1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/compiledIC.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/abstractCompiler.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/disassembler.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/interpreterRuntime.hpp"
  40 #include "logging/log.hpp"
  41 #include "memory/metaspaceShared.hpp"
  42 #include "memory/resourceArea.hpp"
  43 #include "memory/universe.inline.hpp"
  44 #include "oops/klass.hpp"
  45 #include "oops/objArrayKlass.hpp"
  46 #include "oops/oop.inline.hpp"
  47 #include "prims/forte.hpp"
  48 #include "prims/jvmtiExport.hpp"
  49 #include "prims/methodHandles.hpp"
  50 #include "prims/nativeLookup.hpp"
  51 #include "runtime/arguments.hpp"
  52 #include "runtime/atomic.hpp"
  53 #include "runtime/biasedLocking.hpp"
  54 #include "runtime/compilationPolicy.hpp"
  55 #include "runtime/handles.inline.hpp"
  56 #include "runtime/init.hpp"
  57 #include "runtime/interfaceSupport.hpp"
  58 #include "runtime/java.hpp"
  59 #include "runtime/javaCalls.hpp"
  60 #include "runtime/sharedRuntime.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "runtime/vframe.hpp"
  63 #include "runtime/vframeArray.hpp"
  64 #include "trace/tracing.hpp"
  65 #include "utilities/copy.hpp"
  66 #include "utilities/dtrace.hpp"
  67 #include "utilities/events.hpp"
  68 #include "utilities/hashtable.inline.hpp"
  69 #include "utilities/macros.hpp"
  70 #include "utilities/xmlstream.hpp"
  71 #ifdef COMPILER1
  72 #include "c1/c1_Runtime1.hpp"
  73 #endif
  74 
  75 // Shared stub locations
  76 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  77 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  78 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  79 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  80 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  81 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  82 address             SharedRuntime::_resolve_static_call_entry;
  83 
  84 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  85 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  86 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  87 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  88 
  89 #ifdef COMPILER2
  90 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  91 #endif // COMPILER2
  92 
  93 
  94 //----------------------------generate_stubs-----------------------------------
  95 void SharedRuntime::generate_stubs() {
  96   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
  97   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
  98   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
  99   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 100   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 101   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 102   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 103 
 104 #if defined(COMPILER2) || INCLUDE_JVMCI
 105   // Vectors are generated only by C2 and JVMCI.
 106   bool support_wide = is_wide_vector(MaxVectorSize);
 107   if (support_wide) {
 108     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 109   }
 110 #endif // COMPILER2 || INCLUDE_JVMCI
 111   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 112   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 113 
 114   generate_deopt_blob();
 115 
 116 #ifdef COMPILER2
 117   generate_uncommon_trap_blob();
 118 #endif // COMPILER2
 119 }
 120 
 121 #include <math.h>
 122 
 123 // Implementation of SharedRuntime
 124 
 125 #ifndef PRODUCT
 126 // For statistics
 127 int SharedRuntime::_ic_miss_ctr = 0;
 128 int SharedRuntime::_wrong_method_ctr = 0;
 129 int SharedRuntime::_resolve_static_ctr = 0;
 130 int SharedRuntime::_resolve_virtual_ctr = 0;
 131 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 132 int SharedRuntime::_implicit_null_throws = 0;
 133 int SharedRuntime::_implicit_div0_throws = 0;
 134 int SharedRuntime::_throw_null_ctr = 0;
 135 
 136 int SharedRuntime::_nof_normal_calls = 0;
 137 int SharedRuntime::_nof_optimized_calls = 0;
 138 int SharedRuntime::_nof_inlined_calls = 0;
 139 int SharedRuntime::_nof_megamorphic_calls = 0;
 140 int SharedRuntime::_nof_static_calls = 0;
 141 int SharedRuntime::_nof_inlined_static_calls = 0;
 142 int SharedRuntime::_nof_interface_calls = 0;
 143 int SharedRuntime::_nof_optimized_interface_calls = 0;
 144 int SharedRuntime::_nof_inlined_interface_calls = 0;
 145 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 146 int SharedRuntime::_nof_removable_exceptions = 0;
 147 
 148 int SharedRuntime::_new_instance_ctr=0;
 149 int SharedRuntime::_new_array_ctr=0;
 150 int SharedRuntime::_multi1_ctr=0;
 151 int SharedRuntime::_multi2_ctr=0;
 152 int SharedRuntime::_multi3_ctr=0;
 153 int SharedRuntime::_multi4_ctr=0;
 154 int SharedRuntime::_multi5_ctr=0;
 155 int SharedRuntime::_mon_enter_stub_ctr=0;
 156 int SharedRuntime::_mon_exit_stub_ctr=0;
 157 int SharedRuntime::_mon_enter_ctr=0;
 158 int SharedRuntime::_mon_exit_ctr=0;
 159 int SharedRuntime::_partial_subtype_ctr=0;
 160 int SharedRuntime::_jbyte_array_copy_ctr=0;
 161 int SharedRuntime::_jshort_array_copy_ctr=0;
 162 int SharedRuntime::_jint_array_copy_ctr=0;
 163 int SharedRuntime::_jlong_array_copy_ctr=0;
 164 int SharedRuntime::_oop_array_copy_ctr=0;
 165 int SharedRuntime::_checkcast_array_copy_ctr=0;
 166 int SharedRuntime::_unsafe_array_copy_ctr=0;
 167 int SharedRuntime::_generic_array_copy_ctr=0;
 168 int SharedRuntime::_slow_array_copy_ctr=0;
 169 int SharedRuntime::_find_handler_ctr=0;
 170 int SharedRuntime::_rethrow_ctr=0;
 171 
 172 int     SharedRuntime::_ICmiss_index                    = 0;
 173 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 174 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 175 
 176 
 177 void SharedRuntime::trace_ic_miss(address at) {
 178   for (int i = 0; i < _ICmiss_index; i++) {
 179     if (_ICmiss_at[i] == at) {
 180       _ICmiss_count[i]++;
 181       return;
 182     }
 183   }
 184   int index = _ICmiss_index++;
 185   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 186   _ICmiss_at[index] = at;
 187   _ICmiss_count[index] = 1;
 188 }
 189 
 190 void SharedRuntime::print_ic_miss_histogram() {
 191   if (ICMissHistogram) {
 192     tty->print_cr("IC Miss Histogram:");
 193     int tot_misses = 0;
 194     for (int i = 0; i < _ICmiss_index; i++) {
 195       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 196       tot_misses += _ICmiss_count[i];
 197     }
 198     tty->print_cr("Total IC misses: %7d", tot_misses);
 199   }
 200 }
 201 #endif // PRODUCT
 202 
 203 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 204   return x * y;
 205 JRT_END
 206 
 207 
 208 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 209   if (x == min_jlong && y == CONST64(-1)) {
 210     return x;
 211   } else {
 212     return x / y;
 213   }
 214 JRT_END
 215 
 216 
 217 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 218   if (x == min_jlong && y == CONST64(-1)) {
 219     return 0;
 220   } else {
 221     return x % y;
 222   }
 223 JRT_END
 224 
 225 
 226 const juint  float_sign_mask  = 0x7FFFFFFF;
 227 const juint  float_infinity   = 0x7F800000;
 228 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 229 const julong double_infinity  = CONST64(0x7FF0000000000000);
 230 
 231 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 232 #ifdef _WIN64
 233   // 64-bit Windows on amd64 returns the wrong values for
 234   // infinity operands.
 235   union { jfloat f; juint i; } xbits, ybits;
 236   xbits.f = x;
 237   ybits.f = y;
 238   // x Mod Infinity == x unless x is infinity
 239   if (((xbits.i & float_sign_mask) != float_infinity) &&
 240        ((ybits.i & float_sign_mask) == float_infinity) ) {
 241     return x;
 242   }
 243   return ((jfloat)fmod_winx64((double)x, (double)y));
 244 #else
 245   return ((jfloat)fmod((double)x,(double)y));
 246 #endif
 247 JRT_END
 248 
 249 
 250 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 251 #ifdef _WIN64
 252   union { jdouble d; julong l; } xbits, ybits;
 253   xbits.d = x;
 254   ybits.d = y;
 255   // x Mod Infinity == x unless x is infinity
 256   if (((xbits.l & double_sign_mask) != double_infinity) &&
 257        ((ybits.l & double_sign_mask) == double_infinity) ) {
 258     return x;
 259   }
 260   return ((jdouble)fmod_winx64((double)x, (double)y));
 261 #else
 262   return ((jdouble)fmod((double)x,(double)y));
 263 #endif
 264 JRT_END
 265 
 266 #ifdef __SOFTFP__
 267 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 268   return x + y;
 269 JRT_END
 270 
 271 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 272   return x - y;
 273 JRT_END
 274 
 275 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 276   return x * y;
 277 JRT_END
 278 
 279 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 280   return x / y;
 281 JRT_END
 282 
 283 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 284   return x + y;
 285 JRT_END
 286 
 287 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 288   return x - y;
 289 JRT_END
 290 
 291 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 292   return x * y;
 293 JRT_END
 294 
 295 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 296   return x / y;
 297 JRT_END
 298 
 299 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 300   return (jfloat)x;
 301 JRT_END
 302 
 303 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 304   return (jdouble)x;
 305 JRT_END
 306 
 307 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 308   return (jdouble)x;
 309 JRT_END
 310 
 311 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 312   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 313 JRT_END
 314 
 315 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 316   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 317 JRT_END
 318 
 319 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 320   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 321 JRT_END
 322 
 323 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 324   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 325 JRT_END
 326 
 327 // Functions to return the opposite of the aeabi functions for nan.
 328 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 329   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 330 JRT_END
 331 
 332 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 333   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 334 JRT_END
 335 
 336 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 337   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 338 JRT_END
 339 
 340 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 341   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 342 JRT_END
 343 
 344 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 345   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 346 JRT_END
 347 
 348 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 349   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 350 JRT_END
 351 
 352 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 353   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 354 JRT_END
 355 
 356 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 357   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 358 JRT_END
 359 
 360 // Intrinsics make gcc generate code for these.
 361 float  SharedRuntime::fneg(float f)   {
 362   return -f;
 363 }
 364 
 365 double SharedRuntime::dneg(double f)  {
 366   return -f;
 367 }
 368 
 369 #endif // __SOFTFP__
 370 
 371 #if defined(__SOFTFP__) || defined(E500V2)
 372 // Intrinsics make gcc generate code for these.
 373 double SharedRuntime::dabs(double f)  {
 374   return (f <= (double)0.0) ? (double)0.0 - f : f;
 375 }
 376 
 377 #endif
 378 
 379 #if defined(__SOFTFP__) || defined(PPC)
 380 double SharedRuntime::dsqrt(double f) {
 381   return sqrt(f);
 382 }
 383 #endif
 384 
 385 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 386   if (g_isnan(x))
 387     return 0;
 388   if (x >= (jfloat) max_jint)
 389     return max_jint;
 390   if (x <= (jfloat) min_jint)
 391     return min_jint;
 392   return (jint) x;
 393 JRT_END
 394 
 395 
 396 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 397   if (g_isnan(x))
 398     return 0;
 399   if (x >= (jfloat) max_jlong)
 400     return max_jlong;
 401   if (x <= (jfloat) min_jlong)
 402     return min_jlong;
 403   return (jlong) x;
 404 JRT_END
 405 
 406 
 407 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 408   if (g_isnan(x))
 409     return 0;
 410   if (x >= (jdouble) max_jint)
 411     return max_jint;
 412   if (x <= (jdouble) min_jint)
 413     return min_jint;
 414   return (jint) x;
 415 JRT_END
 416 
 417 
 418 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 419   if (g_isnan(x))
 420     return 0;
 421   if (x >= (jdouble) max_jlong)
 422     return max_jlong;
 423   if (x <= (jdouble) min_jlong)
 424     return min_jlong;
 425   return (jlong) x;
 426 JRT_END
 427 
 428 
 429 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 430   return (jfloat)x;
 431 JRT_END
 432 
 433 
 434 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 435   return (jfloat)x;
 436 JRT_END
 437 
 438 
 439 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 440   return (jdouble)x;
 441 JRT_END
 442 
 443 // Exception handling across interpreter/compiler boundaries
 444 //
 445 // exception_handler_for_return_address(...) returns the continuation address.
 446 // The continuation address is the entry point of the exception handler of the
 447 // previous frame depending on the return address.
