1 /*
   2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_share_linux.hpp"
  40 #include "osContainer_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/extendedPC.hpp"
  46 #include "runtime/globals.hpp"
  47 #include "runtime/interfaceSupport.hpp"
  48 #include "runtime/init.hpp"
  49 #include "runtime/java.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/mutexLocker.hpp"
  52 #include "runtime/objectMonitor.hpp"
  53 #include "runtime/orderAccess.inline.hpp"
  54 #include "runtime/osThread.hpp"
  55 #include "runtime/perfMemory.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/statSampler.hpp"
  58 #include "runtime/stubRoutines.hpp"
  59 #include "runtime/thread.inline.hpp"
  60 #include "runtime/threadCritical.hpp"
  61 #include "runtime/timer.hpp"
  62 #include "services/attachListener.hpp"
  63 #include "services/memTracker.hpp"
  64 #include "services/runtimeService.hpp"
  65 #include "utilities/decoder.hpp"
  66 #include "utilities/defaultStream.hpp"
  67 #include "utilities/events.hpp"
  68 #include "utilities/elfFile.hpp"
  69 #include "utilities/growableArray.hpp"
  70 #include "utilities/vmError.hpp"
  71 
  72 // put OS-includes here
  73 # include <sys/types.h>
  74 # include <sys/mman.h>
  75 # include <sys/stat.h>
  76 # include <sys/select.h>
  77 # include <pthread.h>
  78 # include <signal.h>
  79 # include <errno.h>
  80 # include <dlfcn.h>
  81 # include <stdio.h>
  82 # include <unistd.h>
  83 # include <sys/resource.h>
  84 # include <pthread.h>
  85 # include <sys/stat.h>
  86 # include <sys/time.h>
  87 # include <sys/times.h>
  88 # include <sys/utsname.h>
  89 # include <sys/socket.h>
  90 # include <sys/wait.h>
  91 # include <pwd.h>
  92 # include <poll.h>
  93 # include <semaphore.h>
  94 # include <fcntl.h>
  95 # include <string.h>
  96 # include <syscall.h>
  97 # include <sys/sysinfo.h>
  98 # include <gnu/libc-version.h>
  99 # include <sys/ipc.h>
 100 # include <sys/shm.h>
 101 # include <link.h>
 102 # include <stdint.h>
 103 # include <inttypes.h>
 104 # include <sys/ioctl.h>
 105 
 106 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 107 
 108 #ifndef _GNU_SOURCE
 109   #define _GNU_SOURCE
 110   #include <sched.h>
 111   #undef _GNU_SOURCE
 112 #else
 113   #include <sched.h>
 114 #endif
 115 
 116 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 117 // getrusage() is prepared to handle the associated failure.
 118 #ifndef RUSAGE_THREAD
 119 #define RUSAGE_THREAD   (1)               /* only the calling thread */
 120 #endif
 121 
 122 #define MAX_PATH    (2 * K)
 123 
 124 #define MAX_SECS 100000000
 125 
 126 // for timer info max values which include all bits
 127 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 128 
 129 #define LARGEPAGES_BIT (1 << 6)
 130 ////////////////////////////////////////////////////////////////////////////////
 131 // global variables
 132 julong os::Linux::_physical_memory = 0;
 133 
 134 address   os::Linux::_initial_thread_stack_bottom = NULL;
 135 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 136 
 137 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 138 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 139 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 140 Mutex* os::Linux::_createThread_lock = NULL;
 141 pthread_t os::Linux::_main_thread;
 142 int os::Linux::_page_size = -1;
 143 const int os::Linux::_vm_default_page_size = (8 * K);
 144 bool os::Linux::_is_floating_stack = false;
 145 bool os::Linux::_is_NPTL = false;
 146 bool os::Linux::_supports_fast_thread_cpu_time = false;
 147 const char * os::Linux::_glibc_version = NULL;
 148 const char * os::Linux::_libpthread_version = NULL;
 149 pthread_condattr_t os::Linux::_condattr[1];
 150 
 151 static jlong initial_time_count=0;
 152 
 153 static int clock_tics_per_sec = 100;
 154 
 155 // For diagnostics to print a message once. see run_periodic_checks
 156 static sigset_t check_signal_done;
 157 static bool check_signals = true;
 158 
 159 static pid_t _initial_pid = 0;
 160 
 161 /* Signal number used to suspend/resume a thread */
 162 
 163 /* do not use any signal number less than SIGSEGV, see 4355769 */
 164 static int SR_signum = SIGUSR2;
 165 sigset_t SR_sigset;
 166 
 167 /* Used to protect dlsym() calls */
 168 static pthread_mutex_t dl_mutex;
 169 
 170 // Declarations
 171 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 172 
 173 // utility functions
 174 
 175 static int SR_initialize();
 176 
 177 julong os::available_memory() {
 178   return Linux::available_memory();
 179 }
 180 
 181 julong os::Linux::available_memory() {
 182   // values in struct sysinfo are "unsigned long"
 183   struct sysinfo si;
 184   julong avail_mem;
 185 
 186   if (OSContainer::is_containerized()) {
 187     jlong mem_limit, mem_usage;
 188     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
 189       if (PrintContainerInfo) {
 190         tty->print_cr("container memory limit %s: " JLONG_FORMAT ", using host value",
 191                        mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 192       }
 193     }
 194 
 195     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
 196       if (PrintContainerInfo) {
 197         tty->print_cr("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
 198       }
 199     }
 200 
 201     if (mem_limit > 0 && mem_usage > 0 ) {
 202       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
 203       if (PrintContainerInfo) {
 204         tty->print_cr("available container memory: " JULONG_FORMAT, avail_mem);
 205       }
 206       return avail_mem;
 207     }
 208   }
 209 
 210   sysinfo(&si);
 211   avail_mem = (julong)si.freeram * si.mem_unit;
 212   if (Verbose) {
 213     tty->print_cr("available memory: " JULONG_FORMAT, avail_mem);
 214   }
 215   return avail_mem;
 216 }
 217 
 218 julong os::physical_memory() {
 219   jlong phys_mem = 0;
 220   if (OSContainer::is_containerized()) {
 221     jlong mem_limit;
 222     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 223       if (PrintContainerInfo) {
 224         tty->print_cr("total container memory: " JLONG_FORMAT, mem_limit);
 225       }
 226       return mem_limit;
 227     }
 228 
 229     if (PrintContainerInfo) {
 230       tty->print_cr("container memory limit %s: " JLONG_FORMAT ", using host value",
 231                      mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 232     }
 233   }
 234 
 235   phys_mem = Linux::physical_memory();
 236   if (Verbose) {
 237     tty->print_cr("total system memory: " JLONG_FORMAT, phys_mem);
 238   }
 239   return phys_mem;
 240 }
 241 
 242 ////////////////////////////////////////////////////////////////////////////////
 243 // environment support
 244 
 245 bool os::getenv(const char* name, char* buf, int len) {
 246   const char* val = ::getenv(name);
 247   if (val != NULL && strlen(val) < (size_t)len) {
 248     strcpy(buf, val);
 249     return true;
 250   }
 251   if (len > 0) buf[0] = 0;  // return a null string
 252   return false;
 253 }
 254 
 255 
 256 // Return true if user is running as root.
 257 
 258 bool os::have_special_privileges() {
 259   static bool init = false;
 260   static bool privileges = false;
 261   if (!init) {
 262     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 263     init = true;
 264   }
 265   return privileges;
 266 }
 267 
 268 
 269 #ifndef SYS_gettid
 270 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 271   #ifdef __ia64__
 272     #define SYS_gettid 1105
 273   #else
 274     #ifdef __i386__
 275       #define SYS_gettid 224
 276     #else
 277       #ifdef __amd64__
 278         #define SYS_gettid 186
 279       #else
 280         #ifdef __sparc__
 281           #define SYS_gettid 143
 282         #else
 283           #error define gettid for the arch
 284         #endif
 285       #endif
 286     #endif
 287   #endif
 288 #endif
 289 
 290 // Cpu architecture string
 291 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
 292 
 293 // pid_t gettid()
 294 //
 295 // Returns the kernel thread id of the currently running thread. Kernel
 296 // thread id is used to access /proc.
 297 //
 298 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 299 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 300 //
 301 pid_t os::Linux::gettid() {
 302   int rslt = syscall(SYS_gettid);
 303   if (rslt == -1) {
 304      // old kernel, no NPTL support
 305      return getpid();
 306   } else {
 307      return (pid_t)rslt;
 308   }
 309 }
 310 
 311 // Most versions of linux have a bug where the number of processors are
 312 // determined by looking at the /proc file system.  In a chroot environment,
 313 // the system call returns 1.  This causes the VM to act as if it is
 314 // a single processor and elide locking (see is_MP() call).
 315 static bool unsafe_chroot_detected = false;
 316 static const char *unstable_chroot_error = "/proc file system not found.\n"
 317                      "Java may be unstable running multithreaded in a chroot "
 318                      "environment on Linux when /proc filesystem is not mounted.";
 319 
 320 void os::Linux::initialize_system_info() {
 321   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 322   if (processor_count() == 1) {
 323     pid_t pid = os::Linux::gettid();
 324     char fname[32];
 325     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 326     FILE *fp = fopen(fname, "r");
 327     if (fp == NULL) {
 328       unsafe_chroot_detected = true;
 329     } else {
 330       fclose(fp);
 331     }
 332   }
 333   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 334   assert(processor_count() > 0, "linux error");
 335 }
 336 
 337 void os::init_system_properties_values() {
 338   // The next steps are taken in the product version:
 339   //
 340   // Obtain the JAVA_HOME value from the location of libjvm.so.
 341   // This library should be located at:
 342   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 343   //
 344   // If "/jre/lib/" appears at the right place in the path, then we
 345   // assume libjvm.so is installed in a JDK and we use this path.
 346   //
 347   // Otherwise exit with message: "Could not create the Java virtual machine."
 348   //
 349   // The following extra steps are taken in the debugging version:
 350   //
 351   // If "/jre/lib/" does NOT appear at the right place in the path
 352   // instead of exit check for $JAVA_HOME environment variable.
 353   //
 354   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 355   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 356   // it looks like libjvm.so is installed there
 357   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 358   //
 359   // Otherwise exit.
 360   //
 361   // Important note: if the location of libjvm.so changes this
 362   // code needs to be changed accordingly.
 363 
 364 // See ld(1):
 365 //      The linker uses the following search paths to locate required
 366 //      shared libraries:
 367 //        1: ...
 368 //        ...
 369 //        7: The default directories, normally /lib and /usr/lib.
 370 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 371 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 372 #else
 373 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 374 #endif
 375 
 376 // Base path of extensions installed on the system.
 377 #define SYS_EXT_DIR     "/usr/java/packages"
 378 #define EXTENSIONS_DIR  "/lib/ext"
 379 #define ENDORSED_DIR    "/lib/endorsed"
 380 
 381   // Buffer that fits several sprintfs.
 382   // Note that the space for the colon and the trailing null are provided
 383   // by the nulls included by the sizeof operator.
 384   const size_t bufsize =
 385     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
 386          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
 387          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
 388   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 389 
 390   // sysclasspath, java_home, dll_dir
 391   {
 392     char *pslash;
 393     os::jvm_path(buf, bufsize);
 394 
 395     // Found the full path to libjvm.so.
 396     // Now cut the path to <java_home>/jre if we can.
 397     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 398     pslash = strrchr(buf, '/');
 399     if (pslash != NULL) {
 400       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 401     }
 402     Arguments::set_dll_dir(buf);
 403 
 404     if (pslash != NULL) {
 405       pslash = strrchr(buf, '/');
 406       if (pslash != NULL) {
 407         *pslash = '\0';          // Get rid of /<arch>.
 408         pslash = strrchr(buf, '/');
 409         if (pslash != NULL) {
 410           *pslash = '\0';        // Get rid of /lib.
 411         }
 412       }
 413     }
 414     Arguments::set_java_home(buf);
 415     set_boot_path('/', ':');
 416   }
 417 
 418   // Where to look for native libraries.
 419   //
 420   // Note: Due to a legacy implementation, most of the library path
 421   // is set in the launcher. This was to accomodate linking restrictions
 422   // on legacy Linux implementations (which are no longer supported).
 423   // Eventually, all the library path setting will be done here.
 424   //
 425   // However, to prevent the proliferation of improperly built native
 426   // libraries, the new path component /usr/java/packages is added here.
 427   // Eventually, all the library path setting will be done here.
 428   {
 429     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 430     // should always exist (until the legacy problem cited above is
 431     // addressed).
 432     const char *v = ::getenv("LD_LIBRARY_PATH");
 433     const char *v_colon = ":";
 434     if (v == NULL) { v = ""; v_colon = ""; }
 435     // That's +1 for the colon and +1 for the trailing '\0'.
 436     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 437                                                      strlen(v) + 1 +
 438                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 439                                                      mtInternal);
 440     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 441     Arguments::set_library_path(ld_library_path);
 442     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
 443   }
 444 
 445   // Extensions directories.
 446   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 447   Arguments::set_ext_dirs(buf);
 448 
 449   // Endorsed standards default directory.
 450   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 451   Arguments::set_endorsed_dirs(buf);
 452 
 453   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
 454 
 455 #undef DEFAULT_LIBPATH
 456 #undef SYS_EXT_DIR
 457 #undef EXTENSIONS_DIR
 458 #undef ENDORSED_DIR
 459 }
 460 
 461 ////////////////////////////////////////////////////////////////////////////////
 462 // breakpoint support
 463 
 464 void os::breakpoint() {
 465   BREAKPOINT;
 466 }
 467 
 468 extern "C" void breakpoint() {
 469   // use debugger to set breakpoint here
 470 }
 471 
 472 ////////////////////////////////////////////////////////////////////////////////
 473 // signal support
 474 
 475 debug_only(static bool signal_sets_initialized = false);
 476 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 477 
 478 bool os::Linux::is_sig_ignored(int sig) {
 479       struct sigaction oact;
 480       sigaction(sig, (struct sigaction*)NULL, &oact);
 481       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 482                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 483       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 484            return true;
 485       else
 486            return false;
 487 }
 488 
 489 void os::Linux::signal_sets_init() {
 490   // Should also have an assertion stating we are still single-threaded.
 491   assert(!signal_sets_initialized, "Already initialized");
 492   // Fill in signals that are necessarily unblocked for all threads in
 493   // the VM. Currently, we unblock the following signals:
 494   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 495   //                         by -Xrs (=ReduceSignalUsage));
 496   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 497   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 498   // the dispositions or masks wrt these signals.
 499   // Programs embedding the VM that want to use the above signals for their
 500   // own purposes must, at this time, use the "-Xrs" option to prevent
 501   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 502   // (See bug 4345157, and other related bugs).
 503   // In reality, though, unblocking these signals is really a nop, since
 504   // these signals are not blocked by default.
 505   sigemptyset(&unblocked_sigs);
 506   sigemptyset(&allowdebug_blocked_sigs);
 507   sigaddset(&unblocked_sigs, SIGILL);
 508   sigaddset(&unblocked_sigs, SIGSEGV);
 509   sigaddset(&unblocked_sigs, SIGBUS);
 510   sigaddset(&unblocked_sigs, SIGFPE);
 511 #if defined(PPC64)
 512   sigaddset(&unblocked_sigs, SIGTRAP);
 513 #endif
 514   sigaddset(&unblocked_sigs, SR_signum);
 515 
 516   if (!ReduceSignalUsage) {
 517    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 518       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 519       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 520    }
 521    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 522       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 523       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 524    }
 525    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 526       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 527       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 528    }
 529   }
 530   // Fill in signals that are blocked by all but the VM thread.
 531   sigemptyset(&vm_sigs);
 532   if (!ReduceSignalUsage)
 533     sigaddset(&vm_sigs, BREAK_SIGNAL);
 534   debug_only(signal_sets_initialized = true);
 535 
 536 }
 537 
 538 // These are signals that are unblocked while a thread is running Java.
 539 // (For some reason, they get blocked by default.)
 540 sigset_t* os::Linux::unblocked_signals() {
 541   assert(signal_sets_initialized, "Not initialized");
 542   return &unblocked_sigs;
 543 }
 544 
 545 // These are the signals that are blocked while a (non-VM) thread is
 546 // running Java. Only the VM thread handles these signals.
 547 sigset_t* os::Linux::vm_signals() {
 548   assert(signal_sets_initialized, "Not initialized");
 549   return &vm_sigs;
 550 }
 551 
 552 // These are signals that are blocked during cond_wait to allow debugger in
 553 sigset_t* os::Linux::allowdebug_blocked_signals() {
 554   assert(signal_sets_initialized, "Not initialized");
 555   return &allowdebug_blocked_sigs;
 556 }
 557 
 558 void os::Linux::hotspot_sigmask(Thread* thread) {
 559 
 560   //Save caller's signal mask before setting VM signal mask
 561   sigset_t caller_sigmask;
 562   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 563 
 564   OSThread* osthread = thread->osthread();
 565   osthread->set_caller_sigmask(caller_sigmask);
 566 
 567   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 568 
 569   if (!ReduceSignalUsage) {
 570     if (thread->is_VM_thread()) {
 571       // Only the VM thread handles BREAK_SIGNAL ...
 572       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 573     } else {
 574       // ... all other threads block BREAK_SIGNAL
 575       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 576     }
 577   }
 578 }
 579 
 580 //////////////////////////////////////////////////////////////////////////////
 581 // detecting pthread library
 582 
 583 void os::Linux::libpthread_init() {
 584   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 585   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 586   // generic name for earlier versions.
 587   // Define macros here so we can build HotSpot on old systems.
 588 # ifndef _CS_GNU_LIBC_VERSION
 589 # define _CS_GNU_LIBC_VERSION 2
 590 # endif
 591 # ifndef _CS_GNU_LIBPTHREAD_VERSION
 592 # define _CS_GNU_LIBPTHREAD_VERSION 3
 593 # endif
 594 
 595   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 596   if (n > 0) {
 597      char *str = (char *)malloc(n, mtInternal);
 598      confstr(_CS_GNU_LIBC_VERSION, str, n);
 599      os::Linux::set_glibc_version(str);
 600   } else {
 601      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 602      static char _gnu_libc_version[32];
 603      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 604               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 605      os::Linux::set_glibc_version(_gnu_libc_version);
 606   }
 607 
 608   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 609   if (n > 0) {
 610      char *str = (char *)malloc(n, mtInternal);
 611      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 612      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 613      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 614      // is the case. LinuxThreads has a hard limit on max number of threads.
 615      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 616      // On the other hand, NPTL does not have such a limit, sysconf()
 617      // will return -1 and errno is not changed. Check if it is really NPTL.
 618      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 619          strstr(str, "NPTL") &&
 620          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 621        free(str);
 622        os::Linux::set_libpthread_version("linuxthreads");
 623      } else {
 624        os::Linux::set_libpthread_version(str);
 625      }
 626   } else {
 627     // glibc before 2.3.2 only has LinuxThreads.
 628     os::Linux::set_libpthread_version("linuxthreads");
 629   }
 630 
 631   if (strstr(libpthread_version(), "NPTL")) {
 632      os::Linux::set_is_NPTL();
 633   } else {
 634      os::Linux::set_is_LinuxThreads();
 635   }
 636 
 637   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 638   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 639   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 640      os::Linux::set_is_floating_stack();
 641   }
 642 }
 643 
 644 /////////////////////////////////////////////////////////////////////////////
 645 // thread stack
 646 
 647 // Force Linux kernel to expand current thread stack. If "bottom" is close
 648 // to the stack guard, caller should block all signals.
 649 //
 650 // MAP_GROWSDOWN:
 651 //   A special mmap() flag that is used to implement thread stacks. It tells
 652 //   kernel that the memory region should extend downwards when needed. This
 653 //   allows early versions of LinuxThreads to only mmap the first few pages
 654 //   when creating a new thread. Linux kernel will automatically expand thread
 655 //   stack as needed (on page faults).
 656 //
 657 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 658 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 659 //   region, it's hard to tell if the fault is due to a legitimate stack
 660 //   access or because of reading/writing non-exist memory (e.g. buffer
 661 //   overrun). As a rule, if the fault happens below current stack pointer,
 662 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 663 //   application (see Linux kernel fault.c).
 664 //
 665 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 666 //   stack overflow detection.
 667 //
 668 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 669 //   not use this flag. However, the stack of initial thread is not created
 670 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 671 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 672 //   and then attach the thread to JVM.
 673 //
 674 // To get around the problem and allow stack banging on Linux, we need to
 675 // manually expand thread stack after receiving the SIGSEGV.
 676 //
 677 // There are two ways to expand thread stack to address "bottom", we used
 678 // both of them in JVM before 1.5:
 679 //   1. adjust stack pointer first so that it is below "bottom", and then
 680 //      touch "bottom"
 681 //   2. mmap() the page in question
 682 //
 683 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 684 // if current sp is already near the lower end of page 101, and we need to
 685 // call mmap() to map page 100, it is possible that part of the mmap() frame
 686 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 687 // That will destroy the mmap() frame and cause VM to crash.
 688 //
 689 // The following code works by adjusting sp first, then accessing the "bottom"
 690 // page to force a page fault. Linux kernel will then automatically expand the
 691 // stack mapping.
 692 //
 693 // _expand_stack_to() assumes its frame size is less than page size, which
 694 // should always be true if the function is not inlined.
 695 
 696 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 697 #define NOINLINE
 698 #else
 699 #define NOINLINE __attribute__ ((noinline))
 700 #endif
 701 
 702 static void _expand_stack_to(address bottom) NOINLINE;
 703 
 704 static void _expand_stack_to(address bottom) {
 705   address sp;
 706   size_t size;
 707   volatile char *p;
 708 
 709   // Adjust bottom to point to the largest address within the same page, it
 710   // gives us a one-page buffer if alloca() allocates slightly more memory.
 711   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 712   bottom += os::Linux::page_size() - 1;
 713 
 714   // sp might be slightly above current stack pointer; if that's the case, we
 715   // will alloca() a little more space than necessary, which is OK. Don't use
 716   // os::current_stack_pointer(), as its result can be slightly below current
 717   // stack pointer, causing us to not alloca enough to reach "bottom".
 718   sp = (address)&sp;
 719 
 720   if (sp > bottom) {
 721     size = sp - bottom;
 722     p = (volatile char *)alloca(size);
 723     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 724     p[0] = '\0';
 725   }
 726 }
 727 
 728 void os::Linux::expand_stack_to(address bottom) {
 729   _expand_stack_to(bottom);
 730 }
 731 
 732 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 733   assert(t!=NULL, "just checking");
 734   assert(t->osthread()->expanding_stack(), "expand should be set");
 735   assert(t->stack_base() != NULL, "stack_base was not initialized");
 736 
 737   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 738     sigset_t mask_all, old_sigset;
 739     sigfillset(&mask_all);
 740     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 741     _expand_stack_to(addr);
 742     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 743     return true;
 744   }
 745   return false;
 746 }
 747 
 748 //////////////////////////////////////////////////////////////////////////////
 749 // create new thread
 750 
 751 static address highest_vm_reserved_address();
 752 
 753 // check if it's safe to start a new thread
 754 static bool _thread_safety_check(Thread* thread) {
 755   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 756     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 757     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 758     //   allocated (MAP_FIXED) from high address space. Every thread stack
 759     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 760     //   it to other values if they rebuild LinuxThreads).
 761     //
 762     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 763     // the memory region has already been mmap'ed. That means if we have too
 764     // many threads and/or very large heap, eventually thread stack will
 765     // collide with heap.
 766     //
 767     // Here we try to prevent heap/stack collision by comparing current
 768     // stack bottom with the highest address that has been mmap'ed by JVM
 769     // plus a safety margin for memory maps created by native code.
 770     //
 771     // This feature can be disabled by setting ThreadSafetyMargin to 0
 772     //
 773     if (ThreadSafetyMargin > 0) {
 774       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 775 
 776       // not safe if our stack extends below the safety margin
 777       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 778     } else {
 779       return true;
 780     }
 781   } else {
 782     // Floating stack LinuxThreads or NPTL:
 783     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 784     //   there's not enough space left, pthread_create() will fail. If we come
 785     //   here, that means enough space has been reserved for stack.
 786     return true;
 787   }
 788 }
 789 
 790 // Thread start routine for all newly created threads
 791 static void *java_start(Thread *thread) {
 792   // Try to randomize the cache line index of hot stack frames.
 793   // This helps when threads of the same stack traces evict each other's
 794   // cache lines. The threads can be either from the same JVM instance, or
 795   // from different JVM instances. The benefit is especially true for
 796   // processors with hyperthreading technology.
