1 /*
   2  * Copyright (c) 2007, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package sun.java2d.marlin;
  27 
  28 import java.util.Arrays;
  29 import sun.awt.geom.PathConsumer2D;
  30 
  31 /**
  32  * The <code>Dasher</code> class takes a series of linear commands
  33  * (<code>moveTo</code>, <code>lineTo</code>, <code>close</code> and
  34  * <code>end</code>) and breaks them into smaller segments according to a
  35  * dash pattern array and a starting dash phase.
  36  *
  37  * <p> Issues: in J2Se, a zero length dash segment as drawn as a very
  38  * short dash, whereas Pisces does not draw anything.  The PostScript
  39  * semantics are unclear.
  40  *
  41  */
  42 final class Dasher implements sun.awt.geom.PathConsumer2D, MarlinConst {
  43 
  44     static final int recLimit = 4;
  45     static final float ERR = 0.01f;
  46     static final float minTincrement = 1f / (1 << recLimit);
  47 
  48     private PathConsumer2D out;
  49     private float[] dash;
  50     private int dashLen;
  51     private float startPhase;
  52     private boolean startDashOn;
  53     private int startIdx;
  54 
  55     private boolean starting;
  56     private boolean needsMoveTo;
  57 
  58     private int idx;
  59     private boolean dashOn;
  60     private float phase;
  61 
  62     private float sx, sy;
  63     private float x0, y0;
  64 
  65     // temporary storage for the current curve
  66     private final float[] curCurvepts;
  67 
  68     // per-thread renderer context
  69     final RendererContext rdrCtx;
  70 
  71     // dashes array (dirty)
  72     final float[] dashes_initial = new float[INITIAL_ARRAY];
  73 
  74     // flag to recycle dash array copy
  75     boolean recycleDashes;
  76 
  77     // per-thread initial arrays (large enough to satisfy most usages
  78     // +1 to avoid recycling in Helpers.widenArray()
  79     private final float[] firstSegmentsBuffer_initial = new float[INITIAL_ARRAY + 1];
  80 
  81     /**
  82      * Constructs a <code>Dasher</code>.
  83      * @param rdrCtx per-thread renderer context
  84      */
  85     Dasher(final RendererContext rdrCtx) {
  86         this.rdrCtx = rdrCtx;
  87 
  88         firstSegmentsBuffer = firstSegmentsBuffer_initial;
  89 
  90         // we need curCurvepts to be able to contain 2 curves because when
  91         // dashing curves, we need to subdivide it
  92         curCurvepts = new float[8 * 2];
  93     }
  94 
  95     /**
  96      * Initialize the <code>Dasher</code>.
  97      *
  98      * @param out an output <code>PathConsumer2D</code>.
  99      * @param dash an array of <code>float</code>s containing the dash pattern
 100      * @param dashLen length of the given dash array
 101      * @param phase a <code>float</code> containing the dash phase
 102      * @param recycleDashes true to indicate to recycle the given dash array
 103      * @return this instance
 104      */
 105     Dasher init(final PathConsumer2D out, float[] dash, int dashLen,
 106                 float phase, boolean recycleDashes)
 107     {
 108         if (phase < 0f) {
 109             throw new IllegalArgumentException("phase < 0 !");
 110         }
 111         this.out = out;
 112 
 113         // Normalize so 0 <= phase < dash[0]
 114         int idx = 0;
 115         dashOn = true;
 116         float d;
 117         while (phase >= (d = dash[idx])) {
 118             phase -= d;
 119             idx = (idx + 1) % dashLen;
 120             dashOn = !dashOn;
 121         }
 122 
 123         this.dash = dash;
 124         this.dashLen = dashLen;
 125         this.startPhase = this.phase = phase;
 126         this.startDashOn = dashOn;
 127         this.startIdx = idx;
 128         this.starting = true;
 129         needsMoveTo = false;
 130         firstSegidx = 0;
 131 
 132         this.recycleDashes = recycleDashes;
 133 
 134         return this; // fluent API
 135     }
 136 
 137     /**
 138      * Disposes this dasher:
 139      * clean up before reusing this instance
 140      */
 141     void dispose() {
 142         if (doCleanDirty) {
 143             // Force zero-fill dirty arrays:
 144             Arrays.fill(curCurvepts, 0f);
 145             Arrays.fill(firstSegmentsBuffer, 0f);
 146         }
