
2457   PhiNode *result = get_map_phi(orig_phi->_idx);
2458   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
2459     return result;
2460   }
2461   // Previous check may fail when the same wide memory Phi was split into Phis
2462   // for different memory slices. Search all Phis for this region.
2463   if (result != NULL) {
2464     Node* region = orig_phi->in(0);
2465     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
2466       Node* phi = region->fast_out(i);
2467       if (phi->is_Phi() &&
2468           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
2469         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
2470         return phi->as_Phi();
2471       }
2472     }
2473   }
2474   if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
2475     if (C->do_escape_analysis() == true && !C->failing()) {
2476       // Retry compilation without escape analysis.
2477       // If this is the first failure, the sentinel string will "stick"
2478       // to the Compile object, and the C2Compiler will see it and retry.
2479       C->record_failure(C2Compiler::retry_no_escape_analysis());
2480     }
2481     return NULL;
2482   }
2483   orig_phi_worklist.append_if_missing(orig_phi);
2484   const TypePtr *atype = C->get_adr_type(alias_idx);
2485   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
2486   C->copy_node_notes_to(result, orig_phi);
2487   igvn->set_type(result, result->bottom_type());
2488   record_for_optimizer(result);
2489   set_map(orig_phi, result);
2490   new_created = true;
2491   return result;
2492 }
2493 
2494 //
2495 // Return a new version of Memory Phi "orig_phi" with the inputs having the
2496 // specified alias index.
2497 //
2498 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
2499   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
2500   Compile *C = _compile;
2501   PhaseGVN* igvn = _igvn;
2502   bool new_phi_created;
2503   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
2504   if (!new_phi_created) {
2505     return result;
2506   }
2507   GrowableArray<PhiNode *>  phi_list;
2508   GrowableArray<uint>  cur_input;
2509   PhiNode *phi = orig_phi;
2510   uint idx = 1;
2511   bool finished = false;
2512   while(!finished) {
2513     while (idx < phi->req()) {
2514       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
2515       if (mem != NULL && mem->is_Phi()) {
2516         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
2517         if (new_phi_created) {
2518           // found an phi for which we created a new split, push current one on worklist and begin
2519           // processing new one
2520           phi_list.push(phi);
2521           cur_input.push(idx);
2522           phi = mem->as_Phi();
2523           result = newphi;
2524           idx = 1;
2525           continue;
2526         } else {
2527           mem = newphi;
2528         }
2529       }
2530       if (C->failing()) {
2531         return NULL;
2532       }
2533       result->set_req(idx++, mem);
2534     }
2535 #ifdef ASSERT
2536     // verify that the new Phi has an input for each input of the original
2537     assert( phi->req() == result->req(), "must have same number of inputs.");
2538     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
2539 #endif
2540     // Check if all new phi's inputs have specified alias index.
2541     // Otherwise use old phi.
2542     for (uint i = 1; i < phi->req(); i++) {
2543       Node* in = result->in(i);
2544       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
2545     }
2546     // we have finished processing a Phi, see if there are any more to do
2547     finished = (phi_list.length() == 0 );
2548     if (!finished) {
2549       phi = phi_list.pop();
2550       idx = cur_input.pop();
2551       PhiNode *prev_result = get_map_phi(phi->_idx);
2552       prev_result->set_req(idx++, result);
2553       result = prev_result;
2554     }
2555   }
2556   return result;
2557 }
2558 
2559 //
2560 // The next methods are derived from methods in MemNode.
2561 //
2562 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
2563   Node *mem = mmem;
2564   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
2565   // means an array I have not precisely typed yet.  Do not do any
2566   // alias stuff with it any time soon.
2567   if (toop->base() != Type::AnyPtr &&
2568       !(toop->klass() != NULL &&
2569         toop->klass()->is_java_lang_Object() &&
2570         toop->offset() == Type::OffsetBot)) {
2571     mem = mmem->memory_at(alias_idx);
2572     // Update input if it is progress over what we have now
2573   }
2574   return mem;
2575 }
2576 
2577 //
2578 // Move memory users to their memory slices.
2579 //
2580 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
2581   Compile* C = _compile;
2582   PhaseGVN* igvn = _igvn;
2583   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
2584   assert(tp != NULL, "ptr type");
2585   int alias_idx = C->get_alias_index(tp);
2586   int general_idx = C->get_general_index(alias_idx);
2587 
2588   // Move users first
2589   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2590     Node* use = n->fast_out(i);
2591     if (use->is_MergeMem()) {
2592       MergeMemNode* mmem = use->as_MergeMem();
2593       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
2594       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
2595         continue; // Nothing to do
2596       }
2597       // Replace previous general reference to mem node.
2598       uint orig_uniq = C->unique();
2599       Node* m = find_inst_mem(n, general_idx, orig_phis);
2600       assert(orig_uniq == C->unique(), "no new nodes");
2601       mmem->set_memory_at(general_idx, m);
2602       --imax;
2603       --i;
2604     } else if (use->is_MemBar()) {
2605       assert(!use->is_Initialize(), "initializing stores should not be moved");
2606       if (use->req() > MemBarNode::Precedent &&
2607           use->in(MemBarNode::Precedent) == n) {
2608         // Don't move related membars.
