1 /*
   2  * Copyright (c) 1998, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledIC.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/oopMap.hpp"
  37 #include "gc/g1/heapRegion.hpp"
  38 #include "gc/shared/barrierSet.hpp"
  39 #include "gc/shared/collectedHeap.hpp"
  40 #include "gc/shared/gcLocker.inline.hpp"
  41 #include "interpreter/bytecode.hpp"
  42 #include "interpreter/interpreter.hpp"
  43 #include "interpreter/linkResolver.hpp"
  44 #include "logging/log.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "oops/objArrayKlass.hpp"
  48 #include "oops/oop.inline.hpp"
  49 #include "oops/typeArrayOop.inline.hpp"
  50 #include "opto/ad.hpp"
  51 #include "opto/addnode.hpp"
  52 #include "opto/callnode.hpp"
  53 #include "opto/cfgnode.hpp"
  54 #include "opto/graphKit.hpp"
  55 #include "opto/machnode.hpp"
  56 #include "opto/matcher.hpp"
  57 #include "opto/memnode.hpp"
  58 #include "opto/mulnode.hpp"
  59 #include "opto/runtime.hpp"
  60 #include "opto/subnode.hpp"
  61 #include "runtime/atomic.hpp"
  62 #include "runtime/fprofiler.hpp"
  63 #include "runtime/handles.inline.hpp"
  64 #include "runtime/interfaceSupport.hpp"
  65 #include "runtime/javaCalls.hpp"
  66 #include "runtime/sharedRuntime.hpp"
  67 #include "runtime/signature.hpp"
  68 #include "runtime/threadCritical.hpp"
  69 #include "runtime/vframe.hpp"
  70 #include "runtime/vframeArray.hpp"
  71 #include "runtime/vframe_hp.hpp"
  72 #include "utilities/copy.hpp"
  73 #include "utilities/preserveException.hpp"
  74 
  75 
  76 // For debugging purposes:
  77 //  To force FullGCALot inside a runtime function, add the following two lines
  78 //
  79 //  Universe::release_fullgc_alot_dummy();
  80 //  MarkSweep::invoke(0, "Debugging");
  81 //
  82 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  83 
  84 
  85 
  86 
  87 // Compiled code entry points
  88 address OptoRuntime::_new_instance_Java                           = NULL;
  89 address OptoRuntime::_new_array_Java                              = NULL;
  90 address OptoRuntime::_new_array_nozero_Java                       = NULL;
  91 address OptoRuntime::_multianewarray2_Java                        = NULL;
  92 address OptoRuntime::_multianewarray3_Java                        = NULL;
  93 address OptoRuntime::_multianewarray4_Java                        = NULL;
  94 address OptoRuntime::_multianewarray5_Java                        = NULL;
  95 address OptoRuntime::_multianewarrayN_Java                        = NULL;
  96 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
  97 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
  98 address OptoRuntime::_monitor_notify_Java                         = NULL;
  99 address OptoRuntime::_monitor_notifyAll_Java                      = NULL;
 100 address OptoRuntime::_rethrow_Java                                = NULL;
 101 
 102 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
 103 address OptoRuntime::_register_finalizer_Java                     = NULL;
 104 
 105 ExceptionBlob* OptoRuntime::_exception_blob;
 106 
 107 // This should be called in an assertion at the start of OptoRuntime routines
 108 // which are entered from compiled code (all of them)
 109 #ifdef ASSERT
 110 static bool check_compiled_frame(JavaThread* thread) {
 111   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 112   RegisterMap map(thread, false);
 113   frame caller = thread->last_frame().sender(&map);
 114   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 115   return true;
 116 }
 117 #endif // ASSERT
 118 
 119 
 120 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
 121   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
 122   if (var == NULL) { return false; }
 123 
 124 bool OptoRuntime::generate(ciEnv* env) {
 125 
 126   generate_exception_blob();
 127 
 128   // Note: tls: Means fetching the return oop out of the thread-local storage
 129   //
 130   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
 131   // -------------------------------------------------------------------------------------------------------------------------------
 132   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
 133   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
 134   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
 135   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
 136   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
 137   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
 138   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
 139   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
 140   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
 141   gen(env, _monitor_notify_Java            , monitor_notify_Type          , monitor_notify_C                ,    0 , false, false, false);
 142   gen(env, _monitor_notifyAll_Java         , monitor_notify_Type          , monitor_notifyAll_C             ,    0 , false, false, false);
 143   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
 144 
 145   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
 146   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
 147 
 148   return true;
 149 }
 150 
 151 #undef gen
 152 
 153 
 154 // Helper method to do generation of RunTimeStub's
 155 address OptoRuntime::generate_stub( ciEnv* env,
 156                                     TypeFunc_generator gen, address C_function,
 157                                     const char *name, int is_fancy_jump,
 158                                     bool pass_tls,
 159                                     bool save_argument_registers,
 160                                     bool return_pc) {
 161 
 162   // Matching the default directive, we currently have no method to match.
 163   DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
 164   ResourceMark rm;
 165   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc, directive);
 166   DirectivesStack::release(directive);
 167   return  C.stub_entry_point();
 168 }
 169 
 170 const char* OptoRuntime::stub_name(address entry) {
 171 #ifndef PRODUCT
 172   CodeBlob* cb = CodeCache::find_blob(entry);
 173   RuntimeStub* rs =(RuntimeStub *)cb;
 174   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
 175   return rs->name();
 176 #else
 177   // Fast implementation for product mode (maybe it should be inlined too)
 178   return "runtime stub";
 179 #endif
 180 }
 181 
 182 
 183 //=============================================================================
 184 // Opto compiler runtime routines
 185 //=============================================================================
 186 
 187 
 188 //=============================allocation======================================
 189 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 190 // and try allocation again.
 191 
 192 // object allocation
 193 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
 194   JRT_BLOCK;
 195 #ifndef PRODUCT
 196   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 197 #endif
 198   assert(check_compiled_frame(thread), "incorrect caller");
 199 
 200   // These checks are cheap to make and support reflective allocation.
 201   int lh = klass->layout_helper();
 202   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
 203     Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 204     klass->check_valid_for_instantiation(false, THREAD);
 205     if (!HAS_PENDING_EXCEPTION) {
 206       InstanceKlass::cast(klass)->initialize(THREAD);
 207     }
 208   }
 209 
 210   if (!HAS_PENDING_EXCEPTION) {
 211     // Scavenge and allocate an instance.