 147         // Return arrays:
 148         if (recycleDashes && dash != dashes_initial) {
 149             rdrCtx.putDirtyFloatArray(dash);
 150             dash = null;
 151         }
 152 
 153         if (firstSegmentsBuffer != firstSegmentsBuffer_initial) {
 154             rdrCtx.putDirtyFloatArray(firstSegmentsBuffer);
 155             firstSegmentsBuffer = firstSegmentsBuffer_initial;
 156         }
 157     }
 158 
 159     @Override
 160     public void moveTo(float x0, float y0) {
 161         if (firstSegidx > 0) {
 162             out.moveTo(sx, sy);
 163             emitFirstSegments();
 164         }
 165         needsMoveTo = true;
 166         this.idx = startIdx;
 167         this.dashOn = this.startDashOn;
 168         this.phase = this.startPhase;
 169         this.sx = this.x0 = x0;
 170         this.sy = this.y0 = y0;
 171         this.starting = true;
 172     }
 173 
 174     private void emitSeg(float[] buf, int off, int type) {
 175         switch (type) {
 176         case 8:
 177             out.curveTo(buf[off+0], buf[off+1],
 178                         buf[off+2], buf[off+3],
 179                         buf[off+4], buf[off+5]);
 180             return;
 181         case 6:
 182             out.quadTo(buf[off+0], buf[off+1],
 183                        buf[off+2], buf[off+3]);
 184             return;
 185         case 4:
 186             out.lineTo(buf[off], buf[off+1]);
 187             return;
 188         default:
 189         }
 190     }
 191 
 192     private void emitFirstSegments() {
 193         final float[] fSegBuf = firstSegmentsBuffer;
 194 
 195         for (int i = 0; i < firstSegidx; ) {
 196             int type = (int)fSegBuf[i];
 197             emitSeg(fSegBuf, i + 1, type);
 198             i += (type - 1);
 199         }
 200         firstSegidx = 0;
 201     }
 202     // We don't emit the first dash right away. If we did, caps would be
 203     // drawn on it, but we need joins to be drawn if there's a closePath()
 204     // So, we store the path elements that make up the first dash in the
 205     // buffer below.
 206     private float[] firstSegmentsBuffer; // dynamic array
 207     private int firstSegidx;
 208 
 209     // precondition: pts must be in relative coordinates (relative to x0,y0)
 210     // fullCurve is true iff the curve in pts has not been split.
 211     private void goTo(float[] pts, int off, final int type) {
 212         float x = pts[off + type - 4];
 213         float y = pts[off + type - 3];
 214         if (dashOn) {
 215             if (starting) {
 216                 int len = type - 2 + 1;
 217                 int segIdx = firstSegidx;
 218                 float[] buf = firstSegmentsBuffer;
 219                 if (segIdx + len  > buf.length) {
 220                     if (doStats) {
 221                         RendererContext.stats.stat_array_dasher_firstSegmentsBuffer
 222                             .add(segIdx + len);
 223                     }
 224                     firstSegmentsBuffer = buf
 225                         = rdrCtx.widenDirtyFloatArray(buf, segIdx, segIdx + len);
 226                 }
 227                 buf[segIdx++] = type;
 228                 len--;
 229                 // small arraycopy (2, 4 or 6) but with offset:
 230                 System.arraycopy(pts, off, buf, segIdx, len);
 231                 segIdx += len;
 232                 firstSegidx = segIdx;
 233             } else {
 234                 if (needsMoveTo) {
 235                     out.moveTo(x0, y0);
 236                     needsMoveTo = false;
 237                 }
 238                 emitSeg(pts, off, type);
 239             }
 240         } else {
 241             starting = false;
 242             needsMoveTo = true;
 243         }
 244         this.x0 = x;
 245         this.y0 = y;
 246     }
 247 
 248     @Override
 249     public void lineTo(float x1, float y1) {
 250         float dx = x1 - x0;
 251         float dy = y1 - y0;
 252 
 253         float len = dx*dx + dy*dy;
 254         if (len == 0f) {
 255             return;
 256         }
 257         len = (float) Math.sqrt(len);
 258 
 259         // The scaling factors needed to get the dx and dy of the
 260         // transformed dash segments.