 448 
 449 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 450   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 451   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 452 
 453   // Reset method handle flag.
 454   thread->set_is_method_handle_return(false);
 455 
 456 #if INCLUDE_JVMCI
 457   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 458   // and other exception handler continuations do not read it
 459   thread->set_exception_pc(NULL);
 460 #endif // INCLUDE_JVMCI
 461 
 462   // The fastest case first
 463   CodeBlob* blob = CodeCache::find_blob(return_address);
 464   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 465   if (nm != NULL) {
 466     // Set flag if return address is a method handle call site.
 467     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 468     // native nmethods don't have exception handlers
 469     assert(!nm->is_native_method(), "no exception handler");
 470     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 471     if (nm->is_deopt_pc(return_address)) {
 472       // If we come here because of a stack overflow, the stack may be
 473       // unguarded. Reguard the stack otherwise if we return to the
 474       // deopt blob and the stack bang causes a stack overflow we
 475       // crash.
 476       bool guard_pages_enabled = thread->stack_guards_enabled();
 477       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 478       if (thread->reserved_stack_activation() != thread->stack_base()) {
 479         thread->set_reserved_stack_activation(thread->stack_base());
 480       }
 481       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 482       return SharedRuntime::deopt_blob()->unpack_with_exception();
 483     } else {
 484       return nm->exception_begin();
 485     }
 486   }
 487 
 488   // Entry code
 489   if (StubRoutines::returns_to_call_stub(return_address)) {
 490     return StubRoutines::catch_exception_entry();
 491   }
 492   // Interpreted code
 493   if (Interpreter::contains(return_address)) {
 494     return Interpreter::rethrow_exception_entry();
 495   }
 496 
 497   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 498   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 499 
 500 #ifndef PRODUCT
 501   { ResourceMark rm;
 502     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 503     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 504     tty->print_cr("b) other problem");
 505   }
 506 #endif // PRODUCT
 507 
 508   ShouldNotReachHere();
 509   return NULL;
 510 }
 511 
 512 
 513 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 514   return raw_exception_handler_for_return_address(thread, return_address);
 515 JRT_END
 516 
 517 
 518 address SharedRuntime::get_poll_stub(address pc) {
 519   address stub;
 520   // Look up the code blob
 521   CodeBlob *cb = CodeCache::find_blob(pc);
 522 
 523   // Should be an nmethod
 524   assert(cb && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 525 
 526   // Look up the relocation information
 527   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 528     "safepoint polling: type must be poll");
 529 
 530 #ifdef ASSERT
 531   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 532     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 533     Disassembler::decode(cb);
 534     fatal("Only polling locations are used for safepoint");
 535   }
 536 #endif
 537 
 538   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 539   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 540   if (at_poll_return) {
 541     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 542            "polling page return stub not created yet");
 543     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 544   } else if (has_wide_vectors) {
 545     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 546            "polling page vectors safepoint stub not created yet");
 547     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 548   } else {
 549     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 550            "polling page safepoint stub not created yet");
 551     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 552   }
 553   log_debug(safepoint)("... found polling page %s exception at pc = "
 554                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 555                        at_poll_return ? "return" : "loop",
 556                        (intptr_t)pc, (intptr_t)stub);
 557   return stub;
 558 }
 559 
 560 
 561 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 562   assert(caller.is_interpreted_frame(), "");
 563   int args_size = ArgumentSizeComputer(sig).size() + 1;
 564   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 565   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 566   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 567   return result;
 568 }
 569 
 570 
 571 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 572   if (JvmtiExport::can_post_on_exceptions()) {
 573     vframeStream vfst(thread, true);
 574     methodHandle method = methodHandle(thread, vfst.method());
 575     address bcp = method()->bcp_from(vfst.bci());
 576     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 577   }
 578   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 579 }
 580 
 581 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 582   Handle h_exception = Exceptions::new_exception(thread, name, message);
 583   throw_and_post_jvmti_exception(thread, h_exception);
 584 }
 585 
 586 // The interpreter code to call this tracing function is only
 587 // called/generated when UL is on for redefine, class and has the right level
 588 // and tags. Since obsolete methods are never compiled, we don't have
 589 // to modify the compilers to generate calls to this function.
 590 //
 591 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 592     JavaThread* thread, Method* method))
 593   if (method->is_obsolete()) {
 594     // We are calling an obsolete method, but this is not necessarily
 595     // an error. Our method could have been redefined just after we
 596     // fetched the Method* from the constant pool.
 597     ResourceMark rm;
 598     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 599   }
 600   return 0;
 601 JRT_END
 602 
 603 // ret_pc points into caller; we are returning caller's exception handler
 604 // for given exception
 605 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 606                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 607   assert(cm != NULL, "must exist");
 608   ResourceMark rm;
 609 
 610 #if INCLUDE_JVMCI
 611   if (cm->is_compiled_by_jvmci()) {
 612     // lookup exception handler for this pc
 613     int catch_pco = ret_pc - cm->code_begin();
 614     ExceptionHandlerTable table(cm);
 615     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 616     if (t != NULL) {
 617       return cm->code_begin() + t->pco();
 618     } else {
 619       // there is no exception handler for this pc => deoptimize
 620       cm->make_not_entrant();
 621 
 622       // Use Deoptimization::deoptimize for all of its side-effects:
 623       // revoking biases of monitors, gathering traps statistics, logging...
 624       // it also patches the return pc but we do not care about that
 625       // since we return a continuation to the deopt_blob below.
 626       JavaThread* thread = JavaThread::current();
 627       RegisterMap reg_map(thread, UseBiasedLocking);
 628       frame runtime_frame = thread->last_frame();
 629       frame caller_frame = runtime_frame.sender(&reg_map);
 630       Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
 631 
 632       return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 633     }
 634   }
 635 #endif // INCLUDE_JVMCI
 636 
 637   nmethod* nm = cm->as_nmethod();
 638   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 639   // determine handler bci, if any
 640   EXCEPTION_MARK;
 641 
 642   int handler_bci = -1;
 643   int scope_depth = 0;
 644   if (!force_unwind) {
 645     int bci = sd->bci();
 646     bool recursive_exception = false;
 647     do {
 648       bool skip_scope_increment = false;
 649       // exception handler lookup
 650       Klass* ek = exception->klass();
 651       methodHandle mh(THREAD, sd->method());
 652       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 653       if (HAS_PENDING_EXCEPTION) {
 654         recursive_exception = true;
 655         // We threw an exception while trying to find the exception handler.
 656         // Transfer the new exception to the exception handle which will
 657         // be set into thread local storage, and do another lookup for an
 658         // exception handler for this exception, this time starting at the
 659         // BCI of the exception handler which caused the exception to be
 660         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 661         // argument to ensure that the correct exception is thrown (4870175).
 662         recursive_exception_occurred = true;
 663         exception = Handle(THREAD, PENDING_EXCEPTION);
 664         CLEAR_PENDING_EXCEPTION;
 665         if (handler_bci >= 0) {
 666           bci = handler_bci;
 667           handler_bci = -1;
 668           skip_scope_increment = true;
 669         }
 670       }
 671       else {
 672         recursive_exception = false;
 673       }
 674       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 675         sd = sd->sender();
 676         if (sd != NULL) {
 677           bci = sd->bci();
 678         }
 679         ++scope_depth;
 680       }
 681     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 682   }
 683 
 684   // found handling method => lookup exception handler
 685   int catch_pco = ret_pc - nm->code_begin();
 686 
 687   ExceptionHandlerTable table(nm);
 688   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 689   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 690     // Allow abbreviated catch tables.  The idea is to allow a method
 691     // to materialize its exceptions without committing to the exact
 692     // routing of exceptions.  In particular this is needed for adding
 693     // a synthetic handler to unlock monitors when inlining
 694     // synchronized methods since the unlock path isn't represented in
 695     // the bytecodes.
 696     t = table.entry_for(catch_pco, -1, 0);
 697   }
 698 
 699 #ifdef COMPILER1
 700   if (t == NULL && nm->is_compiled_by_c1()) {
 701     assert(nm->unwind_handler_begin() != NULL, "");
 702     return nm->unwind_handler_begin();
 703   }
 704 #endif
 705 
 706   if (t == NULL) {
 707     ttyLocker ttyl;
 708     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 709     tty->print_cr("   Exception:");
 710     exception->print();
 711     tty->cr();
 712     tty->print_cr(" Compiled exception table :");
 713     table.print();
 714     nm->print_code();
 715     guarantee(false, "missing exception handler");
 716     return NULL;
 717   }
 718 
 719   return nm->code_begin() + t->pco();
 720 }
 721 
 722 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 723   // These errors occur only at call sites
 724   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 725 JRT_END
 726 
 727 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 728   // These errors occur only at call sites
 729   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 730 JRT_END
 731 
 732 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 733   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 734 JRT_END
 735 
 736 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 737   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 738 JRT_END
 739 
 740 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 741   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 742   // cache sites (when the callee activation is not yet set up) so we are at a call site
 743   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 744 JRT_END
 745 
 746 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 747   throw_StackOverflowError_common(thread, false);
 748 JRT_END
 749 
 750 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 751   throw_StackOverflowError_common(thread, true);
 752 JRT_END
 753 
 754 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 755   // We avoid using the normal exception construction in this case because
 756   // it performs an upcall to Java, and we're already out of stack space.
 757   Thread* THREAD = thread;
 758   Klass* k = SystemDictionary::StackOverflowError_klass();
 759   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 760   if (delayed) {
 761     java_lang_Throwable::set_message(exception_oop,
 762                                      Universe::delayed_stack_overflow_error_message());
 763   }
 764   Handle exception (thread, exception_oop);
 765   if (StackTraceInThrowable) {
 766     java_lang_Throwable::fill_in_stack_trace(exception);
 767   }
 768   // Increment counter for hs_err file reporting
 769   Atomic::inc(&Exceptions::_stack_overflow_errors);
 770   throw_and_post_jvmti_exception(thread, exception);
 771 }
 772 
 773 #if INCLUDE_JVMCI
 774 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
 775   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 776   thread->set_jvmci_implicit_exception_pc(pc);
 777   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 778   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 779 }
 780 #endif // INCLUDE_JVMCI
 781 
 782 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 783                                                            address pc,
 784                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 785 {
 786   address target_pc = NULL;
 787 
 788   if (Interpreter::contains(pc)) {
 789 #ifdef CC_INTERP
 790     // C++ interpreter doesn't throw implicit exceptions
 791     ShouldNotReachHere();
 792 #else
 793     switch (exception_kind) {
 794       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 795       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 796       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 797       default:                      ShouldNotReachHere();
 798     }
 799 #endif // !CC_INTERP
 800   } else {
 801     switch (exception_kind) {
 802       case STACK_OVERFLOW: {
 803         // Stack overflow only occurs upon frame setup; the callee is
 804         // going to be unwound. Dispatch to a shared runtime stub
 805         // which will cause the StackOverflowError to be fabricated
 806         // and processed.
 807         // Stack overflow should never occur during deoptimization:
 808         // the compiled method bangs the stack by as much as the
 809         // interpreter would need in case of a deoptimization. The
 810         // deoptimization blob and uncommon trap blob bang the stack
 811         // in a debug VM to verify the correctness of the compiled
 812         // method stack banging.
 813         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 814         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 815         return StubRoutines::throw_StackOverflowError_entry();
 816       }
 817 
 818       case IMPLICIT_NULL: {
 819         if (VtableStubs::contains(pc)) {
 820           // We haven't yet entered the callee frame. Fabricate an
 821           // exception and begin dispatching it in the caller. Since
 822           // the caller was at a call site, it's safe to destroy all
 823           // caller-saved registers, as these entry points do.
 824           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 825 
 826           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 827           if (vt_stub == NULL) return NULL;
 828 
 829           if (vt_stub->is_abstract_method_error(pc)) {
 830             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 831             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 832             return StubRoutines::throw_AbstractMethodError_entry();
 833           } else {
 834             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 835             return StubRoutines::throw_NullPointerException_at_call_entry();
 836           }
 837         } else {
 838           CodeBlob* cb = CodeCache::find_blob(pc);
 839 
 840           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 841           if (cb == NULL) return NULL;
 842 
 843           // Exception happened in CodeCache. Must be either:
 844           // 1. Inline-cache check in C2I handler blob,
 845           // 2. Inline-cache check in nmethod, or
 846           // 3. Implicit null exception in nmethod
 847 
 848           if (!cb->is_compiled()) {
 849             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 850             if (!is_in_blob) {
 851               // Allow normal crash reporting to handle this
 852               return NULL;
 853             }
 854             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 855             // There is no handler here, so we will simply unwind.