 212     Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 213     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 214     thread->set_vm_result(result);
 215 
 216     // Pass oops back through thread local storage.  Our apparent type to Java
 217     // is that we return an oop, but we can block on exit from this routine and
 218     // a GC can trash the oop in C's return register.  The generated stub will
 219     // fetch the oop from TLS after any possible GC.
 220   }
 221 
 222   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 223   JRT_BLOCK_END;
 224 
 225   // inform GC that we won't do card marks for initializing writes.
 226   SharedRuntime::on_slowpath_allocation(thread);
 227 JRT_END
 228 
 229 
 230 // array allocation
 231 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
 232   JRT_BLOCK;
 233 #ifndef PRODUCT
 234   SharedRuntime::_new_array_ctr++;            // new array requires GC
 235 #endif
 236   assert(check_compiled_frame(thread), "incorrect caller");
 237 
 238   // Scavenge and allocate an instance.
 239   oop result;
 240 
 241   if (array_type->is_typeArray_klass()) {
 242     // The oopFactory likes to work with the element type.
 243     // (We could bypass the oopFactory, since it doesn't add much value.)
 244     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 245     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 246   } else {
 247     // Although the oopFactory likes to work with the elem_type,
 248     // the compiler prefers the array_type, since it must already have
 249     // that latter value in hand for the fast path.
 250     Handle holder(THREAD, array_type->klass_holder()); // keep the array klass alive
 251     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 252     result = oopFactory::new_objArray(elem_type, len, THREAD);
 253   }
 254 
 255   // Pass oops back through thread local storage.  Our apparent type to Java
 256   // is that we return an oop, but we can block on exit from this routine and
 257   // a GC can trash the oop in C's return register.  The generated stub will
 258   // fetch the oop from TLS after any possible GC.
 259   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 260   thread->set_vm_result(result);
 261   JRT_BLOCK_END;
 262 
 263   // inform GC that we won't do card marks for initializing writes.
 264   SharedRuntime::on_slowpath_allocation(thread);
 265 JRT_END
 266 
 267 // array allocation without zeroing
 268 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
 269   JRT_BLOCK;
 270 #ifndef PRODUCT
 271   SharedRuntime::_new_array_ctr++;            // new array requires GC
 272 #endif
 273   assert(check_compiled_frame(thread), "incorrect caller");
 274 
 275   // Scavenge and allocate an instance.
 276   oop result;
 277 
 278   assert(array_type->is_typeArray_klass(), "should be called only for type array");
 279   // The oopFactory likes to work with the element type.
 280   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 281   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 282 
 283   // Pass oops back through thread local storage.  Our apparent type to Java
 284   // is that we return an oop, but we can block on exit from this routine and
 285   // a GC can trash the oop in C's return register.  The generated stub will
 286   // fetch the oop from TLS after any possible GC.
 287   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 288   thread->set_vm_result(result);
 289   JRT_BLOCK_END;
 290 
 291 
 292   // inform GC that we won't do card marks for initializing writes.
 293   SharedRuntime::on_slowpath_allocation(thread);
 294 
 295   oop result = thread->vm_result();
 296   if ((len > 0) && (result != NULL) &&
 297       is_deoptimized_caller_frame(thread)) {
 298     // Zero array here if the caller is deoptimized.
 299     int size = ((typeArrayOop)result)->object_size();
 300     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 301     const size_t hs = arrayOopDesc::header_size(elem_type);
 302     // Align to next 8 bytes to avoid trashing arrays's length.
 303     const size_t aligned_hs = align_object_offset(hs);
 304     HeapWord* obj = (HeapWord*)result;
 305     if (aligned_hs > hs) {
 306       Copy::zero_to_words(obj+hs, aligned_hs-hs);
 307     }
 308     // Optimized zeroing.
 309     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 310   }
 311 
 312 JRT_END
 313 
 314 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 315 
 316 // multianewarray for 2 dimensions
 317 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
 318 #ifndef PRODUCT
 319   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 320 #endif
 321   assert(check_compiled_frame(thread), "incorrect caller");
 322   assert(elem_type->is_klass(), "not a class");
 323   jint dims[2];
 324   dims[0] = len1;
 325   dims[1] = len2;
 326   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 327   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 328   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 329   thread->set_vm_result(obj);
 330 JRT_END
 331 
 332 // multianewarray for 3 dimensions
 333 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
 334 #ifndef PRODUCT
 335   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 336 #endif
 337   assert(check_compiled_frame(thread), "incorrect caller");
 338   assert(elem_type->is_klass(), "not a class");
 339   jint dims[3];
 340   dims[0] = len1;
 341   dims[1] = len2;
 342   dims[2] = len3;
 343   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 344   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 345   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 346   thread->set_vm_result(obj);
 347 JRT_END
 348 
 349 // multianewarray for 4 dimensions
 350 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
 351 #ifndef PRODUCT
 352   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 353 #endif
 354   assert(check_compiled_frame(thread), "incorrect caller");
 355   assert(elem_type->is_klass(), "not a class");
 356   jint dims[4];
 357   dims[0] = len1;
 358   dims[1] = len2;
 359   dims[2] = len3;
 360   dims[3] = len4;
 361   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 362   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 363   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 364   thread->set_vm_result(obj);
 365 JRT_END
 366 
 367 // multianewarray for 5 dimensions
 368 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
 369 #ifndef PRODUCT
 370   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 371 #endif
 372   assert(check_compiled_frame(thread), "incorrect caller");
 373   assert(elem_type->is_klass(), "not a class");
 374   jint dims[5];
 375   dims[0] = len1;
 376   dims[1] = len2;
 377   dims[2] = len3;
 378   dims[3] = len4;
 379   dims[4] = len5;
 380   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 381   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 382   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 383   thread->set_vm_result(obj);
 384 JRT_END
 385 
 386 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
 387   assert(check_compiled_frame(thread), "incorrect caller");
 388   assert(elem_type->is_klass(), "not a class");
 389   assert(oop(dims)->is_typeArray(), "not an array");
 390 
 391   ResourceMark rm;
 392   jint len = dims->length();
 393   assert(len > 0, "Dimensions array should contain data");
 394   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
 395   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 396   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
 397 
 398   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 399   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 400   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 401   thread->set_vm_result(obj);
 402 JRT_END
 403 
 404 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread *thread))
 405 
 406   // Very few notify/notifyAll operations find any threads on the waitset, so
 407   // the dominant fast-path is to simply return.
 408   // Relatedly, it's critical that notify/notifyAll be fast in order to
 409   // reduce lock hold times.