 261         final float cx = dx / len;
 262         final float cy = dy / len;
 263 
 264         final float[] _curCurvepts = curCurvepts;
 265         final float[] _dash = dash;
 266 
 267         float leftInThisDashSegment;
 268         float dashdx, dashdy, p;
 269 
 270         while (true) {
 271             leftInThisDashSegment = _dash[idx] - phase;
 272 
 273             if (len <= leftInThisDashSegment) {
 274                 _curCurvepts[0] = x1;
 275                 _curCurvepts[1] = y1;
 276                 goTo(_curCurvepts, 0, 4);
 277 
 278                 // Advance phase within current dash segment
 279                 phase += len;
 280                 // TODO: compare float values using epsilon:
 281                 if (len == leftInThisDashSegment) {
 282                     phase = 0f;
 283                     idx = (idx + 1) % dashLen;
 284                     dashOn = !dashOn;
 285                 }
 286                 return;
 287             }
 288 
 289             dashdx = _dash[idx] * cx;
 290             dashdy = _dash[idx] * cy;
 291 
 292             if (phase == 0f) {
 293                 _curCurvepts[0] = x0 + dashdx;
 294                 _curCurvepts[1] = y0 + dashdy;
 295             } else {
 296                 p = leftInThisDashSegment / _dash[idx];
 297                 _curCurvepts[0] = x0 + p * dashdx;
 298                 _curCurvepts[1] = y0 + p * dashdy;
 299             }
 300 
 301             goTo(_curCurvepts, 0, 4);
 302 
 303             len -= leftInThisDashSegment;
 304             // Advance to next dash segment
 305             idx = (idx + 1) % dashLen;
 306             dashOn = !dashOn;
 307             phase = 0f;
 308         }
 309     }
 310 
 311     // shared instance in Dasher
 312     private final LengthIterator li = new LengthIterator();
 313 
 314     // preconditions: curCurvepts must be an array of length at least 2 * type,
 315     // that contains the curve we want to dash in the first type elements
 316     private void somethingTo(int type) {
 317         if (pointCurve(curCurvepts, type)) {
 318             return;
 319         }
 320         li.initializeIterationOnCurve(curCurvepts, type);
 321 
 322         // initially the current curve is at curCurvepts[0...type]
 323         int curCurveoff = 0;
 324         float lastSplitT = 0f;
 325         float t;
 326         float leftInThisDashSegment = dash[idx] - phase;
 327 
 328         while ((t = li.next(leftInThisDashSegment)) < 1f) {
 329             if (t != 0f) {
 330                 Helpers.subdivideAt((t - lastSplitT) / (1f - lastSplitT),
 331                                     curCurvepts, curCurveoff,
 332                                     curCurvepts, 0,
 333                                     curCurvepts, type, type);
 334                 lastSplitT = t;
 335                 goTo(curCurvepts, 2, type);
 336                 curCurveoff = type;
 337             }
 338             // Advance to next dash segment
 339             idx = (idx + 1) % dashLen;
 340             dashOn = !dashOn;
 341             phase = 0f;
 342             leftInThisDashSegment = dash[idx];
 343         }
 344         goTo(curCurvepts, curCurveoff+2, type);
 345         phase += li.lastSegLen();
 346         if (phase >= dash[idx]) {
 347             phase = 0f;
 348             idx = (idx + 1) % dashLen;
 349             dashOn = !dashOn;
 350         }
 351         // reset LengthIterator:
 352         li.reset();
 353     }
 354 
 355     private static boolean pointCurve(float[] curve, int type) {
 356         for (int i = 2; i < type; i++) {
 357             if (curve[i] != curve[i-2]) {
 358                 return false;
 359             }
 360         }
 361         return true;
 362     }
 363 
 364     // Objects of this class are used to iterate through curves. They return
 365     // t values where the left side of the curve has a specified length.
 366     // It does this by subdividing the input curve until a certain error
 367     // condition has been met. A recursive subdivision procedure would
 368     // return as many as 1<<limit curves, but this is an iterator and we
 369     // don't need all the curves all at once, so what we carry out a
 370     // lazy inorder traversal of the recursion tree (meaning we only move
 371     // through the tree when we need the next subdivided curve). This saves
 372     // us a lot of memory because at any one time we only need to store
 373     // limit+1 curves - one for each level of the tree + 1.
 374     // NOTE: the way we do things here is not enough to traverse a general
 375     // tree; however, the trees we are interested in have the property that
 376     // every non leaf node has exactly 2 children
 377     static final class LengthIterator {
 378         private enum Side {LEFT, RIGHT};
 379         // Holds the curves at various levels of the recursion. The root
 380         // (i.e. the original curve) is at recCurveStack[0] (but then it
 381         // gets subdivided, the left half is put at 1, so most of the time
 382         // only the right half of the original curve is at 0)
 383         private final float[][] recCurveStack; // dirty
 384         // sides[i] indicates whether the node at level i+1 in the path from
 385         // the root to the current leaf is a left or right child of its parent.