 856             return StubRoutines::throw_NullPointerException_at_call_entry();
 857           }
 858 
 859           // Otherwise, it's a compiled method.  Consult its exception handlers.
 860           CompiledMethod* cm = (CompiledMethod*)cb;
 861           if (cm->inlinecache_check_contains(pc)) {
 862             // exception happened inside inline-cache check code
 863             // => the nmethod is not yet active (i.e., the frame
 864             // is not set up yet) => use return address pushed by
 865             // caller => don't push another return address
 866             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 867             return StubRoutines::throw_NullPointerException_at_call_entry();
 868           }
 869 
 870           if (cm->method()->is_method_handle_intrinsic()) {
 871             // exception happened inside MH dispatch code, similar to a vtable stub
 872             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 873             return StubRoutines::throw_NullPointerException_at_call_entry();
 874           }
 875 
 876 #ifndef PRODUCT
 877           _implicit_null_throws++;
 878 #endif
 879 #if INCLUDE_JVMCI
 880           if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 881             // If there's no PcDesc then we'll die way down inside of
 882             // deopt instead of just getting normal error reporting,
 883             // so only go there if it will succeed.
 884             return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
 885           } else {
 886 #endif // INCLUDE_JVMCI
 887           assert (cm->is_nmethod(), "Expect nmethod");
 888           target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
 889 #if INCLUDE_JVMCI
 890           }
 891 #endif // INCLUDE_JVMCI
 892           // If there's an unexpected fault, target_pc might be NULL,
 893           // in which case we want to fall through into the normal
 894           // error handling code.
 895         }
 896 
 897         break; // fall through
 898       }
 899 
 900 
 901       case IMPLICIT_DIVIDE_BY_ZERO: {
 902         CompiledMethod* cm = CodeCache::find_compiled(pc);
 903         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 904 #ifndef PRODUCT
 905         _implicit_div0_throws++;
 906 #endif
 907 #if INCLUDE_JVMCI
 908         if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 909           return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
 910         } else {
 911 #endif // INCLUDE_JVMCI
 912         target_pc = cm->continuation_for_implicit_exception(pc);
 913 #if INCLUDE_JVMCI
 914         }
 915 #endif // INCLUDE_JVMCI
 916         // If there's an unexpected fault, target_pc might be NULL,
 917         // in which case we want to fall through into the normal
 918         // error handling code.
 919         break; // fall through
 920       }
 921 
 922       default: ShouldNotReachHere();
 923     }
 924 
 925     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 926 
 927     if (exception_kind == IMPLICIT_NULL) {
 928 #ifndef PRODUCT
 929       // for AbortVMOnException flag
 930       Exceptions::debug_check_abort("java.lang.NullPointerException");
 931 #endif //PRODUCT
 932       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 933     } else {
 934 #ifndef PRODUCT
 935       // for AbortVMOnException flag
 936       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 937 #endif //PRODUCT
 938       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 939     }
 940     return target_pc;
 941   }
 942 
 943   ShouldNotReachHere();
 944   return NULL;
 945 }
 946 
 947 
 948 /**
 949  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 950  * installed in the native function entry of all native Java methods before
 951  * they get linked to their actual native methods.
 952  *
 953  * \note
 954  * This method actually never gets called!  The reason is because
 955  * the interpreter's native entries call NativeLookup::lookup() which
 956  * throws the exception when the lookup fails.  The exception is then
 957  * caught and forwarded on the return from NativeLookup::lookup() call
 958  * before the call to the native function.  This might change in the future.
 959  */
 960 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 961 {
 962   // We return a bad value here to make sure that the exception is
 963   // forwarded before we look at the return value.
 964   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 965 }
 966 JNI_END
 967 
 968 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 969   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 970 }
 971 
 972 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 973 #if INCLUDE_JVMCI
 974   if (!obj->klass()->has_finalizer()) {
 975     return;
 976   }
 977 #endif // INCLUDE_JVMCI
 978   assert(obj->is_oop(), "must be a valid oop");
 979   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 980   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 981 JRT_END
 982 
 983 
 984 jlong SharedRuntime::get_java_tid(Thread* thread) {
 985   if (thread != NULL) {
 986     if (thread->is_Java_thread()) {
 987       oop obj = ((JavaThread*)thread)->threadObj();
 988       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 989     }
 990   }
 991   return 0;
 992 }
 993 
 994 /**
 995  * This function ought to be a void function, but cannot be because
 996  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 997  * 6254741.  Once that is fixed we can remove the dummy return value.
 998  */
 999 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1000   return dtrace_object_alloc_base(Thread::current(), o, size);
1001 }
1002 
1003 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1004   assert(DTraceAllocProbes, "wrong call");
1005   Klass* klass = o->klass();
1006   Symbol* name = klass->name();
1007   HOTSPOT_OBJECT_ALLOC(
1008                    get_java_tid(thread),
1009                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1010   return 0;
1011 }
1012 
1013 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1014     JavaThread* thread, Method* method))
1015   assert(DTraceMethodProbes, "wrong call");
1016   Symbol* kname = method->klass_name();
1017   Symbol* name = method->name();
1018   Symbol* sig = method->signature();
1019   HOTSPOT_METHOD_ENTRY(
1020       get_java_tid(thread),
1021       (char *) kname->bytes(), kname->utf8_length(),
1022       (char *) name->bytes(), name->utf8_length(),
1023       (char *) sig->bytes(), sig->utf8_length());
1024   return 0;
1025 JRT_END
1026 
1027 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1028     JavaThread* thread, Method* method))
1029   assert(DTraceMethodProbes, "wrong call");
1030   Symbol* kname = method->klass_name();
1031   Symbol* name = method->name();
1032   Symbol* sig = method->signature();
1033   HOTSPOT_METHOD_RETURN(
1034       get_java_tid(thread),
1035       (char *) kname->bytes(), kname->utf8_length(),
1036       (char *) name->bytes(), name->utf8_length(),
1037       (char *) sig->bytes(), sig->utf8_length());
1038   return 0;
1039 JRT_END
1040 
1041 
1042 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1043 // for a call current in progress, i.e., arguments has been pushed on stack
1044 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1045 // vtable updates, etc.  Caller frame must be compiled.
1046 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1047   ResourceMark rm(THREAD);
1048 
1049   // last java frame on stack (which includes native call frames)
1050   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1051 
1052   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1053 }
1054 
1055 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1056   CompiledMethod* caller = vfst.nm();
1057 
1058   nmethodLocker caller_lock(caller);
1059 
1060   address pc = vfst.frame_pc();
1061   { // Get call instruction under lock because another thread may be busy patching it.
1062     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1063     return caller->attached_method_before_pc(pc);
1064   }
1065   return NULL;
1066 }
1067 
1068 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1069 // for a call current in progress, i.e., arguments has been pushed on stack
1070 // but callee has not been invoked yet.  Caller frame must be compiled.
1071 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1072                                               vframeStream& vfst,
1073                                               Bytecodes::Code& bc,
1074                                               CallInfo& callinfo, TRAPS) {
1075   Handle receiver;
1076   Handle nullHandle;  //create a handy null handle for exception returns
1077 
1078   assert(!vfst.at_end(), "Java frame must exist");
1079 
1080   // Find caller and bci from vframe
1081   methodHandle caller(THREAD, vfst.method());
1082   int          bci   = vfst.bci();
1083 
1084   Bytecode_invoke bytecode(caller, bci);
1085   int bytecode_index = bytecode.index();
1086 
1087   methodHandle attached_method = extract_attached_method(vfst);
1088   if (attached_method.not_null()) {
1089     methodHandle callee = bytecode.static_target(CHECK_NH);
1090     vmIntrinsics::ID id = callee->intrinsic_id();
1091     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1092     // it attaches statically resolved method to the call site.
1093     if (MethodHandles::is_signature_polymorphic(id) &&
1094         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1095       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1096 
1097       // Adjust invocation mode according to the attached method.
1098       switch (bc) {
1099         case Bytecodes::_invokeinterface:
1100           if (!attached_method->method_holder()->is_interface()) {
1101             bc = Bytecodes::_invokevirtual;
1102           }
1103           break;
1104         case Bytecodes::_invokehandle:
1105           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1106             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1107                                               : Bytecodes::_invokevirtual;
1108           }
1109           break;
1110       }
1111     }
1112   } else {
1113     bc = bytecode.invoke_code();
1114   }
1115 
1116   bool has_receiver = bc != Bytecodes::_invokestatic &&
1117                       bc != Bytecodes::_invokedynamic &&
1118                       bc != Bytecodes::_invokehandle;
1119 
1120   // Find receiver for non-static call
1121   if (has_receiver) {
1122     // This register map must be update since we need to find the receiver for
1123     // compiled frames. The receiver might be in a register.
1124     RegisterMap reg_map2(thread);
1125     frame stubFrame   = thread->last_frame();
1126     // Caller-frame is a compiled frame
1127     frame callerFrame = stubFrame.sender(&reg_map2);
1128 
1129     if (attached_method.is_null()) {
1130       methodHandle callee = bytecode.static_target(CHECK_NH);
1131       if (callee.is_null()) {
1132         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1133       }
1134     }
1135 
1136     // Retrieve from a compiled argument list
1137     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1138 
1139     if (receiver.is_null()) {
1140       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1141     }
1142   }
1143 
1144   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1145 
1146   // Resolve method
1147   if (attached_method.not_null()) {
1148     // Parameterized by attached method.
1149     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1150   } else {
1151     // Parameterized by bytecode.
1152     constantPoolHandle constants(THREAD, caller->constants());
1153     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1154   }
1155 
1156 #ifdef ASSERT
1157   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1158   if (has_receiver) {
1159     assert(receiver.not_null(), "should have thrown exception");
1160     Klass* receiver_klass = receiver->klass();
1161     Klass* rk = NULL;
1162     if (attached_method.not_null()) {
1163       // In case there's resolved method attached, use its holder during the check.
1164       rk = attached_method->method_holder();
1165     } else {
1166       // Klass is already loaded.
1167       constantPoolHandle constants(THREAD, caller->constants());
1168       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1169     }
1170     Klass* static_receiver_klass = rk;
1171     methodHandle callee = callinfo.selected_method();
1172     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1173            "actual receiver must be subclass of static receiver klass");
1174     if (receiver_klass->is_instance_klass()) {
1175       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1176         tty->print_cr("ERROR: Klass not yet initialized!!");
1177         receiver_klass->print();
1178       }
1179       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1180     }
1181   }
1182 #endif
1183 
1184   return receiver;
1185 }
1186 
1187 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1188   ResourceMark rm(THREAD);
1189   // We need first to check if any Java activations (compiled, interpreted)
1190   // exist on the stack since last JavaCall.  If not, we need
1191   // to get the target method from the JavaCall wrapper.
1192   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1193   methodHandle callee_method;
1194   if (vfst.at_end()) {
1195     // No Java frames were found on stack since we did the JavaCall.
1196     // Hence the stack can only contain an entry_frame.  We need to
1197     // find the target method from the stub frame.
1198     RegisterMap reg_map(thread, false);
1199     frame fr = thread->last_frame();
1200     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1201     fr = fr.sender(&reg_map);
1202     assert(fr.is_entry_frame(), "must be");
1203     // fr is now pointing to the entry frame.
1204     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1205   } else {
1206     Bytecodes::Code bc;
1207     CallInfo callinfo;
1208     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1209     callee_method = callinfo.selected_method();
1210   }
1211   assert(callee_method()->is_method(), "must be");
1212   return callee_method;
1213 }
1214 
1215 // Resolves a call.
1216 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1217                                            bool is_virtual,
1218                                            bool is_optimized, TRAPS) {
1219   methodHandle callee_method;
1220   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1221   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1222     int retry_count = 0;
1223     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1224            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1225       // If has a pending exception then there is no need to re-try to
1226       // resolve this method.
1227       // If the method has been redefined, we need to try again.
1228       // Hack: we have no way to update the vtables of arrays, so don't
1229       // require that java.lang.Object has been updated.
1230 
1231       // It is very unlikely that method is redefined more than 100 times
1232       // in the middle of resolve. If it is looping here more than 100 times
1233       // means then there could be a bug here.
