1 /*
   2  * Copyright (c) 1998, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "interpreter/linkResolver.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "memory/universe.inline.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "opto/addnode.hpp"
  35 #include "opto/castnode.hpp"
  36 #include "opto/convertnode.hpp"
  37 #include "opto/divnode.hpp"
  38 #include "opto/idealGraphPrinter.hpp"
  39 #include "opto/matcher.hpp"
  40 #include "opto/memnode.hpp"
  41 #include "opto/mulnode.hpp"
  42 #include "opto/opaquenode.hpp"
  43 #include "opto/parse.hpp"
  44 #include "opto/runtime.hpp"
  45 #include "runtime/deoptimization.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 
  48 #ifndef PRODUCT
  49 extern int explicit_null_checks_inserted,
  50            explicit_null_checks_elided;
  51 #endif
  52 
  53 //---------------------------------array_load----------------------------------
  54 void Parse::array_load(BasicType bt) {
  55   const Type* elemtype = Type::TOP;
  56   bool big_val = bt == T_DOUBLE || bt == T_LONG;
  57   Node* adr = array_addressing(bt, 0, &elemtype);
  58   if (stopped())  return;     // guaranteed null or range check
  59 
  60   pop();                      // index (already used)
  61   Node* array = pop();        // the array itself
  62 
  63   if (elemtype == TypeInt::BOOL) {
  64     bt = T_BOOLEAN;
  65   } else if (bt == T_OBJECT) {
  66     elemtype = _gvn.type(array)->is_aryptr()->elem()->make_oopptr();
  67   }
  68 
  69   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
  70 
  71   Node* ld = access_load_at(array, adr, adr_type, elemtype, bt, C2_MO_RELAXED | C2_ACCESS_ON_HEAP | C2_ACCESS_ON_ARRAY);
  72   if (big_val) {
  73     push_pair(ld);
  74   } else {
  75     push(ld);
  76   }
  77 }
  78 
  79 
  80 //--------------------------------array_store----------------------------------
  81 void Parse::array_store(BasicType bt) {
  82   const Type* elemtype = Type::TOP;
  83   bool big_val = bt == T_DOUBLE || bt == T_LONG;
  84   Node* adr = array_addressing(bt, big_val ? 2 : 1, &elemtype);
  85   if (stopped())  return;     // guaranteed null or range check
  86   if (bt == T_OBJECT) {
  87     array_store_check();
  88   }
  89   Node* val;                  // Oop to store
  90   if (big_val) {
  91     val = pop_pair();
  92   } else {
  93     val = pop();
  94   }
  95   pop();                      // index (already used)
  96   Node* array = pop();        // the array itself
  97 
  98   if (elemtype == TypeInt::BOOL) {
  99     bt = T_BOOLEAN;
 100   } else if (bt == T_OBJECT) {
 101     elemtype = _gvn.type(array)->is_aryptr()->elem()->make_oopptr();
 102   }
 103 
 104   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
 105 
 106   access_store_at(control(), array, adr, adr_type, val, elemtype, bt, C2_MO_RELAXED | C2_ACCESS_ON_HEAP | C2_ACCESS_ON_ARRAY);
 107 }
 108 
 109 
 110 //------------------------------array_addressing-------------------------------
 111 // Pull array and index from the stack.  Compute pointer-to-element.
 112 Node* Parse::array_addressing(BasicType type, int vals, const Type* *result2) {
 113   Node *idx   = peek(0+vals);   // Get from stack without popping
 114   Node *ary   = peek(1+vals);   // in case of exception
 115 
 116   // Null check the array base, with correct stack contents
 117   ary = null_check(ary, T_ARRAY);
 118   // Compile-time detect of null-exception?
 119   if (stopped())  return top();
 120 
 121   const TypeAryPtr* arytype  = _gvn.type(ary)->is_aryptr();
 122   const TypeInt*    sizetype = arytype->size();
 123   const Type*       elemtype = arytype->elem();
 124 
 125   if (UseUniqueSubclasses && result2 != NULL) {
 126     const Type* el = elemtype->make_ptr();
 127     if (el && el->isa_instptr()) {
 128       const TypeInstPtr* toop = el->is_instptr();
 129       if (toop->klass()->as_instance_klass()->unique_concrete_subklass()) {
 130         // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
 131         const Type* subklass = Type::get_const_type(toop->klass());
 132         elemtype = subklass->join_speculative(el);
 133       }
 134     }
 135   }
 136 
 137   // Check for big class initializers with all constant offsets
 138   // feeding into a known-size array.
 139   const TypeInt* idxtype = _gvn.type(idx)->is_int();
 140   // See if the highest idx value is less than the lowest array bound,
 141   // and if the idx value cannot be negative:
 142   bool need_range_check = true;
 143   if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) {
 144     need_range_check = false;
 145     if (C->log() != NULL)   C->log()->elem("observe that='!need_range_check'");
 146   }
 147 
 148   ciKlass * arytype_klass = arytype->klass();
 149   if ((arytype_klass != NULL) && (!arytype_klass->is_loaded())) {
 150     // Only fails for some -Xcomp runs
 151     // The class is unloaded.  We have to run this bytecode in the interpreter.
 152     uncommon_trap(Deoptimization::Reason_unloaded,
 153                   Deoptimization::Action_reinterpret,
 154                   arytype->klass(), "!loaded array");
 155     return top();
 156   }
 157 
 158   // Do the range check
 159   if (GenerateRangeChecks && need_range_check) {
 160     Node* tst;
 161     if (sizetype->_hi <= 0) {
 162       // The greatest array bound is negative, so we can conclude that we're
 163       // compiling unreachable code, but the unsigned compare trick used below
 164       // only works with non-negative lengths.  Instead, hack "tst" to be zero so
 165       // the uncommon_trap path will always be taken.
 166       tst = _gvn.intcon(0);
 167     } else {
 168       // Range is constant in array-oop, so we can use the original state of mem
 169       Node* len = load_array_length(ary);
 170 
 171       // Test length vs index (standard trick using unsigned compare)
 172       Node* chk = _gvn.transform( new CmpUNode(idx, len) );
 173       BoolTest::mask btest = BoolTest::lt;
 174       tst = _gvn.transform( new BoolNode(chk, btest) );
 175     }
 176     RangeCheckNode* rc = new RangeCheckNode(control(), tst, PROB_MAX, COUNT_UNKNOWN);
 177     _gvn.set_type(rc, rc->Value(&_gvn));
 178     if (!tst->is_Con()) {
 179       record_for_igvn(rc);
 180     }
 181     set_control(_gvn.transform(new IfTrueNode(rc)));
 182     // Branch to failure if out of bounds
 183     {
 184       PreserveJVMState pjvms(this);
 185       set_control(_gvn.transform(new IfFalseNode(rc)));
 186       if (C->allow_range_check_smearing()) {
 187         // Do not use builtin_throw, since range checks are sometimes
 188         // made more stringent by an optimistic transformation.
 189         // This creates "tentative" range checks at this point,
 190         // which are not guaranteed to throw exceptions.
 191         // See IfNode::Ideal, is_range_check, adjust_check.
 192         uncommon_trap(Deoptimization::Reason_range_check,
 193                       Deoptimization::Action_make_not_entrant,
 194                       NULL, "range_check");
 195       } else {
 196         // If we have already recompiled with the range-check-widening
 197         // heroic optimization turned off, then we must really be throwing
 198         // range check exceptions.
 199         builtin_throw(Deoptimization::Reason_range_check, idx);
 200       }
 201     }
 202   }
 203   // Check for always knowing you are throwing a range-check exception
 204   if (stopped())  return top();
 205 
 206   // Make array address computation control dependent to prevent it
 207   // from floating above the range check during loop optimizations.
 208   Node* ptr = array_element_address(ary, idx, type, sizetype, control());
 209 
 210   if (result2 != NULL)  *result2 = elemtype;
 211 
 212   assert(ptr != top(), "top should go hand-in-hand with stopped");
 213 
 214   return ptr;
 215 }
 216 
 217 
 218 // returns IfNode
 219 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask) {
 220   Node   *cmp = _gvn.transform( new CmpINode( a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
 221   Node   *tst = _gvn.transform( new BoolNode( cmp, mask));
 222   IfNode *iff = create_and_map_if( control(), tst, ((mask == BoolTest::eq) ? PROB_STATIC_INFREQUENT : PROB_FAIR), COUNT_UNKNOWN );
 223   return iff;
 224 }
 225 
 226 // return Region node
 227 Node* Parse::jump_if_join(Node* iffalse, Node* iftrue) {
 228   Node *region  = new RegionNode(3); // 2 results
 229   record_for_igvn(region);
 230   region->init_req(1, iffalse);
 231   region->init_req(2, iftrue );
 232   _gvn.set_type(region, Type::CONTROL);
 233   region = _gvn.transform(region);
 234   set_control (region);
 235   return region;
 236 }
 237 
 238 
 239 //------------------------------helper for tableswitch-------------------------
 240 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
 241   // True branch, use existing map info
 242   { PreserveJVMState pjvms(this);
 243     Node *iftrue  = _gvn.transform( new IfTrueNode (iff) );
 244     set_control( iftrue );
 245     profile_switch_case(prof_table_index);
 246     merge_new_path(dest_bci_if_true);
 247   }
 248 
 249   // False branch
 250   Node *iffalse = _gvn.transform( new IfFalseNode(iff) );
 251   set_control( iffalse );
 252 }
 253 
 254 void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
 255   // True branch, use existing map info
 256   { PreserveJVMState pjvms(this);
 257     Node *iffalse  = _gvn.transform( new IfFalseNode (iff) );
 258     set_control( iffalse );
 259     profile_switch_case(prof_table_index);
 260     merge_new_path(dest_bci_if_true);
 261   }
 262 
 263   // False branch
 264   Node *iftrue = _gvn.transform( new IfTrueNode(iff) );
 265   set_control( iftrue );
 266 }
 267 
 268 void Parse::jump_if_always_fork(int dest_bci, int prof_table_index) {
 269   // False branch, use existing map and control()
 270   profile_switch_case(prof_table_index);
 271   merge_new_path(dest_bci);
 272 }
 273 
 274 
 275 extern "C" {
 276   static int jint_cmp(const void *i, const void *j) {
 277     int a = *(jint *)i;
 278     int b = *(jint *)j;
 279     return a > b ? 1 : a < b ? -1 : 0;
 280   }
 281 }
 282 
 283 
 284 // Default value for methodData switch indexing. Must be a negative value to avoid
 285 // conflict with any legal switch index.