 797   static int counter = 0;
 798   int pid = os::current_process_id();
 799   alloca(((pid ^ counter++) & 7) * 128);
 800 
 801   ThreadLocalStorage::set_thread(thread);
 802 
 803   OSThread* osthread = thread->osthread();
 804   Monitor* sync = osthread->startThread_lock();
 805 
 806   // non floating stack LinuxThreads needs extra check, see above
 807   if (!_thread_safety_check(thread)) {
 808     // notify parent thread
 809     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 810     osthread->set_state(ZOMBIE);
 811     sync->notify_all();
 812     return NULL;
 813   }
 814 
 815   // thread_id is kernel thread id (similar to Solaris LWP id)
 816   osthread->set_thread_id(os::Linux::gettid());
 817 
 818   if (UseNUMA) {
 819     int lgrp_id = os::numa_get_group_id();
 820     if (lgrp_id != -1) {
 821       thread->set_lgrp_id(lgrp_id);
 822     }
 823   }
 824   // initialize signal mask for this thread
 825   os::Linux::hotspot_sigmask(thread);
 826 
 827   // initialize floating point control register
 828   os::Linux::init_thread_fpu_state();
 829 
 830   // handshaking with parent thread
 831   {
 832     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 833 
 834     // notify parent thread
 835     osthread->set_state(INITIALIZED);
 836     sync->notify_all();
 837 
 838     // wait until os::start_thread()
 839     while (osthread->get_state() == INITIALIZED) {
 840       sync->wait(Mutex::_no_safepoint_check_flag);
 841     }
 842   }
 843 
 844   // call one more level start routine
 845   thread->run();
 846 
 847   return 0;
 848 }
 849 
 850 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 851   assert(thread->osthread() == NULL, "caller responsible");
 852 
 853   // Allocate the OSThread object
 854   OSThread* osthread = new OSThread(NULL, NULL);
 855   if (osthread == NULL) {
 856     return false;
 857   }
 858 
 859   // set the correct thread state
 860   osthread->set_thread_type(thr_type);
 861 
 862   // Initial state is ALLOCATED but not INITIALIZED
 863   osthread->set_state(ALLOCATED);
 864 
 865   thread->set_osthread(osthread);
 866 
 867   // init thread attributes
 868   pthread_attr_t attr;
 869   pthread_attr_init(&attr);
 870   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 871 
 872   // stack size
 873   if (os::Linux::supports_variable_stack_size()) {
 874     // calculate stack size if it's not specified by caller
 875     if (stack_size == 0) {
 876       stack_size = os::Linux::default_stack_size(thr_type);
 877 
 878       switch (thr_type) {
 879       case os::java_thread:
 880         // Java threads use ThreadStackSize which default value can be
 881         // changed with the flag -Xss
 882         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
 883         stack_size = JavaThread::stack_size_at_create();
 884         break;
 885       case os::compiler_thread:
 886         if (CompilerThreadStackSize > 0) {
 887           stack_size = (size_t)(CompilerThreadStackSize * K);
 888           break;
 889         } // else fall through:
 890           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 891       case os::vm_thread:
 892       case os::pgc_thread:
 893       case os::cgc_thread:
 894       case os::watcher_thread:
 895         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 896         break;
 897       }
 898     }
 899 
 900     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 901     pthread_attr_setstacksize(&attr, stack_size);
 902   } else {
 903     // let pthread_create() pick the default value.
 904   }
 905 
 906   // glibc guard page
 907   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 908 
 909   ThreadState state;
 910 
 911   {
 912     // Serialize thread creation if we are running with fixed stack LinuxThreads
 913     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 914     if (lock) {
 915       os::Linux::createThread_lock()->lock_without_safepoint_check();
 916     }
 917 
 918     pthread_t tid;
 919     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 920 
 921     pthread_attr_destroy(&attr);
 922 
 923     if (ret != 0) {
 924       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 925         perror("pthread_create()");
 926       }
 927       // Need to clean up stuff we've allocated so far
 928       thread->set_osthread(NULL);
 929       delete osthread;
 930       if (lock) os::Linux::createThread_lock()->unlock();
 931       return false;
 932     }
 933 
 934     // Store pthread info into the OSThread
 935     osthread->set_pthread_id(tid);
 936 
 937     // Wait until child thread is either initialized or aborted
 938     {
 939       Monitor* sync_with_child = osthread->startThread_lock();
 940       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 941       while ((state = osthread->get_state()) == ALLOCATED) {
 942         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 943       }
 944     }
 945 
 946     if (lock) {
 947       os::Linux::createThread_lock()->unlock();
 948     }
 949   }
 950 
 951   // Aborted due to thread limit being reached
 952   if (state == ZOMBIE) {
 953       thread->set_osthread(NULL);
 954       delete osthread;
 955       return false;
 956   }
 957 
 958   // The thread is returned suspended (in state INITIALIZED),
 959   // and is started higher up in the call chain
 960   assert(state == INITIALIZED, "race condition");
 961   return true;
 962 }
 963 
 964 /////////////////////////////////////////////////////////////////////////////
 965 // attach existing thread
 966 
 967 // bootstrap the main thread
 968 bool os::create_main_thread(JavaThread* thread) {
 969   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 970   return create_attached_thread(thread);
 971 }
 972 
 973 bool os::create_attached_thread(JavaThread* thread) {
 974 #ifdef ASSERT
 975     thread->verify_not_published();
 976 #endif
 977 
 978   // Allocate the OSThread object
 979   OSThread* osthread = new OSThread(NULL, NULL);
 980 
 981   if (osthread == NULL) {
 982     return false;
 983   }
 984 
 985   // Store pthread info into the OSThread
 986   osthread->set_thread_id(os::Linux::gettid());
 987   osthread->set_pthread_id(::pthread_self());
 988 
 989   // initialize floating point control register
 990   os::Linux::init_thread_fpu_state();
 991 
 992   // Initial thread state is RUNNABLE
 993   osthread->set_state(RUNNABLE);
 994 
 995   thread->set_osthread(osthread);
 996 
 997   if (UseNUMA) {
 998     int lgrp_id = os::numa_get_group_id();
 999     if (lgrp_id != -1) {
1000       thread->set_lgrp_id(lgrp_id);
1001     }
1002   }
1003 
1004   if (os::is_primordial_thread()) {
1005     // If current thread is primordial thread, its stack is mapped on demand,
1006     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1007     // the entire stack region to avoid SEGV in stack banging.
1008     // It is also useful to get around the heap-stack-gap problem on SuSE
1009     // kernel (see 4821821 for details). We first expand stack to the top
1010     // of yellow zone, then enable stack yellow zone (order is significant,
1011     // enabling yellow zone first will crash JVM on SuSE Linux), so there
1012     // is no gap between the last two virtual memory regions.
1013 
1014     JavaThread *jt = (JavaThread *)thread;
1015     address addr = jt->stack_yellow_zone_base();
1016     assert(addr != NULL, "initialization problem?");
1017     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1018 
1019     osthread->set_expanding_stack();
1020     os::Linux::manually_expand_stack(jt, addr);
1021     osthread->clear_expanding_stack();
1022   }
1023 
1024   // initialize signal mask for this thread
1025   // and save the caller's signal mask
1026   os::Linux::hotspot_sigmask(thread);
1027 
1028   return true;
1029 }
1030 
1031 void os::pd_start_thread(Thread* thread) {
1032   OSThread * osthread = thread->osthread();
1033   assert(osthread->get_state() != INITIALIZED, "just checking");
1034   Monitor* sync_with_child = osthread->startThread_lock();
1035   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1036   sync_with_child->notify();
1037 }
1038 
1039 // Free Linux resources related to the OSThread
1040 void os::free_thread(OSThread* osthread) {
1041   assert(osthread != NULL, "osthread not set");
1042 
1043   if (Thread::current()->osthread() == osthread) {
1044     // Restore caller's signal mask
1045     sigset_t sigmask = osthread->caller_sigmask();
1046     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1047    }
1048 
1049   delete osthread;
1050 }
1051 
1052 //////////////////////////////////////////////////////////////////////////////
1053 // thread local storage
1054 
1055 // Restore the thread pointer if the destructor is called. This is in case
1056 // someone from JNI code sets up a destructor with pthread_key_create to run
1057 // detachCurrentThread on thread death. Unless we restore the thread pointer we
1058 // will hang or crash. When detachCurrentThread is called the key will be set
1059 // to null and we will not be called again. If detachCurrentThread is never
1060 // called we could loop forever depending on the pthread implementation.
1061 static void restore_thread_pointer(void* p) {
1062   Thread* thread = (Thread*) p;
1063   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
1064 }
1065 
1066 int os::allocate_thread_local_storage() {
1067   pthread_key_t key;
1068   int rslt = pthread_key_create(&key, restore_thread_pointer);
1069   assert(rslt == 0, "cannot allocate thread local storage");
1070   return (int)key;
1071 }
1072 
1073 // Note: This is currently not used by VM, as we don't destroy TLS key
1074 // on VM exit.
1075 void os::free_thread_local_storage(int index) {
1076   int rslt = pthread_key_delete((pthread_key_t)index);
1077   assert(rslt == 0, "invalid index");
1078 }
1079 
1080 void os::thread_local_storage_at_put(int index, void* value) {
1081   int rslt = pthread_setspecific((pthread_key_t)index, value);
1082   assert(rslt == 0, "pthread_setspecific failed");
1083 }
1084 
1085 extern "C" Thread* get_thread() {
1086   return ThreadLocalStorage::thread();
1087 }
1088 
1089 //////////////////////////////////////////////////////////////////////////////
1090 // primordial thread
1091 
1092 // Check if current thread is the primordial thread, similar to Solaris thr_main.
1093 bool os::is_primordial_thread(void) {
1094   char dummy;
1095   // If called before init complete, thread stack bottom will be null.
1096   // Can be called if fatal error occurs before initialization.
1097   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
1098   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
1099          os::Linux::initial_thread_stack_size()   != 0,
1100          "os::init did not locate primordial thread's stack region");
1101   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
1102       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
1103                         os::Linux::initial_thread_stack_size()) {
1104        return true;
1105   } else {
1106        return false;
1107   }
1108 }
1109 
1110 // Find the virtual memory area that contains addr
1111 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1112   FILE *fp = fopen("/proc/self/maps", "r");
1113   if (fp) {
1114     address low, high;
1115     while (!feof(fp)) {
1116       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1117         if (low <= addr && addr < high) {
1118            if (vma_low)  *vma_low  = low;
1119            if (vma_high) *vma_high = high;
1120            fclose (fp);
1121            return true;
1122         }
1123       }
1124       for (;;) {
1125         int ch = fgetc(fp);
1126         if (ch == EOF || ch == (int)'\n') break;
1127       }
1128     }
1129     fclose(fp);
1130   }
1131   return false;
1132 }
1133 
1134 // Locate primordial thread stack. This special handling of primordial thread stack
1135 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1136 // bogus value for the primordial process thread. While the launcher has created
1137 // the VM in a new thread since JDK 6, we still have to allow for the use of the
1138 // JNI invocation API from a primordial thread.
1139 void os::Linux::capture_initial_stack(size_t max_size) {
1140 
1141   // max_size is either 0 (which means accept OS default for thread stacks) or
1142   // a user-specified value known to be at least the minimum needed. If we
1143   // are actually on the primordial thread we can make it appear that we have a
1144   // smaller max_size stack by inserting the guard pages at that location. But we
1145   // cannot do anything to emulate a larger stack than what has been provided by
1146   // the OS or threading library. In fact if we try to use a stack greater than
1147   // what is set by rlimit then we will crash the hosting process.
1148 
1149   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
1150   // If this is "unlimited" then it will be a huge value.
1151   struct rlimit rlim;
1152   getrlimit(RLIMIT_STACK, &rlim);
1153   size_t stack_size = rlim.rlim_cur;
1154 
1155   // 6308388: a bug in ld.so will relocate its own .data section to the
1156   //   lower end of primordial stack; reduce ulimit -s value a little bit
1157   //   so we won't install guard page on ld.so's data section.
1158   //   But ensure we don't underflow the stack size - allow 1 page spare
1159   if (stack_size >= (size_t)(3 * page_size())) {
1160     stack_size -= 2 * page_size();
1161   }
1162 
1163   // Try to figure out where the stack base (top) is. This is harder.
1164   //
1165   // When an application is started, glibc saves the initial stack pointer in
1166   // a global variable "__libc_stack_end", which is then used by system
1167   // libraries. __libc_stack_end should be pretty close to stack top. The
1168   // variable is available since the very early days. However, because it is
1169   // a private interface, it could disappear in the future.
1170   //
1171   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1172   // to __libc_stack_end, it is very close to stack top, but isn't the real
1173   // stack top. Note that /proc may not exist if VM is running as a chroot
1174   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1175   // /proc/<pid>/stat could change in the future (though unlikely).
1176   //
1177   // We try __libc_stack_end first. If that doesn't work, look for
1178   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1179   // as a hint, which should work well in most cases.
1180 
1181   uintptr_t stack_start;
1182 
1183   // try __libc_stack_end first
1184   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1185   if (p && *p) {
1186     stack_start = *p;
1187   } else {
1188     // see if we can get the start_stack field from /proc/self/stat
1189     FILE *fp;
1190     int pid;
1191     char state;
1192     int ppid;
1193     int pgrp;
1194     int session;
1195     int nr;
1196     int tpgrp;
1197     unsigned long flags;
1198     unsigned long minflt;
1199     unsigned long cminflt;
1200     unsigned long majflt;
1201     unsigned long cmajflt;
1202     unsigned long utime;
1203     unsigned long stime;
1204     long cutime;
1205     long cstime;
1206     long prio;
1207     long nice;
1208     long junk;
1209     long it_real;
1210     uintptr_t start;
1211     uintptr_t vsize;
1212     intptr_t rss;
1213     uintptr_t rsslim;
1214     uintptr_t scodes;
1215     uintptr_t ecode;
1216     int i;
1217 
1218     // Figure what the primordial thread stack base is. Code is inspired
1219     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1220     // followed by command name surrounded by parentheses, state, etc.
1221     char stat[2048];
1222     int statlen;
1223 
1224     fp = fopen("/proc/self/stat", "r");
1225     if (fp) {
1226       statlen = fread(stat, 1, 2047, fp);
1227       stat[statlen] = '\0';
1228       fclose(fp);
1229 
1230       // Skip pid and the command string. Note that we could be dealing with
1231       // weird command names, e.g. user could decide to rename java launcher
1232       // to "java 1.4.2 :)", then the stat file would look like
1233       //                1234 (java 1.4.2 :)) R ... ...
1234       // We don't really need to know the command string, just find the last
1235       // occurrence of ")" and then start parsing from there. See bug 4726580.
1236       char * s = strrchr(stat, ')');
1237 
1238       i = 0;
1239       if (s) {
1240         // Skip blank chars
1241         do s++; while (isspace(*s));
1242 
1243 #define _UFM UINTX_FORMAT
1244 #define _DFM INTX_FORMAT
1245 
1246         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1247         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1248         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1249              &state,          /* 3  %c  */
1250              &ppid,           /* 4  %d  */
1251              &pgrp,           /* 5  %d  */
1252              &session,        /* 6  %d  */
1253              &nr,             /* 7  %d  */
1254              &tpgrp,          /* 8  %d  */
1255              &flags,          /* 9  %lu  */
1256              &minflt,         /* 10 %lu  */
1257              &cminflt,        /* 11 %lu  */
1258              &majflt,         /* 12 %lu  */
1259              &cmajflt,        /* 13 %lu  */
1260              &utime,          /* 14 %lu  */
1261              &stime,          /* 15 %lu  */
1262              &cutime,         /* 16 %ld  */
1263              &cstime,         /* 17 %ld  */
1264              &prio,           /* 18 %ld  */
1265              &nice,           /* 19 %ld  */
1266              &junk,           /* 20 %ld  */
1267              &it_real,        /* 21 %ld  */
1268              &start,          /* 22 UINTX_FORMAT */
1269              &vsize,          /* 23 UINTX_FORMAT */
1270              &rss,            /* 24 INTX_FORMAT  */
1271              &rsslim,         /* 25 UINTX_FORMAT */
1272              &scodes,         /* 26 UINTX_FORMAT */
1273              &ecode,          /* 27 UINTX_FORMAT */
1274              &stack_start);   /* 28 UINTX_FORMAT */
1275       }
1276 
1277 #undef _UFM
1278 #undef _DFM
1279 
1280       if (i != 28 - 2) {
1281          assert(false, "Bad conversion from /proc/self/stat");
1282          // product mode - assume we are the primordial thread, good luck in the
1283          // embedded case.
1284          warning("Can't detect primordial thread stack location - bad conversion");
1285          stack_start = (uintptr_t) &rlim;
1286       }
1287     } else {
1288       // For some reason we can't open /proc/self/stat (for example, running on
1289       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1290       // most cases, so don't abort:
1291       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1292       stack_start = (uintptr_t) &rlim;
1293     }
1294   }
1295 
1296   // Now we have a pointer (stack_start) very close to the stack top, the
1297   // next thing to do is to figure out the exact location of stack top. We
1298   // can find out the virtual memory area that contains stack_start by
1299   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1300   // and its upper limit is the real stack top. (again, this would fail if
1301   // running inside chroot, because /proc may not exist.)
1302 
1303   uintptr_t stack_top;
1304   address low, high;
1305   if (find_vma((address)stack_start, &low, &high)) {
1306     // success, "high" is the true stack top. (ignore "low", because initial
1307     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1308     stack_top = (uintptr_t)high;
1309   } else {
1310     // failed, likely because /proc/self/maps does not exist
1311     warning("Can't detect primordial thread stack location - find_vma failed");
1312     // best effort: stack_start is normally within a few pages below the real
1313     // stack top, use it as stack top, and reduce stack size so we won't put
1314     // guard page outside stack.
1315     stack_top = stack_start;
1316     stack_size -= 16 * page_size();
1317   }
1318 
1319   // stack_top could be partially down the page so align it
1320   stack_top = align_size_up(stack_top, page_size());
1321 
1322   // Allowed stack value is minimum of max_size and what we derived from rlimit
1323   if (max_size > 0) {
1324     _initial_thread_stack_size = MIN2(max_size, stack_size);
1325   } else {
1326     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1327     // clamp it at 8MB as we do on Solaris
1328     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1329   }
1330 
1331   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1332   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1333   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1334 }
1335 
1336 ////////////////////////////////////////////////////////////////////////////////
1337 // time support
1338 
1339 // Time since start-up in seconds to a fine granularity.
1340 // Used by VMSelfDestructTimer and the MemProfiler.
1341 double os::elapsedTime() {
1342 
1343   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1344 }
1345 
1346 jlong os::elapsed_counter() {
1347   return javaTimeNanos() - initial_time_count;
1348 }
1349 
1350 jlong os::elapsed_frequency() {
1351   return NANOSECS_PER_SEC; // nanosecond resolution
1352 }
1353 
1354 bool os::supports_vtime() { return true; }
1355 bool os::enable_vtime()   { return false; }
1356 bool os::vtime_enabled()  { return false; }
1357 
1358 double os::elapsedVTime() {
1359   struct rusage usage;
1360   int retval = getrusage(RUSAGE_THREAD, &usage);
1361   if (retval == 0) {
1362     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1363   } else {
1364     // better than nothing, but not much
1365     return elapsedTime();
1366   }
1367 }
1368 
1369 jlong os::javaTimeMillis() {
1370   timeval time;
1371   int status = gettimeofday(&time, NULL);
1372   assert(status != -1, "linux error");
1373   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1374 }
1375 
1376 #ifndef CLOCK_MONOTONIC
1377 #define CLOCK_MONOTONIC (1)
1378 #endif
1379 
1380 void os::Linux::clock_init() {
1381   // we do dlopen's in this particular order due to bug in linux
1382   // dynamical loader (see 6348968) leading to crash on exit
1383   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1384   if (handle == NULL) {
1385     handle = dlopen("librt.so", RTLD_LAZY);
1386   }
1387 
1388   if (handle) {
1389     int (*clock_getres_func)(clockid_t, struct timespec*) =
1390            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1391     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1392            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1393     if (clock_getres_func && clock_gettime_func) {
1394       // See if monotonic clock is supported by the kernel. Note that some
1395       // early implementations simply return kernel jiffies (updated every
1396       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1397       // for nano time (though the monotonic property is still nice to have).
1398       // It's fixed in newer kernels, however clock_getres() still returns
1399       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1400       // resolution for now. Hopefully as people move to new kernels, this
1401       // won't be a problem.
1402       struct timespec res;
1403       struct timespec tp;
1404       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1405           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1406         // yes, monotonic clock is supported
1407         _clock_gettime = clock_gettime_func;
1408         return;
1409       } else {
1410         // close librt if there is no monotonic clock
1411         dlclose(handle);
1412       }
1413     }
1414   }
1415   warning("No monotonic clock was available - timed services may " \
1416           "be adversely affected if the time-of-day clock changes");
1417 }
1418 
1419 #ifndef SYS_clock_getres
1420 
1421 #if defined(IA32) || defined(AMD64)
1422 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1423 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1424 #else
1425 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1426 #define sys_clock_getres(x,y)  -1
1427 #endif
1428 
1429 #else
1430 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1431 #endif
1432 
1433 void os::Linux::fast_thread_clock_init() {
1434   if (!UseLinuxPosixThreadCPUClocks) {
1435     return;
1436   }
1437   clockid_t clockid;
1438   struct timespec tp;
1439   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1440       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1441 
1442   // Switch to using fast clocks for thread cpu time if
1443   // the sys_clock_getres() returns 0 error code.
1444   // Note, that some kernels may support the current thread
1445   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1446   // returned by the pthread_getcpuclockid().
1447   // If the fast Posix clocks are supported then the sys_clock_getres()
1448   // must return at least tp.tv_sec == 0 which means a resolution
1449   // better than 1 sec. This is extra check for reliability.
1450 
1451   if(pthread_getcpuclockid_func &&
1452      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1453      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1454 
1455     _supports_fast_thread_cpu_time = true;
1456     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1457   }
1458 }
1459 
1460 jlong os::javaTimeNanos() {
1461   if (Linux::supports_monotonic_clock()) {
1462     struct timespec tp;
1463     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1464     assert(status == 0, "gettime error");
1465     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1466     return result;
1467   } else {
1468     timeval time;
1469     int status = gettimeofday(&time, NULL);
1470     assert(status != -1, "linux error");
1471     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1472     return 1000 * usecs;
1473   }
1474 }
1475 
1476 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1477   if (Linux::supports_monotonic_clock()) {
1478     info_ptr->max_value = ALL_64_BITS;
1479 
1480     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1481     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1482     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1483   } else {
1484     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1485     info_ptr->max_value = ALL_64_BITS;
1486 
1487     // gettimeofday is a real time clock so it skips
1488     info_ptr->may_skip_backward = true;
1489     info_ptr->may_skip_forward = true;
1490   }
1491 
1492   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1493 }
1494 
1495 // Return the real, user, and system times in seconds from an
1496 // arbitrary fixed point in the past.
1497 bool os::getTimesSecs(double* process_real_time,
1498                       double* process_user_time,
1499                       double* process_system_time) {
1500   struct tms ticks;
1501   clock_t real_ticks = times(&ticks);
1502 
1503   if (real_ticks == (clock_t) (-1)) {
1504     return false;
1505   } else {
1506     double ticks_per_second = (double) clock_tics_per_sec;
1507     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1508     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1509     *process_real_time = ((double) real_ticks) / ticks_per_second;
1510 
1511     return true;
1512   }
1513 }
1514 
1515 
1516 char * os::local_time_string(char *buf, size_t buflen) {
1517   struct tm t;
1518   time_t long_time;
1519   time(&long_time);
1520   localtime_r(&long_time, &t);
1521   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1522                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1523                t.tm_hour, t.tm_min, t.tm_sec);
1524   return buf;
1525 }
1526 
1527 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1528   return localtime_r(clock, res);
1529 }
1530 
1531 ////////////////////////////////////////////////////////////////////////////////
1532 // runtime exit support
1533 
1534 // Note: os::shutdown() might be called very early during initialization, or
1535 // called from signal handler. Before adding something to os::shutdown(), make
1536 // sure it is async-safe and can handle partially initialized VM.
1537 void os::shutdown() {
1538 
1539   // allow PerfMemory to attempt cleanup of any persistent resources
1540   perfMemory_exit();
1541 
1542   // needs to remove object in file system
1543   AttachListener::abort();
1544 
1545   // flush buffered output, finish log files
1546   ostream_abort();
1547 
1548   // Check for abort hook
1549   abort_hook_t abort_hook = Arguments::abort_hook();
1550   if (abort_hook != NULL) {
1551     abort_hook();
1552   }
1553 
1554 }
1555 
1556 // Note: os::abort() might be called very early during initialization, or
1557 // called from signal handler. Before adding something to os::abort(), make
1558 // sure it is async-safe and can handle partially initialized VM.
1559 void os::abort(bool dump_core) {
1560   os::shutdown();
1561   if (dump_core) {
1562 #ifndef PRODUCT
1563     fdStream out(defaultStream::output_fd());
1564     out.print_raw("Current thread is ");
1565     char buf[16];
1566     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1567     out.print_raw_cr(buf);
1568     out.print_raw_cr("Dumping core ...");
1569 #endif
1570     ::abort(); // dump core
1571   }
1572 
1573   ::exit(1);
1574 }
1575 
1576 // Die immediately, no exit hook, no abort hook, no cleanup.
1577 void os::die() {
1578   // _exit() on LinuxThreads only kills current thread
1579   ::abort();
1580 }
1581 
1582 
1583 // This method is a copy of JDK's sysGetLastErrorString
1584 // from src/solaris/hpi/src/system_md.c
1585 
1586 size_t os::lasterror(char *buf, size_t len) {
1587 
1588   if (errno == 0)  return 0;
1589 
1590   const char *s = ::strerror(errno);
1591   size_t n = ::strlen(s);
1592   if (n >= len) {
1593     n = len - 1;
1594   }
1595   ::strncpy(buf, s, n);
1596   buf[n] = '\0';
1597   return n;
1598 }
1599 
1600 intx os::current_thread_id() { return (intx)pthread_self(); }
1601 int os::current_process_id() {
1602 
1603   // Under the old linux thread library, linux gives each thread
1604   // its own process id. Because of this each thread will return
1605   // a different pid if this method were to return the result
1606   // of getpid(2). Linux provides no api that returns the pid
1607   // of the launcher thread for the vm. This implementation
1608   // returns a unique pid, the pid of the launcher thread
1609   // that starts the vm 'process'.
1610 
1611   // Under the NPTL, getpid() returns the same pid as the
1612   // launcher thread rather than a unique pid per thread.
1613   // Use gettid() if you want the old pre NPTL behaviour.
1614 
1615   // if you are looking for the result of a call to getpid() that
1616   // returns a unique pid for the calling thread, then look at the
1617   // OSThread::thread_id() method in osThread_linux.hpp file
1618 
1619   return (int)(_initial_pid ? _initial_pid : getpid());
1620 }
1621 
1622 // DLL functions
1623 
1624 const char* os::dll_file_extension() { return ".so"; }
1625 
1626 // This must be hard coded because it's the system's temporary
1627 // directory not the java application's temp directory, ala java.io.tmpdir.