 410   if (!SafepointSynchronize::is_synchronizing()) {
 411     if (ObjectSynchronizer::quick_notify(obj, thread, false)) {
 412       return;
 413     }
 414   }
 415 
 416   // This is the case the fast-path above isn't provisioned to handle.
 417   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 418   // (The fast-path is just a degenerate variant of the slow-path).
 419   // Perform the dreaded state transition and pass control into the slow-path.
 420   JRT_BLOCK;
 421   Handle h_obj(THREAD, obj);
 422   ObjectSynchronizer::notify(h_obj, CHECK);
 423   JRT_BLOCK_END;
 424 JRT_END
 425 
 426 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread *thread))
 427 
 428   if (!SafepointSynchronize::is_synchronizing() ) {
 429     if (ObjectSynchronizer::quick_notify(obj, thread, true)) {
 430       return;
 431     }
 432   }
 433 
 434   // This is the case the fast-path above isn't provisioned to handle.
 435   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 436   // (The fast-path is just a degenerate variant of the slow-path).
 437   // Perform the dreaded state transition and pass control into the slow-path.
 438   JRT_BLOCK;
 439   Handle h_obj(THREAD, obj);
 440   ObjectSynchronizer::notifyall(h_obj, CHECK);
 441   JRT_BLOCK_END;
 442 JRT_END
 443 
 444 const TypeFunc *OptoRuntime::new_instance_Type() {
 445   // create input type (domain)
 446   const Type **fields = TypeTuple::fields(1);
 447   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 448   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 449 
 450   // create result type (range)
 451   fields = TypeTuple::fields(1);
 452   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 453 
 454   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 455 
 456   return TypeFunc::make(domain, range);
 457 }
 458 
 459 
 460 const TypeFunc *OptoRuntime::athrow_Type() {
 461   // create input type (domain)
 462   const Type **fields = TypeTuple::fields(1);
 463   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 464   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 465 
 466   // create result type (range)
 467   fields = TypeTuple::fields(0);
 468 
 469   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 470 
 471   return TypeFunc::make(domain, range);
 472 }
 473 
 474 
 475 const TypeFunc *OptoRuntime::new_array_Type() {
 476   // create input type (domain)
 477   const Type **fields = TypeTuple::fields(2);
 478   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 479   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 480   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 481 
 482   // create result type (range)
 483   fields = TypeTuple::fields(1);
 484   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 485 
 486   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 487 
 488   return TypeFunc::make(domain, range);
 489 }
 490 
 491 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 492   // create input type (domain)
 493   const int nargs = ndim + 1;
 494   const Type **fields = TypeTuple::fields(nargs);
 495   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 496   for( int i = 1; i < nargs; i++ )
 497     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 498   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 499 
 500   // create result type (range)
 501   fields = TypeTuple::fields(1);
 502   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 503   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 504 
 505   return TypeFunc::make(domain, range);
 506 }
 507 
 508 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 509   return multianewarray_Type(2);
 510 }
 511 
 512 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 513   return multianewarray_Type(3);
 514 }
 515 
 516 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 517   return multianewarray_Type(4);
 518 }
 519 
 520 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 521   return multianewarray_Type(5);
 522 }
 523 
 524 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 525   // create input type (domain)
 526   const Type **fields = TypeTuple::fields(2);
 527   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 528   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 529   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 530 
 531   // create result type (range)
 532   fields = TypeTuple::fields(1);
 533   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 534   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 535 
 536   return TypeFunc::make(domain, range);
 537 }
 538 
 539 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 540   // create input type (domain)
 541   const Type **fields = TypeTuple::fields(1);
 542   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 543   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 544 
 545   // create result type (range)
 546   fields = TypeTuple::fields(0);
 547   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 548 
 549   return TypeFunc::make(domain, range);
 550 }
 551 
 552 //-----------------------------------------------------------------------------
 553 // Monitor Handling
 554 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 555   // create input type (domain)
 556   const Type **fields = TypeTuple::fields(2);
 557   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 558   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 559   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 560 
 561   // create result type (range)
 562   fields = TypeTuple::fields(0);
 563 
 564   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 565 
 566   return TypeFunc::make(domain,range);
 567 }
 568 
 569 
 570 //-----------------------------------------------------------------------------
 571 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 572   // create input type (domain)
 573   const Type **fields = TypeTuple::fields(3);
 574   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 575   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 576   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 577   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 578 
 579   // create result type (range)
 580   fields = TypeTuple::fields(0);
 581 
 582   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 583 
 584   return TypeFunc::make(domain, range);
 585 }
 586 
 587 const TypeFunc *OptoRuntime::monitor_notify_Type() {
 588   // create input type (domain)
 589   const Type **fields = TypeTuple::fields(1);
 590   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 591   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 592 
 593   // create result type (range)
 594   fields = TypeTuple::fields(0);
 595   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 596   return TypeFunc::make(domain, range);
 597 }
 598 
 599 const TypeFunc* OptoRuntime::flush_windows_Type() {
 600   // create input type (domain)
 601   const Type** fields = TypeTuple::fields(1);
 602   fields[TypeFunc::Parms+0] = NULL; // void
 603   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 604 
 605   // create result type
 606   fields = TypeTuple::fields(1);
 607   fields[TypeFunc::Parms+0] = NULL; // void
 608   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 609 
 610   return TypeFunc::make(domain, range);
 611 }
 612 
 613 const TypeFunc* OptoRuntime::l2f_Type() {
 614   // create input type (domain)
 615   const Type **fields = TypeTuple::fields(2);
 616   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 617   fields[TypeFunc::Parms+1] = Type::HALF;
 618   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 619 
 620   // create result type (range)
 621   fields = TypeTuple::fields(1);
 622   fields[TypeFunc::Parms+0] = Type::FLOAT;
 623   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 624 
 625   return TypeFunc::make(domain, range);
 626 }
