1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/stringTable.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "gc/shared/collectedHeap.hpp"
  35 #include "gc/shared/gcLocker.inline.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "logging/log.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "memory/universe.inline.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "oops/symbol.hpp"
  42 #include "runtime/atomic.hpp"
  43 #include "runtime/compilationPolicy.hpp"
  44 #include "runtime/deoptimization.hpp"
  45 #include "runtime/frame.inline.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/mutexLocker.hpp"
  48 #include "runtime/orderAccess.inline.hpp"
  49 #include "runtime/osThread.hpp"
  50 #include "runtime/safepoint.hpp"
  51 #include "runtime/signature.hpp"
  52 #include "runtime/stubCodeGenerator.hpp"
  53 #include "runtime/stubRoutines.hpp"
  54 #include "runtime/sweeper.hpp"
  55 #include "runtime/synchronizer.hpp"
  56 #include "runtime/thread.inline.hpp"
  57 #include "runtime/timerTrace.hpp"
  58 #include "services/runtimeService.hpp"
  59 #include "trace/tracing.hpp"
  60 #include "trace/traceMacros.hpp"
  61 #include "utilities/events.hpp"
  62 #include "utilities/macros.hpp"
  63 #ifdef COMPILER1
  64 #include "c1/c1_globals.hpp"
  65 #endif
  66 
  67 // --------------------------------------------------------------------------------------------------
  68 // Implementation of Safepoint begin/end
  69 
  70 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
  71 volatile int  SafepointSynchronize::_waiting_to_block = 0;
  72 volatile int SafepointSynchronize::_safepoint_counter = 0;
  73 int SafepointSynchronize::_current_jni_active_count = 0;
  74 long  SafepointSynchronize::_end_of_last_safepoint = 0;
  75 static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
  76 static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
  77 static bool timeout_error_printed = false;
  78 
  79 // Roll all threads forward to a safepoint and suspend them all
  80 void SafepointSynchronize::begin() {
  81   EventSafepointBegin begin_event;
  82   Thread* myThread = Thread::current();
  83   assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
  84 
  85   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
  86     _safepoint_begin_time = os::javaTimeNanos();
  87     _ts_of_current_safepoint = tty->time_stamp().seconds();
  88   }
  89 
  90   Universe::heap()->safepoint_synchronize_begin();
  91 
  92   // By getting the Threads_lock, we assure that no threads are about to start or
  93   // exit. It is released again in SafepointSynchronize::end().
  94   Threads_lock->lock();
  95 
  96   assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
  97 
  98   int nof_threads = Threads::number_of_threads();
  99 
 100   log_debug(safepoint)("Safepoint synchronization initiated. (%d)", nof_threads);
 101 
 102   RuntimeService::record_safepoint_begin();
 103 
 104   MutexLocker mu(Safepoint_lock);
 105 
 106   // Reset the count of active JNI critical threads
 107   _current_jni_active_count = 0;
 108 
 109   // Set number of threads to wait for, before we initiate the callbacks
 110   _waiting_to_block = nof_threads;
 111   TryingToBlock     = 0 ;
 112   int still_running = nof_threads;
 113 
 114   // Save the starting time, so that it can be compared to see if this has taken
 115   // too long to complete.
 116   jlong safepoint_limit_time = 0;
 117   timeout_error_printed = false;
 118 
 119   // PrintSafepointStatisticsTimeout can be specified separately. When
 120   // specified, PrintSafepointStatistics will be set to true in
 121   // deferred_initialize_stat method. The initialization has to be done
 122   // early enough to avoid any races. See bug 6880029 for details.
 123   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
 124     deferred_initialize_stat();
 125   }
 126 
 127   // Begin the process of bringing the system to a safepoint.
 128   // Java threads can be in several different states and are
 129   // stopped by different mechanisms:
 130   //
 131   //  1. Running interpreted
 132   //     The interpreter dispatch table is changed to force it to
 133   //     check for a safepoint condition between bytecodes.
 134   //  2. Running in native code
 135   //     When returning from the native code, a Java thread must check
 136   //     the safepoint _state to see if we must block.  If the
 137   //     VM thread sees a Java thread in native, it does
 138   //     not wait for this thread to block.  The order of the memory
 139   //     writes and reads of both the safepoint state and the Java
 140   //     threads state is critical.  In order to guarantee that the
 141   //     memory writes are serialized with respect to each other,
 142   //     the VM thread issues a memory barrier instruction
 143   //     (on MP systems).  In order to avoid the overhead of issuing
 144   //     a memory barrier for each Java thread making native calls, each Java
 145   //     thread performs a write to a single memory page after changing
 146   //     the thread state.  The VM thread performs a sequence of
 147   //     mprotect OS calls which forces all previous writes from all
 148   //     Java threads to be serialized.  This is done in the
 149   //     os::serialize_thread_states() call.  This has proven to be
 150   //     much more efficient than executing a membar instruction
 151   //     on every call to native code.
 152   //  3. Running compiled Code
 153   //     Compiled code reads a global (Safepoint Polling) page that
 154   //     is set to fault if we are trying to get to a safepoint.
 155   //  4. Blocked
 156   //     A thread which is blocked will not be allowed to return from the
 157   //     block condition until the safepoint operation is complete.
 158   //  5. In VM or Transitioning between states
 159   //     If a Java thread is currently running in the VM or transitioning
 160   //     between states, the safepointing code will wait for the thread to
 161   //     block itself when it attempts transitions to a new state.
 162   //
 163   {
 164     EventSafepointStateSynchronization sync_event;
 165     int initial_running = 0;
 166 
 167     _state            = _synchronizing;
 168     OrderAccess::fence();
 169 
 170     // Flush all thread states to memory
 171     if (!UseMembar) {
 172       os::serialize_thread_states();
 173     }
 174 
 175     // Make interpreter safepoint aware
 176     Interpreter::notice_safepoints();
 177 
 178     if (DeferPollingPageLoopCount < 0) {
 179       // Make polling safepoint aware
 180       guarantee (PageArmed == 0, "invariant") ;
 181       PageArmed = 1 ;
 182       os::make_polling_page_unreadable();
 183     }
 184 
 185     // Consider using active_processor_count() ... but that call is expensive.