 286 #define NullTableIndex -1
 287 
 288 class SwitchRange : public StackObj {
 289   // a range of integers coupled with a bci destination
 290   jint _lo;                     // inclusive lower limit
 291   jint _hi;                     // inclusive upper limit
 292   int _dest;
 293   int _table_index;             // index into method data table
 294 
 295 public:
 296   jint lo() const              { return _lo;   }
 297   jint hi() const              { return _hi;   }
 298   int  dest() const            { return _dest; }
 299   int  table_index() const     { return _table_index; }
 300   bool is_singleton() const    { return _lo == _hi; }
 301 
 302   void setRange(jint lo, jint hi, int dest, int table_index) {
 303     assert(lo <= hi, "must be a non-empty range");
 304     _lo = lo, _hi = hi; _dest = dest; _table_index = table_index;
 305   }
 306   bool adjoinRange(jint lo, jint hi, int dest, int table_index) {
 307     assert(lo <= hi, "must be a non-empty range");
 308     if (lo == _hi+1 && dest == _dest && table_index == _table_index) {
 309       _hi = hi;
 310       return true;
 311     }
 312     return false;
 313   }
 314 
 315   void set (jint value, int dest, int table_index) {
 316     setRange(value, value, dest, table_index);
 317   }
 318   bool adjoin(jint value, int dest, int table_index) {
 319     return adjoinRange(value, value, dest, table_index);
 320   }
 321 
 322   void print() {
 323     if (is_singleton())
 324       tty->print(" {%d}=>%d", lo(), dest());
 325     else if (lo() == min_jint)
 326       tty->print(" {..%d}=>%d", hi(), dest());
 327     else if (hi() == max_jint)
 328       tty->print(" {%d..}=>%d", lo(), dest());
 329     else
 330       tty->print(" {%d..%d}=>%d", lo(), hi(), dest());
 331   }
 332 };
 333 
 334 
 335 //-------------------------------do_tableswitch--------------------------------
 336 void Parse::do_tableswitch() {
 337   Node* lookup = pop();
 338 
 339   // Get information about tableswitch
 340   int default_dest = iter().get_dest_table(0);
 341   int lo_index     = iter().get_int_table(1);
 342   int hi_index     = iter().get_int_table(2);
 343   int len          = hi_index - lo_index + 1;
 344 
 345   if (len < 1) {
 346     // If this is a backward branch, add safepoint
 347     maybe_add_safepoint(default_dest);
 348     merge(default_dest);
 349     return;
 350   }
 351 
 352   // generate decision tree, using trichotomy when possible
 353   int rnum = len+2;
 354   bool makes_backward_branch = false;
 355   SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
 356   int rp = -1;
 357   if (lo_index != min_jint) {
 358     ranges[++rp].setRange(min_jint, lo_index-1, default_dest, NullTableIndex);
 359   }
 360   for (int j = 0; j < len; j++) {
 361     jint match_int = lo_index+j;
 362     int  dest      = iter().get_dest_table(j+3);
 363     makes_backward_branch |= (dest <= bci());
 364     int  table_index = method_data_update() ? j : NullTableIndex;
 365     if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index)) {
 366       ranges[++rp].set(match_int, dest, table_index);
 367     }
 368   }
 369   jint highest = lo_index+(len-1);
 370   assert(ranges[rp].hi() == highest, "");
 371   if (highest != max_jint
 372       && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex)) {
 373     ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
 374   }
 375   assert(rp < len+2, "not too many ranges");
 376 
 377   // Safepoint in case if backward branch observed
 378   if( makes_backward_branch && UseLoopSafepoints )
 379     add_safepoint();
 380 
 381   jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
 382 }
 383 
 384 
 385 //------------------------------do_lookupswitch--------------------------------
 386 void Parse::do_lookupswitch() {
 387   Node *lookup = pop();         // lookup value
 388   // Get information about lookupswitch
 389   int default_dest = iter().get_dest_table(0);
 390   int len          = iter().get_int_table(1);
 391 
 392   if (len < 1) {    // If this is a backward branch, add safepoint
 393     maybe_add_safepoint(default_dest);
 394     merge(default_dest);
 395     return;
 396   }
 397 
 398   // generate decision tree, using trichotomy when possible
 399   jint* table = NEW_RESOURCE_ARRAY(jint, len*2);
 400   {
 401     for( int j = 0; j < len; j++ ) {
 402       table[j+j+0] = iter().get_int_table(2+j+j);
 403       table[j+j+1] = iter().get_dest_table(2+j+j+1);
 404     }
 405     qsort( table, len, 2*sizeof(table[0]), jint_cmp );
 406   }
 407 
 408   int rnum = len*2+1;
 409   bool makes_backward_branch = false;
 410   SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
 411   int rp = -1;
 412   for( int j = 0; j < len; j++ ) {
 413     jint match_int   = table[j+j+0];
 414     int  dest        = table[j+j+1];
 415     int  next_lo     = rp < 0 ? min_jint : ranges[rp].hi()+1;
 416     int  table_index = method_data_update() ? j : NullTableIndex;
 417     makes_backward_branch |= (dest <= bci());
 418     if( match_int != next_lo ) {
 419       ranges[++rp].setRange(next_lo, match_int-1, default_dest, NullTableIndex);
 420     }
 421     if( rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index) ) {
 422       ranges[++rp].set(match_int, dest, table_index);
 423     }
 424   }
 425   jint highest = table[2*(len-1)];
 426   assert(ranges[rp].hi() == highest, "");
 427   if( highest != max_jint
 428       && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex) ) {
 429     ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
 430   }
 431   assert(rp < rnum, "not too many ranges");
 432 
 433   // Safepoint in case backward branch observed
 434   if( makes_backward_branch && UseLoopSafepoints )
 435     add_safepoint();
 436 
 437   jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
 438 }
 439 
 440 //----------------------------create_jump_tables-------------------------------
 441 bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) {
 442   // Are jumptables enabled
 443   if (!UseJumpTables)  return false;
 444 
 445   // Are jumptables supported
 446   if (!Matcher::has_match_rule(Op_Jump))  return false;
 447 
 448   // Don't make jump table if profiling
 449   if (method_data_update())  return false;
 450 
 451   // Decide if a guard is needed to lop off big ranges at either (or
 452   // both) end(s) of the input set. We'll call this the default target
 453   // even though we can't be sure that it is the true "default".
 454 
 455   bool needs_guard = false;
 456   int default_dest;
 457   int64_t total_outlier_size = 0;
 458   int64_t hi_size = ((int64_t)hi->hi()) - ((int64_t)hi->lo()) + 1;
 459   int64_t lo_size = ((int64_t)lo->hi()) - ((int64_t)lo->lo()) + 1;
 460 
 461   if (lo->dest() == hi->dest()) {
 462     total_outlier_size = hi_size + lo_size;
 463     default_dest = lo->dest();
 464   } else if (lo_size > hi_size) {
 465     total_outlier_size = lo_size;
 466     default_dest = lo->dest();
 467   } else {
 468     total_outlier_size = hi_size;
 469     default_dest = hi->dest();
 470   }
 471 
 472   // If a guard test will eliminate very sparse end ranges, then
 473   // it is worth the cost of an extra jump.
 474   if (total_outlier_size > (MaxJumpTableSparseness * 4)) {
 475     needs_guard = true;
 476     if (default_dest == lo->dest()) lo++;
 477     if (default_dest == hi->dest()) hi--;
 478   }
 479 
 480   // Find the total number of cases and ranges
 481   int64_t num_cases = ((int64_t)hi->hi()) - ((int64_t)lo->lo()) + 1;
 482   int num_range = hi - lo + 1;
 483 
 484   // Don't create table if: too large, too small, or too sparse.
 485   if (num_cases < MinJumpTableSize || num_cases > MaxJumpTableSize)
 486     return false;
 487   if (num_cases > (MaxJumpTableSparseness * num_range))
 488     return false;
 489 
 490   // Normalize table lookups to zero
 491   int lowval = lo->lo();
 492   key_val = _gvn.transform( new SubINode(key_val, _gvn.intcon(lowval)) );
 493 
 494   // Generate a guard to protect against input keyvals that aren't
 495   // in the switch domain.
 496   if (needs_guard) {
 497     Node*   size = _gvn.intcon(num_cases);
 498     Node*   cmp = _gvn.transform( new CmpUNode(key_val, size) );
 499     Node*   tst = _gvn.transform( new BoolNode(cmp, BoolTest::ge) );
 500     IfNode* iff = create_and_map_if( control(), tst, PROB_FAIR, COUNT_UNKNOWN);
 501     jump_if_true_fork(iff, default_dest, NullTableIndex);
 502   }
 503 
 504   // Create an ideal node JumpTable that has projections
 505   // of all possible ranges for a switch statement
 506   // The key_val input must be converted to a pointer offset and scaled.
 507   // Compare Parse::array_addressing above.
 508 
 509   // Clean the 32-bit int into a real 64-bit offset.
 510   // Otherwise, the jint value 0 might turn into an offset of 0x0800000000.
 511   const TypeInt* ikeytype = TypeInt::make(0, num_cases, Type::WidenMin);
 512   // Make I2L conversion control dependent to prevent it from
 513   // floating above the range check during loop optimizations.
 514   key_val = C->conv_I2X_index(&_gvn, key_val, ikeytype, control());
 515 
 516   // Shift the value by wordsize so we have an index into the table, rather
 517   // than a switch value
 518   Node *shiftWord = _gvn.MakeConX(wordSize);
 519   key_val = _gvn.transform( new MulXNode( key_val, shiftWord));
 520 
 521   // Create the JumpNode
 522   Node* jtn = _gvn.transform( new JumpNode(control(), key_val, num_cases) );
 523 
 524   // These are the switch destinations hanging off the jumpnode
 525   int i = 0;
 526   for (SwitchRange* r = lo; r <= hi; r++) {
 527     for (int64_t j = r->lo(); j <= r->hi(); j++, i++) {
 528       Node* input = _gvn.transform(new JumpProjNode(jtn, i, r->dest(), (int)(j - lowval)));
 529       {
 530         PreserveJVMState pjvms(this);
 531         set_control(input);
 532         jump_if_always_fork(r->dest(), r->table_index());
 533       }
 534     }
 535   }
 536   assert(i == num_cases, "miscount of cases");
 537   stop_and_kill_map();  // no more uses for this JVMS
 538   return true;
 539 }
 540 
 541 //----------------------------jump_switch_ranges-------------------------------
 542 void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) {
 543   Block* switch_block = block();
 544 
 545   if (switch_depth == 0) {
 546     // Do special processing for the top-level call.
 547     assert(lo->lo() == min_jint, "initial range must exhaust Type::INT");
 548     assert(hi->hi() == max_jint, "initial range must exhaust Type::INT");
 549 
 550     // Decrement pred-numbers for the unique set of nodes.
 551 #ifdef ASSERT
 552     // Ensure that the block's successors are a (duplicate-free) set.
 553     int successors_counted = 0;  // block occurrences in [hi..lo]
 554     int unique_successors = switch_block->num_successors();
 555     for (int i = 0; i < unique_successors; i++) {
 556       Block* target = switch_block->successor_at(i);
 557 
 558       // Check that the set of successors is the same in both places.
 559       int successors_found = 0;
 560       for (SwitchRange* p = lo; p <= hi; p++) {
 561         if (p->dest() == target->start())  successors_found++;
 562       }
 563       assert(successors_found > 0, "successor must be known");
 564       successors_counted += successors_found;
 565     }
 566     assert(successors_counted == (hi-lo)+1, "no unexpected successors");
 567 #endif
 568 
 569     // Maybe prune the inputs, based on the type of key_val.