1628 const char* os::get_temp_directory() { return "/tmp"; }
1629 
1630 static bool file_exists(const char* filename) {
1631   struct stat statbuf;
1632   if (filename == NULL || strlen(filename) == 0) {
1633     return false;
1634   }
1635   return os::stat(filename, &statbuf) == 0;
1636 }
1637 
1638 bool os::dll_build_name(char* buffer, size_t buflen,
1639                         const char* pname, const char* fname) {
1640   bool retval = false;
1641   // Copied from libhpi
1642   const size_t pnamelen = pname ? strlen(pname) : 0;
1643 
1644   // Return error on buffer overflow.
1645   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1646     return retval;
1647   }
1648 
1649   if (pnamelen == 0) {
1650     snprintf(buffer, buflen, "lib%s.so", fname);
1651     retval = true;
1652   } else if (strchr(pname, *os::path_separator()) != NULL) {
1653     int n;
1654     char** pelements = split_path(pname, &n);
1655     if (pelements == NULL) {
1656       return false;
1657     }
1658     for (int i = 0 ; i < n ; i++) {
1659       // Really shouldn't be NULL, but check can't hurt
1660       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1661         continue; // skip the empty path values
1662       }
1663       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1664       if (file_exists(buffer)) {
1665         retval = true;
1666         break;
1667       }
1668     }
1669     // release the storage
1670     for (int i = 0 ; i < n ; i++) {
1671       if (pelements[i] != NULL) {
1672         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1673       }
1674     }
1675     if (pelements != NULL) {
1676       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1677     }
1678   } else {
1679     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1680     retval = true;
1681   }
1682   return retval;
1683 }
1684 
1685 // check if addr is inside libjvm.so
1686 bool os::address_is_in_vm(address addr) {
1687   static address libjvm_base_addr;
1688   Dl_info dlinfo;
1689 
1690   if (libjvm_base_addr == NULL) {
1691     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1692       libjvm_base_addr = (address)dlinfo.dli_fbase;
1693     }
1694     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1695   }
1696 
1697   if (dladdr((void *)addr, &dlinfo) != 0) {
1698     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1699   }
1700 
1701   return false;
1702 }
1703 
1704 bool os::dll_address_to_function_name(address addr, char *buf,
1705                                       int buflen, int *offset) {
1706   // buf is not optional, but offset is optional
1707   assert(buf != NULL, "sanity check");
1708 
1709   Dl_info dlinfo;
1710 
1711   if (dladdr((void*)addr, &dlinfo) != 0) {
1712     // see if we have a matching symbol
1713     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1714       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1715         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1716       }
1717       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1718       return true;
1719     }
1720     // no matching symbol so try for just file info
1721     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1722       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1723                           buf, buflen, offset, dlinfo.dli_fname)) {
1724         return true;
1725       }
1726     }
1727   }
1728 
1729   buf[0] = '\0';
1730   if (offset != NULL) *offset = -1;
1731   return false;
1732 }
1733 
1734 struct _address_to_library_name {
1735   address addr;          // input : memory address
1736   size_t  buflen;        //         size of fname
1737   char*   fname;         // output: library name
1738   address base;          //         library base addr
1739 };
1740 
1741 static int address_to_library_name_callback(struct dl_phdr_info *info,
1742                                             size_t size, void *data) {
1743   int i;
1744   bool found = false;
1745   address libbase = NULL;
1746   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1747 
1748   // iterate through all loadable segments
1749   for (i = 0; i < info->dlpi_phnum; i++) {
1750     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1751     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1752       // base address of a library is the lowest address of its loaded
1753       // segments.
1754       if (libbase == NULL || libbase > segbase) {
1755         libbase = segbase;
1756       }
1757       // see if 'addr' is within current segment
1758       if (segbase <= d->addr &&
1759           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1760         found = true;
1761       }
1762     }
1763   }
1764 
1765   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1766   // so dll_address_to_library_name() can fall through to use dladdr() which
1767   // can figure out executable name from argv[0].
1768   if (found && info->dlpi_name && info->dlpi_name[0]) {
1769     d->base = libbase;
1770     if (d->fname) {
1771       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1772     }
1773     return 1;
1774   }
1775   return 0;
1776 }
1777 
1778 bool os::dll_address_to_library_name(address addr, char* buf,
1779                                      int buflen, int* offset) {
1780   // buf is not optional, but offset is optional
1781   assert(buf != NULL, "sanity check");
1782 
1783   Dl_info dlinfo;
1784   struct _address_to_library_name data;
1785 
1786   // There is a bug in old glibc dladdr() implementation that it could resolve
1787   // to wrong library name if the .so file has a base address != NULL. Here
1788   // we iterate through the program headers of all loaded libraries to find
1789   // out which library 'addr' really belongs to. This workaround can be
1790   // removed once the minimum requirement for glibc is moved to 2.3.x.
1791   data.addr = addr;
1792   data.fname = buf;
1793   data.buflen = buflen;
1794   data.base = NULL;
1795   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1796 
1797   if (rslt) {
1798      // buf already contains library name
1799      if (offset) *offset = addr - data.base;
1800      return true;
1801   }
1802   if (dladdr((void*)addr, &dlinfo) != 0) {
1803     if (dlinfo.dli_fname != NULL) {
1804       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1805     }
1806     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1807       *offset = addr - (address)dlinfo.dli_fbase;
1808     }
1809     return true;
1810   }
1811 
1812   buf[0] = '\0';
1813   if (offset) *offset = -1;
1814   return false;
1815 }
1816 
1817   // Loads .dll/.so and
1818   // in case of error it checks if .dll/.so was built for the
1819   // same architecture as Hotspot is running on
1820 
1821 
1822 // Remember the stack's state. The Linux dynamic linker will change
1823 // the stack to 'executable' at most once, so we must safepoint only once.
1824 bool os::Linux::_stack_is_executable = false;
1825 
1826 // VM operation that loads a library.  This is necessary if stack protection
1827 // of the Java stacks can be lost during loading the library.  If we
1828 // do not stop the Java threads, they can stack overflow before the stacks
1829 // are protected again.
1830 class VM_LinuxDllLoad: public VM_Operation {
1831  private:
1832   const char *_filename;
1833   char *_ebuf;
1834   int _ebuflen;
1835   void *_lib;
1836  public:
1837   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1838     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1839   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1840   void doit() {
1841     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1842     os::Linux::_stack_is_executable = true;
1843   }
1844   void* loaded_library() { return _lib; }
1845 };
1846 
1847 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1848 {
1849   void * result = NULL;
1850   bool load_attempted = false;
1851 
1852   // Check whether the library to load might change execution rights
1853   // of the stack. If they are changed, the protection of the stack
1854   // guard pages will be lost. We need a safepoint to fix this.
1855   //
1856   // See Linux man page execstack(8) for more info.
1857   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1858     ElfFile ef(filename);
1859     if (!ef.specifies_noexecstack()) {
1860       if (!is_init_completed()) {
1861         os::Linux::_stack_is_executable = true;
1862         // This is OK - No Java threads have been created yet, and hence no
1863         // stack guard pages to fix.
1864         //
1865         // This should happen only when you are building JDK7 using a very
1866         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1867         //
1868         // Dynamic loader will make all stacks executable after
1869         // this function returns, and will not do that again.
1870         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1871       } else {
1872         warning("You have loaded library %s which might have disabled stack guard. "
1873                 "The VM will try to fix the stack guard now.\n"
1874                 "It's highly recommended that you fix the library with "
1875                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1876                 filename);
1877 
1878         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1879         JavaThread *jt = JavaThread::current();
1880         if (jt->thread_state() != _thread_in_native) {
1881           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1882           // that requires ExecStack. Cannot enter safe point. Let's give up.
1883           warning("Unable to fix stack guard. Giving up.");
1884         } else {
1885           if (!LoadExecStackDllInVMThread) {
1886             // This is for the case where the DLL has an static
1887             // constructor function that executes JNI code. We cannot
1888             // load such DLLs in the VMThread.
1889             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1890           }
1891 
1892           ThreadInVMfromNative tiv(jt);
1893           debug_only(VMNativeEntryWrapper vew;)
1894 
1895           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1896           VMThread::execute(&op);
1897           if (LoadExecStackDllInVMThread) {
1898             result = op.loaded_library();
1899           }
1900           load_attempted = true;
1901         }
1902       }
1903     }
1904   }
1905 
1906   if (!load_attempted) {
1907     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1908   }
1909 
1910   if (result != NULL) {
1911     // Successful loading
1912     return result;
1913   }
1914 
1915   Elf32_Ehdr elf_head;
1916   int diag_msg_max_length=ebuflen-strlen(ebuf);
1917   char* diag_msg_buf=ebuf+strlen(ebuf);
1918 
1919   if (diag_msg_max_length==0) {
1920     // No more space in ebuf for additional diagnostics message
1921     return NULL;
1922   }
1923 
1924 
1925   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1926 
1927   if (file_descriptor < 0) {
1928     // Can't open library, report dlerror() message
1929     return NULL;
1930   }
1931 
1932   bool failed_to_read_elf_head=
1933     (sizeof(elf_head)!=
1934         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1935 
1936   ::close(file_descriptor);
1937   if (failed_to_read_elf_head) {
1938     // file i/o error - report dlerror() msg
1939     return NULL;
1940   }
1941 
1942   typedef struct {
1943     Elf32_Half  code;         // Actual value as defined in elf.h
1944     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1945     char        elf_class;    // 32 or 64 bit
1946     char        endianess;    // MSB or LSB
1947     char*       name;         // String representation
1948   } arch_t;
1949 
1950   #ifndef EM_486
1951   #define EM_486          6               /* Intel 80486 */
1952   #endif
1953 
1954   static const arch_t arch_array[]={
1955     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1956     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1957     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1958     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1959     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1960     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1961     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1962     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1963 #if defined(VM_LITTLE_ENDIAN)
1964     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1965 #else
1966     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1967 #endif
1968     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1969     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1970     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1971     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1972     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1973     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1974     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1975   };
1976 
1977   #if  (defined IA32)
1978     static  Elf32_Half running_arch_code=EM_386;
1979   #elif   (defined AMD64)
1980     static  Elf32_Half running_arch_code=EM_X86_64;
1981   #elif  (defined IA64)
1982     static  Elf32_Half running_arch_code=EM_IA_64;
1983   #elif  (defined __sparc) && (defined _LP64)
1984     static  Elf32_Half running_arch_code=EM_SPARCV9;
1985   #elif  (defined __sparc) && (!defined _LP64)
1986     static  Elf32_Half running_arch_code=EM_SPARC;
1987   #elif  (defined __powerpc64__)
1988     static  Elf32_Half running_arch_code=EM_PPC64;
1989   #elif  (defined __powerpc__)
1990     static  Elf32_Half running_arch_code=EM_PPC;
1991   #elif  (defined ARM)
1992     static  Elf32_Half running_arch_code=EM_ARM;
1993   #elif  (defined S390)
1994     static  Elf32_Half running_arch_code=EM_S390;
1995   #elif  (defined ALPHA)
1996     static  Elf32_Half running_arch_code=EM_ALPHA;
1997   #elif  (defined MIPSEL)
1998     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1999   #elif  (defined PARISC)
2000     static  Elf32_Half running_arch_code=EM_PARISC;
2001   #elif  (defined MIPS)
2002     static  Elf32_Half running_arch_code=EM_MIPS;
2003   #elif  (defined M68K)
2004     static  Elf32_Half running_arch_code=EM_68K;
2005   #else
2006     #error Method os::dll_load requires that one of following is defined:\
2007          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
2008   #endif
2009 
2010   // Identify compatability class for VM's architecture and library's architecture
2011   // Obtain string descriptions for architectures
2012 
2013   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
2014   int running_arch_index=-1;
2015 
2016   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
2017     if (running_arch_code == arch_array[i].code) {
2018       running_arch_index    = i;
2019     }
2020     if (lib_arch.code == arch_array[i].code) {
2021       lib_arch.compat_class = arch_array[i].compat_class;
2022       lib_arch.name         = arch_array[i].name;
2023     }
2024   }
2025 
2026   assert(running_arch_index != -1,
2027     "Didn't find running architecture code (running_arch_code) in arch_array");
2028   if (running_arch_index == -1) {
2029     // Even though running architecture detection failed
2030     // we may still continue with reporting dlerror() message
2031     return NULL;
2032   }
2033 
2034   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2035     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2036     return NULL;
2037   }
2038 
2039 #ifndef S390
2040   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2041     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2042     return NULL;
2043   }
2044 #endif // !S390
2045 
2046   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2047     if ( lib_arch.name!=NULL ) {
2048       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2049         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2050         lib_arch.name, arch_array[running_arch_index].name);
2051     } else {
2052       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2053       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2054         lib_arch.code,
2055         arch_array[running_arch_index].name);
2056     }
2057   }
2058 
2059   return NULL;
2060 }
2061 
2062 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
2063   void * result = ::dlopen(filename, RTLD_LAZY);
2064   if (result == NULL) {
2065     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2066     ebuf[ebuflen-1] = '\0';
2067   }
2068   return result;
2069 }
2070 
2071 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
2072   void * result = NULL;
2073   if (LoadExecStackDllInVMThread) {
2074     result = dlopen_helper(filename, ebuf, ebuflen);
2075   }
2076 
2077   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2078   // library that requires an executable stack, or which does not have this
2079   // stack attribute set, dlopen changes the stack attribute to executable. The
2080   // read protection of the guard pages gets lost.
2081   //
2082   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2083   // may have been queued at the same time.
2084 
2085   if (!_stack_is_executable) {
2086     JavaThread *jt = Threads::first();
2087 
2088     while (jt) {
2089       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2090           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2091         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2092                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2093           warning("Attempt to reguard stack yellow zone failed.");
2094         }
2095       }
2096       jt = jt->next();
2097     }
2098   }
2099 
2100   return result;
2101 }
2102 
2103 /*
2104  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2105  * chances are you might want to run the generated bits against glibc-2.0
2106  * libdl.so, so always use locking for any version of glibc.
2107  */
2108 void* os::dll_lookup(void* handle, const char* name) {
2109   pthread_mutex_lock(&dl_mutex);
2110   void* res = dlsym(handle, name);
2111   pthread_mutex_unlock(&dl_mutex);
2112   return res;
2113 }
2114 
2115 void* os::get_default_process_handle() {
2116   return (void*)::dlopen(NULL, RTLD_LAZY);
2117 }
2118 
2119 static bool _print_ascii_file(const char* filename, outputStream* st) {
2120   int fd = ::open(filename, O_RDONLY);
2121   if (fd == -1) {
2122      return false;
2123   }
2124 
2125   char buf[32];
2126   int bytes;
2127   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2128     st->print_raw(buf, bytes);
2129   }
2130 
2131   ::close(fd);
2132 
2133   return true;
2134 }
2135 
2136 void os::print_dll_info(outputStream *st) {
2137    st->print_cr("Dynamic libraries:");
2138 
2139    char fname[32];
2140    pid_t pid = os::Linux::gettid();
2141 
2142    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2143 
2144    if (!_print_ascii_file(fname, st)) {
2145      st->print("Can not get library information for pid = %d\n", pid);
2146    }
2147 }
2148 
2149 void os::print_os_info_brief(outputStream* st) {
2150   os::Linux::print_distro_info(st);
2151 
2152   os::Posix::print_uname_info(st);
2153 
2154   os::Linux::print_libversion_info(st);
2155 
2156 }
2157 
2158 void os::print_os_info(outputStream* st) {
2159   st->print("OS:");
2160 
2161   os::Linux::print_distro_info(st);
2162 
2163   os::Posix::print_uname_info(st);
2164 
2165   // Print warning if unsafe chroot environment detected
2166   if (unsafe_chroot_detected) {
2167     st->print("WARNING!! ");
2168     st->print_cr("%s", unstable_chroot_error);
2169   }
2170 
2171   os::Linux::print_libversion_info(st);
2172 
2173   os::Posix::print_rlimit_info(st);
2174 
2175   os::Posix::print_load_average(st);
2176 
2177   os::Linux::print_full_memory_info(st);
2178 
2179   os::Linux::print_container_info(st);
2180 }
2181 
2182 // Try to identify popular distros.
2183 // Most Linux distributions have a /etc/XXX-release file, which contains
2184 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2185 // file that also contains the OS version string. Some have more than one
2186 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2187 // /etc/redhat-release.), so the order is important.
2188 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2189 // their own specific XXX-release file as well as a redhat-release file.
2190 // Because of this the XXX-release file needs to be searched for before the
2191 // redhat-release file.
2192 // Since Red Hat has a lsb-release file that is not very descriptive the
2193 // search for redhat-release needs to be before lsb-release.
2194 // Since the lsb-release file is the new standard it needs to be searched
2195 // before the older style release files.
2196 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2197 // next to last resort.  The os-release file is a new standard that contains
2198 // distribution information and the system-release file seems to be an old
2199 // standard that has been replaced by the lsb-release and os-release files.
2200 // Searching for the debian_version file is the last resort.  It contains
2201 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2202 // "Debian " is printed before the contents of the debian_version file.
2203 void os::Linux::print_distro_info(outputStream* st) {
2204    if (!_print_ascii_file("/etc/oracle-release", st) &&
2205        !_print_ascii_file("/etc/mandriva-release", st) &&
2206        !_print_ascii_file("/etc/mandrake-release", st) &&
2207        !_print_ascii_file("/etc/sun-release", st) &&
2208        !_print_ascii_file("/etc/redhat-release", st) &&
2209        !_print_ascii_file("/etc/lsb-release", st) &&
2210        !_print_ascii_file("/etc/SuSE-release", st) &&
2211        !_print_ascii_file("/etc/turbolinux-release", st) &&
2212        !_print_ascii_file("/etc/gentoo-release", st) &&
2213        !_print_ascii_file("/etc/ltib-release", st) &&
2214        !_print_ascii_file("/etc/angstrom-version", st) &&
2215        !_print_ascii_file("/etc/system-release", st) &&
2216        !_print_ascii_file("/etc/os-release", st)) {
2217 
2218        if (file_exists("/etc/debian_version")) {
2219          st->print("Debian ");
2220          _print_ascii_file("/etc/debian_version", st);
2221        } else {
2222          st->print("Linux");
2223        }
2224    }
2225    st->cr();
2226 }
2227 
2228 void os::Linux::print_libversion_info(outputStream* st) {
2229   // libc, pthread
2230   st->print("libc:");
2231   st->print("%s ", os::Linux::glibc_version());
2232   st->print("%s ", os::Linux::libpthread_version());
2233   if (os::Linux::is_LinuxThreads()) {
2234      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2235   }
2236   st->cr();
2237 }
2238 
2239 void os::Linux::print_full_memory_info(outputStream* st) {
2240    st->print("\n/proc/meminfo:\n");
2241    _print_ascii_file("/proc/meminfo", st);
2242    st->cr();
2243 }
2244 
2245 void os::Linux::print_container_info(outputStream* st) {
2246 if (!OSContainer::is_containerized()) {
2247     return;
2248   }
2249 
2250   st->print("container (cgroup) information:\n");
2251 
2252   const char *p_ct = OSContainer::container_type();
2253   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "failed");
2254 
2255   char *p = OSContainer::cpu_cpuset_cpus();
2256   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "failed");
2257   free(p);
2258 
2259   p = OSContainer::cpu_cpuset_memory_nodes();
2260   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "failed");
2261   free(p);
2262 
2263   int i = OSContainer::active_processor_count();
2264   if (i > 0) {
2265     st->print("active_processor_count: %d\n", i);
2266   } else {
2267     st->print("active_processor_count: failed\n");
2268   }
2269 
2270   i = OSContainer::cpu_quota();
2271   st->print("cpu_quota: %d\n", i);
2272 
2273   i = OSContainer::cpu_period();
2274   st->print("cpu_period: %d\n", i);
2275 
2276   i = OSContainer::cpu_shares();
2277   st->print("cpu_shares: %d\n", i);
2278 
2279   jlong j = OSContainer::memory_limit_in_bytes();
2280   st->print("memory_limit_in_bytes: " JLONG_FORMAT "\n", j);
2281 
2282   j = OSContainer::memory_and_swap_limit_in_bytes();
2283   st->print("memory_and_swap_limit_in_bytes: " JLONG_FORMAT "\n", j);
2284 
2285   j = OSContainer::memory_soft_limit_in_bytes();
2286   st->print("memory_soft_limit_in_bytes: " JLONG_FORMAT "\n", j);
2287 
2288   j = OSContainer::OSContainer::memory_usage_in_bytes();
2289   st->print("memory_usage_in_bytes: " JLONG_FORMAT "\n", j);
2290 
2291   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
2292   st->print("memory_max_usage_in_bytes: " JLONG_FORMAT "\n", j);
2293   st->cr();
2294 }
2295 
2296 void os::print_memory_info(outputStream* st) {
2297 
2298   st->print("Memory:");
2299   st->print(" %dk page", os::vm_page_size()>>10);
2300 
2301   // values in struct sysinfo are "unsigned long"
2302   struct sysinfo si;
2303   sysinfo(&si);
2304 
2305   st->print(", physical " UINT64_FORMAT "k",
2306             os::physical_memory() >> 10);
2307   st->print("(" UINT64_FORMAT "k free)",
2308             os::available_memory() >> 10);
2309   st->print(", swap " UINT64_FORMAT "k",
2310             ((jlong)si.totalswap * si.mem_unit) >> 10);
2311   st->print("(" UINT64_FORMAT "k free)",
2312             ((jlong)si.freeswap * si.mem_unit) >> 10);
2313   st->cr();
2314 }
2315 
2316 void os::pd_print_cpu_info(outputStream* st) {
2317   st->print("\n/proc/cpuinfo:\n");
2318   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2319     st->print("  <Not Available>");
2320   }
2321   st->cr();
2322 }
2323 
2324 void os::print_siginfo(outputStream* st, void* siginfo) {
2325   const siginfo_t* si = (const siginfo_t*)siginfo;
2326 
2327   os::Posix::print_siginfo_brief(st, si);
2328 #if INCLUDE_CDS
2329   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2330       UseSharedSpaces) {
2331     FileMapInfo* mapinfo = FileMapInfo::current_info();
2332     if (mapinfo->is_in_shared_space(si->si_addr)) {
2333       st->print("\n\nError accessing class data sharing archive."   \
2334                 " Mapped file inaccessible during execution, "      \
2335                 " possible disk/network problem.");
2336     }
2337   }
2338 #endif
2339   st->cr();
2340 }
2341 
2342 
2343 static void print_signal_handler(outputStream* st, int sig,
2344                                  char* buf, size_t buflen);
2345 
2346 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2347   st->print_cr("Signal Handlers:");
2348   print_signal_handler(st, SIGSEGV, buf, buflen);
2349   print_signal_handler(st, SIGBUS , buf, buflen);
2350   print_signal_handler(st, SIGFPE , buf, buflen);
2351   print_signal_handler(st, SIGPIPE, buf, buflen);
2352   print_signal_handler(st, SIGXFSZ, buf, buflen);
2353   print_signal_handler(st, SIGILL , buf, buflen);
2354   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2355   print_signal_handler(st, SR_signum, buf, buflen);
2356   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2357   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2358   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2359   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2360 #if defined(PPC64)
2361   print_signal_handler(st, SIGTRAP, buf, buflen);
2362 #endif
2363 }
2364 
2365 static char saved_jvm_path[MAXPATHLEN] = {0};
2366 
2367 // Find the full path to the current module, libjvm.so
2368 void os::jvm_path(char *buf, jint buflen) {
2369   // Error checking.
2370   if (buflen < MAXPATHLEN) {
2371     assert(false, "must use a large-enough buffer");
2372     buf[0] = '\0';
2373     return;
2374   }
2375   // Lazy resolve the path to current module.
2376   if (saved_jvm_path[0] != 0) {
2377     strcpy(buf, saved_jvm_path);
2378     return;
2379   }
2380 
2381   char dli_fname[MAXPATHLEN];
2382   bool ret = dll_address_to_library_name(
2383                 CAST_FROM_FN_PTR(address, os::jvm_path),
2384                 dli_fname, sizeof(dli_fname), NULL);
2385   assert(ret, "cannot locate libjvm");
2386   char *rp = NULL;
2387   if (ret && dli_fname[0] != '\0') {
2388     rp = realpath(dli_fname, buf);
2389   }
2390   if (rp == NULL)
2391     return;
2392 
2393   if (Arguments::created_by_gamma_launcher()) {
2394     // Support for the gamma launcher.  Typical value for buf is
2395     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2396     // the right place in the string, then assume we are installed in a JDK and
2397     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2398     // up the path so it looks like libjvm.so is installed there (append a
2399     // fake suffix hotspot/libjvm.so).
2400     const char *p = buf + strlen(buf) - 1;
2401     for (int count = 0; p > buf && count < 5; ++count) {
2402       for (--p; p > buf && *p != '/'; --p)
2403         /* empty */ ;
2404     }
2405 
2406     if (strncmp(p, "/jre/lib/", 9) != 0) {
2407       // Look for JAVA_HOME in the environment.
2408       char* java_home_var = ::getenv("JAVA_HOME");
2409       if (java_home_var != NULL && java_home_var[0] != 0) {
2410         char* jrelib_p;
2411         int len;
2412 
2413         // Check the current module name "libjvm.so".