 186     int ncpus = os::processor_count() ;
 187 
 188 #ifdef ASSERT
 189     for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 190       assert(cur->safepoint_state()->is_running(), "Illegal initial state");
 191       // Clear the visited flag to ensure that the critical counts are collected properly.
 192       cur->set_visited_for_critical_count(false);
 193     }
 194 #endif // ASSERT
 195 
 196     if (SafepointTimeout)
 197       safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
 198 
 199     // Iterate through all threads until it have been determined how to stop them all at a safepoint
 200     unsigned int iterations = 0;
 201     int steps = 0 ;
 202     while(still_running > 0) {
 203       for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 204         assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
 205         ThreadSafepointState *cur_state = cur->safepoint_state();
 206         if (cur_state->is_running()) {
 207           cur_state->examine_state_of_thread();
 208           if (!cur_state->is_running()) {
 209             still_running--;
 210             // consider adjusting steps downward:
 211             //   steps = 0
 212             //   steps -= NNN
 213             //   steps >>= 1
 214             //   steps = MIN(steps, 2000-100)
 215             //   if (iterations != 0) steps -= NNN
 216           }
 217           if (log_is_enabled(Trace, safepoint)) {
 218             ResourceMark rm;
 219             cur_state->print_on(Log(safepoint)::trace_stream());
 220           }
 221         }
 222       }
 223 
 224       if (iterations == 0) {
 225         initial_running = still_running;
 226         if (PrintSafepointStatistics) {
 227           begin_statistics(nof_threads, still_running);
 228         }
 229       }
 230 
 231       if (still_running > 0) {
 232         // Check for if it takes to long
 233         if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
 234           print_safepoint_timeout(_spinning_timeout);
 235         }
 236 
 237         // Spin to avoid context switching.
 238         // There's a tension between allowing the mutators to run (and rendezvous)
 239         // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
 240         // a mutator might otherwise use profitably to reach a safepoint.  Excessive
 241         // spinning by the VM thread on a saturated system can increase rendezvous latency.
 242         // Blocking or yielding incur their own penalties in the form of context switching
 243         // and the resultant loss of $ residency.
 244         //
 245         // Further complicating matters is that yield() does not work as naively expected
 246         // on many platforms -- yield() does not guarantee that any other ready threads
 247         // will run.   As such we revert to naked_short_sleep() after some number of iterations.
 248         // nakes_short_sleep() is implemented as a short unconditional sleep.
 249         // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
 250         // can actually increase the time it takes the VM thread to detect that a system-wide
 251         // stop-the-world safepoint has been reached.  In a pathological scenario such as that
 252         // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
 253         // In that case the mutators will be stalled waiting for the safepoint to complete and the
 254         // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
 255         // will eventually wake up and detect that all mutators are safe, at which point
 256         // we'll again make progress.
 257         //
 258         // Beware too that that the VMThread typically runs at elevated priority.
 259         // Its default priority is higher than the default mutator priority.
 260         // Obviously, this complicates spinning.
 261         //
 262         // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
 263         // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
 264         //
 265         // See the comments in synchronizer.cpp for additional remarks on spinning.
 266         //
 267         // In the future we might:
 268         // 1. Modify the safepoint scheme to avoid potentially unbounded spinning.
 269         //    This is tricky as the path used by a thread exiting the JVM (say on
 270         //    on JNI call-out) simply stores into its state field.  The burden
 271         //    is placed on the VM thread, which must poll (spin).
 272         // 2. Find something useful to do while spinning.  If the safepoint is GC-related
 273         //    we might aggressively scan the stacks of threads that are already safe.
 274         // 3. Use Solaris schedctl to examine the state of the still-running mutators.
 275         //    If all the mutators are ONPROC there's no reason to sleep or yield.
 276         // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
 277         // 5. Check system saturation.  If the system is not fully saturated then
 278         //    simply spin and avoid sleep/yield.
 279         // 6. As still-running mutators rendezvous they could unpark the sleeping
 280         //    VMthread.  This works well for still-running mutators that become
 281         //    safe.  The VMthread must still poll for mutators that call-out.
 282         // 7. Drive the policy on time-since-begin instead of iterations.
 283         // 8. Consider making the spin duration a function of the # of CPUs:
 284         //    Spin = (((ncpus-1) * M) + K) + F(still_running)
 285         //    Alternately, instead of counting iterations of the outer loop
 286         //    we could count the # of threads visited in the inner loop, above.