1234       guarantee((retry_count++ < 100),
1235                 "Could not resolve to latest version of redefined method");
1236       // method is redefined in the middle of resolve so re-try.
1237       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1238     }
1239   }
1240   return callee_method;
1241 }
1242 
1243 // Resolves a call.  The compilers generate code for calls that go here
1244 // and are patched with the real destination of the call.
1245 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1246                                            bool is_virtual,
1247                                            bool is_optimized, TRAPS) {
1248 
1249   ResourceMark rm(thread);
1250   RegisterMap cbl_map(thread, false);
1251   frame caller_frame = thread->last_frame().sender(&cbl_map);
1252 
1253   CodeBlob* caller_cb = caller_frame.cb();
1254   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1255   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1256 
1257   // make sure caller is not getting deoptimized
1258   // and removed before we are done with it.
1259   // CLEANUP - with lazy deopt shouldn't need this lock
1260   nmethodLocker caller_lock(caller_nm);
1261 
1262   // determine call info & receiver
1263   // note: a) receiver is NULL for static calls
1264   //       b) an exception is thrown if receiver is NULL for non-static calls
1265   CallInfo call_info;
1266   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1267   Handle receiver = find_callee_info(thread, invoke_code,
1268                                      call_info, CHECK_(methodHandle()));
1269   methodHandle callee_method = call_info.selected_method();
1270 
1271   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1272          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1273          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1274          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1275          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1276 
1277   assert(caller_nm->is_alive(), "It should be alive");
1278 
1279 #ifndef PRODUCT
1280   // tracing/debugging/statistics
1281   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1282                 (is_virtual) ? (&_resolve_virtual_ctr) :
1283                                (&_resolve_static_ctr);
1284   Atomic::inc(addr);
1285 
1286   if (TraceCallFixup) {
1287     ResourceMark rm(thread);
1288     tty->print("resolving %s%s (%s) call to",
1289       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1290       Bytecodes::name(invoke_code));
1291     callee_method->print_short_name(tty);
1292     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1293                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1294   }
1295 #endif
1296 
1297   // JSR 292 key invariant:
1298   // If the resolved method is a MethodHandle invoke target, the call
1299   // site must be a MethodHandle call site, because the lambda form might tail-call
1300   // leaving the stack in a state unknown to either caller or callee
1301   // TODO detune for now but we might need it again
1302 //  assert(!callee_method->is_compiled_lambda_form() ||
1303 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1304 
1305   // Compute entry points. This might require generation of C2I converter
1306   // frames, so we cannot be holding any locks here. Furthermore, the
1307   // computation of the entry points is independent of patching the call.  We
1308   // always return the entry-point, but we only patch the stub if the call has
1309   // not been deoptimized.  Return values: For a virtual call this is an
1310   // (cached_oop, destination address) pair. For a static call/optimized
1311   // virtual this is just a destination address.
1312 
1313   StaticCallInfo static_call_info;
1314   CompiledICInfo virtual_call_info;
1315 
1316   // Make sure the callee nmethod does not get deoptimized and removed before
1317   // we are done patching the code.
1318   CompiledMethod* callee = callee_method->code();
1319 
1320   if (callee != NULL) {
1321     assert(callee->is_compiled(), "must be nmethod for patching");
1322   }
1323 
1324   if (callee != NULL && !callee->is_in_use()) {
1325     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1326     callee = NULL;
1327   }
1328   nmethodLocker nl_callee(callee);
1329 #ifdef ASSERT
1330   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1331 #endif
1332 
1333   bool is_nmethod = caller_nm->is_nmethod();
1334 
1335   if (is_virtual) {
1336     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1337     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1338     Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1339     CompiledIC::compute_monomorphic_entry(callee_method, klass,
1340                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1341                      CHECK_(methodHandle()));
1342   } else {
1343     // static call
1344     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1345   }
1346 
1347   // grab lock, check for deoptimization and potentially patch caller
1348   {
1349     MutexLocker ml_patch(CompiledIC_lock);
1350 
1351     // Lock blocks for safepoint during which both nmethods can change state.
1352 
1353     // Now that we are ready to patch if the Method* was redefined then
1354     // don't update call site and let the caller retry.
1355     // Don't update call site if callee nmethod was unloaded or deoptimized.
1356     // Don't update call site if callee nmethod was replaced by an other nmethod
1357     // which may happen when multiply alive nmethod (tiered compilation)
1358     // will be supported.
1359     if (!callee_method->is_old() &&
1360         (callee == NULL || callee->is_in_use() && (callee_method->code() == callee))) {
1361 #ifdef ASSERT
1362       // We must not try to patch to jump to an already unloaded method.
1363       if (dest_entry_point != 0) {
1364         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1365         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1366                "should not call unloaded nmethod");
1367       }
1368 #endif
1369       if (is_virtual) {
1370         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1371         if (inline_cache->is_clean()) {
1372           inline_cache->set_to_monomorphic(virtual_call_info);
1373         }
1374       } else {
1375         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1376         if (ssc->is_clean()) ssc->set(static_call_info);
1377       }
1378     }
1379 
1380   } // unlock CompiledIC_lock
1381 
1382   return callee_method;
1383 }
1384 
1385 
1386 // Inline caches exist only in compiled code
1387 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1388 #ifdef ASSERT
1389   RegisterMap reg_map(thread, false);
1390   frame stub_frame = thread->last_frame();
1391   assert(stub_frame.is_runtime_frame(), "sanity check");
1392   frame caller_frame = stub_frame.sender(&reg_map);
1393   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1394 #endif /* ASSERT */
1395 
1396   methodHandle callee_method;
1397   JRT_BLOCK
1398     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1399     // Return Method* through TLS
1400     thread->set_vm_result_2(callee_method());
1401   JRT_BLOCK_END
1402   // return compiled code entry point after potential safepoints
1403   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1404   return callee_method->verified_code_entry();
1405 JRT_END
1406 
1407 
1408 // Handle call site that has been made non-entrant
1409 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1410   // 6243940 We might end up in here if the callee is deoptimized
1411   // as we race to call it.  We don't want to take a safepoint if
1412   // the caller was interpreted because the caller frame will look
1413   // interpreted to the stack walkers and arguments are now
1414   // "compiled" so it is much better to make this transition
1415   // invisible to the stack walking code. The i2c path will
1416   // place the callee method in the callee_target. It is stashed
1417   // there because if we try and find the callee by normal means a
1418   // safepoint is possible and have trouble gc'ing the compiled args.
1419   RegisterMap reg_map(thread, false);
1420   frame stub_frame = thread->last_frame();
1421   assert(stub_frame.is_runtime_frame(), "sanity check");
1422   frame caller_frame = stub_frame.sender(&reg_map);
1423 
1424   if (caller_frame.is_interpreted_frame() ||
1425       caller_frame.is_entry_frame()) {
1426     Method* callee = thread->callee_target();
1427     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1428     thread->set_vm_result_2(callee);
1429     thread->set_callee_target(NULL);
1430     return callee->get_c2i_entry();
1431   }
1432 
1433   // Must be compiled to compiled path which is safe to stackwalk
1434   methodHandle callee_method;
1435   JRT_BLOCK
1436     // Force resolving of caller (if we called from compiled frame)
1437     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1438     thread->set_vm_result_2(callee_method());
1439   JRT_BLOCK_END
1440   // return compiled code entry point after potential safepoints
1441   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1442   return callee_method->verified_code_entry();
1443 JRT_END
1444 
1445 // Handle abstract method call
1446 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1447   return StubRoutines::throw_AbstractMethodError_entry();
1448 JRT_END
1449 
1450 
1451 // resolve a static call and patch code
1452 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1453   methodHandle callee_method;
1454   JRT_BLOCK
1455     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1456     thread->set_vm_result_2(callee_method());
1457   JRT_BLOCK_END
1458   // return compiled code entry point after potential safepoints
1459   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1460   return callee_method->verified_code_entry();
1461 JRT_END
1462 
1463 
1464 // resolve virtual call and update inline cache to monomorphic
1465 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1466   methodHandle callee_method;
1467   JRT_BLOCK
1468     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1469     thread->set_vm_result_2(callee_method());
1470   JRT_BLOCK_END
1471   // return compiled code entry point after potential safepoints
1472   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1473   return callee_method->verified_code_entry();
1474 JRT_END
1475 
1476 
1477 // Resolve a virtual call that can be statically bound (e.g., always
1478 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1479 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1480   methodHandle callee_method;
1481   JRT_BLOCK
1482     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1483     thread->set_vm_result_2(callee_method());
1484   JRT_BLOCK_END
1485   // return compiled code entry point after potential safepoints
1486   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1487   return callee_method->verified_code_entry();
1488 JRT_END
1489 
1490 
1491 
1492 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1493   ResourceMark rm(thread);
1494   CallInfo call_info;
1495   Bytecodes::Code bc;
1496 
1497   // receiver is NULL for static calls. An exception is thrown for NULL
1498   // receivers for non-static calls
1499   Handle receiver = find_callee_info(thread, bc, call_info,
1500                                      CHECK_(methodHandle()));
1501   // Compiler1 can produce virtual call sites that can actually be statically bound
1502   // If we fell thru to below we would think that the site was going megamorphic
1503   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1504   // we'd try and do a vtable dispatch however methods that can be statically bound
1505   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1506   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1507   // plain ic_miss) and the site will be converted to an optimized virtual call site
1508   // never to miss again. I don't believe C2 will produce code like this but if it
1509   // did this would still be the correct thing to do for it too, hence no ifdef.
1510   //
1511   if (call_info.resolved_method()->can_be_statically_bound()) {
1512     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1513     if (TraceCallFixup) {
1514       RegisterMap reg_map(thread, false);
1515       frame caller_frame = thread->last_frame().sender(&reg_map);
1516       ResourceMark rm(thread);
1517       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1518       callee_method->print_short_name(tty);
1519       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1520       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1521     }
1522     return callee_method;
1523   }
1524 
1525   methodHandle callee_method = call_info.selected_method();
1526 
1527   bool should_be_mono = false;
1528 
1529 #ifndef PRODUCT
1530   Atomic::inc(&_ic_miss_ctr);
1531 
1532   // Statistics & Tracing
1533   if (TraceCallFixup) {
1534     ResourceMark rm(thread);
1535     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1536     callee_method->print_short_name(tty);
1537     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1538   }
1539 
1540   if (ICMissHistogram) {
1541     MutexLocker m(VMStatistic_lock);
1542     RegisterMap reg_map(thread, false);
1543     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1544     // produce statistics under the lock
1545     trace_ic_miss(f.pc());
1546   }
1547 #endif
1548 
1549   // install an event collector so that when a vtable stub is created the
1550   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1551   // event can't be posted when the stub is created as locks are held
1552   // - instead the event will be deferred until the event collector goes
1553   // out of scope.
1554   JvmtiDynamicCodeEventCollector event_collector;
1555 
1556   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1557   { MutexLocker ml_patch (CompiledIC_lock);
1558     RegisterMap reg_map(thread, false);
1559     frame caller_frame = thread->last_frame().sender(&reg_map);
1560     CodeBlob* cb = caller_frame.cb();
1561     CompiledMethod* caller_nm = cb->as_compiled_method_or_null();
1562     if (cb->is_compiled()) {
1563       CompiledIC* inline_cache = CompiledIC_before(((CompiledMethod*)cb), caller_frame.pc());
1564       bool should_be_mono = false;
1565       if (inline_cache->is_optimized()) {
1566         if (TraceCallFixup) {
1567           ResourceMark rm(thread);
1568           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1569           callee_method->print_short_name(tty);
1570           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1571         }
1572         should_be_mono = true;
1573       } else if (inline_cache->is_icholder_call()) {
1574         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1575         if (ic_oop != NULL) {
1576 
1577           if (receiver()->klass() == ic_oop->holder_klass()) {
1578             // This isn't a real miss. We must have seen that compiled code
1579             // is now available and we want the call site converted to a
1580             // monomorphic compiled call site.
1581             // We can't assert for callee_method->code() != NULL because it
1582             // could have been deoptimized in the meantime
1583             if (TraceCallFixup) {
1584               ResourceMark rm(thread);
1585               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1586               callee_method->print_short_name(tty);
1587               tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1588             }
1589             should_be_mono = true;
1590           }
1591         }
1592       }
1593 
1594       if (should_be_mono) {
1595 
1596         // We have a path that was monomorphic but was going interpreted
1597         // and now we have (or had) a compiled entry. We correct the IC
1598         // by using a new icBuffer.