 570     jint min_val = min_jint;
 571     jint max_val = max_jint;
 572     const TypeInt* ti = key_val->bottom_type()->isa_int();
 573     if (ti != NULL) {
 574       min_val = ti->_lo;
 575       max_val = ti->_hi;
 576       assert(min_val <= max_val, "invalid int type");
 577     }
 578     while (lo->hi() < min_val)  lo++;
 579     if (lo->lo() < min_val)  lo->setRange(min_val, lo->hi(), lo->dest(), lo->table_index());
 580     while (hi->lo() > max_val)  hi--;
 581     if (hi->hi() > max_val)  hi->setRange(hi->lo(), max_val, hi->dest(), hi->table_index());
 582   }
 583 
 584 #ifndef PRODUCT
 585   if (switch_depth == 0) {
 586     _max_switch_depth = 0;
 587     _est_switch_depth = log2_intptr((hi-lo+1)-1)+1;
 588   }
 589 #endif
 590 
 591   assert(lo <= hi, "must be a non-empty set of ranges");
 592   if (lo == hi) {
 593     jump_if_always_fork(lo->dest(), lo->table_index());
 594   } else {
 595     assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges");
 596     assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges");
 597 
 598     if (create_jump_tables(key_val, lo, hi)) return;
 599 
 600     int nr = hi - lo + 1;
 601 
 602     SwitchRange* mid = lo + nr/2;
 603     // if there is an easy choice, pivot at a singleton:
 604     if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton())  mid--;
 605 
 606     assert(lo < mid && mid <= hi, "good pivot choice");
 607     assert(nr != 2 || mid == hi,   "should pick higher of 2");
 608     assert(nr != 3 || mid == hi-1, "should pick middle of 3");
 609 
 610     Node *test_val = _gvn.intcon(mid->lo());
 611 
 612     if (mid->is_singleton()) {
 613       IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne);
 614       jump_if_false_fork(iff_ne, mid->dest(), mid->table_index());
 615 
 616       // Special Case:  If there are exactly three ranges, and the high
 617       // and low range each go to the same place, omit the "gt" test,
 618       // since it will not discriminate anything.
 619       bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest());
 620       if (eq_test_only) {
 621         assert(mid == hi-1, "");
 622       }
 623 
 624       // if there is a higher range, test for it and process it:
 625       if (mid < hi && !eq_test_only) {
 626         // two comparisons of same values--should enable 1 test for 2 branches
 627         // Use BoolTest::le instead of BoolTest::gt
 628         IfNode *iff_le  = jump_if_fork_int(key_val, test_val, BoolTest::le);
 629         Node   *iftrue  = _gvn.transform( new IfTrueNode(iff_le) );
 630         Node   *iffalse = _gvn.transform( new IfFalseNode(iff_le) );
 631         { PreserveJVMState pjvms(this);
 632           set_control(iffalse);
 633           jump_switch_ranges(key_val, mid+1, hi, switch_depth+1);
 634         }
 635         set_control(iftrue);
 636       }
 637 
 638     } else {
 639       // mid is a range, not a singleton, so treat mid..hi as a unit
 640       IfNode *iff_ge = jump_if_fork_int(key_val, test_val, BoolTest::ge);
 641 
 642       // if there is a higher range, test for it and process it:
 643       if (mid == hi) {
 644         jump_if_true_fork(iff_ge, mid->dest(), mid->table_index());
 645       } else {
 646         Node *iftrue  = _gvn.transform( new IfTrueNode(iff_ge) );
 647         Node *iffalse = _gvn.transform( new IfFalseNode(iff_ge) );
 648         { PreserveJVMState pjvms(this);
 649           set_control(iftrue);
 650           jump_switch_ranges(key_val, mid, hi, switch_depth+1);
 651         }
 652         set_control(iffalse);
 653       }
 654     }
 655 
 656     // in any case, process the lower range
 657     jump_switch_ranges(key_val, lo, mid-1, switch_depth+1);
 658   }
 659 
 660   // Decrease pred_count for each successor after all is done.
 661   if (switch_depth == 0) {
 662     int unique_successors = switch_block->num_successors();
 663     for (int i = 0; i < unique_successors; i++) {
 664       Block* target = switch_block->successor_at(i);
 665       // Throw away the pre-allocated path for each unique successor.
 666       target->next_path_num();
 667     }
 668   }
 669 
 670 #ifndef PRODUCT
 671   _max_switch_depth = MAX2(switch_depth, _max_switch_depth);
 672   if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) {
 673     SwitchRange* r;
 674     int nsing = 0;
 675     for( r = lo; r <= hi; r++ ) {
 676       if( r->is_singleton() )  nsing++;
 677     }
 678     tty->print(">>> ");
 679     _method->print_short_name();
 680     tty->print_cr(" switch decision tree");
 681     tty->print_cr("    %d ranges (%d singletons), max_depth=%d, est_depth=%d",
 682                   (int) (hi-lo+1), nsing, _max_switch_depth, _est_switch_depth);
 683     if (_max_switch_depth > _est_switch_depth) {
 684       tty->print_cr("******** BAD SWITCH DEPTH ********");
 685     }
 686     tty->print("   ");
 687     for( r = lo; r <= hi; r++ ) {
 688       r->print();
 689     }
 690     tty->cr();
 691   }
 692 #endif
 693 }
 694 
 695 void Parse::modf() {
 696   Node *f2 = pop();
 697   Node *f1 = pop();
 698   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(),
 699                               CAST_FROM_FN_PTR(address, SharedRuntime::frem),
 700                               "frem", NULL, //no memory effects
 701                               f1, f2);
 702   Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0));
 703 
 704   push(res);
 705 }
 706 
 707 void Parse::modd() {
 708   Node *d2 = pop_pair();
 709   Node *d1 = pop_pair();
 710   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(),
 711                               CAST_FROM_FN_PTR(address, SharedRuntime::drem),
 712                               "drem", NULL, //no memory effects
 713                               d1, top(), d2, top());
 714   Node* res_d   = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0));
 715 
 716 #ifdef ASSERT
 717   Node* res_top = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 1));
 718   assert(res_top == top(), "second value must be top");
 719 #endif
 720 
 721   push_pair(res_d);
 722 }
 723 
 724 void Parse::l2f() {
 725   Node* f2 = pop();
 726   Node* f1 = pop();
 727   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(),
 728                               CAST_FROM_FN_PTR(address, SharedRuntime::l2f),
 729                               "l2f", NULL, //no memory effects
 730                               f1, f2);
 731   Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0));
 732 
 733   push(res);
 734 }
 735 
 736 void Parse::do_irem() {
 737   // Must keep both values on the expression-stack during null-check
 738   zero_check_int(peek());
 739   // Compile-time detect of null-exception?
 740   if (stopped())  return;
 741 
 742   Node* b = pop();
 743   Node* a = pop();
 744 
 745   const Type *t = _gvn.type(b);
 746   if (t != Type::TOP) {
 747     const TypeInt *ti = t->is_int();
 748     if (ti->is_con()) {
 749       int divisor = ti->get_con();
 750       // check for positive power of 2
 751       if (divisor > 0 &&
 752           (divisor & ~(divisor-1)) == divisor) {
 753         // yes !
 754         Node *mask = _gvn.intcon((divisor - 1));
 755         // Sigh, must handle negative dividends
 756         Node *zero = _gvn.intcon(0);
 757         IfNode *ifff = jump_if_fork_int(a, zero, BoolTest::lt);
 758         Node *iff = _gvn.transform( new IfFalseNode(ifff) );
 759         Node *ift = _gvn.transform( new IfTrueNode (ifff) );
 760         Node *reg = jump_if_join(ift, iff);
 761         Node *phi = PhiNode::make(reg, NULL, TypeInt::INT);
 762         // Negative path; negate/and/negate
 763         Node *neg = _gvn.transform( new SubINode(zero, a) );
 764         Node *andn= _gvn.transform( new AndINode(neg, mask) );
 765         Node *negn= _gvn.transform( new SubINode(zero, andn) );
 766         phi->init_req(1, negn);
 767         // Fast positive case
 768         Node *andx = _gvn.transform( new AndINode(a, mask) );
 769         phi->init_req(2, andx);
 770         // Push the merge
 771         push( _gvn.transform(phi) );
 772         return;
 773       }
 774     }
 775   }
 776   // Default case
 777   push( _gvn.transform( new ModINode(control(),a,b) ) );
 778 }
 779 
 780 // Handle jsr and jsr_w bytecode
 781 void Parse::do_jsr() {
 782   assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode");
 783 
 784   // Store information about current state, tagged with new _jsr_bci
 785   int return_bci = iter().next_bci();
 786   int jsr_bci    = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest();
 787 
 788   // Update method data
 789   profile_taken_branch(jsr_bci);
 790 
 791   // The way we do things now, there is only one successor block
 792   // for the jsr, because the target code is cloned by ciTypeFlow.
 793   Block* target = successor_for_bci(jsr_bci);
 794 
 795   // What got pushed?
 796   const Type* ret_addr = target->peek();
 797   assert(ret_addr->singleton(), "must be a constant (cloned jsr body)");
 798 
 799   // Effect on jsr on stack
 800   push(_gvn.makecon(ret_addr));
 801 
 802   // Flow to the jsr.
 803   merge(jsr_bci);
 804 }
 805 
 806 // Handle ret bytecode
 807 void Parse::do_ret() {
 808   // Find to whom we return.
 809   assert(block()->num_successors() == 1, "a ret can only go one place now");
 810   Block* target = block()->successor_at(0);
 811   assert(!target->is_ready(), "our arrival must be expected");
 812   profile_ret(target->flow()->start());
 813   int pnum = target->next_path_num();
 814   merge_common(target, pnum);
 815 }
 816 
 817 static bool has_injected_profile(BoolTest::mask btest, Node* test, int& taken, int& not_taken) {
 818   if (btest != BoolTest::eq && btest != BoolTest::ne) {
 819     // Only ::eq and ::ne are supported for profile injection.
 820     return false;
 821   }
 822   if (test->is_Cmp() &&
 823       test->in(1)->Opcode() == Op_ProfileBoolean) {
 824     ProfileBooleanNode* profile = (ProfileBooleanNode*)test->in(1);
 825     int false_cnt = profile->false_count();
 826     int  true_cnt = profile->true_count();
 827 
 828     // Counts matching depends on the actual test operation (::eq or ::ne).
 829     // No need to scale the counts because profile injection was designed
 830     // to feed exact counts into VM.
 831     taken     = (btest == BoolTest::eq) ? false_cnt :  true_cnt;
 832     not_taken = (btest == BoolTest::eq) ?  true_cnt : false_cnt;
 833 
 834     profile->consume();
 835     return true;
 836   }
 837   return false;
 838 }
 839 //--------------------------dynamic_branch_prediction--------------------------
 840 // Try to gather dynamic branch prediction behavior.  Return a probability
 841 // of the branch being taken and set the "cnt" field.  Returns a -1.0
 842 // if we need to use static prediction for some reason.
 843 float Parse::dynamic_branch_prediction(float &cnt, BoolTest::mask btest, Node* test) {
 844   ResourceMark rm;
 845 
 846   cnt  = COUNT_UNKNOWN;
 847 
 848   int     taken = 0;
 849   int not_taken = 0;
 850 
 851   bool use_mdo = !has_injected_profile(btest, test, taken, not_taken);
 852 
 853   if (use_mdo) {
 854     // Use MethodData information if it is available
 855     // FIXME: free the ProfileData structure
 856     ciMethodData* methodData = method()->method_data();
 857     if (!methodData->is_mature())  return PROB_UNKNOWN;
 858     ciProfileData* data = methodData->bci_to_data(bci());
 859     if (data == NULL) {
 860       return PROB_UNKNOWN;
 861     }
 862     if (!data->is_JumpData())  return PROB_UNKNOWN;
 863 
 864     // get taken and not taken values
 865     taken = data->as_JumpData()->taken();
 866     not_taken = 0;
 867     if (data->is_BranchData()) {
 868       not_taken = data->as_BranchData()->not_taken();
 869     }
 870 
 871     // scale the counts to be commensurate with invocation counts:
 872     taken = method()->scale_count(taken);
 873     not_taken = method()->scale_count(not_taken);
 874   }
 875 
 876   // Give up if too few (or too many, in which case the sum will overflow) counts to be meaningful.
 877   // We also check that individual counters are positive first, otherwise the sum can become positive.