 627 
 628 const TypeFunc* OptoRuntime::modf_Type() {
 629   const Type **fields = TypeTuple::fields(2);
 630   fields[TypeFunc::Parms+0] = Type::FLOAT;
 631   fields[TypeFunc::Parms+1] = Type::FLOAT;
 632   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 633 
 634   // create result type (range)
 635   fields = TypeTuple::fields(1);
 636   fields[TypeFunc::Parms+0] = Type::FLOAT;
 637 
 638   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 639 
 640   return TypeFunc::make(domain, range);
 641 }
 642 
 643 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 644   // create input type (domain)
 645   const Type **fields = TypeTuple::fields(2);
 646   // Symbol* name of class to be loaded
 647   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 648   fields[TypeFunc::Parms+1] = Type::HALF;
 649   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 650 
 651   // create result type (range)
 652   fields = TypeTuple::fields(2);
 653   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 654   fields[TypeFunc::Parms+1] = Type::HALF;
 655   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 656 
 657   return TypeFunc::make(domain, range);
 658 }
 659 
 660 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 661   const Type **fields = TypeTuple::fields(4);
 662   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 663   fields[TypeFunc::Parms+1] = Type::HALF;
 664   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 665   fields[TypeFunc::Parms+3] = Type::HALF;
 666   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 667 
 668   // create result type (range)
 669   fields = TypeTuple::fields(2);
 670   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 671   fields[TypeFunc::Parms+1] = Type::HALF;
 672   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 673 
 674   return TypeFunc::make(domain, range);
 675 }
 676 
 677 //-------------- currentTimeMillis, currentTimeNanos, etc
 678 
 679 const TypeFunc* OptoRuntime::void_long_Type() {
 680   // create input type (domain)
 681   const Type **fields = TypeTuple::fields(0);
 682   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 683 
 684   // create result type (range)
 685   fields = TypeTuple::fields(2);
 686   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 687   fields[TypeFunc::Parms+1] = Type::HALF;
 688   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 689 
 690   return TypeFunc::make(domain, range);
 691 }
 692 
 693 // arraycopy stub variations:
 694 enum ArrayCopyType {
 695   ac_fast,                      // void(ptr, ptr, size_t)
 696   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 697   ac_slow,                      // void(ptr, int, ptr, int, int)
 698   ac_generic                    //  int(ptr, int, ptr, int, int)
 699 };
 700 
 701 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 702   // create input type (domain)
 703   int num_args      = (act == ac_fast ? 3 : 5);
 704   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 705   int argcnt = num_args;
 706   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 707   const Type** fields = TypeTuple::fields(argcnt);
 708   int argp = TypeFunc::Parms;
 709   fields[argp++] = TypePtr::NOTNULL;    // src
 710   if (num_size_args == 0) {
 711     fields[argp++] = TypeInt::INT;      // src_pos
 712   }
 713   fields[argp++] = TypePtr::NOTNULL;    // dest
 714   if (num_size_args == 0) {
 715     fields[argp++] = TypeInt::INT;      // dest_pos
 716     fields[argp++] = TypeInt::INT;      // length
 717   }
 718   while (num_size_args-- > 0) {
 719     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 720     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 721   }
 722   if (act == ac_checkcast) {
 723     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 724   }
 725   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 726   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 727 
 728   // create result type if needed
 729   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 730   fields = TypeTuple::fields(1);
 731   if (retcnt == 0)
 732     fields[TypeFunc::Parms+0] = NULL; // void
 733   else
 734     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 735   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 736   return TypeFunc::make(domain, range);
 737 }
 738 
 739 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 740   // This signature is simple:  Two base pointers and a size_t.
 741   return make_arraycopy_Type(ac_fast);
 742 }
 743 
 744 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 745   // An extension of fast_arraycopy_Type which adds type checking.
 746   return make_arraycopy_Type(ac_checkcast);
 747 }
 748 
 749 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 750   // This signature is exactly the same as System.arraycopy.
 751   // There are no intptr_t (int/long) arguments.
 752   return make_arraycopy_Type(ac_slow);
 753 }
 754 
 755 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 756   // This signature is like System.arraycopy, except that it returns status.
 757   return make_arraycopy_Type(ac_generic);
 758 }
 759 
 760 
 761 const TypeFunc* OptoRuntime::array_fill_Type() {
 762   const Type** fields;
 763   int argp = TypeFunc::Parms;
 764   // create input type (domain): pointer, int, size_t
 765   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 766   fields[argp++] = TypePtr::NOTNULL;
 767   fields[argp++] = TypeInt::INT;
 768   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 769   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 770   const TypeTuple *domain = TypeTuple::make(argp, fields);
 771 
 772   // create result type
 773   fields = TypeTuple::fields(1);
 774   fields[TypeFunc::Parms+0] = NULL; // void
 775   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 776 
 777   return TypeFunc::make(domain, range);
 778 }
 779 
 780 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 781 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 782   // create input type (domain)
 783   int num_args      = 3;
 784   if (Matcher::pass_original_key_for_aes()) {
 785     num_args = 4;
 786   }
 787   int argcnt = num_args;
 788   const Type** fields = TypeTuple::fields(argcnt);
 789   int argp = TypeFunc::Parms;
 790   fields[argp++] = TypePtr::NOTNULL;    // src
 791   fields[argp++] = TypePtr::NOTNULL;    // dest
 792   fields[argp++] = TypePtr::NOTNULL;    // k array
 793   if (Matcher::pass_original_key_for_aes()) {
 794     fields[argp++] = TypePtr::NOTNULL;    // original k array
 795   }
 796   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 797   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 798 
 799   // no result type needed
 800   fields = TypeTuple::fields(1);
 801   fields[TypeFunc::Parms+0] = NULL; // void
 802   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 803   return TypeFunc::make(domain, range);
 804 }
 805 
 806 /**
 807  * int updateBytesCRC32(int crc, byte* b, int len)
 808  */
 809 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 810   // create input type (domain)
 811   int num_args      = 3;
 812   int argcnt = num_args;
 813   const Type** fields = TypeTuple::fields(argcnt);
 814   int argp = TypeFunc::Parms;
 815   fields[argp++] = TypeInt::INT;        // crc
 816   fields[argp++] = TypePtr::NOTNULL;    // src
 817   fields[argp++] = TypeInt::INT;        // len
 818   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 819   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 820 
 821   // result type needed
 822   fields = TypeTuple::fields(1);
 823   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 824   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 825   return TypeFunc::make(domain, range);
 826 }
 827 
 828 /**
 829  * int updateBytesCRC32C(int crc, byte* buf, int len, int* table)
 830  */