 287         // 9. On windows consider using the return value from SwitchThreadTo()
 288         //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
 289 
 290         if (int(iterations) == DeferPollingPageLoopCount) {
 291           guarantee (PageArmed == 0, "invariant") ;
 292           PageArmed = 1 ;
 293           os::make_polling_page_unreadable();
 294         }
 295 
 296         // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
 297         // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
 298         ++steps ;
 299         if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
 300           SpinPause() ;     // MP-Polite spin
 301         } else
 302           if (steps < DeferThrSuspendLoopCount) {
 303             os::naked_yield() ;
 304           } else {
 305             os::naked_short_sleep(1);
 306           }
 307 
 308         iterations ++ ;
 309       }
 310       assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
 311     }
 312     assert(still_running == 0, "sanity check");
 313 
 314     if (PrintSafepointStatistics) {
 315       update_statistics_on_spin_end();
 316     }
 317 
 318     if (sync_event.should_commit()) {
 319       sync_event.set_safepointId(safepoint_counter());
 320       sync_event.set_initialThreadCount(initial_running);
 321       sync_event.set_runningThreadCount(_waiting_to_block);
 322       sync_event.set_iterations(iterations);
 323       sync_event.commit();
 324     }
 325   } //EventSafepointStateSync
 326 
 327   // wait until all threads are stopped
 328   {
 329     EventSafepointWaitBlocked wait_blocked_event;
 330     int initial_waiting_to_block = _waiting_to_block;
 331 
 332     while (_waiting_to_block > 0) {
 333       log_debug(safepoint)("Waiting for %d thread(s) to block", _waiting_to_block);
 334       if (!SafepointTimeout || timeout_error_printed) {
 335         Safepoint_lock->wait(true);  // true, means with no safepoint checks
 336       } else {
 337         // Compute remaining time
 338         jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
 339 
 340         // If there is no remaining time, then there is an error
 341         if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
 342           print_safepoint_timeout(_blocking_timeout);
 343         }
 344       }
 345     }
 346     assert(_waiting_to_block == 0, "sanity check");
 347 
 348 #ifndef PRODUCT
 349     if (SafepointTimeout) {
 350       jlong current_time = os::javaTimeNanos();
 351       if (safepoint_limit_time < current_time) {
 352         tty->print_cr("# SafepointSynchronize: Finished after "
 353                       INT64_FORMAT_W(6) " ms",
 354                       ((current_time - safepoint_limit_time) / MICROUNITS +
 355                        (jlong)SafepointTimeoutDelay));
 356       }
 357     }
 358 #endif
 359 
 360     assert((_safepoint_counter & 0x1) == 0, "must be even");
 361     assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 362     _safepoint_counter ++;
 363 
 364     // Record state
 365     _state = _synchronized;
 366 
 367     OrderAccess::fence();
 368 
 369     if (wait_blocked_event.should_commit()) {
 370       wait_blocked_event.set_safepointId(safepoint_counter());
 371       wait_blocked_event.set_runningThreadCount(initial_waiting_to_block);
 372       wait_blocked_event.commit();
 373     }
 374   } // EventSafepointWaitBlocked
 375 
 376 #ifdef ASSERT
 377   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 378     // make sure all the threads were visited
 379     assert(cur->was_visited_for_critical_count(), "missed a thread");
 380   }
 381 #endif // ASSERT
 382 
 383   // Update the count of active JNI critical regions
 384   GCLocker::set_jni_lock_count(_current_jni_active_count);
 385 
 386   if (log_is_enabled(Debug, safepoint)) {
 387     VM_Operation *op = VMThread::vm_operation();
 388     log_debug(safepoint)("Entering safepoint region: %s",
 389                          (op != NULL) ? op->name() : "no vm operation");
 390   }
 391 
 392   RuntimeService::record_safepoint_synchronized();
 393   if (PrintSafepointStatistics) {
 394     update_statistics_on_sync_end(os::javaTimeNanos());
 395   }
 396 
 397   // Call stuff that needs to be run when a safepoint is just about to be completed
 398   {
 399     EventSafepointCleanup cleanup_event;
 400     do_cleanup_tasks();
 401     if (cleanup_event.should_commit()) {
 402       cleanup_event.set_safepointId(safepoint_counter());
 403       cleanup_event.commit();
 404     }
 405   }
 406 
 407   if (PrintSafepointStatistics) {
 408     // Record how much time spend on the above cleanup tasks
 409     update_statistics_on_cleanup_end(os::javaTimeNanos());
 410   }
 411   if (begin_event.should_commit()) {
 412     begin_event.set_safepointId(safepoint_counter());
 413     begin_event.set_totalThreadCount(nof_threads);
 414     begin_event.set_jniCriticalThreadCount(_current_jni_active_count);
 415     begin_event.commit();
 416   }
 417 }
 418 
 419 // Wake up all threads, so they are ready to resume execution after the safepoint
 420 // operation has been carried out
 421 void SafepointSynchronize::end() {
 422   EventSafepointEnd event;
 423   int safepoint_id = safepoint_counter(); // Keep the odd counter as "id"
 424 
 425   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 426   assert((_safepoint_counter & 0x1) == 1, "must be odd");
 427   _safepoint_counter ++;
 428   // memory fence isn't required here since an odd _safepoint_counter
 429   // value can do no harm and a fence is issued below anyway.
 430 
 431   DEBUG_ONLY(Thread* myThread = Thread::current();)
 432   assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
 433 
 434   if (PrintSafepointStatistics) {
 435     end_statistics(os::javaTimeNanos());
 436   }
 437 
 438 #ifdef ASSERT
 439   // A pending_exception cannot be installed during a safepoint.  The threads
 440   // may install an async exception after they come back from a safepoint into
 441   // pending_exception after they unblock.  But that should happen later.
 442   for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
 443     assert (!(cur->has_pending_exception() &&
 444               cur->safepoint_state()->is_at_poll_safepoint()),
 445             "safepoint installed a pending exception");
 446   }
 447 #endif // ASSERT
 448 
 449   if (PageArmed) {
 450     // Make polling safepoint aware
 451     os::make_polling_page_readable();
 452     PageArmed = 0 ;
 453   }
 454 
 455   // Remove safepoint check from interpreter
 456   Interpreter::ignore_safepoints();
 457 
 458   {
 459     MutexLocker mu(Safepoint_lock);
 460 
 461     assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
 462 
 463     // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
 464     // when they get restarted.
 465     _state = _not_synchronized;
 466     OrderAccess::fence();
 467 
 468     log_debug(safepoint)("Leaving safepoint region");
 469 
 470     // Start suspended threads
 471     for(JavaThread *current = Threads::first(); current; current = current->next()) {
 472       // A problem occurring on Solaris is when attempting to restart threads
 473       // the first #cpus - 1 go well, but then the VMThread is preempted when we get
 474       // to the next one (since it has been running the longest).  We then have
 475       // to wait for a cpu to become available before we can continue restarting
 476       // threads.
 477       // FIXME: This causes the performance of the VM to degrade when active and with
 478       // large numbers of threads.  Apparently this is due to the synchronous nature
 479       // of suspending threads.
 480       //
 481       // TODO-FIXME: the comments above are vestigial and no longer apply.
 482       // Furthermore, using solaris' schedctl in this particular context confers no benefit
 483       if (VMThreadHintNoPreempt) {
 484         os::hint_no_preempt();
 485       }
 486       ThreadSafepointState* cur_state = current->safepoint_state();
 487       assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
 488       cur_state->restart();
 489       assert(cur_state->is_running(), "safepoint state has not been reset");
 490     }
 491 
 492     RuntimeService::record_safepoint_end();
 493 
 494     // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
 495     // blocked in signal_thread_blocked
 496     Threads_lock->unlock();
 497 
 498   }
 499   Universe::heap()->safepoint_synchronize_end();
 500   // record this time so VMThread can keep track how much time has elapsed
 501   // since last safepoint.