2414         p = strrchr(buf, '/');
2415         assert(strstr(p, "/libjvm") == p, "invalid library name");
2416 
2417         rp = realpath(java_home_var, buf);
2418         if (rp == NULL)
2419           return;
2420 
2421         // determine if this is a legacy image or modules image
2422         // modules image doesn't have "jre" subdirectory
2423         len = strlen(buf);
2424         assert(len < buflen, "Ran out of buffer room");
2425         jrelib_p = buf + len;
2426         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2427         if (0 != access(buf, F_OK)) {
2428           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2429         }
2430 
2431         if (0 == access(buf, F_OK)) {
2432           // Use current module name "libjvm.so"
2433           len = strlen(buf);
2434           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2435         } else {
2436           // Go back to path of .so
2437           rp = realpath(dli_fname, buf);
2438           if (rp == NULL)
2439             return;
2440         }
2441       }
2442     }
2443   }
2444 
2445   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2446 }
2447 
2448 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2449   // no prefix required, not even "_"
2450 }
2451 
2452 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2453   // no suffix required
2454 }
2455 
2456 ////////////////////////////////////////////////////////////////////////////////
2457 // sun.misc.Signal support
2458 
2459 static volatile jint sigint_count = 0;
2460 
2461 static void
2462 UserHandler(int sig, void *siginfo, void *context) {
2463   // 4511530 - sem_post is serialized and handled by the manager thread. When
2464   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2465   // don't want to flood the manager thread with sem_post requests.
2466   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2467       return;
2468 
2469   // Ctrl-C is pressed during error reporting, likely because the error
2470   // handler fails to abort. Let VM die immediately.
2471   if (sig == SIGINT && is_error_reported()) {
2472      os::die();
2473   }
2474 
2475   os::signal_notify(sig);
2476 }
2477 
2478 void* os::user_handler() {
2479   return CAST_FROM_FN_PTR(void*, UserHandler);
2480 }
2481 
2482 class Semaphore : public StackObj {
2483   public:
2484     Semaphore();
2485     ~Semaphore();
2486     void signal();
2487     void wait();
2488     bool trywait();
2489     bool timedwait(unsigned int sec, int nsec);
2490   private:
2491     sem_t _semaphore;
2492 };
2493 
2494 Semaphore::Semaphore() {
2495   sem_init(&_semaphore, 0, 0);
2496 }
2497 
2498 Semaphore::~Semaphore() {
2499   sem_destroy(&_semaphore);
2500 }
2501 
2502 void Semaphore::signal() {
2503   sem_post(&_semaphore);
2504 }
2505 
2506 void Semaphore::wait() {
2507   sem_wait(&_semaphore);
2508 }
2509 
2510 bool Semaphore::trywait() {
2511   return sem_trywait(&_semaphore) == 0;
2512 }
2513 
2514 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2515 
2516   struct timespec ts;
2517   // Semaphore's are always associated with CLOCK_REALTIME
2518   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2519   // see unpackTime for discussion on overflow checking
2520   if (sec >= MAX_SECS) {
2521     ts.tv_sec += MAX_SECS;
2522     ts.tv_nsec = 0;
2523   } else {
2524     ts.tv_sec += sec;
2525     ts.tv_nsec += nsec;
2526     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2527       ts.tv_nsec -= NANOSECS_PER_SEC;
2528       ++ts.tv_sec; // note: this must be <= max_secs
2529     }
2530   }
2531 
2532   while (1) {
2533     int result = sem_timedwait(&_semaphore, &ts);
2534     if (result == 0) {
2535       return true;
2536     } else if (errno == EINTR) {
2537       continue;
2538     } else if (errno == ETIMEDOUT) {
2539       return false;
2540     } else {
2541       return false;
2542     }
2543   }
2544 }
2545 
2546 extern "C" {
2547   typedef void (*sa_handler_t)(int);
2548   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2549 }
2550 
2551 void* os::signal(int signal_number, void* handler) {
2552   struct sigaction sigAct, oldSigAct;
2553 
2554   sigfillset(&(sigAct.sa_mask));
2555   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2556   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2557 
2558   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2559     // -1 means registration failed
2560     return (void *)-1;
2561   }
2562 
2563   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2564 }
2565 
2566 void os::signal_raise(int signal_number) {
2567   ::raise(signal_number);
2568 }
2569 
2570 /*
2571  * The following code is moved from os.cpp for making this
2572  * code platform specific, which it is by its very nature.
2573  */
2574 
2575 // Will be modified when max signal is changed to be dynamic
2576 int os::sigexitnum_pd() {
2577   return NSIG;
2578 }
2579 
2580 // a counter for each possible signal value
2581 static volatile jint pending_signals[NSIG+1] = { 0 };
2582 
2583 // Linux(POSIX) specific hand shaking semaphore.
2584 static sem_t sig_sem;
2585 static Semaphore sr_semaphore;
2586 
2587 void os::signal_init_pd() {
2588   // Initialize signal structures
2589   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2590 
2591   // Initialize signal semaphore
2592   ::sem_init(&sig_sem, 0, 0);
2593 }
2594 
2595 void os::signal_notify(int sig) {
2596   Atomic::inc(&pending_signals[sig]);
2597   ::sem_post(&sig_sem);
2598 }
2599 
2600 static int check_pending_signals(bool wait) {
2601   Atomic::store(0, &sigint_count);
2602   for (;;) {
2603     for (int i = 0; i < NSIG + 1; i++) {
2604       jint n = pending_signals[i];
2605       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2606         return i;
2607       }
2608     }
2609     if (!wait) {
2610       return -1;
2611     }
2612     JavaThread *thread = JavaThread::current();
2613     ThreadBlockInVM tbivm(thread);
2614 
2615     bool threadIsSuspended;
2616     do {
2617       thread->set_suspend_equivalent();
2618       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2619       ::sem_wait(&sig_sem);
2620 
2621       // were we externally suspended while we were waiting?
2622       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2623       if (threadIsSuspended) {
2624         //
2625         // The semaphore has been incremented, but while we were waiting
2626         // another thread suspended us. We don't want to continue running
2627         // while suspended because that would surprise the thread that
2628         // suspended us.
2629         //
2630         ::sem_post(&sig_sem);
2631 
2632         thread->java_suspend_self();
2633       }
2634     } while (threadIsSuspended);
2635   }
2636 }
2637 
2638 int os::signal_lookup() {
2639   return check_pending_signals(false);
2640 }
2641 
2642 int os::signal_wait() {
2643   return check_pending_signals(true);
2644 }
2645 
2646 ////////////////////////////////////////////////////////////////////////////////
2647 // Virtual Memory
2648 
2649 int os::vm_page_size() {
2650   // Seems redundant as all get out
2651   assert(os::Linux::page_size() != -1, "must call os::init");
2652   return os::Linux::page_size();
2653 }
2654 
2655 // Solaris allocates memory by pages.
2656 int os::vm_allocation_granularity() {
2657   assert(os::Linux::page_size() != -1, "must call os::init");
2658   return os::Linux::page_size();
2659 }
2660 
2661 // Rationale behind this function:
2662 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2663 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2664 //  samples for JITted code. Here we create private executable mapping over the code cache
2665 //  and then we can use standard (well, almost, as mapping can change) way to provide
2666 //  info for the reporting script by storing timestamp and location of symbol
2667 void linux_wrap_code(char* base, size_t size) {
2668   static volatile jint cnt = 0;
2669 
2670   if (!UseOprofile) {
2671     return;
2672   }
2673 
2674   char buf[PATH_MAX+1];
2675   int num = Atomic::add(1, &cnt);
2676 
2677   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2678            os::get_temp_directory(), os::current_process_id(), num);
2679   unlink(buf);
2680 
2681   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2682 
2683   if (fd != -1) {
2684     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2685     if (rv != (off_t)-1) {
2686       if (::write(fd, "", 1) == 1) {
2687         mmap(base, size,
2688              PROT_READ|PROT_WRITE|PROT_EXEC,
2689              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2690       }
2691     }
2692     ::close(fd);
2693     unlink(buf);
2694   }
2695 }
2696 
2697 static bool recoverable_mmap_error(int err) {
2698   // See if the error is one we can let the caller handle. This
2699   // list of errno values comes from JBS-6843484. I can't find a
2700   // Linux man page that documents this specific set of errno
2701   // values so while this list currently matches Solaris, it may
2702   // change as we gain experience with this failure mode.
2703   switch (err) {
2704   case EBADF:
2705   case EINVAL:
2706   case ENOTSUP:
2707     // let the caller deal with these errors
2708     return true;
2709 
2710   default:
2711     // Any remaining errors on this OS can cause our reserved mapping
2712     // to be lost. That can cause confusion where different data
2713     // structures think they have the same memory mapped. The worst
2714     // scenario is if both the VM and a library think they have the
2715     // same memory mapped.
2716     return false;
2717   }
2718 }
2719 
2720 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2721                                     int err) {
2722   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2723           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2724           strerror(err), err);
2725 }
2726 
2727 static void warn_fail_commit_memory(char* addr, size_t size,
2728                                     size_t alignment_hint, bool exec,
2729                                     int err) {
2730   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2731           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2732           alignment_hint, exec, strerror(err), err);
2733 }
2734 
2735 // NOTE: Linux kernel does not really reserve the pages for us.
2736 //       All it does is to check if there are enough free pages
2737 //       left at the time of mmap(). This could be a potential
2738 //       problem.
2739 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2740   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2741   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2742                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2743   if (res != (uintptr_t) MAP_FAILED) {
2744     if (UseNUMAInterleaving) {
2745       numa_make_global(addr, size);
2746     }
2747     return 0;
2748   }
2749 
2750   int err = errno;  // save errno from mmap() call above
2751 
2752   if (!recoverable_mmap_error(err)) {
2753     warn_fail_commit_memory(addr, size, exec, err);
2754     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2755   }
2756 
2757   return err;
2758 }
2759 
2760 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2761   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2762 }
2763 
2764 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2765                                   const char* mesg) {
2766   assert(mesg != NULL, "mesg must be specified");
2767   int err = os::Linux::commit_memory_impl(addr, size, exec);
2768   if (err != 0) {
2769     // the caller wants all commit errors to exit with the specified mesg:
2770     warn_fail_commit_memory(addr, size, exec, err);
2771     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2772   }
2773 }
2774 
2775 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2776 #ifndef MAP_HUGETLB
2777 #define MAP_HUGETLB 0x40000
2778 #endif
2779 
2780 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2781 #ifndef MADV_HUGEPAGE
2782 #define MADV_HUGEPAGE 14
2783 #endif
2784 
2785 int os::Linux::commit_memory_impl(char* addr, size_t size,
2786                                   size_t alignment_hint, bool exec) {
2787   int err = os::Linux::commit_memory_impl(addr, size, exec);
2788   if (err == 0) {
2789     realign_memory(addr, size, alignment_hint);
2790   }
2791   return err;
2792 }
2793 
2794 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2795                           bool exec) {
2796   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2797 }
2798 
2799 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2800                                   size_t alignment_hint, bool exec,
2801                                   const char* mesg) {
2802   assert(mesg != NULL, "mesg must be specified");
2803   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2804   if (err != 0) {
2805     // the caller wants all commit errors to exit with the specified mesg:
2806     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2807     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2808   }
2809 }
2810 
2811 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2812   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2813     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2814     // be supported or the memory may already be backed by huge pages.
2815     ::madvise(addr, bytes, MADV_HUGEPAGE);
2816   }
2817 }
2818 
2819 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2820   // This method works by doing an mmap over an existing mmaping and effectively discarding
2821   // the existing pages. However it won't work for SHM-based large pages that cannot be
2822   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2823   // small pages on top of the SHM segment. This method always works for small pages, so we
2824   // allow that in any case.
2825   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2826     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2827   }
2828 }
2829 
2830 void os::numa_make_global(char *addr, size_t bytes) {
2831   Linux::numa_interleave_memory(addr, bytes);
2832 }
2833 
2834 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2835 // bind policy to MPOL_PREFERRED for the current thread.
2836 #define USE_MPOL_PREFERRED 0
2837 
2838 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2839   // To make NUMA and large pages more robust when both enabled, we need to ease
2840   // the requirements on where the memory should be allocated. MPOL_BIND is the
2841   // default policy and it will force memory to be allocated on the specified
2842   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2843   // the specified node, but will not force it. Using this policy will prevent
2844   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2845   // free large pages.
2846   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2847   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2848 }
2849 
2850 bool os::numa_topology_changed()   { return false; }
2851 
2852 size_t os::numa_get_groups_num() {
2853   // Return just the number of nodes in which it's possible to allocate memory
2854   // (in numa terminology, configured nodes).
2855   return Linux::numa_num_configured_nodes();
2856 }
2857 
2858 int os::numa_get_group_id() {
2859   int cpu_id = Linux::sched_getcpu();
2860   if (cpu_id != -1) {
2861     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2862     if (lgrp_id != -1) {
2863       return lgrp_id;
2864     }
2865   }
2866   return 0;
2867 }
2868 
2869 int os::Linux::get_existing_num_nodes() {
2870   size_t node;
2871   size_t highest_node_number = Linux::numa_max_node();
2872   int num_nodes = 0;
2873 
2874   // Get the total number of nodes in the system including nodes without memory.
2875   for (node = 0; node <= highest_node_number; node++) {
2876     if (isnode_in_existing_nodes(node)) {
2877       num_nodes++;
2878     }
2879   }
2880   return num_nodes;
2881 }
2882 
2883 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2884   size_t highest_node_number = Linux::numa_max_node();
2885   size_t i = 0;
2886 
2887   // Map all node ids in which is possible to allocate memory. Also nodes are
2888   // not always consecutively available, i.e. available from 0 to the highest
2889   // node number.
2890   for (size_t node = 0; node <= highest_node_number; node++) {
2891     if (Linux::isnode_in_configured_nodes(node)) {
2892       ids[i++] = node;
2893     }
2894   }
2895   return i;
2896 }
2897 
2898 bool os::get_page_info(char *start, page_info* info) {
2899   return false;
2900 }
2901 
2902 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2903   return end;
2904 }
2905 
2906 
2907 int os::Linux::sched_getcpu_syscall(void) {
2908   unsigned int cpu = 0;
2909   int retval = -1;
2910 
2911 #if defined(IA32)
2912 # ifndef SYS_getcpu
2913 # define SYS_getcpu 318
2914 # endif
2915   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2916 #elif defined(AMD64)
2917 // Unfortunately we have to bring all these macros here from vsyscall.h
2918 // to be able to compile on old linuxes.
2919 # define __NR_vgetcpu 2
2920 # define VSYSCALL_START (-10UL << 20)
2921 # define VSYSCALL_SIZE 1024
2922 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2923   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2924   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2925   retval = vgetcpu(&cpu, NULL, NULL);
2926 #endif
2927 
2928   return (retval == -1) ? retval : cpu;
2929 }
2930 
2931 // Something to do with the numa-aware allocator needs these symbols
2932 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2933 extern "C" JNIEXPORT void numa_error(char *where) { }
2934 extern "C" JNIEXPORT int fork1() { return fork(); }
2935 
2936 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
2937 // load symbol from base version instead.
2938 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2939   void *f = dlvsym(handle, name, "libnuma_1.1");
2940   if (f == NULL) {
2941     f = dlsym(handle, name);
2942   }
2943   return f;
2944 }
2945 
2946 // Handle request to load libnuma symbol version 1.2 (API v2) only.
2947 // Return NULL if the symbol is not defined in this particular version.
2948 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
2949   return dlvsym(handle, name, "libnuma_1.2");
2950 }
2951 
2952 bool os::Linux::libnuma_init() {
2953   // sched_getcpu() should be in libc.
2954   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2955                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2956 
2957   // If it's not, try a direct syscall.
2958   if (sched_getcpu() == -1)
2959     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2960 
2961   if (sched_getcpu() != -1) { // Does it work?
2962     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2963     if (handle != NULL) {
2964       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2965                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2966       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2967                                        libnuma_dlsym(handle, "numa_max_node")));
2968       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
2969                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
2970       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2971                                         libnuma_dlsym(handle, "numa_available")));
2972       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2973                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2974       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2975                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2976       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
2977                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
2978       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2979                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2980       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
2981                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
2982       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
2983                                        libnuma_dlsym(handle, "numa_distance")));
2984 
2985       if (numa_available() != -1) {
2986         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2987         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
2988         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
2989         // Create an index -> node mapping, since nodes are not always consecutive
2990         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2991         rebuild_nindex_to_node_map();
2992         // Create a cpu -> node mapping
2993         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2994         rebuild_cpu_to_node_map();
2995         return true;
2996       }
2997     }
2998   }
2999   return false;
3000 }
3001 
3002 void os::Linux::rebuild_nindex_to_node_map() {
3003   int highest_node_number = Linux::numa_max_node();
3004 
3005   nindex_to_node()->clear();
3006   for (int node = 0; node <= highest_node_number; node++) {
3007     if (Linux::isnode_in_existing_nodes(node)) {
3008       nindex_to_node()->append(node);
3009     }
3010   }
3011 }
3012 
3013 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
3014 // The table is later used in get_node_by_cpu().
3015 void os::Linux::rebuild_cpu_to_node_map() {
3016   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
3017                               // in libnuma (possible values are starting from 16,
3018                               // and continuing up with every other power of 2, but less
3019                               // than the maximum number of CPUs supported by kernel), and
3020                               // is a subject to change (in libnuma version 2 the requirements
3021                               // are more reasonable) we'll just hardcode the number they use
3022                               // in the library.
3023   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
3024 
3025   size_t cpu_num = processor_count();
3026   size_t cpu_map_size = NCPUS / BitsPerCLong;
3027   size_t cpu_map_valid_size =
3028     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
3029 
3030   cpu_to_node()->clear();
3031   cpu_to_node()->at_grow(cpu_num - 1);
3032 
3033   size_t node_num = get_existing_num_nodes();
3034 
3035   int distance = 0;
3036   int closest_distance = INT_MAX;
3037   int closest_node = 0;
3038   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
3039   for (size_t i = 0; i < node_num; i++) {
3040     // Check if node is configured (not a memory-less node). If it is not, find
3041     // the closest configured node.
3042     if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
3043       closest_distance = INT_MAX;
3044       // Check distance from all remaining nodes in the system. Ignore distance
3045       // from itself and from another non-configured node.
3046       for (size_t m = 0; m < node_num; m++) {
3047         if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
3048           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
3049           // If a closest node is found, update. There is always at least one
3050           // configured node in the system so there is always at least one node
3051           // close.
3052           if (distance != 0 && distance < closest_distance) {
3053             closest_distance = distance;
3054             closest_node = nindex_to_node()->at(m);
3055           }
3056         }
3057       }
3058      } else {
3059        // Current node is already a configured node.
3060        closest_node = nindex_to_node()->at(i);
3061      }
3062 
3063     // Get cpus from the original node and map them to the closest node. If node
3064     // is a configured node (not a memory-less node), then original node and
3065     // closest node are the same.
3066     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
3067       for (size_t j = 0; j < cpu_map_valid_size; j++) {
3068         if (cpu_map[j] != 0) {
3069           for (size_t k = 0; k < BitsPerCLong; k++) {
3070             if (cpu_map[j] & (1UL << k)) {
3071               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
3072             }
3073           }
3074         }
3075       }
3076     }
3077   }
3078   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
3079 }
3080 
3081 int os::Linux::get_node_by_cpu(int cpu_id) {
3082   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
3083     return cpu_to_node()->at(cpu_id);
3084   }
3085   return -1;
3086 }
3087 
3088 GrowableArray<int>* os::Linux::_cpu_to_node;
3089 GrowableArray<int>* os::Linux::_nindex_to_node;
3090 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3091 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3092 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3093 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3094 os::Linux::numa_available_func_t os::Linux::_numa_available;
3095 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3096 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3097 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3098 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3099 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3100 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3101 unsigned long* os::Linux::_numa_all_nodes;
3102 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3103 struct bitmask* os::Linux::_numa_nodes_ptr;
3104 
3105 bool os::pd_uncommit_memory(char* addr, size_t size) {
3106   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3107                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3108   return res  != (uintptr_t) MAP_FAILED;
3109 }
3110 
3111 static
3112 address get_stack_commited_bottom(address bottom, size_t size) {
3113   address nbot = bottom;
3114   address ntop = bottom + size;
3115 
3116   size_t page_sz = os::vm_page_size();
3117   unsigned pages = size / page_sz;
3118 
3119   unsigned char vec[1];
3120   unsigned imin = 1, imax = pages + 1, imid;
3121   int mincore_return_value = 0;
3122 
3123   assert(imin <= imax, "Unexpected page size");
3124 
3125   while (imin < imax) {
3126     imid = (imax + imin) / 2;
3127     nbot = ntop - (imid * page_sz);
3128 
3129     // Use a trick with mincore to check whether the page is mapped or not.
3130     // mincore sets vec to 1 if page resides in memory and to 0 if page
3131     // is swapped output but if page we are asking for is unmapped
3132     // it returns -1,ENOMEM
3133     mincore_return_value = mincore(nbot, page_sz, vec);
3134 
3135     if (mincore_return_value == -1) {
3136       // Page is not mapped go up
3137       // to find first mapped page
3138       if (errno != EAGAIN) {
3139         assert(errno == ENOMEM, "Unexpected mincore errno");
3140         imax = imid;
3141       }
3142     } else {
3143       // Page is mapped go down
3144       // to find first not mapped page
3145       imin = imid + 1;
3146     }
3147   }
3148 
3149   nbot = nbot + page_sz;
3150 
3151   // Adjust stack bottom one page up if last checked page is not mapped
3152   if (mincore_return_value == -1) {
3153     nbot = nbot + page_sz;
3154   }
3155 
3156   return nbot;
3157 }
3158 
3159 
3160 // Linux uses a growable mapping for the stack, and if the mapping for
3161 // the stack guard pages is not removed when we detach a thread the
3162 // stack cannot grow beyond the pages where the stack guard was
3163 // mapped.  If at some point later in the process the stack expands to
3164 // that point, the Linux kernel cannot expand the stack any further
3165 // because the guard pages are in the way, and a segfault occurs.
3166 //
3167 // However, it's essential not to split the stack region by unmapping
3168 // a region (leaving a hole) that's already part of the stack mapping,
3169 // so if the stack mapping has already grown beyond the guard pages at
3170 // the time we create them, we have to truncate the stack mapping.
3171 // So, we need to know the extent of the stack mapping when
3172 // create_stack_guard_pages() is called.
3173 
3174 // We only need this for stacks that are growable: at the time of
3175 // writing thread stacks don't use growable mappings (i.e. those
3176 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3177 // only applies to the main thread.
3178 
3179 // If the (growable) stack mapping already extends beyond the point
3180 // where we're going to put our guard pages, truncate the mapping at
3181 // that point by munmap()ping it.  This ensures that when we later
3182 // munmap() the guard pages we don't leave a hole in the stack
3183 // mapping. This only affects the main/primordial thread
3184 
3185 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3186 
3187   if (os::is_primordial_thread()) {
3188     // As we manually grow stack up to bottom inside create_attached_thread(),
3189     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3190     // we don't need to do anything special.
3191     // Check it first, before calling heavy function.
3192     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3193     unsigned char vec[1];
3194 
3195     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3196       // Fallback to slow path on all errors, including EAGAIN
3197       stack_extent = (uintptr_t) get_stack_commited_bottom(
3198                                     os::Linux::initial_thread_stack_bottom(),
3199                                     (size_t)addr - stack_extent);
3200     }
3201 
3202     if (stack_extent < (uintptr_t)addr) {
3203       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3204     }
3205   }
3206 
3207   return os::commit_memory(addr, size, !ExecMem);
3208 }
3209 
3210 // If this is a growable mapping, remove the guard pages entirely by
3211 // munmap()ping them.  If not, just call uncommit_memory(). This only
3212 // affects the main/primordial thread, but guard against future OS changes.
3213 // It's safe to always unmap guard pages for primordial thread because we
3214 // always place it right after end of the mapped region.
3215 
3216 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3217   uintptr_t stack_extent, stack_base;
3218 
3219   if (os::is_primordial_thread()) {
3220     return ::munmap(addr, size) == 0;
3221   }
3222 
3223   return os::uncommit_memory(addr, size);
3224 }
3225 
3226 static address _highest_vm_reserved_address = NULL;
3227 
3228 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3229 // at 'requested_addr'. If there are existing memory mappings at the same
3230 // location, however, they will be overwritten. If 'fixed' is false,
3231 // 'requested_addr' is only treated as a hint, the return value may or
3232 // may not start from the requested address. Unlike Linux mmap(), this
3233 // function returns NULL to indicate failure.
3234 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3235   char * addr;
3236   int flags;
3237 
3238   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3239   if (fixed) {
3240     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3241     flags |= MAP_FIXED;
3242   }
3243 
3244   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3245   // touch an uncommitted page. Otherwise, the read/write might
3246   // succeed if we have enough swap space to back the physical page.
3247   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3248                        flags, -1, 0);
3249 
3250   if (addr != MAP_FAILED) {
3251     // anon_mmap() should only get called during VM initialization,
3252     // don't need lock (actually we can skip locking even it can be called
3253     // from multiple threads, because _highest_vm_reserved_address is just a
3254     // hint about the upper limit of non-stack memory regions.)
3255     if ((address)addr + bytes > _highest_vm_reserved_address) {
3256       _highest_vm_reserved_address = (address)addr + bytes;
3257     }
3258   }
3259 
3260   return addr == MAP_FAILED ? NULL : addr;
3261 }
3262 
3263 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3264 //   (req_addr != NULL) or with a given alignment.
3265 //  - bytes shall be a multiple of alignment.
3266 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3267 //  - alignment sets the alignment at which memory shall be allocated.
3268 //     It must be a multiple of allocation granularity.
3269 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3270 //  req_addr or NULL.