 831 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() {
 832   // create input type (domain)
 833   int num_args      = 4;
 834   int argcnt = num_args;
 835   const Type** fields = TypeTuple::fields(argcnt);
 836   int argp = TypeFunc::Parms;
 837   fields[argp++] = TypeInt::INT;        // crc
 838   fields[argp++] = TypePtr::NOTNULL;    // buf
 839   fields[argp++] = TypeInt::INT;        // len
 840   fields[argp++] = TypePtr::NOTNULL;    // table
 841   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 842   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 843 
 844   // result type needed
 845   fields = TypeTuple::fields(1);
 846   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 847   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 848   return TypeFunc::make(domain, range);
 849 }
 850 
 851 /**
 852 *  int updateBytesAdler32(int adler, bytes* b, int off, int len)
 853 */
 854 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() {
 855   // create input type (domain)
 856   int num_args      = 3;
 857   int argcnt = num_args;
 858   const Type** fields = TypeTuple::fields(argcnt);
 859   int argp = TypeFunc::Parms;
 860   fields[argp++] = TypeInt::INT;        // crc
 861   fields[argp++] = TypePtr::NOTNULL;    // src + offset
 862   fields[argp++] = TypeInt::INT;        // len
 863   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 864   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 865 
 866   // result type needed
 867   fields = TypeTuple::fields(1);
 868   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 869   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 870   return TypeFunc::make(domain, range);
 871 }
 872 
 873 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 874 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 875   // create input type (domain)
 876   int num_args      = 5;
 877   if (Matcher::pass_original_key_for_aes()) {
 878     num_args = 6;
 879   }
 880   int argcnt = num_args;
 881   const Type** fields = TypeTuple::fields(argcnt);
 882   int argp = TypeFunc::Parms;
 883   fields[argp++] = TypePtr::NOTNULL;    // src
 884   fields[argp++] = TypePtr::NOTNULL;    // dest
 885   fields[argp++] = TypePtr::NOTNULL;    // k array
 886   fields[argp++] = TypePtr::NOTNULL;    // r array
 887   fields[argp++] = TypeInt::INT;        // src len
 888   if (Matcher::pass_original_key_for_aes()) {
 889     fields[argp++] = TypePtr::NOTNULL;    // original k array
 890   }
 891   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 892   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 893 
 894   // returning cipher len (int)
 895   fields = TypeTuple::fields(1);
 896   fields[TypeFunc::Parms+0] = TypeInt::INT;
 897   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 898   return TypeFunc::make(domain, range);
 899 }
 900 
 901 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 902 const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() {
 903   // create input type (domain)
 904   int num_args = 7;
 905   if (Matcher::pass_original_key_for_aes()) {
 906     num_args = 8;
 907   }
 908   int argcnt = num_args;
 909   const Type** fields = TypeTuple::fields(argcnt);
 910   int argp = TypeFunc::Parms;
 911   fields[argp++] = TypePtr::NOTNULL; // src
 912   fields[argp++] = TypePtr::NOTNULL; // dest
 913   fields[argp++] = TypePtr::NOTNULL; // k array
 914   fields[argp++] = TypePtr::NOTNULL; // counter array
 915   fields[argp++] = TypeInt::INT; // src len
 916   fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
 917   fields[argp++] = TypePtr::NOTNULL; // saved used addr
 918   if (Matcher::pass_original_key_for_aes()) {
 919     fields[argp++] = TypePtr::NOTNULL; // original k array
 920   }
 921   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
 922   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
 923   // returning cipher len (int)
 924   fields = TypeTuple::fields(1);
 925   fields[TypeFunc::Parms + 0] = TypeInt::INT;
 926   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
 927   return TypeFunc::make(domain, range);
 928 }
 929 
 930 /*
 931  * void implCompress(byte[] buf, int ofs)
 932  */
 933 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
 934   // create input type (domain)
 935   int num_args = 2;
 936   int argcnt = num_args;
 937   const Type** fields = TypeTuple::fields(argcnt);
 938   int argp = TypeFunc::Parms;
 939   fields[argp++] = TypePtr::NOTNULL; // buf
 940   fields[argp++] = TypePtr::NOTNULL; // state
 941   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 942   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 943 
 944   // no result type needed
 945   fields = TypeTuple::fields(1);
 946   fields[TypeFunc::Parms+0] = NULL; // void
 947   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 948   return TypeFunc::make(domain, range);
 949 }
 950 
 951 /*
 952  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
 953  */
 954 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
 955   // create input type (domain)
 956   int num_args = 4;
 957   int argcnt = num_args;
 958   const Type** fields = TypeTuple::fields(argcnt);
 959   int argp = TypeFunc::Parms;
 960   fields[argp++] = TypePtr::NOTNULL; // buf
 961   fields[argp++] = TypePtr::NOTNULL; // state
 962   fields[argp++] = TypeInt::INT;     // ofs
 963   fields[argp++] = TypeInt::INT;     // limit
 964   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 965   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 966 
 967   // returning ofs (int)
 968   fields = TypeTuple::fields(1);
 969   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
 970   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 971   return TypeFunc::make(domain, range);
 972 }
 973 
 974 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
 975   // create input type (domain)
 976   int num_args      = 6;
 977   int argcnt = num_args;
 978   const Type** fields = TypeTuple::fields(argcnt);
 979   int argp = TypeFunc::Parms;
 980   fields[argp++] = TypePtr::NOTNULL;    // x
 981   fields[argp++] = TypeInt::INT;        // xlen
 982   fields[argp++] = TypePtr::NOTNULL;    // y
 983   fields[argp++] = TypeInt::INT;        // ylen
 984   fields[argp++] = TypePtr::NOTNULL;    // z
 985   fields[argp++] = TypeInt::INT;        // zlen
 986   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 987   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 988 
 989   // no result type needed
 990   fields = TypeTuple::fields(1);
 991   fields[TypeFunc::Parms+0] = NULL;
 992   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 993   return TypeFunc::make(domain, range);
 994 }
 995 
 996 const TypeFunc* OptoRuntime::squareToLen_Type() {
 997   // create input type (domain)
 998   int num_args      = 4;
 999   int argcnt = num_args;
1000   const Type** fields = TypeTuple::fields(argcnt);
1001   int argp = TypeFunc::Parms;
1002   fields[argp++] = TypePtr::NOTNULL;    // x
1003   fields[argp++] = TypeInt::INT;        // len
1004   fields[argp++] = TypePtr::NOTNULL;    // z
1005   fields[argp++] = TypeInt::INT;        // zlen
1006   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1007   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1008 
1009   // no result type needed
1010   fields = TypeTuple::fields(1);
1011   fields[TypeFunc::Parms+0] = NULL;
1012   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1013   return TypeFunc::make(domain, range);
1014 }
1015 
1016 // for mulAdd calls, 2 pointers and 3 ints, returning int
1017 const TypeFunc* OptoRuntime::mulAdd_Type() {
1018   // create input type (domain)
1019   int num_args      = 5;
1020   int argcnt = num_args;
1021   const Type** fields = TypeTuple::fields(argcnt);
1022   int argp = TypeFunc::Parms;
1023   fields[argp++] = TypePtr::NOTNULL;    // out
1024   fields[argp++] = TypePtr::NOTNULL;    // in
1025   fields[argp++] = TypeInt::INT;        // offset