2609         record_for_optimizer(use);
2610         continue;
2611       }
2612       tp = use->as_MemBar()->adr_type()->isa_ptr();
2613       if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
2614           alias_idx == general_idx) {
2615         continue; // Nothing to do
2616       }
2617       // Move to general memory slice.
2618       uint orig_uniq = C->unique();
2619       Node* m = find_inst_mem(n, general_idx, orig_phis);
2620       assert(orig_uniq == C->unique(), "no new nodes");
2621       igvn->hash_delete(use);
2622       imax -= use->replace_edge(n, m);
2623       igvn->hash_insert(use);
2624       record_for_optimizer(use);
2625       --i;
2626 #ifdef ASSERT
2627     } else if (use->is_Mem()) {
2628       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
2629         // Don't move related cardmark.
2630         continue;
2631       }
2632       // Memory nodes should have new memory input.
2633       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
2634       assert(tp != NULL, "ptr type");
2635       int idx = C->get_alias_index(tp);
2636       assert(get_map(use->_idx) != NULL || idx == alias_idx,
2637              "Following memory nodes should have new memory input or be on the same memory slice");
2638     } else if (use->is_Phi()) {
2639       // Phi nodes should be split and moved already.
2640       tp = use->as_Phi()->adr_type()->isa_ptr();
2641       assert(tp != NULL, "ptr type");
2642       int idx = C->get_alias_index(tp);
2643       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
2644     } else {
2645       use->dump();
2646       assert(false, "should not be here");
2647 #endif
2648     }
2649   }
2650 }
2651 
2652 //
2653 // Search memory chain of "mem" to find a MemNode whose address
2654 // is the specified alias index.
2655 //
2656 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
2657   if (orig_mem == NULL)
2658     return orig_mem;
2659   Compile* C = _compile;
2660   PhaseGVN* igvn = _igvn;
2661   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
2662   bool is_instance = (toop != NULL) && toop->is_known_instance();
2663   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
2664   Node *prev = NULL;
2665   Node *result = orig_mem;
2666   while (prev != result) {
2667     prev = result;
2668     if (result == start_mem)
2669       break;  // hit one of our sentinels
2670     if (result->is_Mem()) {
2671       const Type *at = igvn->type(result->in(MemNode::Address));
2672       if (at == Type::TOP)
2673         break; // Dead
2674       assert (at->isa_ptr() != NULL, "pointer type required.");
2675       int idx = C->get_alias_index(at->is_ptr());
2676       if (idx == alias_idx)
2677         break; // Found
2678       if (!is_instance && (at->isa_oopptr() == NULL ||
2679                            !at->is_oopptr()->is_known_instance())) {
2680         break; // Do not skip store to general memory slice.
2681       }
2682       result = result->in(MemNode::Memory);
2683     }
2684     if (!is_instance)
2685       continue;  // don't search further for non-instance types
2686     // skip over a call which does not affect this memory slice
2687     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
2688       Node *proj_in = result->in(0);
2689       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
2690         break;  // hit one of our sentinels
2691       } else if (proj_in->is_Call()) {
2692         // ArrayCopy node processed here as well
2693         CallNode *call = proj_in->as_Call();
2694         if (!call->may_modify(toop, igvn)) {
2695           result = call->in(TypeFunc::Memory);
2696         }
2697       } else if (proj_in->is_Initialize()) {
2698         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
2699         // Stop if this is the initialization for the object instance which
2700         // which contains this memory slice, otherwise skip over it.
2701         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
2702           result = proj_in->in(TypeFunc::Memory);
2703         }
2704       } else if (proj_in->is_MemBar()) {
2705         if (proj_in->in(TypeFunc::Memory)->is_MergeMem() &&
2706             proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->is_Proj() &&
2707             proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->is_ArrayCopy()) {
2708           // clone
2709           ArrayCopyNode* ac = proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->as_ArrayCopy();
2710           if (ac->may_modify(toop, igvn)) {
2711             break;
2712           }
2713         }
2714         result = proj_in->in(TypeFunc::Memory);
2715       }
2716     } else if (result->is_MergeMem()) {
2717       MergeMemNode *mmem = result->as_MergeMem();
2718       result = step_through_mergemem(mmem, alias_idx, toop);
2719       if (result == mmem->base_memory()) {
2720         // Didn't find instance memory, search through general slice recursively.
2721         result = mmem->memory_at(C->get_general_index(alias_idx));
2722         result = find_inst_mem(result, alias_idx, orig_phis);
2723         if (C->failing()) {
2724           return NULL;
2725         }
2726         mmem->set_memory_at(alias_idx, result);
2727       }
2728     } else if (result->is_Phi() &&
2729                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
2730       Node *un = result->as_Phi()->unique_input(igvn);
2731       if (un != NULL) {
2732         orig_phis.append_if_missing(result->as_Phi());
2733         result = un;
2734       } else {
2735         break;
2736       }
2737     } else if (result->is_ClearArray()) {
2738       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
2739         // Can not bypass initialization of the instance
2740         // we are looking for.