 386         private final Side[] sides; // dirty
 387         private int curveType;
 388         // lastT and nextT delimit the current leaf.
 389         private float nextT;
 390         private float lenAtNextT;
 391         private float lastT;
 392         private float lenAtLastT;
 393         private float lenAtLastSplit;
 394         private float lastSegLen;
 395         // the current level in the recursion tree. 0 is the root. limit
 396         // is the deepest possible leaf.
 397         private int recLevel;
 398         private boolean done;
 399 
 400         // the lengths of the lines of the control polygon. Only its first
 401         // curveType/2 - 1 elements are valid. This is an optimization. See
 402         // next(float) for more detail.
 403         private final float[] curLeafCtrlPolyLengths = new float[3];
 404 
 405         LengthIterator() {
 406             this.recCurveStack = new float[recLimit + 1][8];
 407             this.sides = new Side[recLimit];
 408             // if any methods are called without first initializing this object
 409             // on a curve, we want it to fail ASAP.
 410             this.nextT = Float.MAX_VALUE;
 411             this.lenAtNextT = Float.MAX_VALUE;
 412             this.lenAtLastSplit = Float.MIN_VALUE;
 413             this.recLevel = Integer.MIN_VALUE;
 414             this.lastSegLen = Float.MAX_VALUE;
 415             this.done = true;
 416         }
 417 
 418         /**
 419          * Reset this LengthIterator.
 420          */
 421         void reset() {
 422             // keep data dirty
 423             // as it appears not useful to reset data:
 424             if (doCleanDirty) {
 425                 final int recLimit = recCurveStack.length - 1;
 426                 for (int i = recLimit; i >= 0; i--) {
 427                     Arrays.fill(recCurveStack[i], 0f);
 428                 }
 429                 Arrays.fill(sides, Side.LEFT);
 430                 Arrays.fill(curLeafCtrlPolyLengths, 0f);
 431                 Arrays.fill(nextRoots, 0f);
 432                 Arrays.fill(flatLeafCoefCache, 0f);
 433                 flatLeafCoefCache[2] = -1f;
 434             }
 435         }
 436 
 437         void initializeIterationOnCurve(float[] pts, int type) {
 438             // optimize arraycopy (8 values faster than 6 = type):
 439             System.arraycopy(pts, 0, recCurveStack[0], 0, 8);
 440             this.curveType = type;
 441             this.recLevel = 0;
 442             this.lastT = 0f;
 443             this.lenAtLastT = 0f;
 444             this.nextT = 0f;
 445             this.lenAtNextT = 0f;
 446             goLeft(); // initializes nextT and lenAtNextT properly
 447             this.lenAtLastSplit = 0f;
 448             if (recLevel > 0) {
 449                 this.sides[0] = Side.LEFT;
 450                 this.done = false;
 451             } else {
 452                 // the root of the tree is a leaf so we're done.
 453                 this.sides[0] = Side.RIGHT;
 454                 this.done = true;
 455             }
 456             this.lastSegLen = 0f;
 457         }
 458 
 459         // 0 == false, 1 == true, -1 == invalid cached value.
 460         private int cachedHaveLowAcceleration = -1;
 461 
 462         private boolean haveLowAcceleration(float err) {
 463             if (cachedHaveLowAcceleration == -1) {
 464                 final float len1 = curLeafCtrlPolyLengths[0];
 465                 final float len2 = curLeafCtrlPolyLengths[1];
 466                 // the test below is equivalent to !within(len1/len2, 1, err).
 467                 // It is using a multiplication instead of a division, so it
 468                 // should be a bit faster.
 469                 if (!Helpers.within(len1, len2, err*len2)) {
 470                     cachedHaveLowAcceleration = 0;
 471                     return false;
 472                 }
 473                 if (curveType == 8) {
 474                     final float len3 = curLeafCtrlPolyLengths[2];
 475                     // if len1 is close to 2 and 2 is close to 3, that probably
 476                     // means 1 is close to 3 so the second part of this test might
 477                     // not be needed, but it doesn't hurt to include it.