 502   _end_of_last_safepoint = os::javaTimeMillis();
 503 
 504   if (event.should_commit()) {
 505     event.set_safepointId(safepoint_id);
 506     event.commit();
 507   }
 508 }
 509 
 510 bool SafepointSynchronize::is_cleanup_needed() {
 511   // Need a safepoint if some inline cache buffers is non-empty
 512   if (!InlineCacheBuffer::is_empty()) return true;
 513   return false;
 514 }
 515 
 516 static void event_safepoint_cleanup_task_commit(EventSafepointCleanupTask& event, const char* name) {
 517   if (event.should_commit()) {
 518     event.set_safepointId(SafepointSynchronize::safepoint_counter());
 519     event.set_name(name);
 520     event.commit();
 521   }
 522 }
 523 
 524 // Various cleaning tasks that should be done periodically at safepoints
 525 void SafepointSynchronize::do_cleanup_tasks() {
 526   {
 527     const char* name = "deflating idle monitors";
 528     EventSafepointCleanupTask event;
 529     TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 530     ObjectSynchronizer::deflate_idle_monitors();
 531     event_safepoint_cleanup_task_commit(event, name);
 532   }
 533 
 534   {
 535     const char* name = "updating inline caches";
 536     EventSafepointCleanupTask event;
 537     TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 538     InlineCacheBuffer::update_inline_caches();
 539     event_safepoint_cleanup_task_commit(event, name);
 540   }
 541   {
 542     const char* name = "compilation policy safepoint handler";
 543     EventSafepointCleanupTask event;
 544     TraceTime timer("compilation policy safepoint handler", TRACETIME_LOG(Info, safepoint, cleanup));
 545     CompilationPolicy::policy()->do_safepoint_work();
 546     event_safepoint_cleanup_task_commit(event, name);
 547   }
 548 
 549   {
 550     const char* name = "mark nmethods";
 551     EventSafepointCleanupTask event;
 552     TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 553     NMethodSweeper::mark_active_nmethods();
 554     event_safepoint_cleanup_task_commit(event, name);
 555   }
 556 
 557   if (SymbolTable::needs_rehashing()) {
 558     const char* name = "rehashing symbol table";
 559     EventSafepointCleanupTask event;
 560     TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 561     SymbolTable::rehash_table();
 562     event_safepoint_cleanup_task_commit(event, name);
 563   }
 564 
 565   if (StringTable::needs_rehashing()) {
 566     const char* name = "rehashing string table";
 567     EventSafepointCleanupTask event;
 568     TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 569     StringTable::rehash_table();
 570     event_safepoint_cleanup_task_commit(event, name);
 571   }
 572 
 573   {
 574     // CMS delays purging the CLDG until the beginning of the next safepoint and to
 575     // make sure concurrent sweep is done
 576     const char* name = "purging class loader data graph";
 577     EventSafepointCleanupTask event;
 578     TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 579     ClassLoaderDataGraph::purge_if_needed();
 580     event_safepoint_cleanup_task_commit(event, name);
 581   }
 582 }
 583 
 584 
 585 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
 586   switch(state) {
 587   case _thread_in_native:
 588     // native threads are safe if they have no java stack or have walkable stack
 589     return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
 590 
 591    // blocked threads should have already have walkable stack
 592   case _thread_blocked:
 593     assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
 594     return true;
 595 
 596   default:
 597     return false;
 598   }
 599 }
 600 
 601 
 602 // See if the thread is running inside a lazy critical native and
 603 // update the thread critical count if so.  Also set a suspend flag to
 604 // cause the native wrapper to return into the JVM to do the unlock
 605 // once the native finishes.
 606 void SafepointSynchronize::check_for_lazy_critical_native(JavaThread *thread, JavaThreadState state) {
 607   if (state == _thread_in_native &&
 608       thread->has_last_Java_frame() &&
 609       thread->frame_anchor()->walkable()) {
 610     // This thread might be in a critical native nmethod so look at
 611     // the top of the stack and increment the critical count if it
 612     // is.
 613     frame wrapper_frame = thread->last_frame();
 614     CodeBlob* stub_cb = wrapper_frame.cb();
 615     if (stub_cb != NULL &&
 616         stub_cb->is_nmethod() &&
 617         stub_cb->as_nmethod_or_null()->is_lazy_critical_native()) {
 618       // A thread could potentially be in a critical native across
 619       // more than one safepoint, so only update the critical state on
 620       // the first one.  When it returns it will perform the unlock.
 621       if (!thread->do_critical_native_unlock()) {
 622 #ifdef ASSERT
 623         if (!thread->in_critical()) {
 624           GCLocker::increment_debug_jni_lock_count();
 625         }
 626 #endif
 627         thread->enter_critical();
 628         // Make sure the native wrapper calls back on return to
 629         // perform the needed critical unlock.
 630         thread->set_critical_native_unlock();
 631       }
 632     }
 633   }
 634 }
 635 
 636 
 637 
 638 // -------------------------------------------------------------------------------------------------------
 639 // Implementation of Safepoint callback point
 640 
 641 void SafepointSynchronize::block(JavaThread *thread) {
 642   assert(thread != NULL, "thread must be set");
 643   assert(thread->is_Java_thread(), "not a Java thread");
 644 
 645   // Threads shouldn't block if they are in the middle of printing, but...
 646   ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
 647 
 648   // Only bail from the block() call if the thread is gone from the
 649   // thread list; starting to exit should still block.
 650   if (thread->is_terminated()) {
 651      // block current thread if we come here from native code when VM is gone
 652      thread->block_if_vm_exited();
 653 
 654      // otherwise do nothing
 655      return;
 656   }
 657 
 658   JavaThreadState state = thread->thread_state();
 659   thread->frame_anchor()->make_walkable(thread);
 660 
 661   // Check that we have a valid thread_state at this point
 662   switch(state) {
 663     case _thread_in_vm_trans:
 664     case _thread_in_Java:        // From compiled code
 665 
 666       // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
 667       // we pretend we are still in the VM.