2741         break;
2742       }
2743       // Otherwise skip it (the call updated 'result' value).
2744     } else if (result->Opcode() == Op_SCMemProj) {
2745       Node* mem = result->in(0);
2746       Node* adr = NULL;
2747       if (mem->is_LoadStore()) {
2748         adr = mem->in(MemNode::Address);
2749       } else {
2750         assert(mem->Opcode() == Op_EncodeISOArray ||
2751                mem->Opcode() == Op_StrCompressedCopy, "sanity");
2752         adr = mem->in(3); // Memory edge corresponds to destination array
2753       }
2754       const Type *at = igvn->type(adr);
2755       if (at != Type::TOP) {
2756         assert(at->isa_ptr() != NULL, "pointer type required.");
2757         int idx = C->get_alias_index(at->is_ptr());
2758         if (idx == alias_idx) {
2759           // Assert in debug mode
2760           assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
2761           break; // In product mode return SCMemProj node
2762         }
2763       }
2764       result = mem->in(MemNode::Memory);
2765     } else if (result->Opcode() == Op_StrInflatedCopy) {
2766       Node* adr = result->in(3); // Memory edge corresponds to destination array
2767       const Type *at = igvn->type(adr);
2768       if (at != Type::TOP) {
2769         assert(at->isa_ptr() != NULL, "pointer type required.");
2770         int idx = C->get_alias_index(at->is_ptr());
2771         if (idx == alias_idx) {
2772           // Assert in debug mode
2773           assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
2774           break; // In product mode return SCMemProj node
2775         }
2776       }
2777       result = result->in(MemNode::Memory);
2778     }
2779   }
2780   if (result->is_Phi()) {
2781     PhiNode *mphi = result->as_Phi();
2782     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
2783     const TypePtr *t = mphi->adr_type();
2784     if (!is_instance) {
2785       // Push all non-instance Phis on the orig_phis worklist to update inputs
2786       // during Phase 4 if needed.
2787       orig_phis.append_if_missing(mphi);
2788     } else if (C->get_alias_index(t) != alias_idx) {
2789       // Create a new Phi with the specified alias index type.
2790       result = split_memory_phi(mphi, alias_idx, orig_phis);
2791     }
2792   }
2793   // the result is either MemNode, PhiNode, InitializeNode.
2794   return result;
2795 }
2796 
2797 //
2798 //  Convert the types of unescaped object to instance types where possible,
2799 //  propagate the new type information through the graph, and update memory
2800 //  edges and MergeMem inputs to reflect the new type.
2801 //
2802 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
2803 //  The processing is done in 4 phases:
2804 //
2805 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
2806 //            types for the CheckCastPP for allocations where possible.
2807 //            Propagate the new types through users as follows:
2808 //               casts and Phi:  push users on alloc_worklist
2809 //               AddP:  cast Base and Address inputs to the instance type
2810 //                      push any AddP users on alloc_worklist and push any memnode
2811 //                      users onto memnode_worklist.
2812 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
2813 //            search the Memory chain for a store with the appropriate type
2814 //            address type.  If a Phi is found, create a new version with
2815 //            the appropriate memory slices from each of the Phi inputs.
2816 //            For stores, process the users as follows:
2817 //               MemNode:  push on memnode_worklist
2818 //               MergeMem: push on mergemem_worklist
2819 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
2820 //            moving the first node encountered of each  instance type to the
2821 //            the input corresponding to its alias index.
2822 //            appropriate memory slice.
2823 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
2824 //
2825 // In the following example, the CheckCastPP nodes are the cast of allocation
2826 // results and the allocation of node 29 is unescaped and eligible to be an
2827 // instance type.