1026   fields[argp++] = TypeInt::INT;        // len
1027   fields[argp++] = TypeInt::INT;        // k
1028   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1029   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1030 
1031   // returning carry (int)
1032   fields = TypeTuple::fields(1);
1033   fields[TypeFunc::Parms+0] = TypeInt::INT;
1034   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1035   return TypeFunc::make(domain, range);
1036 }
1037 
1038 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
1039   // create input type (domain)
1040   int num_args      = 7;
1041   int argcnt = num_args;
1042   const Type** fields = TypeTuple::fields(argcnt);
1043   int argp = TypeFunc::Parms;
1044   fields[argp++] = TypePtr::NOTNULL;    // a
1045   fields[argp++] = TypePtr::NOTNULL;    // b
1046   fields[argp++] = TypePtr::NOTNULL;    // n
1047   fields[argp++] = TypeInt::INT;        // len
1048   fields[argp++] = TypeLong::LONG;      // inv
1049   fields[argp++] = Type::HALF;
1050   fields[argp++] = TypePtr::NOTNULL;    // result
1051   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1052   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1053 
1054   // result type needed
1055   fields = TypeTuple::fields(1);
1056   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1057 
1058   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1059   return TypeFunc::make(domain, range);
1060 }
1061 
1062 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
1063   // create input type (domain)
1064   int num_args      = 6;
1065   int argcnt = num_args;
1066   const Type** fields = TypeTuple::fields(argcnt);
1067   int argp = TypeFunc::Parms;
1068   fields[argp++] = TypePtr::NOTNULL;    // a
1069   fields[argp++] = TypePtr::NOTNULL;    // n
1070   fields[argp++] = TypeInt::INT;        // len
1071   fields[argp++] = TypeLong::LONG;      // inv
1072   fields[argp++] = Type::HALF;
1073   fields[argp++] = TypePtr::NOTNULL;    // result
1074   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1075   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1076 
1077   // result type needed
1078   fields = TypeTuple::fields(1);
1079   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1080 
1081   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1082   return TypeFunc::make(domain, range);
1083 }
1084 
1085 const TypeFunc* OptoRuntime::vectorizedMismatch_Type() {
1086   // create input type (domain)
1087   int num_args = 4;
1088   int argcnt = num_args;
1089   const Type** fields = TypeTuple::fields(argcnt);
1090   int argp = TypeFunc::Parms;
1091   fields[argp++] = TypePtr::NOTNULL;    // obja
1092   fields[argp++] = TypePtr::NOTNULL;    // objb
1093   fields[argp++] = TypeInt::INT;        // length, number of elements
1094   fields[argp++] = TypeInt::INT;        // log2scale, element size
1095   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1096   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1097 
1098   //return mismatch index (int)
1099   fields = TypeTuple::fields(1);
1100   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1101   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1102   return TypeFunc::make(domain, range);
1103 }
1104 
1105 // GHASH block processing
1106 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
1107     int argcnt = 4;
1108 
1109     const Type** fields = TypeTuple::fields(argcnt);
1110     int argp = TypeFunc::Parms;
1111     fields[argp++] = TypePtr::NOTNULL;    // state
1112     fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1113     fields[argp++] = TypePtr::NOTNULL;    // data
1114     fields[argp++] = TypeInt::INT;        // blocks
1115     assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1116     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1117 
1118     // result type needed
1119     fields = TypeTuple::fields(1);
1120     fields[TypeFunc::Parms+0] = NULL; // void
1121     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1122     return TypeFunc::make(domain, range);
1123 }
1124 
1125 //------------- Interpreter state access for on stack replacement
1126 const TypeFunc* OptoRuntime::osr_end_Type() {
1127   // create input type (domain)
1128   const Type **fields = TypeTuple::fields(1);
1129   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1130   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1131 
1132   // create result type
1133   fields = TypeTuple::fields(1);
1134   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1135   fields[TypeFunc::Parms+0] = NULL; // void
1136   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1137   return TypeFunc::make(domain, range);
1138 }
1139 
1140 //-------------- methodData update helpers
1141 
1142 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
1143   // create input type (domain)
1144   const Type **fields = TypeTuple::fields(2);
1145   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
1146   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
1147   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
1148 
1149   // create result type
1150   fields = TypeTuple::fields(1);
1151   fields[TypeFunc::Parms+0] = NULL; // void
1152   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1153   return TypeFunc::make(domain,range);
1154 }
1155 
1156 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
1157   if (receiver == NULL) return;
1158   Klass* receiver_klass = receiver->klass();
1159 
1160   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
1161   int empty_row = -1;           // free row, if any is encountered
1162 
1163   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
1164   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
1165     // if (vc->receiver(row) == receiver_klass)
1166     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
1167     intptr_t row_recv = *(mdp + receiver_off);
1168     if (row_recv == (intptr_t) receiver_klass) {
1169       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
1170       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
1171       *(mdp + count_off) += DataLayout::counter_increment;
1172       return;
1173     } else if (row_recv == 0) {
1174       // else if (vc->receiver(row) == NULL)
1175       empty_row = (int) row;
1176     }
1177   }
1178 
1179   if (empty_row != -1) {
1180     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
1181     // vc->set_receiver(empty_row, receiver_klass);
1182     *(mdp + receiver_off) = (intptr_t) receiver_klass;
1183     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
1184     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
1185     *(mdp + count_off) = DataLayout::counter_increment;
1186   } else {
1187     // Receiver did not match any saved receiver and there is no empty row for it.
1188     // Increment total counter to indicate polymorphic case.
1189     intptr_t* count_p = (intptr_t*)(((uint8_t*)(data)) + in_bytes(CounterData::count_offset()));
1190     *count_p += DataLayout::counter_increment;
1191   }
1192 JRT_END
1193 
1194 //-------------------------------------------------------------------------------------
1195 // register policy
1196 
1197 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1198   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1199   switch (register_save_policy[reg]) {
1200     case 'C': return false; //SOC
1201     case 'E': return true ; //SOE
1202     case 'N': return false; //NS
1203     case 'A': return false; //AS
1204   }
1205   ShouldNotReachHere();
1206   return false;
1207 }
1208 
1209 //-----------------------------------------------------------------------
1210 // Exceptions
1211 //
1212 
1213 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1214 
1215 // The method is an entry that is always called by a C++ method not
1216 // directly from compiled code. Compiled code will call the C++ method following.