 668       thread->set_thread_state(_thread_in_vm);
 669 
 670       if (is_synchronizing()) {
 671          Atomic::inc (&TryingToBlock) ;
 672       }
 673 
 674       // We will always be holding the Safepoint_lock when we are examine the state
 675       // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
 676       // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
 677       Safepoint_lock->lock_without_safepoint_check();
 678       if (is_synchronizing()) {
 679         // Decrement the number of threads to wait for and signal vm thread
 680         assert(_waiting_to_block > 0, "sanity check");
 681         _waiting_to_block--;
 682         thread->safepoint_state()->set_has_called_back(true);
 683 
 684         DEBUG_ONLY(thread->set_visited_for_critical_count(true));
 685         if (thread->in_critical()) {
 686           // Notice that this thread is in a critical section
 687           increment_jni_active_count();
 688         }
 689 
 690         // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
 691         if (_waiting_to_block == 0) {
 692           Safepoint_lock->notify_all();
 693         }
 694       }
 695 
 696       // We transition the thread to state _thread_blocked here, but
 697       // we can't do our usual check for external suspension and then
 698       // self-suspend after the lock_without_safepoint_check() call
 699       // below because we are often called during transitions while
 700       // we hold different locks. That would leave us suspended while
 701       // holding a resource which results in deadlocks.
 702       thread->set_thread_state(_thread_blocked);
 703       Safepoint_lock->unlock();
 704 
 705       // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
 706       // the entire safepoint, the threads will all line up here during the safepoint.
 707       Threads_lock->lock_without_safepoint_check();
 708       // restore original state. This is important if the thread comes from compiled code, so it
 709       // will continue to execute with the _thread_in_Java state.
 710       thread->set_thread_state(state);
 711       Threads_lock->unlock();
 712       break;
 713 
 714     case _thread_in_native_trans:
 715     case _thread_blocked_trans:
 716     case _thread_new_trans:
 717       if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
 718         thread->print_thread_state();
 719         fatal("Deadlock in safepoint code.  "
 720               "Should have called back to the VM before blocking.");
 721       }
 722 
 723       // We transition the thread to state _thread_blocked here, but
 724       // we can't do our usual check for external suspension and then
 725       // self-suspend after the lock_without_safepoint_check() call
 726       // below because we are often called during transitions while
 727       // we hold different locks. That would leave us suspended while
 728       // holding a resource which results in deadlocks.
 729       thread->set_thread_state(_thread_blocked);
 730 
 731       // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
 732       // the safepoint code might still be waiting for it to block. We need to change the state here,
 733       // so it can see that it is at a safepoint.
 734 
 735       // Block until the safepoint operation is completed.
 736       Threads_lock->lock_without_safepoint_check();
 737 
 738       // Restore state
 739       thread->set_thread_state(state);
 740 
 741       Threads_lock->unlock();
 742       break;
 743 
 744     default:
 745      fatal("Illegal threadstate encountered: %d", state);
 746   }
 747 
 748   // Check for pending. async. exceptions or suspends - except if the
 749   // thread was blocked inside the VM. has_special_runtime_exit_condition()
 750   // is called last since it grabs a lock and we only want to do that when
 751   // we must.
 752   //
 753   // Note: we never deliver an async exception at a polling point as the
 754   // compiler may not have an exception handler for it. The polling
 755   // code will notice the async and deoptimize and the exception will
 756   // be delivered. (Polling at a return point is ok though). Sure is
 757   // a lot of bother for a deprecated feature...
 758   //
 759   // We don't deliver an async exception if the thread state is
 760   // _thread_in_native_trans so JNI functions won't be called with
 761   // a surprising pending exception. If the thread state is going back to java,
 762   // async exception is checked in check_special_condition_for_native_trans().
 763 
 764   if (state != _thread_blocked_trans &&
 765       state != _thread_in_vm_trans &&
 766       thread->has_special_runtime_exit_condition()) {
 767     thread->handle_special_runtime_exit_condition(
 768       !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
 769   }
 770 }
 771 
 772 // ------------------------------------------------------------------------------------------------------
 773 // Exception handlers
 774 
 775 
 776 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
 777   assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
 778   assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
 779   assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
 780 
 781   if (ShowSafepointMsgs) {
 782     tty->print("handle_polling_page_exception: ");
 783   }
 784 
 785   if (PrintSafepointStatistics) {
 786     inc_page_trap_count();
 787   }
 788 
 789   ThreadSafepointState* state = thread->safepoint_state();
 790 
 791   state->handle_polling_page_exception();
 792 }
 793 
 794 
 795 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
 796   if (!timeout_error_printed) {
 797     timeout_error_printed = true;
 798     // Print out the thread info which didn't reach the safepoint for debugging
 799     // purposes (useful when there are lots of threads in the debugger).
 800     tty->cr();
 801     tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
 802     if (reason ==  _spinning_timeout) {
 803       tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
 804     } else if (reason == _blocking_timeout) {
 805       tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
 806     }
 807 
 808     tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
 809     ThreadSafepointState *cur_state;
 810     ResourceMark rm;
 811     for(JavaThread *cur_thread = Threads::first(); cur_thread;
 812         cur_thread = cur_thread->next()) {
 813       cur_state = cur_thread->safepoint_state();
 814 
 815       if (cur_thread->thread_state() != _thread_blocked &&
 816           ((reason == _spinning_timeout && cur_state->is_running()) ||
 817            (reason == _blocking_timeout && !cur_state->has_called_back()))) {
 818         tty->print("# ");
 819         cur_thread->print();
 820         tty->cr();
 821       }
 822     }
 823     tty->print_cr("# SafepointSynchronize::begin: (End of list)");
 824   }
 825 
 826   // To debug the long safepoint, specify both DieOnSafepointTimeout &
 827   // ShowMessageBoxOnError.
 828   if (DieOnSafepointTimeout) {
 829     VM_Operation *op = VMThread::vm_operation();
 830     fatal("Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
 831           SafepointTimeoutDelay,
 832           op != NULL ? op->name() : "no vm operation");
 833   }
 834 }
 835 
 836 
 837 // -------------------------------------------------------------------------------------------------------
 838 // Implementation of ThreadSafepointState
 839 
 840 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
 841   _thread = thread;
 842   _type   = _running;
 843   _has_called_back = false;
 844   _at_poll_safepoint = false;
 845 }
 846 
 847 void ThreadSafepointState::create(JavaThread *thread) {
 848   ThreadSafepointState *state = new ThreadSafepointState(thread);
 849   thread->set_safepoint_state(state);
 850 }
 851 
 852 void ThreadSafepointState::destroy(JavaThread *thread) {
 853   if (thread->safepoint_state()) {
 854     delete(thread->safepoint_state());
 855     thread->set_safepoint_state(NULL);
 856   }
 857 }
 858 
 859 void ThreadSafepointState::examine_state_of_thread() {
 860   assert(is_running(), "better be running or just have hit safepoint poll");
 861 
 862   JavaThreadState state = _thread->thread_state();
 863 
 864   // Save the state at the start of safepoint processing.