2828 //
2829 // We start with:
2830 //
2831 //     7 Parm #memory
2832 //    10  ConI  "12"
2833 //    19  CheckCastPP   "Foo"
2834 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2835 //    29  CheckCastPP   "Foo"
2836 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
2837 //
2838 //    40  StoreP  25   7  20   ... alias_index=4
2839 //    50  StoreP  35  40  30   ... alias_index=4
2840 //    60  StoreP  45  50  20   ... alias_index=4
2841 //    70  LoadP    _  60  30   ... alias_index=4
2842 //    80  Phi     75  50  60   Memory alias_index=4
2843 //    90  LoadP    _  80  30   ... alias_index=4
2844 //   100  LoadP    _  80  20   ... alias_index=4
2845 //
2846 //
2847 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
2848 // and creating a new alias index for node 30.  This gives:
2849 //
2850 //     7 Parm #memory
2851 //    10  ConI  "12"
2852 //    19  CheckCastPP   "Foo"
2853 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2854 //    29  CheckCastPP   "Foo"  iid=24
2855 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2856 //
2857 //    40  StoreP  25   7  20   ... alias_index=4
2858 //    50  StoreP  35  40  30   ... alias_index=6
2859 //    60  StoreP  45  50  20   ... alias_index=4
2860 //    70  LoadP    _  60  30   ... alias_index=6
2861 //    80  Phi     75  50  60   Memory alias_index=4
2862 //    90  LoadP    _  80  30   ... alias_index=6
2863 //   100  LoadP    _  80  20   ... alias_index=4
2864 //
2865 // In phase 2, new memory inputs are computed for the loads and stores,
2866 // And a new version of the phi is created.  In phase 4, the inputs to
2867 // node 80 are updated and then the memory nodes are updated with the
2868 // values computed in phase 2.  This results in:
2869 //
2870 //     7 Parm #memory
2871 //    10  ConI  "12"
2872 //    19  CheckCastPP   "Foo"
2873 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2874 //    29  CheckCastPP   "Foo"  iid=24
2875 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2876 //
2877 //    40  StoreP  25  7   20   ... alias_index=4
2878 //    50  StoreP  35  7   30   ... alias_index=6
2879 //    60  StoreP  45  40  20   ... alias_index=4
2880 //    70  LoadP    _  50  30   ... alias_index=6
2881 //    80  Phi     75  40  60   Memory alias_index=4
2882 //   120  Phi     75  50  50   Memory alias_index=6
2883 //    90  LoadP    _ 120  30   ... alias_index=6
2884 //   100  LoadP    _  80  20   ... alias_index=4
2885 //
2886 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist, GrowableArray<ArrayCopyNode*> &arraycopy_worklist) {
2887   GrowableArray<Node *>  memnode_worklist;
2888   GrowableArray<PhiNode *>  orig_phis;
2889   PhaseIterGVN  *igvn = _igvn;
2890   uint new_index_start = (uint) _compile->num_alias_types();
2891   Arena* arena = Thread::current()->resource_area();
2892   VectorSet visited(arena);
2893   ideal_nodes.clear(); // Reset for use with set_map/get_map.
2894   uint unique_old = _compile->unique();
2895 
2896   //  Phase 1:  Process possible allocations from alloc_worklist.
2897   //  Create instance types for the CheckCastPP for allocations where possible.
2898   //
2899   // (Note: don't forget to change the order of the second AddP node on
2900   //  the alloc_worklist if the order of the worklist processing is changed,
2901   //  see the comment in find_second_addp().)
2902   //
2903   while (alloc_worklist.length() != 0) {
2904     Node *n = alloc_worklist.pop();
2905     uint ni = n->_idx;
2906     if (n->is_Call()) {
2907       CallNode *alloc = n->as_Call();
2908       // copy escape information to call node
2909       PointsToNode* ptn = ptnode_adr(alloc->_idx);
2910       PointsToNode::EscapeState es = ptn->escape_state();
2911       // We have an allocation or call which returns a Java object,
2912       // see if it is unescaped.
2913       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
2914         continue;
2915       // Find CheckCastPP for the allocate or for the return value of a call
2916       n = alloc->result_cast();
2917       if (n == NULL) {            // No uses except Initialize node
2918         if (alloc->is_Allocate()) {
2919           // Set the scalar_replaceable flag for allocation
2920           // so it could be eliminated if it has no uses.
2921           alloc->as_Allocate()->_is_scalar_replaceable = true;
2922         }
2923         if (alloc->is_CallStaticJava()) {
2924           // Set the scalar_replaceable flag for boxing method
2925           // so it could be eliminated if it has no uses.
2926           alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2927         }
2928         continue;
2929       }
2930       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
2931         assert(!alloc->is_Allocate(), "allocation should have unique type");
2932         continue;
2933       }
2934 
2935       // The inline code for Object.clone() casts the allocation result to
2936       // java.lang.Object and then to the actual type of the allocated
2937       // object. Detect this case and use the second cast.
2938       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
2939       // the allocation result is cast to java.lang.Object and then
2940       // to the actual Array type.
2941       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
2942           && (alloc->is_AllocateArray() ||
2943               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
2944         Node *cast2 = NULL;
2945         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2946           Node *use = n->fast_out(i);
2947           if (use->is_CheckCastPP()) {
2948             cast2 = use;
2949             break;
2950           }
2951         }
2952         if (cast2 != NULL) {
2953           n = cast2;
2954         } else {
2955           // Non-scalar replaceable if the allocation type is unknown statically
2956           // (reflection allocation), the object can't be restored during
2957           // deoptimization without precise type.
2958           continue;
2959         }
2960       }
2961 
2962       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
2963       if (t == NULL)
2964         continue;  // not a TypeOopPtr
2965       if (!t->klass_is_exact())
2966         continue; // not an unique type
2967 
2968       if (alloc->is_Allocate()) {
2969         // Set the scalar_replaceable flag for allocation
2970         // so it could be eliminated.
2971         alloc->as_Allocate()->_is_scalar_replaceable = true;
2972       }
2973       if (alloc->is_CallStaticJava()) {
2974         // Set the scalar_replaceable flag for boxing method
2975         // so it could be eliminated.