3271 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3272 
3273   size_t extra_size = bytes;
3274   if (req_addr == NULL && alignment > 0) {
3275     extra_size += alignment;
3276   }
3277 
3278   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3279     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3280     -1, 0);
3281   if (start == MAP_FAILED) {
3282     start = NULL;
3283   } else {
3284     if (req_addr != NULL) {
3285       if (start != req_addr) {
3286         ::munmap(start, extra_size);
3287         start = NULL;
3288       }
3289     } else {
3290       char* const start_aligned = (char*) align_ptr_up(start, alignment);
3291       char* const end_aligned = start_aligned + bytes;
3292       char* const end = start + extra_size;
3293       if (start_aligned > start) {
3294         ::munmap(start, start_aligned - start);
3295       }
3296       if (end_aligned < end) {
3297         ::munmap(end_aligned, end - end_aligned);
3298       }
3299       start = start_aligned;
3300     }
3301   }
3302   return start;
3303 }
3304 
3305 // Don't update _highest_vm_reserved_address, because there might be memory
3306 // regions above addr + size. If so, releasing a memory region only creates
3307 // a hole in the address space, it doesn't help prevent heap-stack collision.
3308 //
3309 static int anon_munmap(char * addr, size_t size) {
3310   return ::munmap(addr, size) == 0;
3311 }
3312 
3313 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3314                          size_t alignment_hint) {
3315   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3316 }
3317 
3318 bool os::pd_release_memory(char* addr, size_t size) {
3319   return anon_munmap(addr, size);
3320 }
3321 
3322 static address highest_vm_reserved_address() {
3323   return _highest_vm_reserved_address;
3324 }
3325 
3326 static bool linux_mprotect(char* addr, size_t size, int prot) {
3327   // Linux wants the mprotect address argument to be page aligned.
3328   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3329 
3330   // According to SUSv3, mprotect() should only be used with mappings
3331   // established by mmap(), and mmap() always maps whole pages. Unaligned
3332   // 'addr' likely indicates problem in the VM (e.g. trying to change
3333   // protection of malloc'ed or statically allocated memory). Check the
3334   // caller if you hit this assert.
3335   assert(addr == bottom, "sanity check");
3336 
3337   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3338   return ::mprotect(bottom, size, prot) == 0;
3339 }
3340 
3341 // Set protections specified
3342 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3343                         bool is_committed) {
3344   unsigned int p = 0;
3345   switch (prot) {
3346   case MEM_PROT_NONE: p = PROT_NONE; break;
3347   case MEM_PROT_READ: p = PROT_READ; break;
3348   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3349   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3350   default:
3351     ShouldNotReachHere();
3352   }
3353   // is_committed is unused.
3354   return linux_mprotect(addr, bytes, p);
3355 }
3356 
3357 bool os::guard_memory(char* addr, size_t size) {
3358   return linux_mprotect(addr, size, PROT_NONE);
3359 }
3360 
3361 bool os::unguard_memory(char* addr, size_t size) {
3362   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3363 }
3364 
3365 bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
3366   bool result = false;
3367   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3368                  MAP_ANONYMOUS|MAP_PRIVATE,
3369                  -1, 0);
3370   if (p != MAP_FAILED) {
3371     void *aligned_p = align_ptr_up(p, page_size);
3372 
3373     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3374 
3375     munmap(p, page_size * 2);
3376   }
3377 
3378   if (warn && !result) {
3379     warning("TransparentHugePages is not supported by the operating system.");
3380   }
3381 
3382   return result;
3383 }
3384 
3385 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3386   bool result = false;
3387   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3388                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3389                  -1, 0);
3390 
3391   if (p != MAP_FAILED) {
3392     // We don't know if this really is a huge page or not.
3393     FILE *fp = fopen("/proc/self/maps", "r");
3394     if (fp) {
3395       while (!feof(fp)) {
3396         char chars[257];
3397         long x = 0;
3398         if (fgets(chars, sizeof(chars), fp)) {
3399           if (sscanf(chars, "%lx-%*x", &x) == 1
3400               && x == (long)p) {
3401             if (strstr (chars, "hugepage")) {
3402               result = true;
3403               break;
3404             }
3405           }
3406         }
3407       }
3408       fclose(fp);
3409     }
3410     munmap(p, page_size);
3411   }
3412 
3413   if (warn && !result) {
3414     warning("HugeTLBFS is not supported by the operating system.");
3415   }
3416 
3417   return result;
3418 }
3419 
3420 /*
3421 * Set the coredump_filter bits to include largepages in core dump (bit 6)
3422 *
3423 * From the coredump_filter documentation:
3424 *
3425 * - (bit 0) anonymous private memory
3426 * - (bit 1) anonymous shared memory
3427 * - (bit 2) file-backed private memory
3428 * - (bit 3) file-backed shared memory
3429 * - (bit 4) ELF header pages in file-backed private memory areas (it is
3430 *           effective only if the bit 2 is cleared)
3431 * - (bit 5) hugetlb private memory
3432 * - (bit 6) hugetlb shared memory
3433 */
3434 static void set_coredump_filter(void) {
3435   FILE *f;
3436   long cdm;
3437 
3438   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3439     return;
3440   }
3441 
3442   if (fscanf(f, "%lx", &cdm) != 1) {
3443     fclose(f);
3444     return;
3445   }
3446 
3447   rewind(f);
3448 
3449   if ((cdm & LARGEPAGES_BIT) == 0) {
3450     cdm |= LARGEPAGES_BIT;
3451     fprintf(f, "%#lx", cdm);
3452   }
3453 
3454   fclose(f);
3455 }
3456 
3457 // Large page support
3458 
3459 static size_t _large_page_size = 0;
3460 
3461 size_t os::Linux::find_large_page_size() {
3462   size_t large_page_size = 0;
3463 
3464   // large_page_size on Linux is used to round up heap size. x86 uses either
3465   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3466   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3467   // page as large as 256M.
3468   //
3469   // Here we try to figure out page size by parsing /proc/meminfo and looking
3470   // for a line with the following format:
3471   //    Hugepagesize:     2048 kB
3472   //
3473   // If we can't determine the value (e.g. /proc is not mounted, or the text
3474   // format has been changed), we'll use the largest page size supported by
3475   // the processor.
3476 
3477 #ifndef ZERO
3478   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3479                      ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3480 #endif // ZERO
3481 
3482   FILE *fp = fopen("/proc/meminfo", "r");
3483   if (fp) {
3484     while (!feof(fp)) {
3485       int x = 0;
3486       char buf[16];
3487       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3488         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3489           large_page_size = x * K;
3490           break;
3491         }
3492       } else {
3493         // skip to next line
3494         for (;;) {
3495           int ch = fgetc(fp);
3496           if (ch == EOF || ch == (int)'\n') break;
3497         }
3498       }
3499     }
3500     fclose(fp);
3501   }
3502 
3503   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3504     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3505         SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3506         proper_unit_for_byte_size(large_page_size));
3507   }
3508 
3509   return large_page_size;
3510 }
3511 
3512 size_t os::Linux::setup_large_page_size() {
3513   _large_page_size = Linux::find_large_page_size();
3514   const size_t default_page_size = (size_t)Linux::page_size();
3515   if (_large_page_size > default_page_size) {
3516     _page_sizes[0] = _large_page_size;
3517     _page_sizes[1] = default_page_size;
3518     _page_sizes[2] = 0;
3519   }
3520 
3521   return _large_page_size;
3522 }
3523 
3524 bool os::Linux::setup_large_page_type(size_t page_size) {
3525   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3526       FLAG_IS_DEFAULT(UseSHM) &&
3527       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3528 
3529     // The type of large pages has not been specified by the user.
3530 
3531     // Try UseHugeTLBFS and then UseSHM.
3532     UseHugeTLBFS = UseSHM = true;
3533 
3534     // Don't try UseTransparentHugePages since there are known
3535     // performance issues with it turned on. This might change in the future.
3536     UseTransparentHugePages = false;
3537   }
3538 
3539   if (UseTransparentHugePages) {
3540     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3541     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3542       UseHugeTLBFS = false;
3543       UseSHM = false;
3544       return true;
3545     }
3546     UseTransparentHugePages = false;
3547   }
3548 
3549   if (UseHugeTLBFS) {
3550     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3551     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3552       UseSHM = false;
3553       return true;
3554     }
3555     UseHugeTLBFS = false;
3556   }
3557 
3558   return UseSHM;
3559 }
3560 
3561 void os::large_page_init() {
3562   if (!UseLargePages &&
3563       !UseTransparentHugePages &&
3564       !UseHugeTLBFS &&
3565       !UseSHM) {
3566     // Not using large pages.
3567     return;
3568   }
3569 
3570   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3571     // The user explicitly turned off large pages.
3572     // Ignore the rest of the large pages flags.
3573     UseTransparentHugePages = false;
3574     UseHugeTLBFS = false;
3575     UseSHM = false;
3576     return;
3577   }
3578 
3579   size_t large_page_size = Linux::setup_large_page_size();
3580   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3581 
3582   set_coredump_filter();
3583 }
3584 
3585 #ifndef SHM_HUGETLB
3586 #define SHM_HUGETLB 04000
3587 #endif
3588 
3589 #define shm_warning_format(format, ...)              \
3590   do {                                               \
3591     if (UseLargePages &&                             \
3592         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3593          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3594          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3595       warning(format, __VA_ARGS__);                  \
3596     }                                                \
3597   } while (0)
3598 
3599 #define shm_warning(str) shm_warning_format("%s", str)
3600 
3601 #define shm_warning_with_errno(str)                \
3602   do {                                             \
3603     int err = errno;                               \
3604     shm_warning_format(str " (error = %d)", err);  \
3605   } while (0)
3606 
3607 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3608   assert(is_size_aligned(bytes, alignment), "Must be divisible by the alignment");
3609 
3610   if (!is_size_aligned(alignment, SHMLBA)) {
3611     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3612     return NULL;
3613   }
3614 
3615   // To ensure that we get 'alignment' aligned memory from shmat,
3616   // we pre-reserve aligned virtual memory and then attach to that.
3617 
3618   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3619   if (pre_reserved_addr == NULL) {
3620     // Couldn't pre-reserve aligned memory.
3621     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3622     return NULL;
3623   }
3624 
3625   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3626   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3627 
3628   if ((intptr_t)addr == -1) {
3629     int err = errno;
3630     shm_warning_with_errno("Failed to attach shared memory.");
3631 
3632     assert(err != EACCES, "Unexpected error");
3633     assert(err != EIDRM,  "Unexpected error");
3634     assert(err != EINVAL, "Unexpected error");
3635 
3636     // Since we don't know if the kernel unmapped the pre-reserved memory area
3637     // we can't unmap it, since that would potentially unmap memory that was
3638     // mapped from other threads.
3639     return NULL;
3640   }
3641 
3642   return addr;
3643 }
3644 
3645 static char* shmat_at_address(int shmid, char* req_addr) {
3646   if (!is_ptr_aligned(req_addr, SHMLBA)) {
3647     assert(false, "Requested address needs to be SHMLBA aligned");
3648     return NULL;
3649   }
3650 
3651   char* addr = (char*)shmat(shmid, req_addr, 0);
3652 
3653   if ((intptr_t)addr == -1) {
3654     shm_warning_with_errno("Failed to attach shared memory.");
3655     return NULL;
3656   }
3657 
3658   return addr;
3659 }
3660 
3661 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3662   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3663   if (req_addr != NULL) {
3664     assert(is_ptr_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3665     assert(is_ptr_aligned(req_addr, alignment), "Must be divisible by given alignment");
3666     return shmat_at_address(shmid, req_addr);
3667   }
3668 
3669   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3670   // return large page size aligned memory addresses when req_addr == NULL.
3671   // However, if the alignment is larger than the large page size, we have
3672   // to manually ensure that the memory returned is 'alignment' aligned.
3673   if (alignment > os::large_page_size()) {
3674     assert(is_size_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3675     return shmat_with_alignment(shmid, bytes, alignment);
3676   } else {
3677     return shmat_at_address(shmid, NULL);
3678   }
3679 }
3680 
3681 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3682   // "exec" is passed in but not used.  Creating the shared image for
3683   // the code cache doesn't have an SHM_X executable permission to check.
3684   assert(UseLargePages && UseSHM, "only for SHM large pages");
3685   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3686   assert(is_ptr_aligned(req_addr, alignment), "Unaligned address");
3687 
3688   if (!is_size_aligned(bytes, os::large_page_size())) {
3689     return NULL; // Fallback to small pages.
3690   }
3691 
3692   // Create a large shared memory region to attach to based on size.
3693   // Currently, size is the total size of the heap.
3694   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3695   if (shmid == -1) {
3696     // Possible reasons for shmget failure:
3697     // 1. shmmax is too small for Java heap.
3698     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3699     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3700     // 2. not enough large page memory.
3701     //    > check available large pages: cat /proc/meminfo
3702     //    > increase amount of large pages:
3703     //          echo new_value > /proc/sys/vm/nr_hugepages
3704     //      Note 1: different Linux may use different name for this property,
3705     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3706     //      Note 2: it's possible there's enough physical memory available but
3707     //            they are so fragmented after a long run that they can't
3708     //            coalesce into large pages. Try to reserve large pages when
3709     //            the system is still "fresh".
3710     shm_warning_with_errno("Failed to reserve shared memory.");
3711     return NULL;
3712   }
3713 
3714   // Attach to the region.
3715   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3716 
3717   // Remove shmid. If shmat() is successful, the actual shared memory segment
3718   // will be deleted when it's detached by shmdt() or when the process
3719   // terminates. If shmat() is not successful this will remove the shared
3720   // segment immediately.
3721   shmctl(shmid, IPC_RMID, NULL);
3722 
3723   return addr;
3724 }
3725 
3726 static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
3727   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3728 
3729   bool warn_on_failure = UseLargePages &&
3730       (!FLAG_IS_DEFAULT(UseLargePages) ||
3731        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3732        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3733 
3734   if (warn_on_failure) {
3735     char msg[128];
3736     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3737         PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3738     warning("%s", msg);
3739   }
3740 }
3741 
3742 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
3743   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3744   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3745   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3746 
3747   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3748   char* addr = (char*)::mmap(req_addr, bytes, prot,
3749                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3750                              -1, 0);
3751 
3752   if (addr == MAP_FAILED) {
3753     warn_on_large_pages_failure(req_addr, bytes, errno);
3754     return NULL;
3755   }
3756 
3757   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3758 
3759   return addr;
3760 }
3761 
3762 // Reserve memory using mmap(MAP_HUGETLB).
3763 //  - bytes shall be a multiple of alignment.
3764 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3765 //  - alignment sets the alignment at which memory shall be allocated.
3766 //     It must be a multiple of allocation granularity.
3767 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3768 //  req_addr or NULL.
3769 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3770   size_t large_page_size = os::large_page_size();
3771   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3772 
3773   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3774   assert(is_size_aligned(bytes, alignment), "Must be");
3775 
3776   // First reserve - but not commit - the address range in small pages.
3777   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3778 
3779   if (start == NULL) {
3780     return NULL;
3781   }
3782 
3783   assert(is_ptr_aligned(start, alignment), "Must be");
3784 
3785   char* end = start + bytes;
3786 
3787   // Find the regions of the allocated chunk that can be promoted to large pages.
3788   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3789   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3790 
3791   size_t lp_bytes = lp_end - lp_start;
3792 
3793   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3794 
3795   if (lp_bytes == 0) {
3796     // The mapped region doesn't even span the start and the end of a large page.
3797     // Fall back to allocate a non-special area.
3798     ::munmap(start, end - start);
3799     return NULL;
3800   }
3801 
3802   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3803 
3804   void* result;
3805 
3806   // Commit small-paged leading area.
3807   if (start != lp_start) {
3808     result = ::mmap(start, lp_start - start, prot,
3809                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3810                     -1, 0);
3811     if (result == MAP_FAILED) {
3812       ::munmap(lp_start, end - lp_start);
3813       return NULL;
3814     }
3815   }
3816 
3817   // Commit large-paged area.
3818   result = ::mmap(lp_start, lp_bytes, prot,
3819                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3820                   -1, 0);
3821   if (result == MAP_FAILED) {
3822     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3823     // If the mmap above fails, the large pages region will be unmapped and we
3824     // have regions before and after with small pages. Release these regions.
3825     //
3826     // |  mapped  |  unmapped  |  mapped  |
3827     // ^          ^            ^          ^
3828     // start      lp_start     lp_end     end
3829     //
3830     ::munmap(start, lp_start - start);
3831     ::munmap(lp_end, end - lp_end);
3832     return NULL;
3833   }
3834 
3835   // Commit small-paged trailing area.
3836   if (lp_end != end) {
3837       result = ::mmap(lp_end, end - lp_end, prot,
3838                       MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3839                       -1, 0);
3840     if (result == MAP_FAILED) {
3841       ::munmap(start, lp_end - start);
3842       return NULL;
3843     }
3844   }
3845 
3846   return start;
3847 }
3848 
3849 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3850   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3851   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3852   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3853   assert(is_power_of_2(os::large_page_size()), "Must be");
3854   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3855 
3856   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3857     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3858   } else {
3859     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3860   }
3861 }
3862 
3863 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3864   assert(UseLargePages, "only for large pages");
3865 
3866   char* addr;
3867   if (UseSHM) {
3868     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3869   } else {
3870     assert(UseHugeTLBFS, "must be");
3871     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3872   }
3873 
3874   if (addr != NULL) {
3875     if (UseNUMAInterleaving) {
3876       numa_make_global(addr, bytes);
3877     }
3878 
3879     // The memory is committed
3880     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3881   }
3882 
3883   return addr;
3884 }
3885 
3886 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3887   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3888   return shmdt(base) == 0;
3889 }
3890 
3891 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3892   return pd_release_memory(base, bytes);
3893 }
3894 
3895 bool os::release_memory_special(char* base, size_t bytes) {
3896   bool res;
3897   if (MemTracker::tracking_level() > NMT_minimal) {
3898     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3899     res = os::Linux::release_memory_special_impl(base, bytes);
3900     if (res) {
3901       tkr.record((address)base, bytes);
3902     }
3903 
3904   } else {
3905     res = os::Linux::release_memory_special_impl(base, bytes);
3906   }
3907   return res;
3908 }
3909 
3910 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3911   assert(UseLargePages, "only for large pages");
3912   bool res;
3913 
3914   if (UseSHM) {
3915     res = os::Linux::release_memory_special_shm(base, bytes);
3916   } else {
3917     assert(UseHugeTLBFS, "must be");
3918     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3919   }
3920   return res;
3921 }
3922 
3923 size_t os::large_page_size() {
3924   return _large_page_size;
3925 }
3926 
3927 // With SysV SHM the entire memory region must be allocated as shared
3928 // memory.
3929 // HugeTLBFS allows application to commit large page memory on demand.
3930 // However, when committing memory with HugeTLBFS fails, the region
3931 // that was supposed to be committed will lose the old reservation
3932 // and allow other threads to steal that memory region. Because of this
3933 // behavior we can't commit HugeTLBFS memory.
3934 bool os::can_commit_large_page_memory() {
3935   return UseTransparentHugePages;
3936 }
3937 
3938 bool os::can_execute_large_page_memory() {
3939   return UseTransparentHugePages || UseHugeTLBFS;
3940 }
3941 
3942 // Reserve memory at an arbitrary address, only if that area is
3943 // available (and not reserved for something else).
3944 
3945 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3946   const int max_tries = 10;
3947   char* base[max_tries];
3948   size_t size[max_tries];
3949   const size_t gap = 0x000000;
3950 
3951   // Assert only that the size is a multiple of the page size, since
3952   // that's all that mmap requires, and since that's all we really know
3953   // about at this low abstraction level.  If we need higher alignment,
3954   // we can either pass an alignment to this method or verify alignment
3955   // in one of the methods further up the call chain.  See bug 5044738.
3956   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3957 
3958   // Repeatedly allocate blocks until the block is allocated at the
3959   // right spot. Give up after max_tries. Note that reserve_memory() will
3960   // automatically update _highest_vm_reserved_address if the call is
3961   // successful. The variable tracks the highest memory address every reserved
3962   // by JVM. It is used to detect heap-stack collision if running with
3963   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3964   // space than needed, it could confuse the collision detecting code. To
3965   // solve the problem, save current _highest_vm_reserved_address and
3966   // calculate the correct value before return.
3967   address old_highest = _highest_vm_reserved_address;
3968 
3969   // Linux mmap allows caller to pass an address as hint; give it a try first,
3970   // if kernel honors the hint then we can return immediately.
3971   char * addr = anon_mmap(requested_addr, bytes, false);
3972   if (addr == requested_addr) {
3973      return requested_addr;
3974   }
3975 
3976   if (addr != NULL) {
3977      // mmap() is successful but it fails to reserve at the requested address
3978      anon_munmap(addr, bytes);
3979   }
3980 
3981   int i;
3982   for (i = 0; i < max_tries; ++i) {
3983     base[i] = reserve_memory(bytes);
3984 
3985     if (base[i] != NULL) {
3986       // Is this the block we wanted?
3987       if (base[i] == requested_addr) {
3988         size[i] = bytes;
3989         break;
3990       }
3991 
3992       // Does this overlap the block we wanted? Give back the overlapped
3993       // parts and try again.
3994 
3995       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3996       if (top_overlap >= 0 && top_overlap < bytes) {
3997         unmap_memory(base[i], top_overlap);
3998         base[i] += top_overlap;
3999         size[i] = bytes - top_overlap;
4000       } else {
4001         size_t bottom_overlap = base[i] + bytes - requested_addr;
4002         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
4003           unmap_memory(requested_addr, bottom_overlap);
4004           size[i] = bytes - bottom_overlap;
4005         } else {
4006           size[i] = bytes;
4007         }
4008       }
4009     }
4010   }
4011 
4012   // Give back the unused reserved pieces.
4013 
4014   for (int j = 0; j < i; ++j) {
4015     if (base[j] != NULL) {
4016       unmap_memory(base[j], size[j]);
4017     }
4018   }
4019 
4020   if (i < max_tries) {
4021     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
4022     return requested_addr;
4023   } else {
4024     _highest_vm_reserved_address = old_highest;
4025     return NULL;
4026   }
4027 }
4028 
4029 size_t os::read(int fd, void *buf, unsigned int nBytes) {
4030   return ::read(fd, buf, nBytes);
4031 }
4032 
4033 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
4034 // Solaris uses poll(), linux uses park().
4035 // Poll() is likely a better choice, assuming that Thread.interrupt()
4036 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
4037 // SIGSEGV, see 4355769.
4038 
4039 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
4040   assert(thread == Thread::current(),  "thread consistency check");
4041 
4042   ParkEvent * const slp = thread->_SleepEvent ;
4043   slp->reset() ;
4044   OrderAccess::fence() ;
4045 
4046   if (interruptible) {
4047     jlong prevtime = javaTimeNanos();
4048 
4049     for (;;) {
4050       if (os::is_interrupted(thread, true)) {
4051         return OS_INTRPT;
4052       }
4053 
4054       jlong newtime = javaTimeNanos();
4055 
4056       if (newtime - prevtime < 0) {
4057         // time moving backwards, should only happen if no monotonic clock
4058         // not a guarantee() because JVM should not abort on kernel/glibc bugs
4059         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
4060       } else {
4061         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
4062       }
4063 
4064       if(millis <= 0) {
4065         return OS_OK;
4066       }
4067 
4068       prevtime = newtime;
4069 
4070       {
4071         assert(thread->is_Java_thread(), "sanity check");
4072         JavaThread *jt = (JavaThread *) thread;
4073         ThreadBlockInVM tbivm(jt);
4074         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
4075 
4076         jt->set_suspend_equivalent();
4077         // cleared by handle_special_suspend_equivalent_condition() or
4078         // java_suspend_self() via check_and_wait_while_suspended()
4079 
4080         slp->park(millis);
4081 
4082         // were we externally suspended while we were waiting?
4083         jt->check_and_wait_while_suspended();
4084       }
4085     }
4086   } else {
4087     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4088     jlong prevtime = javaTimeNanos();
4089 
4090     for (;;) {
4091       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
4092       // the 1st iteration ...
4093       jlong newtime = javaTimeNanos();
4094 
4095       if (newtime - prevtime < 0) {
4096         // time moving backwards, should only happen if no monotonic clock
4097         // not a guarantee() because JVM should not abort on kernel/glibc bugs
4098         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
4099       } else {
4100         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
4101       }
4102 
4103       if(millis <= 0) break ;
4104 
4105       prevtime = newtime;
4106       slp->park(millis);
4107     }
4108     return OS_OK ;
4109   }
4110 }
4111 
4112 //
4113 // Short sleep, direct OS call.
4114 //
4115 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
4116 // sched_yield(2) will actually give up the CPU:
4117 //
4118 //   * Alone on this pariticular CPU, keeps running.
4119 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
4120 //     (pre 2.6.39).
4121 //
4122 // So calling this with 0 is an alternative.
4123 //
4124 void os::naked_short_sleep(jlong ms) {
4125   struct timespec req;
4126 
4127   assert(ms < 1000, "Un-interruptable sleep, short time use only");
4128   req.tv_sec = 0;
4129   if (ms > 0) {
4130     req.tv_nsec = (ms % 1000) * 1000000;
4131   }
4132   else {
4133     req.tv_nsec = 1;
4134   }
4135 
4136   nanosleep(&req, NULL);
4137 
4138   return;
4139 }
4140 
4141 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4142 void os::infinite_sleep() {
4143   while (true) {    // sleep forever ...
4144     ::sleep(100);   // ... 100 seconds at a time
4145   }
4146 }
4147 
4148 // Used to convert frequent JVM_Yield() to nops
4149 bool os::dont_yield() {
4150   return DontYieldALot;
4151 }
4152 
4153 void os::yield() {
4154   sched_yield();
4155 }
4156 
4157 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
4158 
4159 void os::yield_all(int attempts) {
4160   // Yields to all threads, including threads with lower priorities
4161   // Threads on Linux are all with same priority. The Solaris style
4162   // os::yield_all() with nanosleep(1ms) is not necessary.