 865   _orig_thread_state = state;
 866 
 867   // Check for a thread that is suspended. Note that thread resume tries
 868   // to grab the Threads_lock which we own here, so a thread cannot be
 869   // resumed during safepoint synchronization.
 870 
 871   // We check to see if this thread is suspended without locking to
 872   // avoid deadlocking with a third thread that is waiting for this
 873   // thread to be suspended. The third thread can notice the safepoint
 874   // that we're trying to start at the beginning of its SR_lock->wait()
 875   // call. If that happens, then the third thread will block on the
 876   // safepoint while still holding the underlying SR_lock. We won't be
 877   // able to get the SR_lock and we'll deadlock.
 878   //
 879   // We don't need to grab the SR_lock here for two reasons:
 880   // 1) The suspend flags are both volatile and are set with an
 881   //    Atomic::cmpxchg() call so we should see the suspended
 882   //    state right away.
 883   // 2) We're being called from the safepoint polling loop; if
 884   //    we don't see the suspended state on this iteration, then
 885   //    we'll come around again.
 886   //
 887   bool is_suspended = _thread->is_ext_suspended();
 888   if (is_suspended) {
 889     roll_forward(_at_safepoint);
 890     return;
 891   }
 892 
 893   // Some JavaThread states have an initial safepoint state of
 894   // running, but are actually at a safepoint. We will happily
 895   // agree and update the safepoint state here.
 896   if (SafepointSynchronize::safepoint_safe(_thread, state)) {
 897     SafepointSynchronize::check_for_lazy_critical_native(_thread, state);
 898     roll_forward(_at_safepoint);
 899     return;
 900   }
 901 
 902   if (state == _thread_in_vm) {
 903     roll_forward(_call_back);
 904     return;
 905   }
 906 
 907   // All other thread states will continue to run until they
 908   // transition and self-block in state _blocked
 909   // Safepoint polling in compiled code causes the Java threads to do the same.
 910   // Note: new threads may require a malloc so they must be allowed to finish
 911 
 912   assert(is_running(), "examine_state_of_thread on non-running thread");
 913   return;
 914 }
 915 
 916 // Returns true is thread could not be rolled forward at present position.
 917 void ThreadSafepointState::roll_forward(suspend_type type) {
 918   _type = type;
 919 
 920   switch(_type) {
 921     case _at_safepoint:
 922       SafepointSynchronize::signal_thread_at_safepoint();
 923       DEBUG_ONLY(_thread->set_visited_for_critical_count(true));
 924       if (_thread->in_critical()) {
 925         // Notice that this thread is in a critical section
 926         SafepointSynchronize::increment_jni_active_count();
 927       }
 928       break;
 929 
 930     case _call_back:
 931       set_has_called_back(false);
 932       break;
 933 
 934     case _running:
 935     default:
 936       ShouldNotReachHere();
 937   }
 938 }
 939 
 940 void ThreadSafepointState::restart() {
 941   switch(type()) {
 942     case _at_safepoint:
 943     case _call_back:
 944       break;
 945 
 946     case _running:
 947     default:
 948        tty->print_cr("restart thread " INTPTR_FORMAT " with state %d",
 949                      p2i(_thread), _type);
 950        _thread->print();
 951       ShouldNotReachHere();
 952   }
 953   _type = _running;
 954   set_has_called_back(false);
 955 }
 956 
 957 
 958 void ThreadSafepointState::print_on(outputStream *st) const {
 959   const char *s = NULL;
 960 
 961   switch(_type) {
 962     case _running                : s = "_running";              break;
 963     case _at_safepoint           : s = "_at_safepoint";         break;
 964     case _call_back              : s = "_call_back";            break;
 965     default:
 966       ShouldNotReachHere();
 967   }
 968 
 969   st->print_cr("Thread: " INTPTR_FORMAT
 970               "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
 971                p2i(_thread), _thread->osthread()->thread_id(), s, _has_called_back,
 972                _at_poll_safepoint);
 973 
 974   _thread->print_thread_state_on(st);
 975 }
 976 
 977 // ---------------------------------------------------------------------------------------------------------------------
 978 
 979 // Block the thread at the safepoint poll or poll return.
 980 void ThreadSafepointState::handle_polling_page_exception() {
 981 
 982   // Check state.  block() will set thread state to thread_in_vm which will
 983   // cause the safepoint state _type to become _call_back.
 984   assert(type() == ThreadSafepointState::_running,
 985          "polling page exception on thread not running state");
 986 
 987   // Step 1: Find the nmethod from the return address
 988   if (ShowSafepointMsgs && Verbose) {
 989     tty->print_cr("Polling page exception at " INTPTR_FORMAT, p2i(thread()->saved_exception_pc()));
 990   }
 991   address real_return_addr = thread()->saved_exception_pc();
 992 
 993   CodeBlob *cb = CodeCache::find_blob(real_return_addr);
 994   assert(cb != NULL && cb->is_compiled(), "return address should be in nmethod");
 995   CompiledMethod* nm = (CompiledMethod*)cb;
 996 
 997   // Find frame of caller
 998   frame stub_fr = thread()->last_frame();
 999   CodeBlob* stub_cb = stub_fr.cb();
1000   assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
1001   RegisterMap map(thread(), true);
1002   frame caller_fr = stub_fr.sender(&map);
1003 
1004   // Should only be poll_return or poll
1005   assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
1006 
1007   // This is a poll immediately before a return. The exception handling code
1008   // has already had the effect of causing the return to occur, so the execution
1009   // will continue immediately after the call. In addition, the oopmap at the
1010   // return point does not mark the return value as an oop (if it is), so
1011   // it needs a handle here to be updated.
1012   if( nm->is_at_poll_return(real_return_addr) ) {
1013     // See if return type is an oop.