2976         alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2977       }
2978       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
2979       // in order for an object to be scalar-replaceable, it must be:
2980       //   - a direct allocation (not a call returning an object)
2981       //   - non-escaping
2982       //   - eligible to be a unique type
2983       //   - not determined to be ineligible by escape analysis
2984       set_map(alloc, n);
2985       set_map(n, alloc);
2986       const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
2987       igvn->hash_delete(n);
2988       igvn->set_type(n,  tinst);
2989       n->raise_bottom_type(tinst);
2990       igvn->hash_insert(n);
2991       record_for_optimizer(n);
2992       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
2993 
2994         // First, put on the worklist all Field edges from Connection Graph
2995         // which is more accurate than putting immediate users from Ideal Graph.
2996         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
2997           PointsToNode* tgt = e.get();
2998           if (tgt->is_Arraycopy()) {
2999             continue;
3000           }
3001           Node* use = tgt->ideal_node();
3002           assert(tgt->is_Field() && use->is_AddP(),
3003                  "only AddP nodes are Field edges in CG");
3004           if (use->outcnt() > 0) { // Don't process dead nodes
3005             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
3006             if (addp2 != NULL) {
3007               assert(alloc->is_AllocateArray(),"array allocation was expected");
3008               alloc_worklist.append_if_missing(addp2);
3009             }
3010             alloc_worklist.append_if_missing(use);
3011           }
3012         }
3013 
3014         // An allocation may have an Initialize which has raw stores. Scan
3015         // the users of the raw allocation result and push AddP users
3016         // on alloc_worklist.
3017         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
3018         assert (raw_result != NULL, "must have an allocation result");
3019         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
3020           Node *use = raw_result->fast_out(i);
3021           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
3022             Node* addp2 = find_second_addp(use, raw_result);
3023             if (addp2 != NULL) {
3024               assert(alloc->is_AllocateArray(),"array allocation was expected");
3025               alloc_worklist.append_if_missing(addp2);
3026             }
3027             alloc_worklist.append_if_missing(use);
3028           } else if (use->is_MemBar()) {
3029             memnode_worklist.append_if_missing(use);
3030           }
3031         }
3032       }
3033     } else if (n->is_AddP()) {
3034       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
3035       if (jobj == NULL || jobj == phantom_obj) {
3036 #ifdef ASSERT
3037         ptnode_adr(get_addp_base(n)->_idx)->dump();
3038         ptnode_adr(n->_idx)->dump();
3039         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3040 #endif
3041         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3042         return;
3043       }
3044       Node *base = get_map(jobj->idx());  // CheckCastPP node
3045       if (!split_AddP(n, base)) continue; // wrong type from dead path
3046     } else if (n->is_Phi() ||
3047                n->is_CheckCastPP() ||
3048                n->is_EncodeP() ||
3049                n->is_DecodeN() ||
3050                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
3051       if (visited.test_set(n->_idx)) {
3052         assert(n->is_Phi(), "loops only through Phi's");
3053         continue;  // already processed
3054       }
3055       JavaObjectNode* jobj = unique_java_object(n);
3056       if (jobj == NULL || jobj == phantom_obj) {
3057 #ifdef ASSERT
3058         ptnode_adr(n->_idx)->dump();
3059         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3060 #endif
3061         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3062         return;
3063       } else {
3064         Node *val = get_map(jobj->idx());   // CheckCastPP node
3065         TypeNode *tn = n->as_Type();
3066         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
3067         assert(tinst != NULL && tinst->is_known_instance() &&
3068                tinst->instance_id() == jobj->idx() , "instance type expected.");
3069 
3070         const Type *tn_type = igvn->type(tn);
3071         const TypeOopPtr *tn_t;
3072         if (tn_type->isa_narrowoop()) {
3073           tn_t = tn_type->make_ptr()->isa_oopptr();
3074         } else {
3075           tn_t = tn_type->isa_oopptr();
3076         }
3077         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
3078           if (tn_type->isa_narrowoop()) {
3079             tn_type = tinst->make_narrowoop();
3080           } else {
3081             tn_type = tinst;
3082           }
3083           igvn->hash_delete(tn);
3084           igvn->set_type(tn, tn_type);
3085           tn->set_type(tn_type);
3086           igvn->hash_insert(tn);
3087           record_for_optimizer(n);
3088         } else {
3089           assert(tn_type == TypePtr::NULL_PTR ||
3090                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
3091                  "unexpected type");
3092           continue; // Skip dead path with different type
3093         }
3094       }
3095     } else {
3096       debug_only(n->dump();)
3097       assert(false, "EA: unexpected node");
3098       continue;
3099     }
3100     // push allocation's users on appropriate worklist
3101     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3102       Node *use = n->fast_out(i);
3103       if(use->is_Mem() && use->in(MemNode::Address) == n) {
3104         // Load/store to instance's field
3105         memnode_worklist.append_if_missing(use);
3106       } else if (use->is_MemBar()) {
3107         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3108           memnode_worklist.append_if_missing(use);
3109         }
3110       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
3111         Node* addp2 = find_second_addp(use, n);
3112         if (addp2 != NULL) {
3113           alloc_worklist.append_if_missing(addp2);
3114         }
3115         alloc_worklist.append_if_missing(use);
3116       } else if (use->is_Phi() ||
3117                  use->is_CheckCastPP() ||
3118                  use->is_EncodeNarrowPtr() ||
3119                  use->is_DecodeNarrowPtr() ||
3120                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
3121         alloc_worklist.append_if_missing(use);
3122 #ifdef ASSERT
3123       } else if (use->is_Mem()) {
3124         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
3125       } else if (use->is_MergeMem()) {
3126         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3127       } else if (use->is_SafePoint()) {
3128         // Look for MergeMem nodes for calls which reference unique allocation
3129         // (through CheckCastPP nodes) even for debug info.