 478                     final float errLen3 = err * len3;
 479                     if (!(Helpers.within(len2, len3, errLen3) &&
 480                           Helpers.within(len1, len3, errLen3))) {
 481                         cachedHaveLowAcceleration = 0;
 482                         return false;
 483                     }
 484                 }
 485                 cachedHaveLowAcceleration = 1;
 486                 return true;
 487             }
 488 
 489             return (cachedHaveLowAcceleration == 1);
 490         }
 491 
 492         // we want to avoid allocations/gc so we keep this array so we
 493         // can put roots in it,
 494         private final float[] nextRoots = new float[4];
 495 
 496         // caches the coefficients of the current leaf in its flattened
 497         // form (see inside next() for what that means). The cache is
 498         // invalid when it's third element is negative, since in any
 499         // valid flattened curve, this would be >= 0.
 500         private final float[] flatLeafCoefCache = new float[]{0f, 0f, -1f, 0f};
 501 
 502         // returns the t value where the remaining curve should be split in
 503         // order for the left subdivided curve to have length len. If len
 504         // is >= than the length of the uniterated curve, it returns 1.
 505         float next(final float len) {
 506             final float targetLength = lenAtLastSplit + len;
 507             while (lenAtNextT < targetLength) {
 508                 if (done) {
 509                     lastSegLen = lenAtNextT - lenAtLastSplit;
 510                     return 1f;
 511                 }
 512                 goToNextLeaf();
 513             }
 514             lenAtLastSplit = targetLength;
 515             final float leaflen = lenAtNextT - lenAtLastT;
 516             float t = (targetLength - lenAtLastT) / leaflen;
 517 
 518             // cubicRootsInAB is a fairly expensive call, so we just don't do it
 519             // if the acceleration in this section of the curve is small enough.
 520             if (!haveLowAcceleration(0.05f)) {
 521                 // We flatten the current leaf along the x axis, so that we're
 522                 // left with a, b, c which define a 1D Bezier curve. We then
 523                 // solve this to get the parameter of the original leaf that
 524                 // gives us the desired length.
 525                 final float[] _flatLeafCoefCache = flatLeafCoefCache;
 526 
 527                 if (_flatLeafCoefCache[2] < 0) {
 528                     float x = 0f + curLeafCtrlPolyLengths[0],
 529                           y = x  + curLeafCtrlPolyLengths[1];
 530                     if (curveType == 8) {
 531                         float z = y + curLeafCtrlPolyLengths[2];
 532                         _flatLeafCoefCache[0] = 3f * (x - y) + z;
 533                         _flatLeafCoefCache[1] = 3f * (y - 2f * x);
 534                         _flatLeafCoefCache[2] = 3f * x;
 535                         _flatLeafCoefCache[3] = -z;
 536                     } else if (curveType == 6) {
 537                         _flatLeafCoefCache[0] = 0f;
 538                         _flatLeafCoefCache[1] = y - 2f * x;
 539                         _flatLeafCoefCache[2] = 2f * x;
 540                         _flatLeafCoefCache[3] = -y;
 541                     }
 542                 }
 543                 float a = _flatLeafCoefCache[0];
 544                 float b = _flatLeafCoefCache[1];
 545                 float c = _flatLeafCoefCache[2];
 546                 float d = t * _flatLeafCoefCache[3];
 547 
 548                 // we use cubicRootsInAB here, because we want only roots in 0, 1,
 549                 // and our quadratic root finder doesn't filter, so it's just a
 550                 // matter of convenience.
 551                 int n = Helpers.cubicRootsInAB(a, b, c, d, nextRoots, 0, 0, 1);
 552                 if (n == 1 && !Float.isNaN(nextRoots[0])) {
 553                     t = nextRoots[0];
 554                 }
 555             }
 556             // t is relative to the current leaf, so we must make it a valid parameter
 557             // of the original curve.
 558             t = t * (nextT - lastT) + lastT;
 559             if (t >= 1f) {
 560                 t = 1f;
 561                 done = true;
 562             }
 563             // even if done = true, if we're here, that means targetLength
 564             // is equal to, or very, very close to the total length of the
 565             // curve, so lastSegLen won't be too high. In cases where len
 566             // overshoots the curve, this method will exit in the while
 567             // loop, and lastSegLen will still be set to the right value.
 568             lastSegLen = len;
 569             return t;
 570         }
 571 
 572         float lastSegLen() {
 573             return lastSegLen;
 574         }
 575 
 576         // go to the next leaf (in an inorder traversal) in the recursion tree
 577         // preconditions: must be on a leaf, and that leaf must not be the root.
 578         private void goToNextLeaf() {
 579             // We must go to the first ancestor node that has an unvisited
 580             // right child.