 878   if (taken < 0 || not_taken < 0 || taken + not_taken < 40) {
 879     if (C->log() != NULL) {
 880       C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken);
 881     }
 882     return PROB_UNKNOWN;
 883   }
 884 
 885   // Compute frequency that we arrive here
 886   float sum = taken + not_taken;
 887   // Adjust, if this block is a cloned private block but the
 888   // Jump counts are shared.  Taken the private counts for
 889   // just this path instead of the shared counts.
 890   if( block()->count() > 0 )
 891     sum = block()->count();
 892   cnt = sum / FreqCountInvocations;
 893 
 894   // Pin probability to sane limits
 895   float prob;
 896   if( !taken )
 897     prob = (0+PROB_MIN) / 2;
 898   else if( !not_taken )
 899     prob = (1+PROB_MAX) / 2;
 900   else {                         // Compute probability of true path
 901     prob = (float)taken / (float)(taken + not_taken);
 902     if (prob > PROB_MAX)  prob = PROB_MAX;
 903     if (prob < PROB_MIN)   prob = PROB_MIN;
 904   }
 905 
 906   assert((cnt > 0.0f) && (prob > 0.0f),
 907          "Bad frequency assignment in if");
 908 
 909   if (C->log() != NULL) {
 910     const char* prob_str = NULL;
 911     if (prob >= PROB_MAX)  prob_str = (prob == PROB_MAX) ? "max" : "always";
 912     if (prob <= PROB_MIN)  prob_str = (prob == PROB_MIN) ? "min" : "never";
 913     char prob_str_buf[30];
 914     if (prob_str == NULL) {
 915       sprintf(prob_str_buf, "%g", prob);
 916       prob_str = prob_str_buf;
 917     }
 918     C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%f' prob='%s'",
 919                    iter().get_dest(), taken, not_taken, cnt, prob_str);
 920   }
 921   return prob;
 922 }
 923 
 924 //-----------------------------branch_prediction-------------------------------
 925 float Parse::branch_prediction(float& cnt,
 926                                BoolTest::mask btest,
 927                                int target_bci,
 928                                Node* test) {
 929   float prob = dynamic_branch_prediction(cnt, btest, test);
 930   // If prob is unknown, switch to static prediction
 931   if (prob != PROB_UNKNOWN)  return prob;
 932 
 933   prob = PROB_FAIR;                   // Set default value
 934   if (btest == BoolTest::eq)          // Exactly equal test?
 935     prob = PROB_STATIC_INFREQUENT;    // Assume its relatively infrequent
 936   else if (btest == BoolTest::ne)
 937     prob = PROB_STATIC_FREQUENT;      // Assume its relatively frequent
 938 
 939   // If this is a conditional test guarding a backwards branch,
 940   // assume its a loop-back edge.  Make it a likely taken branch.
 941   if (target_bci < bci()) {
 942     if (is_osr_parse()) {    // Could be a hot OSR'd loop; force deopt
 943       // Since it's an OSR, we probably have profile data, but since
 944       // branch_prediction returned PROB_UNKNOWN, the counts are too small.
 945       // Let's make a special check here for completely zero counts.
 946       ciMethodData* methodData = method()->method_data();
 947       if (!methodData->is_empty()) {
 948         ciProfileData* data = methodData->bci_to_data(bci());
 949         // Only stop for truly zero counts, which mean an unknown part
 950         // of the OSR-ed method, and we want to deopt to gather more stats.
 951         // If you have ANY counts, then this loop is simply 'cold' relative
 952         // to the OSR loop.
 953         if (data == NULL ||
 954             (data->as_BranchData()->taken() +  data->as_BranchData()->not_taken() == 0)) {
 955           // This is the only way to return PROB_UNKNOWN:
 956           return PROB_UNKNOWN;
 957         }
 958       }
 959     }
 960     prob = PROB_STATIC_FREQUENT;     // Likely to take backwards branch
 961   }
 962 
 963   assert(prob != PROB_UNKNOWN, "must have some guess at this point");
 964   return prob;
 965 }
 966 
 967 // The magic constants are chosen so as to match the output of
 968 // branch_prediction() when the profile reports a zero taken count.
 969 // It is important to distinguish zero counts unambiguously, because
 970 // some branches (e.g., _213_javac.Assembler.eliminate) validly produce
 971 // very small but nonzero probabilities, which if confused with zero
 972 // counts would keep the program recompiling indefinitely.
 973 bool Parse::seems_never_taken(float prob) const {
 974   return prob < PROB_MIN;
 975 }
 976 
 977 // True if the comparison seems to be the kind that will not change its
 978 // statistics from true to false.  See comments in adjust_map_after_if.
 979 // This question is only asked along paths which are already
 980 // classifed as untaken (by seems_never_taken), so really,
 981 // if a path is never taken, its controlling comparison is
 982 // already acting in a stable fashion.  If the comparison
 983 // seems stable, we will put an expensive uncommon trap
 984 // on the untaken path.
 985 bool Parse::seems_stable_comparison() const {
 986   if (C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if)) {
 987     return false;
 988   }
 989   return true;
 990 }
 991 
 992 //-------------------------------repush_if_args--------------------------------
 993 // Push arguments of an "if" bytecode back onto the stack by adjusting _sp.
 994 inline int Parse::repush_if_args() {
 995   if (PrintOpto && WizardMode) {
 996     tty->print("defending against excessive implicit null exceptions on %s @%d in ",
 997                Bytecodes::name(iter().cur_bc()), iter().cur_bci());
 998     method()->print_name(); tty->cr();
 999   }
1000   int bc_depth = - Bytecodes::depth(iter().cur_bc());
1001   assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches");
1002   DEBUG_ONLY(sync_jvms());   // argument(n) requires a synced jvms
1003   assert(argument(0) != NULL, "must exist");
1004   assert(bc_depth == 1 || argument(1) != NULL, "two must exist");
1005   inc_sp(bc_depth);
1006   return bc_depth;
1007 }
1008 
1009 //----------------------------------do_ifnull----------------------------------
1010 void Parse::do_ifnull(BoolTest::mask btest, Node *c) {
1011   int target_bci = iter().get_dest();
1012 
1013   Block* branch_block = successor_for_bci(target_bci);
1014   Block* next_block   = successor_for_bci(iter().next_bci());
1015 
1016   float cnt;
1017   float prob = branch_prediction(cnt, btest, target_bci, c);
1018   if (prob == PROB_UNKNOWN) {
1019     // (An earlier version of do_ifnull omitted this trap for OSR methods.)
1020     if (PrintOpto && Verbose) {
1021       tty->print_cr("Never-taken edge stops compilation at bci %d", bci());
1022     }
1023     repush_if_args(); // to gather stats on loop
1024     // We need to mark this branch as taken so that if we recompile we will
1025     // see that it is possible. In the tiered system the interpreter doesn't
1026     // do profiling and by the time we get to the lower tier from the interpreter
1027     // the path may be cold again. Make sure it doesn't look untaken
1028     profile_taken_branch(target_bci, !ProfileInterpreter);
1029     uncommon_trap(Deoptimization::Reason_unreached,
1030                   Deoptimization::Action_reinterpret,
1031                   NULL, "cold");
1032     if (C->eliminate_boxing()) {
1033       // Mark the successor blocks as parsed
1034       branch_block->next_path_num();
1035       next_block->next_path_num();
1036     }
1037     return;
1038   }
1039 
1040   NOT_PRODUCT(explicit_null_checks_inserted++);
1041 
1042   // Generate real control flow
1043   Node   *tst = _gvn.transform( new BoolNode( c, btest ) );
1044 
1045   // Sanity check the probability value
1046   assert(prob > 0.0f,"Bad probability in Parser");
1047  // Need xform to put node in hash table
1048   IfNode *iff = create_and_xform_if( control(), tst, prob, cnt );
1049   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1050   // True branch
1051   { PreserveJVMState pjvms(this);
1052     Node* iftrue  = _gvn.transform( new IfTrueNode (iff) );
1053     set_control(iftrue);
1054 
1055     if (stopped()) {            // Path is dead?
1056       NOT_PRODUCT(explicit_null_checks_elided++);
1057       if (C->eliminate_boxing()) {
1058         // Mark the successor block as parsed
1059         branch_block->next_path_num();
1060       }
1061     } else {                    // Path is live.
1062       // Update method data
1063       profile_taken_branch(target_bci);
1064       adjust_map_after_if(btest, c, prob, branch_block, next_block);
1065       if (!stopped()) {
1066         merge(target_bci);
1067       }
1068     }
1069   }
1070 
1071   // False branch
1072   Node* iffalse = _gvn.transform( new IfFalseNode(iff) );
1073   set_control(iffalse);
1074 
1075   if (stopped()) {              // Path is dead?
1076     NOT_PRODUCT(explicit_null_checks_elided++);
1077     if (C->eliminate_boxing()) {
1078       // Mark the successor block as parsed
1079       next_block->next_path_num();
1080     }
1081   } else  {                     // Path is live.
1082     // Update method data
1083     profile_not_taken_branch();
1084     adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob,
1085                         next_block, branch_block);
1086   }
1087 }
1088 
1089 //------------------------------------do_if------------------------------------
1090 void Parse::do_if(BoolTest::mask btest, Node* c) {
1091   int target_bci = iter().get_dest();
1092 
1093   Block* branch_block = successor_for_bci(target_bci);
1094   Block* next_block   = successor_for_bci(iter().next_bci());
1095 
1096   float cnt;
1097   float prob = branch_prediction(cnt, btest, target_bci, c);
1098   float untaken_prob = 1.0 - prob;
1099 
1100   if (prob == PROB_UNKNOWN) {
1101     if (PrintOpto && Verbose) {
1102       tty->print_cr("Never-taken edge stops compilation at bci %d", bci());
1103     }
1104     repush_if_args(); // to gather stats on loop
1105     // We need to mark this branch as taken so that if we recompile we will
1106     // see that it is possible. In the tiered system the interpreter doesn't
1107     // do profiling and by the time we get to the lower tier from the interpreter
1108     // the path may be cold again. Make sure it doesn't look untaken
1109     profile_taken_branch(target_bci, !ProfileInterpreter);
1110     uncommon_trap(Deoptimization::Reason_unreached,
1111                   Deoptimization::Action_reinterpret,
1112                   NULL, "cold");
1113     if (C->eliminate_boxing()) {
1114       // Mark the successor blocks as parsed
1115       branch_block->next_path_num();
1116       next_block->next_path_num();
1117     }
1118     return;
1119   }
1120 
1121   // Sanity check the probability value
1122   assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser");
1123 
1124   bool taken_if_true = true;
1125   // Convert BoolTest to canonical form:
1126   if (!BoolTest(btest).is_canonical()) {
1127     btest         = BoolTest(btest).negate();
1128     taken_if_true = false;
1129     // prob is NOT updated here; it remains the probability of the taken
1130     // path (as opposed to the prob of the path guarded by an 'IfTrueNode').
1131   }
1132   assert(btest != BoolTest::eq, "!= is the only canonical exact test");
1133 
1134   Node* tst0 = new BoolNode(c, btest);
1135   Node* tst = _gvn.transform(tst0);
1136   BoolTest::mask taken_btest   = BoolTest::illegal;
1137   BoolTest::mask untaken_btest = BoolTest::illegal;
1138 
1139   if (tst->is_Bool()) {
1140     // Refresh c from the transformed bool node, since it may be
1141     // simpler than the original c.  Also re-canonicalize btest.
1142     // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p NULL)).