3130         Node* m = use->in(TypeFunc::Memory);
3131         if (m->is_MergeMem()) {
3132           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3133         }
3134       } else if (use->Opcode() == Op_EncodeISOArray) {
3135         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3136           // EncodeISOArray overwrites destination array
3137           memnode_worklist.append_if_missing(use);
3138         }
3139       } else {
3140         uint op = use->Opcode();
3141         if ((op == Op_StrCompressedCopy || op == Op_StrInflatedCopy) &&
3142             (use->in(MemNode::Memory) == n)) {
3143           // They overwrite memory edge corresponding to destination array,
3144           memnode_worklist.append_if_missing(use);
3145         } else if (!(op == Op_CmpP || op == Op_Conv2B ||
3146               op == Op_CastP2X || op == Op_StoreCM ||
3147               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives ||
3148               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
3149               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar)) {
3150           n->dump();
3151           use->dump();
3152           assert(false, "EA: missing allocation reference path");
3153         }
3154 #endif
3155       }
3156     }
3157 
3158   }
3159 
3160   // Go over all ArrayCopy nodes and if one of the inputs has a unique
3161   // type, record it in the ArrayCopy node so we know what memory this
3162   // node uses/modified.
3163   for (int next = 0; next < arraycopy_worklist.length(); next++) {
3164     ArrayCopyNode* ac = arraycopy_worklist.at(next);
3165     Node* dest = ac->in(ArrayCopyNode::Dest);
3166     if (dest->is_AddP()) {
3167       dest = get_addp_base(dest);
3168     }
3169     JavaObjectNode* jobj = unique_java_object(dest);
3170     if (jobj != NULL) {
3171       Node *base = get_map(jobj->idx());
3172       if (base != NULL) {
3173         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3174         ac->_dest_type = base_t;
3175       }
3176     }
3177     Node* src = ac->in(ArrayCopyNode::Src);
3178     if (src->is_AddP()) {
3179       src = get_addp_base(src);
3180     }
3181     jobj = unique_java_object(src);
3182     if (jobj != NULL) {
3183       Node* base = get_map(jobj->idx());
3184       if (base != NULL) {
3185         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3186         ac->_src_type = base_t;
3187       }
3188     }
3189   }
3190 
3191   // New alias types were created in split_AddP().
3192   uint new_index_end = (uint) _compile->num_alias_types();
3193   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
3194 
3195   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
3196   //            compute new values for Memory inputs  (the Memory inputs are not
3197   //            actually updated until phase 4.)
3198   if (memnode_worklist.length() == 0)
3199     return;  // nothing to do
3200   while (memnode_worklist.length() != 0) {
3201     Node *n = memnode_worklist.pop();
3202     if (visited.test_set(n->_idx))
3203       continue;
3204     if (n->is_Phi() || n->is_ClearArray()) {
3205       // we don't need to do anything, but the users must be pushed
3206     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
3207       // we don't need to do anything, but the users must be pushed
3208       n = n->as_MemBar()->proj_out(TypeFunc::Memory);
3209       if (n == NULL)
3210         continue;
3211     } else if (n->Opcode() == Op_StrCompressedCopy ||
3212                n->Opcode() == Op_EncodeISOArray) {
3213       // get the memory projection
3214       n = n->find_out_with(Op_SCMemProj);
3215       assert(n->Opcode() == Op_SCMemProj, "memory projection required");
3216     } else {
3217       assert(n->is_Mem(), "memory node required.");
3218       Node *addr = n->in(MemNode::Address);
3219       const Type *addr_t = igvn->type(addr);
3220       if (addr_t == Type::TOP)
3221         continue;
3222       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
3223       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
3224       assert ((uint)alias_idx < new_index_end, "wrong alias index");
3225       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
3226       if (_compile->failing()) {
3227         return;
3228       }
3229       if (mem != n->in(MemNode::Memory)) {
3230         // We delay the memory edge update since we need old one in
3231         // MergeMem code below when instances memory slices are separated.