1217 // We can't allow async exception to be installed during  exception processing.
1218 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
1219 
1220   // Do not confuse exception_oop with pending_exception. The exception_oop
1221   // is only used to pass arguments into the method. Not for general
1222   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1223   // the runtime stubs checks this on exit.
1224   assert(thread->exception_oop() != NULL, "exception oop is found");
1225   address handler_address = NULL;
1226 
1227   Handle exception(thread, thread->exception_oop());
1228   address pc = thread->exception_pc();
1229 
1230   // Clear out the exception oop and pc since looking up an
1231   // exception handler can cause class loading, which might throw an
1232   // exception and those fields are expected to be clear during
1233   // normal bytecode execution.
1234   thread->clear_exception_oop_and_pc();
1235 
1236   if (log_is_enabled(Info, exceptions)) {
1237     ResourceMark rm;
1238     trace_exception(Log(exceptions)::info_stream(), exception(), pc, "");
1239   }
1240 
1241   // for AbortVMOnException flag
1242   Exceptions::debug_check_abort(exception);
1243 
1244 #ifdef ASSERT
1245   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1246     // should throw an exception here
1247     ShouldNotReachHere();
1248   }
1249 #endif
1250 
1251   // new exception handling: this method is entered only from adapters
1252   // exceptions from compiled java methods are handled in compiled code
1253   // using rethrow node
1254 
1255   nm = CodeCache::find_nmethod(pc);
1256   assert(nm != NULL, "No NMethod found");
1257   if (nm->is_native_method()) {
1258     fatal("Native method should not have path to exception handling");
1259   } else {
1260     // we are switching to old paradigm: search for exception handler in caller_frame
1261     // instead in exception handler of caller_frame.sender()
1262 
1263     if (JvmtiExport::can_post_on_exceptions()) {
1264       // "Full-speed catching" is not necessary here,
1265       // since we're notifying the VM on every catch.
1266       // Force deoptimization and the rest of the lookup
1267       // will be fine.
1268       deoptimize_caller_frame(thread);
1269     }
1270 
1271     // Check the stack guard pages.  If enabled, look for handler in this frame;
1272     // otherwise, forcibly unwind the frame.
1273     //
1274     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1275     bool force_unwind = !thread->reguard_stack();
1276     bool deopting = false;
1277     if (nm->is_deopt_pc(pc)) {
1278       deopting = true;
1279       RegisterMap map(thread, false);
1280       frame deoptee = thread->last_frame().sender(&map);
1281       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1282       // Adjust the pc back to the original throwing pc
1283       pc = deoptee.pc();
1284     }
1285 
1286     // If we are forcing an unwind because of stack overflow then deopt is
1287     // irrelevant since we are throwing the frame away anyway.
1288 
1289     if (deopting && !force_unwind) {
1290       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1291     } else {
1292 
1293       handler_address =
1294         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1295 
1296       if (handler_address == NULL) {
1297         bool recursive_exception = false;
1298         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1299         assert (handler_address != NULL, "must have compiled handler");
1300         // Update the exception cache only when the unwind was not forced
1301         // and there didn't happen another exception during the computation of the
1302         // compiled exception handler. Checking for exception oop equality is not
1303         // sufficient because some exceptions are pre-allocated and reused.
1304         if (!force_unwind && !recursive_exception) {
1305           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1306         }
1307       } else {
1308 #ifdef ASSERT
1309         bool recursive_exception = false;
1310         address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1311         vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
1312                  p2i(handler_address), p2i(computed_address));
1313 #endif
1314       }
1315     }
1316 
1317     thread->set_exception_pc(pc);
1318     thread->set_exception_handler_pc(handler_address);
1319 
1320     // Check if the exception PC is a MethodHandle call site.
1321     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1322   }
1323 
1324   // Restore correct return pc.  Was saved above.
1325   thread->set_exception_oop(exception());
1326   return handler_address;
1327 
1328 JRT_END
1329 
1330 // We are entering here from exception_blob
1331 // If there is a compiled exception handler in this method, we will continue there;
1332 // otherwise we will unwind the stack and continue at the caller of top frame method
1333 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1334 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1335 // we looked up the handler for has been deoptimized in the meantime. If it has been
1336 // we must not use the handler and instead return the deopt blob.
1337 address OptoRuntime::handle_exception_C(JavaThread* thread) {
1338 //
1339 // We are in Java not VM and in debug mode we have a NoHandleMark
1340 //
1341 #ifndef PRODUCT
1342   SharedRuntime::_find_handler_ctr++;          // find exception handler
1343 #endif
1344   debug_only(NoHandleMark __hm;)
1345   nmethod* nm = NULL;
1346   address handler_address = NULL;
1347   {
1348     // Enter the VM
1349 
1350     ResetNoHandleMark rnhm;
1351     handler_address = handle_exception_C_helper(thread, nm);
1352   }
1353 
1354   // Back in java: Use no oops, DON'T safepoint
1355 
1356   // Now check to see if the handler we are returning is in a now
1357   // deoptimized frame
1358 
1359   if (nm != NULL) {
1360     RegisterMap map(thread, false);
1361     frame caller = thread->last_frame().sender(&map);
1362 #ifdef ASSERT
1363     assert(caller.is_compiled_frame(), "must be");
1364 #endif // ASSERT
1365     if (caller.is_deoptimized_frame()) {
1366       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1367     }
1368   }
1369   return handler_address;
1370 }
1371 
1372 //------------------------------rethrow----------------------------------------
1373 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1374 // is either throwing or rethrowing an exception.  The callee-save registers
1375 // have been restored, synchronized objects have been unlocked and the callee
1376 // stack frame has been removed.  The return address was passed in.
1377 // Exception oop is passed as the 1st argument.  This routine is then called
1378 // from the stub.  On exit, we know where to jump in the caller's code.
1379 // After this C code exits, the stub will pop his frame and end in a jump
1380 // (instead of a return).  We enter the caller's default handler.
1381 //
1382 // This must be JRT_LEAF:
1383 //     - caller will not change its state as we cannot block on exit,
1384 //       therefore raw_exception_handler_for_return_address is all it takes
1385 //       to handle deoptimized blobs
1386 //
1387 // However, there needs to be a safepoint check in the middle!  So compiled
1388 // safepoints are completely watertight.