1143     // That can arise from statements like: if (x instanceof C) ...
1144     if (tst != tst0) {
1145       // Canonicalize one more time since transform can change it.
1146       btest = tst->as_Bool()->_test._test;
1147       if (!BoolTest(btest).is_canonical()) {
1148         // Reverse edges one more time...
1149         tst   = _gvn.transform( tst->as_Bool()->negate(&_gvn) );
1150         btest = tst->as_Bool()->_test._test;
1151         assert(BoolTest(btest).is_canonical(), "sanity");
1152         taken_if_true = !taken_if_true;
1153       }
1154       c = tst->in(1);
1155     }
1156     BoolTest::mask neg_btest = BoolTest(btest).negate();
1157     taken_btest   = taken_if_true ?     btest : neg_btest;
1158     untaken_btest = taken_if_true ? neg_btest :     btest;
1159   }
1160 
1161   // Generate real control flow
1162   float true_prob = (taken_if_true ? prob : untaken_prob);
1163   IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
1164   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1165   Node* taken_branch   = new IfTrueNode(iff);
1166   Node* untaken_branch = new IfFalseNode(iff);
1167   if (!taken_if_true) {  // Finish conversion to canonical form
1168     Node* tmp      = taken_branch;
1169     taken_branch   = untaken_branch;
1170     untaken_branch = tmp;
1171   }
1172 
1173   // Branch is taken:
1174   { PreserveJVMState pjvms(this);
1175     taken_branch = _gvn.transform(taken_branch);
1176     set_control(taken_branch);
1177 
1178     if (stopped()) {
1179       if (C->eliminate_boxing()) {
1180         // Mark the successor block as parsed
1181         branch_block->next_path_num();
1182       }
1183     } else {
1184       // Update method data
1185       profile_taken_branch(target_bci);
1186       adjust_map_after_if(taken_btest, c, prob, branch_block, next_block);
1187       if (!stopped()) {
1188         merge(target_bci);
1189       }
1190     }
1191   }
1192 
1193   untaken_branch = _gvn.transform(untaken_branch);
1194   set_control(untaken_branch);
1195 
1196   // Branch not taken.
1197   if (stopped()) {
1198     if (C->eliminate_boxing()) {
1199       // Mark the successor block as parsed
1200       next_block->next_path_num();
1201     }
1202   } else {
1203     // Update method data
1204     profile_not_taken_branch();
1205     adjust_map_after_if(untaken_btest, c, untaken_prob,
1206                         next_block, branch_block);
1207   }
1208 }
1209 
1210 bool Parse::path_is_suitable_for_uncommon_trap(float prob) const {
1211   // Don't want to speculate on uncommon traps when running with -Xcomp
1212   if (!UseInterpreter) {
1213     return false;
1214   }
1215   return (seems_never_taken(prob) && seems_stable_comparison());
1216 }
1217 
1218 //----------------------------adjust_map_after_if------------------------------
1219 // Adjust the JVM state to reflect the result of taking this path.
1220 // Basically, it means inspecting the CmpNode controlling this
1221 // branch, seeing how it constrains a tested value, and then
1222 // deciding if it's worth our while to encode this constraint
1223 // as graph nodes in the current abstract interpretation map.
1224 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob,
1225                                 Block* path, Block* other_path) {
1226   if (stopped() || !c->is_Cmp() || btest == BoolTest::illegal)
1227     return;                             // nothing to do
1228 
1229   bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
1230 
1231   if (path_is_suitable_for_uncommon_trap(prob)) {
1232     repush_if_args();
1233     uncommon_trap(Deoptimization::Reason_unstable_if,
1234                   Deoptimization::Action_reinterpret,
1235                   NULL,
1236                   (is_fallthrough ? "taken always" : "taken never"));
1237     return;
1238   }
1239 
1240   Node* val = c->in(1);
1241   Node* con = c->in(2);
1242   const Type* tcon = _gvn.type(con);
1243   const Type* tval = _gvn.type(val);
1244   bool have_con = tcon->singleton();
1245   if (tval->singleton()) {
1246     if (!have_con) {
1247       // Swap, so constant is in con.
1248       con  = val;
1249       tcon = tval;
1250       val  = c->in(2);
1251       tval = _gvn.type(val);
1252       btest = BoolTest(btest).commute();
1253       have_con = true;
1254     } else {
1255       // Do we have two constants?  Then leave well enough alone.
1256       have_con = false;
1257     }
1258   }
1259   if (!have_con)                        // remaining adjustments need a con
1260     return;
1261 
1262   sharpen_type_after_if(btest, con, tcon, val, tval);
1263 }
1264 
1265 
1266 static Node* extract_obj_from_klass_load(PhaseGVN* gvn, Node* n) {
1267   Node* ldk;
1268   if (n->is_DecodeNKlass()) {
1269     if (n->in(1)->Opcode() != Op_LoadNKlass) {
1270       return NULL;
1271     } else {
1272       ldk = n->in(1);
1273     }
1274   } else if (n->Opcode() != Op_LoadKlass) {
1275     return NULL;
1276   } else {
1277     ldk = n;
1278   }
1279   assert(ldk != NULL && ldk->is_Load(), "should have found a LoadKlass or LoadNKlass node");
1280 
1281   Node* adr = ldk->in(MemNode::Address);
1282   intptr_t off = 0;
1283   Node* obj = AddPNode::Ideal_base_and_offset(adr, gvn, off);
1284   if (obj == NULL || off != oopDesc::klass_offset_in_bytes()) // loading oopDesc::_klass?
1285     return NULL;
1286   const TypePtr* tp = gvn->type(obj)->is_ptr();
1287   if (tp == NULL || !(tp->isa_instptr() || tp->isa_aryptr())) // is obj a Java object ptr?
1288     return NULL;
1289 
1290   return obj;
1291 }
1292 
1293 void Parse::sharpen_type_after_if(BoolTest::mask btest,
1294                                   Node* con, const Type* tcon,
1295                                   Node* val, const Type* tval) {
1296   // Look for opportunities to sharpen the type of a node
1297   // whose klass is compared with a constant klass.
1298   if (btest == BoolTest::eq && tcon->isa_klassptr()) {
1299     Node* obj = extract_obj_from_klass_load(&_gvn, val);
1300     const TypeOopPtr* con_type = tcon->isa_klassptr()->as_instance_type();
1301     if (obj != NULL && (con_type->isa_instptr() || con_type->isa_aryptr())) {
1302        // Found:
1303        //   Bool(CmpP(LoadKlass(obj._klass), ConP(Foo.klass)), [eq])
1304        // or the narrowOop equivalent.
1305        const Type* obj_type = _gvn.type(obj);
1306        const TypeOopPtr* tboth = obj_type->join_speculative(con_type)->isa_oopptr();
1307        if (tboth != NULL && tboth->klass_is_exact() && tboth != obj_type &&
1308            tboth->higher_equal(obj_type)) {
1309           // obj has to be of the exact type Foo if the CmpP succeeds.
1310           int obj_in_map = map()->find_edge(obj);
1311           JVMState* jvms = this->jvms();
1312           if (obj_in_map >= 0 &&
1313               (jvms->is_loc(obj_in_map) || jvms->is_stk(obj_in_map))) {
1314             TypeNode* ccast = new CheckCastPPNode(control(), obj, tboth);
1315             const Type* tcc = ccast->as_Type()->type();
1316             assert(tcc != obj_type && tcc->higher_equal(obj_type), "must improve");
1317             // Delay transform() call to allow recovery of pre-cast value
1318             // at the control merge.
1319             _gvn.set_type_bottom(ccast);
1320             record_for_igvn(ccast);
1321             // Here's the payoff.
1322             replace_in_map(obj, ccast);
1323           }
1324        }
1325     }
1326   }
1327 
1328   int val_in_map = map()->find_edge(val);
1329   if (val_in_map < 0)  return;          // replace_in_map would be useless
1330   {
1331     JVMState* jvms = this->jvms();
1332     if (!(jvms->is_loc(val_in_map) ||
1333           jvms->is_stk(val_in_map)))
1334       return;                           // again, it would be useless
1335   }
1336 
1337   // Check for a comparison to a constant, and "know" that the compared
1338   // value is constrained on this path.
1339   assert(tcon->singleton(), "");
1340   ConstraintCastNode* ccast = NULL;
1341   Node* cast = NULL;
1342 
1343   switch (btest) {
1344   case BoolTest::eq:                    // Constant test?
1345     {
1346       const Type* tboth = tcon->join_speculative(tval);
1347       if (tboth == tval)  break;        // Nothing to gain.
1348       if (tcon->isa_int()) {
1349         ccast = new CastIINode(val, tboth);
1350       } else if (tcon == TypePtr::NULL_PTR) {
1351         // Cast to null, but keep the pointer identity temporarily live.
1352         ccast = new CastPPNode(val, tboth);
1353       } else {
1354         const TypeF* tf = tcon->isa_float_constant();
1355         const TypeD* td = tcon->isa_double_constant();
1356         // Exclude tests vs float/double 0 as these could be
1357         // either +0 or -0.  Just because you are equal to +0
1358         // doesn't mean you ARE +0!
1359         // Note, following code also replaces Long and Oop values.
1360         if ((!tf || tf->_f != 0.0) &&
1361             (!td || td->_d != 0.0))
1362           cast = con;                   // Replace non-constant val by con.
1363       }
1364     }
1365     break;
1366 
1367   case BoolTest::ne:
1368     if (tcon == TypePtr::NULL_PTR) {
1369       cast = cast_not_null(val, false);
1370     }
1371     break;
1372 
1373   default:
1374     // (At this point we could record int range types with CastII.)
1375     break;
1376   }
1377 
1378   if (ccast != NULL) {
1379     const Type* tcc = ccast->as_Type()->type();
1380     assert(tcc != tval && tcc->higher_equal(tval), "must improve");
1381     // Delay transform() call to allow recovery of pre-cast value
1382     // at the control merge.
1383     ccast->set_req(0, control());
1384     _gvn.set_type_bottom(ccast);
1385     record_for_igvn(ccast);
1386     cast = ccast;
1387   }
1388 
1389   if (cast != NULL) {                   // Here's the payoff.
1390     replace_in_map(val, cast);
1391   }
1392 }
1393 
1394 /**
1395  * Use speculative type to optimize CmpP node: if comparison is
1396  * against the low level class, cast the object to the speculative
1397  * type if any. CmpP should then go away.