4163   sched_yield();
4164 }
4165 
4166 // Called from the tight loops to possibly influence time-sharing heuristics
4167 void os::loop_breaker(int attempts) {
4168   os::yield_all(attempts);
4169 }
4170 
4171 ////////////////////////////////////////////////////////////////////////////////
4172 // thread priority support
4173 
4174 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4175 // only supports dynamic priority, static priority must be zero. For real-time
4176 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4177 // However, for large multi-threaded applications, SCHED_RR is not only slower
4178 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4179 // of 5 runs - Sep 2005).
4180 //
4181 // The following code actually changes the niceness of kernel-thread/LWP. It
4182 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4183 // not the entire user process, and user level threads are 1:1 mapped to kernel
4184 // threads. It has always been the case, but could change in the future. For
4185 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4186 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
4187 
4188 int os::java_to_os_priority[CriticalPriority + 1] = {
4189   19,              // 0 Entry should never be used
4190 
4191    4,              // 1 MinPriority
4192    3,              // 2
4193    2,              // 3
4194 
4195    1,              // 4
4196    0,              // 5 NormPriority
4197   -1,              // 6
4198 
4199   -2,              // 7
4200   -3,              // 8
4201   -4,              // 9 NearMaxPriority
4202 
4203   -5,              // 10 MaxPriority
4204 
4205   -5               // 11 CriticalPriority
4206 };
4207 
4208 static int prio_init() {
4209   if (ThreadPriorityPolicy == 1) {
4210     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
4211     // if effective uid is not root. Perhaps, a more elegant way of doing
4212     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
4213     if (geteuid() != 0) {
4214       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4215         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
4216       }
4217       ThreadPriorityPolicy = 0;
4218     }
4219   }
4220   if (UseCriticalJavaThreadPriority) {
4221     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4222   }
4223   return 0;
4224 }
4225 
4226 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4227   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
4228 
4229   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4230   return (ret == 0) ? OS_OK : OS_ERR;
4231 }
4232 
4233 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
4234   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
4235     *priority_ptr = java_to_os_priority[NormPriority];
4236     return OS_OK;
4237   }
4238 
4239   errno = 0;
4240   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4241   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4242 }
4243 
4244 // Hint to the underlying OS that a task switch would not be good.
4245 // Void return because it's a hint and can fail.
4246 void os::hint_no_preempt() {}
4247 
4248 ////////////////////////////////////////////////////////////////////////////////
4249 // suspend/resume support
4250 
4251 //  the low-level signal-based suspend/resume support is a remnant from the
4252 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4253 //  within hotspot. Now there is a single use-case for this:
4254 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
4255 //      that runs in the watcher thread.
4256 //  The remaining code is greatly simplified from the more general suspension
4257 //  code that used to be used.
4258 //
4259 //  The protocol is quite simple:
4260 //  - suspend:
4261 //      - sends a signal to the target thread
4262 //      - polls the suspend state of the osthread using a yield loop
4263 //      - target thread signal handler (SR_handler) sets suspend state
4264 //        and blocks in sigsuspend until continued
4265 //  - resume:
4266 //      - sets target osthread state to continue
4267 //      - sends signal to end the sigsuspend loop in the SR_handler
4268 //
4269 //  Note that the SR_lock plays no role in this suspend/resume protocol.
4270 //
4271 
4272 static void resume_clear_context(OSThread *osthread) {
4273   osthread->set_ucontext(NULL);
4274   osthread->set_siginfo(NULL);
4275 }
4276 
4277 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
4278   osthread->set_ucontext(context);
4279   osthread->set_siginfo(siginfo);
4280 }
4281 
4282 //
4283 // Handler function invoked when a thread's execution is suspended or
4284 // resumed. We have to be careful that only async-safe functions are
4285 // called here (Note: most pthread functions are not async safe and
4286 // should be avoided.)
4287 //
4288 // Note: sigwait() is a more natural fit than sigsuspend() from an
4289 // interface point of view, but sigwait() prevents the signal hander
4290 // from being run. libpthread would get very confused by not having
4291 // its signal handlers run and prevents sigwait()'s use with the
4292 // mutex granting granting signal.
4293 //
4294 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4295 //
4296 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4297   // Save and restore errno to avoid confusing native code with EINTR
4298   // after sigsuspend.
4299   int old_errno = errno;
4300 
4301   Thread* thread = Thread::current();
4302   OSThread* osthread = thread->osthread();
4303   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4304 
4305   os::SuspendResume::State current = osthread->sr.state();
4306   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4307     suspend_save_context(osthread, siginfo, context);
4308 
4309     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4310     os::SuspendResume::State state = osthread->sr.suspended();
4311     if (state == os::SuspendResume::SR_SUSPENDED) {
4312       sigset_t suspend_set;  // signals for sigsuspend()
4313 
4314       // get current set of blocked signals and unblock resume signal
4315       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4316       sigdelset(&suspend_set, SR_signum);
4317 
4318       sr_semaphore.signal();
4319       // wait here until we are resumed
4320       while (1) {
4321         sigsuspend(&suspend_set);
4322 
4323         os::SuspendResume::State result = osthread->sr.running();
4324         if (result == os::SuspendResume::SR_RUNNING) {
4325           sr_semaphore.signal();
4326           break;
4327         }
4328       }
4329 
4330     } else if (state == os::SuspendResume::SR_RUNNING) {
4331       // request was cancelled, continue
4332     } else {
4333       ShouldNotReachHere();
4334     }
4335 
4336     resume_clear_context(osthread);
4337   } else if (current == os::SuspendResume::SR_RUNNING) {
4338     // request was cancelled, continue
4339   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4340     // ignore
4341   } else {
4342     // ignore
4343   }
4344 
4345   errno = old_errno;
4346 }
4347 
4348 
4349 static int SR_initialize() {
4350   struct sigaction act;
4351   char *s;
4352   /* Get signal number to use for suspend/resume */
4353   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4354     int sig = ::strtol(s, 0, 10);
4355     if (sig > 0 || sig < _NSIG) {
4356         SR_signum = sig;
4357     }
4358   }
4359 
4360   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4361         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4362 
4363   sigemptyset(&SR_sigset);
4364   sigaddset(&SR_sigset, SR_signum);
4365 
4366   /* Set up signal handler for suspend/resume */
4367   act.sa_flags = SA_RESTART|SA_SIGINFO;
4368   act.sa_handler = (void (*)(int)) SR_handler;
4369 
4370   // SR_signum is blocked by default.
4371   // 4528190 - We also need to block pthread restart signal (32 on all
4372   // supported Linux platforms). Note that LinuxThreads need to block
4373   // this signal for all threads to work properly. So we don't have
4374   // to use hard-coded signal number when setting up the mask.
4375   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4376 
4377   if (sigaction(SR_signum, &act, 0) == -1) {
4378     return -1;
4379   }
4380 
4381   // Save signal flag
4382   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4383   return 0;
4384 }
4385 
4386 static int sr_notify(OSThread* osthread) {
4387   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4388   assert_status(status == 0, status, "pthread_kill");
4389   return status;
4390 }
4391 
4392 // "Randomly" selected value for how long we want to spin
4393 // before bailing out on suspending a thread, also how often
4394 // we send a signal to a thread we want to resume
4395 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4396 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4397 
4398 // returns true on success and false on error - really an error is fatal
4399 // but this seems the normal response to library errors
4400 static bool do_suspend(OSThread* osthread) {
4401   assert(osthread->sr.is_running(), "thread should be running");
4402   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4403 
4404   // mark as suspended and send signal
4405   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4406     // failed to switch, state wasn't running?
4407     ShouldNotReachHere();
4408     return false;
4409   }
4410 
4411   if (sr_notify(osthread) != 0) {
4412     ShouldNotReachHere();
4413   }
4414 
4415   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4416   while (true) {
4417     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4418       break;
4419     } else {
4420       // timeout
4421       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4422       if (cancelled == os::SuspendResume::SR_RUNNING) {
4423         return false;
4424       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4425         // make sure that we consume the signal on the semaphore as well
4426         sr_semaphore.wait();
4427         break;
4428       } else {
4429         ShouldNotReachHere();
4430         return false;
4431       }
4432     }
4433   }
4434 
4435   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4436   return true;
4437 }
4438 
4439 static void do_resume(OSThread* osthread) {
4440   assert(osthread->sr.is_suspended(), "thread should be suspended");
4441   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4442 
4443   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4444     // failed to switch to WAKEUP_REQUEST
4445     ShouldNotReachHere();
4446     return;
4447   }
4448 
4449   while (true) {
4450     if (sr_notify(osthread) == 0) {
4451       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4452         if (osthread->sr.is_running()) {
4453           return;
4454         }
4455       }
4456     } else {
4457       ShouldNotReachHere();
4458     }
4459   }
4460 
4461   guarantee(osthread->sr.is_running(), "Must be running!");
4462 }
4463 
4464 ////////////////////////////////////////////////////////////////////////////////
4465 // interrupt support
4466 
4467 void os::interrupt(Thread* thread) {
4468   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4469     "possibility of dangling Thread pointer");
4470 
4471   OSThread* osthread = thread->osthread();
4472 
4473   if (!osthread->interrupted()) {
4474     osthread->set_interrupted(true);
4475     // More than one thread can get here with the same value of osthread,
4476     // resulting in multiple notifications.  We do, however, want the store
4477     // to interrupted() to be visible to other threads before we execute unpark().
4478     OrderAccess::fence();
4479     ParkEvent * const slp = thread->_SleepEvent ;
4480     if (slp != NULL) slp->unpark() ;
4481   }
4482 
4483   // For JSR166. Unpark even if interrupt status already was set
4484   if (thread->is_Java_thread())
4485     ((JavaThread*)thread)->parker()->unpark();
4486 
4487   ParkEvent * ev = thread->_ParkEvent ;
4488   if (ev != NULL) ev->unpark() ;
4489 
4490 }
4491 
4492 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
4493   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4494     "possibility of dangling Thread pointer");
4495 
4496   OSThread* osthread = thread->osthread();
4497 
4498   bool interrupted = osthread->interrupted();
4499 
4500   if (interrupted && clear_interrupted) {
4501     osthread->set_interrupted(false);
4502     // consider thread->_SleepEvent->reset() ... optional optimization
4503   }
4504 
4505   return interrupted;
4506 }
4507 
4508 ///////////////////////////////////////////////////////////////////////////////////
4509 // signal handling (except suspend/resume)
4510 
4511 // This routine may be used by user applications as a "hook" to catch signals.
4512 // The user-defined signal handler must pass unrecognized signals to this
4513 // routine, and if it returns true (non-zero), then the signal handler must
4514 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4515 // routine will never retun false (zero), but instead will execute a VM panic
4516 // routine kill the process.
4517 //
4518 // If this routine returns false, it is OK to call it again.  This allows
4519 // the user-defined signal handler to perform checks either before or after
4520 // the VM performs its own checks.  Naturally, the user code would be making
4521 // a serious error if it tried to handle an exception (such as a null check
4522 // or breakpoint) that the VM was generating for its own correct operation.
4523 //
4524 // This routine may recognize any of the following kinds of signals:
4525 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4526 // It should be consulted by handlers for any of those signals.
4527 //
4528 // The caller of this routine must pass in the three arguments supplied
4529 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4530 // field of the structure passed to sigaction().  This routine assumes that
4531 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4532 //
4533 // Note that the VM will print warnings if it detects conflicting signal
4534 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4535 //
4536 extern "C" JNIEXPORT int
4537 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
4538                         void* ucontext, int abort_if_unrecognized);
4539 
4540 void signalHandler(int sig, siginfo_t* info, void* uc) {
4541   assert(info != NULL && uc != NULL, "it must be old kernel");
4542   int orig_errno = errno;  // Preserve errno value over signal handler.
4543   JVM_handle_linux_signal(sig, info, uc, true);
4544   errno = orig_errno;
4545 }
4546 
4547 
4548 // This boolean allows users to forward their own non-matching signals
4549 // to JVM_handle_linux_signal, harmlessly.
4550 bool os::Linux::signal_handlers_are_installed = false;
4551 
4552 // For signal-chaining
4553 struct sigaction os::Linux::sigact[MAXSIGNUM];
4554 unsigned int os::Linux::sigs = 0;
4555 bool os::Linux::libjsig_is_loaded = false;
4556 typedef struct sigaction *(*get_signal_t)(int);
4557 get_signal_t os::Linux::get_signal_action = NULL;
4558 
4559 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4560   struct sigaction *actp = NULL;
4561 
4562   if (libjsig_is_loaded) {
4563     // Retrieve the old signal handler from libjsig
4564     actp = (*get_signal_action)(sig);
4565   }
4566   if (actp == NULL) {
4567     // Retrieve the preinstalled signal handler from jvm
4568     actp = get_preinstalled_handler(sig);
4569   }
4570 
4571   return actp;
4572 }
4573 
4574 static bool call_chained_handler(struct sigaction *actp, int sig,
4575                                  siginfo_t *siginfo, void *context) {
4576   // Call the old signal handler
4577   if (actp->sa_handler == SIG_DFL) {
4578     // It's more reasonable to let jvm treat it as an unexpected exception
4579     // instead of taking the default action.
4580     return false;
4581   } else if (actp->sa_handler != SIG_IGN) {
4582     if ((actp->sa_flags & SA_NODEFER) == 0) {
4583       // automaticlly block the signal
4584       sigaddset(&(actp->sa_mask), sig);
4585     }
4586 
4587     sa_handler_t hand = NULL;
4588     sa_sigaction_t sa = NULL;
4589     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4590     // retrieve the chained handler
4591     if (siginfo_flag_set) {
4592       sa = actp->sa_sigaction;
4593     } else {
4594       hand = actp->sa_handler;
4595     }
4596 
4597     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4598       actp->sa_handler = SIG_DFL;
4599     }
4600 
4601     // try to honor the signal mask
4602     sigset_t oset;
4603     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4604 
4605     // call into the chained handler
4606     if (siginfo_flag_set) {
4607       (*sa)(sig, siginfo, context);
4608     } else {
4609       (*hand)(sig);
4610     }
4611 
4612     // restore the signal mask
4613     pthread_sigmask(SIG_SETMASK, &oset, 0);
4614   }
4615   // Tell jvm's signal handler the signal is taken care of.
4616   return true;
4617 }
4618 
4619 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4620   bool chained = false;
4621   // signal-chaining
4622   if (UseSignalChaining) {
4623     struct sigaction *actp = get_chained_signal_action(sig);
4624     if (actp != NULL) {
4625       chained = call_chained_handler(actp, sig, siginfo, context);
4626     }
4627   }
4628   return chained;
4629 }
4630 
4631 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4632   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
4633     return &sigact[sig];
4634   }
4635   return NULL;
4636 }
4637 
4638 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4639   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4640   sigact[sig] = oldAct;
4641   sigs |= (unsigned int)1 << sig;
4642 }
4643 
4644 // for diagnostic
4645 int os::Linux::sigflags[MAXSIGNUM];
4646 
4647 int os::Linux::get_our_sigflags(int sig) {
4648   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4649   return sigflags[sig];
4650 }
4651 
4652 void os::Linux::set_our_sigflags(int sig, int flags) {
4653   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4654   sigflags[sig] = flags;
4655 }
4656 
4657 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4658   // Check for overwrite.
4659   struct sigaction oldAct;
4660   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4661 
4662   void* oldhand = oldAct.sa_sigaction
4663                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4664                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4665   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4666       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4667       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4668     if (AllowUserSignalHandlers || !set_installed) {
4669       // Do not overwrite; user takes responsibility to forward to us.
4670       return;
4671     } else if (UseSignalChaining) {
4672       // save the old handler in jvm
4673       save_preinstalled_handler(sig, oldAct);
4674       // libjsig also interposes the sigaction() call below and saves the
4675       // old sigaction on it own.
4676     } else {
4677       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4678                     "%#lx for signal %d.", (long)oldhand, sig));
4679     }
4680   }
4681 
4682   struct sigaction sigAct;
4683   sigfillset(&(sigAct.sa_mask));
4684   sigAct.sa_handler = SIG_DFL;
4685   if (!set_installed) {
4686     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4687   } else {
4688     sigAct.sa_sigaction = signalHandler;
4689     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4690   }
4691   // Save flags, which are set by ours
4692   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4693   sigflags[sig] = sigAct.sa_flags;
4694 
4695   int ret = sigaction(sig, &sigAct, &oldAct);
4696   assert(ret == 0, "check");
4697 
4698   void* oldhand2  = oldAct.sa_sigaction
4699                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4700                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4701   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4702 }
4703 
4704 // install signal handlers for signals that HotSpot needs to
4705 // handle in order to support Java-level exception handling.
4706 
4707 void os::Linux::install_signal_handlers() {
4708   if (!signal_handlers_are_installed) {
4709     signal_handlers_are_installed = true;
4710 
4711     // signal-chaining
4712     typedef void (*signal_setting_t)();
4713     signal_setting_t begin_signal_setting = NULL;
4714     signal_setting_t end_signal_setting = NULL;
4715     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4716                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4717     if (begin_signal_setting != NULL) {
4718       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4719                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4720       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4721                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4722       libjsig_is_loaded = true;
4723       assert(UseSignalChaining, "should enable signal-chaining");
4724     }
4725     if (libjsig_is_loaded) {
4726       // Tell libjsig jvm is setting signal handlers
4727       (*begin_signal_setting)();
4728     }
4729 
4730     set_signal_handler(SIGSEGV, true);
4731     set_signal_handler(SIGPIPE, true);
4732     set_signal_handler(SIGBUS, true);
4733     set_signal_handler(SIGILL, true);
4734     set_signal_handler(SIGFPE, true);
4735 #if defined(PPC64)
4736     set_signal_handler(SIGTRAP, true);
4737 #endif
4738     set_signal_handler(SIGXFSZ, true);
4739 
4740     if (libjsig_is_loaded) {
4741       // Tell libjsig jvm finishes setting signal handlers
4742       (*end_signal_setting)();
4743     }
4744 
4745     // We don't activate signal checker if libjsig is in place, we trust ourselves
4746     // and if UserSignalHandler is installed all bets are off.
4747     // Log that signal checking is off only if -verbose:jni is specified.
4748     if (CheckJNICalls) {
4749       if (libjsig_is_loaded) {
4750         if (PrintJNIResolving) {
4751           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4752         }
4753         check_signals = false;
4754       }
4755       if (AllowUserSignalHandlers) {
4756         if (PrintJNIResolving) {
4757           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4758         }
4759         check_signals = false;
4760       }
4761     }
4762   }
4763 }
4764 
4765 // This is the fastest way to get thread cpu time on Linux.
4766 // Returns cpu time (user+sys) for any thread, not only for current.
4767 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4768 // It might work on 2.6.10+ with a special kernel/glibc patch.
4769 // For reference, please, see IEEE Std 1003.1-2004:
4770 //   http://www.unix.org/single_unix_specification
4771 
4772 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4773   struct timespec tp;
4774   int rc = os::Linux::clock_gettime(clockid, &tp);
4775   assert(rc == 0, "clock_gettime is expected to return 0 code");
4776 
4777   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4778 }
4779 
4780 /////
4781 // glibc on Linux platform uses non-documented flag
4782 // to indicate, that some special sort of signal
4783 // trampoline is used.
4784 // We will never set this flag, and we should
4785 // ignore this flag in our diagnostic
4786 #ifdef SIGNIFICANT_SIGNAL_MASK
4787 #undef SIGNIFICANT_SIGNAL_MASK
4788 #endif
4789 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4790 
4791 static const char* get_signal_handler_name(address handler,
4792                                            char* buf, int buflen) {
4793   int offset = 0;
4794   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4795   if (found) {
4796     // skip directory names
4797     const char *p1, *p2;
4798     p1 = buf;
4799     size_t len = strlen(os::file_separator());
4800     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4801     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4802   } else {
4803     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4804   }
4805   return buf;
4806 }
4807 
4808 static void print_signal_handler(outputStream* st, int sig,
4809                                  char* buf, size_t buflen) {
4810   struct sigaction sa;
4811 
4812   sigaction(sig, NULL, &sa);
4813 
4814   // See comment for SIGNIFICANT_SIGNAL_MASK define
4815   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4816 
4817   st->print("%s: ", os::exception_name(sig, buf, buflen));
4818 
4819   address handler = (sa.sa_flags & SA_SIGINFO)
4820     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4821     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4822 
4823   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4824     st->print("SIG_DFL");
4825   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4826     st->print("SIG_IGN");
4827   } else {
4828     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4829   }
4830 
4831   st->print(", sa_mask[0]=");
4832   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4833 
4834   address rh = VMError::get_resetted_sighandler(sig);
4835   // May be, handler was resetted by VMError?
4836   if(rh != NULL) {
4837     handler = rh;
4838     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4839   }
4840 
4841   st->print(", sa_flags=");
4842   os::Posix::print_sa_flags(st, sa.sa_flags);
4843 
4844   // Check: is it our handler?
4845   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4846      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4847     // It is our signal handler
4848     // check for flags, reset system-used one!
4849     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4850       st->print(
4851                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4852                 os::Linux::get_our_sigflags(sig));
4853     }
4854   }
4855   st->cr();
4856 }
4857 
4858 
4859 #define DO_SIGNAL_CHECK(sig) \
4860   if (!sigismember(&check_signal_done, sig)) \
4861     os::Linux::check_signal_handler(sig)
4862 
4863 // This method is a periodic task to check for misbehaving JNI applications
4864 // under CheckJNI, we can add any periodic checks here
4865 
4866 void os::run_periodic_checks() {
4867 
4868   if (check_signals == false) return;
4869 
4870   // SEGV and BUS if overridden could potentially prevent
4871   // generation of hs*.log in the event of a crash, debugging
4872   // such a case can be very challenging, so we absolutely
4873   // check the following for a good measure:
4874   DO_SIGNAL_CHECK(SIGSEGV);
4875   DO_SIGNAL_CHECK(SIGILL);
4876   DO_SIGNAL_CHECK(SIGFPE);
4877   DO_SIGNAL_CHECK(SIGBUS);
4878   DO_SIGNAL_CHECK(SIGPIPE);
4879   DO_SIGNAL_CHECK(SIGXFSZ);
4880 #if defined(PPC64)
4881   DO_SIGNAL_CHECK(SIGTRAP);
4882 #endif
4883 
4884   // ReduceSignalUsage allows the user to override these handlers
4885   // see comments at the very top and jvm_solaris.h
4886   if (!ReduceSignalUsage) {
4887     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4888     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4889     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4890     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4891   }
4892 
4893   DO_SIGNAL_CHECK(SR_signum);
4894   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4895 }
4896 
4897 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4898 
4899 static os_sigaction_t os_sigaction = NULL;
4900 
4901 void os::Linux::check_signal_handler(int sig) {
4902   char buf[O_BUFLEN];
4903   address jvmHandler = NULL;
4904 
4905 
4906   struct sigaction act;
4907   if (os_sigaction == NULL) {
4908     // only trust the default sigaction, in case it has been interposed
4909     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4910     if (os_sigaction == NULL) return;
4911   }
4912 
4913   os_sigaction(sig, (struct sigaction*)NULL, &act);
4914 
4915 
4916   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4917 
4918   address thisHandler = (act.sa_flags & SA_SIGINFO)
4919     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4920     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4921 
4922 
4923   switch(sig) {
4924   case SIGSEGV:
4925   case SIGBUS:
4926   case SIGFPE:
4927   case SIGPIPE:
4928   case SIGILL:
4929   case SIGXFSZ:
4930     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4931     break;
4932 
4933   case SHUTDOWN1_SIGNAL:
4934   case SHUTDOWN2_SIGNAL:
4935   case SHUTDOWN3_SIGNAL:
4936   case BREAK_SIGNAL:
4937     jvmHandler = (address)user_handler();
4938     break;
4939 
4940   case INTERRUPT_SIGNAL:
4941     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4942     break;
4943 
4944   default:
4945     if (sig == SR_signum) {
4946       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4947     } else {
4948       return;
4949     }
4950     break;
4951   }
4952 
4953   if (thisHandler != jvmHandler) {
4954     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4955     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4956     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4957     // No need to check this sig any longer
4958     sigaddset(&check_signal_done, sig);
4959     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4960     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4961       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4962                     exception_name(sig, buf, O_BUFLEN));
4963     }
4964   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4965     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4966     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4967     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4968     // No need to check this sig any longer
4969     sigaddset(&check_signal_done, sig);
4970   }
4971 
4972   // Dump all the signal
4973   if (sigismember(&check_signal_done, sig)) {
4974     print_signal_handlers(tty, buf, O_BUFLEN);
4975   }
4976 }
4977 
4978 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4979 
4980 extern bool signal_name(int signo, char* buf, size_t len);
4981 
4982 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4983   if (0 < exception_code && exception_code <= SIGRTMAX) {
4984     // signal
4985     if (!signal_name(exception_code, buf, size)) {
4986       jio_snprintf(buf, size, "SIG%d", exception_code);
4987     }
4988     return buf;
4989   } else {
4990     return NULL;
4991   }
4992 }
4993 
4994 // this is called _before_ most of the global arguments have been parsed
4995 void os::init(void) {
4996   char dummy;   /* used to get a guess on initial stack address */
4997 
4998   // With LinuxThreads the JavaMain thread pid (primordial thread)
4999   // is different than the pid of the java launcher thread.
5000   // So, on Linux, the launcher thread pid is passed to the VM
5001   // via the sun.java.launcher.pid property.
5002   // Use this property instead of getpid() if it was correctly passed.
5003   // See bug 6351349.
5004   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
5005 
5006   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
5007 
5008   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
5009 
5010   init_random(1234567);
5011 
5012   ThreadCritical::initialize();
5013 
5014   Linux::set_page_size(sysconf(_SC_PAGESIZE));
5015   if (Linux::page_size() == -1) {
5016     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
5017                   strerror(errno)));
5018   }
5019   init_page_sizes((size_t) Linux::page_size());
5020 
5021   Linux::initialize_system_info();
5022 
5023   // _main_thread points to the thread that created/loaded the JVM.