1599         CompiledICInfo info;
1600         Klass* receiver_klass = receiver()->klass();
1601         inline_cache->compute_monomorphic_entry(callee_method,
1602                                                 receiver_klass,
1603                                                 inline_cache->is_optimized(),
1604                                                 false, caller_nm->is_nmethod(),
1605                                                 info, CHECK_(methodHandle()));
1606         inline_cache->set_to_monomorphic(info);
1607       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1608         // Potential change to megamorphic
1609         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1610         if (!successful) {
1611           inline_cache->set_to_clean();
1612         }
1613       } else {
1614         // Either clean or megamorphic
1615       }
1616     } else {
1617       fatal("Unimplemented");
1618     }
1619   } // Release CompiledIC_lock
1620 
1621   return callee_method;
1622 }
1623 
1624 //
1625 // Resets a call-site in compiled code so it will get resolved again.
1626 // This routines handles both virtual call sites, optimized virtual call
1627 // sites, and static call sites. Typically used to change a call sites
1628 // destination from compiled to interpreted.
1629 //
1630 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1631   ResourceMark rm(thread);
1632   RegisterMap reg_map(thread, false);
1633   frame stub_frame = thread->last_frame();
1634   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1635   frame caller = stub_frame.sender(&reg_map);
1636 
1637   // Do nothing if the frame isn't a live compiled frame.
1638   // nmethod could be deoptimized by the time we get here
1639   // so no update to the caller is needed.
1640 
1641   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1642 
1643     address pc = caller.pc();
1644 
1645     // Check for static or virtual call
1646     bool is_static_call = false;
1647     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1648 
1649     // Default call_addr is the location of the "basic" call.
1650     // Determine the address of the call we a reresolving. With
1651     // Inline Caches we will always find a recognizable call.
1652     // With Inline Caches disabled we may or may not find a
1653     // recognizable call. We will always find a call for static
1654     // calls and for optimized virtual calls. For vanilla virtual
1655     // calls it depends on the state of the UseInlineCaches switch.
1656     //
1657     // With Inline Caches disabled we can get here for a virtual call
1658     // for two reasons:
1659     //   1 - calling an abstract method. The vtable for abstract methods
1660     //       will run us thru handle_wrong_method and we will eventually
1661     //       end up in the interpreter to throw the ame.
1662     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1663     //       call and between the time we fetch the entry address and
1664     //       we jump to it the target gets deoptimized. Similar to 1
1665     //       we will wind up in the interprter (thru a c2i with c2).
1666     //
1667     address call_addr = NULL;
1668     {
1669       // Get call instruction under lock because another thread may be
1670       // busy patching it.
1671       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1672       // Location of call instruction
1673       call_addr = caller_nm->call_instruction_address(pc);
1674     }
1675     // Make sure nmethod doesn't get deoptimized and removed until
1676     // this is done with it.
1677     // CLEANUP - with lazy deopt shouldn't need this lock
1678     nmethodLocker nmlock(caller_nm);
1679 
1680     if (call_addr != NULL) {
1681       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1682       int ret = iter.next(); // Get item
1683       if (ret) {
1684         assert(iter.addr() == call_addr, "must find call");
1685         if (iter.type() == relocInfo::static_call_type) {
1686           is_static_call = true;
1687         } else {
1688           assert(iter.type() == relocInfo::virtual_call_type ||
1689                  iter.type() == relocInfo::opt_virtual_call_type
1690                 , "unexpected relocInfo. type");
1691         }
1692       } else {
1693         assert(!UseInlineCaches, "relocation info. must exist for this address");
1694       }
1695 
1696       // Cleaning the inline cache will force a new resolve. This is more robust
1697       // than directly setting it to the new destination, since resolving of calls
1698       // is always done through the same code path. (experience shows that it
1699       // leads to very hard to track down bugs, if an inline cache gets updated
1700       // to a wrong method). It should not be performance critical, since the
1701       // resolve is only done once.
1702 
1703       bool is_nmethod = caller_nm->is_nmethod();
1704       MutexLocker ml(CompiledIC_lock);
1705       if (is_static_call) {
1706         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1707         ssc->set_to_clean();
1708       } else {
1709         // compiled, dispatched call (which used to call an interpreted method)
1710         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1711         inline_cache->set_to_clean();
1712       }
1713     }
1714   }
1715 
1716   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1717 
1718 
1719 #ifndef PRODUCT
1720   Atomic::inc(&_wrong_method_ctr);
1721 
1722   if (TraceCallFixup) {
1723     ResourceMark rm(thread);
1724     tty->print("handle_wrong_method reresolving call to");
1725     callee_method->print_short_name(tty);
1726     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1727   }
1728 #endif
1729 
1730   return callee_method;
1731 }
1732 
1733 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1734   // The faulting unsafe accesses should be changed to throw the error
1735   // synchronously instead. Meanwhile the faulting instruction will be
1736   // skipped over (effectively turning it into a no-op) and an
1737   // asynchronous exception will be raised which the thread will
1738   // handle at a later point. If the instruction is a load it will
1739   // return garbage.
1740 
1741   // Request an async exception.
1742   thread->set_pending_unsafe_access_error();
1743 
1744   // Return address of next instruction to execute.
1745   return next_pc;
1746 }
1747 
1748 #ifdef ASSERT
1749 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1750                                                                 const BasicType* sig_bt,
1751                                                                 const VMRegPair* regs) {
1752   ResourceMark rm;
1753   const int total_args_passed = method->size_of_parameters();
1754   const VMRegPair*    regs_with_member_name = regs;
1755         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1756 
1757   const int member_arg_pos = total_args_passed - 1;
1758   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1759   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1760 
1761   const bool is_outgoing = method->is_method_handle_intrinsic();
1762   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1763 
1764   for (int i = 0; i < member_arg_pos; i++) {
1765     VMReg a =    regs_with_member_name[i].first();
1766     VMReg b = regs_without_member_name[i].first();
1767     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1768   }
1769   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1770 }
1771 #endif
1772 
1773 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1774   if (destination != entry_point) {
1775     CodeBlob* callee = CodeCache::find_blob(destination);
1776     // callee == cb seems weird. It means calling interpreter thru stub.
1777     if (callee == cb || callee->is_adapter_blob()) {
1778       // static call or optimized virtual
1779       if (TraceCallFixup) {
1780         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1781         moop->print_short_name(tty);
1782         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1783       }
1784       return true;
1785     } else {
1786       if (TraceCallFixup) {
1787         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1788         moop->print_short_name(tty);
1789         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1790       }
1791       // assert is too strong could also be resolve destinations.
1792       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1793     }
1794   } else {
1795     if (TraceCallFixup) {
1796       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1797       moop->print_short_name(tty);
1798       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1799     }
1800   }
1801   return false;
1802 }
1803 
1804 // ---------------------------------------------------------------------------
1805 // We are calling the interpreter via a c2i. Normally this would mean that
1806 // we were called by a compiled method. However we could have lost a race
1807 // where we went int -> i2c -> c2i and so the caller could in fact be
1808 // interpreted. If the caller is compiled we attempt to patch the caller
1809 // so he no longer calls into the interpreter.
1810 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1811   Method* moop(method);
1812 
1813   address entry_point = moop->from_compiled_entry_no_trampoline();
1814 
1815   // It's possible that deoptimization can occur at a call site which hasn't
1816   // been resolved yet, in which case this function will be called from
1817   // an nmethod that has been patched for deopt and we can ignore the
1818   // request for a fixup.
1819   // Also it is possible that we lost a race in that from_compiled_entry
1820   // is now back to the i2c in that case we don't need to patch and if
1821   // we did we'd leap into space because the callsite needs to use
1822   // "to interpreter" stub in order to load up the Method*. Don't
1823   // ask me how I know this...
1824 
1825   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1826   if (!cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1827     return;
1828   }
1829 
1830   // The check above makes sure this is a nmethod.
1831   CompiledMethod* nm = cb->as_compiled_method_or_null();
1832   assert(nm, "must be");
1833 
1834   // Get the return PC for the passed caller PC.
1835   address return_pc = caller_pc + frame::pc_return_offset;
1836 
1837   // There is a benign race here. We could be attempting to patch to a compiled
1838   // entry point at the same time the callee is being deoptimized. If that is
1839   // the case then entry_point may in fact point to a c2i and we'd patch the
1840   // call site with the same old data. clear_code will set code() to NULL
1841   // at the end of it. If we happen to see that NULL then we can skip trying
1842   // to patch. If we hit the window where the callee has a c2i in the
1843   // from_compiled_entry and the NULL isn't present yet then we lose the race
1844   // and patch the code with the same old data. Asi es la vida.
1845 
1846   if (moop->code() == NULL) return;
1847 
1848   if (nm->is_in_use()) {
1849 
1850     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1851     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1852     if (NativeCall::is_call_before(return_pc)) {
1853       ResourceMark mark;
1854       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1855       //
1856       // bug 6281185. We might get here after resolving a call site to a vanilla
1857       // virtual call. Because the resolvee uses the verified entry it may then
1858       // see compiled code and attempt to patch the site by calling us. This would
1859       // then incorrectly convert the call site to optimized and its downhill from
1860       // there. If you're lucky you'll get the assert in the bugid, if not you've
1861       // just made a call site that could be megamorphic into a monomorphic site
1862       // for the rest of its life! Just another racing bug in the life of
1863       // fixup_callers_callsite ...
1864       //
1865       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1866       iter.next();
1867       assert(iter.has_current(), "must have a reloc at java call site");
1868       relocInfo::relocType typ = iter.reloc()->type();
1869       if (typ != relocInfo::static_call_type &&
1870            typ != relocInfo::opt_virtual_call_type &&
1871            typ != relocInfo::static_stub_type) {
1872         return;
1873       }
1874       address destination = call->destination();
1875       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1876         call->set_destination_mt_safe(entry_point);
1877       }
1878     }
1879   }
1880 IRT_END
1881 
1882 
1883 // same as JVM_Arraycopy, but called directly from compiled code
1884 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1885                                                 oopDesc* dest, jint dest_pos,
1886                                                 jint length,
1887                                                 JavaThread* thread)) {
1888 #ifndef PRODUCT
1889   _slow_array_copy_ctr++;
1890 #endif
1891   // Check if we have null pointers
1892   if (src == NULL || dest == NULL) {
1893     THROW(vmSymbols::java_lang_NullPointerException());
1894   }
1895   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1896   // even though the copy_array API also performs dynamic checks to ensure
1897   // that src and dest are truly arrays (and are conformable).
1898   // The copy_array mechanism is awkward and could be removed, but
1899   // the compilers don't call this function except as a last resort,
1900   // so it probably doesn't matter.
1901   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1902                                         (arrayOopDesc*)dest, dest_pos,
1903                                         length, thread);
1904 }
1905 JRT_END
1906 
1907 // The caller of generate_class_cast_message() (or one of its callers)
1908 // must use a ResourceMark in order to correctly free the result.
1909 char* SharedRuntime::generate_class_cast_message(
1910     JavaThread* thread, Klass* caster_klass) {
1911 
1912   // Get target class name from the checkcast instruction
1913   vframeStream vfst(thread, true);
1914   assert(!vfst.at_end(), "Java frame must exist");
1915   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1916   Klass* target_klass = vfst.method()->constants()->klass_at(
1917     cc.index(), thread);
1918   return generate_class_cast_message(caster_klass, target_klass);
1919 }
1920 
1921 // The caller of class_loader_and_module_name() (or one of its callers)
1922 // must use a ResourceMark in order to correctly free the result.