1014     bool return_oop = nm->method()->is_returning_oop();
1015     Handle return_value;
1016     if (return_oop) {
1017       // The oop result has been saved on the stack together with all
1018       // the other registers. In order to preserve it over GCs we need
1019       // to keep it in a handle.
1020       oop result = caller_fr.saved_oop_result(&map);
1021       assert(result == NULL || result->is_oop(), "must be oop");
1022       return_value = Handle(thread(), result);
1023       assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
1024     }
1025 
1026     // Block the thread
1027     SafepointSynchronize::block(thread());
1028 
1029     // restore oop result, if any
1030     if (return_oop) {
1031       caller_fr.set_saved_oop_result(&map, return_value());
1032     }
1033   }
1034 
1035   // This is a safepoint poll. Verify the return address and block.
1036   else {
1037     set_at_poll_safepoint(true);
1038 
1039     // verify the blob built the "return address" correctly
1040     assert(real_return_addr == caller_fr.pc(), "must match");
1041 
1042     // Block the thread
1043     SafepointSynchronize::block(thread());
1044     set_at_poll_safepoint(false);
1045 
1046     // If we have a pending async exception deoptimize the frame
1047     // as otherwise we may never deliver it.
1048     if (thread()->has_async_condition()) {
1049       ThreadInVMfromJavaNoAsyncException __tiv(thread());
1050       Deoptimization::deoptimize_frame(thread(), caller_fr.id());
1051     }
1052 
1053     // If an exception has been installed we must check for a pending deoptimization
1054     // Deoptimize frame if exception has been thrown.
1055 
1056     if (thread()->has_pending_exception() ) {
1057       RegisterMap map(thread(), true);
1058       frame caller_fr = stub_fr.sender(&map);
1059       if (caller_fr.is_deoptimized_frame()) {
1060         // The exception patch will destroy registers that are still
1061         // live and will be needed during deoptimization. Defer the
1062         // Async exception should have deferred the exception until the
1063         // next safepoint which will be detected when we get into
1064         // the interpreter so if we have an exception now things
1065         // are messed up.
1066 
1067         fatal("Exception installed and deoptimization is pending");
1068       }
1069     }
1070   }
1071 }
1072 
1073 
1074 //
1075 //                     Statistics & Instrumentations
1076 //
1077 SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
1078 jlong  SafepointSynchronize::_safepoint_begin_time = 0;
1079 int    SafepointSynchronize::_cur_stat_index = 0;
1080 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
1081 julong SafepointSynchronize::_coalesced_vmop_count = 0;
1082 jlong  SafepointSynchronize::_max_sync_time = 0;
1083 jlong  SafepointSynchronize::_max_vmop_time = 0;
1084 float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
1085 
1086 static jlong  cleanup_end_time = 0;
1087 static bool   need_to_track_page_armed_status = false;
1088 static bool   init_done = false;
1089 
1090 // Helper method to print the header.
1091 static void print_header() {
1092   tty->print("         vmop                    "
1093              "[threads: total initially_running wait_to_block]    ");
1094   tty->print("[time: spin block sync cleanup vmop] ");
1095 
1096   // no page armed status printed out if it is always armed.
1097   if (need_to_track_page_armed_status) {
1098     tty->print("page_armed ");
1099   }
1100 
1101   tty->print_cr("page_trap_count");
1102 }
1103 
1104 void SafepointSynchronize::deferred_initialize_stat() {
1105   if (init_done) return;
1106 
1107   // If PrintSafepointStatisticsTimeout is specified, the statistics data will
1108   // be printed right away, in which case, _safepoint_stats will regress to
1109   // a single element array. Otherwise, it is a circular ring buffer with default
1110   // size of PrintSafepointStatisticsCount.
1111   int stats_array_size;
1112   if (PrintSafepointStatisticsTimeout > 0) {
1113     stats_array_size = 1;
1114     PrintSafepointStatistics = true;
1115   } else {
1116     stats_array_size = PrintSafepointStatisticsCount;
1117   }
1118   _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
1119                                                  * sizeof(SafepointStats), mtInternal);
1120   guarantee(_safepoint_stats != NULL,
1121             "not enough memory for safepoint instrumentation data");
1122 
1123   if (DeferPollingPageLoopCount >= 0) {
1124     need_to_track_page_armed_status = true;
1125   }
1126   init_done = true;
1127 }
1128 
1129 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
1130   assert(init_done, "safepoint statistics array hasn't been initialized");
1131   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1132 
1133   spstat->_time_stamp = _ts_of_current_safepoint;
1134 
1135   VM_Operation *op = VMThread::vm_operation();
1136   spstat->_vmop_type = (op != NULL ? op->type() : -1);
1137   if (op != NULL) {
1138     _safepoint_reasons[spstat->_vmop_type]++;
1139   }
1140 
1141   spstat->_nof_total_threads = nof_threads;
1142   spstat->_nof_initial_running_threads = nof_running;
1143   spstat->_nof_threads_hit_page_trap = 0;
1144 
1145   // Records the start time of spinning. The real time spent on spinning
1146   // will be adjusted when spin is done. Same trick is applied for time
1147   // spent on waiting for threads to block.
1148   if (nof_running != 0) {
1149     spstat->_time_to_spin = os::javaTimeNanos();
1150   }  else {
1151     spstat->_time_to_spin = 0;
1152   }
1153 }
1154 
1155 void SafepointSynchronize::update_statistics_on_spin_end() {
1156   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1157 
1158   jlong cur_time = os::javaTimeNanos();
1159 
1160   spstat->_nof_threads_wait_to_block = _waiting_to_block;
1161   if (spstat->_nof_initial_running_threads != 0) {
1162     spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
1163   }
1164 
1165   if (need_to_track_page_armed_status) {
1166     spstat->_page_armed = (PageArmed == 1);
1167   }
1168 
1169   // Records the start time of waiting for to block. Updated when block is done.
1170   if (_waiting_to_block != 0) {
1171     spstat->_time_to_wait_to_block = cur_time;
1172   } else {
1173     spstat->_time_to_wait_to_block = 0;
1174   }
1175 }
1176 
1177 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
1178   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1179 
1180   if (spstat->_nof_threads_wait_to_block != 0) {
1181     spstat->_time_to_wait_to_block = end_time -
1182       spstat->_time_to_wait_to_block;
1183   }
1184 
1185   // Records the end time of sync which will be used to calculate the total
1186   // vm operation time. Again, the real time spending in syncing will be deducted
1187   // from the start of the sync time later when end_statistics is called.