5024   Linux::_main_thread = pthread_self();
5025 
5026   Linux::clock_init();
5027   initial_time_count = javaTimeNanos();
5028 
5029   // pthread_condattr initialization for monotonic clock
5030   int status;
5031   pthread_condattr_t* _condattr = os::Linux::condAttr();
5032   if ((status = pthread_condattr_init(_condattr)) != 0) {
5033     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
5034   }
5035   // Only set the clock if CLOCK_MONOTONIC is available
5036   if (Linux::supports_monotonic_clock()) {
5037     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
5038       if (status == EINVAL) {
5039         warning("Unable to use monotonic clock with relative timed-waits" \
5040                 " - changes to the time-of-day clock may have adverse affects");
5041       } else {
5042         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
5043       }
5044     }
5045   }
5046   // else it defaults to CLOCK_REALTIME
5047 
5048   pthread_mutex_init(&dl_mutex, NULL);
5049 
5050   // If the pagesize of the VM is greater than 8K determine the appropriate
5051   // number of initial guard pages.  The user can change this with the
5052   // command line arguments, if needed.
5053   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
5054     StackYellowPages = 1;
5055     StackRedPages = 1;
5056     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
5057   }
5058 
5059   // retrieve entry point for pthread_setname_np
5060   Linux::_pthread_setname_np =
5061     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
5062 
5063 }
5064 
5065 // To install functions for atexit system call
5066 extern "C" {
5067   static void perfMemory_exit_helper() {
5068     perfMemory_exit();
5069   }
5070 }
5071 
5072 void os::pd_init_container_support() {
5073   OSContainer::init();
5074 }
5075 
5076 // this is called _after_ the global arguments have been parsed
5077 jint os::init_2(void)
5078 {
5079   Linux::fast_thread_clock_init();
5080 
5081   // Allocate a single page and mark it as readable for safepoint polling
5082   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
5083   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
5084 
5085   os::set_polling_page( polling_page );
5086 
5087 #ifndef PRODUCT
5088   if(Verbose && PrintMiscellaneous)
5089     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
5090 #endif
5091 
5092   if (!UseMembar) {
5093     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
5094     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
5095     os::set_memory_serialize_page( mem_serialize_page );
5096 
5097 #ifndef PRODUCT
5098     if(Verbose && PrintMiscellaneous)
5099       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
5100 #endif
5101   }
5102 
5103   // initialize suspend/resume support - must do this before signal_sets_init()
5104   if (SR_initialize() != 0) {
5105     perror("SR_initialize failed");
5106     return JNI_ERR;
5107   }
5108 
5109   Linux::signal_sets_init();
5110   Linux::install_signal_handlers();
5111 
5112   // Check minimum allowable stack size for thread creation and to initialize
5113   // the java system classes, including StackOverflowError - depends on page
5114   // size.  Add a page for compiler2 recursion in main thread.
5115   // Add in 2*BytesPerWord times page size to account for VM stack during
5116   // class initialization depending on 32 or 64 bit VM.
5117   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
5118             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
5119                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
5120 
5121   size_t threadStackSizeInBytes = ThreadStackSize * K;
5122   if (threadStackSizeInBytes != 0 &&
5123       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
5124         tty->print_cr("\nThe stack size specified is too small, "
5125                       "Specify at least %dk",
5126                       os::Linux::min_stack_allowed/ K);
5127         return JNI_ERR;
5128   }
5129 
5130   // Make the stack size a multiple of the page size so that
5131   // the yellow/red zones can be guarded.
5132   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
5133         vm_page_size()));
5134 
5135   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5136 
5137 #if defined(IA32)
5138   workaround_expand_exec_shield_cs_limit();
5139 #endif
5140 
5141   Linux::libpthread_init();
5142   if (PrintMiscellaneous && (Verbose || WizardMode)) {
5143      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
5144           Linux::glibc_version(), Linux::libpthread_version(),
5145           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
5146   }
5147 
5148   if (UseNUMA) {
5149     if (!Linux::libnuma_init()) {
5150       UseNUMA = false;
5151     } else {
5152       if ((Linux::numa_max_node() < 1)) {
5153         // There's only one node(they start from 0), disable NUMA.
5154         UseNUMA = false;
5155       }
5156     }
5157     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
5158     // we can make the adaptive lgrp chunk resizing work. If the user specified
5159     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
5160     // disable adaptive resizing.
5161     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
5162       if (FLAG_IS_DEFAULT(UseNUMA)) {
5163         UseNUMA = false;
5164       } else {
5165         if (FLAG_IS_DEFAULT(UseLargePages) &&
5166             FLAG_IS_DEFAULT(UseSHM) &&
5167             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
5168           UseLargePages = false;
5169         } else {
5170           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
5171           UseAdaptiveSizePolicy = false;
5172           UseAdaptiveNUMAChunkSizing = false;
5173         }
5174       }
5175     }
5176     if (!UseNUMA && ForceNUMA) {
5177       UseNUMA = true;
5178     }
5179   }
5180 
5181   if (MaxFDLimit) {
5182     // set the number of file descriptors to max. print out error
5183     // if getrlimit/setrlimit fails but continue regardless.
5184     struct rlimit nbr_files;
5185     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
5186     if (status != 0) {
5187       if (PrintMiscellaneous && (Verbose || WizardMode))
5188         perror("os::init_2 getrlimit failed");
5189     } else {
5190       nbr_files.rlim_cur = nbr_files.rlim_max;
5191       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5192       if (status != 0) {
5193         if (PrintMiscellaneous && (Verbose || WizardMode))
5194           perror("os::init_2 setrlimit failed");
5195       }
5196     }
5197   }
5198 
5199   // Initialize lock used to serialize thread creation (see os::create_thread)
5200   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
5201 
5202   // at-exit methods are called in the reverse order of their registration.
5203   // atexit functions are called on return from main or as a result of a
5204   // call to exit(3C). There can be only 32 of these functions registered
5205   // and atexit() does not set errno.
5206 
5207   if (PerfAllowAtExitRegistration) {
5208     // only register atexit functions if PerfAllowAtExitRegistration is set.
5209     // atexit functions can be delayed until process exit time, which
5210     // can be problematic for embedded VM situations. Embedded VMs should
5211     // call DestroyJavaVM() to assure that VM resources are released.
5212 
5213     // note: perfMemory_exit_helper atexit function may be removed in
5214     // the future if the appropriate cleanup code can be added to the
5215     // VM_Exit VMOperation's doit method.
5216     if (atexit(perfMemory_exit_helper) != 0) {
5217       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5218     }
5219   }
5220 
5221   // initialize thread priority policy
5222   prio_init();
5223 
5224   return JNI_OK;
5225 }
5226 
5227 // Mark the polling page as unreadable
5228 void os::make_polling_page_unreadable(void) {
5229   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
5230     fatal("Could not disable polling page");
5231 };
5232 
5233 // Mark the polling page as readable
5234 void os::make_polling_page_readable(void) {
5235   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
5236     fatal("Could not enable polling page");
5237   }
5238 };
5239 
5240 static int os_cpu_count(const cpu_set_t* cpus) {
5241   int count = 0;
5242   // only look up to the number of configured processors
5243   for (int i = 0; i < os::processor_count(); i++) {
5244     if (CPU_ISSET(i, cpus)) {
5245       count++;
5246     }
5247   }
5248   return count;
5249 }
5250 
5251 // Get the current number of available processors for this process.
5252 // This value can change at any time during a process's lifetime.
5253 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5254 // If anything goes wrong we fallback to returning the number of online
5255 // processors - which can be greater than the number available to the process.
5256 int os::Linux::active_processor_count() {
5257   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5258   int cpus_size = sizeof(cpu_set_t);
5259   int cpu_count = 0;
5260 
5261   // pid 0 means the current thread - which we have to assume represents the process
5262   if (sched_getaffinity(0, cpus_size, &cpus) == 0) {
5263     cpu_count = os_cpu_count(&cpus);
5264     if (PrintActiveCpus) {
5265       tty->print_cr("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5266     }
5267   }
5268   else {
5269     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5270     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5271             "which may exceed available processors", strerror(errno), cpu_count);
5272   }
5273 
5274   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
5275   return cpu_count;
5276 }
5277 
5278 // Determine the active processor count from one of
5279 // three different sources:
5280 //
5281 // 1. User option -XX:ActiveProcessorCount
5282 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
5283 // 3. extracted from cgroup cpu subsystem (shares and quotas)
5284 //
5285 // Option 1, if specified, will always override.
5286 // If the cgroup subsystem is active and configured, we
5287 // will return the min of the cgroup and option 2 results.
5288 // This is required since tools, such as numactl, that
5289 // alter cpu affinity do not update cgroup subsystem
5290 // cpuset configuration files.
5291 int os::active_processor_count() {
5292   // User has overridden the number of active processors
5293   if (ActiveProcessorCount > 0) {
5294     if (PrintActiveCpus) {
5295       tty->print_cr("active_processor_count: "
5296                     "active processor count set by user : %d",
5297                     ActiveProcessorCount);
5298     }
5299     return ActiveProcessorCount;
5300   }
5301 
5302   int active_cpus;
5303   if (OSContainer::is_containerized()) {
5304     active_cpus = OSContainer::active_processor_count();
5305     if (PrintActiveCpus) {
5306       tty->print_cr("active_processor_count: determined by OSContainer: %d",
5307                      active_cpus);
5308     }
5309   } else {
5310     active_cpus = os::Linux::active_processor_count();
5311   }
5312 
5313   return active_cpus;
5314 }
5315 
5316 void os::set_native_thread_name(const char *name) {
5317   if (Linux::_pthread_setname_np) {
5318     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5319     snprintf(buf, sizeof(buf), "%s", name);
5320     buf[sizeof(buf) - 1] = '\0';
5321     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5322     // ERANGE should not happen; all other errors should just be ignored.
5323     assert(rc != ERANGE, "pthread_setname_np failed");
5324   }
5325 }
5326 
5327 bool os::distribute_processes(uint length, uint* distribution) {
5328   // Not yet implemented.
5329   return false;
5330 }
5331 
5332 bool os::bind_to_processor(uint processor_id) {
5333   // Not yet implemented.
5334   return false;
5335 }
5336 
5337 ///
5338 
5339 void os::SuspendedThreadTask::internal_do_task() {
5340   if (do_suspend(_thread->osthread())) {
5341     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5342     do_task(context);
5343     do_resume(_thread->osthread());
5344   }
5345 }
5346 
5347 class PcFetcher : public os::SuspendedThreadTask {
5348 public:
5349   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
5350   ExtendedPC result();
5351 protected:
5352   void do_task(const os::SuspendedThreadTaskContext& context);
5353 private:
5354   ExtendedPC _epc;
5355 };
5356 
5357 ExtendedPC PcFetcher::result() {
5358   guarantee(is_done(), "task is not done yet.");
5359   return _epc;
5360 }
5361 
5362 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
5363   Thread* thread = context.thread();
5364   OSThread* osthread = thread->osthread();
5365   if (osthread->ucontext() != NULL) {
5366     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
5367   } else {
5368     // NULL context is unexpected, double-check this is the VMThread
5369     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
5370   }
5371 }
5372 
5373 // Suspends the target using the signal mechanism and then grabs the PC before
5374 // resuming the target. Used by the flat-profiler only
5375 ExtendedPC os::get_thread_pc(Thread* thread) {
5376   // Make sure that it is called by the watcher for the VMThread
5377   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
5378   assert(thread->is_VM_thread(), "Can only be called for VMThread");
5379 
5380   PcFetcher fetcher(thread);
5381   fetcher.run();
5382   return fetcher.result();
5383 }
5384 
5385 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
5386 {
5387    if (is_NPTL()) {
5388       return pthread_cond_timedwait(_cond, _mutex, _abstime);
5389    } else {
5390       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
5391       // word back to default 64bit precision if condvar is signaled. Java
5392       // wants 53bit precision.  Save and restore current value.
5393       int fpu = get_fpu_control_word();
5394       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
5395       set_fpu_control_word(fpu);
5396       return status;
5397    }
5398 }
5399 
5400 ////////////////////////////////////////////////////////////////////////////////
5401 // debug support
5402 
5403 bool os::find(address addr, outputStream* st) {
5404   Dl_info dlinfo;
5405   memset(&dlinfo, 0, sizeof(dlinfo));
5406   if (dladdr(addr, &dlinfo) != 0) {
5407     st->print(PTR_FORMAT ": ", addr);
5408     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5409       st->print("%s+%#x", dlinfo.dli_sname,
5410                  addr - (intptr_t)dlinfo.dli_saddr);
5411     } else if (dlinfo.dli_fbase != NULL) {
5412       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
5413     } else {
5414       st->print("<absolute address>");
5415     }
5416     if (dlinfo.dli_fname != NULL) {
5417       st->print(" in %s", dlinfo.dli_fname);
5418     }
5419     if (dlinfo.dli_fbase != NULL) {
5420       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5421     }
5422     st->cr();
5423 
5424     if (Verbose) {
5425       // decode some bytes around the PC
5426       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5427       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5428       address       lowest = (address) dlinfo.dli_sname;
5429       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5430       if (begin < lowest)  begin = lowest;
5431       Dl_info dlinfo2;
5432       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5433           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
5434         end = (address) dlinfo2.dli_saddr;
5435       Disassembler::decode(begin, end, st);
5436     }
5437     return true;
5438   }
5439   return false;
5440 }
5441 
5442 ////////////////////////////////////////////////////////////////////////////////
5443 // misc
5444 
5445 // This does not do anything on Linux. This is basically a hook for being
5446 // able to use structured exception handling (thread-local exception filters)
5447 // on, e.g., Win32.
5448 void
5449 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
5450                          JavaCallArguments* args, Thread* thread) {
5451   f(value, method, args, thread);
5452 }
5453 
5454 void os::print_statistics() {
5455 }
5456 
5457 int os::message_box(const char* title, const char* message) {
5458   int i;
5459   fdStream err(defaultStream::error_fd());
5460   for (i = 0; i < 78; i++) err.print_raw("=");
5461   err.cr();
5462   err.print_raw_cr(title);
5463   for (i = 0; i < 78; i++) err.print_raw("-");
5464   err.cr();
5465   err.print_raw_cr(message);
5466   for (i = 0; i < 78; i++) err.print_raw("=");
5467   err.cr();
5468 
5469   char buf[16];
5470   // Prevent process from exiting upon "read error" without consuming all CPU
5471   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5472 
5473   return buf[0] == 'y' || buf[0] == 'Y';
5474 }
5475 
5476 int os::stat(const char *path, struct stat *sbuf) {
5477   char pathbuf[MAX_PATH];
5478   if (strlen(path) > MAX_PATH - 1) {
5479     errno = ENAMETOOLONG;
5480     return -1;
5481   }
5482   os::native_path(strcpy(pathbuf, path));
5483   return ::stat(pathbuf, sbuf);
5484 }
5485 
5486 bool os::check_heap(bool force) {
5487   return true;
5488 }
5489 
5490 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
5491   return ::vsnprintf(buf, count, format, args);
5492 }
5493 
5494 // Is a (classpath) directory empty?
5495 bool os::dir_is_empty(const char* path) {
5496   DIR *dir = NULL;
5497   struct dirent *ptr;
5498 
5499   dir = opendir(path);
5500   if (dir == NULL) return true;
5501 
5502   /* Scan the directory */
5503   bool result = true;
5504   while (result && (ptr = readdir(dir)) != NULL) {
5505     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5506       result = false;
5507     }
5508   }
5509   closedir(dir);
5510   return result;
5511 }
5512 
5513 // This code originates from JDK's sysOpen and open64_w
5514 // from src/solaris/hpi/src/system_md.c
5515 
5516 #ifndef O_DELETE
5517 #define O_DELETE 0x10000
5518 #endif
5519 
5520 // Open a file. Unlink the file immediately after open returns
5521 // if the specified oflag has the O_DELETE flag set.
5522 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
5523 
5524 int os::open(const char *path, int oflag, int mode) {
5525 
5526   if (strlen(path) > MAX_PATH - 1) {
5527     errno = ENAMETOOLONG;
5528     return -1;
5529   }
5530   int fd;
5531   int o_delete = (oflag & O_DELETE);
5532   oflag = oflag & ~O_DELETE;
5533 
5534   fd = ::open64(path, oflag, mode);
5535   if (fd == -1) return -1;
5536 
5537   //If the open succeeded, the file might still be a directory
5538   {
5539     struct stat64 buf64;
5540     int ret = ::fstat64(fd, &buf64);
5541     int st_mode = buf64.st_mode;
5542 
5543     if (ret != -1) {
5544       if ((st_mode & S_IFMT) == S_IFDIR) {
5545         errno = EISDIR;
5546         ::close(fd);
5547         return -1;
5548       }
5549     } else {
5550       ::close(fd);
5551       return -1;
5552     }
5553   }
5554 
5555     /*
5556      * All file descriptors that are opened in the JVM and not
5557      * specifically destined for a subprocess should have the
5558      * close-on-exec flag set.  If we don't set it, then careless 3rd
5559      * party native code might fork and exec without closing all
5560      * appropriate file descriptors (e.g. as we do in closeDescriptors in
5561      * UNIXProcess.c), and this in turn might:
5562      *
5563      * - cause end-of-file to fail to be detected on some file
5564      *   descriptors, resulting in mysterious hangs, or
5565      *
5566      * - might cause an fopen in the subprocess to fail on a system
5567      *   suffering from bug 1085341.
5568      *
5569      * (Yes, the default setting of the close-on-exec flag is a Unix
5570      * design flaw)
5571      *
5572      * See:
5573      * 1085341: 32-bit stdio routines should support file descriptors >255
5574      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5575      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5576      */
5577 #ifdef FD_CLOEXEC
5578     {
5579         int flags = ::fcntl(fd, F_GETFD);
5580         if (flags != -1)
5581             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5582     }
5583 #endif
5584 
5585   if (o_delete != 0) {
5586     ::unlink(path);
5587   }
5588   return fd;
5589 }
5590 
5591 
5592 // create binary file, rewriting existing file if required
5593 int os::create_binary_file(const char* path, bool rewrite_existing) {
5594   int oflags = O_WRONLY | O_CREAT;
5595   if (!rewrite_existing) {
5596     oflags |= O_EXCL;
5597   }
5598   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5599 }
5600 
5601 // return current position of file pointer
5602 jlong os::current_file_offset(int fd) {
5603   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5604 }
5605 
5606 // move file pointer to the specified offset
5607 jlong os::seek_to_file_offset(int fd, jlong offset) {
5608   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5609 }
5610 
5611 // This code originates from JDK's sysAvailable
5612 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5613 
5614 int os::available(int fd, jlong *bytes) {
5615   jlong cur, end;
5616   int mode;
5617   struct stat64 buf64;
5618 
5619   if (::fstat64(fd, &buf64) >= 0) {
5620     mode = buf64.st_mode;
5621     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5622       /*
5623       * XXX: is the following call interruptible? If so, this might
5624       * need to go through the INTERRUPT_IO() wrapper as for other
5625       * blocking, interruptible calls in this file.
5626       */
5627       int n;
5628       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5629         *bytes = n;
5630         return 1;
5631       }
5632     }
5633   }
5634   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5635     return 0;
5636   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5637     return 0;
5638   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5639     return 0;
5640   }
5641   *bytes = end - cur;
5642   return 1;
5643 }
5644 
5645 int os::socket_available(int fd, jint *pbytes) {
5646   // Linux doc says EINTR not returned, unlike Solaris
5647   int ret = ::ioctl(fd, FIONREAD, pbytes);
5648 
5649   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
5650   // is expected to return 0 on failure and 1 on success to the jdk.
5651   return (ret < 0) ? 0 : 1;
5652 }
5653 
5654 // Map a block of memory.
5655 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5656                      char *addr, size_t bytes, bool read_only,
5657                      bool allow_exec) {
5658   int prot;
5659   int flags = MAP_PRIVATE;
5660 
5661   if (read_only) {
5662     prot = PROT_READ;
5663   } else {
5664     prot = PROT_READ | PROT_WRITE;
5665   }
5666 
5667   if (allow_exec) {
5668     prot |= PROT_EXEC;
5669   }
5670 
5671   if (addr != NULL) {
5672     flags |= MAP_FIXED;
5673   }
5674 
5675   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5676                                      fd, file_offset);
5677   if (mapped_address == MAP_FAILED) {
5678     return NULL;
5679   }
5680   return mapped_address;
5681 }
5682 
5683 
5684 // Remap a block of memory.
5685 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5686                        char *addr, size_t bytes, bool read_only,
5687                        bool allow_exec) {
5688   // same as map_memory() on this OS
5689   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5690                         allow_exec);
5691 }
5692 
5693 
5694 // Unmap a block of memory.
5695 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5696   return munmap(addr, bytes) == 0;
5697 }
5698 
5699 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5700 
5701 static clockid_t thread_cpu_clockid(Thread* thread) {
5702   pthread_t tid = thread->osthread()->pthread_id();
5703   clockid_t clockid;
5704 
5705   // Get thread clockid
5706   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5707   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5708   return clockid;
5709 }
5710 
5711 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5712 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5713 // of a thread.
5714 //
5715 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5716 // the fast estimate available on the platform.
5717 
5718 jlong os::current_thread_cpu_time() {
5719   if (os::Linux::supports_fast_thread_cpu_time()) {
5720     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5721   } else {
5722     // return user + sys since the cost is the same
5723     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5724   }
5725 }
5726 
5727 jlong os::thread_cpu_time(Thread* thread) {
5728   // consistent with what current_thread_cpu_time() returns
5729   if (os::Linux::supports_fast_thread_cpu_time()) {
5730     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5731   } else {
5732     return slow_thread_cpu_time(thread, true /* user + sys */);
5733   }
5734 }
5735 
5736 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5737   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5738     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5739   } else {
5740     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5741   }
5742 }
5743 
5744 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5745   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5746     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5747   } else {
5748     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5749   }
5750 }
5751 
5752 //
5753 //  -1 on error.
5754 //
5755 
5756 PRAGMA_DIAG_PUSH
5757 PRAGMA_FORMAT_NONLITERAL_IGNORED
5758 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5759   static bool proc_task_unchecked = true;
5760   static const char *proc_stat_path = "/proc/%d/stat";
5761   pid_t  tid = thread->osthread()->thread_id();
5762   char *s;
5763   char stat[2048];
5764   int statlen;
5765   char proc_name[64];
5766   int count;
5767   long sys_time, user_time;
5768   char cdummy;
5769   int idummy;
5770   long ldummy;
5771   FILE *fp;
5772 
5773   // The /proc/<tid>/stat aggregates per-process usage on
5774   // new Linux kernels 2.6+ where NPTL is supported.
5775   // The /proc/self/task/<tid>/stat still has the per-thread usage.
5776   // See bug 6328462.
5777   // There possibly can be cases where there is no directory
5778   // /proc/self/task, so we check its availability.
5779   if (proc_task_unchecked && os::Linux::is_NPTL()) {
5780     // This is executed only once
5781     proc_task_unchecked = false;
5782     fp = fopen("/proc/self/task", "r");
5783     if (fp != NULL) {
5784       proc_stat_path = "/proc/self/task/%d/stat";
5785       fclose(fp);
5786     }
5787   }
5788 
5789   sprintf(proc_name, proc_stat_path, tid);
5790   fp = fopen(proc_name, "r");
5791   if ( fp == NULL ) return -1;
5792   statlen = fread(stat, 1, 2047, fp);
5793   stat[statlen] = '\0';
5794   fclose(fp);
5795 
5796   // Skip pid and the command string. Note that we could be dealing with
5797   // weird command names, e.g. user could decide to rename java launcher
5798   // to "java 1.4.2 :)", then the stat file would look like
5799   //                1234 (java 1.4.2 :)) R ... ...
5800   // We don't really need to know the command string, just find the last
5801   // occurrence of ")" and then start parsing from there. See bug 4726580.
5802   s = strrchr(stat, ')');
5803   if (s == NULL ) return -1;
5804 
5805   // Skip blank chars
5806   do s++; while (isspace(*s));
5807 
5808   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5809                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5810                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5811                  &user_time, &sys_time);
5812   if ( count != 13 ) return -1;
5813   if (user_sys_cpu_time) {
5814     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5815   } else {
5816     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5817   }
5818 }
5819 PRAGMA_DIAG_POP
5820 
5821 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5822   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5823   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5824   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5825   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5826 }
5827 
5828 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5829   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5830   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5831   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5832   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5833 }
5834 
5835 bool os::is_thread_cpu_time_supported() {
5836   return true;
5837 }
5838 
5839 // System loadavg support.  Returns -1 if load average cannot be obtained.
5840 // Linux doesn't yet have a (official) notion of processor sets,
5841 // so just return the system wide load average.
5842 int os::loadavg(double loadavg[], int nelem) {
5843   return ::getloadavg(loadavg, nelem);
5844 }
5845 
5846 void os::pause() {
5847   char filename[MAX_PATH];
5848   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5849     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5850   } else {
5851     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5852   }
5853 
5854   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5855   if (fd != -1) {
5856     struct stat buf;
5857     ::close(fd);
5858     while (::stat(filename, &buf) == 0) {
5859       (void)::poll(NULL, 0, 100);
5860     }
5861   } else {
5862     jio_fprintf(stderr,
5863       "Could not open pause file '%s', continuing immediately.\n", filename);
5864   }
5865 }
5866 
5867 
5868 // Refer to the comments in os_solaris.cpp park-unpark.
5869 //
5870 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5871 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5872 // For specifics regarding the bug see GLIBC BUGID 261237 :
5873 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5874 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5875 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5876 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5877 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5878 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5879 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5880 // of libpthread avoids the problem, but isn't practical.