3232         set_map(n, mem);
3233       }
3234       if (n->is_Load()) {
3235         continue;  // don't push users
3236       } else if (n->is_LoadStore()) {
3237         // get the memory projection
3238         n = n->find_out_with(Op_SCMemProj);
3239         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
3240       }
3241     }
3242     // push user on appropriate worklist
3243     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3244       Node *use = n->fast_out(i);
3245       if (use->is_Phi() || use->is_ClearArray()) {
3246         memnode_worklist.append_if_missing(use);
3247       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
3248         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
3249           continue;
3250         memnode_worklist.append_if_missing(use);
3251       } else if (use->is_MemBar()) {
3252         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3253           memnode_worklist.append_if_missing(use);
3254         }
3255 #ifdef ASSERT
3256       } else if(use->is_Mem()) {
3257         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
3258       } else if (use->is_MergeMem()) {
3259         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3260       } else if (use->Opcode() == Op_EncodeISOArray) {
3261         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3262           // EncodeISOArray overwrites destination array
3263           memnode_worklist.append_if_missing(use);
3264         }
3265       } else {
3266         uint op = use->Opcode();
3267         if ((use->in(MemNode::Memory) == n) &&
3268             (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) {
3269           // They overwrite memory edge corresponding to destination array,
3270           memnode_worklist.append_if_missing(use);
3271         } else if (!(Universe::heap()->barrier_set()->c2_code_gen()->is_gc_barrier_node(use) ||
3272               op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives ||
3273               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
3274               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar)) {
3275           n->dump();
3276           use->dump();
3277           assert(false, "EA: missing memory path");
3278         }
3279 #endif
3280       }
3281     }
3282   }
3283 
3284   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
3285   //            Walk each memory slice moving the first node encountered of each
3286   //            instance type to the the input corresponding to its alias index.
3287   uint length = _mergemem_worklist.length();
3288   for( uint next = 0; next < length; ++next ) {
3289     MergeMemNode* nmm = _mergemem_worklist.at(next);
3290     assert(!visited.test_set(nmm->_idx), "should not be visited before");
3291     // Note: we don't want to use MergeMemStream here because we only want to
3292     // scan inputs which exist at the start, not ones we add during processing.
3293     // Note 2: MergeMem may already contains instance memory slices added
3294     // during find_inst_mem() call when memory nodes were processed above.
3295     igvn->hash_delete(nmm);
3296     uint nslices = MIN2(nmm->req(), new_index_start);
3297     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
3298       Node* mem = nmm->in(i);
3299       Node* cur = NULL;
3300       if (mem == NULL || mem->is_top())
3301         continue;
3302       // First, update mergemem by moving memory nodes to corresponding slices
3303       // if their type became more precise since this mergemem was created.
3304       while (mem->is_Mem()) {
3305         const Type *at = igvn->type(mem->in(MemNode::Address));
3306         if (at != Type::TOP) {
3307           assert (at->isa_ptr() != NULL, "pointer type required.");
3308           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
3309           if (idx == i) {
3310             if (cur == NULL)
3311               cur = mem;
3312           } else {
3313             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
3314               nmm->set_memory_at(idx, mem);
3315             }
3316           }
3317         }
3318         mem = mem->in(MemNode::Memory);
3319       }
3320       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
3321       // Find any instance of the current type if we haven't encountered
3322       // already a memory slice of the instance along the memory chain.
3323       for (uint ni = new_index_start; ni < new_index_end; ni++) {
3324         if((uint)_compile->get_general_index(ni) == i) {
3325           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
3326           if (nmm->is_empty_memory(m)) {
3327             Node* result = find_inst_mem(mem, ni, orig_phis);
3328             if (_compile->failing()) {
3329               return;
3330             }
3331             nmm->set_memory_at(ni, result);
3332           }
3333         }
3334       }
3335     }
3336     // Find the rest of instances values
3337     for (uint ni = new_index_start; ni < new_index_end; ni++) {
3338       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
3339       Node* result = step_through_mergemem(nmm, ni, tinst);
3340       if (result == nmm->base_memory()) {
3341         // Didn't find instance memory, search through general slice recursively.
3342         result = nmm->memory_at(_compile->get_general_index(ni));
3343         result = find_inst_mem(result, ni, orig_phis);
3344         if (_compile->failing()) {
3345           return;
3346         }
3347         nmm->set_memory_at(ni, result);
3348       }
3349     }
3350     igvn->hash_insert(nmm);
3351     record_for_optimizer(nmm);
3352   }
3353 
3354   //  Phase 4:  Update the inputs of non-instance memory Phis and
3355   //            the Memory input of memnodes
3356   // First update the inputs of any non-instance Phi's from
3357   // which we split out an instance Phi.  Note we don't have
3358   // to recursively process Phi's encounted on the input memory
3359   // chains as is done in split_memory_phi() since they  will
3360   // also be processed here.
3361   for (int j = 0; j < orig_phis.length(); j++) {
3362     PhiNode *phi = orig_phis.at(j);
3363     int alias_idx = _compile->get_alias_index(phi->adr_type());
3364     igvn->hash_delete(phi);
3365     for (uint i = 1; i < phi->req(); i++) {
3366       Node *mem = phi->in(i);
3367       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
3368       if (_compile->failing()) {
3369         return;
3370       }
3371       if (mem != new_mem) {
3372         phi->set_req(i, new_mem);
3373       }
3374     }
3375     igvn->hash_insert(phi);
3376     record_for_optimizer(phi);
3377   }
3378 
3379   // Update the memory inputs of MemNodes with the value we computed
3380   // in Phase 2 and move stores memory users to corresponding memory slices.