1398  *
1399  * @param c  expected CmpP node
1400  * @return   result of CmpP on object casted to speculative type
1401  *
1402  */
1403 Node* Parse::optimize_cmp_with_klass(Node* c) {
1404   // If this is transformed by the _gvn to a comparison with the low
1405   // level klass then we may be able to use speculation
1406   if (c->Opcode() == Op_CmpP &&
1407       (c->in(1)->Opcode() == Op_LoadKlass || c->in(1)->Opcode() == Op_DecodeNKlass) &&
1408       c->in(2)->is_Con()) {
1409     Node* load_klass = NULL;
1410     Node* decode = NULL;
1411     if (c->in(1)->Opcode() == Op_DecodeNKlass) {
1412       decode = c->in(1);
1413       load_klass = c->in(1)->in(1);
1414     } else {
1415       load_klass = c->in(1);
1416     }
1417     if (load_klass->in(2)->is_AddP()) {
1418       Node* addp = load_klass->in(2);
1419       Node* obj = addp->in(AddPNode::Address);
1420       const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
1421       if (obj_type->speculative_type_not_null() != NULL) {
1422         ciKlass* k = obj_type->speculative_type();
1423         inc_sp(2);
1424         obj = maybe_cast_profiled_obj(obj, k);
1425         dec_sp(2);
1426         // Make the CmpP use the casted obj
1427         addp = basic_plus_adr(obj, addp->in(AddPNode::Offset));
1428         load_klass = load_klass->clone();
1429         load_klass->set_req(2, addp);
1430         load_klass = _gvn.transform(load_klass);
1431         if (decode != NULL) {
1432           decode = decode->clone();
1433           decode->set_req(1, load_klass);
1434           load_klass = _gvn.transform(decode);
1435         }
1436         c = c->clone();
1437         c->set_req(1, load_klass);
1438         c = _gvn.transform(c);
1439       }
1440     }
1441   }
1442   return c;
1443 }
1444 
1445 //------------------------------do_one_bytecode--------------------------------
1446 // Parse this bytecode, and alter the Parsers JVM->Node mapping
1447 void Parse::do_one_bytecode() {
1448   Node *a, *b, *c, *d;          // Handy temps
1449   BoolTest::mask btest;
1450   int i;
1451 
1452   assert(!has_exceptions(), "bytecode entry state must be clear of throws");
1453 
1454   if (C->check_node_count(NodeLimitFudgeFactor * 5,
1455                           "out of nodes parsing method")) {
1456     return;
1457   }
1458 
1459 #ifdef ASSERT
1460   // for setting breakpoints
1461   if (TraceOptoParse) {
1462     tty->print(" @");
1463     dump_bci(bci());
1464     tty->cr();
1465   }
1466 #endif
1467 
1468   switch (bc()) {
1469   case Bytecodes::_nop:
1470     // do nothing
1471     break;
1472   case Bytecodes::_lconst_0:
1473     push_pair(longcon(0));
1474     break;
1475 
1476   case Bytecodes::_lconst_1:
1477     push_pair(longcon(1));
1478     break;
1479 
1480   case Bytecodes::_fconst_0:
1481     push(zerocon(T_FLOAT));
1482     break;
1483 
1484   case Bytecodes::_fconst_1:
1485     push(makecon(TypeF::ONE));
1486     break;
1487 
1488   case Bytecodes::_fconst_2:
1489     push(makecon(TypeF::make(2.0f)));
1490     break;
1491 
1492   case Bytecodes::_dconst_0:
1493     push_pair(zerocon(T_DOUBLE));
1494     break;
1495 
1496   case Bytecodes::_dconst_1:
1497     push_pair(makecon(TypeD::ONE));
1498     break;
1499 
1500   case Bytecodes::_iconst_m1:push(intcon(-1)); break;
1501   case Bytecodes::_iconst_0: push(intcon( 0)); break;
1502   case Bytecodes::_iconst_1: push(intcon( 1)); break;
1503   case Bytecodes::_iconst_2: push(intcon( 2)); break;
1504   case Bytecodes::_iconst_3: push(intcon( 3)); break;
1505   case Bytecodes::_iconst_4: push(intcon( 4)); break;
1506   case Bytecodes::_iconst_5: push(intcon( 5)); break;
1507   case Bytecodes::_bipush:   push(intcon(iter().get_constant_u1())); break;
1508   case Bytecodes::_sipush:   push(intcon(iter().get_constant_u2())); break;
1509   case Bytecodes::_aconst_null: push(null());  break;
1510   case Bytecodes::_ldc:
1511   case Bytecodes::_ldc_w:
1512   case Bytecodes::_ldc2_w:
1513     // If the constant is unresolved, run this BC once in the interpreter.
1514     {
1515       ciConstant constant = iter().get_constant();
1516       if (constant.basic_type() == T_OBJECT &&
1517           !constant.as_object()->is_loaded()) {
1518         int index = iter().get_constant_pool_index();
1519         constantTag tag = iter().get_constant_pool_tag(index);
1520         uncommon_trap(Deoptimization::make_trap_request
1521                       (Deoptimization::Reason_unloaded,
1522                        Deoptimization::Action_reinterpret,
1523                        index),
1524                       NULL, tag.internal_name());
1525         break;
1526       }
1527       assert(constant.basic_type() != T_OBJECT || constant.as_object()->is_instance(),
1528              "must be java_mirror of klass");
1529       const Type* con_type = Type::make_from_constant(constant);
1530       if (con_type != NULL) {
1531         push_node(con_type->basic_type(), makecon(con_type));
1532       }
1533     }
1534 
1535     break;
1536 
1537   case Bytecodes::_aload_0:
1538     push( local(0) );
1539     break;
1540   case Bytecodes::_aload_1:
1541     push( local(1) );
1542     break;
1543   case Bytecodes::_aload_2:
1544     push( local(2) );
1545     break;
1546   case Bytecodes::_aload_3:
1547     push( local(3) );
1548     break;
1549   case Bytecodes::_aload:
1550     push( local(iter().get_index()) );
1551     break;
1552 
1553   case Bytecodes::_fload_0:
1554   case Bytecodes::_iload_0:
1555     push( local(0) );
1556     break;
1557   case Bytecodes::_fload_1:
1558   case Bytecodes::_iload_1:
1559     push( local(1) );
1560     break;
1561   case Bytecodes::_fload_2:
1562   case Bytecodes::_iload_2:
1563     push( local(2) );
1564     break;
1565   case Bytecodes::_fload_3:
1566   case Bytecodes::_iload_3:
1567     push( local(3) );
1568     break;
1569   case Bytecodes::_fload:
1570   case Bytecodes::_iload:
1571     push( local(iter().get_index()) );
1572     break;
1573   case Bytecodes::_lload_0:
1574     push_pair_local( 0 );
1575     break;
1576   case Bytecodes::_lload_1:
1577     push_pair_local( 1 );
1578     break;
1579   case Bytecodes::_lload_2:
1580     push_pair_local( 2 );
1581     break;
1582   case Bytecodes::_lload_3:
1583     push_pair_local( 3 );
1584     break;
1585   case Bytecodes::_lload:
1586     push_pair_local( iter().get_index() );
1587     break;
1588 
1589   case Bytecodes::_dload_0:
1590     push_pair_local(0);
1591     break;
1592   case Bytecodes::_dload_1:
1593     push_pair_local(1);
1594     break;
1595   case Bytecodes::_dload_2:
1596     push_pair_local(2);
1597     break;
1598   case Bytecodes::_dload_3:
1599     push_pair_local(3);
1600     break;
1601   case Bytecodes::_dload:
1602     push_pair_local(iter().get_index());
1603     break;
1604   case Bytecodes::_fstore_0:
1605   case Bytecodes::_istore_0:
1606   case Bytecodes::_astore_0:
1607     set_local( 0, pop() );
1608     break;
1609   case Bytecodes::_fstore_1:
1610   case Bytecodes::_istore_1:
1611   case Bytecodes::_astore_1:
1612     set_local( 1, pop() );
1613     break;
1614   case Bytecodes::_fstore_2:
1615   case Bytecodes::_istore_2:
1616   case Bytecodes::_astore_2:
1617     set_local( 2, pop() );
1618     break;
1619   case Bytecodes::_fstore_3:
1620   case Bytecodes::_istore_3:
1621   case Bytecodes::_astore_3:
1622     set_local( 3, pop() );
1623     break;
1624   case Bytecodes::_fstore:
1625   case Bytecodes::_istore:
1626   case Bytecodes::_astore:
1627     set_local( iter().get_index(), pop() );
1628     break;
1629   // long stores
1630   case Bytecodes::_lstore_0:
1631     set_pair_local( 0, pop_pair() );
1632     break;
1633   case Bytecodes::_lstore_1:
1634     set_pair_local( 1, pop_pair() );
1635     break;
1636   case Bytecodes::_lstore_2:
1637     set_pair_local( 2, pop_pair() );
1638     break;
1639   case Bytecodes::_lstore_3:
1640     set_pair_local( 3, pop_pair() );
1641     break;
1642   case Bytecodes::_lstore:
1643     set_pair_local( iter().get_index(), pop_pair() );
1644     break;
1645 
1646   // double stores
1647   case Bytecodes::_dstore_0:
1648     set_pair_local( 0, dstore_rounding(pop_pair()) );
1649     break;
1650   case Bytecodes::_dstore_1:
1651     set_pair_local( 1, dstore_rounding(pop_pair()) );
1652     break;
1653   case Bytecodes::_dstore_2:
1654     set_pair_local( 2, dstore_rounding(pop_pair()) );
1655     break;
1656   case Bytecodes::_dstore_3:
1657     set_pair_local( 3, dstore_rounding(pop_pair()) );
1658     break;
1659   case Bytecodes::_dstore:
1660     set_pair_local( iter().get_index(), dstore_rounding(pop_pair()) );
1661     break;
1662 
1663   case Bytecodes::_pop:  dec_sp(1);   break;
1664   case Bytecodes::_pop2: dec_sp(2);   break;
1665   case Bytecodes::_swap:
1666     a = pop();
1667     b = pop();
1668     push(a);
1669     push(b);
1670     break;
1671   case Bytecodes::_dup:
1672     a = pop();
1673     push(a);
1674     push(a);
1675     break;
1676   case Bytecodes::_dup_x1:
1677     a = pop();
1678     b = pop();
1679     push( a );
1680     push( b );
1681     push( a );
1682     break;
1683   case Bytecodes::_dup_x2:
1684     a = pop();
1685     b = pop();
1686     c = pop();
1687     push( a );
1688     push( c );
1689     push( b );
1690     push( a );
1691     break;
1692   case Bytecodes::_dup2:
1693     a = pop();
1694     b = pop();
1695     push( b );
1696     push( a );
1697     push( b );
1698     push( a );
1699     break;
1700 
1701   case Bytecodes::_dup2_x1:
1702     // before: .. c, b, a
1703     // after:  .. b, a, c, b, a
1704     // not tested
1705     a = pop();
1706     b = pop();
1707     c = pop();
1708     push( b );
1709     push( a );
1710     push( c );
1711     push( b );
1712     push( a );
1713     break;
1714   case Bytecodes::_dup2_x2:
1715     // before: .. d, c, b, a
1716     // after:  .. b, a, d, c, b, a
1717     // not tested
1718     a = pop();
1719     b = pop();
1720     c = pop();
1721     d = pop();
1722     push( b );
1723     push( a );
1724     push( d );
1725     push( c );
1726     push( b );
1727     push( a );
1728     break;
1729 
1730   case Bytecodes::_arraylength: {
1731     // Must do null-check with value on expression stack
1732     Node *ary = null_check(peek(), T_ARRAY);
1733     // Compile-time detect of null-exception?