5881 //
5882 // Possible remedies:
5883 //
5884 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5885 //      This is palliative and probabilistic, however.  If the thread is preempted
5886 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5887 //      than the minimum period may have passed, and the abstime may be stale (in the
5888 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5889 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5890 //
5891 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5892 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5893 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5894 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5895 //      thread.
5896 //
5897 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5898 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5899 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5900 //      This also works well.  In fact it avoids kernel-level scalability impediments
5901 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5902 //      timers in a graceful fashion.
5903 //
5904 // 4.   When the abstime value is in the past it appears that control returns
5905 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5906 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5907 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5908 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5909 //      It may be possible to avoid reinitialization by checking the return
5910 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5911 //      condvar we must establish the invariant that cond_signal() is only called
5912 //      within critical sections protected by the adjunct mutex.  This prevents
5913 //      cond_signal() from "seeing" a condvar that's in the midst of being
5914 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5915 //      desirable signal-after-unlock optimization that avoids futile context switching.
5916 //
5917 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5918 //      structure when a condvar is used or initialized.  cond_destroy()  would
5919 //      release the helper structure.  Our reinitialize-after-timedwait fix
5920 //      put excessive stress on malloc/free and locks protecting the c-heap.
5921 //
5922 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5923 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5924 // and only enabling the work-around for vulnerable environments.
5925 
5926 // utility to compute the abstime argument to timedwait:
5927 // millis is the relative timeout time
5928 // abstime will be the absolute timeout time
5929 // TODO: replace compute_abstime() with unpackTime()
5930 
5931 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5932   if (millis < 0)  millis = 0;
5933 
5934   jlong seconds = millis / 1000;
5935   millis %= 1000;
5936   if (seconds > 50000000) { // see man cond_timedwait(3T)
5937     seconds = 50000000;
5938   }
5939 
5940   if (os::Linux::supports_monotonic_clock()) {
5941     struct timespec now;
5942     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5943     assert_status(status == 0, status, "clock_gettime");
5944     abstime->tv_sec = now.tv_sec  + seconds;
5945     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5946     if (nanos >= NANOSECS_PER_SEC) {
5947       abstime->tv_sec += 1;
5948       nanos -= NANOSECS_PER_SEC;
5949     }
5950     abstime->tv_nsec = nanos;
5951   } else {
5952     struct timeval now;
5953     int status = gettimeofday(&now, NULL);
5954     assert(status == 0, "gettimeofday");
5955     abstime->tv_sec = now.tv_sec  + seconds;
5956     long usec = now.tv_usec + millis * 1000;
5957     if (usec >= 1000000) {
5958       abstime->tv_sec += 1;
5959       usec -= 1000000;
5960     }
5961     abstime->tv_nsec = usec * 1000;
5962   }
5963   return abstime;
5964 }
5965 
5966 
5967 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5968 // Conceptually TryPark() should be equivalent to park(0).
5969 
5970 int os::PlatformEvent::TryPark() {
5971   for (;;) {
5972     const int v = _Event ;
5973     guarantee ((v == 0) || (v == 1), "invariant") ;
5974     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5975   }
5976 }
5977 
5978 void os::PlatformEvent::park() {       // AKA "down()"
5979   // Invariant: Only the thread associated with the Event/PlatformEvent
5980   // may call park().
5981   // TODO: assert that _Assoc != NULL or _Assoc == Self
5982   int v ;
5983   for (;;) {
5984       v = _Event ;
5985       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5986   }
5987   guarantee (v >= 0, "invariant") ;
5988   if (v == 0) {
5989      // Do this the hard way by blocking ...
5990      int status = pthread_mutex_lock(_mutex);
5991      assert_status(status == 0, status, "mutex_lock");
5992      guarantee (_nParked == 0, "invariant") ;
5993      ++ _nParked ;
5994      while (_Event < 0) {
5995         status = pthread_cond_wait(_cond, _mutex);
5996         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5997         // Treat this the same as if the wait was interrupted
5998         if (status == ETIME) { status = EINTR; }
5999         assert_status(status == 0 || status == EINTR, status, "cond_wait");
6000      }
6001      -- _nParked ;
6002 
6003     _Event = 0 ;
6004      status = pthread_mutex_unlock(_mutex);
6005      assert_status(status == 0, status, "mutex_unlock");
6006     // Paranoia to ensure our locked and lock-free paths interact
6007     // correctly with each other.
6008     OrderAccess::fence();
6009   }
6010   guarantee (_Event >= 0, "invariant") ;
6011 }
6012 
6013 int os::PlatformEvent::park(jlong millis) {
6014   guarantee (_nParked == 0, "invariant") ;
6015 
6016   int v ;
6017   for (;;) {
6018       v = _Event ;
6019       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
6020   }
6021   guarantee (v >= 0, "invariant") ;
6022   if (v != 0) return OS_OK ;
6023 
6024   // We do this the hard way, by blocking the thread.
6025   // Consider enforcing a minimum timeout value.
6026   struct timespec abst;
6027   compute_abstime(&abst, millis);
6028 
6029   int ret = OS_TIMEOUT;
6030   int status = pthread_mutex_lock(_mutex);
6031   assert_status(status == 0, status, "mutex_lock");
6032   guarantee (_nParked == 0, "invariant") ;
6033   ++_nParked ;
6034 
6035   // Object.wait(timo) will return because of
6036   // (a) notification
6037   // (b) timeout
6038   // (c) thread.interrupt
6039   //
6040   // Thread.interrupt and object.notify{All} both call Event::set.
6041   // That is, we treat thread.interrupt as a special case of notification.
6042   // The underlying Solaris implementation, cond_timedwait, admits
6043   // spurious/premature wakeups, but the JLS/JVM spec prevents the
6044   // JVM from making those visible to Java code.  As such, we must
6045   // filter out spurious wakeups.  We assume all ETIME returns are valid.
6046   //
6047   // TODO: properly differentiate simultaneous notify+interrupt.
6048   // In that case, we should propagate the notify to another waiter.
6049 
6050   while (_Event < 0) {
6051     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
6052     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
6053       pthread_cond_destroy (_cond);
6054       pthread_cond_init (_cond, os::Linux::condAttr()) ;
6055     }
6056     assert_status(status == 0 || status == EINTR ||
6057                   status == ETIME || status == ETIMEDOUT,
6058                   status, "cond_timedwait");
6059     if (!FilterSpuriousWakeups) break ;                 // previous semantics
6060     if (status == ETIME || status == ETIMEDOUT) break ;
6061     // We consume and ignore EINTR and spurious wakeups.
6062   }
6063   --_nParked ;
6064   if (_Event >= 0) {
6065      ret = OS_OK;
6066   }
6067   _Event = 0 ;
6068   status = pthread_mutex_unlock(_mutex);
6069   assert_status(status == 0, status, "mutex_unlock");
6070   assert (_nParked == 0, "invariant") ;
6071   // Paranoia to ensure our locked and lock-free paths interact
6072   // correctly with each other.
6073   OrderAccess::fence();
6074   return ret;
6075 }
6076 
6077 void os::PlatformEvent::unpark() {
6078   // Transitions for _Event:
6079   //    0 :=> 1
6080   //    1 :=> 1
6081   //   -1 :=> either 0 or 1; must signal target thread
6082   //          That is, we can safely transition _Event from -1 to either
6083   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
6084   //          unpark() calls.
6085   // See also: "Semaphores in Plan 9" by Mullender & Cox
6086   //
6087   // Note: Forcing a transition from "-1" to "1" on an unpark() means
6088   // that it will take two back-to-back park() calls for the owning
6089   // thread to block. This has the benefit of forcing a spurious return
6090   // from the first park() call after an unpark() call which will help
6091   // shake out uses of park() and unpark() without condition variables.
6092 
6093   if (Atomic::xchg(1, &_Event) >= 0) return;
6094 
6095   // Wait for the thread associated with the event to vacate
6096   int status = pthread_mutex_lock(_mutex);
6097   assert_status(status == 0, status, "mutex_lock");
6098   int AnyWaiters = _nParked;
6099   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
6100   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
6101     AnyWaiters = 0;
6102     pthread_cond_signal(_cond);
6103   }
6104   status = pthread_mutex_unlock(_mutex);
6105   assert_status(status == 0, status, "mutex_unlock");
6106   if (AnyWaiters != 0) {
6107     status = pthread_cond_signal(_cond);
6108     assert_status(status == 0, status, "cond_signal");
6109   }
6110 
6111   // Note that we signal() _after dropping the lock for "immortal" Events.
6112   // This is safe and avoids a common class of  futile wakeups.  In rare
6113   // circumstances this can cause a thread to return prematurely from
6114   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
6115   // simply re-test the condition and re-park itself.
6116 }
6117 
6118 
6119 // JSR166
6120 // -------------------------------------------------------
6121 
6122 /*
6123  * The solaris and linux implementations of park/unpark are fairly
6124  * conservative for now, but can be improved. They currently use a
6125  * mutex/condvar pair, plus a a count.
6126  * Park decrements count if > 0, else does a condvar wait.  Unpark
6127  * sets count to 1 and signals condvar.  Only one thread ever waits
6128  * on the condvar. Contention seen when trying to park implies that someone
6129  * is unparking you, so don't wait. And spurious returns are fine, so there
6130  * is no need to track notifications.
6131  */
6132 
6133 /*
6134  * This code is common to linux and solaris and will be moved to a
6135  * common place in dolphin.
6136  *
6137  * The passed in time value is either a relative time in nanoseconds
6138  * or an absolute time in milliseconds. Either way it has to be unpacked
6139  * into suitable seconds and nanoseconds components and stored in the
6140  * given timespec structure.
6141  * Given time is a 64-bit value and the time_t used in the timespec is only
6142  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
6143  * overflow if times way in the future are given. Further on Solaris versions
6144  * prior to 10 there is a restriction (see cond_timedwait) that the specified
6145  * number of seconds, in abstime, is less than current_time  + 100,000,000.
6146  * As it will be 28 years before "now + 100000000" will overflow we can
6147  * ignore overflow and just impose a hard-limit on seconds using the value
6148  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
6149  * years from "now".
6150  */
6151 
6152 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
6153   assert (time > 0, "convertTime");
6154   time_t max_secs = 0;
6155 
6156   if (!os::Linux::supports_monotonic_clock() || isAbsolute) {
6157     struct timeval now;
6158     int status = gettimeofday(&now, NULL);
6159     assert(status == 0, "gettimeofday");
6160 
6161     max_secs = now.tv_sec + MAX_SECS;
6162 
6163     if (isAbsolute) {
6164       jlong secs = time / 1000;
6165       if (secs > max_secs) {
6166         absTime->tv_sec = max_secs;
6167       } else {
6168         absTime->tv_sec = secs;
6169       }
6170       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
6171     } else {
6172       jlong secs = time / NANOSECS_PER_SEC;
6173       if (secs >= MAX_SECS) {
6174         absTime->tv_sec = max_secs;
6175         absTime->tv_nsec = 0;
6176       } else {
6177         absTime->tv_sec = now.tv_sec + secs;
6178         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
6179         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
6180           absTime->tv_nsec -= NANOSECS_PER_SEC;
6181           ++absTime->tv_sec; // note: this must be <= max_secs
6182         }
6183       }
6184     }
6185   } else {
6186     // must be relative using monotonic clock
6187     struct timespec now;
6188     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
6189     assert_status(status == 0, status, "clock_gettime");
6190     max_secs = now.tv_sec + MAX_SECS;
6191     jlong secs = time / NANOSECS_PER_SEC;
6192     if (secs >= MAX_SECS) {
6193       absTime->tv_sec = max_secs;
6194       absTime->tv_nsec = 0;
6195     } else {
6196       absTime->tv_sec = now.tv_sec + secs;
6197       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
6198       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
6199         absTime->tv_nsec -= NANOSECS_PER_SEC;
6200         ++absTime->tv_sec; // note: this must be <= max_secs
6201       }
6202     }
6203   }
6204   assert(absTime->tv_sec >= 0, "tv_sec < 0");
6205   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
6206   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
6207   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
6208 }
6209 
6210 void Parker::park(bool isAbsolute, jlong time) {
6211   // Ideally we'd do something useful while spinning, such
6212   // as calling unpackTime().
6213 
6214   // Optional fast-path check:
6215   // Return immediately if a permit is available.
6216   // We depend on Atomic::xchg() having full barrier semantics
6217   // since we are doing a lock-free update to _counter.
6218   if (Atomic::xchg(0, &_counter) > 0) return;
6219 
6220   Thread* thread = Thread::current();
6221   assert(thread->is_Java_thread(), "Must be JavaThread");
6222   JavaThread *jt = (JavaThread *)thread;
6223 
6224   // Optional optimization -- avoid state transitions if there's an interrupt pending.
6225   // Check interrupt before trying to wait
6226   if (Thread::is_interrupted(thread, false)) {
6227     return;
6228   }
6229 
6230   // Next, demultiplex/decode time arguments
6231   timespec absTime;
6232   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
6233     return;
6234   }
6235   if (time > 0) {
6236     unpackTime(&absTime, isAbsolute, time);
6237   }
6238 
6239 
6240   // Enter safepoint region
6241   // Beware of deadlocks such as 6317397.
6242   // The per-thread Parker:: mutex is a classic leaf-lock.
6243   // In particular a thread must never block on the Threads_lock while
6244   // holding the Parker:: mutex.  If safepoints are pending both the
6245   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
6246   ThreadBlockInVM tbivm(jt);
6247 
6248   // Don't wait if cannot get lock since interference arises from
6249   // unblocking.  Also. check interrupt before trying wait
6250   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
6251     return;
6252   }
6253 
6254   int status ;
6255   if (_counter > 0)  { // no wait needed
6256     _counter = 0;
6257     status = pthread_mutex_unlock(_mutex);
6258     assert (status == 0, "invariant") ;
6259     // Paranoia to ensure our locked and lock-free paths interact
6260     // correctly with each other and Java-level accesses.
6261     OrderAccess::fence();
6262     return;
6263   }
6264 
6265 #ifdef ASSERT
6266   // Don't catch signals while blocked; let the running threads have the signals.
6267   // (This allows a debugger to break into the running thread.)
6268   sigset_t oldsigs;
6269   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
6270   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
6271 #endif
6272 
6273   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
6274   jt->set_suspend_equivalent();
6275   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
6276 
6277   assert(_cur_index == -1, "invariant");
6278   if (time == 0) {
6279     _cur_index = REL_INDEX; // arbitrary choice when not timed
6280     status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
6281   } else {
6282     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
6283     status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
6284     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
6285       pthread_cond_destroy (&_cond[_cur_index]) ;
6286       pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
6287     }
6288   }
6289   _cur_index = -1;
6290   assert_status(status == 0 || status == EINTR ||
6291                 status == ETIME || status == ETIMEDOUT,
6292                 status, "cond_timedwait");
6293 
6294 #ifdef ASSERT
6295   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
6296 #endif
6297 
6298   _counter = 0 ;
6299   status = pthread_mutex_unlock(_mutex) ;
6300   assert_status(status == 0, status, "invariant") ;
6301   // Paranoia to ensure our locked and lock-free paths interact
6302   // correctly with each other and Java-level accesses.
6303   OrderAccess::fence();
6304 
6305   // If externally suspended while waiting, re-suspend
6306   if (jt->handle_special_suspend_equivalent_condition()) {
6307     jt->java_suspend_self();
6308   }
6309 }
6310 
6311 void Parker::unpark() {
6312   int s, status ;
6313   status = pthread_mutex_lock(_mutex);
6314   assert (status == 0, "invariant") ;
6315   s = _counter;
6316   _counter = 1;
6317   if (s < 1) {
6318     // thread might be parked
6319     if (_cur_index != -1) {
6320       // thread is definitely parked
6321       if (WorkAroundNPTLTimedWaitHang) {
6322         status = pthread_cond_signal (&_cond[_cur_index]);
6323         assert (status == 0, "invariant");
6324         status = pthread_mutex_unlock(_mutex);
6325         assert (status == 0, "invariant");
6326       } else {
6327         // must capture correct index before unlocking
6328         int index = _cur_index;
6329         status = pthread_mutex_unlock(_mutex);
6330         assert (status == 0, "invariant");
6331         status = pthread_cond_signal (&_cond[index]);
6332         assert (status == 0, "invariant");
6333       }
6334     } else {
6335       pthread_mutex_unlock(_mutex);
6336       assert (status == 0, "invariant") ;
6337     }
6338   } else {
6339     pthread_mutex_unlock(_mutex);
6340     assert (status == 0, "invariant") ;
6341   }
6342 }
6343 
6344 
6345 extern char** environ;
6346 
6347 // Run the specified command in a separate process. Return its exit value,
6348 // or -1 on failure (e.g. can't fork a new process).
6349 // Unlike system(), this function can be called from signal handler. It
6350 // doesn't block SIGINT et al.
6351 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
6352   const char * argv[4] = {"sh", "-c", cmd, NULL};
6353 
6354   pid_t pid ;
6355 
6356   if (use_vfork_if_available) {
6357     pid = vfork();
6358   } else {
6359     pid = fork();
6360   }
6361 
6362   if (pid < 0) {
6363     // fork failed
6364     return -1;
6365 
6366   } else if (pid == 0) {
6367     // child process
6368 
6369     execve("/bin/sh", (char* const*)argv, environ);
6370 
6371     // execve failed
6372     _exit(-1);
6373 
6374   } else  {
6375     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
6376     // care about the actual exit code, for now.
6377 
6378     int status;
6379 
6380     // Wait for the child process to exit.  This returns immediately if
6381     // the child has already exited. */
6382     while (waitpid(pid, &status, 0) < 0) {
6383         switch (errno) {
6384         case ECHILD: return 0;
6385         case EINTR: break;
6386         default: return -1;
6387         }
6388     }
6389 
6390     if (WIFEXITED(status)) {
6391        // The child exited normally; get its exit code.
6392        return WEXITSTATUS(status);
6393     } else if (WIFSIGNALED(status)) {
6394        // The child exited because of a signal
6395        // The best value to return is 0x80 + signal number,
6396        // because that is what all Unix shells do, and because
6397        // it allows callers to distinguish between process exit and
6398        // process death by signal.
6399        return 0x80 + WTERMSIG(status);
6400     } else {
6401        // Unknown exit code; pass it through
6402        return status;
6403     }
6404   }
6405 }
6406 
6407 // is_headless_jre()
6408 //
6409 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
6410 // in order to report if we are running in a headless jre
6411 //
6412 // Since JDK8 xawt/libmawt.so was moved into the same directory
6413 // as libawt.so, and renamed libawt_xawt.so
6414 //
6415 bool os::is_headless_jre() {
6416     struct stat statbuf;
6417     char buf[MAXPATHLEN];
6418     char libmawtpath[MAXPATHLEN];
6419     const char *xawtstr  = "/xawt/libmawt.so";
6420     const char *new_xawtstr = "/libawt_xawt.so";
6421     char *p;
6422 
6423     // Get path to libjvm.so
6424     os::jvm_path(buf, sizeof(buf));
6425 
6426     // Get rid of libjvm.so
6427     p = strrchr(buf, '/');
6428     if (p == NULL) return false;
6429     else *p = '\0';
6430 
6431     // Get rid of client or server
6432     p = strrchr(buf, '/');
6433     if (p == NULL) return false;
6434     else *p = '\0';
6435 
6436     // check xawt/libmawt.so
6437     strcpy(libmawtpath, buf);
6438     strcat(libmawtpath, xawtstr);
6439     if (::stat(libmawtpath, &statbuf) == 0) return false;
6440 
6441     // check libawt_xawt.so
6442     strcpy(libmawtpath, buf);
6443     strcat(libmawtpath, new_xawtstr);
6444     if (::stat(libmawtpath, &statbuf) == 0) return false;
6445 
6446     return true;
6447 }
6448 
6449 // Get the default path to the core file
6450 // Returns the length of the string
6451 int os::get_core_path(char* buffer, size_t bufferSize) {
6452   const char* p = get_current_directory(buffer, bufferSize);
6453 
6454   if (p == NULL) {
6455     assert(p != NULL, "failed to get current directory");
6456     return 0;
6457   }
6458 
6459   return strlen(buffer);
6460 }
6461 
6462 /////////////// Unit tests ///////////////
6463 
6464 #ifndef PRODUCT
6465 
6466 #define test_log(...) \
6467   do {\
6468     if (VerboseInternalVMTests) { \
6469       tty->print_cr(__VA_ARGS__); \
6470       tty->flush(); \
6471     }\
6472   } while (false)
6473 
6474 class TestReserveMemorySpecial : AllStatic {
6475  public:
6476   static void small_page_write(void* addr, size_t size) {
6477     size_t page_size = os::vm_page_size();
6478 
6479     char* end = (char*)addr + size;
6480     for (char* p = (char*)addr; p < end; p += page_size) {
6481       *p = 1;
6482     }
6483   }
6484 
6485   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6486     if (!UseHugeTLBFS) {
6487       return;
6488     }
6489 
6490     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6491 
6492     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6493 
6494     if (addr != NULL) {
6495       small_page_write(addr, size);
6496 
6497       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6498     }
6499   }
6500 
6501   static void test_reserve_memory_special_huge_tlbfs_only() {
6502     if (!UseHugeTLBFS) {
6503       return;
6504     }
6505 
6506     size_t lp = os::large_page_size();
6507 
6508     for (size_t size = lp; size <= lp * 10; size += lp) {
6509       test_reserve_memory_special_huge_tlbfs_only(size);
6510     }
6511   }
6512 
6513   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6514     size_t lp = os::large_page_size();
6515     size_t ag = os::vm_allocation_granularity();
6516 
6517     // sizes to test
6518     const size_t sizes[] = {
6519       lp, lp + ag, lp + lp / 2, lp * 2,
6520       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6521       lp * 10, lp * 10 + lp / 2
6522     };
6523     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6524 
6525     // For each size/alignment combination, we test three scenarios:
6526     // 1) with req_addr == NULL
6527     // 2) with a non-null req_addr at which we expect to successfully allocate
6528     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6529     //    expect the allocation to either fail or to ignore req_addr
6530 
6531     // Pre-allocate two areas; they shall be as large as the largest allocation
6532     //  and aligned to the largest alignment we will be testing.
6533     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6534     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6535       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6536       -1, 0);
6537     assert(mapping1 != MAP_FAILED, "should work");
6538 
6539     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6540       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6541       -1, 0);
6542     assert(mapping2 != MAP_FAILED, "should work");
6543 
6544     // Unmap the first mapping, but leave the second mapping intact: the first
6545     // mapping will serve as a value for a "good" req_addr (case 2). The second
6546     // mapping, still intact, as "bad" req_addr (case 3).
6547     ::munmap(mapping1, mapping_size);
6548 
6549     // Case 1
6550     test_log("%s, req_addr NULL:", __FUNCTION__);
6551     test_log("size            align           result");
6552 
6553     for (int i = 0; i < num_sizes; i++) {
6554       const size_t size = sizes[i];
6555       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6556         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6557         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6558             size, alignment, p, (p != NULL ? "" : "(failed)"));
6559         if (p != NULL) {
6560           assert(is_ptr_aligned(p, alignment), "must be");
6561           small_page_write(p, size);
6562           os::Linux::release_memory_special_huge_tlbfs(p, size);
6563         }
6564       }
6565     }
6566 
6567     // Case 2
6568     test_log("%s, req_addr non-NULL:", __FUNCTION__);
6569     test_log("size            align           req_addr         result");
6570 
6571     for (int i = 0; i < num_sizes; i++) {
6572       const size_t size = sizes[i];
6573       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6574         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6575         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6576         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6577             size, alignment, req_addr, p,
6578             ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6579         if (p != NULL) {
6580           assert(p == req_addr, "must be");
6581           small_page_write(p, size);
6582           os::Linux::release_memory_special_huge_tlbfs(p, size);
6583         }
6584       }
6585     }
6586 
6587     // Case 3
6588     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6589     test_log("size            align           req_addr         result");
6590 
6591     for (int i = 0; i < num_sizes; i++) {
6592       const size_t size = sizes[i];
6593       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6594         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6595         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6596         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6597             size, alignment, req_addr, p,
6598             ((p != NULL ? "" : "(failed)")));
6599         // as the area around req_addr contains already existing mappings, the API should always
6600         // return NULL (as per contract, it cannot return another address)
6601         assert(p == NULL, "must be");
6602       }
6603     }
6604 
6605     ::munmap(mapping2, mapping_size);
6606 
6607   }
6608 
6609   static void test_reserve_memory_special_huge_tlbfs() {
6610     if (!UseHugeTLBFS) {
6611       return;
6612     }
6613 
6614     test_reserve_memory_special_huge_tlbfs_only();
6615     test_reserve_memory_special_huge_tlbfs_mixed();
6616   }
6617 
6618   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6619     if (!UseSHM) {
6620       return;
6621     }
6622 
6623     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6624 
6625     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6626 
6627     if (addr != NULL) {
6628       assert(is_ptr_aligned(addr, alignment), "Check");
6629       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6630 
6631       small_page_write(addr, size);
6632 
6633       os::Linux::release_memory_special_shm(addr, size);
6634     }
6635   }
6636 
6637   static void test_reserve_memory_special_shm() {
6638     size_t lp = os::large_page_size();
6639     size_t ag = os::vm_allocation_granularity();
6640 
6641     for (size_t size = ag; size < lp * 3; size += ag) {
6642       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6643         test_reserve_memory_special_shm(size, alignment);
6644       }
6645     }
6646   }
6647 
6648   static void test() {
6649     test_reserve_memory_special_huge_tlbfs();
6650     test_reserve_memory_special_shm();
6651   }
6652 };
6653 
6654 void TestReserveMemorySpecial_test() {
6655   TestReserveMemorySpecial::test();
6656 }
6657 
6658 #endif