1923 const char* class_loader_and_module_name(Klass* klass) {
1924   const char* delim = "/";
1925   size_t delim_len = strlen(delim);
1926 
1927   const char* fqn = klass->external_name();
1928   // Length of message to return; always include FQN
1929   size_t msglen = strlen(fqn) + 1;
1930 
1931   bool has_cl_name = false;
1932   bool has_mod_name = false;
1933   bool has_version = false;
1934 
1935   // Use class loader name, if exists and not builtin
1936   const char* class_loader_name = "";
1937   ClassLoaderData* cld = klass->class_loader_data();
1938   assert(cld != NULL, "class_loader_data should not be NULL");
1939   if (!cld->is_builtin_class_loader_data()) {
1940     // If not builtin, look for name
1941     oop loader = klass->class_loader();
1942     if (loader != NULL) {
1943       oop class_loader_name_oop = java_lang_ClassLoader::name(loader);
1944       if (class_loader_name_oop != NULL) {
1945         class_loader_name = java_lang_String::as_utf8_string(class_loader_name_oop);
1946         if (class_loader_name != NULL && class_loader_name[0] != '\0') {
1947           has_cl_name = true;
1948           msglen += strlen(class_loader_name) + delim_len;
1949         }
1950       }
1951     }
1952   }
1953 
1954   const char* module_name = "";
1955   const char* version = "";
1956   Klass* bottom_klass = klass->is_objArray_klass() ?
1957     ObjArrayKlass::cast(klass)->bottom_klass() : klass;
1958   if (bottom_klass->is_instance_klass()) {
1959     ModuleEntry* module = InstanceKlass::cast(bottom_klass)->module();
1960     // Use module name, if exists
1961     if (module->is_named()) {
1962       has_mod_name = true;
1963       module_name = module->name()->as_C_string();
1964       msglen += strlen(module_name);
1965       // Use version if exists and is not a jdk module
1966       if (module->is_non_jdk_module() && module->version() != NULL) {
1967         has_version = true;
1968         version = module->version()->as_C_string();
1969         msglen += strlen("@") + strlen(version);
1970       }
1971     }
1972   } else {
1973     // klass is an array of primitives, so its module is java.base
1974     module_name = JAVA_BASE_NAME;
1975   }
1976 
1977   if (has_cl_name || has_mod_name) {
1978     msglen += delim_len;
1979   }
1980 
1981   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
1982 
1983   // Just return the FQN if error in allocating string
1984   if (message == NULL) {
1985     return fqn;
1986   }
1987 
1988   jio_snprintf(message, msglen, "%s%s%s%s%s%s%s",
1989                class_loader_name,
1990                (has_cl_name) ? delim : "",
1991                (has_mod_name) ? module_name : "",
1992                (has_version) ? "@" : "",
1993                (has_version) ? version : "",
1994                (has_cl_name || has_mod_name) ? delim : "",
1995                fqn);
1996   return message;
1997 }
1998 
1999 char* SharedRuntime::generate_class_cast_message(
2000     Klass* caster_klass, Klass* target_klass) {
2001 
2002   const char* caster_name = class_loader_and_module_name(caster_klass);
2003 
2004   const char* target_name = class_loader_and_module_name(target_klass);
2005 
2006   size_t msglen = strlen(caster_name) + strlen(" cannot be cast to ") + strlen(target_name) + 1;
2007 
2008   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2009   if (message == NULL) {
2010     // Shouldn't happen, but don't cause even more problems if it does
2011     message = const_cast<char*>(caster_klass->external_name());
2012   } else {
2013     jio_snprintf(message,
2014                  msglen,
2015                  "%s cannot be cast to %s",
2016                  caster_name,
2017                  target_name);
2018   }
2019   return message;
2020 }
2021 
2022 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2023   (void) JavaThread::current()->reguard_stack();
2024 JRT_END
2025 
2026 
2027 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2028 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2029   // Disable ObjectSynchronizer::quick_enter() in default config
2030   // on AARCH64 and ARM until JDK-8153107 is resolved.
2031   if (ARM_ONLY((SyncFlags & 256) != 0 &&)
2032       AARCH64_ONLY((SyncFlags & 256) != 0 &&)
2033       !SafepointSynchronize::is_synchronizing()) {
2034     // Only try quick_enter() if we're not trying to reach a safepoint
2035     // so that the calling thread reaches the safepoint more quickly.
2036     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2037   }
2038   // NO_ASYNC required because an async exception on the state transition destructor
2039   // would leave you with the lock held and it would never be released.
2040   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2041   // and the model is that an exception implies the method failed.
2042   JRT_BLOCK_NO_ASYNC
2043   oop obj(_obj);
2044   if (PrintBiasedLockingStatistics) {
2045     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2046   }
2047   Handle h_obj(THREAD, obj);
2048   if (UseBiasedLocking) {
2049     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2050     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2051   } else {
2052     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2053   }
2054   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2055   JRT_BLOCK_END
2056 JRT_END
2057 
2058 // Handles the uncommon cases of monitor unlocking in compiled code
2059 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2060    oop obj(_obj);
2061   assert(JavaThread::current() == THREAD, "invariant");
2062   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2063   // testing was unable to ever fire the assert that guarded it so I have removed it.
2064   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2065 #undef MIGHT_HAVE_PENDING
2066 #ifdef MIGHT_HAVE_PENDING
2067   // Save and restore any pending_exception around the exception mark.
2068   // While the slow_exit must not throw an exception, we could come into
2069   // this routine with one set.
2070   oop pending_excep = NULL;
2071   const char* pending_file;
2072   int pending_line;
2073   if (HAS_PENDING_EXCEPTION) {
2074     pending_excep = PENDING_EXCEPTION;
2075     pending_file  = THREAD->exception_file();
2076     pending_line  = THREAD->exception_line();
2077     CLEAR_PENDING_EXCEPTION;
2078   }
2079 #endif /* MIGHT_HAVE_PENDING */
2080 
2081   {
2082     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2083     EXCEPTION_MARK;
2084     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2085   }
2086 
2087 #ifdef MIGHT_HAVE_PENDING
2088   if (pending_excep != NULL) {
2089     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2090   }
2091 #endif /* MIGHT_HAVE_PENDING */
2092 JRT_END
2093 
2094 #ifndef PRODUCT
2095 
2096 void SharedRuntime::print_statistics() {
2097   ttyLocker ttyl;
2098   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2099 
2100   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2101 
2102   SharedRuntime::print_ic_miss_histogram();
2103 
2104   if (CountRemovableExceptions) {
2105     if (_nof_removable_exceptions > 0) {
2106       Unimplemented(); // this counter is not yet incremented
2107       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2108     }
2109   }
2110 
2111   // Dump the JRT_ENTRY counters
2112   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2113   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2114   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2115   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2116   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2117   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2118   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2119 
2120   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2121   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2122   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2123   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2124   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2125 
2126   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2127   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2128   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2129   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2130   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2131   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2132   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2133   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2134   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2135   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2136   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2137   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2138   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2139   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2140   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2141   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2142 
2143   AdapterHandlerLibrary::print_statistics();
2144 
2145   if (xtty != NULL)  xtty->tail("statistics");
2146 }
2147 
2148 inline double percent(int x, int y) {
2149   return 100.0 * x / MAX2(y, 1);
2150 }
2151 
2152 class MethodArityHistogram {
2153  public:
2154   enum { MAX_ARITY = 256 };
2155  private:
2156   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2157   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2158   static int _max_arity;                      // max. arity seen
2159   static int _max_size;                       // max. arg size seen
2160 
2161   static void add_method_to_histogram(nmethod* nm) {
2162     Method* m = nm->method();
2163     ArgumentCount args(m->signature());
2164     int arity   = args.size() + (m->is_static() ? 0 : 1);
2165     int argsize = m->size_of_parameters();
2166     arity   = MIN2(arity, MAX_ARITY-1);
2167     argsize = MIN2(argsize, MAX_ARITY-1);
2168     int count = nm->method()->compiled_invocation_count();
2169     _arity_histogram[arity]  += count;
2170     _size_histogram[argsize] += count;
2171     _max_arity = MAX2(_max_arity, arity);
2172     _max_size  = MAX2(_max_size, argsize);
2173   }
2174 
2175   void print_histogram_helper(int n, int* histo, const char* name) {
2176     const int N = MIN2(5, n);
2177     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2178     double sum = 0;
2179     double weighted_sum = 0;
2180     int i;
2181     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2182     double rest = sum;
2183     double percent = sum / 100;
2184     for (i = 0; i <= N; i++) {
2185       rest -= histo[i];
2186       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2187     }
2188     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2189     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2190   }
2191 
2192   void print_histogram() {
2193     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2194     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2195     tty->print_cr("\nSame for parameter size (in words):");
2196     print_histogram_helper(_max_size, _size_histogram, "size");
2197     tty->cr();
2198   }
2199 
2200  public:
2201   MethodArityHistogram() {
2202     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2203     _max_arity = _max_size = 0;
2204     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2205     CodeCache::nmethods_do(add_method_to_histogram);
2206     print_histogram();
2207   }
2208 };
2209 
2210 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2211 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2212 int MethodArityHistogram::_max_arity;
2213 int MethodArityHistogram::_max_size;
2214 
2215 void SharedRuntime::print_call_statistics(int comp_total) {
2216   tty->print_cr("Calls from compiled code:");
2217   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2218   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2219   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2220   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2221   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2222   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2223   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2224   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2225   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2226   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2227   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2228   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2229   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2230   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2231   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2232   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2233   tty->cr();
2234   tty->print_cr("Note 1: counter updates are not MT-safe.");
2235   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2236   tty->print_cr("        %% in nested categories are relative to their category");
2237   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2238   tty->cr();
2239 
2240   MethodArityHistogram h;
2241 }
2242 #endif
2243 
2244 
2245 // A simple wrapper class around the calling convention information
2246 // that allows sharing of adapters for the same calling convention.
2247 class AdapterFingerPrint : public CHeapObj<mtCode> {
2248  private:
2249   enum {
2250     _basic_type_bits = 4,
2251     _basic_type_mask = right_n_bits(_basic_type_bits),
2252     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2253     _compact_int_count = 3
2254   };
2255   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2256   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2257 
2258   union {
2259     int  _compact[_compact_int_count];
2260     int* _fingerprint;
2261   } _value;
2262   int _length; // A negative length indicates the fingerprint is in the compact form,
2263                // Otherwise _value._fingerprint is the array.
2264 
2265   // Remap BasicTypes that are handled equivalently by the adapters.
2266   // These are correct for the current system but someday it might be
2267   // necessary to make this mapping platform dependent.
2268   static int adapter_encoding(BasicType in) {
2269     switch (in) {
2270       case T_BOOLEAN:
2271       case T_BYTE:
2272       case T_SHORT:
2273       case T_CHAR:
2274         // There are all promoted to T_INT in the calling convention
2275         return T_INT;
2276 
2277       case T_OBJECT:
2278       case T_ARRAY:
2279         // In other words, we assume that any register good enough for
2280         // an int or long is good enough for a managed pointer.
2281 #ifdef _LP64
2282         return T_LONG;
2283 #else
2284         return T_INT;
2285 #endif
2286 
2287       case T_INT:
2288       case T_LONG:
2289       case T_FLOAT:
2290       case T_DOUBLE:
2291       case T_VOID:
2292         return in;
2293 
2294       default:
2295         ShouldNotReachHere();
2296         return T_CONFLICT;
2297     }
2298   }
2299 
2300  public:
2301   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2302     // The fingerprint is based on the BasicType signature encoded
2303     // into an array of ints with eight entries per int.
2304     int* ptr;
2305     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2306     if (len <= _compact_int_count) {
2307       assert(_compact_int_count == 3, "else change next line");
2308       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2309       // Storing the signature encoded as signed chars hits about 98%
2310       // of the time.