1734     if (stopped())  return;
1735     a = pop();
1736     push(load_array_length(a));
1737     break;
1738   }
1739 
1740   case Bytecodes::_baload:  array_load(T_BYTE);    break;
1741   case Bytecodes::_caload:  array_load(T_CHAR);    break;
1742   case Bytecodes::_iaload:  array_load(T_INT);     break;
1743   case Bytecodes::_saload:  array_load(T_SHORT);   break;
1744   case Bytecodes::_faload:  array_load(T_FLOAT);   break;
1745   case Bytecodes::_aaload:  array_load(T_OBJECT);  break;
1746   case Bytecodes::_laload:  array_load(T_LONG);    break;
1747   case Bytecodes::_daload:  array_load(T_DOUBLE);  break;
1748   case Bytecodes::_bastore: array_store(T_BYTE);   break;
1749   case Bytecodes::_castore: array_store(T_CHAR);   break;
1750   case Bytecodes::_iastore: array_store(T_INT);    break;
1751   case Bytecodes::_sastore: array_store(T_SHORT);  break;
1752   case Bytecodes::_fastore: array_store(T_FLOAT);  break;
1753   case Bytecodes::_aastore: array_store(T_OBJECT); break;
1754   case Bytecodes::_lastore: array_store(T_LONG);   break;
1755   case Bytecodes::_dastore: array_store(T_DOUBLE); break;
1756 
1757   case Bytecodes::_getfield:
1758     do_getfield();
1759     break;
1760 
1761   case Bytecodes::_getstatic:
1762     do_getstatic();
1763     break;
1764 
1765   case Bytecodes::_putfield:
1766     do_putfield();
1767     break;
1768 
1769   case Bytecodes::_putstatic:
1770     do_putstatic();
1771     break;
1772 
1773   case Bytecodes::_irem:
1774     do_irem();
1775     break;
1776   case Bytecodes::_idiv:
1777     // Must keep both values on the expression-stack during null-check
1778     zero_check_int(peek());
1779     // Compile-time detect of null-exception?
1780     if (stopped())  return;
1781     b = pop();
1782     a = pop();
1783     push( _gvn.transform( new DivINode(control(),a,b) ) );
1784     break;
1785   case Bytecodes::_imul:
1786     b = pop(); a = pop();
1787     push( _gvn.transform( new MulINode(a,b) ) );
1788     break;
1789   case Bytecodes::_iadd:
1790     b = pop(); a = pop();
1791     push( _gvn.transform( new AddINode(a,b) ) );
1792     break;
1793   case Bytecodes::_ineg:
1794     a = pop();
1795     push( _gvn.transform( new SubINode(_gvn.intcon(0),a)) );
1796     break;
1797   case Bytecodes::_isub:
1798     b = pop(); a = pop();
1799     push( _gvn.transform( new SubINode(a,b) ) );
1800     break;
1801   case Bytecodes::_iand:
1802     b = pop(); a = pop();
1803     push( _gvn.transform( new AndINode(a,b) ) );
1804     break;
1805   case Bytecodes::_ior:
1806     b = pop(); a = pop();
1807     push( _gvn.transform( new OrINode(a,b) ) );
1808     break;
1809   case Bytecodes::_ixor:
1810     b = pop(); a = pop();
1811     push( _gvn.transform( new XorINode(a,b) ) );
1812     break;
1813   case Bytecodes::_ishl:
1814     b = pop(); a = pop();
1815     push( _gvn.transform( new LShiftINode(a,b) ) );
1816     break;
1817   case Bytecodes::_ishr:
1818     b = pop(); a = pop();
1819     push( _gvn.transform( new RShiftINode(a,b) ) );
1820     break;
1821   case Bytecodes::_iushr:
1822     b = pop(); a = pop();
1823     push( _gvn.transform( new URShiftINode(a,b) ) );
1824     break;
1825 
1826   case Bytecodes::_fneg:
1827     a = pop();
1828     b = _gvn.transform(new NegFNode (a));
1829     push(b);
1830     break;
1831 
1832   case Bytecodes::_fsub:
1833     b = pop();
1834     a = pop();
1835     c = _gvn.transform( new SubFNode(a,b) );
1836     d = precision_rounding(c);
1837     push( d );
1838     break;
1839 
1840   case Bytecodes::_fadd:
1841     b = pop();
1842     a = pop();
1843     c = _gvn.transform( new AddFNode(a,b) );
1844     d = precision_rounding(c);
1845     push( d );
1846     break;
1847 
1848   case Bytecodes::_fmul:
1849     b = pop();
1850     a = pop();
1851     c = _gvn.transform( new MulFNode(a,b) );
1852     d = precision_rounding(c);
1853     push( d );
1854     break;
1855 
1856   case Bytecodes::_fdiv:
1857     b = pop();
1858     a = pop();
1859     c = _gvn.transform( new DivFNode(0,a,b) );
1860     d = precision_rounding(c);
1861     push( d );
1862     break;
1863 
1864   case Bytecodes::_frem:
1865     if (Matcher::has_match_rule(Op_ModF)) {
1866       // Generate a ModF node.
1867       b = pop();
1868       a = pop();
1869       c = _gvn.transform( new ModFNode(0,a,b) );
1870       d = precision_rounding(c);
1871       push( d );
1872     }
1873     else {
1874       // Generate a call.
1875       modf();
1876     }
1877     break;
1878 
1879   case Bytecodes::_fcmpl:
1880     b = pop();
1881     a = pop();
1882     c = _gvn.transform( new CmpF3Node( a, b));
1883     push(c);
1884     break;
1885   case Bytecodes::_fcmpg:
1886     b = pop();
1887     a = pop();
1888 
1889     // Same as fcmpl but need to flip the unordered case.  Swap the inputs,
1890     // which negates the result sign except for unordered.  Flip the unordered
1891     // as well by using CmpF3 which implements unordered-lesser instead of
1892     // unordered-greater semantics.  Finally, commute the result bits.  Result
1893     // is same as using a CmpF3Greater except we did it with CmpF3 alone.
1894     c = _gvn.transform( new CmpF3Node( b, a));
1895     c = _gvn.transform( new SubINode(_gvn.intcon(0),c) );
1896     push(c);
1897     break;
1898 
1899   case Bytecodes::_f2i:
1900     a = pop();
1901     push(_gvn.transform(new ConvF2INode(a)));
1902     break;
1903 
1904   case Bytecodes::_d2i:
1905     a = pop_pair();
1906     b = _gvn.transform(new ConvD2INode(a));
1907     push( b );
1908     break;
1909 
1910   case Bytecodes::_f2d:
1911     a = pop();
1912     b = _gvn.transform( new ConvF2DNode(a));
1913     push_pair( b );
1914     break;
1915 
1916   case Bytecodes::_d2f:
1917     a = pop_pair();
1918     b = _gvn.transform( new ConvD2FNode(a));
1919     // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed)
1920     //b = _gvn.transform(new RoundFloatNode(0, b) );
1921     push( b );
1922     break;
1923 
1924   case Bytecodes::_l2f:
1925     if (Matcher::convL2FSupported()) {
1926       a = pop_pair();
1927       b = _gvn.transform( new ConvL2FNode(a));
1928       // For i486.ad, FILD doesn't restrict precision to 24 or 53 bits.
1929       // Rather than storing the result into an FP register then pushing
1930       // out to memory to round, the machine instruction that implements
1931       // ConvL2D is responsible for rounding.
1932       // c = precision_rounding(b);
1933       c = _gvn.transform(b);
1934       push(c);
1935     } else {
1936       l2f();
1937     }
1938     break;
1939 
1940   case Bytecodes::_l2d:
1941     a = pop_pair();
1942     b = _gvn.transform( new ConvL2DNode(a));
1943     // For i486.ad, rounding is always necessary (see _l2f above).
1944     // c = dprecision_rounding(b);
1945     c = _gvn.transform(b);
1946     push_pair(c);
1947     break;
1948 
1949   case Bytecodes::_f2l:
1950     a = pop();
1951     b = _gvn.transform( new ConvF2LNode(a));
1952     push_pair(b);
1953     break;
1954 
1955   case Bytecodes::_d2l:
1956     a = pop_pair();
1957     b = _gvn.transform( new ConvD2LNode(a));
1958     push_pair(b);
1959     break;
1960 
1961   case Bytecodes::_dsub:
1962     b = pop_pair();
1963     a = pop_pair();
1964     c = _gvn.transform( new SubDNode(a,b) );
1965     d = dprecision_rounding(c);
1966     push_pair( d );
1967     break;
1968 
1969   case Bytecodes::_dadd:
1970     b = pop_pair();
1971     a = pop_pair();
1972     c = _gvn.transform( new AddDNode(a,b) );
1973     d = dprecision_rounding(c);
1974     push_pair( d );
1975     break;
1976 
1977   case Bytecodes::_dmul:
1978     b = pop_pair();
1979     a = pop_pair();
1980     c = _gvn.transform( new MulDNode(a,b) );
1981     d = dprecision_rounding(c);
1982     push_pair( d );
1983     break;
1984 
1985   case Bytecodes::_ddiv:
1986     b = pop_pair();
1987     a = pop_pair();
1988     c = _gvn.transform( new DivDNode(0,a,b) );
1989     d = dprecision_rounding(c);
1990     push_pair( d );
1991     break;
1992 
1993   case Bytecodes::_dneg:
1994     a = pop_pair();
1995     b = _gvn.transform(new NegDNode (a));
1996     push_pair(b);
1997     break;
1998 
1999   case Bytecodes::_drem:
2000     if (Matcher::has_match_rule(Op_ModD)) {
2001       // Generate a ModD node.
2002       b = pop_pair();
2003       a = pop_pair();
2004       // a % b
2005 
2006       c = _gvn.transform( new ModDNode(0,a,b) );
2007       d = dprecision_rounding(c);
2008       push_pair( d );
2009     }
2010     else {
2011       // Generate a call.
2012       modd();
2013     }
2014     break;
2015 
2016   case Bytecodes::_dcmpl:
2017     b = pop_pair();
2018     a = pop_pair();
2019     c = _gvn.transform( new CmpD3Node( a, b));
2020     push(c);
2021     break;
2022 
2023   case Bytecodes::_dcmpg:
2024     b = pop_pair();
2025     a = pop_pair();
2026     // Same as dcmpl but need to flip the unordered case.
2027     // Commute the inputs, which negates the result sign except for unordered.
2028     // Flip the unordered as well by using CmpD3 which implements
2029     // unordered-lesser instead of unordered-greater semantics.
2030     // Finally, negate the result bits.  Result is same as using a
2031     // CmpD3Greater except we did it with CmpD3 alone.
2032     c = _gvn.transform( new CmpD3Node( b, a));
2033     c = _gvn.transform( new SubINode(_gvn.intcon(0),c) );
2034     push(c);
2035     break;
2036 
2037 
2038     // Note for longs -> lo word is on TOS, hi word is on TOS - 1
2039   case Bytecodes::_land:
2040     b = pop_pair();
2041     a = pop_pair();
2042     c = _gvn.transform( new AndLNode(a,b) );
2043     push_pair(c);
2044     break;
2045   case Bytecodes::_lor:
2046     b = pop_pair();
2047     a = pop_pair();
2048     c = _gvn.transform( new OrLNode(a,b) );
2049     push_pair(c);
2050     break;
2051   case Bytecodes::_lxor:
2052     b = pop_pair();
2053     a = pop_pair();
2054     c = _gvn.transform( new XorLNode(a,b) );
2055     push_pair(c);
2056     break;
2057 
2058   case Bytecodes::_lshl:
2059     b = pop();                  // the shift count
2060     a = pop_pair();             // value to be shifted
2061     c = _gvn.transform( new LShiftLNode(a,b) );
2062     push_pair(c);
2063     break;
2064   case Bytecodes::_lshr:
2065     b = pop();                  // the shift count
2066     a = pop_pair();             // value to be shifted
2067     c = _gvn.transform( new RShiftLNode(a,b) );
2068     push_pair(c);
2069     break;
2070   case Bytecodes::_lushr:
2071     b = pop();                  // the shift count
2072     a = pop_pair();             // value to be shifted
2073     c = _gvn.transform( new URShiftLNode(a,b) );
2074     push_pair(c);
2075     break;
2076   case Bytecodes::_lmul:
2077     b = pop_pair();
2078     a = pop_pair();
2079     c = _gvn.transform( new MulLNode(a,b) );
2080     push_pair(c);
2081     break;
2082 
2083   case Bytecodes::_lrem:
2084     // Must keep both values on the expression-stack during null-check
2085     assert(peek(0) == top(), "long word order");
2086     zero_check_long(peek(1));
2087     // Compile-time detect of null-exception?