1188   spstat->_time_to_sync = end_time - _safepoint_begin_time;
1189   if (spstat->_time_to_sync > _max_sync_time) {
1190     _max_sync_time = spstat->_time_to_sync;
1191   }
1192 
1193   spstat->_time_to_do_cleanups = end_time;
1194 }
1195 
1196 void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
1197   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1198 
1199   // Record how long spent in cleanup tasks.
1200   spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
1201 
1202   cleanup_end_time = end_time;
1203 }
1204 
1205 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
1206   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1207 
1208   // Update the vm operation time.
1209   spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
1210   if (spstat->_time_to_exec_vmop > _max_vmop_time) {
1211     _max_vmop_time = spstat->_time_to_exec_vmop;
1212   }
1213   // Only the sync time longer than the specified
1214   // PrintSafepointStatisticsTimeout will be printed out right away.
1215   // By default, it is -1 meaning all samples will be put into the list.
1216   if ( PrintSafepointStatisticsTimeout > 0) {
1217     if (spstat->_time_to_sync > (jlong)PrintSafepointStatisticsTimeout * MICROUNITS) {
1218       print_statistics();
1219     }
1220   } else {
1221     // The safepoint statistics will be printed out when the _safepoin_stats
1222     // array fills up.
1223     if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
1224       print_statistics();
1225       _cur_stat_index = 0;
1226     } else {
1227       _cur_stat_index++;
1228     }
1229   }
1230 }
1231 
1232 void SafepointSynchronize::print_statistics() {
1233   SafepointStats* sstats = _safepoint_stats;
1234 
1235   for (int index = 0; index <= _cur_stat_index; index++) {
1236     if (index % 30 == 0) {
1237       print_header();
1238     }
1239     sstats = &_safepoint_stats[index];
1240     tty->print("%.3f: ", sstats->_time_stamp);
1241     tty->print("%-26s       ["
1242                INT32_FORMAT_W(8) INT32_FORMAT_W(11) INT32_FORMAT_W(15)
1243                "    ]    ",
1244                sstats->_vmop_type == -1 ? "no vm operation" :
1245                VM_Operation::name(sstats->_vmop_type),
1246                sstats->_nof_total_threads,
1247                sstats->_nof_initial_running_threads,
1248                sstats->_nof_threads_wait_to_block);
1249     // "/ MICROUNITS " is to convert the unit from nanos to millis.
1250     tty->print("  ["
1251                INT64_FORMAT_W(6) INT64_FORMAT_W(6)
1252                INT64_FORMAT_W(6) INT64_FORMAT_W(6)
1253                INT64_FORMAT_W(6) "    ]  ",
1254                sstats->_time_to_spin / MICROUNITS,
1255                sstats->_time_to_wait_to_block / MICROUNITS,
1256                sstats->_time_to_sync / MICROUNITS,
1257                sstats->_time_to_do_cleanups / MICROUNITS,
1258                sstats->_time_to_exec_vmop / MICROUNITS);
1259 
1260     if (need_to_track_page_armed_status) {
1261       tty->print(INT32_FORMAT "         ", sstats->_page_armed);
1262     }
1263     tty->print_cr(INT32_FORMAT "   ", sstats->_nof_threads_hit_page_trap);
1264   }
1265 }
1266 
1267 // This method will be called when VM exits. It will first call
1268 // print_statistics to print out the rest of the sampling.  Then
1269 // it tries to summarize the sampling.
1270 void SafepointSynchronize::print_stat_on_exit() {
1271   if (_safepoint_stats == NULL) return;
1272 
1273   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1274 
1275   // During VM exit, end_statistics may not get called and in that
1276   // case, if the sync time is less than PrintSafepointStatisticsTimeout,
1277   // don't print it out.
1278   // Approximate the vm op time.
1279   _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
1280     os::javaTimeNanos() - cleanup_end_time;
1281 
1282   if ( PrintSafepointStatisticsTimeout < 0 ||
1283        spstat->_time_to_sync > (jlong)PrintSafepointStatisticsTimeout * MICROUNITS) {
1284     print_statistics();
1285   }
1286   tty->cr();
1287 
1288   // Print out polling page sampling status.
1289   if (!need_to_track_page_armed_status) {
1290     tty->print_cr("Polling page always armed");
1291   } else {
1292     tty->print_cr("Defer polling page loop count = " INTX_FORMAT "\n",
1293                   DeferPollingPageLoopCount);
1294   }
1295 
1296   for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
1297     if (_safepoint_reasons[index] != 0) {
1298       tty->print_cr("%-26s" UINT64_FORMAT_W(10), VM_Operation::name(index),
1299                     _safepoint_reasons[index]);
1300     }
1301   }
1302 
1303   tty->print_cr(UINT64_FORMAT_W(5) " VM operations coalesced during safepoint",
1304                 _coalesced_vmop_count);
1305   tty->print_cr("Maximum sync time  " INT64_FORMAT_W(5) " ms",
1306                 _max_sync_time / MICROUNITS);
1307   tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
1308                 INT64_FORMAT_W(5) " ms",
1309                 _max_vmop_time / MICROUNITS);
1310 }
1311 
1312 // ------------------------------------------------------------------------------------------------
1313 // Non-product code
1314 
1315 #ifndef PRODUCT
1316 
1317 void SafepointSynchronize::print_state() {
1318   if (_state == _not_synchronized) {
1319     tty->print_cr("not synchronized");
1320   } else if (_state == _synchronizing || _state == _synchronized) {
1321     tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
1322                   "synchronized");
1323 
1324     for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
1325        cur->safepoint_state()->print();
1326     }
1327   }
1328 }
1329 
1330 void SafepointSynchronize::safepoint_msg(const char* format, ...) {
1331   if (ShowSafepointMsgs) {
1332     va_list ap;
1333     va_start(ap, format);
1334     tty->vprint_cr(format, ap);
1335     va_end(ap);
1336   }
1337 }
1338 
1339 #endif // !PRODUCT