3381   // Disable memory split verification code until the fix for 6984348.
3382   // Currently it produces false negative results since it does not cover all cases.
3383 #if 0 // ifdef ASSERT
3384   visited.Reset();
3385   Node_Stack old_mems(arena, _compile->unique() >> 2);
3386 #endif
3387   for (uint i = 0; i < ideal_nodes.size(); i++) {
3388     Node*    n = ideal_nodes.at(i);
3389     Node* nmem = get_map(n->_idx);
3390     assert(nmem != NULL, "sanity");
3391     if (n->is_Mem()) {
3392 #if 0 // ifdef ASSERT
3393       Node* old_mem = n->in(MemNode::Memory);
3394       if (!visited.test_set(old_mem->_idx)) {
3395         old_mems.push(old_mem, old_mem->outcnt());
3396       }
3397 #endif
3398       assert(n->in(MemNode::Memory) != nmem, "sanity");
3399       if (!n->is_Load()) {
3400         // Move memory users of a store first.
3401         move_inst_mem(n, orig_phis);
3402       }
3403       // Now update memory input
3404       igvn->hash_delete(n);
3405       n->set_req(MemNode::Memory, nmem);
3406       igvn->hash_insert(n);
3407       record_for_optimizer(n);
3408     } else {
3409       assert(n->is_Allocate() || n->is_CheckCastPP() ||
3410              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
3411     }
3412   }
3413 #if 0 // ifdef ASSERT
3414   // Verify that memory was split correctly
3415   while (old_mems.is_nonempty()) {
3416     Node* old_mem = old_mems.node();
3417     uint  old_cnt = old_mems.index();
3418     old_mems.pop();
3419     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
3420   }
3421 #endif
3422 }
3423 
3424 #ifndef PRODUCT
3425 static const char *node_type_names[] = {
3426   "UnknownType",
3427   "JavaObject",
3428   "LocalVar",
3429   "Field",
3430   "Arraycopy"
3431 };
3432 
3433 static const char *esc_names[] = {
3434   "UnknownEscape",
3435   "NoEscape",
3436   "ArgEscape",
3437   "GlobalEscape"
3438 };
3439 
3440 void PointsToNode::dump(bool print_state) const {
3441   NodeType nt = node_type();
3442   tty->print("%s ", node_type_names[(int) nt]);
3443   if (print_state) {
3444     EscapeState es = escape_state();
3445     EscapeState fields_es = fields_escape_state();
3446     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
3447     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
3448       tty->print("NSR ");
3449   }
3450   if (is_Field()) {
3451     FieldNode* f = (FieldNode*)this;
3452     if (f->is_oop())
3453       tty->print("oop ");
3454     if (f->offset() > 0)
3455       tty->print("+%d ", f->offset());
3456     tty->print("(");
3457     for (BaseIterator i(f); i.has_next(); i.next()) {
3458       PointsToNode* b = i.get();
3459       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
3460     }
3461     tty->print(" )");
3462   }
3463   tty->print("[");
3464   for (EdgeIterator i(this); i.has_next(); i.next()) {
3465     PointsToNode* e = i.get();
3466     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
3467   }
3468   tty->print(" [");
3469   for (UseIterator i(this); i.has_next(); i.next()) {
3470     PointsToNode* u = i.get();
3471     bool is_base = false;
3472     if (PointsToNode::is_base_use(u)) {
3473       is_base = true;
3474       u = PointsToNode::get_use_node(u)->as_Field();
3475     }
3476     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
3477   }
3478   tty->print(" ]]  ");
3479   if (_node == NULL)
3480     tty->print_cr("<null>");
3481   else
3482     _node->dump();
3483 }
3484 
3485 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
3486   bool first = true;
3487   int ptnodes_length = ptnodes_worklist.length();
3488   for (int i = 0; i < ptnodes_length; i++) {
3489     PointsToNode *ptn = ptnodes_worklist.at(i);
3490     if (ptn == NULL || !ptn->is_JavaObject())
3491       continue;
3492     PointsToNode::EscapeState es = ptn->escape_state();
3493     if ((es != PointsToNode::NoEscape) && !Verbose) {
3494       continue;
3495     }
3496     Node* n = ptn->ideal_node();
3497     if (n->is_Allocate() || (n->is_CallStaticJava() &&
3498                              n->as_CallStaticJava()->is_boxing_method())) {
3499       if (first) {
3500         tty->cr();
3501         tty->print("======== Connection graph for ");
3502         _compile->method()->print_short_name();
3503         tty->cr();
3504         first = false;
3505       }
3506       ptn->dump();
3507       // Print all locals and fields which reference this allocation
3508       for (UseIterator j(ptn); j.has_next(); j.next()) {
3509         PointsToNode* use = j.get();
3510         if (use->is_LocalVar()) {
3511           use->dump(Verbose);
3512         } else if (Verbose) {
3513           use->dump();
3514         }
3515       }
3516       tty->cr();
3517     }
3518   }
3519 }
3520 #endif