2088     if (stopped())  return;
2089     b = pop_pair();
2090     a = pop_pair();
2091     c = _gvn.transform( new ModLNode(control(),a,b) );
2092     push_pair(c);
2093     break;
2094 
2095   case Bytecodes::_ldiv:
2096     // Must keep both values on the expression-stack during null-check
2097     assert(peek(0) == top(), "long word order");
2098     zero_check_long(peek(1));
2099     // Compile-time detect of null-exception?
2100     if (stopped())  return;
2101     b = pop_pair();
2102     a = pop_pair();
2103     c = _gvn.transform( new DivLNode(control(),a,b) );
2104     push_pair(c);
2105     break;
2106 
2107   case Bytecodes::_ladd:
2108     b = pop_pair();
2109     a = pop_pair();
2110     c = _gvn.transform( new AddLNode(a,b) );
2111     push_pair(c);
2112     break;
2113   case Bytecodes::_lsub:
2114     b = pop_pair();
2115     a = pop_pair();
2116     c = _gvn.transform( new SubLNode(a,b) );
2117     push_pair(c);
2118     break;
2119   case Bytecodes::_lcmp:
2120     // Safepoints are now inserted _before_ branches.  The long-compare
2121     // bytecode painfully produces a 3-way value (-1,0,+1) which requires a
2122     // slew of control flow.  These are usually followed by a CmpI vs zero and
2123     // a branch; this pattern then optimizes to the obvious long-compare and
2124     // branch.  However, if the branch is backwards there's a Safepoint
2125     // inserted.  The inserted Safepoint captures the JVM state at the
2126     // pre-branch point, i.e. it captures the 3-way value.  Thus if a
2127     // long-compare is used to control a loop the debug info will force
2128     // computation of the 3-way value, even though the generated code uses a
2129     // long-compare and branch.  We try to rectify the situation by inserting
2130     // a SafePoint here and have it dominate and kill the safepoint added at a
2131     // following backwards branch.  At this point the JVM state merely holds 2
2132     // longs but not the 3-way value.
2133     if( UseLoopSafepoints ) {
2134       switch( iter().next_bc() ) {
2135       case Bytecodes::_ifgt:
2136       case Bytecodes::_iflt:
2137       case Bytecodes::_ifge:
2138       case Bytecodes::_ifle:
2139       case Bytecodes::_ifne:
2140       case Bytecodes::_ifeq:
2141         // If this is a backwards branch in the bytecodes, add Safepoint
2142         maybe_add_safepoint(iter().next_get_dest());
2143       }
2144     }
2145     b = pop_pair();
2146     a = pop_pair();
2147     c = _gvn.transform( new CmpL3Node( a, b ));
2148     push(c);
2149     break;
2150 
2151   case Bytecodes::_lneg:
2152     a = pop_pair();
2153     b = _gvn.transform( new SubLNode(longcon(0),a));
2154     push_pair(b);
2155     break;
2156   case Bytecodes::_l2i:
2157     a = pop_pair();
2158     push( _gvn.transform( new ConvL2INode(a)));
2159     break;
2160   case Bytecodes::_i2l:
2161     a = pop();
2162     b = _gvn.transform( new ConvI2LNode(a));
2163     push_pair(b);
2164     break;
2165   case Bytecodes::_i2b:
2166     // Sign extend
2167     a = pop();
2168     a = _gvn.transform( new LShiftINode(a,_gvn.intcon(24)) );
2169     a = _gvn.transform( new RShiftINode(a,_gvn.intcon(24)) );
2170     push( a );
2171     break;
2172   case Bytecodes::_i2s:
2173     a = pop();
2174     a = _gvn.transform( new LShiftINode(a,_gvn.intcon(16)) );
2175     a = _gvn.transform( new RShiftINode(a,_gvn.intcon(16)) );
2176     push( a );
2177     break;
2178   case Bytecodes::_i2c:
2179     a = pop();
2180     push( _gvn.transform( new AndINode(a,_gvn.intcon(0xFFFF)) ) );
2181     break;
2182 
2183   case Bytecodes::_i2f:
2184     a = pop();
2185     b = _gvn.transform( new ConvI2FNode(a) ) ;
2186     c = precision_rounding(b);
2187     push (b);
2188     break;
2189 
2190   case Bytecodes::_i2d:
2191     a = pop();
2192     b = _gvn.transform( new ConvI2DNode(a));
2193     push_pair(b);
2194     break;
2195 
2196   case Bytecodes::_iinc:        // Increment local
2197     i = iter().get_index();     // Get local index
2198     set_local( i, _gvn.transform( new AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) );
2199     break;
2200 
2201   // Exit points of synchronized methods must have an unlock node
2202   case Bytecodes::_return:
2203     return_current(NULL);
2204     break;
2205 
2206   case Bytecodes::_ireturn:
2207   case Bytecodes::_areturn:
2208   case Bytecodes::_freturn:
2209     return_current(pop());
2210     break;
2211   case Bytecodes::_lreturn:
2212     return_current(pop_pair());
2213     break;
2214   case Bytecodes::_dreturn:
2215     return_current(pop_pair());
2216     break;
2217 
2218   case Bytecodes::_athrow:
2219     // null exception oop throws NULL pointer exception
2220     null_check(peek());
2221     if (stopped())  return;
2222     // Hook the thrown exception directly to subsequent handlers.
2223     if (BailoutToInterpreterForThrows) {
2224       // Keep method interpreted from now on.
2225       uncommon_trap(Deoptimization::Reason_unhandled,
2226                     Deoptimization::Action_make_not_compilable);
2227       return;
2228     }
2229     if (env()->jvmti_can_post_on_exceptions()) {
2230       // check if we must post exception events, take uncommon trap if so (with must_throw = false)
2231       uncommon_trap_if_should_post_on_exceptions(Deoptimization::Reason_unhandled, false);
2232     }
2233     // Here if either can_post_on_exceptions or should_post_on_exceptions is false
2234     add_exception_state(make_exception_state(peek()));
2235     break;
2236 
2237   case Bytecodes::_goto:   // fall through
2238   case Bytecodes::_goto_w: {
2239     int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest();
2240 
2241     // If this is a backwards branch in the bytecodes, add Safepoint
2242     maybe_add_safepoint(target_bci);
2243 
2244     // Update method data
2245     profile_taken_branch(target_bci);
2246 
2247     // Merge the current control into the target basic block
2248     merge(target_bci);
2249 
2250     // See if we can get some profile data and hand it off to the next block
2251     Block *target_block = block()->successor_for_bci(target_bci);
2252     if (target_block->pred_count() != 1)  break;
2253     ciMethodData* methodData = method()->method_data();
2254     if (!methodData->is_mature())  break;
2255     ciProfileData* data = methodData->bci_to_data(bci());
2256     assert( data->is_JumpData(), "" );
2257     int taken = ((ciJumpData*)data)->taken();
2258     taken = method()->scale_count(taken);
2259     target_block->set_count(taken);
2260     break;
2261   }
2262 
2263   case Bytecodes::_ifnull:    btest = BoolTest::eq; goto handle_if_null;
2264   case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null;
2265   handle_if_null:
2266     // If this is a backwards branch in the bytecodes, add Safepoint
2267     maybe_add_safepoint(iter().get_dest());
2268     a = null();
2269     b = pop();
2270     if (!_gvn.type(b)->speculative_maybe_null() &&
2271         !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2272       inc_sp(1);
2273       Node* null_ctl = top();
2274       b = null_check_oop(b, &null_ctl, true, true, true);
2275       assert(null_ctl->is_top(), "no null control here");
2276       dec_sp(1);
2277     }
2278     c = _gvn.transform( new CmpPNode(b, a) );
2279     do_ifnull(btest, c);
2280     break;
2281 
2282   case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
2283   case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
2284   handle_if_acmp:
2285     // If this is a backwards branch in the bytecodes, add Safepoint
2286     maybe_add_safepoint(iter().get_dest());
2287     a = pop();
2288     b = pop();
2289     c = _gvn.transform( new CmpPNode(b, a) );
2290     c = optimize_cmp_with_klass(c);
2291     do_if(btest, c);
2292     break;
2293 
2294   case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
2295   case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
2296   case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
2297   case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
2298   case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
2299   case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
2300   handle_ifxx:
2301     // If this is a backwards branch in the bytecodes, add Safepoint
2302     maybe_add_safepoint(iter().get_dest());
2303     a = _gvn.intcon(0);
2304     b = pop();
2305     c = _gvn.transform( new CmpINode(b, a) );
2306     do_if(btest, c);
2307     break;
2308 
2309   case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
2310   case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
2311   case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;
2312   case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp;
2313   case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp;
2314   case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp;
2315   handle_if_icmp:
2316     // If this is a backwards branch in the bytecodes, add Safepoint
2317     maybe_add_safepoint(iter().get_dest());
2318     a = pop();
2319     b = pop();
2320     c = _gvn.transform( new CmpINode( b, a ) );
2321     do_if(btest, c);
2322     break;
2323 
2324   case Bytecodes::_tableswitch:
2325     do_tableswitch();
2326     break;
2327 
2328   case Bytecodes::_lookupswitch:
2329     do_lookupswitch();
2330     break;
2331 
2332   case Bytecodes::_invokestatic:
2333   case Bytecodes::_invokedynamic:
2334   case Bytecodes::_invokespecial:
2335   case Bytecodes::_invokevirtual:
2336   case Bytecodes::_invokeinterface:
2337     do_call();
2338     break;
2339   case Bytecodes::_checkcast:
2340     do_checkcast();
2341     break;
2342   case Bytecodes::_instanceof:
2343     do_instanceof();
2344     break;
2345   case Bytecodes::_anewarray:
2346     do_anewarray();
2347     break;
2348   case Bytecodes::_newarray:
2349     do_newarray((BasicType)iter().get_index());
2350     break;
2351   case Bytecodes::_multianewarray:
2352     do_multianewarray();
2353     break;
2354   case Bytecodes::_new:
2355     do_new();
2356     break;
2357 
2358   case Bytecodes::_jsr:
2359   case Bytecodes::_jsr_w:
2360     do_jsr();
2361     break;
2362 
2363   case Bytecodes::_ret:
2364     do_ret();
2365     break;
2366 
2367 
2368   case Bytecodes::_monitorenter:
2369     do_monitor_enter();
2370     break;
2371 
2372   case Bytecodes::_monitorexit:
2373     do_monitor_exit();
2374     break;
2375 
2376   case Bytecodes::_breakpoint:
2377     // Breakpoint set concurrently to compile
2378     // %%% use an uncommon trap?
2379     C->record_failure("breakpoint in method");
2380     return;
2381 
2382   default:
2383 #ifndef PRODUCT
2384     map()->dump(99);
2385 #endif
2386     tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) );
2387     ShouldNotReachHere();
2388   }
2389 
2390 #ifndef PRODUCT
2391   IdealGraphPrinter *printer = C->printer();
2392   if (printer && printer->should_print(1)) {
2393     char buffer[256];
2394     sprintf(buffer, "Bytecode %d: %s", bci(), Bytecodes::name(bc()));
2395     bool old = printer->traverse_outs();
2396     printer->set_traverse_outs(true);
2397     printer->print_method(buffer, 4);
2398     printer->set_traverse_outs(old);
2399   }
2400 #endif
2401 }