1389 //
1390 // Thus, it cannot be a leaf since it contains the NoGCVerifier.
1391 //
1392 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1393 //
1394 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1395 #ifndef PRODUCT
1396   SharedRuntime::_rethrow_ctr++;               // count rethrows
1397 #endif
1398   assert (exception != NULL, "should have thrown a NULLPointerException");
1399 #ifdef ASSERT
1400   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1401     // should throw an exception here
1402     ShouldNotReachHere();
1403   }
1404 #endif
1405 
1406   thread->set_vm_result(exception);
1407   // Frame not compiled (handles deoptimization blob)
1408   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1409 }
1410 
1411 
1412 const TypeFunc *OptoRuntime::rethrow_Type() {
1413   // create input type (domain)
1414   const Type **fields = TypeTuple::fields(1);
1415   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1416   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1417 
1418   // create result type (range)
1419   fields = TypeTuple::fields(1);
1420   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1421   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1422 
1423   return TypeFunc::make(domain, range);
1424 }
1425 
1426 
1427 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1428   // Deoptimize the caller before continuing, as the compiled
1429   // exception handler table may not be valid.
1430   if (!StressCompiledExceptionHandlers && doit) {
1431     deoptimize_caller_frame(thread);
1432   }
1433 }
1434 
1435 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1436   // Called from within the owner thread, so no need for safepoint
1437   RegisterMap reg_map(thread);
1438   frame stub_frame = thread->last_frame();
1439   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1440   frame caller_frame = stub_frame.sender(&reg_map);
1441 
1442   // Deoptimize the caller frame.
1443   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1444 }
1445 
1446 
1447 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1448   // Called from within the owner thread, so no need for safepoint
1449   RegisterMap reg_map(thread);
1450   frame stub_frame = thread->last_frame();
1451   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1452   frame caller_frame = stub_frame.sender(&reg_map);
1453   return caller_frame.is_deoptimized_frame();
1454 }
1455 
1456 
1457 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1458   // create input type (domain)
1459   const Type **fields = TypeTuple::fields(1);
1460   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1461   // // The JavaThread* is passed to each routine as the last argument
1462   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1463   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1464 
1465   // create result type (range)
1466   fields = TypeTuple::fields(0);
1467 
1468   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1469 
1470   return TypeFunc::make(domain,range);
1471 }
1472 
1473 
1474 //-----------------------------------------------------------------------------
1475 // Dtrace support.  entry and exit probes have the same signature
1476 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1477   // create input type (domain)
1478   const Type **fields = TypeTuple::fields(2);
1479   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1480   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1481   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1482 
1483   // create result type (range)
1484   fields = TypeTuple::fields(0);
1485 
1486   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1487 
1488   return TypeFunc::make(domain,range);
1489 }
1490 
1491 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1492   // create input type (domain)
1493   const Type **fields = TypeTuple::fields(2);
1494   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1495   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1496 
1497   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1498 
1499   // create result type (range)
1500   fields = TypeTuple::fields(0);
1501 
1502   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1503 
1504   return TypeFunc::make(domain,range);
1505 }
1506 
1507 
1508 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1509   assert(obj->is_oop(), "must be a valid oop");
1510   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1511   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1512 JRT_END
1513 
1514 //-----------------------------------------------------------------------------
1515 
1516 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1517 
1518 //
1519 // dump the collected NamedCounters.
1520 //
1521 void OptoRuntime::print_named_counters() {
1522   int total_lock_count = 0;
1523   int eliminated_lock_count = 0;
1524 
1525   NamedCounter* c = _named_counters;
1526   while (c) {
1527     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1528       int count = c->count();
1529       if (count > 0) {
1530         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1531         if (Verbose) {
1532           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1533         }
1534         total_lock_count += count;
1535         if (eliminated) {
1536           eliminated_lock_count += count;
1537         }
1538       }
1539     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1540       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1541       if (blc->nonzero()) {
1542         tty->print_cr("%s", c->name());
1543         blc->print_on(tty);
1544       }
1545 #if INCLUDE_RTM_OPT
1546     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1547       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1548       if (rlc->nonzero()) {
1549         tty->print_cr("%s", c->name());
1550         rlc->print_on(tty);
1551       }
1552 #endif
1553     }
1554     c = c->next();
1555   }
1556   if (total_lock_count > 0) {
1557     tty->print_cr("dynamic locks: %d", total_lock_count);
1558     if (eliminated_lock_count) {
1559       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1560                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1561     }
1562   }
1563 }
1564 
1565 //
1566 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1567 //  name which consists of method@line for the inlining tree.
1568 //
1569 
1570 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1571   int max_depth = youngest_jvms->depth();
1572 
1573   // Visit scopes from youngest to oldest.
1574   bool first = true;
1575   stringStream st;
1576   for (int depth = max_depth; depth >= 1; depth--) {
1577     JVMState* jvms = youngest_jvms->of_depth(depth);
1578     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1579     if (!first) {
1580       st.print(" ");
1581     } else {
1582       first = false;
1583     }
1584     int bci = jvms->bci();
1585     if (bci < 0) bci = 0;
1586     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1587     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1588   }
1589   NamedCounter* c;
1590   if (tag == NamedCounter::BiasedLockingCounter) {
1591     c = new BiasedLockingNamedCounter(st.as_string());
1592   } else if (tag == NamedCounter::RTMLockingCounter) {
1593     c = new RTMLockingNamedCounter(st.as_string());
1594   } else {
1595     c = new NamedCounter(st.as_string(), tag);
1596   }
1597 
1598   // atomically add the new counter to the head of the list.  We only
1599   // add counters so this is safe.
1600   NamedCounter* head;
1601   do {
1602     c->set_next(NULL);
1603     head = _named_counters;
1604     c->set_next(head);
1605   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
1606   return c;
1607 }
1608 
1609 int trace_exception_counter = 0;
1610 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
1611   trace_exception_counter++;
1612   stringStream tempst;
1613 
1614   tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
1615   exception_oop->print_value_on(&tempst);
1616   tempst.print(" in ");
1617   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1618   if (blob->is_compiled()) {
1619     CompiledMethod* cm = blob->as_compiled_method_or_null();
1620     cm->method()->print_value_on(&tempst);
1621   } else if (blob->is_runtime_stub()) {
1622     tempst.print("<runtime-stub>");
1623   } else {
1624     tempst.print("<unknown>");
1625   }
1626   tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1627   tempst.print("]");
1628 
1629   st->print_raw_cr(tempst.as_string());
1630 }