 581             int _recLevel = recLevel;
 582             final Side[] _sides = sides;
 583 
 584             _recLevel--;
 585             while(_sides[_recLevel] == Side.RIGHT) {
 586                 if (_recLevel == 0) {
 587                     recLevel = 0;
 588                     done = true;
 589                     return;
 590                 }
 591                 _recLevel--;
 592             }
 593 
 594             _sides[_recLevel] = Side.RIGHT;
 595             // optimize arraycopy (8 values faster than 6 = type):
 596             System.arraycopy(recCurveStack[_recLevel], 0,
 597                              recCurveStack[_recLevel+1], 0, 8);
 598             _recLevel++;
 599 
 600             recLevel = _recLevel;
 601             goLeft();
 602         }
 603 
 604         // go to the leftmost node from the current node. Return its length.
 605         private void goLeft() {
 606             float len = onLeaf();
 607             if (len >= 0f) {
 608                 lastT = nextT;
 609                 lenAtLastT = lenAtNextT;
 610                 nextT += (1 << (recLimit - recLevel)) * minTincrement;
 611                 lenAtNextT += len;
 612                 // invalidate caches
 613                 flatLeafCoefCache[2] = -1f;
 614                 cachedHaveLowAcceleration = -1;
 615             } else {
 616                 Helpers.subdivide(recCurveStack[recLevel], 0,
 617                                   recCurveStack[recLevel+1], 0,
 618                                   recCurveStack[recLevel], 0, curveType);
 619                 sides[recLevel] = Side.LEFT;
 620                 recLevel++;
 621                 goLeft();
 622             }
 623         }
 624 
 625         // this is a bit of a hack. It returns -1 if we're not on a leaf, and
 626         // the length of the leaf if we are on a leaf.
 627         private float onLeaf() {
 628             float[] curve = recCurveStack[recLevel];
 629             float polyLen = 0f;
 630 
 631             float x0 = curve[0], y0 = curve[1];
 632             for (int i = 2; i < curveType; i += 2) {
 633                 final float x1 = curve[i], y1 = curve[i+1];
 634                 final float len = Helpers.linelen(x0, y0, x1, y1);
 635                 polyLen += len;
 636                 curLeafCtrlPolyLengths[i/2 - 1] = len;
 637                 x0 = x1;
 638                 y0 = y1;
 639             }
 640 
 641             final float lineLen = Helpers.linelen(curve[0], curve[1],
 642                                                   curve[curveType-2],
 643                                                   curve[curveType-1]);
 644             if ((polyLen - lineLen) < ERR || recLevel == recLimit) {
 645                 return (polyLen + lineLen) / 2f;
 646             }
 647             return -1f;
 648         }
 649     }
 650 
 651     @Override
 652     public void curveTo(float x1, float y1,
 653                         float x2, float y2,
 654                         float x3, float y3)
 655     {
 656         final float[] _curCurvepts = curCurvepts;
 657         _curCurvepts[0] = x0;        _curCurvepts[1] = y0;
 658         _curCurvepts[2] = x1;        _curCurvepts[3] = y1;
 659         _curCurvepts[4] = x2;        _curCurvepts[5] = y2;
 660         _curCurvepts[6] = x3;        _curCurvepts[7] = y3;
 661         somethingTo(8);
 662     }
 663 
 664     @Override
 665     public void quadTo(float x1, float y1, float x2, float y2) {
 666         final float[] _curCurvepts = curCurvepts;
 667         _curCurvepts[0] = x0;        _curCurvepts[1] = y0;
 668         _curCurvepts[2] = x1;        _curCurvepts[3] = y1;
 669         _curCurvepts[4] = x2;        _curCurvepts[5] = y2;
 670         somethingTo(6);
 671     }
 672 
 673     @Override
 674     public void closePath() {
 675         lineTo(sx, sy);
 676         if (firstSegidx > 0) {
 677             if (!dashOn || needsMoveTo) {
 678                 out.moveTo(sx, sy);
 679             }
 680             emitFirstSegments();
 681         }
 682         moveTo(sx, sy);
 683     }
 684 
 685     @Override
 686     public void pathDone() {
 687         if (firstSegidx > 0) {
 688             out.moveTo(sx, sy);
 689             emitFirstSegments();
 690         }
 691         out.pathDone();
 692 
 693         // Dispose this instance:
 694         dispose();
 695     }
 696 
 697     @Override
 698     public long getNativeConsumer() {
 699         throw new InternalError("Dasher does not use a native consumer");
 700     }
 701 }
 702