2311       _length = -len;
2312       ptr = _value._compact;
2313     } else {
2314       _length = len;
2315       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2316       ptr = _value._fingerprint;
2317     }
2318 
2319     // Now pack the BasicTypes with 8 per int
2320     int sig_index = 0;
2321     for (int index = 0; index < len; index++) {
2322       int value = 0;
2323       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2324         int bt = ((sig_index < total_args_passed)
2325                   ? adapter_encoding(sig_bt[sig_index++])
2326                   : 0);
2327         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2328         value = (value << _basic_type_bits) | bt;
2329       }
2330       ptr[index] = value;
2331     }
2332   }
2333 
2334   ~AdapterFingerPrint() {
2335     if (_length > 0) {
2336       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2337     }
2338   }
2339 
2340   int value(int index) {
2341     if (_length < 0) {
2342       return _value._compact[index];
2343     }
2344     return _value._fingerprint[index];
2345   }
2346   int length() {
2347     if (_length < 0) return -_length;
2348     return _length;
2349   }
2350 
2351   bool is_compact() {
2352     return _length <= 0;
2353   }
2354 
2355   unsigned int compute_hash() {
2356     int hash = 0;
2357     for (int i = 0; i < length(); i++) {
2358       int v = value(i);
2359       hash = (hash << 8) ^ v ^ (hash >> 5);
2360     }
2361     return (unsigned int)hash;
2362   }
2363 
2364   const char* as_string() {
2365     stringStream st;
2366     st.print("0x");
2367     for (int i = 0; i < length(); i++) {
2368       st.print("%08x", value(i));
2369     }
2370     return st.as_string();
2371   }
2372 
2373   bool equals(AdapterFingerPrint* other) {
2374     if (other->_length != _length) {
2375       return false;
2376     }
2377     if (_length < 0) {
2378       assert(_compact_int_count == 3, "else change next line");
2379       return _value._compact[0] == other->_value._compact[0] &&
2380              _value._compact[1] == other->_value._compact[1] &&
2381              _value._compact[2] == other->_value._compact[2];
2382     } else {
2383       for (int i = 0; i < _length; i++) {
2384         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2385           return false;
2386         }
2387       }
2388     }
2389     return true;
2390   }
2391 };
2392 
2393 
2394 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2395 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2396   friend class AdapterHandlerTableIterator;
2397 
2398  private:
2399 
2400 #ifndef PRODUCT
2401   static int _lookups; // number of calls to lookup
2402   static int _buckets; // number of buckets checked
2403   static int _equals;  // number of buckets checked with matching hash
2404   static int _hits;    // number of successful lookups
2405   static int _compact; // number of equals calls with compact signature
2406 #endif
2407 
2408   AdapterHandlerEntry* bucket(int i) {
2409     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2410   }
2411 
2412  public:
2413   AdapterHandlerTable()
2414     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2415 
2416   // Create a new entry suitable for insertion in the table
2417   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2418     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2419     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2420     if (DumpSharedSpaces) {
2421       ((CDSAdapterHandlerEntry*)entry)->init();
2422     }
2423     return entry;
2424   }
2425 
2426   // Insert an entry into the table
2427   void add(AdapterHandlerEntry* entry) {
2428     int index = hash_to_index(entry->hash());
2429     add_entry(index, entry);
2430   }
2431 
2432   void free_entry(AdapterHandlerEntry* entry) {
2433     entry->deallocate();
2434     BasicHashtable<mtCode>::free_entry(entry);
2435   }
2436 
2437   // Find a entry with the same fingerprint if it exists
2438   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2439     NOT_PRODUCT(_lookups++);
2440     AdapterFingerPrint fp(total_args_passed, sig_bt);
2441     unsigned int hash = fp.compute_hash();
2442     int index = hash_to_index(hash);
2443     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2444       NOT_PRODUCT(_buckets++);
2445       if (e->hash() == hash) {
2446         NOT_PRODUCT(_equals++);
2447         if (fp.equals(e->fingerprint())) {
2448 #ifndef PRODUCT
2449           if (fp.is_compact()) _compact++;
2450           _hits++;
2451 #endif
2452           return e;
2453         }
2454       }
2455     }
2456     return NULL;
2457   }
2458 
2459 #ifndef PRODUCT
2460   void print_statistics() {
2461     ResourceMark rm;
2462     int longest = 0;
2463     int empty = 0;
2464     int total = 0;
2465     int nonempty = 0;
2466     for (int index = 0; index < table_size(); index++) {
2467       int count = 0;
2468       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2469         count++;
2470       }
2471       if (count != 0) nonempty++;
2472       if (count == 0) empty++;
2473       if (count > longest) longest = count;
2474       total += count;
2475     }
2476     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2477                   empty, longest, total, total / (double)nonempty);
2478     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2479                   _lookups, _buckets, _equals, _hits, _compact);
2480   }
2481 #endif
2482 };
2483 
2484 
2485 #ifndef PRODUCT
2486 
2487 int AdapterHandlerTable::_lookups;
2488 int AdapterHandlerTable::_buckets;
2489 int AdapterHandlerTable::_equals;
2490 int AdapterHandlerTable::_hits;
2491 int AdapterHandlerTable::_compact;
2492 
2493 #endif
2494 
2495 class AdapterHandlerTableIterator : public StackObj {
2496  private:
2497   AdapterHandlerTable* _table;
2498   int _index;
2499   AdapterHandlerEntry* _current;
2500 
2501   void scan() {
2502     while (_index < _table->table_size()) {
2503       AdapterHandlerEntry* a = _table->bucket(_index);
2504       _index++;
2505       if (a != NULL) {
2506         _current = a;
2507         return;
2508       }
2509     }
2510   }
2511 
2512  public:
2513   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2514     scan();
2515   }
2516   bool has_next() {
2517     return _current != NULL;
2518   }
2519   AdapterHandlerEntry* next() {
2520     if (_current != NULL) {
2521       AdapterHandlerEntry* result = _current;
2522       _current = _current->next();
2523       if (_current == NULL) scan();
2524       return result;
2525     } else {
2526       return NULL;
2527     }
2528   }
2529 };
2530 
2531 
2532 // ---------------------------------------------------------------------------
2533 // Implementation of AdapterHandlerLibrary
2534 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2535 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2536 const int AdapterHandlerLibrary_size = 16*K;
2537 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2538 
2539 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2540   // Should be called only when AdapterHandlerLibrary_lock is active.
2541   if (_buffer == NULL) // Initialize lazily
2542       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2543   return _buffer;
2544 }
2545 
2546 extern "C" void unexpected_adapter_call() {
2547   ShouldNotCallThis();
2548 }
2549 
2550 void AdapterHandlerLibrary::initialize() {
2551   if (_adapters != NULL) return;
2552   _adapters = new AdapterHandlerTable();
2553 
2554   // Create a special handler for abstract methods.  Abstract methods
2555   // are never compiled so an i2c entry is somewhat meaningless, but
2556   // throw AbstractMethodError just in case.
2557   // Pass wrong_method_abstract for the c2i transitions to return
2558   // AbstractMethodError for invalid invocations.
2559   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2560   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2561                                                               StubRoutines::throw_AbstractMethodError_entry(),
2562                                                               wrong_method_abstract, wrong_method_abstract);
2563 }
2564 
2565 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2566                                                       address i2c_entry,
2567                                                       address c2i_entry,
2568                                                       address c2i_unverified_entry) {
2569   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2570 }
2571 
2572 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2573   AdapterHandlerEntry* entry = get_adapter0(method);
2574   if (method->is_shared()) {
2575     // See comments around Method::link_method()
2576     MutexLocker mu(AdapterHandlerLibrary_lock);
2577     if (method->adapter() == NULL) {
2578       method->update_adapter_trampoline(entry);
2579     }
2580     address trampoline = method->from_compiled_entry();
2581     if (*(int*)trampoline == 0) {
2582       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2583       MacroAssembler _masm(&buffer);
2584       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2585       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2586 
2587       if (PrintInterpreter) {
2588         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2589       }
2590     }
2591   }
2592 
2593   return entry;
2594 }
2595 
2596 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2597   // Use customized signature handler.  Need to lock around updates to
2598   // the AdapterHandlerTable (it is not safe for concurrent readers
2599   // and a single writer: this could be fixed if it becomes a
2600   // problem).
2601 
2602   ResourceMark rm;
2603 
2604   NOT_PRODUCT(int insts_size);
2605   AdapterBlob* new_adapter = NULL;
2606   AdapterHandlerEntry* entry = NULL;
2607   AdapterFingerPrint* fingerprint = NULL;
2608   {
2609     MutexLocker mu(AdapterHandlerLibrary_lock);
2610     // make sure data structure is initialized
2611     initialize();
2612 
2613     if (method->is_abstract()) {
2614       return _abstract_method_handler;
2615     }
2616 
2617     // Fill in the signature array, for the calling-convention call.
2618     int total_args_passed = method->size_of_parameters(); // All args on stack
2619 
2620     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2621     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2622     int i = 0;
2623     if (!method->is_static())  // Pass in receiver first
2624       sig_bt[i++] = T_OBJECT;
2625     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2626       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2627       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2628         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2629     }
2630     assert(i == total_args_passed, "");
2631 
2632     // Lookup method signature's fingerprint
2633     entry = _adapters->lookup(total_args_passed, sig_bt);
2634 
2635 #ifdef ASSERT
2636     AdapterHandlerEntry* shared_entry = NULL;
2637     // Start adapter sharing verification only after the VM is booted.
2638     if (VerifyAdapterSharing && (entry != NULL)) {
2639       shared_entry = entry;
2640       entry = NULL;
2641     }
2642 #endif
2643 
2644     if (entry != NULL) {
2645       return entry;
2646     }
2647 
2648     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2649     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2650 
2651     // Make a C heap allocated version of the fingerprint to store in the adapter
2652     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2653 
2654     // StubRoutines::code2() is initialized after this function can be called. As a result,
2655     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2656     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2657     // stub that ensure that an I2C stub is called from an interpreter frame.
2658     bool contains_all_checks = StubRoutines::code2() != NULL;
2659 
2660     // Create I2C & C2I handlers
2661     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2662     if (buf != NULL) {
2663       CodeBuffer buffer(buf);
2664       short buffer_locs[20];
2665       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2666                                              sizeof(buffer_locs)/sizeof(relocInfo));
2667 
2668       MacroAssembler _masm(&buffer);
2669       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2670                                                      total_args_passed,
2671                                                      comp_args_on_stack,
2672                                                      sig_bt,
2673                                                      regs,
2674                                                      fingerprint);
2675 #ifdef ASSERT
2676       if (VerifyAdapterSharing) {
2677         if (shared_entry != NULL) {
2678           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2679           // Release the one just created and return the original
2680           _adapters->free_entry(entry);
2681           return shared_entry;
2682         } else  {
2683           entry->save_code(buf->code_begin(), buffer.insts_size());
2684         }
2685       }
2686 #endif
2687 
2688       new_adapter = AdapterBlob::create(&buffer);
2689       NOT_PRODUCT(insts_size = buffer.insts_size());
2690     }
2691     if (new_adapter == NULL) {
2692       // CodeCache is full, disable compilation
2693       // Ought to log this but compile log is only per compile thread
2694       // and we're some non descript Java thread.
2695       return NULL; // Out of CodeCache space
2696     }
2697     entry->relocate(new_adapter->content_begin());
2698 #ifndef PRODUCT
2699     // debugging suppport
2700     if (PrintAdapterHandlers || PrintStubCode) {
2701       ttyLocker ttyl;
2702       entry->print_adapter_on(tty);
2703       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2704                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2705                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2706       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2707       if (Verbose || PrintStubCode) {
2708         address first_pc = entry->base_address();
2709         if (first_pc != NULL) {
2710           Disassembler::decode(first_pc, first_pc + insts_size);
2711           tty->cr();
2712         }
2713       }
2714     }
2715 #endif
2716     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2717     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2718     if (contains_all_checks || !VerifyAdapterCalls) {
2719       _adapters->add(entry);
2720     }
2721   }
2722   // Outside of the lock
2723   if (new_adapter != NULL) {
2724     char blob_id[256];
2725     jio_snprintf(blob_id,
2726                  sizeof(blob_id),
2727                  "%s(%s)@" PTR_FORMAT,
2728                  new_adapter->name(),
2729                  fingerprint->as_string(),
2730                  new_adapter->content_begin());
2731     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2732 
2733     if (JvmtiExport::should_post_dynamic_code_generated()) {
2734       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2735     }
2736   }
2737   return entry;
2738 }
2739 
2740 address AdapterHandlerEntry::base_address() {
2741   address base = _i2c_entry;
2742   if (base == NULL)  base = _c2i_entry;
2743   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2744   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2745   return base;
2746 }
2747 
2748 void AdapterHandlerEntry::relocate(address new_base) {
2749   address old_base = base_address();
2750   assert(old_base != NULL, "");
2751   ptrdiff_t delta = new_base - old_base;
2752   if (_i2c_entry != NULL)
2753     _i2c_entry += delta;
2754   if (_c2i_entry != NULL)
2755     _c2i_entry += delta;
2756   if (_c2i_unverified_entry != NULL)
2757     _c2i_unverified_entry += delta;
2758   assert(base_address() == new_base, "");
2759 }
2760 
2761 
2762 void AdapterHandlerEntry::deallocate() {
2763   delete _fingerprint;
2764 #ifdef ASSERT
2765   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2766 #endif
2767 }
2768 
2769 
2770 #ifdef ASSERT
2771 // Capture the code before relocation so that it can be compared
2772 // against other versions.  If the code is captured after relocation
2773 // then relative instructions won't be equivalent.
2774 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2775   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2776   _saved_code_length = length;
2777   memcpy(_saved_code, buffer, length);
2778 }
2779 
2780 
2781 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2782   if (length != _saved_code_length) {
2783     return false;
2784   }
2785 
2786   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2787 }
2788 #endif
2789 
2790 
2791 /**
2792  * Create a native wrapper for this native method.  The wrapper converts the
2793  * Java-compiled calling convention to the native convention, handles
2794  * arguments, and transitions to native.  On return from the native we transition
2795  * back to java blocking if a safepoint is in progress.
2796  */
2797 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2798   ResourceMark rm;
2799   nmethod* nm = NULL;
2800 
2801   assert(method->is_native(), "must be native");
2802   assert(method->is_method_handle_intrinsic() ||
2803          method->has_native_function(), "must have something valid to call!");
2804 
2805   {
2806     // Perform the work while holding the lock, but perform any printing outside the lock
2807     MutexLocker mu(AdapterHandlerLibrary_lock);
2808     // See if somebody beat us to it
2809     if (method->code() != NULL) {
2810       return;
2811     }
2812 
2813     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2814     assert(compile_id > 0, "Must generate native wrapper");
2815 
2816 
2817     ResourceMark rm;
2818     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2819     if (buf != NULL) {
2820       CodeBuffer buffer(buf);
2821       double locs_buf[20];
2822       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2823       MacroAssembler _masm(&buffer);
2824 
2825       // Fill in the signature array, for the calling-convention call.
2826       const int total_args_passed = method->size_of_parameters();
2827 
2828       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2829       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2830       int i=0;
2831       if (!method->is_static())  // Pass in receiver first
2832         sig_bt[i++] = T_OBJECT;
2833       SignatureStream ss(method->signature());
2834       for (; !ss.at_return_type(); ss.next()) {
2835         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2836         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2837           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2838       }
2839       assert(i == total_args_passed, "");
2840       BasicType ret_type = ss.type();
2841 
2842       // Now get the compiled-Java layout as input (or output) arguments.
2843       // NOTE: Stubs for compiled entry points of method handle intrinsics
2844       // are just trampolines so the argument registers must be outgoing ones.
2845       const bool is_outgoing = method->is_method_handle_intrinsic();
2846       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2847 
2848       // Generate the compiled-to-native wrapper code
2849       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2850 
2851       if (nm != NULL) {
2852         method->set_code(method, nm);
2853 
2854         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2855         if (directive->PrintAssemblyOption) {
2856           nm->print_code();
2857         }
2858         DirectivesStack::release(directive);
2859       }
2860     }
2861   } // Unlock AdapterHandlerLibrary_lock
2862 
2863 
2864   // Install the generated code.
2865   if (nm != NULL) {
2866     const char *msg = method->is_static() ? "(static)" : "";
2867     CompileTask::print_ul(nm, msg);
2868     if (PrintCompilation) {
2869       ttyLocker ttyl;
2870       CompileTask::print(tty, nm, msg);
2871     }
2872     nm->post_compiled_method_load_event();
2873   }
2874 }
2875 
2876 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2877   assert(thread == JavaThread::current(), "must be");
2878   // The code is about to enter a JNI lazy critical native method and
2879   // _needs_gc is true, so if this thread is already in a critical
2880   // section then just return, otherwise this thread should block
2881   // until needs_gc has been cleared.
2882   if (thread->in_critical()) {
2883     return;
2884   }
2885   // Lock and unlock a critical section to give the system a chance to block
2886   GCLocker::lock_critical(thread);
2887   GCLocker::unlock_critical(thread);
2888 JRT_END
2889 
2890 // -------------------------------------------------------------------------
2891 // Java-Java calling convention
2892 // (what you use when Java calls Java)
2893 
2894 //------------------------------name_for_receiver----------------------------------
2895 // For a given signature, return the VMReg for parameter 0.
2896 VMReg SharedRuntime::name_for_receiver() {
2897   VMRegPair regs;
2898   BasicType sig_bt = T_OBJECT;
2899   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2900   // Return argument 0 register.  In the LP64 build pointers
2901   // take 2 registers, but the VM wants only the 'main' name.
2902   return regs.first();
2903 }
2904 
2905 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2906   // This method is returning a data structure allocating as a
2907   // ResourceObject, so do not put any ResourceMarks in here.
2908   char *s = sig->as_C_string();
2909   int len = (int)strlen(s);
2910   s++; len--;                   // Skip opening paren
2911 
2912   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2913   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2914   int cnt = 0;
2915   if (has_receiver) {
2916     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2917   }
2918 
2919   while (*s != ')') {          // Find closing right paren
2920     switch (*s++) {            // Switch on signature character
2921     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2922     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2923     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2924     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2925     case 'I': sig_bt[cnt++] = T_INT;     break;
2926     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2927     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2928     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2929     case 'V': sig_bt[cnt++] = T_VOID;    break;
2930     case 'L':                   // Oop
2931       while (*s++ != ';');   // Skip signature
2932       sig_bt[cnt++] = T_OBJECT;
2933       break;
2934     case '[': {                 // Array
2935       do {                      // Skip optional size
2936         while (*s >= '0' && *s <= '9') s++;
2937       } while (*s++ == '[');   // Nested arrays?
2938       // Skip element type
2939       if (s[-1] == 'L')
2940         while (*s++ != ';'); // Skip signature
2941       sig_bt[cnt++] = T_ARRAY;
2942       break;
2943     }
2944     default : ShouldNotReachHere();
2945     }
2946   }
2947 
2948   if (has_appendix) {
2949     sig_bt[cnt++] = T_OBJECT;
2950   }
2951 
2952   assert(cnt < 256, "grow table size");
2953 
2954   int comp_args_on_stack;
2955   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2956 
2957   // the calling convention doesn't count out_preserve_stack_slots so
2958   // we must add that in to get "true" stack offsets.
2959 
2960   if (comp_args_on_stack) {
2961     for (int i = 0; i < cnt; i++) {
2962       VMReg reg1 = regs[i].first();
2963       if (reg1->is_stack()) {
2964         // Yuck
2965         reg1 = reg1->bias(out_preserve_stack_slots());
2966       }
2967       VMReg reg2 = regs[i].second();
2968       if (reg2->is_stack()) {
2969         // Yuck
2970         reg2 = reg2->bias(out_preserve_stack_slots());
2971       }
2972       regs[i].set_pair(reg2, reg1);
2973     }
2974   }
2975 
2976   // results
2977   *arg_size = cnt;
2978   return regs;
2979 }
2980 
2981 // OSR Migration Code
2982 //
2983 // This code is used convert interpreter frames into compiled frames.  It is
2984 // called from very start of a compiled OSR nmethod.  A temp array is
2985 // allocated to hold the interesting bits of the interpreter frame.  All
2986 // active locks are inflated to allow them to move.  The displaced headers and
2987 // active interpreter locals are copied into the temp buffer.  Then we return
2988 // back to the compiled code.  The compiled code then pops the current
2989 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2990 // copies the interpreter locals and displaced headers where it wants.
2991 // Finally it calls back to free the temp buffer.
2992 //
2993 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2994 
2995 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2996 
2997   //
2998   // This code is dependent on the memory layout of the interpreter local
2999   // array and the monitors. On all of our platforms the layout is identical
3000   // so this code is shared. If some platform lays the their arrays out
3001   // differently then this code could move to platform specific code or
3002   // the code here could be modified to copy items one at a time using
3003   // frame accessor methods and be platform independent.
3004 
3005   frame fr = thread->last_frame();
3006   assert(fr.is_interpreted_frame(), "");
3007   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3008 
3009   // Figure out how many monitors are active.
3010   int active_monitor_count = 0;
3011   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3012        kptr < fr.interpreter_frame_monitor_begin();
3013        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3014     if (kptr->obj() != NULL) active_monitor_count++;
3015   }
3016 
3017   // QQQ we could place number of active monitors in the array so that compiled code
3018   // could double check it.
3019 
3020   Method* moop = fr.interpreter_frame_method();
3021   int max_locals = moop->max_locals();
3022   // Allocate temp buffer, 1 word per local & 2 per active monitor
3023   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3024   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3025 
3026   // Copy the locals.  Order is preserved so that loading of longs works.
3027   // Since there's no GC I can copy the oops blindly.
3028   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3029   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3030                        (HeapWord*)&buf[0],
3031                        max_locals);
3032 
3033   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3034   int i = max_locals;
3035   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3036        kptr2 < fr.interpreter_frame_monitor_begin();
3037        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3038     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3039       BasicLock *lock = kptr2->lock();
3040       // Inflate so the displaced header becomes position-independent
3041       if (lock->displaced_header()->is_unlocked())
3042         ObjectSynchronizer::inflate_helper(kptr2->obj());
3043       // Now the displaced header is free to move
3044       buf[i++] = (intptr_t)lock->displaced_header();
3045       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3046     }
3047   }
3048   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3049 
3050   return buf;
3051 JRT_END
3052 
3053 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3054   FREE_C_HEAP_ARRAY(intptr_t, buf);
3055 JRT_END
3056 
3057 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3058   AdapterHandlerTableIterator iter(_adapters);
3059   while (iter.has_next()) {
3060     AdapterHandlerEntry* a = iter.next();
3061     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3062   }
3063   return false;
3064 }
3065 
3066 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3067   AdapterHandlerTableIterator iter(_adapters);
3068   while (iter.has_next()) {
3069     AdapterHandlerEntry* a = iter.next();
3070     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3071       st->print("Adapter for signature: ");
3072       a->print_adapter_on(tty);
3073       return;
3074     }
3075   }
3076   assert(false, "Should have found handler");
3077 }
3078 
3079 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3080   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3081                p2i(this), fingerprint()->as_string(),
3082                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3083 
3084 }
3085 
3086 #if INCLUDE_CDS
3087 
3088 void CDSAdapterHandlerEntry::init() {
3089   assert(DumpSharedSpaces, "used during dump time only");
3090   _c2i_entry_trampoline = (address)MetaspaceShared::misc_data_space_alloc(SharedRuntime::trampoline_size());
3091   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_data_space_alloc(sizeof(AdapterHandlerEntry*));
3092 };
3093 
3094 #endif // INCLUDE_CDS
3095 
3096 
3097 #ifndef PRODUCT
3098 
3099 void AdapterHandlerLibrary::print_statistics() {
3100   _adapters->print_statistics();
3101 }
3102 
3103 #endif /* PRODUCT */
3104 
3105 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3106   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3107   thread->enable_stack_reserved_zone();
3108   thread->set_reserved_stack_activation(thread->stack_base());
3109 JRT_END
3110 
3111 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3112   frame activation;
3113   CompiledMethod* nm = NULL;
3114   int count = 1;
3115 
3116   assert(fr.is_java_frame(), "Must start on Java frame");
3117 
3118   while (true) {
3119     Method* method = NULL;
3120     if (fr.is_interpreted_frame()) {
3121       method = fr.interpreter_frame_method();
3122     } else {
3123       CodeBlob* cb = fr.cb();
3124       if (cb != NULL && cb->is_compiled()) {
3125         nm = cb->as_compiled_method();
3126         method = nm->method();
3127       }
3128     }
3129     if ((method != NULL) && method->has_reserved_stack_access()) {
3130       ResourceMark rm(thread);
3131       activation = fr;
3132       warning("Potentially dangerous stack overflow in "
3133               "ReservedStackAccess annotated method %s [%d]",
3134               method->name_and_sig_as_C_string(), count++);
3135       EventReservedStackActivation event;
3136       if (event.should_commit()) {
3137         event.set_method(method);
3138         event.commit();
3139       }
3140     }
3141     if (fr.is_first_java_frame()) {
3142       break;
3143     } else {
3144       fr = fr.java_sender();
3145     }
3146   }
3147   return activation;
3148 }
3149 
3150 void SharedRuntime::on_slowpath_allocation(JavaThread* thread) {
3151   // After any safepoint, just before going back to compiled code,
3152   // we inform the GC that we will be doing initializing writes to
3153   // this object in the future without emitting card-marks, so
3154   // GC may take any compensating steps.
3155 
3156   oop new_obj = thread->vm_result();
3157   if (new_obj == NULL)  return;
3158 
3159   BarrierSet *bs = Universe::heap()->barrier_set();
3160   // GC may decide to give back a safer copy of new_obj.
3161   bs->on_slowpath_allocation(thread, new_obj);
3162   thread->set_vm_result(new_obj);
3163 }